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Abstract
Recent advances in technology have large teams of robots with limited computation skills work-

ing together to achieve a common goal. Their personal actions need to contribute to the joint effort,
however, they also must ensure that they do not harm the efforts of the other members of the team,
e.g., as a result of collisions. We focus on the distributed target coverage problem, in which the team
must cooperate to maximize utility from sensed targets while avoiding collisions with other agents.
State-of-the-art solutions focus on the distributed optimization of the coverage task at the team level
while neglecting to consider collision avoidance, which could have far-reaching consequences on the
overall performance. Therefore, we propose CAMS: a collision-avoiding version of the Max-sum
algorithm, for solving problems including mobile sensors. In CAMS, a factor-graph that includes
two types of constraints (represented by function-nodes) is iteratively generated and solved. The
first type represents the task-related requirements, and the second represents collision avoidance
constraints. We prove that consistent beliefs are sent by target representing function-nodes during
the run of the algorithm, and identify factor-graph structures on which CAMS is guaranteed to con-
verge to an optimal (collision-free) solution. We present an experimental evaluation in extensive
simulations, showing that CAMS produces high-quality collision-free coverage also in large and
complex scenarios. We further present evidence from experiments in a real multi-robot system that
CAMS outperforms the state of the art in terms of convergence time.

1. Introduction

Some of the most challenging multi-agent applications involve teams of mobile sensing agents
that are required to acquire information in a given area. Examples of such applications are net-
works of sensors (Jain, Taylor, Yokoo, & Tambe, 2009; Zivan, Yedidsion, Okamoto, Glinton, &
Sycara, 2015), smart homes (Rust, Picard, & Ramparany, 2016), and rescue teams in disaster areas
(Macarthur, Stranders, Ramchurn, & Jennings, 2011). The mobile agents reside on physical aerial or
ground devices, thus, they must avoid collisions. Moreover, the dynamic nature of the environments
the agents operate in, as well as their commonly limited computation and sensing capabilities, require
that the decisions made by each agent are fast and short-term. The ability of those local short-term
decisions to result in an overall optimal group strategy is a fundamental challenge for multi-agent
systems, and it is the focus of this paper. Specifically, we examine the problem of distributed target
coverage by a team of limited robots, in which the robots decide which targets to sense for yielding
maximal group utility.
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Distributed constraint optimization problems (DCOP) offer a framework that addresses some of
the above challenges. As DCOPs are limited in representing dynamic events, an extension of the
DCOP framework, DCOP_MST (Mobile Sensor Team), along with local search algorithms, were
proposed by Zivan et al. (2015). A later study has shown that an incomplete inference algorithm,
Max-sum (Farinelli, Rogers, Petcu, & Jennings, 2008; Chen, Deng, Wu, & He, 2018; Deng & An,
2020), produces better results when used in an iterative process for solving DCOP_MST, where it-
erative instances of the current representation of the problem are solved distributively and allow the
agents to select the next joint move (Yedidsion, Zivan, & Farinelli, 2018). The Max-sum algorithm
has been the subject of intensive study in DCOP solving research and has been applied to many
realistic applications (Farinelli, Rogers, & Jennings, 2014; Rust et al., 2016; Ramchurn, Farinelli,
Macarthur, & Jennings, 2010), among those for solving DCOP_MST, by the Max-sum_MST algo-
rithm (Zivan et al., 2015). Previous studies that investigated the performance of Max-sum when
solving standard DCOPs (e.g., (Zivan, Parash, Cohen, Peled, & Okamoto, 2017; Cohen, Galiki,
& Zivan, 2020)) reported that Max-sum (without the addition of function-node splitting) oscillates
for thousands of iterations, whether it finally converges or not. The nature of this phenomenon
has remained an open question. In contrast, when applied to DCOP_MST, Max-sum converges
instantly (Yedidsion et al., 2018).

While previous DCOP-based work offers solutions that can be successfully applied to target
coverage, they neglect to consider in their optimization criteria one critical aspect of the problem:
collision avoidance. Since the team members act physically in the environment, they cannot collide
with each other. As seen vastly in robotics research, and in the research area of Multi-Agent Path
Finding (MAPF), accounting for collisions between physical agents is extremely challenging, and
has far-reaching consequences on the performance of the system (Stern, Sturtevant, Felner, Koenig,
Ma, Walker, Li, Atzmon, Cohen, Kumar, et al., 2019; Hoy, Matveev, & Savkin, 2015). However,
as opposed to MAPF where the goal is to globally create collision-free paths optimizing some joint
path-length criterion, or collision-avoiding in robotics research that focuses on generating locally
safe trajectories, here we are interested in local decision-making for target-coverage optimization,
where collision-avoidance being an additional important constraint.

Therefore this paper addresses the two above important challenges that arise when using incom-
plete distributed inference algorithms for solving dynamic mobile sensing team problems. The first
is the enigma related to the fast convergence of Max-sum when applied to DCOP_MST. We prove
that the convergence results from the special structure of MST problems and that the message content
sent by the nodes representing the constraints in Max-sum will be fixed when solving DCOP_MST.

The second challenge that we address is the need to avoid collisions while solving local op-
timization problems, modeled as DCOPs. We propose a collision-avoiding version of Max-sum,
called CAMS. As in standard Max-sum, the problem in CAMS is represented by a factor-graph,
which is a bipartite graph including nodes representing variables and functions (constraints). In ad-
dition to the standard optimization using Max-sum, CAMS adds a new type of function-nodes to the
factor-graphs, which represent the constraints of locations that agents can choose to move to.

We identify structures of factor-graphs on which CAMS is guaranteed to converge to the opti-
mal (collision-avoiding) solution. Moreover, we prove that on any graph structure, if the algorithm
converges, it is to a collision-free solution. We also prove that the added complexity of CAMS
with respect to Max-sum_MST is small. We show empirically in extensive simulations and using
real robotic systems that even for complex cases (e.g., in dense and dynamic environments), CAMS
converges efficiently to high-quality collision-free solutions.
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This paper is an extension of our AAMAS 2023 paper (Pertzovskiy, Zivan, & Agmon, 2023).
Besides the extended discussion, this version of the paper includes a formal definition of the collision
avoidance DCOP_MST problem (CA-DCOP_MST), a proof that whenever our proposed algorithm
CAMS converges, it is to a collision-free solution, and an extended empirical evaluation that in-
cludes diverse environments, comparison between versions of the algorithm that use different utility
adaptation methods (i.e., ordered value propagation (OVP) and balanced utility adaptation (BUA))
and an extended description of our empirical evaluation with a robot team.

2. Related Work

Handling collisions by a team of robots in the target-coverage task using DCOPs relates to various
research directions in the literature, all of which are presented in this section.

The DCOP model has been widely used for representing and solving coordination problems
related to sensor networks (Farinelli et al., 2014; Nguyen, Yeoh, Lau, Zilberstein, & Zhang, 2014)
and mobile sensor networks (Stranders, Farinelli, Rogers, & Jennings, 2009; Taylor, Jain, Jin, Yokoo,
& Tambe, 2010; Zivan et al., 2015). To the best of our knowledge, none of these studies addressed the
possibility of collisions between mobile sensors. Nevertheless, an attempt to use the DCOP model
and algorithms in order to avoid collisions of ships was presented in (Hirayama, Miyake, Shiota,
& Okimoto, 2019), proposing the distributed stochastic search algorithm (DSSA) for preventing
ships from selecting colliding routes. We compare this version and our proposed algorithm with a
collision-avoiding DSA (CADSA) algorithm in our empirical study.

DCOPs are traditionally associated with problems in discrete settings (Stranders et al., 2009;
Taylor et al., 2010; Zivan et al., 2015; Zivan, Lev, & Galiki, 2020), including DCOP_MST. Attempts
to investigate the modeling and solving of DCOPs in continuous domains (e.g., (Voice, Stranders,
Rogers, & Jennings, 2010; Hoang, Yeoh, Yokoo, & Rabinovich, 2020; Sarker, Choudhury, & Khan,
2021)), raise challenges concerning, among others, the type of continuous utility/cost functions and
the impact of these types on the complexity of the problem. While the importance of generalizing
DCOPs to continuous domains is noted, this paper follows the common discrete modeling, associated
also with DCOP_MSTs (which is the baseline for this work).

Different aspects of the Max-sum algorithm have been examined in the literature, focusing on
the algorithm’s convergence guarantees (Rogers, Farinelli, Stranders, & Jennings, 2011; Zivan et al.,
2017, 2020), evaluation in realistic applications (Ramchurn et al., 2010) and computational complex-
ity (Macarthur et al., 2011; Kim & Lesser, 2013). Our work contributes to this ongoing effort by
extending the applicability of Max-sum to teams of mobile sensing agents.

While Max-sum has been shown to efficiently solve DCOPs and has been used to coordinate
sensors’ movements, one of its major drawbacks is the run-time required for function-nodes to pro-
duce messages, which is exponential in the arity of the constraint that the function-node represents.
Multiple attempts to overcome this drawback have been published in the last decade. Some of them,
including the methods proposed by (Macarthur et al., 2011; Pujol-Gonzalez, Cerquides, Meseguer,
Rodriguez-Aguilar, & Tambe, 2013), were implemented in the Max-sum version that was proposed
for solving DCOP_MST in (Yedidsion, Zivan, & Farinelli, 2014). Others, which were proposed re-
cently, make an immense reduction of the computational cost in such scenarios (Khan, Tran-Thanh,
Ramchurn, & Jennings, 2018; Chen, Jiang, Deng, Chen, & He, 2019). In our work, we prove that
such exponential computation is not required, and therefore these methods, which are most useful in
standard scenarios, are less relevant.
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Creating collision-free paths is the main objective of Multi-Agent Path Finding (MAPF) (Sharon,
Stern, Felner, & Sturtevant, 2015; Atzmon, Stern, Felner, Wagner, Barták, & Zhou, 2020; Stern
et al., 2019), which focuses on creating paths for 𝑛 agents on their way to their targets while avoiding
spatial conflict between the agents, and optimizing some global criteria, usually minimizing the total
travel distances or minimizing the makespan. Although MAPF algorithms and CAMS concentrate
on collision avoidance, MAPF’s difference from our problem is threefold: (1) The main objectives.
While we care to optimize target coverage as a cooperative effort accounting for collision avoidance
as an additional constraint, MAPF focuses on agents’ paths to targets. (2) The basic model and means
to solve the problem. CAMS solves DCOP_MST with the addition of collision avoidance constraints,
an inherently-dynamic distributed constrained optimization problem requiring the agents to have no
global knowledge of the world, and MAPF is a centralized problem, solved most commonly by
centralized search-based methods. (3) DCOP_MST is designed to be relevant to highly dynamic
scenarios and to scenarios in which agents have limited computation and communication capabilities.
Thus, its design is myopic, and the agents’ domains and constraints are updated following each
move. MAPF on the other hand, centrally models the entire problem. Therefore solutions to MAPF
problems cannot be applied in our setting. Note that distributed MAPF was recently mentioned as
one of the open challenges in MAPF (Salzman & Stern, 2020). Although there have been attempts
to provide solutions to this problem (e.g., (Pianpak, Son, Toups, & Yeoh, 2019)), those still remain
irrelevant for solving DCOP_MSTs.

The last argument regarding the differences between DCOP_MST and MAPF is also relevant
to MDP-based models (such as POMDP). These models are much more abstract and general and
obviously can be used to represent any realistic problem. However, this generalization comes with a
complexity cost that limits their usefulness to very small problems. Thus, studies that target specific
domains have proposed useful models and algorithms that are designed for the specific domain.
Some examples are MAPF, Proactive DCOP, and DCOP_MST (Sharon et al., 2015; Hoang, Fioretto,
Hou, Yeoh, Yokoo, & Zivan, 2022; Zivan et al., 2015).

Finally, collision avoidance, being one of the fundamental requirements of a robotic system, is
vastly explored in multi-robot systems (Hoy et al., 2015). The main focus in decentralized collision
avoidance methods is on providing means for locally preventing collisions by considering the other
robots as mobile obstacles, or suggesting local coordination schemes yielding collision-free paths
(Serra-Gómez, Brito, Zhu, Chung, & Alonso-Mora, 2020; Tabasso, Cichella, Mehdi, Marinho, &
Hovakimyan, 2021; DeCastro, Alonso-Mora, Raman, Rus, & Kress-Gazit, 2018). In our case col-
lision avoidance is intertwined with the target coverage task, necessitating the creation of a method
that considers both for yielding an optimal team behavior, which is the essence of CAMS.

3. Background

The DCOP model is commonly used for representing and solving coordination problems related to
sensor networks (Farinelli et al., 2014; Nguyen et al., 2014) and mobile sensor networks (Stran-
ders et al., 2009; Taylor et al., 2010; Zivan et al., 2015). To the best of our knowledge, none of
these studies addressed the possibility of collisions between mobile sensors. A vast amount of re-
search has been invested in recent years in modeling and solving multi-agent path-finding problems
(MAPF) (Sharon et al., 2015; Atzmon et al., 2020). MAPF considers scenarios where a strong com-
puting system (mostly centralized) can compute paths for all agents from their start position to their
goal states while avoiding collisions. This is in contrast to scenarios on which we focus in this study,
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where the team of sensors is composed of entities with low computing and sensing abilities, that
only compute a small number of steps ahead. An attempt to use the DCOP model and algorithms for
collision avoidance of ships was presented in (Hirayama et al., 2019), where the distributed stochas-
tic search algorithm (DSSA) was used to prevent ships from selecting colliding routes. Distributed
stochastic algorithms (DSA) are synchronous local search algorithms in which agents hold assign-
ments and make greedy attempts to improve them, subject to a stochastic replacement decision.
Several versions of DSA were found to be inferior to Max-sum_MST in (Yedidsion et al., 2014,
2018). Nevertheless, we compare the performance of our proposed algorithm with DSSA and a
collision-avoiding version of DSA (CADSA) in our empirical study.

In this section, we provide the necessary background on DCOP, Max-sum, the DCOP_MST
model and Max-sum_MST.

3.1 Distributed Constraint Optimization

A distributed constraint optimization problem (DCOP) (Stranders et al., 2009) is a tuple ⟨, ,,⟩
where  = {𝐴1, 𝐴2,… , 𝐴𝑛} is a finite set of agents ,  = {𝑋1, 𝑋2,… , 𝑋𝑚} is a finite set of
variables,  = {𝐷1, 𝐷2,… , 𝐷𝑚} is the set of finite domains for the variables, and  is a finite set of
constraints. Each variable 𝑋𝑖 is controlled (or owned) by an agent who chooses a value to assign it
from the finite set of values 𝐷𝑖; each agent may control multiple variables. Each constraint 𝐶 ∈  is
a function 𝐶 ∶ 𝐷𝑖1 ×𝐷𝑖2 ×…×𝐷𝑖𝑘 → ℝ+ ∪ {0} that maps assignments of a subset of the variables
(called the scope of the constraint) to a non-negative cost. The cost of a complete assignment of
values to all variables is computed by summing the costs of all constraints. A solution of a DCOP
is a complete assignment (a value assignment to each variable in 𝑋). The optimal solution is the
solution with minimum cost (or with maximal utility in the case of a maximization problem).

Control in DCOPs is distributed, with agents only able to assign values to variables that they
control. Furthermore, agents have knowledge only of the constraints involving variables that they
control. Coordination is achieved through message passing. A standard assumption is that agents
exchange messages only with a subset of the other agents, called their neighbors. Agent 𝐴𝑖 and agent
𝐴𝑗 are neighbors if and only if there exists at least one constraint that its scope includes a variable
controlled by 𝐴𝑖 and a variable controlled by 𝐴𝑗 . While transmission of messages may be delayed,
it is assumed that messages sent from one agent to another are received in the order that they were
sent.

3.2 Standard Max-sum

Max-sum (Farinelli et al., 2008) operates on a factor graph, which is a bipartite graph including nodes
that represent variables and constraints (Kschischang, Frey, & Loeliger, 2001). Each variable-node
representing a DCOP variable is connected to all function-nodes that represent constraints, in which
it is involved. Variable-nodes and function-nodes are considered “agents" in Max-sum, i.e., they can
send and receive messages, and compute.

A message sent to or from variable-node𝑋 (for simplicity, we use the same notation for a variable
and the variable-node representing it) is a vector of size |𝐷𝑋| (the size of 𝑋’s domain, 𝐷𝑋) including
a cost (belief) for each value in 𝐷𝑋 . Before the first iteration, all nodes assume that all messages they
previously received (in iteration 0) include vectors of zeros. A message sent from a variable-node 𝑋
to a function-node 𝐹 in iteration 𝑖 ≥ 1 is formalized as follows: 𝑄𝑖

𝑋→𝐹 =
∑

𝐹 ′∈𝐹𝑋 ,𝐹 ′≠𝐹 𝑅𝑖−1
𝐹 ′→𝑋 − 𝛼

where 𝑄𝑖
𝑋→𝐹 is the message variable-node 𝑋 intends to send to function-node 𝐹 in iteration 𝑖, 𝐹𝑋

1285



PERTZOVSKIY, ZIVAN, & AGMON

is the set of function-node neighbors of variable-node 𝑋 and 𝑅𝑖−1
𝐹 ′→𝑋 is the message sent to variable-

node 𝑋 by function-node 𝐹 ′ in iteration 𝑖−1. 𝛼 is a constant that is reduced from all costs included
in the message (i.e., the beliefs intended for each 𝑥 ∈ 𝐷𝑋) in order to prevent the costs carried
by messages throughout the algorithm run from growing arbitrarily large. We will use the smallest
utility in the vector as 𝛼, thus, each message sent will include at least one belief equal to zero.

A message 𝑅𝑖
𝐹→𝑋 sent from a function-node 𝐹 to a variable-node 𝑋 in iteration 𝑖, includes for

each value 𝑥 ∈ 𝐷𝑋 :
𝑚𝑎𝑥𝑃𝐴−𝑋

𝑢(⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋)

where𝑃𝐴−𝑋 is a possible combination of value assignments to variables involved in𝐹 , not including
𝑋. The term 𝑢(⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋) represents the utility of a partial assignment 𝑎 = {⟨𝑋, 𝑥⟩, 𝑃𝐴−𝑋},
which is: 𝑓 (𝑎)+∑

𝑋′∈𝑋𝐹 ,𝑋′≠𝑋,⟨𝑋′,𝑥′⟩∈𝑎(𝑄
𝑖−1
𝑋′→𝐹 )𝑥′ , where 𝑓 (𝑎) is the original utility in the constraint

represented by 𝐹 for the partial assignment 𝑎, 𝑋𝐹 is the set of variable-node neighbors of 𝐹 , and
(𝑄𝑖−1

𝑋′→𝐹 )𝑥′ is the utility that was received in the message sent from variable-node 𝑋′ in iteration
𝑖 − 1, for the value 𝑥′ that is assigned to 𝑋′ in 𝑎. 𝑋 selects its value assignment 𝑥̂ ∈ 𝐷𝑋 following
iteration 𝑘 as follows: 𝑥̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝐷𝑋

∑

𝐹∈𝐹𝑋
(𝑅𝑘

𝐹→𝑋)𝑥.
Assuming there are no tied beliefs, Max-sum converges in a linear number of iterations to the

optimal solution when solving problems represented by a tree-structured factor graph (Pearl, 1988).1
When it operates on a single cycle factor graph, it will either converge to the optimal solution or
reach a state in which it repeatedly replaces assignments of the same (different) values (Forney,
Kschischang, Marcus, & Tuncel, 2001).

3.3 The DCOP_MST Model

DCOP_MST includes agents  = {𝐴1, 𝐴2,… , 𝐴𝑛} physically situated in the environment,
which is modeled as a metric space. Each agent 𝐴𝑖 controls one variable, denoted by 𝑐𝑝𝑖, that rep-
resents its current position. Time is discretized into an indeterminate series of time-steps, and the
maximum distance 𝐴𝑖 can travel in a single time-step is defined by its mobility range, 𝑚𝑟𝑖. There-
fore, the domain of 𝑐𝑝𝑖 contains all locations within 𝑚𝑟𝑖 from it; consequently, once the agent moves,
the content of its variable’s domain changes. A change in the content of some variables’ domains
can induce a constraint change. The agents have limited heterogeneous sensing ranges, where 𝑠𝑟𝑖
denotes the sensing range of agent 𝐴𝑖, and each agent can only provide information on targets within
its sensing range. Moreover, agents may also differ in the quality of their sensing abilities, a property
termed as their credibility. The credibility of agent 𝐴𝑖 is denoted by 𝑐𝑟𝑒𝑑𝑖 ∈ 𝑅+, with higher values
indicating better sensing abilities. Targets  = {𝑇1, 𝑇2,… , 𝑇𝑚} are represented implicitly by the en-
vironmental requirement function 𝐸𝑅, which maps each point in the environment to a non-negative
real number representing the joint credibility required for that point to be adequately sensed. Thus,
a target 𝑇𝑗 ∈  is a point 𝑝 with 𝐸𝑅(𝑝) > 0.

Agents whose current position is within the sensing range of target 𝑇𝑗 are said to cover it and
the remaining coverage requirement 𝑐𝑟𝑗 , is 𝐸𝑅(𝑇𝑗) diminished by the joint credibility of the agents
currently covering the target, with a minimum value of zero. The coverage of sensors aiming to
apply to the environmental requirement of a target is not accumulated. Thus, if a target requires
the coverage of more than one sensor, they must simultaneously place themselves in the sensing

1. Ties can be avoided by adding for each variable-node a unary constraint with extremely small random utilities (Farinelli
et al., 2008)
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range from it. Denoting the set of agents within the sensing range of a point 𝑝 by 𝑠𝑟(𝑝), this is
formalized as 𝑐𝑟(𝑝) = max{0, 𝐸𝑅(𝑝) ⊖ 𝐹 (𝑠𝑟(𝑝))}, where 𝐹 is the joint credibility function that
combines the credibility of neighboring agents and ⊖ ∶  ×  →  is a binary operator that
decreases the environmental requirement by the joint credibility. For simplicity we will assume that
𝐹 (𝑠𝑟(𝑝)) =

∑

𝐴𝑖∈𝑠𝑟(𝑝)
𝑐𝑟𝑒𝑑𝑖 and that ⊖ is a standard subtraction (Yedidsion et al., 2018). The global

goal of the agents is to position themselves so to minimize ∑

𝑇𝑗∈ 𝑐𝑟(𝑇𝑗). Such a minimization
problem is NP-hard (Wang, Cao, Berman, & Laporta, 2003).

3.4 Distributed Stochastic Algorithm (DSA)

The distributed stochastic algorithm (DSA) is a simple synchronous search algorithm for solving
DCOPs (Zhang, Xing, Wang, & Wittenburg, 2005), which was applied to DCOP_MST, extended to
avoid collisions, and which we use as a benchmark for comparison. In DSA, after an initial iteration
in which agents select a value assignment for their variable (randomly according to (Zhang et al.,
2005)), agents perform a sequence of iterations until some termination condition is met. In each
iteration, an agent sends its value assignment to its neighbors and receives theirs. Versions of DSA
differ in the stochastic method agents use to decide on whether to replace their value assignments.
The algorithm uses a stochastic parameter 0 < 𝑝 ≤ 1 in order to make this decision. If an agent
in DSA cannot improve its current state (or keep the same cost, depending on the version used)
by replacing its current value assignment, it does not replace it. Otherwise, it replaces its value
assignment with probability 𝑝.

3.5 Convergence Properties

Belief propagation (in general and specifically Max-sum) converges in a linear number of itera-
tions to an optimal solution when the problem’s corresponding factor-graph is acyclic (i.e., have a
tree-structured factor-graph) (Pearl, 1988). For a single-cycle factor-graph, we know that if belief
propagation converges, then it is to an optimal solution (Forney et al., 2001; Weiss, 2000). Moreover,
when the algorithm does not converge, it periodically changes its set of assignments. To explain this
behavior, Forney et al. (2001) show the similarity of the performance of the algorithm on a cycle to its
performance on a chain, whose nodes are similar to the nodes in the cycle, but whose length is equal
to the number of iterations performed by the algorithm. One can consider a sequence of messages
starting at the first node of the chain and heading towards its other end. Each message carries beliefs
accumulated from utilities added by function-nodes. Each function-node adds a utility to each belief,
which is the constraint value of a pair of value assignments to its neighboring variable-nodes. Each
such sequence of utility accumulation (route) must at some point become periodic, and the maximal
belief would be generated by the maximal periodic route. If this periodic route is consistent (i.e., the
set of assignments implied by the utilities contain a single value assignment for each variable), then
the algorithm converges. Otherwise, it does not.

We denote by a path the sequence of entries in the utility tables of the function-nodes along the
route, which are accumulated in order to generate a belief.

3.6 Run-Time Complexity Analysis

The overhead in run-time complexity of CAMS (in comparison to Max-sum_MST) is negligible
since the additional function-nodes representing unary and binary constraints require at most 22
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utility comparisons for each message produced (therefore there was no need to use recently published
methods for reducing the computation of function-nodes in Max-sum (Khan et al., 2018; Chen et al.,
2019)). On the other hand, while target function-nodes may have more than two neighbors, we will
prove in Theorem 1 that the calculation is redundant, and thus, there is no need for these function-
nodes to perform exponential computation. The computation performed by a variable-node in each
iteration of the algorithm is the addition of the vectors received from its neighbors, for each message
it sends. Thus, for an agent performing the computation of a single variable-node with 𝑘 neighbors,
the run-time complexity in each step of the algorithm is 𝑘2(𝑘 − 1) = 𝑂(𝑘2).

3.7 Applying Max-sum to DCOP_MST

Max-sum_MST, the Max-sum version applied to DCOP_MST, implements an iterative process
in which in each step the agents construct a factor-graph based on their current locations, run the
Max-sum algorithm for a number of iterations, 2 and move according to the solution provided by
the algorithm. In the next step, a new factor-graph is generated considering the new locations of the
agents (Yedidsion et al., 2018).

A message sent from function-node 𝐹 representing target 𝑇 ∈  to a variable-node 𝑋, 𝑅𝐹→𝑋 ,
includes two utilities, one for locations from which the sensor covers the target, and one for loca-
tions from which it does not (as in fast Max-sum (Macarthur et al., 2011)). A factor-graph in Max-
sum_MST is generated using the function meta reasoning (FMR) method (Yedidsion et al., 2018). It
is used when there are more neighbors than required for covering a target in order to avoid symmetry
(i.e., prevent a situation in which all neighboring agents decide to cover some target, or alternatively,
all decide not to cover it). Consider a step 𝑖 in which the factor-graph 𝐹𝐺𝑖 was generated based on
the locations of sensors selected in step 𝑖− 1. Denote by 𝑛(𝑇 )𝑖 the set of neighboring sensors of the
target 𝑇 ∈  in 𝐹𝐺𝑖. Denote by 𝑟(𝑇 )𝑖 a subset of 𝑛(𝑇 )𝑖 and let 𝑐𝑟𝑒𝑑𝑟(𝑇 )𝑖 = ∑

𝐴𝑗∈𝑟(𝑇 )𝑖
𝑐𝑟𝑒𝑑𝑖. The

function-node𝐹 representing target 𝑇 selects the minimal subset 𝑟(𝑇 )𝑖 for which𝐸𝑅(𝑇 ) ≤ 𝑐𝑟𝑒𝑑𝑟(𝑇 )𝑖 ,and removes the edges connecting it in the factor-graph to the sensors in 𝑛(𝑇 )𝑖⧵𝑟(𝑇 )𝑖. We will denote
this set (the set of neighbors of 𝑇 resulting from the FMR procedure in step 𝑖) by 𝑁(𝑇 )𝑖.

FMR is a first step to avoid symmetry, but it is not enough: If the accumulated credibility of
target 𝑇 ’s neighbors 𝑁(𝑇 )𝑖 is larger than its environmental requirements 𝐸𝑅(𝑇 ), there is still a need
to break symmetry in order to avoid sending distorted requirements to its neighbors (either high for
all neighbors or low for all of them). Yedidsion et al. (2018) suggested an ordered value propagation
(OVP) approach, in which the neighbors are ordered and the utility for the last neighbor in the order
is reduced. We propose a more balanced approach in the following section.

4. Problem Formalization

The problem that we address in this paper is DCOP_MST, as described in Section 3.3 and in (Zivan
et al., 2015; Yedidsion et al., 2018), with the addition of the consequences of collisions. Thus,
we formalize CA-DCOP_MST, which includes all elements of DCOP_MST with the addition of
collision constraints.

One element that is implicitly defined in DCOP_MST is the time intervals. In DCOP_MST
the domains and constraints are determined according to the location of the agents at the current

2. In order to avoid confusion we use the term step for the process of selecting a physical by the robots and the term
iteration for the calculation-steps that are performed by the agents as part of the algorithm within a step.
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time. Thus, after the following movement, in a future time, the location of the agents changes and
with it the domains for their variables and their constraints. We add to the CA-DCOP_MST model
these time intervals (or steps) explicitly. The time intervals are ordered in a discrete finite sequence
{𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑓}, such that in each such time 𝑡𝑘, each agent 𝐴𝑖 is located at 𝑐𝑝𝑡𝑘𝑖 .

Following the vast amount of existing work on multi-agent path finding (MAPF), we add to
DCOP_MST a set of hard constraints that prevent two agents from taking the same position at the
same state.

Formally, CA-DCOP_MST includes a set of binary collision constraints 𝐶𝐶 , where 𝐶𝐶𝑖𝑗 is the
hard constraint between agents 𝐴𝑖 and 𝐴𝑗 . 𝐶𝐶𝑖𝑗 prevents agent 𝐴𝑖 and agent 𝐴𝑗 from selecting the
same position in the same time interval, i.e. 𝑐𝑝𝑡𝑘𝑖 ≠ 𝑐𝑝𝑡𝑘𝑗 and from switching adjacent positions, i.e.,
if agents 𝐴𝑖 and 𝐴𝑗 are located at 𝑐𝑝𝑡𝑘𝑖 and 𝑐𝑝𝑡𝑘𝑗 at time 𝑡𝑘, then it is not possible that 𝑐𝑝𝑡𝑘+1𝑖 = 𝑐𝑝𝑡𝑘𝑗
and 𝑐𝑝𝑡𝑘+1𝑗 = 𝑐𝑝𝑡𝑘𝑖 in iteration 𝑡𝑘+1.

In DCOP_MST, two agents are considered neighbors if after moving as close as possible towards
each other in a single iteration, their sensing ranges overlap (Zivan et al., 2015), i.e., an agent 𝐴𝑖 is
the neighbor of agent 𝐴𝑗 at iteration 𝑡𝑘 if and only if the distance between 𝑐𝑝𝑡𝑘𝑖 and 𝑐𝑝𝑡𝑘𝑗 is smaller
than 𝑚𝑟𝑖 + 𝑠𝑟𝑖 + 𝑚𝑟𝑗 + 𝑠𝑟𝑗 . A 𝐶𝐶 constraint at iteration 𝑡𝑘 exists between two agents if and only
if they can move to the same location in iteration 𝑡𝑘+1 (notice that, since an agent can stay in its
location, this definition covers both types of 𝐶𝐶 constraints). Thus, the addition of 𝐶𝐶 constraints
does not change the agents’ neighbor sets.

A solution to CA-DCOP_MST is an assignment (position) for each of the agents’ variables 𝑐𝑝,
such that none of the 𝐶𝐶 constraints are violated.

It is important to mention that, in contrast to MAPF, DCOP_MST (hence, also CA-DCOP_MST)
is myopic, thus, 𝐶𝐶 constraints exist only between agents that can select the same position in the
next step. Like in the case of the target constraints and the content of the domains, following each
movement of the agents, the 𝐶𝐶 set is updated.

5. Collision Avoiding Max-sum (CAMS)

Collisions among mobile sensors may result in damaging the sensors, execution delay, or even the
inability to perform the coverage task. Thus, we propose Collision Avoiding Max-sum (CAMS) for
solving CA-DCOP_MST, which allows the agents to select the deployment that maximizes coverage
while avoiding collisions. This is achieved by adding to the factor-graphs that are generated in each
step of Max-sum_MST (before each movement of the agents) function-nodes representing locations
that the agents can move to. Each such function-node can either represent a location to which only
one agent can decide to move or locations to which two agents can move.

In more detail, in a factor-graph generated in CAMS there are three types of function-nodes:
1) 𝐹𝑇𝑗 , a function-node representing a target 𝑇𝑗 . The neighbors of the function are selected using
FMR. However, instead of performing ordered value propagation, the targets adjust the utilities sent
to their neighboring agents in a more balanced manner. Let 𝑢𝑐𝑜𝑣𝑖𝑗 denote the utility sent to neighbor
𝐴𝑖 by target 𝐹𝑇𝑗 for covering it. The value of 𝑢𝑐𝑜𝑣𝑖𝑗 is defined as follows:

𝑢𝑐𝑜𝑣𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐸𝑅𝐹𝑇𝑗 , if 𝐸𝑅𝐹𝑇𝑗 < 𝑐𝑟𝑒𝑑𝑖

𝑐𝑟𝑒𝑑𝑖 − max{0,
∑

𝑖′∈𝑁(𝐹𝑇𝑗 ) 𝑐𝑟𝑒𝑑𝑖′−𝐸𝑅𝐹𝑇𝑗

|𝑁(𝐹𝑇𝑗 )|
}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 1: A factor-graph generated in CAMS, including two neighboring agents. Each can move in
four directions or stay. Among the four options, three are of type 𝐹𝐿𝑖 and one (the one between the
agents) is of type 𝐹𝐿𝑖𝑗 . The red circle represents a target function-node (𝐹𝑇𝑖), and it can be covered
only from the location to which both agents can move.

We refer to this calculation of the neighbors’ coverage utilities as balanced utility adaptation
(BUA). The motivation that triggered the replacement of OVP by BUA is that a reduction of all the
excess coverage from one single sensor may result in a low probability that this sensor will cover
the target. BUA on the other hand generates a minor reduction for each of the covering sensors and
thus, the outcome is more stable, as we demonstrate in our experimental study (see Section 7).
2)𝐹𝐿(𝑖), a function-node representing a location to which only one agent can move. The correspond-
ing constraint is unary. A random positive utility is selected for the option that𝐴𝑖 selects this location
(selected from the same range as the random utilities selected for the binary constraints described
next) and zero for not selecting this location.
3)𝐹𝐿(𝑖,𝑒), a function-node representing a location 𝑙 to which mobile sensors 𝐴𝑖 and 𝐴𝑒 can move in
this iteration. The utility for both mobile sensors for not selecting location 𝑙 is zero, for both selecting
𝑙 is −∞ and for both options in which only one of them selects 𝑙, a random utility is selected from
a range of numbers that is much smaller than 𝐸𝑅𝐹𝑇𝑗

3. In the case where one of the mobile sensors
is located in 𝑙 (without loss of generality, assume this is 𝐴𝑖), then the option that 𝐴𝑒 moves to 𝑙 and
𝐴𝑖 moves to the current location of 𝐴𝑒 is also excluded by utility -∞, and thus, edge constraints for
avoiding collisions are enforced. We emphasize that although there may exist scenarios in which
more than two mobile sensors can move to the same location, 𝐹𝐿 is defined as a binary constraint,
and thus, if there are 𝑘 > 2 mobile sensors that can select the same location, there will be an 𝐹𝐿 for
each pair of these 𝑘 mobile sensors.

Figure 1 presents an example of a factor-graph generated in some step of CAMS. It includes two
mobile sensors, each with four possible locations to move to, and the option to stay in their current
location. All function-nodes representing locations to which only one mobile sensor can move are
of the second type. While the domain of each mobile sensor’s current position variable includes
five values (representing the possible locations it can select), only for the selection of the location
represented by the function-node the utility is positive, and for all other locations, it is zero. The
middle location to which both mobile sensors can move, is represented by a function-node of the

3. Random numbers are selected to avoid ties between desired options, as in (Farinelli et al., 2008)
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𝐶𝑜𝑚𝑏1 𝐶𝑜𝑚𝑏2 … 𝐶𝑜𝑚𝑏2𝑛
𝑛𝑜_𝑐𝑜𝑣𝑒𝑟 𝑢1 𝑢2 … 𝑢2𝑛
𝑐𝑜𝑣𝑒𝑟 𝑢1 + 𝑢𝑐𝑜𝑣𝐴,𝑇 𝑢2 + 𝑢𝑐𝑜𝑣𝐴,𝑇 … 𝑢2𝑛 + 𝑢𝑐𝑜𝑣𝐴,𝑇

Table 1: Function-node message generation.

third type. It includes four options, one for both mobile sensors not selecting this location (zero
utility), one for both selecting this location (minus infinity), and two with positive utilities for the
cases which only one mobile sensor selects this location. The target is represented by a function-
node of the first type. Its coverage requirement is 200, while the credibility of each mobile sensor
is 70, which is the utility they derive for covering the target. In this example, covering the target is
only possible from the middle location that both mobile sensors can move to. However, if they both
move to this location they collide.

6. Properties of CAMS

In this section, we discuss properties of CAMS that affect its convergence, collision-free guarantees,
and its run-time analysis.

6.1 Messages sent by Target Representing Function Nodes

To identify the properties of the factor-graphs on which CAMS is guaranteed to converge to the
optimal (collision-free) solution and to analyze its run-time properties, we aim to prove that function-
nodes in Max-sum_MST (when implementing FMR, and BUA or OVP) do not change the content
of the messages they send throughout the algorithm run. This property of Max-sum_MST has not
been reported, nor proven, in previous studies.

We use in our proof a table (as depicted in Table 1), which represents the calculations performed
by a target representing function-node 𝐹𝑇 , when generating a message to be sent to mobile sensor 𝐴.
This table includes 𝑡𝑤𝑜 rows, one for positions from which 𝐴 covers the target and one for positions
from which it does not. The columns represent combinations of position selections of all neighboring
mobile sensors that can either select a position from which they cover the target or a position from
which they do not. Thus, if there are 𝑛 such neighbors (not including 𝐴), the number of columns
will be 2𝑛. Each entry in the table includes the sum of the utility derived from the coverage, which
the mobile sensors that selected a covering position in this column provided, and the relevant beliefs
included in the messages received from the target’s neighbors in the previous iteration.
Theorem 1 In every step of CAMS and of Max-sum_MST, each target representing function-node
will send to its neighbors in every iteration of the Max-sum algorithm, a message including zero
utility for not covering this target and 𝑢𝑐𝑜𝑣𝐴,𝑇 for covering it (here, 𝑇 is the target and 𝐴 is the neighbor
to which the message is sent).

Proof: Table 1 demonstrates the calculation performed by function-node 𝐹𝑇 , representing target
𝑇 , when generating a message to be sent to its neighboring mobile sensor 𝐴. The message will
include two utilities (beliefs), one for covering the target and one for not. As stated above, each
of the columns represents a combination of positions selected by the target’s other neighbors. The
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Figure 2: A tree-structured factor-graph including only location representing function-nodes.

target selects the largest utility in each row to be included in the message it sends to 𝐴𝑖, one for not
covering the target and the other for covering it. For each column 𝑗, the utilities are 𝑢𝑗 for the first
(non-covering) row, and 𝑢𝑗 + 𝑢𝑐𝑜𝑣𝐴,𝑇 for the row representing a covering position of 𝐴. Thus, if for
some column 𝑗′ and for all other columns 𝑗 ≠ 𝑗′, 𝑢𝑗′ > 𝑢𝑗 , then the message will include 𝑢𝑗′ for not
covering the target and 𝑢𝑗′ + 𝑢𝑐𝑜𝑣𝐴,𝑇 for covering it. Thus, after the reduction of 𝛼 = 𝑢𝑗′ the message
sent will include ⟨0, 𝑢𝑐𝑜𝑣𝐴,𝑇 ⟩. □

The significance of Theorem 1 is that it explains previously published evidence regarding the
instant convergence of Max-sum_MST (e.g., (Yedidsion et al., 2018)) in contrast to Max-sum’s
behavior on other benchmarks (Chen et al., 2018; Cohen et al., 2020).

6.2 Convergence Properties

We start the discussion by identifying factor-graph structures on which CAMS is guaranteed to con-
verge to the optimal solution, and then we establish a more general property. Like in the case of
standard Max-sum, these graph structures are interesting, not because they are common in realistic
scenarios, but rather because we can establish theoretical properties for them (Forney et al., 2001;
Weiss, 2000; Cohen, Lev, & Zivan, 2023). For realistic graph structures on which we do not establish
theoretical results, we present empirical results in Section 7.

Lemma 2 In any step of CAMS, if the factor-graph includes no cycles, and a collision-free solu-
tion exists, the algorithm will converge to the optimal collision-free solution in a linear number of
iterations.

Proof: The factor-graph representation of this scenario has a tree structure and thus, Max-sum
will converge in a linear number of iterations to an optimal solution (Pearl, 1988). This optimal
solution4 cannot include the selection of the same location by two or more agents, since the utility
of such a mutual selection is −∞. □

This proof is immediate, given the properties of belief propagation as established in (Pearl, 1988).
We mention it just to indicate that the hard constraint function-nodes do not interfere with this prop-
erty, as long as a solution that does not violate hard constraints exists. Note that if the current position
of the agents is collision-free, then indeed such a solution exists, since the agents can choose to stay
in their current locations.

4. Here by optimal solution we mean the collision-free solution that provides the smallest remaining coverage in this
step.
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Figure 3: Single cycle factor-graphs including (a) two mobile sensors and (b) three mobile sensors.

Figure 2 presents an example of a tree-structured factor-graph including only location represent-
ing function-nodes. Note that additional function-nodes of the second type do not change the tree
structure of the graph. In the optimal solution, the left mobile sensor moves down, the middle one
moves to the left, and the one on the right moves to the right. The (optimal) utility derived from this
solution is 18.

Tree-structured graphs include all scenarios in which adjacent mobile sensors have only one
location that they both can move to. However, when there is more than one such location, or when
more than two mobile sensors can move to the same location, the factor-graph includes a cycle (See
examples for two such scenarios in Figure 3).

Lemma 3 In any step of CAMS, if the factor-graph includes a single cycle with two or more loca-
tion representing function-nodes of the third type 𝐹𝐿(𝑖,𝑗), and a collision-free solution exists, the
algorithm converges to a collision-free optimal solution in a pseudo linear number of iterations.

Proof: The factor-graph representation of such scenarios includes a single cycle with at least
two 𝐹𝐿(𝑖,𝑗) function-nodes. This type of function-node has four entries in the utility table, one of
them includes minus infinity utility. According to (Forney et al., 2001), when belief propagation
is applied to a single cycle graph, it converges to the optimal solution if and only if the optimal
(maximal in our case) repeated path is consistent. The only way to generate a maximal inconsistent
path in such cycles including two or more function-nodes with four entry utility tables is when the
maximal path visits alternately entries of opposing directed diagonals in the utility tables (see proof
in the following section). Since in all utility tables, the entry representing the movement of both
mobile sensors to the represented location is equal to minus infinity, it is impossible to generate a
maximal path including opposing directed diagonals. Thus, the maximal path must be consistent.
The number of iterations depends on the constant utilities sent by the unary function-node neighbors,
which are not included in the cycle. If the difference between these utilities is negligible, the time
for convergence is linear, i.e., in the order of the size of the cycle. □

Lemma 4 In any step of CAMS, if the Max-sum algorithm has converged, two sensors will not move
to the same location.
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Proof: For two sensors to move to the same location, the nodes representing them 𝑋𝑖 and 𝑋𝑗 in
the factor-graph must have a mutual location function-node 𝐹𝑖𝑗 neighbor. Assume without loss of
generality that 𝐹𝑖𝑗 includes the costs:

• −∞ for both agents selecting it as their location.
• 𝑥 for agent 𝑋𝑖 selecting this location while 𝑋𝑗 does not.
• 𝑦 (without loss of generality we assume that 𝑥 > 𝑦) for agent 𝑋𝑗 selecting this location while

𝑋𝑖 does not.
• zero if they both do not select this location.

These selections are demonstrated in Figure 4.
Further assume that the messages sent from 𝑋𝑖 and 𝑋𝑗 to 𝐹𝑖𝑗 included: ⟨𝑐𝑖𝑎 , 𝑐𝑖𝑏⟩ and ⟨𝑐𝑗𝑎 , 𝑐𝑗𝑏⟩,respectively with the first cost in each pair referring to selecting the location represented by 𝐹𝑖𝑗 and

the second for not selecting it.
We note that:
• ⟨𝑐𝑖𝑎 , 𝑐𝑖𝑏⟩ is the sum of messages that 𝑋𝑖 receives from all its other neighbors (not including

𝐹𝑖𝑗) after convergence.
• ⟨𝑐𝑗𝑎 , 𝑐𝑗𝑏⟩ is the sum of messages that𝑋𝑗 receives from all its other neighbors after convergence.
• and we denote by ⟨𝑓𝑖𝑎 , 𝑓𝑖𝑏⟩ and ⟨𝑓𝑗𝑎 , 𝑓𝑗𝑏⟩ the costs that 𝐹𝑖𝑗 sends to 𝑋𝑖 and 𝑋𝑗 respectively.

Thus, 𝑋𝑖 will choose the location represented by 𝐹𝑖𝑗 if and only if 𝑐𝑖𝑎 + 𝑓𝑖𝑎 > 𝑐𝑖𝑏 + 𝑓𝑖𝑏 .Similarly, 𝑋𝑗 selects to move to the location represented by 𝐹𝑖𝑗 if and only if 𝑐𝑗𝑎 + 𝑓𝑗𝑎 > 𝑐𝑗𝑏 + 𝑓𝑗𝑏 .The costs 𝑓𝑖𝑎 and 𝑓𝑖𝑏 are calculated as follows:
𝑓𝑖𝑎 = 𝑐𝑗𝑏 + 𝑥
𝑓𝑖𝑏 = max{𝑐𝑗𝑎 + 𝑦, 𝑐𝑗𝑏}
𝑓𝑗𝑎 = 𝑐𝑖𝑏 + 𝑦
𝑓𝑗𝑏 = max{𝑐𝑖𝑎 + 𝑥, 𝑐𝑖𝑏}Thus, a collision occurs when:
𝑐𝑖𝑎 + 𝑐𝑗𝑏 + 𝑥 > 𝑐𝑖𝑏 + max{𝑐𝑗𝑎 + 𝑦, 𝑐𝑗𝑏} and 𝑐𝑗𝑎 + 𝑐𝑖𝑏 + 𝑦 > 𝑐𝑗𝑏 + max{𝑐𝑖𝑎 + 𝑥, 𝑐𝑖𝑏}

Assume that: 𝑐𝑗𝑏 > 𝑐𝑗𝑎 + 𝑦 , then 𝑐𝑖𝑎 + 𝑐𝑗𝑏 + 𝑥 > 𝑐𝑖𝑏 + 𝑐𝑗𝑏 and therefore 𝑐𝑖𝑎 + 𝑥 > 𝑐𝑖𝑏Hence in the second inequality we have 𝑐𝑗𝑎 + 𝑐𝑖𝑏 + 𝑦 > 𝑐𝑗𝑏 + 𝑐𝑖𝑎 + 𝑥
and therefore we can replace on the right side: 𝑐𝑖𝑎 + 𝑥 by 𝑐𝑖𝑏 and get that
𝑐𝑗𝑎 + 𝑐𝑖𝑏 + 𝑦 > 𝑐𝑗𝑏 + 𝑐𝑖𝑏 ⇒ 𝑐𝑗𝑎 + 𝑦 > 𝑐𝑗𝑏 , which contradicts our assumption.
Similarly, when 𝑐𝑖𝑏 > 𝑐𝑖𝑎 + 𝑥 then 𝑐𝑗𝑎 + 𝑐𝑖𝑏 + 𝑦 > 𝑐𝑗𝑏 + 𝑐𝑖𝑏 ⇒ 𝑐𝑗𝑎 + 𝑦 > 𝑐𝑗𝑏Thus, in the first inequality we have 𝑐𝑖𝑎 + 𝑐𝑗𝑏 + 𝑥 > 𝑐𝑖𝑏 + 𝑐𝑗𝑎 + 𝑦
We can replace: 𝑐𝑗𝑎 + 𝑦 with 𝑐𝑗𝑏 and get: 𝑐𝑖𝑎 + 𝑐𝑗𝑏 + 𝑥 > 𝑐𝑖𝑏 + 𝑐𝑗𝑏 ⇒ 𝑐𝑖𝑎 + 𝑥 > 𝑐𝑖𝑏 ,which again contradicts our assumption.
We are left with one case in which:
𝑐𝑖𝑎 + 𝑐𝑗𝑏 + 𝑥 > 𝑐𝑖𝑏 + 𝑐𝑗𝑎 + 𝑦 and 𝑐𝑗𝑎 + 𝑐𝑖𝑏 + 𝑦 > 𝑐𝑗𝑏 + 𝑐𝑖𝑎 + 𝑥
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It is easy to see that these two contradict each other, concluding the proof □
To demonstrate more intuitively the property proved in Lemma 4, Figure 4 illustrates two agents,

𝑋𝑖 and 𝑋𝑗 , a location representing function node 𝐹𝑖𝑗 to which both agents can move, and the agents’
messages.

Figure 4: One 𝐹𝑖𝑗 (function-node for location) and two agents

The messages sent by 𝐹𝑖𝑗 are presented in Figure 5. There are two options for each message,
depending on the largest candidate for not choosing the location represented by 𝐹𝑖𝑗 . For example, if
𝑐𝑖𝑎 + 𝑥 > 𝑐𝑖𝑏 then the message from 𝐹𝑖𝑗 will be ⟨𝑐𝑖𝑏 + 𝑦, 𝑐𝑖𝑎 + 𝑥⟩, otherwise it will be ⟨𝑐𝑖𝑏 + 𝑦, 𝑐𝑖𝑏⟩.The location selected by each agent is based on the sum of all the messages that it received in the last

Figure 5: Messages sent by 𝐹𝑖𝑗

iteration. Those sums are presented in Figure 6. In Figure 7 four possible variants of calculations
are performed by the agents when selecting their location, depending on the content of the messages
received in the last iteration. In variants II, III, and IV the agents would select the options marked
in red. In option I there are two possible outcomes (marked with purple and orange). None of the
combinations results in agents taking the location represented by 𝐹𝑖𝑗 simultaneously.

Theorem 5 In every step of CAMS, if the Max-sum algorithm converges, the agents do not collide.

Immediate following Lemma 4. It is important to mention that, while we do not prove that
Max-sum always converges in CAMS, our empirical results indicate that this is indeed the case.
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Figure 6: Sum of messages by each agent

Figure 7: Location Selection Calculations

6.3 Consistent and Inconsistent Paths

In the proof of Lemma 3 we stated that in a single cycle graph including two or more function-
nodes representing binary constraints with four entries in their utility table, the maximal path can
be inconsistent if and only if this path visits entries that are part of opposite direction diagonals.
Consider such a cycle (as depicted in Figure 8 (a)). Assume each agent can select value assignments
𝑣1 or 𝑣2. Thus, the four entries represent the pairs of assignments ⟨𝑣1, 𝑣1⟩ on the top left, ⟨𝑣2, 𝑣1⟩ on
the bottom left, ⟨𝑣1, 𝑣2⟩ on the top right and ⟨𝑣2, 𝑣2⟩ on the bottom right. Without loss of generality,
we will follow a clockwise path that starts with the top left entry in the bottom utility table in the
example depicted in Fig 8 (a). A consistent path will have both agents take 𝑣1, i.e., the assignment
will include ⟨𝑣1, 𝑣1⟩ and the path will visit the left top entries in both utility tables until the algorithm
terminates resulting in the path 15 → 1 → 15 → 1.... On the other hand, an inconsistent path
includes shifts of assignments for each variable. However, since it is a path of a route, this shift is
done alternately by the agents. Thus, after visiting ⟨𝑣1, 𝑣1⟩ in the bottom utility table, the path shifts
to ⟨𝑣1, 𝑣2⟩ in the top utility table, then it shifts to ⟨𝑣2, 𝑣2⟩ in the bottom utility table, to ⟨𝑣2, 𝑣1⟩ in
the top utility table and back to ⟨𝑣1, 𝑣1⟩ in the bottom. The path visited is 15 → 2 → 10 → 6 →
15.... One of these two passes is maximal (since the accumulated utility of all other consistent and
inconsistent paths is much lower). To compare we need to normalize by length. The inconsistent
path visits four entries their sum is 33. The consistent path visits two entries, and their accumulated
utility is 16. To normalize we will visit this path twice and get a utility of 32. Thus, the maximal
path here is the inconsistent path. However, in the example depicted in Figure 8 (b) we increased the
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Figure 8: A single cycle factor-graph with two four-entry function nodes.

utility in the entry for ⟨𝑣1, 𝑣1⟩ (top left) in the top utility table from 1 to 5. Now, the accumulated
normalized utility of the maximal consistent path is 40, while the maximal accumulated utility of an
inconsistent path remains 33. Thus, when solving the factor graph depicted in Figure 8 (b), Max-sum
would converge to the solution ⟨𝑣1, 𝑣1⟩, while when solving the factor graph depicted in Figure 8 (a)
it would not converge.

A similar observation to the one we stated following Lemma 2 can be noted here as well. Ad-
ditional unary constraints (function-nodes of the second type) would not affect the correctness of
Lemma 3, since regardless of their content, they cannot overcome the minus infinity utilities that
prevent an inconsistent maximal path.

Note that factor-graphs similar to the ones depicted in Figure 3(a) are generated when two mobile
sensors can both move to two different locations and that factor-graphs similar to the one depicted
in Figure 3(b) are generated when three mobile sensors can move to a single location. When more
than three mobile sensors can move to a single location, the representing factor-graph will include
more than one cycle.

In order to state the final Theorem in this section, we introduce the following definition: The
Underlying location factor-graph (ULFG) is the factor-graph that is generated in a step of CAMS,
after removing all target representing function-nodes and all the edges connecting them to the mobile
sensor variable nodes. Thus, all the function-nodes in a ULFG represent locations.

Theorem 6 In any step of CAMS in which a factor-graph𝐺 is being solved by Max-sum, if the ULFG
of 𝐺 is tree-structured or includes a single cycle, then Max-sum is guaranteed to converge on 𝐺 to
the optimal solution (collision-free, if such a solution exists) in a pseudo linear number of iterations.

Proof: According to Theorem 1, the target representing function-nodes in 𝐺 constantly send the
same messages. Thus, they act as if they are unary constraints (function-nodes with a single variable-
node neighbor) and are not affected by the messages sent to them. According to (Forney et al., 2001;
Zivan et al., 2020), Max-sum will converge if and only if the maximal path is consistent. As stated
in the observations following Lemmas 2 and 3, unary constraints cannot change the fact that the
maximal path in these graphs cannot be inconsistent. □
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Figure 9: Left to right, top to bottom: empty, random, warehouse, and game environments.

7. Experimental Evaluation

To evaluate the performance of CAMS, we designed two simulators, a software simulation and a
hardware simulator including robots. The first set of experiments was performed in software sim-
ulation, implemented in Python5, allowing for rigorous evaluation of CAMS compared to existing
algorithms. We used a MacBook Air with an Apple M1 chip and 8GB of RAM. In the second set
of experiments, we have fully implemented CAMS on a physical multi-robot system that included
3 Hamster robots (Cogniteam, 2020). We report here a subset of the results (similar trends were
observed when other parameters were used as well, and the results were not included to avoid re-
dundancy).

7.1 Software Simulation

We used in our experiments a classical Grid-based MAPF benchmark (Stern et al., 2019; Sharon
et al., 2015). This publicly available6 benchmark consists of 24 different grids that were based
on maps of real cities, video games, open areas with and without random obstacles, maze-like
environments, and room-like spaces. Those grids are based on the MovingAI pathfinding repos-
itory7 (Sturtevant, 2012).

Our software simulation included four environments from the aforementioned benchmark: empty
(48 × 48), random (32 × 32), warehouse (63 × 161), and game (180 × 251). A demonstration of the
environments is presented in Figure 9.

The number of agents included in each of the scenarios was 20 and the number of targets was
10. For each environment, we tested the algorithms in both static and dynamic settings. In the static
settings, the number of targets and their locations were constant, while in the dynamic setting targets
randomly switched to new positions every 𝑡 steps (we used 𝑡 = 40). The ER values of all targets were

5. https://github.com/Arseni1919/dcop_simulator_5
6. https://movingai.com/benchmarks/mapf.html
7. https://movingai.com/benchmarks/grids.html
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100, the sensing range of all sensors, 𝑠𝑟𝑖, was set to 5, and the credibility of each sensor was 22. The
positive utilities of location function-nodes were selected randomly from the range [10−10, 10−5]. In
each step of the algorithm, each mobile sensor could either move to one of the adjacent locations
or stay in its current location. For each environment, the experiments included 20 scenarios, and
we report the average remaining coverage requirement and the accumulated number of collisions
obtained by each algorithm solving these scenarios. Each algorithm performed 200 steps, where in
each step the mobile sensors selected locations.

We compared CAMS with six other algorithms: (1) Max-sum_MST (including FMR and OVP),
in which the mobile sensor movements were not affected by collisions; (2) Max-sum_MST with
breakdowns, in which colliding agents exhibited a breakdown and stopped moving, but kept on
sensing and communicating with other sensors; (3) DSA_MST, the standard DSA version described
in (Yedidsion et al., 2018); (4) DSA_MST with breakdowns. Like in the Max-sum_MST version,
the results of a collision in this version was that the agents stopped moving but kept on sensing;
(5) CADSA, a collision avoiding version of DSA_MST. We ranked the mobile sensors according to
their indexes. Each mobile sensor updated its neighbors before moving to a new location. A mobile
sensor did not move to a new location if a different mobile sensor with a higher rank reported that it
plans to move to the same location. (6) DSSA, the distributed stochastic search algorithm, designed
to avoid collisions between ships (Hirayama et al., 2019). DSSA allows mobile sensors to keep
suggesting locations they intend to move to while checking for collisions until they converge to a
collision-avoiding decision in each step. (7) Random walk, serves as a baseline for the number of
expected collisions.

CAMS and Max-sum_MST performed 10 iterations of Max-sum in each step before the mobile
sensors selected their locations. The remaining coverage requirement in each step was calculated
as ∑

𝑇𝑗∈𝑇
𝑐𝑟(𝑇𝑗). We performed t-tests with 𝑝 < 0.01 between the remaining coverage results at

the 200 steps for each algorithm solving each scenario, to evaluate statistical significance when
comparing the average results produced by the different algorithms and report standard deviations
as well (presented in the Tables 2 and 3 in the appendix).

Figure 10: empty environment with static targets
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Figure 11: random environment with static targets

Figure 12: warehouse environment with static targets
Figures 10(a), 11(a), 12(a) and 13(a) present the remaining coverage requirement of the sensors

performing the different algorithms as a function of the number of steps in the static settings. Each
graph presents the results of the algorithm, performed in a different environment. Nevertheless,
the trends are similar in all environments. It is clear that both CAMS and Max-sum_MST had a
significant advantage over random walk and all the DSA versions. Since the mobile sensors in Max-
sum_MST do not avoid collisions, they are less restricted and therefore the resulting coverage is
significantly better than the results of this algorithm in the experiments that included breakdowns.
Nevertheless, CAMS performed competitively in comparison to the Max-sum_MST version that did
not exhibit breakdowns, that is, CAMS was able to find collision-free solutions that their coverage
results are similar (in the empty and random environments) or significantly better (in the warehouse
and game environments) than the solutions produced by the best algorithm that ignored collisions.
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Figure 13: game environment with static targets

The different versions of DSA produced solutions with similar quality, and the performance of all
of them was inferior to the Max-sum versions. When considering the Max-sum_MST version and the
DSA version that included breakdowns, it is interesting to note that: (1) both were inferior, compared
to the versions of those algorithms that did not exhibit breakdowns and (2) they demonstrate a similar
advantage of Max-sum over DSA as demonstrated in the experiments with the other versions of those
algorithms. This advantage is more apparent in the empty, random, and warehouse scenarios. The
game environment was also unique in that DSA versions performed similarly to Max-sum_MST
versions. However, CAMS significantly outperformed them.

Figures 10(b), 11(b), 12(b) and 13(b) present the number of accumulated collisions for each
algorithm in these experiments, as a function of the number of steps. Clearly, the algorithms that
do not avoid collisions exhibit more collisions than random walk. This can be explained by the
attraction of mobile sensors to locations from which targets can be covered. The more open-spaced
environments, e.g., the empty environment, result in more collisions. We assume that this is a result
of the environmental obstacles, e.g., a corridor in a warehouse, that prevent agents that are located
on different sides of the obstacles from colliding. CAMS, as well as CADSA and DSSA, do not
exhibit any collisions. The versions of Max-sum_MST and DSA_MST which include breakdowns,
exhibit fewer collisions than the versions that do not. This is because each sensor can experience
only a single collision in these versions, while in the no-breakdown versions, they can exhibit many.

Figures 14, 15, 16 and 17 present the remaining coverage (a) and the number of accumulated
collisions (b) of the different algorithms in the dynamic setting. In empty and random environments,
CAMS significantly outperforms all other algorithms in terms of remaining coverage except for
Max-sum_MST which ignores collisions. In addition, the gap between algorithms grows with the
progression of steps, while CAMS continues to successfully adapt itself to periodic changes and
maintains a consistent advantage over the other algorithms. In more complex environments such as
warehouse and game CAMS needs to perform more steps to find good solutions.
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Figure 14: empty environment with dynamic targets

Figure 15: random environment with dynamic targets

In terms of collisions, we see a similar pattern to the experiments in the static scenarios, where
there are more collisions in more open-spaced environments. CAMS does not produce any collisions
as expected.

7.2 Comparing OVP and BUA

In Section 5 we describe the balanced utility adaptation (BUA) method for adjusting the utility of
covering sensors to the requirements of the target. Intuitively, the motivation for designing it was
to generate a more balanced method for adjusting the utility offered by targets to their neighboring
sensors, with respect to their capabilities. In the ordered value propagation (OVP) method, which
was proposed for this purpose in (Yedidsion et al., 2014), all the required reduction was applied to
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Figure 16: warehouse environment with dynamic targets

Figure 17: game environment with dynamic targets
a single sensor. In more detail, each target (function-node) orders its neighboring sensors (variable-
nodes) according to the number of constraints they were involved in. The number of constraints
is revealed to the targets as part of the FMR procedure. A target assigns utility one by one to the
sensors, while the last agent receives the remainder. On the contrary, in BUA, the remainder is
evenly distributed across all agents. We note that FMR is used for symmetry breaking (as proposed
in (Yedidsion et al., 2014)) and the utility adjustment is required for FMR. Both methods serve this
purpose.

Figure 18 presents a comparison between two CAMS versions, one using OVP and the other
using BUA. It is clear from the results that our estimations were correct. It is apparent that when
using OVP the algorithm performs much more erratically and oscillates, compared to the version
that uses BUA. In addition, the version that uses BUA significantly outperforms the version that
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uses OVP. The only environment in which the OVP version produces results with similar quality is
the game environment. Figure 19 presents similar results in the dynamic settings.

Figure 18: From top to bottom, from left to right: random, empty, warehouse and game environments
with static targets

7.3 Evaluation in a Physical Robotic System

In the next set of experiments our goal was to examine the practicality of CAMS in a physical multi-
robot system, and specifically to evaluate the delay caused by collisions between robots in such a
realistic setting. Thus, we have fully implemented CAMS and Max-sum_MST on a mobile sensing
team composed of three Hamster robots (Cogniteam, 2020) and two targets, placed in a 4 × 4 grid,
where the size of each vertex of the grid was one square meter. The targets’ ER was set to 60, and
they were placed randomly in non-adjacent vertices of the grid. The sensors’ credibility and the
targets’ requirements were identical to the software simulation experiments. The number of steps
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Figure 19: From top to bottom, from left to right: random, empty, warehouse and game environments
with dynamic targets

performed was 10. In each of them, the robots constructed a factor graph in which each of the robots
performed the role of its own variable-node. The location and target function-nodes were performed
by the nearest robot (qualities were broken by index). Thus, the implementation was completely
distributed. The robots performed 30 iterations of Max-sum in each step, before selecting locations,
moving, and beginning the next step. When a collision occurred, the robots had to sort out the
conflict and continue to the selected location. This resulted in a delay, and thus, we report the time
for arriving to the coverage solution. We selected four different positions for the targets, and for each
of them five different positions for the robots, resulting in 20 experiments for each algorithm. The
static obstacles were avoided by using a move_base ROS package.
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Figure 20: Remaining coverage as a function of time

Figure 20 presents the remaining coverage requirement as a function of the experiment execution
time. Both algorithms produced the same level of coverage after completing 10 steps. However,
CAMS reached this coverage state faster.

8. Conclusion

An important feature of applications that include mobile sensors, is that they should avoid collisions
while optimizing coverage. CAMS achieves this challenging combination by adding to the factor-
graph representation of the problem, hard constraint function-nodes, representing the locations that
mobile sensors may choose to move to. In contrast to what one might expect, although this addition
resulted in a much denser factor-graph including many more cycles, it did not prevent the algorithm
from converging. Our theoretical analysis gave some insight into this phenomenon. We proved that
in Max-sum_MST, the target representing function-nodes sends consistent messages throughout the
algorithm run. This result explains the fast convergence of Max-sum_MST, in contrast to the behav-
ior of standard Max-sum when solving other benchmark problems. We proved that when considering
only location representing function-nodes, on tree-structured graphs and single-cycle graphs the al-
gorithm is guaranteed to converge to the optimal, collision-free solution. Moreover, adding a target
representing function-nodes to these graphs does not change the convergence properties. Moreover,
we prove that in every iteration of CAMS and for any graph structure, if the Max-sum algorithm
converges, it is to a collision-free solution. Our empirical results revealed that in all cases examined,
the algorithm indeed converges. In addition, it demonstrated that the desired properties of CAMS
are maintained when the problem scales and in the presence of dynamic events. Most importantly,
the advantage of Max-sum_MST over DSA_MST is maintained in the collision-avoiding versions
of these algorithms.
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Appendix A. Standard Deviation

Algorithms: MS-MST MS-MST
breakdowns CAMS

mean std mean std mean std

static
targets

random 261 99.69 340 84.85 275 93.14
empty 530 75.76 580 77.46 524 75.79

warehouse 831 59.15 832 57.76 824 58.17
game 877 57.02 882 41.42 872 45.78

dynamic
targets

random 389 91.76 668 107.03 398 92.07
empty 667 101.44 801 81.60 677 82.29

warehouse 893 53.02 901 33.75 898 39.45
game 928 34.87 953 34.22 955 28.90

Table 2: Comparison between the Max-Sum algorithms and CAMS. The table presents the mean
and the standard deviation of the remained coverage requirement following the last iteration.

Algorithms: DSA_MST DSA_MST
breakdowns CADSA DSSA CAMS

mean std mean std mean std mean std mean std

static
targets

random 290 75.13 372 74.49 296 82.15 305 57.33 262 73.63
empty 495 92.28 554 79.54 486 107.15 473 88.77 441 103.33

warehouse 809 50.97 838 30.54 806 56.78 808 47.95 805 63.73
game 903 45.83 906 55.16 906 50.11 908 44.15 893 48.84

dynamic
targets

random 414 88.00 654 106.90 460 82.06 412 86.17 395 127.32
empty 681 79.93 792 79.67 669 56.30 689 60.37 614 66.71

warehouse 929 25.66 919 48.34 905 38.80 902 32.98 883 60.69
game 934 34.08 936 46.62 940 42.94 939 36.07 929 39.11

Table 3: Comparison between the local search algorithms and CAMS. The table presents the mean
and the standard deviation of the remained coverage requirement following the last iteration.
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