A Distributed Representation-Based Framework for Cross-Lingual Transfer Parsing

Main Article Content

Jiang Guo
Wanxiang Che
David Yarowsky
Haifeng Wang
Ting Liu


This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing dependency parsers for low-resource languages while using only training data from a resource-rich language (e.g., English). Existing model transfer approaches typically don't include lexical features, which are not transferable across languages. In this paper, we bridge the lexical feature gap by using distributed feature representations and their composition. We provide two algorithms for inducing cross-lingual distributed representations of words, which map vocabularies from two different languages into a common vector space. Consequently, both lexical features and non-lexical features can be used in our model for cross-lingual transfer. Furthermore, our framework is flexible enough to incorporate additional useful features such as cross-lingual word clusters. Our combined contributions achieve an average relative error reduction of 10.9% in labeled attachment score as compared with the delexicalized parser, trained on English universal treebank and transferred to three other languages. It also significantly outperforms state-of-the-art delexicalized models augmented with projected cluster features on identical data. Finally, we demonstrate that our models can be further boosted with minimal supervision (e.g., 100 annotated sentences) from target languages, which is of great significance for practical usage.

Article Details