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Abstract

This paper aims to solve two enduring challenges in existing trajectory similarity mea-
sures: computational inefficiency and the absence of the ‘uniqueness’ property that should
be guaranteed in a distance function: dist(X,Y ) = 0 if and only if X = Y , where X and
Y are two trajectories. In this work, we present a novel approach utilizing a distributional
kernel for trajectory representation and similarity measurement, based on the kernel mean
embedding framework. It is the very first time a distributional kernel is used for trajectory
representation and similarity measurement. Our method does not rely on point-to-point
distances which are used in most existing distances for trajectories. Unlike prevalent learn-
ing and deep learning approaches, our method requires no learning. We show the generality
of this new approach in anomalous trajectory and sub-trajectory detection. We identify
that the distributional kernel has (i) a data-dependent property and the ‘uniqueness’ prop-
erty which are the key factors that lead to its superior task-specific performance, and (ii)
runtime orders of magnitude faster than existing distance measures.

1. Introduction

The advancement of location technology has resulted in the generation of a large amount of
trajectory data, causing an increase in the interest in trajectory mining. A trajectory has
space-time continuity and is often represented by a sequence of location points representing
the route of a moving object. Potential benefits of trajectory mining are in urban planning,
transportation management, and public safety.

Like other data mining tasks, similarity measurements for trajectories are a core opera-
tion in trajectory data mining. Commonly used measures include Dynamic Time Warping
(DTW) (Sakoe & Chiba, 1971), Hausdorff distance (Rockafellar & Wets, 1998), Fréchet
distance (Eiter & Mannila, 1994) and edit distances (Chen & Ng, 2004; Chen et al., 2005).
However, these existing measures have three fundamental shortcomings:
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1. Existing trajectory distance measures are computationally expensive. They have a
high time complexity of O(m2) in making a measurement between two trajectories,
each having m data points.

2. None of the existing measures can guarantee the ‘uniqueness’ property of a distance
function: dist(X,Y ) = 0 if and only if X = Y , where X and Y are two trajectories (Li
et al., 2018; Ma et al., 2018). As a result, they may produce some ‘irregularities’ such
as two different trajectories having a small distance or two similar trajectories having
a large distance. Despite recent efforts that produce learned measure/representation
(Li et al., 2018; Ma et al., 2018), they still could not guarantee to have gotten rid of
this kind of ‘irregularities’. Even deep learning methods (Liu et al., 2020; Malhotra
et al., 2016; Xu et al., 2021) do not provide any improvement on this front.

3. Traditional measures are all based on point-to-point distances between two trajec-
tories and ignore the distribution information in a trajectory, which can lead to an
unreasonable result in some cases (see Section 5.2 for details).

We are motivated to address these shortcomings using a principled approach, which has
three distinctive features in comparison with the above-mentioned approaches. Firstly, a
distributional kernel is used for the very first time to represent trajectories and measure the
similarity between two trajectories. Secondly, it does not rely on point-to-point distances.
Thirdly, it requires no learning, yet it performs as well as, or better than, existing measures
and deep learning methods.

Our contributions are:

1. Introducing a distributional kernel for trajectory representation and similarity mea-
surement. Our method has two benefits: (i) linear time complexity O(m) for measur-
ing two trajectories with a maximum length of m; (ii) a strong theoretical underpin-
ning based on kernel mean embedding (Muandet et al., 2017; Smola et al., 2007).

2. Analyzing the essential properties of a good measure for trajectories and identifying
the importance of the data-dependent property of a measure for applications such as
anomalous trajectory detection.

3. Proposing simple and effective algorithms for anomalous trajectory and sub-trajectory
detection, based on the powerful distributional kernel. We show for the first time that
the distributional measure can be applied successfully to four existing point anomaly
detectors to detect anomalous trajectories.

4. Conducting empirical evaluations in two different applications to assess the effective-
ness and efficiency of (i) different trajectory distance measures, including the proposed
distributional kernel, three commonly used distance measures and one representation
learning method, and (ii) the proposed algorithms in comparison with existing algo-
rithms in anomaly detection tasks.

The rest of the paper is organized as follows. Section 2 reviews existing similarity
measures for trajectories. Problem formulation is given in Section 3. Section 4 introduces
how trajectories could be treated as distributions and how distributional kernel could be
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used to measure the similarity between trajectories. Section 5 discusses the necessary
properties of a similarity measure for trajectories. The proposed distributional kernel-
based algorithms for two applications are provided in Section 6. The empirical settings
and evaluations are reported in Sections 7 & 8, followed by the discussion and conclusion
sections.

2. Related Work

In this section, we survey existing trajectory distance measures and trajectory anomaly
detection methods.

2.1 Trajectory Similarity/Distance Measures

Existing trajectory similarity/distance measures can be divided into three categories: tra-
ditional measures, tailored measures, and representation learning.

Examples of traditional measures include Dynamic Time Warping (DTW) distance
(Sakoe & Chiba, 1971), Hausdorff distance (Rockafellar & Wets, 1998), Fréchet distance
(Eiter & Mannila, 1994), edit distances (Chen & Ng, 2004; Chen et al., 2005), and longest
common subsequence distance (Vlachos et al., 2002). Most of these measures compute their
final distances between two trajectories based on some best-match point-pairs from the two
trajectories. Dynamic programming is often used to find the matched pairs based on some
criterion to determine the goodness of a match. High time complexity is the key limitation
of these measures. Note that some of these measures are set-based measures, e.g., Hausdorff
and Fréchet distances, where time/order information is ignored.

Tailored measures are motivated by the fact that existing distance measures such as
DTW, Hausdorff, and Fréchet distances have some irregularities in measuring the distance
between trajectories (Li et al., 2018; Ma et al., 2018). Constructing a tailored measure often
involves a process to learn the order/time-dependent structure in a dataset of trajectories.
An example method enlists RNN Autoencoder to learn a tailored measure (Ma et al., 2018)
by minimizing the reconstruction errors between the input sequences and the constructed
sequences. Another recent deep learning work ST2Vec (Fang et al., 2022) aims to speed up
the computation of an existing distance measure such as Hausdorff and Fréchet distances
by learning an approximate measure.

The third category is representation learning which aims to learn a vector representation
of trajectories via some transformation. Examples are deep representation learning (Li et
al., 2018), tube-droplet method (Lin et al., 2017), time-sensitive Dirichlet process mixture
model (Hu et al., 2013) and hidden Markov model (Morris & Trivedi, 2011). We refer the
readers to a recent survey of the representation and measures used for trajectories (Sousa
et al., 2020) for further details.

It is interesting to note that none of these existing measures and learned methods have
been shown to have the uniqueness property, i.e., dist(X,Y ) = 0 if and only if X = Y . The
uniqueness property is one of the four axioms of a distance metric. We postulate that the
irregularities identified are largely due to the lack of this property.

In summary, traditional distance measures are computationally expensive and can have
certain irregularities that affect the accuracy of the measurements. Although some learn-
ing techniques try to balance effectiveness with efficiency, they only address the runtime
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problem. In fact, they exacerbate the effectiveness issue because they only learn an approx-
imation of the intended measure.

2.2 Trajectory Anomaly Detection Methods

To deal with a specific data mining task with trajectories, any existing point-based methods,
which employ a distance/kernel function, can be used directly with a minimal change. For
example, to deal with trajectory anomaly detection, existing anomaly detectors such as
LOF (Breunig et al., 2000) and OCSVM (Schölkopf et al., 2001) can be employed directly
to detect anomalous trajectory by simply replacing the distance/kernel function used with
any of the above-mentioned measures.

Other methods include probabilistic model DB-TOD (Wu et al., 2017), isolation-based
methods iBAT (Zhang et al., 2011) and iBOAT (Chen et al., 2013), and the partition-and-
detect method TRAOD (Lee et al., 2008). With the exception of TRAOD, no public source
codes are made available on these systems.

With the development of deep learning, many task-specific end-to-end approaches have
been proposed. Generally, end-to-end deep methods involve the learning of trajectory rep-
resentations. For example, ATD-RNN (Song et al., 2018) is a supervised method based
on RNN. IGMM-GAN (Gray et al., 2018) combines a Gaussian mixture model with GAN.
Through the estimation of a generative probability density on the space of trajectories,
IGMM-GAN generates realistic synthetic datasets and simultaneously facilitates multi-
modal anomaly detection. The semi-supervised GM-VSAE (Liu et al., 2020) first converts
each trajectory to a series of tokens, and then employs RNN. EncDec-AD (Malhotra et al.,
2016) combines LSTM with an autoencoder. It uses the reconstruction error as the anomaly
score, assuming that normal data is easier to reconstruct than anomalous data.

3. Problem Formulation

In this section, we give the definition of trajectory and sub-trajectory.

Definition 3.1 Trajectory X is an ordered sequence of points, i.e., X = ⌜x1, . . . , xi, . . . , xµ⌝,
where i ∈ [1, µ] indicates the order of traversal in X.

In practice, xi ∈ X is usually a GPS point having three attributes: longitude, latitude, and
timestamp.

Definition 3.2 Sub-trajectory Xs = ⌜xa, . . . , xb⌝ is a contiguous subsequence of X, de-
noted as Xs ≺ X, where 1 ≤ a ≤ b ≤ µ.

Note that ⌜xi⌝, i = 1, . . . , µ are also sub-trajectories of X. We denote this special case of
⌜xi⌝ as a point-sub-trajectory.

Definition 3.3 Maximal sub-trajectory Xs ≺ X is a contiguous subsequence in X of
maximal length if xa−1 and xb+1 cannot be valid members of Xs = ⌜xa, . . . , xb⌝ based on
some criterion.

A trajectory may contain multiple maximal sub-trajectories separated by invalid members
based on some criterion.

The problems of the two applications we considered in this paper are defined as follows:
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Definition 3.4 Anomalous trajectory detection. Given a dataset D = {Xi, i = 1, . . . , n},
anomalous trajectory detection aims to detect trajectories in D which are rare and different
from the majority.

Definition 3.5 Anomalous sub-trajectory detection. Given an anomalous trajectory
X, anomalous sub-trajectory detection aims to detect all maximal sub-trajectories Xs ≺ X
that make X anomalous with respect to a given dataset of trajectories.

Table 1 shows the key notations used in this paper.

x A point in d-dimensional real domain Rd

κ Isolation/Gaussian kernel
ϕ Kernel map of κ
X A trajectory of ⌜x1, . . . , xµ⌝ with |X| = µ points
PX Probability distribution that generates x ∼ PX

KI or KG Isolation/Gaussian Distributional Kernel
Φ Kernel mean map of KI or KG

g Mapped point g = Φ(PX) in Hilbert space H
D Set of n trajectories {Xi, i = 1, . . . , n}
Π Set of mapped points {gi, i = 1, . . . , n} in H
FI or FG Detector F employing Φ derived from KI or KG

dW , dH , dF DTW, Hausdorff, Fréchet distances

Table 1: Key symbols and notations used

4. Distributional Kernel for Trajectory Representation and Similarity
Measurement

In this section, we show that trajectories can be treated as independent and identically
distributed (i.i.d.) points sampled from an unknown probability distribution. Therefore, it
is possible to represent a trajectory via a distributional kernel.

4.1 Assumptions and Intuitive Examples

To use a distributional kernel to measure the similarity between two trajectories, we make
the following assumptions:

1. Valid trajectories: A valid trajectory consists of a series of ordered points that obey
the constraints in time and space.

2. Independent and identically distributed (i.i.d.) assumption: A valid trajec-
tory X is assumed to be an i.i.d. sample set generated from an unknown probability
distribution PX .

3. Time is regarded to be one of the dimensions in Rd: The time information (or
order) of points in each trajectory can be included as a dimension, in addition to a
spatial d− 1 dimensional space.
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With the above assumptions, all points in a valid trajectory X can be seen as i.i.d. points
x ∈ Rd which are generated from an unknown probability distribution function (pdf) PX ,
i.e., x ∼ PX , and a distributional kernel can effectively compute the similarity between two
trajectories.

Here, we provide an intuitive example to show that trajectories can be represented
by distributions and that the representation results may differ based on whether or not
temporal information is taken into account. As shown in Table 2, suppose there is a point
moving from the origin in a one-dimensional coordinate system. By recording its distance
from the origin at each moment, we can create a one-dimensional trajectory. For simplicity,
we assume that the velocity of the point is constant within the trajectory. Additionally, we
record all trajectories at a constant sampling rate.

If we do not consider temporal information, the distribution of the trajectory would be
one-dimensional, i.e., x ∈ R1. However, if we consider temporal information, the sample
points from the trajectory would be two-dimensional, i.e., (t, xt) ∈ R2. Assume there are
three trajectories, X,X ′, and Y . Both X and X ′ start from the origin, with different
speeds, travel to a location near 200 meters, and then return to the origin. Y moves with a
uniform speed from the origin to a distance of 500 meters from the origin. Each column in
Table 2 shows the trajectories in different dimensions and their corresponding distributions.
We discuss the case of considering the temporal domain and not considering the temporal
domain separately below:

• x ∈ R1: When the time information is ignored, the pdfs ofX andX ′ are approximately
the same, as shown in the first column of Table 2. As a result, a distributional kernel
K that measures the similarity between these two trajectories yields K(X,X ′) ≈ 1
because PX ≈ PX′ . In contrast, the similarity between X and Y yields K(X,Y ) <
K(X,X ′) because PX ̸= PY .

• (t, xt) ∈ R2, where time is one of the two dimensions shown in the second column of
Table 2. Here X, X ′, and Y have different distributions, i.e., PX ̸= PX′ ̸= PY , Which
means a distributional kernel would not consider X similar to X ′.

Note that the above two representations can both be legitimate cases in practice. In
applications where time is irrelevant in identifying a unique trajectory, it is unnecessary to
include the time domain in the representation.

4.2 Distributional Kernel

A distributional kernel measures the similarity between two distributions. Let X and Y be
two sets of i.i.d. samples generated from two distributions PX and PY , respectively. Based
on kernel mean embedding (KME) (Muandet et al., 2017), a distributional kernel is defined
as follows:

KG(PX ,PY ) =
1

|X||Y |
∑

x∈X,y∈Y
κ(x, y) (1)

While κ is typically a Gaussian kernel in the KME framework (Muandet et al., 2017),
a recent work (Ting et al., 2020) has shown that using Isolation Kernel (IK) (Ting et al.,
2018) is a better option for point anomaly detection.
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Table 2: First row: three trajectories in 1-dimensional spatial space R1 and 2-dimensional
spatiotemporal space R2. Second row: pdfs in R1 and R2 spaces.

A new distributional kernel (Ting et al., 2020) constructed by replacing the Gaussian
kernel with IK in KME is briefly described as follows.

Given a dataset D ⊂ Rd, IK derives a finite-dimensional feature map ϕ from D, i.e.,
κ(x, y|D) = ⟨ϕ(x|D), ϕ(y|D)⟩. Then, Eq (1) can be re-expressed as:

KI(PX ,PY |D) =
1

|X||Y |
∑

x∈X,y∈Y
κ(x, y|D)

=
1

|X||Y |
∑

x∈X,y∈Y
⟨ϕ(x|D), ϕ(y|D)⟩

= ⟨Φ(PX |D),Φ(PY |D)⟩ ,

(2)

The kernel mean map Φ of KI , which maps a distribution estimated by a sample set X in
input space to a point in Hilbert space, is given as:

Φ(PX |D) = 1

|X|
∑
x∈X

ϕ(x|D). (3)

Our approach is distinguished from other existing measures in three key aspects:
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1. A distributional kernel is used to represent each trajectory and measure the similarity
between two trajectories, without learning. In contrast, existing works focus on some
point-to-point distance-based measures or learned representations.

2. The proposed distributional approach inherits the theoretical fundamentals of kernel
mean embedding. Specifically, the resultant representation Φ : P → H (Hilbert
space) is injective, i.e., ∥ Φ(PX)−Φ(PY ) ∥H = 0 iff PX = PY , where PX ,PY ∈ P and
P is a set of probability distributions on Rd (Fukumizu et al., 2004). Note that this is
equivalent to the uniqueness property of a measure (without mapping Φ) mentioned
earlier. None of the existing measures and representation learning methods have been
shown to have this property.

3. An implementation of the approach called Isolation Distributional Kernel (KI) has
a unique data-dependent property: two distributions are more similar to each
other when measured by KI derived from a sparse region than that from a
dense region (Ting et al., 2020). It enables KI -based detector to gain higher detec-
tion accuracy than existing deep learning methods. Furthermore, this implementation
is more efficient than traditional distance-based methods.

We will discuss these important properties of similarity measures in more detail in the
next section.

5. Important Properties of Trajectory Similarity Measures

Table 3 presents four important properties of any measures for trajectories: uniqueness,
point-to-point distance-based, distribution-based, and data-dependent. We discuss the first
three properties in the next subsection and the details of the fourth property in the following
subsection.

KI KG dW dH dF
Uniqueness property ✓ ✓ × × ×
Point-to-point distance-based × ✓ ✓ ✓ ✓
Distribution-based ✓ ✓ × × ×
Data-dependent ✓ × × × ×
Time complexity m+ n mn mn mn log(mn)

Table 3: Compliance with properties listed above of a trajectory similarity measure. Time
complexity is for computing the similarity of two trajectories with sizem and n, respectively.
KI and KG have the same time complexity m+ n.

5.1 Uniqueness, Point-to-point Distance-based and Distribution-based
Properties

The uniqueness property is one of the four axioms of a distance metric: dist(X,Y ) = 0 if and
only if X = Y , where X and Y are two trajectories. An example with three trajectories is
provided in Table 4 to examine whether the five measures comply with this property, where
X ′ is a translated version of X, Y is a different trajectory from either X and X ′.
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(X,X′) (X,Y ) d(X,X′) < d(X,Y )

I
dW .50 .43 ×
dH .50 .50 ×
dF .50 .50 ×

II
KI .48 .23 ✓
KG .45 .27 ✓

Table 4: An example of unreasonable results produced by the three distance measures dW ,
dH & dF , in sharp contrast with distributional kernels KI and KG. The first row presents
distances, while the second row presents similarities. X, Y and X ′ are trajectories or
sequences of two-dimensional GPS points.

In this example, dW , dH and dF produce distances for X and Y which are equal to or
smaller than the distances for X and X ′. The reason for this unreasonable result is that
dW , dH and dF are based on point-to-point distances that consider point-to-point matching
only without considering the distribution of the points.

In contrast, KI and KG produce measurements that are consistent with the uniqueness
property because they are both based on kernel mean embedding which has been shown
theoretically to have this property (Muandet et al., 2017; Ting et al., 2020).

5.2 Data-dependent Property of KI

Table 3 shows that only KI has the data-dependent property among all the five measures.
Given a trajectory dataset D = {Xi, i = 1, . . . , n}, the data-dependent similarity measure
KI is derived from D = ∪n

i=1Xi (Ting et al., 2020). KI relies on local neighborhoods which
are large in the sparse region and small in the dense region. This leads directly to a unique
data-dependent property (Ting et al., 2020):

Definition 5.1 Data-dependent property of KI . Two distributions are more similar to
each other when measured by KI derived from a sparse region than that from a dense region.

This property is inherited from Isolation Kernel (IK) which has a similar data-dependent
property (Qin et al., 2019; Ting et al., 2018), as KI (Ting et al., 2020) is built based on IK.
The other four measures in Table 3 do not have the data-dependent property because they
all use a data-independent measure such as Euclidean distance or Gaussian kernel.

Two scenarios, in which a data-dependent kernel such as IK has a significant impact on
detection accuracy, are presented below.
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5.2.1 Trajectories in Dense and Sparse Clusters

The example dataset, shown in Figure 1, consists of 103 trajectories, with one normal dense
cluster (top 50 trajectories), one normal sparse cluster (bottom 50 trajectories), and three
anomalous trajectories X ′, Y ′, and Z ′. Anomalous trajectories are all straight-line, whereas
the normal trajectories in the two clusters are not straight-line trajectories.

Figure 1: An example dataset. The trajectories are indexed, from #0 to #102 from top to
bottom on the right. Three anomalous trajectories Z ′, X ′, and Y ′, which have indices at
#40, #51, #52 respectively. On the right half of the trajectories, each pair of X & X ′ and
Y & Y ′ has the same (vertical) Euclidean distance.

Figure 2: Similarity scores from GDKG and IDKI on trajectories shown in Figure 1.

As illustrated in Figure 2, GDKG exhibits a distribution of similarity scores that is
reminiscent of a density distribution, where trajectory indices #0 to #50 are members of
the dense cluster, and indices #53 to #102 are members of the sparse cluster. The three
anomalous trajectories Z ′, X ′ and Y ′ (indices #40, #51 & #52) have similarity scores close
to the edges of the dense cluster. In addition, all trajectories in the sparse cluster have
similarity scores less than the dense cluster, and the trajectory with the lowest similarity
score is at index #102 (the bottom trajectory in Figure 1). As a result, almost all the
normal trajectories in the sparse cluster have lower similarity scores than the two anomalous

874



A Principled Distributional Approach to Trajectory Similarity Measurement

trajectories Z ′, and X ′. Thus, Z ′ and X ′ cannot be identified as anomalous trajectories by
GDKG.

In contrast, the distribution of the similarity score of IDKI is more balanced between the
dense cluster and sparse cluster in Figure 2, and all three anomalous trajectories have the
lowest similarity scores. Thus, Z ′, Y ′, and X ′ are easily identified as anomalous trajectories
by IDKI . This scenario indicates that the data-dependent KI is a better mea-
sure than the data-independent KG for trajectory anomaly detection in datasets
containing regions of varied densities.

5.2.2 Sheepdogs Trajectories

Here we use a real-world example, the Sheepdogs dataset, which differs from the previous
example in many aspects. The dense and sparse regions in Sheepdogs have a significant
impact on the detection accuracy of a detector that relies on a point-to-point distance
measure. Figure 3 shows a total of 538 trajectories, of which 23 are trajectories of sheep
and the rest are sheepdogs.

The trajectories of sheep cluster in a small region, whereas each trajectory of sheepdogs
is much longer and travels around in a wide area. They are not ‘neat’ artificial dense and
sparse regions, as we have shown in Figure 1. Each trajectory is hap-hazard and there is no
clear grouping, especially with sheepdogs. This is a real-world example of a dense region
of sheep trajectories lying within a wider region of sparse (and scattered) trajectories of
sheepdogs.

Figure 3: Trajectories in Sheepdogs dataset. Trajectories of sheepdogs are shown in blue,
while trajectories of sheep are shown in orange.

LOF (with three distance measures and KG) and GDKG (with KG) perform poorly
on this dataset. They all have detection accuracy ROC-AUCs ranging between 0.56 and
0.93. In contrast, IDKI and LOFI which employ KI perform significantly better with
ROC-AUC=0.98 and 0.99, respectively (the details are shown in Table 9).
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The Sheepdogs dataset corresponds to the case of clustered anomalies found in point
anomaly detection (Liu et al., 2010), where anomalous trajectories are clustered in a small
region, while the majority of the (normal) trajectories are scattered in a wide area.

6. Trajectory Anomaly Detection with Distributional Kernel

To show the generality of the proposed distributional kernel for trajectory representation
and similarity measurement, we apply the distributional kernel K to two applications: tra-
jectory anomaly detection and anomalous sub-trajectory detection. We first review how
distributional kernel K is used in point and group anomaly detection and then propose our
algorithms of trajectory and sub-trajectory anomaly detection.

6.1 Point & Group Anomaly Detectors Based on K

Point Anomaly detection: A point anomaly detector based on KI called IDK(x) for
each point x ∈ D (Ting et al., 2020) is given as follows:

IDK(x) = KI(δ(x),PD|D) (4)

where δ(x) is a Dirac measure that converts a point into a distribution.

IDK(x) returns a similarity score of point x with respect to the (unknown) distribution
PD which generates the dataset D.

Group Anomaly detection: Given a dataset of groups of points {H1, . . . ,Hm} and
Hi ⊂ Rd, a group anomaly detector aims to identify the few groups which are different from
the majority of the groups in the dataset.

A group anomaly detector applies KI in two levels (Ting et al., 2023). The first level
maps each group to a point in a Hilbert space, i.e., g = Φ(PH). Given the set of m points
Π = {g1, . . . ,gm} in Hilbert space, IDK(x) can be applied to detect the point anomalies,
where each point anomaly in Hilbert space corresponds to a group anomaly in input space.

Given that Gaussian kernel1 can be used in place of the Isolation Kernel at each of
the two levels, four variants of group anomaly detectors can be created. They are given in
Table 5.

Level 1 mapping (Φ(PH)) Level 2 detector

g = ΦI(PH) IDKI(g) = KI(δ(g),PΠg |Πg)
g = ΦI(PH) GDKI(g) = KG(δ(g),PΠg |Πg)
h = ΦG(PH) IDKG(h) = KI(δ(h),PΠh

|Πh)
h = ΦG(PH) GDKG(h) = KG(δ(h),PΠh

|Πh)

Table 5: Four variants of group anomaly detectors, where the subscripts I and G denote the
use of distributional kernels based on Isolation kernel and Gaussian kernel, respectively; Πg

and Πh denote the sets of points g and h, respectively.

1. Note that though Gaussian kernel has an infinite-dimensional feature map, one can use a kernel func-
tional approximation method such as the Nyström method (Williams & Seeger, 2001) to produce an
approximate finite-dimensional feature map. Then, a similar expression as Eq (3) can be produced.
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In addition, as KI and KG are generic kernels, they can also be combined with existing
anomaly detectors such as LOF (Breunig et al., 2000) and OCSVM (Schölkopf et al., 2001),
by simply replacing the Euclidean distance (used in k-nearest neighbor employed in LOF)
and Gaussian kernel (used in OCSVM) with either KI or KG, to enable them to detect
group anomalies (Ting et al., 2023).

In the next section, we show for the first time that KI and KG can be effectively used to
represent trajectories (as groups of points) and measure similarity between two trajectories.

Note that k-nearest neighbors used in LOF and effectively 1-nearest neighbor used in
both IDK and GDK are ideal in examining the effectiveness of KI and KG in measuring the
similarity of trajectories in anomalous trajectory detection task. Because of the kernel use,
they become k-most similar neighbors and 1-most similar neighbor respectively.

6.2 Anomalous Trajectory Detection

Definition 6.1 Anomalous trajectory. Given D = {Xi|i = 1, . . . , n}, an anomalous
trajectory Q ∈ D is rare wrt D and is generated from a pdf different from those generating
the normal trajectories Xi ∈ D, that is, for most i ∈ [1, n],PXi ̸= PQ.

Following Definition 6.1, a distributional kernel K is used to represent each trajectory
and compute the similarity between two trajectories.

In the light of Eq 3, the level-1 kernel mean map Φ(PX |D) from K that maps a trajectory
X to a point g in Hilbert space via the feature map ϕ built from D = ∪n

i=1Xi is given as:

g = Φ(PX |D) =
1

|X|
∑
x∈X

ϕ(x|D) (5)

Let Π = {g1, . . . ,gn} be the set of Φ-mapped points from D.

With these representations, an existing point anomaly detector F(·|Π) can be trained
from Π, and then it provides the anomaly score for each g ∈ Π, which corresponds to a
trajectory in the given dataset D.

When IDK (Ting et al., 2020) is used as the detector F , a score for any mapped point
g with respect to Π has the following expression (as used in Equations 2, 3 & 4):

F(g|Π) = K(δ(g),PΠ) = ⟨Φ2(δ(g)),Φ2(PΠ)⟩

where level-2 kernel mean map Φ2(PΠ) =
1
|Π|

∑
g∈Π ϕ2(g|Π).

Note that Φ and Φ2 are derived from D and Π, respectively. We drop ‘|D’ and ‘|Π’ for
brevity hereafter.

The anomalous trajectories in D correspond to those points g ∈ Π which have the
highest anomaly scores. The procedure described above is summarized in Algorithm 1.
Note that this algorithm is a generalization of the IDK2 (Ting et al., 2023) algorithm which
admits any point anomaly detector to be used. Table 6 shows three existing point anomaly
detectors that employ mapping function Φ derived from KI . Mapping function Φ derived
from KG can be similarly applied.
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Algorithm 1 KAT Anomalous Trajectory Detector

Input: Dataset of trajectories D = {Xi, i = 1, . . . , n}; kernel K(·, ·) = ⟨Φ(·),Φ(·)⟩;
anomaly detector F .
Output: List of Xi, i = 1, . . . , n ordered by score αi.

1: * Map each trajectory Xi ∈ D to a point in Hilbert space using the kernel mean map
Φ(PXi)
For each i = 1, . . . , n, gi = Φ(PXi)

2: Π = {gi, i = 1, . . . , n}
3: * Build a point anomaly detector F from Π and get score αi for each gi

For each i = 1, . . . , n, αi = F(gi|Π)
4: Sort Xi ∈ D in decreasing order by αi if αi is an anomaly score (in ascending order if
αi is a similarity score)

Detector F that uses KI Algorithm 1: line 4 (αi)

IDKI IDK(gi|Π)
LOFI LOF(gi|Π)

OCSVMI OCSVM(gi|Π)

Table 6: Algorithm 1 that incorporates existing point anomaly detectors IDK, LOF, and
OCSVM, trained from Π.

6.3 Anomalous Sub-trajectory Detection

A trajectory Q is anomalous with respect to a given set D of normal trajectories if it
contains anomalous sub-trajectories. We propose a simple yet effective algorithm based on
KI to detect the anomalous sub-trajectories that exist in an anomalous trajectory. The
procedure is presented in Algorithm 2 called KAST.

The idea is to identify the individual point-sub-trajectories (Definition 3.2) in the given
anomalous trajectory Q that makes Q anomalous in D. Once the anomalous point-sub-
trajectories are identified, the maximal sub-trajectories (Definition 3.3) are extracted from
them to be the detected anomalous sub-trajectories Qs ≺ Q.

KI is used to detect the anomalous point-sub-trajectories in Q with respect to the
average of kernel mean maps of all trajectories in D. In this process, the kernel mean map
Φ of KI is used to map each trajectory in D in the input space into a point in Hilbert space,
and map each point-sub-trajectory in Q into a point in Hilbert space as well. The same
feature map Φ, constructed based on the trajectories in D, performs both mappings.

Summary for Section 6

The common ingredients in the above two algorithms are that (a) each trajectory X or
point-sub-trajectory ⌜x⌝ ≺ Q in the input space is represented as a point in Hilbert space
induced by distributional kernel K via its feature map Φ(PX) or Φ(δ(x)); (b) a group of
trajectories is represented as an aggregate of their kernel mean maps; (c) the similarity
between a trajectory/point-sub-trajectory and a group of trajectories is computed via a dot
product of their mapped points in Hilbert space.
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Algorithm 2 KAST Anomalous Sub-Trajectory Detector

Input: Dataset of normal trajectories D = {Xi, i = 1, . . . , n}; threshold τ ;
kernel K(·, ·) = ⟨Φ(·),Φ(·)⟩; anomalous trajectory Q = ⌜x1, . . . , xm⌝.
Output: All maximal anomalous sub-trajectories Qs ≺ Q.

1: * Map each trajectory X ∈ D to a point in Hilbert space using the kernel mean map
Φ(PX) derived from D
Π = {gi, i = 1, . . . , n}, where gi = Φ(PXi)

2: * Score each point-sub-trajectory ⌜x⌝ ≺ Q wrt the average of kernel mean maps of all
X ∈ D.
For each ⌜x⌝ ≺ Q, βx = ⟨Φ(δ(x)), ḡ)⟩, where ḡ = 1

n

∑n
i=1 gi

3: G = {⌜x⌝ ≺ Q | βx ≤ τ}
4: Extract every maximal sub-trajectory Qs ≺ Q in G.
5: Return all maximal anomalous sub-trajectories ∀Qs ≺ Q

The key difference between KAT (Algorithm 1) and KAST (Algorithm 2) is that the
former deals with trajectories only and the latter intends to find maximal sub-trajectories
of an anomalous trajectory only. In KAT, level-2 kernel mean map Φ2 is required to
represent the group of all (normal and anomalous) trajectories in D to detect the anomalous
trajectories. In KAST, only an average of the level-1 kernel mean maps of a group of
trajectories is required, instead of the level-2 kernel mean map. This is because the input
to KAST are normal trajectories only, which can be identified by using KAT.

7. Experimental Design and Settings

The experiments are designed to answer the following questions:

1. Does KI perform better than KG in KAT?

2. Is there any advantage of distributional kernel K over existing similarity measures and
representation methods?

3. Which is the best detector for anomalous trajectory detection and anomalous sub-
trajectory detection?

To answer the first two questions, in addition to comparing the proposed kernels KI

with KG in KAT, they are also compared with

1. Three commonly used distance measures: fastDTW (Salvador & Chan, 2007), Haus-
dorff distance, and Fréchet distance.

2. Deep representation learning t2vec (Li et al., 2018).

These measures and representations are examined mainly in the context of anomaly
detection. We examine the effectiveness of the above measures and representations by using
them in four existing point anomaly detectors: IDK, GDK, LOF, and OCSVM, as already
described in Table 5 and Section 6.1. Each of them assumes the role of point anomaly
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Methods Parameter search ranges

dW ,dH ,dF No parameter tuning is required
KI ψ ∈ {2q|q = 1, 2, . . . , 10}; t = 100
KG Nyström setting: n components = 100;

σ ∈ {2q|q = −10,−9, . . . , 5}
t2vec cellsize ∈ {25, 50, 100}; minfreq ∈ {10, 50, 100};

hiddensize ∈ {2q|q = 6, 7, 8, 9, 10}
hiddensize is the number of features used

LOF k ∈ {1, ⌊0.1n⌋, ⌊0.2n⌋, . . . , ⌊0.9n⌋};
n is the number of trajectories

GDK,SVM σ ∈ {2q|q = −10,−9, . . . , 5}
other default settings are used in SVM

IDK ψ ∈ {2q|q = 1, 2, . . . , 10}; t = 100

GM-VSAE C ∈ {1, 5, 10, 20, 50, 80};
C is the number of Gaussian components

EncDec-AD c ∈ {4, 40, 64, 128}
LSTM layers ∈ {1, 2, 4}

Anomaly dmodel ∈ {128, 256, 512}
Transformer dmodel is the channel number of hidden states

KAST ψ = 4096; t = 100; τ = 0 on Flyingfox
ψ = 2048; t = 100; τ = 0 on Curlews

TRAOD ε = 1; θ = 0.1 on Flyingfox
ε = 1; θ = 0.05 on Curlews

ε is the threshold; θ is the penalty coefficient
RL4OASD ∆ = 0.4, D = 8

∆ is threshold; D is the delay factor

Table 7: Parameter search ranges. The implementation of Isolation Kernel from Ting et al.
(2020) is used to produce KI .

detector F in KAT (Algorithm 1). In addition, three deep learning anomaly detectors:
Deep anomaly detectors GM-VSAE (Liu et al., 2020), EncDec-AD (Malhotra et al., 2016),
and Anomaly Transformer2 (Xu et al., 2021) are also included in the comparison.

In the task of anomalous sub-trajectory detection, we compare KAST (Algorithm 2)
with a recent deep learning method called RL4OASD (Zhang et al., 2023) and a well-cited
work TRAOD (Lee et al., 2008).

Evaluation metrics. ROC-AUC score is used to evaluate the detection accuracy of
the anomaly detectors.

Parameter settings. The search ranges for all parameters in the experiments are
given in Table 7. The machine used in the experiments has two AMD7742 64-core CPUs &

2. Since trajectory is similar to time series, we apply this time series anomaly detector on trajectories to
see whether it can work well.
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Dataset #Points min – max |X| #Traj #AT %AT

Geolife 5,399,510 22 – 100 80,450 3,202 4%
Baboons 1,020,107 30 – 603 2,310 110 5%
Curlews 801,489 488 – 71,821 42 9 21%
Character 446,643 109 – 205 2,643 28 1%
Detrac 445,052 11 – 2,120 5,356 71 1%
Vrut 407,402 55 – 1,257 1,168 100 9%
Wildebeest 279,082 138 – 5,632 92 14 15%
Vultures 212,485 172 – 7,721 67 15 22%
Cross 153,010 4 – 30 11600 200 2%
Casia 143,383 16 – 612 1,500 24 2%
Flyingfox 132,252 517 – 4,768 62 11 18%
Sheepdogs 65,574 11 – 3,501 538 23 4%
Traffic 11,500 50 – 50 230 30 13%

Table 8: Real-world datasets. AT: anomalous trajectories. min – max |X|: the minimum
and maximum numbers of points of individual trajectories in a dataset.

1024GB memory, and two GPUs RTX3090 24GB. The GPUs are used by t2vec (Li et al.,
2018), EncDec-AD (Malhotra et al., 2016), and GM-VSAE (Liu et al., 2020) only.

Datasets. We perform the evaluations on twelve datasets, among which four datasets
(Cross (Morris & Trivedi, 2009), Traffic3 (Lin et al., 2017), Casia4 (Hu et al., 2013),
Detrac5 (Wen et al., 2020)) have been used in previous anomaly detection works and two
are classification datasets (Character6, Vrut7). Another dataset Geolife is unlabeled, we
follow the work of E2DTC (Fang et al., 2021) to first cluster all the trajectories in the
dataset, and then choose trajectories in one of the clusters as anomalies. The other six
datasets (Baboons, Curlews, Wildebeest, Vultures, Flyingfox, Sheepdogs) are collected from
MoveBank8, where each dataset records trajectories of a kind of animal over a period. In
MoveBank datasets, trajectories that deviate from the majority are manually labeled as
anomalies (see the Appendix for details). The data characteristics of these datasets are
given in Table 8.

8. Experimental Results

We present the results of two applications: anomalous trajectory detection and anomalous
sub-trajectory detection in the following subsections.

3. https://min.sjtu.edu.cn/lwydemo/Trajectory\%20analysis.htm
4. https://github.com/mcximing/ACCV18\ Anomaly
5. https://detrac-db.rit.albany.edu/
6. https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
7. https://www.th-ab.de/ueber-uns/organisation/labor/kooperative-automatisierte-verkehrssysteme/

trajectory-dataset
8. https://www.movebank.org/cms/movebank-main

881



Wang, Wang, Ting, & Shang

ED-based KAT Rep. learning (t2vec) GM EncDec AT
Dataset LOFW LOFH LOFF LOFI LOFG SVMI SVMG GDKG IDKI LOFSVMGDK IDK -VSAE -AD

Geolife OOT .96 OOT .96 .96 .61 .83 .88 .96 .60 .56 56. .61 .52 .52 .54
Baboons .91 .90 .99 .96 .99 .86 .71 .95 .99 .72 .78 .81 .80 .60 .84 .84
Curlews .67 .79 .90 .82 .72 .73 .78 .67 .83 .62 .49 .38 .36 .51 .53 OOM

Character .85 .70 .78 .76 .85 .49 .47 .47 .88 .76 .82 .83 .82 .55 .81 .60
Detrac .82 .78 .70 .84 .56 .83 .54 .63 .84 .75 .68 .64 .72 .50 .70 OOM

Vrut .91 .93 .87 .91 .91 .80 .85 .84 .89 .77 .72 .73 .77 .50 .87 .59
Wildebeest .78 .78 .89 .84 .72 .61 .61 .77 .82 .75 .75 .73 .77 .53 .59 OOM

Vultures .79 .74 .83 .84 .85 .74 .81 .81 .87 .76 .71 .75 .78 .51 .69 OOM

Cross .82 .89 .84 .83 .82 .64 .77 .92 .94 .62 .83 .87 83 .50 .50 .55
Casia .70 .69 .73 .78 .61 .84 .62 .71 .89 .64 .65 .66 .69 .50 .82 .51
Flyingfox .85 .88 .96 .84 .72 .80 .67 .74 .89 .83 .70 .71 .67 .52 .76 OOM

Sheepdogs .81 .72 .56 .99 .93 .95 .71 .70 .98 .98 .98 .99 .99 .50 .83 OOM

Traffic .75 .62 .81 .98 .91 .52 .69 .86 .96 .77 .63 .71 .76 .52 .96 .91

Rank: 6.3 6.9 5.2 3.8 7.2 8.9 11.2 8.0 2.3 9.2 10.3 9.1 8.6 14.4 8.9 -

Table 9: ROC-AUC results of different methods. ED is short for Euclidean distance. In
KAT, the anomaly detectors that employ kernel mean maps Φ derived from KI & KG

are denoted with subscripts I & G, respectively. SVM denotes OCSVM (Schölkopf et al.,
2001). AT denotes Anomaly Transformer. Boldface indicates the best ROC-AUC score in
each dataset. OOT means that the result could not be obtained in 2 days. OOM denotes
that an algorithm has an ‘out of memory’ error during execution. The last row shows the
rankings of all detectors in each dataset, averaged over all datasets.

8.1 Anomalous Trajectory Detection

Table 9 presents the ROC-AUC results of anomalous trajectory detection. The following
are the main findings of the experiments:

1. In terms of similarity measures: In KAT, all three detectors GDK, LOF & SVM
employing KI are ranked higher than those using KG. LOF with KI is also ranked
better than that employing dW , dH and dF . Despite having extra learning, t2vec is
not competitive compared with all other no-learning measures on most datasets.

2. In terms of anomaly detectors: IDKI (which employs KI) performs better than all
other detectors. The closest contender is LOFI which also employs KI . Deep learning
anomaly detectors, GM-VSAE, EncDec-AD and Anomaly Transformer perform worse
than LOFI and IDKI . These deep learning results on anomalous trajectory detection
are consistent with those on time series anomaly detection (Paparrizos et al., 2022;
Schmidl et al., 2022). Additional analyses are provided in the Appendix.

Figure 4 shows the result of the Friedman-Nemenyi test (Demšar, 2006), comparing
IDKI with GDKG, LOFF (the top-ranked LOF that uses a distance measure), LOFI (the
top-ranked LOF that uses K), t2vec+IDK (the top-ranked t2vec) and EncDec-AD (the
top-ranked end-to-end deep anomaly detector). Although IDKI is not significantly better
than LOFI and LOFF , it is the only detector that is significantly better than EncDec-AD,
GDKG and t2vec+IDK.
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Figure 4: Friedman-Nemenyi test at 0.10 significance level. No significant difference if two
detectors are connected by a CD line.

We also examine the time complexity of KAT. For a dataset D with n trajectories and
a total of N points, the time complexity for IDK mapping is O(Nψt) and for anomaly
detection is O(nψt), where both ψ and t are parameters of IDK (Ting et al., 2020, 2023).

102 traj 104 traj runtime ratio
prep AD prep AD prep AD

LOFW 2 .006 1081782 19 540891 3167
LOFH 2 .004 549055 14 274528 3500
LOFF 3 .003 424061 12 141354 4000
LOFI .9 .004 798 11 887 2750
LOFG 1.8 .002 1663 14 924 7000
SVMI 1.7 .001 1663 10 978 10000
SVMG 2.1 .003 1663 10 792 3333

IDKI 2.7 203 75
GDKG 1.2 388 323

t2vec+LOF 281 .006 452 36 2 6000
t2vec+SVM 281 .024 452 93 2 3875
t2vec+IDK 281 .070 452 6.4 2 91
t2vec+GDK 281 .064 452 14.8 2 231

GM-VSAE 12 31 3
EncDec-AD 702 3908 6
Anomaly Transformer 105 27542 262

Table 10: Runtime (all in CPU secs except t2vec, GM-VSAE and EncDec-AD employing
GPU). The preprocessing (prep) includes all calculations to produce a similarity matrix.
AD is the runtime of the anomaly detector only. The ratio is the runtime for 104 trajectories
over that for 102 trajectories.

We perform a scaleup test using 102 trajectories and 104 trajectories randomly selected
from the Cross dataset, and the result is presented in Table 10. Key observations are:

1. A striking difference between the three distance measures (the first three rows in
the prep runtime ratio column) and the distributional kernels (the next two rows)
that employ the same LOF: each of the three distance measures runs three orders of
magnitude slower than either KI or KG.
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2. Out of the six versions of KAT, IDKI & GDKG have linear runtime; LOF and SVM
(using either KI or KG) have superlinear or quadratic runtime, as shown in the AD
runtime ratio column.

3. Because of using GPUs, t2vec, GM-VSAE, and EncDec-AD have the lowest scaleup
ratios, while all other methods run on CPUs only.

A neural metric learning method has been proposed to speed up distance measures such
as dW and dH by using an RNN to approximate a distance measure: achieving 50x to
1000x speedup at the cost of (degraded) 80% accuracy of a distance measure (Yao et al.,
2019). This method does not change our conclusion here on anomalous trajectory detection
because using it weakens the accuracy of LOF for dW , dH and dF we have obtained in
Table 9.

8.2 Anomalous Sub-trajectory Detection

Anomalous sub-trajectory detection can be conducted in two ways, depending on whether
the task is on a network or not. The first subsection describes the detection on a road
network, and the second subsection presents the detection without a network.

8.2.1 Anomalous Sub-trajectory Detection on a Road Network

A road network is a graph (V,E), where each node v ∈ V represents a traffic hub, and
e ∈ E is an edge connecting two nodes in the network. A trajectory Y on a road network
consists of a series of connecting nodes on the network, i.e., Y = ⌜v1, . . . , vµ⌝, and each
edge represents the shortest segment of a trajectory connecting two adjacent nodes.

Because edges of trajectories are readily available in a road network, we propose a
new way to detect anomalous sub-trajectories as follows. Firstly, transform all the given
trajectories Yj , j = 1, . . . , w into a set of node-pairs D = {Xi = ⌜v, ϑ⌝, i = 1, . . . , n} &
v, ϑ ∈ V , where each node pair is a sub-trajectory. Secondly, D is used as input to KAT
(Algorithm 1) to detect the anomalous node-pairs (or sub-trajectories) in D.

The above treatment of edge as sub-trajectory is the same as that used by a recent
method called RL4OASD (Zhang et al., 2023) which is specially designed for road networks.
The procedure can be divided into two steps. The first step treats the road network as a
graph and performs a node embedding using Toast Embedding (Chen et al., 2021) to obtain
a vector for each node in the graph. The second step treats each trajectory in the dataset
as consisting of nodes connected in a sequence in the graph, where an edge represents a sub-
trajectory. Using the sequences as input, RL4OASD uses LSTM and deep reinforcement
learning to train a detector to find the anomalous sub-trajectories (the abnormal edges in
the graph).

As the key difference is the second step, we conduct a head-to-head comparison by
replacing the LSTM-deep-reinforcement-learning-based detector with KAT, represented by
the most effective IDK-based detector IDKI in Section 8.1. They both use the same features
derived from the pre-trained node embedding in the first step.
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In the experiment, we use the Chengdu9 dataset which has a total of 558, 098 trajectories
and 3, 930 anomalous trajectories (Zhang et al., 2023). The road network of Chengdu has
4, 891 nodes and 12, 469 edges, where each node has 128 attributes.

In the experiment, KAT produces ROC-AUC = 0.89 in 0.17 hours using CPU; while
RL4OASD yields ROC-AUC = 0.83 in 0.25 hours using GPU.

In summary, using the same node embedding and treating each edge of the Chengdu
network of a trajectory as a sub-trajectory, the distributional kernel based detector KAT
achieves higher detection accuracy than deep learning based detector RL4OASD, and com-
pletes the task faster with CPU than RL4OASD with GPU.

8.2.2 Anomalous Sub-trajectory Detection on an Anomalous Trajectory

Without a network, KAST (Algorithm 2) withKI is used to detect anomalous sub-trajectories
of an anomalous trajectory. To evaluate the detection accuracy of KAST, we compare it
with a highly cited sub-trajectory detection method TRAOD (Lee et al., 2008). Note that
RL4OASD (Zhang et al., 2023) could not be applied here because no information about a
network is available.

The ground-truth anomalous sub-trajectories in a dataset are identified using the follow-
ing method objectively. A point in an anomalous trajectory is labeled anomalous if there
is no normal trajectory in the local neighborhood centered at it with a radius of r (r = 0.1
in Curlews and r = 0.01 in Flyingfox ), and then contiguous anomalous points are linked
into anomalous sub-trajectories (sub-trajectories that are too short are discarded). Eleven
trajectories on the Flyingfox dataset are identified as anomalous in this process.

We employ a commonly used Jaccard index (Jaccard, 1912) to measure the matching
between a detected anomalous sub-trajectory and a ground truth. It measures how well the
two matched, the larger the index the better.

All results on Flyingfox are shown in Table 11. KAST performs better than TRAOD
in terms of the Jaccard index, and it runs two orders of magnitude faster. Table 12 shows
the example results of anomalous sub-trajectory detection on the Flyingfox and Curlews
datasets.

The example on the Flyingfox dataset has two anomalous trajectories Q1 & Q2. KAST
identifies that Q1 has two anomalous sub-trajectories (drawn in red, with normal sub-
trajectories drawn in green), and Q2 has one anomalous sub-trajectory.

TRAOD included parts of the normal sub-trajectories as anomalous sub-trajectories in
both Q1 & Q2, and only one anomalous sub-trajectory was detected in Q1.

On the larger Curlews dataset consisting of more than 800,000 points, TRAOD took 2
days to identify the anomalous sub-trajectories of a given anomalous trajectory, whereas
KAST using KI completed it in less than 15 minutes. Besides, Algorithm 2 produces a
more accurate result consistent with the ground truth as shown in the last row of Table 12.

In the absence of a powerful kernel like KI , TRAOD using a partition-and-detect frame-
work is a sensible method. As we have shown in Table 12, the sub-trajectories, as a result
of the partitioning before the detection of anomalous sub-trajectories, are a coarse approxi-
mation. It is unable to produce the fine-grained sub-trajectories discovered by the proposed
KAST. On the other hand, TRAOD has high time complexity because it employs a com-

9. https://outreach.didichuxing.com/
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Trajectory Jaccard index Time (seconds)
Index KAST TRAOD KAST TRAOD

1 0.94 0.57 3.4 800
21 0.91 0.82 2.1 471
24 0.62 0.52 4.5 1130
26 0.85 0.80 2.4 764
34 0.90 0.81 1.8 581
38 0.71 0.60 4.4 1125
41 0.75 0.67 2.0 647
45 0.91 0.81 1.5 396
46 0.95 0.86 1.8 671
47 0.87 0.68 0.7 208
48 0.98 0.91 0.6 167

avg 0.85 0.73 2.3 632

Table 11: KAST VS TRAOD on Flyingfox. Each row shows the detection results and
runtimes for each of the eleven anomalous trajectories identified on the Flyingfox dataset.
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Table 12: Anomalous sub-trajectory detection results of KAST and TRAOD on Flyingfox
and Curlews. Q1 & Q2 are two separate anomalous trajectories. In each anomalous tra-
jectory, the detected anomalous sub-trajectories are colored in red; normal sub-trajectories
are colored in green. Every normal trajectory is colored in blue.
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bination of three distances (to represent the horizontal, vertical and angular distances) in
the partition component to subdivide each trajectory into sub-trajectories. After the parti-
tioning process, it employs LOF (Breunig et al., 2000) with Hausdorff distance to identify
anomalous sub-trajectories among all sub-trajectories. Trajectories with identified anoma-
lous sub-trajectories are reported to be anomalous. TRAOD is a computationally expensive
process because all computations are point-based, not distribution-based.

9. Discussion

Here we provide some further discussion with respect to distribution information and dis-
tributional kernel.

9.1 Distribution Information VS Shape Information

In practice, we may be interested in different aspects of trajectories. Some applications
focus on the shape of the trajectory rather than the distribution of specific sampling points.
Other applications are interested in the detailed behavior of the object, such as speed,
stopping time in a certain area, etc., and paying more attention to the distribution of data
points.

A typical example of a shape-based method (Lee et al., 2007) partitions a trajectory
into a set of line segments and measures the similarity between them. Shape-based methods
capture the global structure of trajectories but cannot consider more detailed trajectory
information. Trajectories with the same shape may be generated by completely different
behaviors, and it is not possible to differentiate them by considering shape information only.

In contrast to shape-based methods, our proposed distributional kernel represents and
measures the similarity of trajectories based on the distribution information. Distribution-
based methods identify local changes within a trajectory, which could indicate the behavior
of the moving object.

The flip side of this sensitivity is that distribution-based methods can be more easily
influenced by the distribution of sampled points. If the density of sampled points is very
high in a certain region (e.g., an object stays at some location for a long period of time),
this segment will have a strong influence when measuring the similarity, while information
in other regions may carry less weight.

In general, the choice between shape-based and distribution-based methods depends
on the data properties and the application requirements. Shape-based methods are more
suitable for tasks where the overall shape is more critical than fine-grained details. For
tasks involving density, concentration, or local changes, distribution-based methods could
be more relevant.

9.2 Distributional Kernel VS Deep Learning Methods & Set-based Distances

It is interesting to note that deep learning methods t2vec (Li et al., 2018), EncDec-AD
(Malhotra et al., 2016), and Anomaly Transformer (Xu et al., 2021) are not competitive
with the proposed distributional kernel KI without learning, as shown in Table 9 in Section
8.1. This suggests that a powerful kernel such as KI is more effective and efficient than
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deep learning methods for anomalous trajectory detection. This is mainly due to the use
of distributional information and the data-dependent property in KI .

The above result also raises three questions: (i) Can deep learning produce a repre-
sentation or measure that is as powerful as KI? (ii) Can deep learning representations or
measures have a data-dependent property like the one provided by KI? (iii) Can deep learn-
ing produce a measure dist(·, ·) which guarantees the uniqueness property: dist(X,Y ) = 0
if and only if X = Y ? These are interesting topics for future research in deep learning.

Many existing measures (e.g., the set-based Hausdorff and Fréchet distances) are based
on i.i.d. implicitly. In contrast, our approach brings the i.i.d. assumption to the forefront
and uses a distributional measure. The fact that it works well in practice indicates that
i.i.d. is a veritable assumption for valid trajectories in the real world.

9.3 When Distributional Kernel Fails and Its Fixes

In Section 8, we demonstrated that the use of a distribution kernel for trajectories is effective
in real-world datasets. However, there are certain circumstances where the distributional
kernel may fail. In this regard, we would like to examine two such situations where minor
alterations can fix the problems.

Firstly, when multiple cycles occur on the same path, the distributional kernel fails to
differentiate between the trajectory of one cycle and the trajectory of many cycles. If it
is necessary to distinguish between these two scenarios, the length of each trajectory can
be added as an additional attribute, so that trajectories with the same shape but different
lengths can be differentiated.

Secondly, when it is important to differentiate between different traveling agents, the
distributional kernel may not suffice. In such cases, an additional agent attribute can be
included to distinguish between different agents.

Generally, by adjusting the attributes of the trajectory data, the distributional kernel
could be able to process different trajectory information. These tweaks are minor and
can accommodate special requirements, and they are not fundamental limitations of the
proposed distributional kernel.

10. Conclusion

In this paper, we show that distributional kernel is a powerful tool for both trajectory
similarity measurement and trajectory anomaly detection. While precious works are mostly
point-based, distributional kernel captures the distribution information of trajectory data.

With the important uniqueness property and linear runtime, distributional kernel is able
to address the effective and efficient issue of existing measures for trajectories. Moreover,
the data-dependent KI is always better than the data-independent KG, even though both
have the same uniqueness property, which indicates the significance of the data-dependent
property to lift the detection capability in datasets with clusters of varied densities.

We show the power of the distributional kernel and its impacts in two anomaly detection
tasks. KI produces better detection accuracy than all other measures and representations
mentioned in this paper. Coupled with the existing detector IDK, IDKI performs signifi-
cantly better than four deep learning anomaly detectors. This is because only KI has the
uniqueness and the data-dependent properties. None of the deep learning anomaly detec-
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tors have been shown to have these properties. In addition, KI runs orders of magnitude
faster than the three existing distance measures.

We also show that the proposed KAST algorithm for anomalous sub-trajectory detection
is simpler, faster, and more effective than the deep learning-based RL4OASD and the widely
cited partition-and-detect method TRAOD.
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Appendix A. Datasets

Baboons, Curlews, Wildebeest, Vultures, Flyingfox and Sheepdogs are collected from Move-
bank10, which record trajectories of different animals over a time period.

Trajectories in each dataset are extracted as follows:

Baboons: Each original trajectory is a GPS-recorded activity of a baboon over half a
month in August 2012. Because the original has a very high sampling rate, we reduced the
sampling rate by a factor of 1000. A small number of trajectories that deviate from the
majority are considered anomalous.

Curlews: Each trajectory is an annual migration path of a curlew. A few trajectories
which have different starting points or are not back to the same starting point are considered
to be anomalous.

Wildebeest: Each trajectory is an annual migration path of a wildebeest, and a few
trajectories that have different routes are considered to be anomalous.

Vultures: Each trajectory is an annual migration path of a vulture. Those having no
return trips or are too short are considered anomalous.

Flyingfox: Each trajectory is a daily activity path of a flying fox. Trajectories that
are significantly different from the majority or do not return to the starting point, are
considered to be anomalous.

Sheepdogs: Trajectories are extracted between a long pause of a recording device. 515
trajectories belonging to sheepdogs are normal, while 23 trajectories belonging to sheep are
anomalies. An example visualization is shown in Figure 3.

Appendix B. Additional analyses of deep learning

This section provides the details of additional analyses on two deep learning anomaly de-
tectors GM-VSAE and EncDec-AD, and representation deep learning t2vec, focusing
on the issue of the kind of datasets used for training.

GM-VSAE achieves ROC-AUC score of 0.69 on Baboons, which is the worst among
all methods listed in Table 9. Its ROC-AUC scores on all other datasets are worse than
that on Baboons. GM-VSAE has been given the advantage of using a training set of normal
trajectories only because it aims to model normality (Liu et al., 2020). All other methods
in Table 9 are trained using the given dataset that contains anomalous trajectories.

10. www.movebank.org/cms/movebank-main
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GM-VSAE was reported to have high PR-AUC on two datasets only (Liu et al., 2020).
However, the result is an outcome of wrongly assigning normal trajectories as positive
examples in computing the precision-recall curve (see their code at https://git.io/JelML,
retrieved on 26 October 2021). This means that GM-VSAE is good at ranking many
normal trajectories at the top. But this says nothing about its ability to detect anomalous
trajectories.

Recall that GM-VSAE has one major drawback, i.e., its grid-based representation could
not guarantee the uniqueness property such that two different trajectories can potentially
be mapped into the same series of tokens. We think that this is the main cause of its poor
detection performance.

EncDec-AD: We conducted an additional supervised version experiment for EncDec-
AD by training the model with normal trajectories only. The experiment result shows that
although the ROC-AUC score increases on some datasets, EncDecAD is still not competitive
with IDKI .

t2vec: We also conducted an experiment to train t2vec on the given dataset versus the
set of normal trajectories only. The difference is small, and there is no suggestion that the
latter will produce a better result. Their best results are still significantly worse than all
results of Euclidean distance-based measures and distributional kernels (except one) shown
in Table 9.

An interesting phenomenon is that IDK performs better when trained with the given
dataset than with normal trajectories only, unlike other detectors. The robustness of IDK
to noise in the training set has been previously revealed (Ting et al., 2020).

Our results on deep learning are consistent with those on time series anomaly detection
(Paparrizos et al., 2022; Schmidl et al., 2022), summarized below:

“.. deep learning approaches are not (yet) competitive despite their higher processing
effort on training data.” (Schmidl et al., 2022)

“.. CNN and LSTM . . . are the third and the second-worst for sequence-based anoma-
lies.” (Paparrizos et al., 2022)
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