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Abstract

Artificial intelligence (AI) and especially reinforcement learning (RL) have the potential
to enable agents to learn and perform tasks autonomously with superhuman performance.
However, we consider RL as fundamentally a Human-in-the-Loop (HITL) paradigm, even
when an agent eventually performs its task autonomously.

In cases where the reward function is challenging or impossible to define, HITL ap-
proaches are considered particularly advantageous.

The application of Reinforcement Learning from Human Feedback (RLHF) in systems
such as ChatGPT demonstrates the effectiveness of optimizing for user experience and
integrating their feedback into the training loop. In HITL RL, human input is integrated
during the agent’s learning process, allowing iterative updates and fine-tuning based on
human feedback, thus enhancing the agent’s performance. Since the human is an essential
part of this process, we argue that human-centric approaches are the key to successful RL,
a fact that has not been adequately considered in the existing literature. This paper aims
to inform readers about current explainability methods in HITL RL. It also shows how the
application of explainable AI (xAI) and specific improvements to existing explainability
approaches can enable a better human-agent interaction in HITL RL for all types of users,
whether for lay people, domain experts, or machine learning specialists.

Accounting for the workflow in HITL RL and based on software and machine learn-
ing methodologies, this article identifies four phases for human involvement for creating
HITL RL systems: (1) Agent Development, (2) Agent Learning, (3) Agent Evaluation, and
(4) Agent Deployment. We highlight human involvement, explanation requirements, new
challenges, and goals for each phase.

We furthermore identify low-risk, high-return opportunities for explainability research
in HITL RL and present long-term research goals to advance the field. Finally, we propose
a vision of human-robot collaboration that allows both parties to reach their full potential
and cooperate effectively.

1. Introduction

Reinforcement learning (Sutton & Barto, 2018) (RL) is a general framework in which an
agent can autonomously learn to take actions to best maximize the discounted sum of future
rewards, allowing agents to learn to outperform humans, sometimes generating novel and
unanticipated strategies. RL agents have had many impressive successes in board games,
video games, robotics, natural language processing, and other applications (Li, 2017). RL
is also increasingly finding its way into the industry, with it being applied in some of the
largest companies in the world, such as in recommender systems in Netflix and Spotify
(Akanksha et al., 2021), for video optimization at Meta (Mao et al., 2020), or in robotic
automation at Covariant (Liu et al., 2022).

The development and impact of models like ChatGPT and the emergence of reinforce-
ment learning from human feedback (RLHF) exemplify the remarkable success achieved
by combining reinforcement learning with Human-in-the-Loop (HITL) approaches. These
models have demonstrated the ability to generate high-quality human-like responses and
have greatly benefited from human feedback during the training process. Using RLHF,
these models are able to learn from human guidance and iterate through multiple rounds of
improvement, resulting in impressive performance gains and enhanced capabilities in natu-
ral language understanding and generation tasks (Aiyappa et al., 2023). This combination
of reinforcement learning and Human-in-the-Loop interaction has proven to be a power-
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ful paradigm for training AI models that can surpass human-level performance in specific
domains while incorporating human values and expertise into the learning process (Choi
et al., 2023).

Although the strategies and approaches learned by AI and specifically RL systems are
effective in solving many specified problems, they often prove to be substantially different
from the causal approaches a human would take (Lake et al., 2017) and can lack robust-
ness and generalization (Holzinger & Müller, 2021). As model complexity increases, there
is an increased risk of model bias due to the inability to sanitize large amounts of train-
ing data, resulting in undesired model behaviour. Data drift further amplifies this issue,
decreasing the reproducibility of possibly important decisions (Baniecki et al., 2022). Espe-
cially in high-stakes situations where failures can cause direct harm to humans, the safety
and responsibility of AI systems are essential, not only due to regulatory but also ethical
concerns (Baniecki et al., 2022; Holzinger et al., 2020).

Explainability approaches play a major role in overcoming these problems by ensuring
the safety and responsibility of such systems and, consequently, generating acceptance for
its application in fields like medicine, finance, and defense (Baniecki et al., 2022; Heuillet
et al., 2021). In addition to this, explainability can also help with the practical deployment
process by allowing programmers to discover and fix bugs in the development process of
complex models, which can speed up implementation (Heuillet et al., 2021).

Learning from human feedback is one of the key techniques leading to the success of
ChatGPT as one of the first Large Language Models (LLM) to gain mass adoption. How-
ever, this process also resulted in data contamination, casting doubts about its robustness
in different domains (Aiyappa et al., 2023). We argue that explainability forms the basis
for further improvement of this interactive process, as the underlying algorithms and their
decisions must be understood by a variety of different audiences with different goals to allow
humans to understand and trust the behavior of the agent (Heuillet et al., 2021).

Even in cases with a low degree of human-agent interaction, such as abstract software
development or industrial applications, HITL can be beneficial. In these applications, hu-
mans can, for example, improve agent robustness by monitoring the agent’s performance
and fixing potential errors or biases in its decision-making process and by providing the
necessary input to adapt the agent’s behavior to accommodate changes in the environment
or new requirements (Hussein et al., 2017). A well-known example of incorporating human
feedback is ChatGPT, one of the most impactful RL applications of 2022. ChatGPT learns
a reward model from human feedback and then optimizes the policy against this reward
model, showing how incorporating human feedback can outperform traditional approaches
based on supervised learning alone (Stiennon et al., 2020).

We claim that the current framing of RL overlooks the significant human input and
biases encoded in the RL problems and argue that:

1. Reinforcement learning is fundamentally a Human-in-the-Loop paradigm.

2. Explainability is critical for the success of real-world RL applications.

Firstly, we argue that RL is fundamentally a HITL paradigm and identify four phases
where human involvement is critical to the goal of deploying and using RL agents: Agent
Development, Agent Learning, Agent Evaluation and Agent Deployment (see Subsection
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1.1). We emphasize that these phases are sequential but cyclical, meaning that individual
phases can be repeated throughout the overall deployment process.

Secondly, this article serves as a position paper. We argue that ignoring humans and
treating RL as a fundamentally autonomous learning paradigm is short-sighted — we high-
light where and how explainability can play a critical role in those four phases of human-
agent collaboration.

Thirdly, this article is a survey of explainability in RL. We teach readers about current
explainability methods in HITL RL, describe how they can enable a better human-agent
interaction in HITL RL applications, and present long-term research goals to advance the
field.

While we emphasize that we consider the HITL paradigm critical for ML as a whole, in
this paper, we focus on human-agent interaction in an RL setting. We argue that the HITL
paradigm is particularly applicable to RL because it allows for integrating human input and
oversight into the learning process, which helps to ensure controlled agent behavior (Lee
et al., 2021).

We want to clarify that HITL applications in RL also cover topics such as bias, fairness,
and personalization. As these issues are complex and require a more in-depth and specialized
analysis, we refer to the related work of others, such as the European Parliament (2020),
Mehrabi et al. (2021), and Arrieta et al. (2019). Our work focuses on explainable RL and
contributes to the field of HITL by shedding light on why explainable RL is important and
showing how we can ensure that these systems are transparent, trustworthy, and provide a
human-understandable decision-making processes.

1.1 Four Phases of HITL RL Deployment

The following steps contain the identified, distinct phases for RL deployment and how
humans are involved in each. Figure 1 gives an overview of the sequence of phases for agent
deployment. We argue that explainability is a critical and underdeveloped technology in
each of these four phases.

1. Initial Agent Development: An ML specialist lays the technical groundwork of the
planned RL model. The team defines the problem to be solved, defines the agent’s environ-
ment, and makes decisions about hyperparameters. Explainability helps to show how those
decisions influence the agent’s learning process.

2. Agent Learning: The model is trained in interactively, with the human expert pro-
viding feedback and guidance to the agent. The expert can also bias the learning process
or disallow certain actions to help the model learn faster. Explainability is used during
training to show the current policy and the impact of the human expert’s guidance on the
model.

3. Agent Evaluation: In the evaluation phase, the model is tested to see if it is ready for
deployment. Specifically, domain experts must decide if the model is ready for deployment,
if more training is needed, or if the problem definition needs to be changed in this phase.
Here, explainability can help with an in-depth inspection of learned policies and emerging
behavior.

4. Agent Deployment: The agent is deployed in a working environment and needs
explainability to be safe, understandable, and reliable. It also has to provide fluent inter-
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actions to be trustworthy and effective at its intended task. In this phase, the developers
determine if the agent should continue learning, have a fixed policy, or retrain if there is
a change in the environment. The customer and the end-user decide where and how the
agent should be used in the real world. Explainability can help users understand the final
policy, improve trust, evaluate safety, and understand the stability of the policy.

Agent 
Development

Agent 
Learning

Agent 
Evaluation

Agent 
Deployment

Initial 
Formulation

Figure 1: Overview of the sequence of the four phases for deployment. The ideal path
from the initial formulation is shown with the bold arrows and goes over initial agent
development, agent learning, and agent evaluation to agent deployment. The dotted arrows
show the possible paths for revising different aspects of the agent and are centered around
the agent evaluation phase for assessing the model flaws.

We base these phases on software and ML models and adapt them to the nature of a
HITL RL workflow. The general life cycle model for software development (Ragunath et al.,
2010) includes the phases of requirements, design, implementation, and testing. Similarly,
Nascimento et al. (2019) use four stages of development, i.e., understanding the problem,
data handling, model building, and model monitoring. Since our focus is on the deploy-
ment of models rather than the design aspect, we omit the requirements and data handling
stages, which leaves us with three phases: implementation or model building, testing, and
monitoring. We add a training or learning stage between the implementation and testing
stage to represent the ML nature of HITL RL applications based on the phases proposed
by Amershi et al. (2019) for an ML workflow (feature engineering, model training, model
evaluation, model deployment, and model monitoring). We merge the deployment and
monitoring phases into a single deployment phase to simplify the model and reflect the sim-
ilarities between both stages. This results in the proposed four steps of agent development,
agent learning, agent evaluation, and deployment. We also allow reiterations of the agent
development phase, as proposed by Amershi et al. (2019), to reflect the cyclic nature of the
workflow.
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1.2 Overview and Goals

With this paper, we want to shift the discussion about RL to embrace human interaction and
cooperation. Furthermore, we provide an entry point into this exciting area of contemporary
research at the intersection of explainability in RL, with the goal of also giving non-experts
a starting point for HITL RL research. Throughout the paper, we focus on human-agent
interaction1 and, therefore, center our research on topics concerning embodied intelligence
(i.e. physical entities such as robots controlled by AI systems). Where appropriate, we
also refer to and discuss topics about the superset of human-agent interaction, including
software-only applications. We recognize that the field of HITL RL is very young and, in
some sense, has significant room to improve. We highlight that not all techniques we list in
this paper are ready to use in production but rather aim to steer the discussion and research
on approaches we deem most promising.

The paper is structured as follows. After the introduction and motivation, Section 2 is an
overview of background work for explainability and interactive learning. In the background,
we review the fundamental and current challenges for embodied intelligence. After the
background, we explore the four phases for the deployment of HITL RL systems and analyze
where to apply explainability in HITL RL:

1. Agent Development (Section 3)

2. Agent Learning (Section 4)

3. Agent Evaluation (Section 5)

4. Agent Deployment (Section 6)

Each of the phases has specific requirements for the success of human participation.
Furthermore, we explore different approaches and discuss challenges and possible directions
for further research. In order to better illustrate the recommendations we have for these
four phases, we added the use-case of robot operation in forestry, which we will discuss
throughout the paper.

We choose forestry as our use-case example because of the various possibilities for ap-
plying HITL this field provides. Forests are furthermore of great economic value not only
because they provide renewable raw materials but also for their contribution to CO2 se-
questration and, with that, the fight against climate change. The use of robots in forestry,
therefore, has enormous economic significance (Holzinger et al., 2022b; Holzinger et al.,
2022d). Consequently, robot operation in forestry is a use-case that receives more and
more attention from the research community (Mikhaylov & Lositskii, 2018; Mowshowitz
et al., 2018; Zhang et al., 2019a) and lends itself to the application of RL, as it involves
making decisions over time in uncertain and dynamic environments. RL is well-suited to
these types of problems because agents can learn from experience and adapt to changing
conditions. Successful autonomous navigation in a forest then lays the groundwork for more
demanding tasks such as weeding, species identification, and other forest management ap-
plications. While robot operation has been thoroughly explored in simulations, it has seen
few real-world applications due to robustness and security issues (Surmann et al., 2020).

1. In the case of embodied intelligence approaches, we refer to this also as human-robot interaction.
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!

1.

2.

3.

Figure 2: Use-case of robot operations in the forest with navigation to a given target. We
highlight three important challenges for a successful application: (1) completing a primary
task such as identifying tree species, (2) overcoming difficult terrain or replanning the route,
(3) interacting with the operator or bystander.

This use-case can therefore strongly profit from robustness and explainability benefits of
HITL approaches.

In Figure 2, we highlight three important challenges in robot operation in forestry: (1)
completing a primary task such as identifying tree species; (2) overcoming difficult terrain;
and (3) interacting with the operator or bystander while navigating to a designated target.
In the beginning of each phase, we list how these challenges apply to this phase. In the
discussion section of each phase, we propose specific methods suited for this phase and
how they could be used to overcome the discussed challenges and enhance the agent’s
performance, robustness, and trustworthiness.

Section 7 discusses the general challenges observed and how future solutions can be
shaped to overcome them. Finally, Section 8 outlines the general problems and goals of the
field and proposes future work.
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Phase
Human

Involvement
Explanation

Requirements
Explainability Goals Metrics

D
e
v
e
lo
p
m

e
n
t

•Define problem
•Construct state
space, action space,
and reward function
Design model

•Comparable
to other model
versions
•Fast and simple
explanations for
shallow inspec-
tion
•Complex and ex-
haustive explana-
tions for deep in-
spection

Focus:
Interpretable models
such as decision trees,
causal models,
compositional language
Explanations:
Counterfactuals, policy
querying, decision rules
Users:
RL experts

•Create thorough and
comparable model sum-
maries
•Use compositional, rep-
resentational language
•Further integrate causal
learning into HITL ap-
proaches

Fidelity
•Correctness
(correlation between out-
put on controlled synthetic
data or single feature dele-
tion)
•Explainable Model
Discrepancy
(error between model pre-
dictions)

A
g
e
n
t
L
e
a
rn

in
g

•Give evaluative
feedback
•Deliver action-
advice
•Select action pref-
erences
•Provide demon-
strations

•Understandable
by domain ex-
perts
•Fluent interac-
tions

Focus:
HITL approaches such
as human preferences
querying,
uncertainty highlighting
Explanations:
Counterfactuals, textual
explanation in user lan-
guage,
saliency maps
Users:
Domain experts,
RL experts

•Make use of imitation
learning and preference-
based learning as comple-
mentary approaches
•Adapt xAI approaches
to HITL context
•Apply Human-as-
Teacher approach
•Find hybrid methods of
different kinds for human
interaction

Fidelity
Relevancy
•Human Feedback
(evaluate survey with
users on relevance to task)
Performance
•Time to Explanation
(in milliseconds)

E
v
a
lu

a
ti
o
n

•Understand and
evaluate learned
policies on micro
and macro-level
•Test model bound-
aries and safety
•Decide whether
model is ready for
deployment

•Summarise
learned behavior
•Scalable to large
models
•Comparable to
untrained models
•Understandable
by domain ex-
perts

Focus:
Safety evaluation by
modeling uncertainty,
using shield-based de-
fenses
Explanations:
Policy summarization
with natural language,
rules or code, graph-
based explanations
Users:
Domain Experts,
RL Experts

•Ensure understandabil-
ity for domain expert
•Enable thorough and
comparable explanations
that scale with model size
and complexity
•Further develop dash-
boards for policy inspec-
tion from different view-
points

Fidelity
Relevancy
Cognitive Load
•Compactness
(absolute size of explana-
tion in number of features,
path length, percent reduc-
tion to complete data)
•Redundancy
(overlap between parts of
explanations)

D
e
p
lo
y
m

e
n
t

•Deploy agent
•Interact with
agents
•Define agents’
real-world appli-
cation goal and
context

•Fast, clear, and
concise to reduce
cognitive load
•Understandable
by end-users
•Non-intrusive to
prevent detrimen-
tal effects on user
performance

Focus:
Building User Trust
with intent and uncer-
tainty communication,
allowing error correc-
tions
Explanations:
Saliency maps, dendro-
grams, bounding-boxes,
textual explanations, vi-
sual and auditory indi-
cators
Users:
End-users

•Develop and apply new
approaches beyond image
and driving-based expla-
nations
•Use simple and fast ex-
planations
•Implement cohesive er-
ror and uncertainty han-
dling
•Communicate agent in-
tent via different modal-
ities

Fidelity
Relevancy
Cognitive Load
Performance

Table 1: Overview of the different explanations contexts in the four different phases. Ex-
planation Requirements enumerates desirable properties of explanations at this phase, and
Human Involvement describes how the human is involved in it. The Explainability column
lists (1) example techniques currently used, (2) directionality of explanations, i.e., agent-
to-human, human-to-agent, or both, and (3) the types of users interacting with the agent
at this phase. The Goals column describes targets that help achieve a comprehensive HITL
RL experience, while the Metrics column lists metrics as per Milani et al. (2022) we rec-
ommend focusing on in each phase and how to quantify them with approaches listed by
Nauta et al. (2022). See Section 3 for agent development, 4 for agent learning, 5 for agent
evaluation, and 6 for agent deployment.
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Table 2: Comparing strengths and weaknesses of major xAI approaches with an example
in the forestry robot use-case.

xAI Tech-
nique

Example Strengths Weaknesses

Counter-
factuals

If the robot encounters obstacles, a
counterfactual explanation could be pro-
vided to show how the robot could
change its positioning or path to avoid
the obstacle.

•Provide direct insights into
how changing inputs affects
model outputs, facilitating
quick feedback from humans
(Karalus & Lindner, 2021).

•Lower coverage for complex models
and high-dimensional data, requiring
multiple queries to better understand
the overall model behavior (Keane et al.,
2021).

•Easy to understand as hu-
mans may prefer contrastive
explanations (Miller, 2019a).

Policy
Querying

User can query the policy of the naviga-
tion system to understand why the robot
chose a specific path to reach a partic-
ular forest location, considering factors
like terrain conditions and efficiency.

•Allows users to interac-
tively explore the model’s
decision-making process.

•Challenging to implement, since the
model architecture needs to support the
extraction and inspection of human-
readable policies (Hayes & Shah, 2017).

•Can be combined with
counterfactuals (Madumal
et al., 2020a).

•May not provide a comprehensive
understanding of the entire model’s
behavior.

Policy
Summa-
rization

Provide a summarized explanation to
the operator, explaining its overall
strategy for reaching the target lo-
cation while avoiding obstacles, en-
suring safety, and optimizing energy
consumption.

•Provides an overview of
model behavior and the over-
all set of actions the agent
makes.

•Can oversimplify behavior, leading to
an unfaithful representation of the real
policy.

•Facilitates the identifica-
tion of potential biases or
unintended behavior.

•Does not explain individual actions
and why they were taken (Wells & Bed-
narz, 2021b).

Decision
Rules

When the robot needs to replan its
route, decision rules can explain the cri-
teria (such as path length, time to tar-
get and energy expenditure) and corre-
sponding thresholds used to decide the
next action.

•Easy to interpret and
understand.

•May not capture complex interactions
and dependencies present in the data,
especially for more complex models.

•Can be used to build sim-
ple, transparent models that
mimic the original black-box
model.

•These substitute models have limited
expressiveness compared to more com-
plex models like neural networks (Liu et
al., 2018).

Textual
Expla-
nations
in User
Language

Generate natural language explanations
to interact with the operator or by-
standers, providing context on its ac-
tions, intentions, and safety precautions
during navigation.

•Provides explanations in
a natural language format,
making them easily under-
standable to non-experts
(Xu et al., 2023).

•Generating high-quality textual expla-
nations may require advanced language
models (Xu et al., 2023).

•Enables communication
of complex model behavior
without requiring technical
expertise (Ben-Younes et al.,
2022).

•May require combination with other
approaches (such as regional highlight-
ing) to increase understandability (Xu
et al., 2023).

Saliency
Maps

Highlight areas in the robot’s visual per-
ception where important obstacles or
tree species are detected.

•Identify important input
features that influence model
predictions.

•May not capture global interactions
and complex relationships between
features.

•Relatively fast and compu-
tationally efficient for fea-
ture attribution.

•Can be misleading and create false
trust in a model (Evans et al., 2022;
Glanois et al., 2021).

Graph-
Based
Expla-
nations

Illustrate the relationships between dif-
ferent navigation paths and the corre-
sponding terrain conditions, helping the
operator visualize the decision-making
process.

•Represent complex rela-
tionships and dependencies
between features and
predictions.

•Construction and visualization of com-
plex graphs can be challenging and
time-consuming, growing worse with
scale (Wells & Bednarz, 2021b).

•Provide a holistic view of
the model’s decision-making
process.

•Interpretation of graph structures can
be subjective and context-dependent.
Better suited for subject-matter experts
than end-users (Song et al., 2019).

Continued on next page
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Dendro-
grams

Group similar tree species based on their
characteristics, helping the robot in the
efficient identification process.

•Represent hierarchical
relationships between data
points or clusters.

•Interpretation and understanding re-
quires domain knowledge and should
best be combined with other approaches
like textual explanations (Serradilla et
al., 2020).

•Enable the visualization of
data clusters and their rela-
tionships in a compact man-
ner.

•Can be sensitive to data preprocess-
ing, chosen number of clusters, distance
function etc., and may produce very dif-
ferent dendrograms for small changes
(Kulkarni & Gkountouna, 2021).

Bounding-
Boxes

Highlight the regions of interest and
identified objects, ensuring safe interac-
tion and communication.

•Localize important regions
within images, providing
more granular explanations
(Kashyap et al., 2020).

•Selection of bounding-box size and lo-
cation can influence the interpretation.

•Useful for object detec-
tion and localization tasks in
computer vision due to fast
computation and being easy
to understand (Behl et al.,
2017).

•Best applicable to image data and may
not generalize well to other data types.

Visual and
Auditory
Indicators

Use visual indicators and auditory sig-
nals to alert bystanders or the opera-
tor of its presence and actions, ensur-
ing safety during navigation and inter-
actions in the forest environment.

•Enable low-level, real-time
feedback and interaction
with the model in multi-
modal environments.

•Designing effective and informative in-
dicators may require domain expertise
(Jain et al., 2021).

•Improve user engagement
and understanding by in-
corporating multiple sensory
inputs.

•Potential risk of information overload,
leading to decreased interpretability.

•Very helpful for commu-
nicating an agent’s intent
(Dragan, 2015).

•Should be combined with other ap-
proaches (textual or visual explana-
tions) to communicate complex intents
(Ben-Younes et al., 2022).

Table 1 gives the reader a comprehensive overview of the main insights of our paper.
It highlights the requirements, challenges, and human context for the four phases discussed
extensively in the following pages. The row corresponding to the agent deployment phase
is also shown in each section to facilitate reading. Table 2 expands on this by providing
examples for each of the explainability approaches mentioned in Table 1 aimed at the
forestry robot use-case. The table furthermore provides a concise overview of their respective
strengths and weaknesses, offering insights into their applicability, possible synergies with
other xAI techniques, and the potential use in HITL RL.

In this paper, we argue that RL greatly benefits from being thought of as a human-
centered process and that explainability is required to enable this HITL RL approach.
We highlight how current xAI methods can be used to facilitate such HITL approaches
and identify research gaps for further explainability research, ultimately enabling a more
productive interaction of humans and RL agents.

2. Background

In this section, we establish the technical background for our discussion of the four phases
of the deployment of HITL RL agents. We detail how to provide insight into ML models
with the help of explainability approaches. We then explain how interactive learning allows
integrating the HITL into RL. Finally, we summarize current challenges for reinforcement
learning in general and, more specifically, in the HITL context.
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2.1 Explainability

Explainable artificial intelligence (xAI) is a framework for helping human users understand
the process and output of machine learning models. As ML models are deployed in a
growing number of applications that affect human life (e.g., agriculture, health, smart home
scenarios, etc.), the need for such xAI frameworks is ever more apparent. Moreover, xAI
approaches are essential for many human-AI collaboration scenarios, where understanding
and trusting model outputs are prerequisites for their use (Holzinger, 2021).

Explainability has grown from the 1980s and 1990s with researchers aiming to extract
rules from knowledge or rule-based systems and neural networks (Buchanan & Shortliffe,
1984; Chandrasekaran et al., 1989; Tickle et al., 1998) towards a dedicated and expanding
research community, as seen in the example of the DARPA initiative (Gunning & Aha,
2019). xAI efforts have since led to several successful xAI methods (Holzinger et al., 2022c;
Zhou et al., 2021). However, we acknowledge that the terms “explainability” and “in-
terpretability” are not used consistently and sometimes interchangeably in the literature
(Miller, 2019a). Therefore, we choose to follow the recommendations of Holzinger et al.
(2022c), which define explainability as the collection of methods highlighting the decision-
relevant components of machine representations and machine models. Interpretability, on
the other hand, is defined by Doran et al. (2017) as a system in which the user not only sees
but also understands how inputs are mathematically mapped to outputs. This definition of
interpretability implies model transparency and requires an understanding of the technical
details of mapping but, as opposed to explainability, does not consider decision-relevant
aspects and external factors. This understanding also aligns with the notion of Glanois
et al. (2021), which defines interpretability as the methods that passively make the model
understandable, whereas explainability actively generates explanations for a model. There-
fore, we differentiate interpretability as methods that enable a mechanistic understanding of
the model, whereas explainability also encompasses active explanations of decision-relevant
factors.

The following examples show how xAI frameworks and human users can interact:

1. Explaining the role of a data source in the final decision, for example, to identify
which data samples were used for a specific action or decision. This is, for example,
important for assigning credit to (and potentially compensating) the individuals who
produced the data (Zanzotto, 2019).

2. Building trust in human users is especially important when safety is a concern. In
AI applications in medicine, the human user needs a reliable explanation for the deci-
sion made by the AI agent. Therefore, transparency and accountability are essential
(Schneeberger et al., 2020; Stoeger et al., 2021).

3. Enabling humans to provide richer feedback through additional counterfactual exam-
ples (Del Ser et al., 2024). AI agents can use feedback in the form of explanations
provided by humans, leading to more accurate, robust, and transparent models (Kar-
alus & Lindner, 2021; Puiutta & Veith, 2020).

These examples show the various applications of xAI frameworks. Especially in the
context of human-machine cooperation, the cognitive ability of the human operator paired
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with the computational power of a machine has the potential to handle complex tasks
(Buchelt et al., 2024; Liang et al., 2017). Here, it is essential for the machine, as well as the
human operator, to be able to react to the environment and for the operator to understand
and interpret the actions of the machine correctly. Therefore, the underlying algorithm
and its decisions must be understandable to different audiences with various goals (Heuillet
et al., 2021), which shows the importance of explainability in the context of human-machine
cooperation.

We use the categorization presented by Glanois et al. (2021) to classify the interpretabil-
ity approaches surveyed. We extend their classification to also include explainability ap-
proaches, which results in the following three categories:

1. interpretable/explainable inputs of RL models

2. interpretable/explainable transition and reward models for RL

3. interpretable/explainable decision-making processes of RL

The first category focuses on the input to the RL model used to make decisions. It
includes not only the agent’s state but also other structural information, such as the problem
descriptions from human experts (Hasanbeig et al., 2021) and the relational (Battaglia et
al., 2018; Mart́ınez et al., 2017) or hierarchical structure (Andreas et al., 2017; Lyu et al.,
2019) of the problem. This context information helps to better understand the decisions
made by RL models.

An important building block for explaining model inputs is visualizing them as per-
ceived by the model. This visualization is often combined with showing the relevance and
importance of a given decision, which helps to evaluate whether the model is focusing on
the right aspects of the input, but can also mislead the user if used incorrectly. See Evans
et al. (2022) for a further discussion of this set of problems. Saliency maps are one of
the most common examples for visualization approaches and work by highlighting impor-
tant image regions. Liu et al. (2018) show an example where continuous “super-pixels”
with large feature influence are highlighted. Bach et al. (2015) developed the technique
of “Layer-Wise Relevance Propagation” to iteratively change the model input to find the
relative importance of individual (image) parts or features.

The second category of explainable transition and reward models leverages understand-
able models of the task or environment, e.g., a transition model (Mart́ınez et al., 2016; Zhu
et al., 2020) or a preference model (Icarte et al., 2018; Icarte et al., 2019). Such models
help explain both the RL agent’s reasoning about its decision-making and humans’ under-
standing of the decision-making process.

The third category is interpretable/explainable decision-making of RL agents. It con-
sists of approaches to represent decision policies in an intuitively understandable manner.
Some approaches learn such interpretable policies in the form of decision trees (Likmeta
et al., 2020; Silva et al., 2020; Topin et al., 2021), formulas (Hein et al., 2018, 2019), fuzzy
rules (Akrour et al., 2019; Hein et al., 2017; Zhang et al., 2021), logic rules (Jiang & Luo,
2019), or programs (Sun et al., 2019; Verma et al., 2019).

Generally, it is challenging to reliably assess the quality and efficacy of xAI solutions, as
user cost (that is, cognitive load and other user requirements) is often difficult to objectively
measure (Bruneau et al., 2002). To better assess user cost, Milani et al. (2022) name four
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key metrics for evaluating xAI solutions, which we will also use for evaluating different
classes of xAI solutions: Fidelity, the truthfulness of the explanation with respect to the
model itself; Performance, the default metric used to evaluate the success of the AI solution
to be explained; Relevancy, the relevance of the explanations provided to the task at hand;
and Cognitive load, the mental effort required to understand the explanations provided. In
the following paragraphs, we present different approaches to how the metrics of Milani et al.
(2022) could be quantified. A related paper is presented by Nauta et al. (2022), where the
authors conduct an exhaustive survey of quantitative measurements for different properties
of xAI approaches.

Model fidelity can be measured with correctness as a key element to ensure that the
model performs correctly and produces accurate outputs (Nauta et al., 2022). Correctness
can be quantified by generating synthetic data and then testing the model on data known to
be correct to determine how well the model is able to replicate the correct output. Another
way to measure fidelity is to test the model’s performance on data with single deletions of
features, which allows determining the correlation between change in output and importance
score of the feature. For explainable models, one can also compare the decisions made by
the model and the explanation, and quantify correctness with error measurements such as
the mean squared error (MSE) between the model’s predictions and the explanation. A
lower MSE indicates that the model and explanation are in closer agreement (Nauta et al.,
2022). Intuitively, the computational performance of explanations can be quantified by
measuring (in milliseconds or seconds, if appropriate) how quickly an explanation can be
generated.

Both the relevancy metric and cognitive load are difficult to quantify, as they are highly
dependent on the user’s expertise and other environmental factors (Milani et al., 2022). We,
therefore, propose to rely on the qualitative measurement of relevancy by evaluating human
feedback for the given explanations as the most promising and comprehensive approach to
determine whether the explanation is relevant to the human.

The cognitive load can also be evaluated by measuring the compactness of the explana-
tion as surveyed by Nauta et al. (2022). A compact explanation is one that is small in size
(i.e., bytes of information) or sparse, meaning it contains only the most important informa-
tion. Compactness can be measured in different ways depending on the underlying model
and modality, for example, with the number of features in the explanation, the path length
in a decision tree, or the reduction in size compared to the complete data. Furthermore, the
redundancy of explanations can be computed to evaluate and minimize the overlap between
parts of the explanation.

In addition to quantifying explanations with these metrics, they can be classified as
unidirectional or bidirectional. In the unidirectional case, the system simply provides an
explanation to the user. In the bidirectional case, the user can give feedback or additional
questions to the system, which can improve model accuracy and allow the system to generate
updated explanations (Smith-Renner et al., 2020). Although this provides a more in-depth
and interactive explanation process, the interactive approach is still in its infancy, with
challenges in technical implementation and application scale that still need to be overcome
(Smith-Renner et al., 2020; Sreedharan et al., 2022). Since we speak from the perspective
of a position paper, we recommend using a bidirectional explanation in the stages from
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agent learning onward. However, implementing bidirectional explanations will not always
be possible or viable due to the added technical complexity.

After the high-level categorization of explainability by Glanois et al. (2021), we focus in
the two following paragraphs on approaches that explain model decisions as parameterized
by their learned policies. As the policies determine the decision-making of a model, they
belong to the “explainable decision-making” category of the categorization by Glanois et al.
(2021). In policy summarization, the general aim is to make the underlying model and its
policy tangible. This can be achieved by codifying its decision process as rules, as seen in
the linear model U-trees by Liu et al. (2018) or by representing the learned model with
generated code blocks (Verma et al., 2018).

The second approach to explain model decisions by learned policies is policy querying.
In policy querying, the decision process that leads to a given result is explained. This can
be general (“when do you do X”) or specific to a given action. An example of a specific
explanation is a natural language explanation for a classification in the ML space (Alonso
et al., 2018) or the generation of a summary of “when do you do X?” type questions in
natural language to explain the actions of an agent (Hayes & Shah, 2017).

As in the last subsection of explainability approaches, causal models provide a fun-
damentally different approach to explainability. Methods available within this framework
generally fall into the categories of explainable transition and reward models and decision-
making — both provide causal explanations for the task, environment, or the policies them-
selves.

One causal approach is graph neural networks (GNN) (Vu & Thai, 2020), which can
generate explanations for a prediction via a probabilistic graphical model (PGM) that iden-
tifies crucial graph elements (e.g., nodes and edges) causally responsible for that prediction.
Along similar lines, Madumal et al. (2020b) encode causal models using action influence
graphs to generate explanations using causal chains. Adding these causal explanations
yields better explanations as well as improved prediction performance compared with base-
line explanation models.

Causal imitation learning, on the other hand, allows one to learn a structural causal
model (SCM) (Pearl et al., 2000) from policies performed by humans. This is the case even
if the actual reward is not specified and the environment is not perceived as the same by the
learner and the human expert demonstrator. Dynamic SCMs are incorporated to formalize
the partially observable Markov decision process (POMDP) (Sutton & Barto, 2018) as per-
ceived by the agent and to take into account human intervention and its implications. The
so-called counterfactual agent does not blindly take the human’s advice and execute it, but
rather compares it with other possible actions and decides correspondingly. In cases where
the reward and transition functions are the same, human feedback is beneficial, even if the
instructions are suboptimal. Counterfactual explanations are an especially powerful expla-
nation approach since they leverage the fact that humans prefer contrastive explanations
(see Miller (2019a) for a more detailed discussion).

2.2 Interactive Learning in Reinforcement Learning

A fundamental way of learning in nature is parents interactively teaching their offspring.
Similar learning dynamics exist between a teacher and a student, where the teacher tries
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to guide the student with their experience and knowledge. Following the same rationale,
interactive learning (Arzate Cruz & Igarashi, 2020a) in RL aims to include the human as
teacher to guide the RL agent by using domain knowledge and rich human experience.
Even without HITL, RL has been successfully applied to solve various real-world problems,
ranging from drug discovery (Popova et al., 2018), navigating high-pressure balloons in the
stratosphere (Bellemare et al., 2020) to robot manipulation tasks (Nguyen & La, 2019).

Although these are exciting research directions, recent deep RL systems still face many
challenges, including sample inefficiency, sim-to-real transfer issues, generalization, explo-
ration exploitation trade-off, etc., to name a few (see Subsection 2.3 for further discussion)
(Ibarz et al., 2021). In response to these challenges, interactive RL aims to overcome them
by involving a human prior to training (Guo et al., 2022), during training (Knox & Stone,
2008), or in the deployment phase of the RL system (Guo et al., 2021). Interactions could
either be teacher-initiated (Torrey & Taylor, 2013), student-initiated (Da Silva et al., 2020;
Mandel et al., 2017), or jointly initiated by both parties (Amir et al., 2016).

In interactive learning, the human is often characterized as a teacher, and the teaching
loop can contain different types of critique, advice modalities, and guidance that can be
fed back to the RL algorithm. There can be different modalities of human advice, such as
binary evaluative feedback [+1/-1] (Knox & Stone, 2008), action-advice (Torrey & Taylor,
2013), preference-based feedback (Christiano et al., 2017; Lee et al., 2021), and sub-goal
specification (Le et al., 2018). A comprehensive survey of various types of human guidance
in Deep RL can be found in Zhang et al. (2019b). Thomaz and Breazeal (2006) proposed
one of the earliest works on Interactive RL, which allowed human trainers to give binary
feedback for the agent’s behavior and specific objects associated with the task.

A common approach to modifying the reward function is called reward shaping. In
reward shaping, the teacher provides useful information to shape the reward function to en-
courage favourable parts of the state space and penalize unfavourable parts (Ng et al., 1999).
Reward shaping is useful in sparse reward environments and facilitates reward specification
in complex domains. TAMER (Knox & Stone, 2008; Knox et al., 2013) is a well-known re-
ward shaping framework where a human expert provides evaluative reinforcement (positive
or negative feedback) signal by observing an agent in action, and the agent maximizes the
human’s feedback with classification. Subsequent variants of this method (Knox & Stone,
2010, 2012) optimized the human reinforcement with the environment reward function to
learn a reward model.

Methods that consider modifying the agent’s policy are called policy shaping (Ceder-
borg et al., 2015; Griffith et al., 2013; Wu et al., 2021a). These methods augment an agent’s
policy directly using human knowledge. This technique does not require a well-formulated
reward function but assumes that the trainer knows a near-optimal policy to guide the
agent. Human advice can also be useful in guiding the agent in its exploration phase so
that the agent can identify highly rewarding states or trajectories in fewer environmen-
tal interactions (Amir et al., 2016). Action pruning is another way HITL RL can guide
exploration and improve learning (Abel et al., 2017).

Lastly, human-advice-based value functions can be combined with agent value functions
to effectively guide the agent (Jiang et al., 2021; Kartoun et al., 2010; Taylor et al., 2011;
Wu et al., 2021a). Demonstrations from humans can also increase the value function by
biasing it according to the actions taken by the expert (Hester et al., 2018; Nair et al., 2018;
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Vecerik et al., 2017). These approaches have been particularly successful in complex robotic
tasks such as pushing, sliding, etc., which humans can easily demonstrate. Demonstrations,
by default, may contain human biases that can, in turn, be removed by experts (Wang
et al., 2022).

The first indicator of the need for human intervention is poor model performance, since
a bad model is more likely to produce suboptimal policies. However, good models can also
lead to suboptimal policies in deployment scenarios due to the sim-to-real gap (the task of
translating behavior learned in a simulation to reality (Zagal et al., 2004)). In many cases,
human intervention is simulated from pseudo-agents in development. This approach can
help to evaluate the potential benefits and imperfections of the model before deployment.
The designer of the interactive framework must also consider that human interventions
might not always be perfect or beneficial; the user might need special training and an
informative user interface (UI) to effectively improve the RL algorithm.

In turn, the type of UI (hardware-driven or natural interaction) determines the de-
gree of expertise required and can affect the quality of the feedback (Lin et al., 2020).
Keyboard keys, mouse clicks with sliders, and game controllers are examples of UIs in
hardware-delivered interactions, and experts or knowledgeable trainers generally use these
UIs. On the other hand, sound interfaces that use the techniques of audification and soni-
fication2 (Hermann et al., 2011; Kartoun et al., 2010; Saranti et al., 2009; Scurto et al.,
2021), cameras to capture facial expressions (Arakawa et al., 2018), etc. are examples of
UIs for natural interaction that non-expert users prefer.

2.3 Challenges for Reinforcement Learning and HITL Applications

To conclude the background section, we discuss the underlying challenges for reinforce-
ment learning in general and those more specific to HITL approaches to better understand
fundamental and current challenges in the field.

The first fundamental challenge in RL is the exploration/exploitation trade-off, which
is defined by the decision of when to continue exploiting a current option and when to
explore further for new options. The decision maker must balance between exploring a
set of unknown options to find the best one (exploration) and exploiting the best option
already discovered (exploitation). A more in-depth description of this problem can be found
in Audibert et al. (2009).

The second important challenge is the “sim-to-real gap,” which results from the fact
that simulations always under-model the target system (i.e. the real-world), which means
that various aspects of reality are missing. This presents agents with unforeseen challenges
and sometimes even prevents a policy learned in a simulation from being transferable to the
real world. However, real-world samples are very expensive regarding cost, complexity, and
time, making modeling much more appealing despite its challenges (Kober et al., 2013).

The third challenge concerns the difficulties in pixel-based learning. In real-world ap-
plications, vision is often the central modality for agents, which makes learning from images
and videos essential. Current solutions, however, often rely on weak assumptions and, con-
sequently, do not generalize well (Tomar et al., 2021). Refer to Ibarz et al. (2021) for a

2. Audification involves visualizing an existing sound, while sonification involves creating a sound to rep-
resent data or information.
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further discussion of the main challenges in RL as identified by them, namely sample effi-
ciency, sim-to-real-gap, exploration challenges, generalization challenges, goal and reward
shaping, and safety issues.

Following the general challenges for RL, Roy et al. (2021) provide a comprehensive
overview of challenges specific to reinforcement learning for embodied intelligence. We
highlight five particular constraints:

• Interaction with the real world involves safety risks for exploration and hard limits on
resources like energy.

• Poor alignment of learned models with the real world.

• Require stronger generalizations and adaptation than regular Deep Learning ap-
proaches since specifications, goals, and rewards might change.

• Observed data are drawn from a local distribution, but generalization requires the
agent to learn a reasonable world model beyond what is currently observed.

• Agent morphology defines what can be learned from the environment and has to be
considered when designing agents.

Finally, there are challenges specific to HITL approaches. The first challenge is to what
extent RL should imitate a good human player, and when and how RL can be used to
surpass the performance of the human (Abel et al., 2017). Additionally, surpassing human
performance often requires the HITL RL agent to discover new action sequences, which is
hindered by engineering overly specific and complex reward functions (Liu & Abbeel, 2020).
This challenge of striking a balance between human intervention and the agent’s ability of
exploration is another extension of the exploration-exploitation trade-off described above.

Glanois et al. (2021) discuss challenges with regard to explainability. Due to the close
connection between HITL and explainability, we also include challenges for explainability
in our discussion of HITL challenges. Glanois et al. (2021) state that explanations are not
reliable and do not make sense when the neural network is not yet fully trained. Therefore,
the network does not exhibit a cohesive behavior that could be explained. This can be due
to lack of training, poor overall performance, lack of generalization capability, misclassified
examples, and other underlying errors. Therefore, ML specialists will need to consider at
what point in development the application of different explanation methods is appropri-
ate and capable of providing insights into the model. Glanois et al. (2021) further name
as open challenges the problem complexes of scalability, performance, and achieving full
interpretability in general with RL xAI methods.

Another challenge in explainability is that most of the current xAI methods invented
for deep neural networks are not created with RL principles in mind. They are driven
by the mathematical principles of neural networks and typically developed with the intent
of uncovering a simpler, interpretable model or pinpointing the important elements of a
potential input. In the example of the convolutional neural network (CNN) that was used
to process the Atari images (Mnih et al., 2013), layer-wise relevance propagation (LRP)
could be used (Alber et al., 2019; Bach et al., 2015). However, this would only provide the
user with a heatmap about what is relevant for positive or negative prediction, meaning

375



Retzlaff et al.

that it would only characterize (in RL terms) one input state. Those heatmaps are not
juxtaposed or combined with the possible actions from that state or their expected reward
as a whole — the human would not know why the RL algorithm decided for the selected
next action. Reconstructing the complete strategy of a model, its rules, and the underlying
purposes of all (or at least the representative) state-action pairs out of those heatmaps
would be a very cumbersome task.

We argue that the challenges discussed show that a generalizable and performant RL
is a fundamentally challenging problem. We claim that many of these challenges can be
overcome with the application of HITL approaches, supported by Mathewson and Pilarski
(2022), who argue that human-centered interactive approaches are essential for designing
and deploying machine learning systems. While Mathewson and Pilarski (2022) take the
bird’s-eye perspective on machine learning systems and formulate a high-level guideline for
human-centered design of ML systems, we focus specifically on designing, evaluating and
deploying interactive HITL RL systems and associated short-term and long-term challenges.

As the second focus of our paper, we argue that xAI approaches are fundamental to
the success of HITL approaches, a notion supported by other researchers (Heuillet et al.,
2021; Milani et al., 2022). Therefore, in each of the four deployment phases we outlined
above, xAI is a central component. In the following sections, we aim to show where xAI
can be applied in the deployment of HITL RL agents, which solutions exist, and how they
might be adapted to allow for a productive HITL interaction. We furthermore discuss how
explainability can impact the safety considerations of RL applications in each phase and
how this can, in turn, help to build trust and accountability.

This section summarizes the background on explainability, interactive learning, and
challenges in HITL RL. In the next sections, we will dive into the four phases of deployment,
starting in Section 3, discussing how xAI techniques could be applied to the initial phase
of HITL RL development. In Section 4, we focus on the agent learning phase, followed by
the discussion of the subsequent evaluation and deployment of these systems in Sections 5
and 6, respectively.

3. Initial Agent Development

The first steps of the HITL RL model deployment entail underlying model development,
problem formulation, and pre-learning considerations. These steps make the model under-
standable to machine learning (ML) specialists who seek detailed insight into their model.
The development phase is characterized by the ML specialist laying the technical ground-
work. In this phase, the focus is on the RL model itself.

In all phases of RL agent development, we distinguish three user types: machine learning
specialist, domain expert, and end-user. The ML specialist, also called a developer, has
expertise in developing and interpreting ML solutions. The domain expert has experience
and authority in the field where the AI solution is applied but does not have a technical
background to fully understand the AI model. Finally, end-users represent customers who
buy and use a product available on the market. Although the end-user has a background
in the respective field, they do not have the expertise to decide whether a given policy is
correct and appropriate.
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The ML specialist defines the problem to be solved by the agent and selects the agent’s
environment accordingly. For that, they construct a Markov decision process (MDP), defin-
ing the state space, action space, and reward function. All three have a critical impact on
the speed of learning, the agent’s final performance, and what policy is learned. The ML
specialists also set the agent’s algorithm and hyperparameters and decide whether to in-
corporate prior knowledge by adding hand-crafted features or transferring knowledge from
an existing model. Another consideration is whether the agent should pre-train on existing
data.

In the initial agent development phase, explainability can help show the impact of
algorithm or hyperparameter selection, how prior knowledge biases the agent, and how
pretraining changes the agent’s learning process. Considering explainability in this stage
allows ML specialists to start in the right direction instead of being forced to make costly
(post hoc) changes later on in the learning lifecycle. Many decisions and considerations
made in this phase have broad implications for the overall life cycle of RL and are likely to
be difficult to change later on. Table 4 gives an overview of key aspects of the initial agent
development phase.

Phase
Human

Involvement
Explanation

Requirements
Explainability Goals Metrics

D
e
v
e
lo
p
m
e
n
t

•Define problem
•Construct state
space, action space,
and reward function
•Design model

•Comparable to other
model versions
•Fast and simple ex-
planations for shallow
inspection
•Complex and exhaus-
tive explanations for
deep inspection

Focus:
Interpretable models
such as decision trees,
causal models, compo-
sitional language
Explanations:
Counterfactuals, pol-
icy querying, decision
rules
Users:
RL experts

•Create thorough
and comparable
model summaries
•Use compositional,
representational lan-
guage
•Further integrate
causal learning into
HITL approaches

Fidelity
•Correctness
(correlation between output
on controlled synthetic data
or single feature deletion)
•Explainable Model
Discrepancy
(error between model predic-
tions)

Table 4: Overview of the types of human involvement, the specific requirements for expla-
nations, the focus, and types of explainability approaches for the initial agent development
phase. Furthermore, we list different goals in this phase as well as metrics and options for
their quantification.

We highlight the importance of making a model understandable for developers, even
if they implemented the model and have a basic understanding of how it works. First,
explainability can help researchers understand the underlying mechanisms of the model
and how it makes decisions, which can be useful for debugging the model and identifying
potential issues or improvements. Additionally, explainability can facilitate the development
of new models and methods. By understanding how a model works, researchers can better
iterate on it and create new models that improve or extend its capabilities.

In the agent development phase, working with an understandable model helps ensure
that the model is based on reasonable assumptions and is able to reach consistent con-
clusions. Numerous errors in training data, model initialization, and the initial learning
process can be monitored and limited in this phase. Designing the proper function and
architecture of the model in this phase also ensures a suitable baseline for comparison with
the trained model.

We regard the agent development phase as the only phase where interactivity is not
required. Bidirectional, interactive explanations are essential when involving experts and
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end-users in the development process, but at this initial stage of development, the low
overhead of simpler xAI methods is preferable.

For this phase, we primarily consider the exploration-exploitation trade-off and sim-to-
real gap as relevant challenges (see Subsection 2.3). These constrain the learning algorithm
and parameter selection and subsequently define which type of explanation is applicable to
the model.

In reference to our forest operation use-case, we highlight the risk of introducing un-
noticed, fundamental errors to the model in this phase. This could, for example, be an
incorrectly specified reward function, which has the potential to impede the agent’s ability
to perform basic navigation tasks. Since the reward function is the central building block
of an agent’s behavior, this can hamper the overall progress of the agent’s development. In
the discussion subsection of this phase (see 3.5), we discuss how explainability and HITL
approaches can be used to minimize those risks.

3.1 Requirements

We propose primary considerations for the development phase and identify two approaches
for an explainable development process. The first is a faster and more superficial evaluation
of the general model behavior, which allows for a high-level inspection of the model behavior.
The second is an in-depth assessment that provides a more detailed and complex view of
the model.

In the first case, explanations must be computed quickly to enable a feedback loop
during training. Xin et al. (2018) explore the implications of a faster feedback loop and
highlight aspects such as introspection, the ability to rapidly analyze and compare the
impact of changes to reuse intermediate results. They find that a faster feedback loop
also enables an easier end-to-end optimization by the ML specialist. With the metrics of
Milani et al. (2022), we therefore propose high demands for computational performance and
reduced cognitive load to enable more explanation breadth.

In the second case of an in-depth assessment, explanations require more time to com-
pute, understand, and interpret correctly. Therefore, the ML specialist can use these ex-
planations to analyze a small number of snapshots of the model in depth, allowing a better
understanding of the behavior of complex models. Both approaches should complement
each other, since a thorough assessment of the model behavior requires both depth and
breadth.

In the beginning of the initial agent development phase, the generated explanations
should furthermore be comparable to those of other model versions to track the progress of
development by contrasting different behaviors and their explanations. This is essential to
enable researchers to monitor how the model behavior evolves and assess if the development
progresses in the desired direction.

Complex and detailed explanations are best suited for ML specialists, as they require
detailed insights into the model and can afford the required cognitive load. In addition,
computational resources are the least constrained in this phase, and explanations do not yet
need to scale to large model sizes. In the metrics of Milani et al. (2022), these requirements
result in lower demands for computational performance and cognitive load but high fidelity.
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In the following section, we identify different approaches that can help during this
phase. First, pre-training can help with the groundwork of intelligent behavior and enable
sensible debugging. Second, interpretability approaches should be considered in this phase.
They allow for an inherent understandability, which can benefit all subsequent phases if
implemented here. Third, we argue which types of explainability approaches are suitable
for this phase.

3.2 Approach: Pre-Training

Pre-training models benefit the RL training workflow since they prepare the groundwork for
the Human-Robot interaction and benefit HITL in several ways. Pre-training models helps
to develop useful priors, diverse behaviors, generalized policies/feedback, and efficient initial
feedback from human input (Daniel et al., 2016; Eysenbach et al., 2018; Florensa et al.,
2017; Hazan et al., 2019; Lee et al., 2021). Recently, Parisi et al. (2022) demonstrated the
effectiveness of pretraining with out-of-domain computer vision data sets for downstream
robotics control tasks, which shows that pre-training can learn useful representations even
from out-of-domain datasets. Pre-training involves training a model on a large dataset in an
unsupervised manner to learn general language representations. These pre-trained models
can then be fine-tuned on specific tasks or domains with smaller datasets with transfer
learning (Taylor & Stone, 2009). The pre-trained model acts as a knowledge base, capturing
general language understanding, and the fine-tuning process adapts this knowledge to the
target task, making it more efficient and effective.

Preference-based learning is a HITL technique that strongly benefits from pre-training,
in which an embodied agent allows a human to decide which is the preferred option of
two or more possibilities of behavior (for example, two different movement policies). This
choice simplifies the difficult reward-selection process, i.e., sidesteps the need to define the
reward function explicitly. It is advantageous for this approach if the robot already exhibits
two “meaningful” movement policies rather than the normal frenetic behavior found in
newly instantiated models. Judging the policies of an already trained model is generally
easier because, after the initial noise of random initialization, it shows meaningful behavior
(Akrour et al., 2011). Lee et al. (2021) demonstrated the importance of unsupervised pre-
training using intrinsic reward to make the agent learn diverse skills, which further helps
generate informative queries for receiving human preference. Generally, approaches such as
transfer learning and lifelong learning for RL agents are promising, as they also alleviate
the problem of the noisy warm-up phase of RL (Taylor & Stone, 2009; Yang et al., 2021).

The application of pre-training in ChatGPT has demonstrated the effectiveness of lever-
aging large-scale datasets to initialize Large Language Models (LLMs), leading to a rea-
sonable parameter initialization and, with that, improved performance and more efficient
learning in downstream tasks (Zhou et al., 2023). This success showcases the paradigm shift
that pre-training can bring to RL, as it enables models to acquire useful knowledge from
vast amounts of unlabeled data, providing a strong foundation for subsequent fine-tuning
and learning from specific tasks.

Pre-training holds relevance not only during the development stage but also impacts
the other stages due to the superior downstream performance. During the learning stage,
pre-training helps initialize the RL agent, facilitating faster convergence and enabling better
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sample efficiency. In the evaluation stage, pre-training can help improve the model’s per-
formance and generalization capabilities on diverse tasks. Lastly, in the deployment stage,
pre-training ensures that the RL agent is well-equipped with foundational knowledge, en-
hancing its ability to adapt to real-world scenarios and perform effectively (Yang et al.,
2023).

3.3 Approach: Explainability

Explanations can provide various benefits for building RL models during the initial agent
development phase. Contextual information should be taken into account when defining
what constitutes a “good” explanation for an RL model. This can be background knowledge,
different levels of expertise, as well as the needs and expectations of the addressee of this
explanation. There are various types of explanations, like visual (Atrey et al., 2019; Gupta
et al., 2019), textual (Fukuchi et al., 2017b; Hayes & Shah, 2017), causal (Madumal et al.,
2020a, 2020b), or decision tree explanations (Bastani et al., 2018). The approach of Liu et al.
(2018) sets out the decision process as rules to make the influence and learning of the network
more transparent. Another approach is to represent the learned model with generated code
blocks, as presented by Verma et al. (2018). A policy network is codified by learning a neural
policy network and searching for the optimal policy, which results in human-readable policies
and improves generalization, but it also incurs a performance penalty during training. A
third approach is to represent network policies in natural language, such as Alonso et al.
(2018), who showed an example of justifying classifications with a textual explanation of
the choice made by a decision tree.

Furthermore, the subset of policy querying approaches that allow one to look at ques-
tions like “When do you do X?” can be used for this phase. Hayes and Shah (2017) provide
an example of such questions and generate a summary of a “When do you do X?” type
question in natural language to explain the actions of an agent. An important addition to
this approach is the use of counterfactuals (see Evans et al. (2022) for a more thorough
assessment of the importance of counterfactuals). Madumal et al. (2020b) generate a struc-
tural causal model for RL agents, which allows one to generate explanations of taken actions
(see Subsection 2.2). This approach also allows one to respond to counterfactual queries,
like: “why did you not do Y?”. Providing such counterfactuals is shown by the authors to
produce satisfactory explanations and increase user trust.

Finally, causal learning strategies can assist in understanding the underlying model
and move from just interpretability to full explainability. This shift is accomplished by not
only making the model understandable, but also by actively explaining decisions and their
context. An example of such xAI methods is probabilistic graphical models (PGM), which
help to construct causal models and are often applied to graph neural networks (GNN)
(Saranti et al., 2019). Graph neural networks are especially suitable for explainability
methods in the initial agent development phase, as they allow for an intuitive and more
direct visualization of critical components. Vu and Thai (2020), for example, support the
informed creation of a causal model by identifying essential graph components and then
generating PGMs that approximate that prediction. These essential components can help
to identify cause and effect in neural networks and determine cause-and-effect relations.
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3.4 Focus: Interpretability

A central approach to adding explainability in the HITL (in the broader sense) is to make
the model interpretable, i.e., to provide an inherently understandable AI solution. Inter-
pretable models, in combination with pre-trained or otherwise initialized systems, facilitate
the judgment of the model and its decision-making by the ML specialist.

Roy et al. (2021) enumerate several approaches that would translate to more inter-
pretable models. For example, embedding core knowledge into models (such as physical
constraints) could provide agents with innate reasoning capabilities. This ability to reason
can, in turn, allow checking and debugging the entire reasoning process (Ha & Schmid-
huber, 2018). As second aspect, Roy et al. (2021) highlight the use of compositional lan-
guage, which can facilitate a high-level understanding of the concepts the model learned.
Koditschek (2021) suggests that the use of model composition and, with it, compositional
language are key elements of embodied intelligence.

In addition to the approaches listed above, using a representative language could allow
abstractive reasoning with rigorous generalization (Roy et al., 2021). This can be achieved
by graph neural networks, natural language, or attention mechanisms in combination with
sys1/sys2 separation and further the inherent understandability of the learned model. The
advantage of a combination of innate reasoning with understandable language could allow
an intuitive understanding of the model. Intuitive understanding of model behavior can be
one building block for tackling the challenge of adversarial attacks, for example with image
recognition approaches. Many image recognition models focus on very different aspects
than what humans do and “understand” images on a fundamentally different level. This
makes image recognition susceptible to changes that are unnoticeable for a human observer,
but drastically alter the classification of an image (Chakraborty et al., 2021). By ensuring
the model “understands” images in the same way that humans do, this attack surface can
be reduced.

3.5 Discussion, Outlook, and Use-Case

Regarding the current challenges in the development phase, we find many xAI approaches
intended for this setting. However, we encounter a lack of interactivity and comparability of
the explanations, which hinders a thorough evaluation of the model at this phase. Further-
more, we find that current explainability approaches often lack the causality and intuitive
understandability required for a thorough introspection of a newly developed model.

Firstly, we suggest using compositional and representational language for explainability
to enhance a model’s intuitive understandability, as mentioned by Roy et al. (2021). Rep-
resenting the model as a hierarchical, graphical, or topological structure (Battaglia et al.,
2018; Lyu et al., 2019) is more understandable to humans than a traditional neural network
model. Such structural models are however not as powerful as neural network models, since
their expression and computation ability are limited. An optimal approach would therefore
be to integrate the structural models with the neural network model itself without losing
explainability.

Secondly, we think that causal learning approaches should be adapted and integrated
much more deeply into HITL approaches. In addition to generating better explanations,
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they could also yield improved prediction performance, as exemplified by Madumal et al.
(2020b).

Thirdly, policy querying approaches such as those presented by Hayes and Shah (2017)
could be adapted to allow specific inquiries into the model structure and be expanded with
counterfactual structures. We ultimately envision interactive, thorough, and comparable
model summaries. Individual components of such a solution can already be found, but the
simplicity of a comprehensive solution could greatly benefit the development process. Roy et
al. (2021) encourage us to think about the opportunities that other forms of sensors, sensor
fusion, and new components enable, such as novel interaction approaches, application areas
and ways of learning (see Subsection 2.3 for a perspective on the respective challenges).
Another direction involves human teaching (Kulick et al., 2013) or programs (Penkov &
Ramamoorthy, 2019; Sun et al., 2019) to guide the agent in learning the symbolic structure
or representations of the task, which greatly reduces the complexity of the task.

In the example of robot operation in the forest, core knowledge of physical properties
helps develop a more robust model of the agent and the environment (Ha & Schmidhuber,
2018). The model policy can, for example, be represented and tested with code blocks
(Verma et al., 2018). The representation with code blocks is chosen since this phase focuses
on the model developers and, therefore, speaks the user’s language. To further enhance the
model debugging process, it can be helpful to allow developers to query the model policies
and allow inspection of why the robot stopped and what object it considered an obstacle
(Hayes & Shah, 2017). Finally, the environment could be represented as a graph with points
of interest to help developers better understand how the agent perceives the landscape (Lyu
et al., 2019) and ensure that this understanding is in line with the real-world conditions.

We emphasize that explainability is an essential tool for uncovering model errors at
the initial agent development phase. However, explainability alone will not be enough
to discover all possible errors. We recommend aligning subject-matter experts and ML
specialists as well as considering performance metrics and other indicators to ensure that
the reward function aligns with the desired objectives. Explainability serves as a valuable
tool in this process, facilitating the collaboration between experts and the agent in a HITL
process, highlighting where the agent takes incorrect decisions, and providing insights to
enhance the understanding of the implications of the reward function (see Section 5 for
further discussion).

3.6 Initial Agent Development Summary

To summarize the development phase, we refer to Table 1. The model explanations should
be comparable to each other, potentially allowing the user to understand the differences
between the tested architectures. Explanations should be carefully designed to be broad
and shallow or detailed and complex, depending on the cognitive resources and goals of the
audience. Humans are involved in this phase for defining the problem, the overall model
design, as well as the specification of state space, action space and reward function, and
evaluation metrics of the agent.

We recommend using pre-training approaches such transfer learning in combination
with preference-based learning to leverage human knowledge effectively. Possible xAI ap-
proaches for HITL in this phase are focused on making the underlying model more under-
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standable, for example, by enabling interpretable model policies by representing them as
trees, causal models, or with compositional language. Finally, post hoc explanations, such
as counterfactuals or extracted rules, can be useful to gain insights even at this early stage.
Causal approaches should also be considered at this stage to help identify cause and effect
in this phase and those further downstream.

In this section, we covered the development phase, the first of the four phases in creating
HITL RL systems. In the next section, we discuss the subsequent phase of interactively
training the agent.

4. Agent Learning

Once developed, the agent is trained either autonomously or interactively with the help of
human input. Section 3 discussed the current explanation techniques used mainly during
the development phase under the close supervision of the developer. This section focuses
on approaches where humans act as a trainer or teacher (as domain expert), guiding the
agent learning process.

In this phase, the model is trained interactively with a domain expert, under the close
supervision of ML specialists. This phase focuses on understanding the model perceptions
and fundamentals, and assesses the agent’s cooperation capabilities with the end-user. The
human can decide to disallow the agent from selecting invalid or suboptimal actions. The
agent’s action selection can also be expanded with an expert bias to enable faster learning
rates. Furthermore, developers can decide to include an interactive paradigm with human
demonstration, feedback, advice, or other types of cooperation.

Eventually, the domain expert judges whether the learning process is successful or
if the MDP (or other agent components) should be revised. This can be either because
the agent is learning too slowly or because the policy being learned is otherwise unsuited
for the problem. Finding and determining the appropriate role of HITL should be the
first step in developing an optimal mechanism for interaction. We propose that the focus
should be on providing interpretable information and clear explanations to the human
during this teaching process to enable transparency between the parties. As a consequence,
human trainers can understand how agents perceive the world and provide better feedback.
Explainability can show the impact of bias through an existing controller or human advice,
how learning is progressing, or how the current policy functions.

Among the challenges identified in Subsection 2.3, the following are relevant to this
phase: (1) determining to what extent agents should imitate or follow human advice, (2)
optimizing reward shaping, (3) choosing explanation methods and complexity according to
the background knowledge and expertise of teachers, and (4) reducing the sim-to-real gap.
Table 5 gives an overview of key aspects of the agent learning phase.

In the forest operation use-case, we are now beginning to engage with non-technical
experts. During this phase, we will be communicating and interacting with inexperienced
operators, which may present unexpected scenarios that stress the agent’s ability to gen-
eralize. Additionally, it is important to consider the potential risks associated with the
agent’s interactions with the environment, including navigating unknown obstacles or un-
stable ground. This emphasizes the importance of thorough testing and validation during
this phase, to ensure the agent’s ability to operate effectively in the field.
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Phase
Human

Involvement
Explanation

Requirements
Explainability Goals Metrics

A
g
e
n
t
L
e
a
rn

in
g

•Give evaluative
feedback
•Deliver action-
advice
•Select action pref-
erences
•Provide demon-
strations

•Understandable by do-
main experts
•Fluent interactions

Focus:
HITL approaches such as
human preferences
querying, uncertainty
highlighting
Explanations:
Counterfactuals,
textual explanation in
user language, saliency
maps
Users:
Domain experts,
RL experts

•Make use of imitation
learning
and preference-based
learning
as complementary ap-
proaches
•Adapt xAI approaches to
HITL context
•Apply Human-as-
Teacher approach
•Find hybrid methods of
different
kinds for human interac-
tion

Fidelity
Relevancy
•Human Feedback
(evaluate survey
with
users on relevance
to task)
Performance
•Time to Explana-
tion
(in milliseconds)

Table 5: Overview of the types of human involvement, the specific requirements for expla-
nations, the focus and types of explainability approaches, the goals as well as metrics for
the agent learning phase.

4.1 Requirements

This phase is the first where a novice user may interact with the RL agent, which imposes
certain requirements for a reduced complexity of the explanation. This also coincides with
the requirement for rapid explanations for the sake of fluency, enabling a truly interactive
training process. Interpretable inputs, such as symbolic representations of the problem
structure or visualizations of the agent’s perception, are well suited for these requirements
since they give rapid introspection into what the agent perceives and bases its decisions on
(Glanois et al., 2021). This rapidity only allows for a more shallow introspection, which
is alleviated to a certain degree by the thorough testing in the development and evalua-
tion phases. Fundamental errors in the model should be taken into account during the
development phase, while hidden biases introduced during training are in focus during the
evaluation phase.

We emphasize that even suboptimal explanations by human teachers can be better than
none. Current literature focuses on agents using human advice during the learning phase,
taking advantage of humans’ a priori knowledge. However, even though human decisions
could be less accurate, Zhang and Bareinboim (2020) demonstrate that agents are more
likely to learn suboptimal policies if they ignore human advice. To refer to the metrics of
Milani et al. (2022), we propose the requirements of high fidelity, relevancy, and performance
to ensure that the model is able to learn and interact with the user effectively.

4.2 Approach: Explainability

As stated in Subsection 2.2, interactive RL uses human feedback to reduce problems in
areas such as sample efficiency, sim-to-real transfer problems, and generalization. Like any
interaction, interactive RL requires a level of agent-human understanding, and one effective
way to improve communication involves explaining one’s and others’ behavior (De Graaf &
Malle, 2017). Therefore, more and more recent approaches augment interactive RL using
explainability techniques. For instance, researchers found that most people training an AI
agent assume that their behavior reveals their knowledge (Habibian et al., 2021).
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Fukuchi et al. (2017b) proposed a method to explain an agent’s future behavior to
its trainer using the same expressions used by the trainer. The agent selects the phrases
assuming that a higher reward means that the agent correctly followed the advice. In later
work, they apply the approach to agents that dynamically change policies (Fukuchi et al.,
2017a).

Furthermore, simple visualization techniques, like saliency maps or layer-wise relevance
propagation, could be used to explain the agent’s perception of the world at a glance. These
techniques each have their own set of benefits and drawbacks more explicitly discussed in
Liu et al. (2018) and Bach et al. (2015)

4.3 Approach: Interactive Learning

While explanations usually assume a human explainee, interactive RL can also allow the
human to give feedback or explanations to the agent. One common way of providing feed-
back is to evaluate agent actions as positive or negative (Arakawa et al., 2018; Knox &
Stone, 2008; Knox et al., 2013; MacGlashan et al., 2017). However, this limited feedback
could improve if the trainer explains why specific actions are wrong. Guan et al. (2020)
augment the binary evaluative feedback with visual explanations using saliency maps from
humans. In addition to improving the agent’s sample efficiency, the approach also reduces
the human input required. Likewise, Karalus and Lindner (2021) enhance evaluative feed-
back but this time using counterfactual explanations, yielding significant improvements in
convergence speed. In case of negative feedback, humans can communicate to the agent
that the feedback would have been positive if action a had been performed in a different
state s′. The authors limit counterfactual feedback only to negative reward cases, where it
has the largest impact.

Another example of counterfactual application is provided by Pearl (2009), which uses
dynamical structural causal models (DSCM) to explicitly model the differences in the capa-
bilities of the agent and the human operator as the world states evolve. In this framework,
the agent views human feedback as the intended action and adjusts it (using counterfactual
reasoning) if the action is suboptimal. A trade-off between autonomy and optimality is
demonstrated, meaning that fully autonomous agents are likely to be suboptimal and could
only achieve optimality if they receive critical feedback from their human operators. The
counterfactual approach proposed by the authors improves on standard methods even when
human advice is imperfect.

Further, human trainers tend to give more positive feedback and the learning agent
should be able to inherently accommodate this feedback bias. Making the agent’s assump-
tions transparent to the trainer can improve the overall process. Additionally, RL agents
who learn from human demonstration, imitation, or querying the trainer’s preferences can
inherit biased human behavior. In that case, xAI can also shed light on the biases of the
model before deployment. The robot then selects different behaviors and asks people about
their preferences. Habibian et al. (2021) study the influence of robot questions on how their
trainers perceive them. In their approach, the robot chooses informative questions that
simultaneously reveal its learning. Compared to other approaches that do not account for
human perception, Habibian et al. (2021) found that people prefer revealing and informative
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questions since they find these questions easier to answer, more revealing about the robot’s
learning, and better focused on uncertain aspects of the task.

4.4 Focus: Interaction Design

The agent learning step is the first phase where interaction with a non-technical user, i.e.,
the domain expert, takes place. Therefore, we recommend using this phase to focus on the
interaction between user and agent, enabling a fluent and cooperative workflow. Wu et al.
(2021b) propose that a human can play different roles for interaction with RL agents, such
as Supervisor, Controller, Assistant, Collaborateur, or Impactfactor. This encourages us
to take into account how collaboration is framed and what it entails in developing efficient
teaching approaches. A learning agent will possibly interact with the designer, trainer,
and final user. Therefore, it is important to consider experts to näıve collaborators. For
example, tools for visual explanations that use typical data visualization techniques, such
as bars, may be useful for people with a scientific background; however, they add mental
load to others (Anderson et al., 2020).

Wu et al. (2021b) state that the ideal interaction for HITL would be fluent, perfor-
mant, and reliable. For systems geared at performance, the interaction is usually framed
as collaboration, while a focus on reliability favors the role of supervisor for the human.
For fluency, however, new roles of interaction are proposed and discussed, which would also
require new kinds of interface. An agent could integrate implicit empathic feedback from a
human in the form of gestures, vocalizations, and facial expressions as shown by Cui et al.
(2020), allowing a more intuitive interaction and richer feedback from the human to the
learning agent. To effectively leverage such feedback, appropriate user interfaces should be
developed, and the underlying model should be able to process multimodal data such as
speech or image. Another form of implicitly improving feedback is the approach presented
by Peng et al. (2016), which makes the agent move slower if it is uncertain, enabling the
human to provide feedback where it is most useful with an intuitive cue. Identifying and
leveraging useful implicit feedback from humans would facilitate agent learning by moving
beyond what the human explicitly mentions as a teacher.

Ultimately, we propose that Agent Learning approaches should consider different ap-
proaches in their HITL framework rather than forcing one specific technique, which allows
one to better determine the mentioned sweet spot of interaction.

4.5 Discussion, Outlook, and Use-Case

For the agent learning phase, we find that many approaches support the Human-as-Teacher
paradigm itself, but identify a lack of explainability approaches that facilitate this interac-
tion. More generally, xAI approaches in this phase need to evolve to support interactivity
in the HITL setting, which is currently underdeveloped.

To proceed, the various current approaches should be further adapted for the HITL and
RL contexts. An important adaptation is the development of a suite of tools to facilitate the
systematic deployment and comparison of the different approaches to discover sweet-spot
mixes. An example of an effective combination could be to build fundamental behavior
via imitation learning, followed by fine-turning actions by preference-based learning, and
finally identifying and solving weak spots using querying approaches. We propose to strive
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for a solution that allows efficient HITL training in the field along with domain experts,
enabling users to rapidly bootstrap agent behavior and further support this process with
replanning and corrections. A combination of such approaches could be very efficient and
fast in bringing about robust agents suited for real-world applications.

With regard to our use-case, we now move to real-world tests with a domain expert.
Since at this stage we aim to improve the model’s robustness and performance, the focus
should be on thorough explainability. We recommend providing visual explanations of
robot perception at this point (Glanois et al., 2021), augmented, for example, by easily
understandable saliency maps that highlight important image regions (Liu et al., 2018). In
this phase, we also recommend starting to integrate human feedback, which can be used to
classify elements in the environment, for example, to determine whether a way is passable or
not (Guan et al., 2020). If uncertain, the robot can move slowly and highlight the problem in
its visual output to communicate with the user (Peng et al., 2016). Additionally, imitation
learning could be integrated to allow the robot to simply follow the user path and, with
that, learn more about the environment in a safe way (Pearl et al., 2000).

4.6 Agent Learning Summary

To summarize the agent learning phase according to Table 1, explanations should provide
the user with interpretable inputs and allow for a rich interaction to better understand
the behavior of the model. This also requires explanations to be in the language of the
domain expert, facilitating a productive “Human-as-Teacher” interaction. We recommend
focusing on designing and testing the optimal interaction between human and agent, bal-
ancing feedback, explainability, and nonintrusiveness. Humans are involved in this phase to
provide evaluative feedback, give advice and preferences to the agent, and provide demon-
strations for complicated tasks. The main explainability techniques are those explaining the
agent’s perceptions and evaluating behavior, for example, with counterfactuals or textual
explanations.

Furthermore, techniques which enable the agent to query human preferences or give
interactive feedback to instructions from the human teacher are recommendable, while
visualization approaches like saliency maps could be used for the sake of their low cognitive
and computational load. Explainability is interactive at this phase, and RL experts as
well as domain experts are involved. These requirements differ from the agent development
phase in that a domain expert is involved in the process, and explainability should be geared
towards interactivity and efficient agent learning, whereas the development phase was more
focused on generating insights into the model architecture.

In this section, we covered the second phase of development, discussing the training
of HITL RL agents. In the next section, we discuss the subsequent phase of thoroughly
evaluating the learned policies and the emerging agent behavior.

5. Agent Evaluation

In this section, we detail the requirements of the agent evaluation phase and how explain-
ability approaches and safety considerations can help build trust in the learned model. For
the success of human-robot teamwork, safety is essential. The robot must meet the innate
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expectations of the human to be predictable and safe and communicate its intentions (Eder
et al., 2014).

The third phase is characterized by testing the behavior of the trained model, which
requires tools that enable comparability, quantify the learning progress, and can furthermore
scale up to thoroughly evaluate larger-scale models. ML specialists and domain experts
exhaustively test the learned model. Developers need to ensure that no erroneous behavior
or glitches have emerged during training, focusing mainly on the syntactical level. The
domain expert will need to understand and evaluate the learned policies for sensible micro-
and macro-behavior, therefore focusing more on an evaluation of the semantic behavior.

The judgment for either moving forward with the deployment to market or engaging
in another development-learning-evaluation cycle lies in this phase and is made by the
developers and project owners. The domain expert must decide if the learned policy is
ready for deployment, if more training is needed, or if the problem definition needs to be
changed. In the evaluation phase, explainability can help with an in-depth inspection of
learned policies and emerging behavior.

To ensure this, the trained system has to be tested extensively. It is important to make
a distinction between errors in the underlying model and errors learned during training. In
the agent deployment phase described in Section 6, underlying errors in the model archi-
tecture should be discovered and fixed. Therefore, the agent evaluation phase can focus on
discovering errors acquired during training and, ultimately, ensuring a safe decision-making
process.

This type of acquired error becomes apparent in various forms. One is shortcut learning,
where a model finds undesired shortcuts in the training data instead of learning the desired
concept. This often prevents a generalization since the shortcut is, in most cases, not
present in the application context. For example, an algorithm that learns the hospital
token embedded in an image rather than the targeted signs of pneumonia in X-ray images
represents a case of acquired error (Geirhos et al., 2020).

Another symptom of errors acquired during training is adversarial attacks, which show
that the model did not learn the desired concept, but rather invisible patterns in the image
(Goodfellow et al., 2014). There are several approaches to reduce the attack surface for
adversarial attacks with optimizations in the training process, but we will focus on the
underlying issue of models failing to learn concepts. This problem is also part of the
challenge of alignment of the learned model and the real world, identified in Subsection 2.3
and discussed by Roy et al. (2021).

Both issues show why it is important to examine the behavior of the trained model. We
propose that at this phase of development, the focus should be on the evaluation of safety
aspects, such as represented by the decision-making process of the model, which reflects the
learned behavior. This decision-making process can be made tangible with approaches such
as policy summarization, graph-based explanations, and causal models. Furthermore, we
consider different safety approaches, which ensure that the agent takes only allowed actions
and is transparent with regard to its level of uncertainty. Table 6 gives an overview of key
aspects of the agent evaluation phase.

The agent evaluation phase of our forest operations use-case is crucial to discover po-
tential pitfalls that could arise. One pitfall is the failure to discover emerging errors in the
model, which impedes performance or prevents application in the field. Failure to consider
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Phase
Human

Involvement
Explanation

Requirements
Explainability Goals Metrics

E
v
a
lu

a
ti
o
n

•Understand and evaluate
learned policies on micro
and macro-level
•Test model boundaries
and safety
•Decide whether model is
ready for deployment

•Summarise
learned behav-
ior
•Scalable to large
models
•Comparable to
untrained models
•Understandable
by domain experts

Focus:
Safety evalua-
tion by
modeling uncer-
tainty,
using shield-
based defenses
Explanations:
Policy summa-
rization with
natural lan-
guage, rules or
code, graph-
based explana-
tions
Users: Domain
Experts,
RL Experts

•Ensure understandability
for domain expert
•Enable thorough and com-
parable explanations
that scale with model size
and complexity
•Further develop dash-
boards for policy inspection
from different viewpoints

Fidelity
Relevancy
Cognitive Load
•Compactness
(absolute size of explanation
in number of features, path
length, percent reduction to
complete data)
•Redundancy
(overlap between parts of ex-
planations)

Table 6: Overview of the types of human involvement, the specific requirements for expla-
nations, the focus and types of explainability approaches, the goals as well as metrics for
the agent evaluation phase.

how the agent’s performance scales with increasing complexity and size of the tasks can
lead to great results in theory and less useful results in practice. This could manifest in,
for example, an agent that can only successfully complete ten consecutive tasks for which
it was trained, but then starts to fail or misbehave after that.

Another key consideration is ensuring that the agent is thoroughly tested across a wide
range of edge cases and scenarios to ensure that it can handle a diverse range of operating
conditions. An agent that is not able to handle a wide range of tasks and operate effectively
under different conditions will be restricted to a very narrow field of applications, while
potentially failing under unfavorable conditions. This could, for example, be a forest with a
different biome, terrain roughness or weather conditions than trained on. This shows why
it is important to ensure that the agent’s reliability and safety are properly evaluated. This
includes both ensuring that the agent is able to detect and avoid potential hazards, such as
obstacles or unstable ground, and that it can operate in a generalizable and reliable manner
that minimizes the risk of injury to both the end-user and other personnel.

5.1 Requirements

During the evaluation phase, xAI approaches have to work with large models and complex
decision-making processes. This requirement, for example, makes the use of text- or rule-
based approaches (Hayes & Shah, 2017; Tabrez & Hayes, 2019) more challenging, since
they might be helpful when producing one page of output, while parsing and understanding
many pages of model policy explanations will become prohibitive. In a similar vein, visual
approaches such as trees or DAGs, in general, should not exceed a certain size to still be
useful.

This requirement is supported by Wells and Bednarz (2021a), who find that the authors
of several xAI approaches identify scaling up their approaches as a major challenge, which
also shows why many xAI approaches are only applied to toy examples. This is especially
relevant to text-or graph-based explanations, which can rapidly become unwieldy.
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Furthermore, models should provide explanations that are understandable to domain
experts. It will often be the case that only the domain expert, instead of the developer, can
judge whether a learned policy is consistent, which makes it a requirement that the domain
expert can evaluate it.

A final consideration is that the provided explanations should be able to highlight
differences in the learned behavior with regard to a newly initialized or only pre-trained
model, in order to gain an understanding of what the agent actually learned during the
different phases of the training process.

To refer back to the metrics of (Milani et al., 2022), we propose adding cognitive load
to the demands on fidelity and relevancy in the previous phases. Cognitive load is added to
ensure explanations scale to the full-size model, which constitutes a major challenge with
approaches relying on visual or textual summarization (Vu & Thai, 2020).

5.2 Approach: Explainability

Policy summarization approaches focus on showing and explaining model policies to the
user. We refer to examples that codify the decision process of the model as rules (Liu
et al., 2018), as code blocks (Verma et al., 2018), or through natural language. Alonso
et al. (2018) shows an example of justifying classifications with a textual explanation of
the choice made by a decision tree, which could in turn be transferred to RL applications.
Other examples for providing an introspection into LLMs with textual explanations are Zini
and Awad (2022) and Xu et al. (2023).

Policy summarization is well suited for assessing a trained model and checking its
policies for unexpected and undesired behavior. Depending on whether and which domain
experts are included in the process, different summarization approaches are advisable. Sum-
marizing model policies as code blocks can be intuitive for computer science and adjacent
fields, but are likely inadvisable for domain experts with a non-technical background. Here,
special care should be given to assessing how a model could best be summarized to be
intuitively understandable for the explanation target, since the additional cognitive load for
understanding the explanation modality should be kept to a minimum. A second aspect
is that the scale of the model should be considered. Ten blocks of model policy code can
easily be evaluated, but a hundred blocks of code will be very difficult to understand and
thoroughly inspect. Here, the graph-based explanation approach may be a useful addition.

Graph-based explanations can furthermore be very helpful in providing a quick and
intuitive overview of model behavior. Holzinger et al. (2021) recommend the use of graph-
based explanations for HITL systems, as they can be used to intuitively compare expert
domain knowledge with learned model behavior. Song et al. (2019) show how graph-based
explanations can be applied in recommender systems, a field where knowledge graphs are
often used. With their presented system, the user is shown a meaningful path within that
graph on how a recommendation was formed, which helps provide effective recommenda-
tions and good explanations. The use of graph-based explanations can, however, become
overwhelming for the user if the model behavior or explained decision becomes too com-
plex. Approaches such as PGExplainer (Vu & Thai, 2020) alleviate this by focusing the
explanation graph on relevant parts of the decision graph.
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5.3 Focus: Safety Evaluation

RL systems can be highly complex and non-transparent, making it difficult to understand
their decision-making processes and identify potential safety issues. We emphasize the
need to proactively evaluate the safety of the developed application to ensure that they are
designed and deployed in a way that minimizes risks to the agent itself and others. The
mentioned approaches help to evaluate the agent’s behavior and test it for unexpected or
undesirable actions.

However, while testing the model is an essential part of the training loop, it should not
be the only component to ensure safe operation. An example of how safety can be ensured
is presented by Xiong et al. (2020), who propose using shield-based defenses, where agents
learn to stay within predefined, safe boundaries during training and application, and with
that increase robustness.

In addition, approaches that estimate model uncertainty in different scenarios can be
useful. Lutjens et al. (2018) present a collision avoidance policy to provide computationally
tractable and parallelizable uncertainty estimations in navigation tasks. This can be used
to ensure that the model is sufficiently confident in the test scenarios employed by the
developers, but also able to discover blind spots. These blind spots can then be used to test
how the model behaves when encountering them.

5.4 Discussion, Outlook, and Use-Case

In the agent evaluation phase, we identify a major challenge in the scalability of xAI ap-
proaches, which are often suited to smaller models but fail to provide explainability for
large trained models and their learned policies. We also find that few approaches allow for
identifying variations between different versions of a trained model, which we consider a
central feature for this phase in order to conduct an exhaustive evaluation of the learned
policy. Visual approaches such as saliency maps can be applied in this phase to evaluate the
behavior of the model, but should be used with caution due to providing only superficial
insights about the ”where”, but not the ”how”, and being susceptible to confirmation bias
(Evans et al., 2022).

We highlighted that many explainability approaches that suffice in the development and
learning phase need adaptation to the evaluation phase due to model size and complexity.
Approaches such as code block summarization as provided by Verma et al. (2018) could be
extended by focusing only on relevant parts of the explanations as illustrated by Vu and
Thai (2020). Furthermore, expert readability must be ensured to allow domain experts to
help test and assess whether the learned policies are sensible, while post hoc explanations
such as visual (Atrey et al., 2019; Gupta et al., 2019) or textual (Fukuchi et al., 2017b;
Hayes & Shah, 2017) explanations would increase overall explainability.

We recommend integrating various tools to help evaluate and scrutinize a model from
many different points of view. We propose that detailed explanations of the decision of the
model are essential for this process. Furthermore, the focus should be on evaluating model
safety by providing explanations in such a way that they are understandable to the domain
experts, allowing one not only to debug superficial model behavior, but also to check the
learned routines for semantically sensible behavior, which is a task that also calls on the
knowledge of the domain expert.
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We suggest that a combination of the explainability methods described can help sig-
nificantly by ensuring that the model has only learned the desired behavior. The use of
graph-based explanations is recommended as complementary to the policy summarization
approach since the summarization provides a broad overview of model policy, which can
then be further inspected by querying specific explanations. The rapidity and intuitive-
ness of graph-based explanations allow inspection of the learned model policies together
with domain experts, and together with safety measures and uncertainty estimation build a
trustworthy model which informs the user of its limits. With this in mind, developers, do-
main experts and project owners should decide whether the model is ready for deployment
or needs further development.

To refer back to the use-case of forest operation, we ensure that the agent is based on
a reliable model capable of autonomously navigating in different environments and safely
responding to user errors. To ensure reliability, the model should be tested in different
environments. Furthermore, intentional user errors (such as trying to navigate to an un-
reachable location or entering malformed data) can be used to test the agent and see how
it behaves in such edge cases (Xiong et al., 2020). Moreover, the model policy should be
summarized and could be presented in a form of a policy graph, which will allow developers
and domain experts to easily assess the behavior of the robot and see how the trained pol-
icy works (Vu & Thai, 2020). This could also be used to compare different model versions
against each other to see what the agent has learned. Finally, the model should provide an
understanding of the uncertainties and blind spots that it may encounter when navigating
in the forest, for example, by using uncertainty estimates (Lutjens et al., 2018).

5.5 Agent Evaluation Summary

To summarize the agent evaluation phase as per Table 1, the explanations in this phase
should scale to large trained models and be comparable to previous versions of the agent.
They must be understandable by the domain experts to allow an exhaustive comparison of
the learned model behavior. We also recommend focusing on evaluating the overall safety of
the system and the robustness of its behavior. Humans are involved in understanding and
evaluating these policies and the resulting behavior at the micro level (sensible individual
decision) and at the macro level (cohesive overall behavior) and deciding if to deploy the
model in the real world.

Useful explainability techniques include policy summarization, graph-based explana-
tions, and approaches to interpretable decision-making, such as extracting decision trees
and logic rules, involving domain experts and RL experts in a bidirectional fashion. In
this phase, the benefit of utilizing causal models can lead to intrinsic explanation of the
model. The model should also be evaluated with regard to safety aspects to ensure last-
ing user trust. In comparison to the other phases, this phase has many similarities in the
xAI techniques used with the initial agent development phase, but requires in addition the
understandability for the domain expert and the scaling of xAI methods to more complex
policies.

In this section, considerations regarding the evaluation of HITL RL systems were dis-
cussed. In the next section, we discuss the final step of deploying the agent in a real-world
context.
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Phase
Human

Involvement
Explanation

Requirements
Explainability Goals Metrics

D
e
p
lo
y
m
e
n
t

•Deploy agent
•Interact with agents
•Define agents’ real-
world
application goal and
context

•Fast, clear, and concise to
reduce cognitive load
•Understandable by end-
users
•Non-intrusive to prevent
detrimental effects on
user performance

Focus:
Building User Trust with
intent and uncertainty
communication, allow-
ing error corrections
Explanations:
Saliency maps, dendro-
grams, bounding-boxes,
textual explanations,
visual and auditory indi-
cators
Users: End-users

•Develop and apply new ap-
proaches
beyond image and driving-
based explanations
•Use simple and fast explana-
tions
•Implement cohesive error
and uncertainty handling
•Communicate agent intent
via different modalities

Fidelity
Relevancy
Cognitive
Load
Performance

Table 7: Overview of the types of human involvement, the specific requirements for expla-
nations, the focus and types of explainability approaches, the goals as well as metrics for
the agent deployment phase.

6. Agent Deployment

The agent is then deployed in the real world and interacts with the end-user. It now has
to provide an efficient interaction for different users, while also building trust by providing
explanations for its behavior. A human typically needs to argue why the agent is safe and
should be deployed in the real world from a vendor perspective. The developers will need to
determine if the agent should continually learn, if its policy should be frozen, or if it should
retrain if an environment change makes this necessary. The customer and the end-user then
make the final deployment decision, determining the usage context and specific application
of the agent in the field. Here, explainability can help users understand the final policy,
improve trust, assess safety, and understand the stability of the policy.

In this section, we focus on approaches that facilitate an efficient interaction between
the trained agent and its human user. This frequent and repeated interaction requires
finding a balance between appropriately showing explanations and not hindering the task
at hand — a trade-off also highlighted by Anderson and Bischof (2013), who state that
while initially guides can be helpful, they can also be detrimental to long-term performance
and learning. Additionally, challenges in terms of safety and generalization to overcome
unforeseen situations come into play (see Roy et al. (2021) and Subsection 2.3). Table 7
gives an overview of key aspects of the agent deployment phase.

We propose that the use of HITL agents can lead to significant performance gains during
the four phases of development, learning, evaluation, and deployment. In this section, we
focus on approaches ensuring that those benefits actually reach the end-user, factoring in
issues like mental overload and distrust.

When it comes to the agent deployment phase for the forest operations use-case, there
are several challenges that must be considered. One significant challenge is communication.
If the agent’s actions and intentions are not effectively communicated to the operator or if
the operator is unable to provide commands and feedback to the agent, it may not be able
to function effectively in the field. Additionally, it is important to ensure that the agent can
mostly function autonomously and ask for help from the human only when necessary, as
too much dependence on the HITL may reduce the agent’s autonomy and practicality for
real-world use. Furthermore, safety should always be of highest priority, as the agent can
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only be successful if it operates without causing injury to personnel or otherwise damaging
itself and its ability to operate.

6.1 Requirements

The xAI systems used by end-users can draw on the vast pool of research on HCI usability.
Therefore, we adapt considerations and requirements from the well-known “golden rules of
interface design” (Shneiderman et al., 2016). It must be taken into account that designing
interactive RL systems has special design requirements (Arzate Cruz & Igarashi, 2020b),
although the underlying rules of HCI design still apply.

To reduce the memory load, the explanations must be simple and quickly understand-
able. We aim to facilitate difficult tasks and should avoid complicating the human-robot
interaction with overly complex explanations. Since operators are likely to work with rapidly
changing perspectives and environments, explanations should be computed in real time to
ensure they correspond to the current situation. An example of this is an autonomous
car. If explanations are provided with a delay of several seconds, actions that could require
intervention will already have occurred.

Regarding the guideline to allow experienced users to take shortcuts, agents should
provide explanations on demand and should be deactivated if desired, as discussed in An-
derson and Bischof (2013). This option is essential to prevent information fatigue and to
allow natural and efficient human-robot collaboration.

Our third consideration is to simplify error handling and give the user the feeling of
being in control. We propose that a HITL model should provide some means to show
whether it is uncertain about a given situation or decision, for example, in the form of
a warning light as seen in cars. Such a mechanism can give the user a notification that
something is wrong or uncertain, and allow us to investigate what causes this. Along
similar lines, we propose some kind of startup check sequence, again based on the warning
light startup sequence of a car, where users can ensure that the system is in order and
correctly understands the situational context.

In contrast to the other three phases of HITL RL deployment, we do not propose that
the major requirements can be lifted at this phase. We rather suggest that this phase is
the most demanding of the four enumerated, as it combines constraints on computational
and cognitive capacities, requiring high fidelity, relevancy, performance, and low cognitive
load (Milani et al., 2022) to ensure that the model performs well in real world situations
and can handle a variety of inputs.

6.2 Approach: Explainability

Several researchers provide examples of what real-time explanations for different use-cases
could look like. Rodriguez et al. (2021) provide feature-based explanations for COVID-19
case predictions, while Kulkarni and Gkountouna (2021) developed a classroom dashboard
that gives an overview of student performance with dendrograms and text-based expla-
nations. Another example is the utilization of dendrograms for estimating the remaining
useful lifetime of industrial machinery by machine learning combined with domain knowl-
edge (Serradilla et al., 2020). The majority of those real-time explainability systems are
data/software-based, while for the area of explanations for robotic systems, there are much
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fewer examples. Most autonomous driving systems provide explanations in the form of
bounding-boxes and labels for recognized objects, which is an appropriate option for ex-
plaining model perception and helps with localizing important image regions (Behl et al.,
2017; Kashyap et al., 2020).

The next step is decision explanations. Here, Ben-Younes et al. (2022) present a method
where object saliency is combined with a textual explanation of an action. For example,
the observed traffic light is highlighted, in combination with the textual explanation of a
“stop” action. Such an approach is already helpful and quick to evaluate by the end-user.
Still, it could, for example, be even further refined when using known symbols and signs
instead of text along with regional highlighting. Xu et al. (2023) provides an example of
how textual explanations could be used to create textual explanations aligned with human
judgement, increasing their understandability.

A major component for trusting an agent is the predictability of the agents’ actions.
Therefore, we suggest that xAI approaches used in the real-world focus on making the
agents’ decisions and planning transparent for the user by showing intended actions. Strictly,
since actions do not have to be explained, just announced, this approach belongs to the
area of interpretability, which constitutes a subset of explainability (Dragan, 2015). Re-
quiring only interpretability and not explainability simplifies the requirements for such an
indication, though, of course, HCI principles still have to be taken into account to avoid
incurring too much mental load. Caltagirone et al. (2017), for example, shows a predicted
trajectory for autonomous driving applications, which could easily be translated into other
movement-based domains. An open challenge is how these predictions can be communi-
cated in other contexts than autonomous cars and with other modalities. Here, items such
as smartwatches, headphones, or simple visual indicators could provide familiar and flexible
interfaces.

6.3 Focus: Building User Trust

Trust is essential for AI development because it enables effective deployment and adoption
of AI systems. We established that without trust, people may be hesitant to use or rely
on AI systems, which can limit their potential benefits (see Subsection 2.1). In the agent
deployment phase, we therefore recommend to focus on building trust with the end-user
and highlighted how different explainability approaches can be used for that.

Furthermore, we suggest that the use of “warning light” alerts could be beneficial,
recognizing when the agent is uncertain about a decision and advising the user. This could,
on the one hand, increase the general robustness of the agents’ decisions and also foster
human trust in the agents’ decisions, since the user can now estimate better if the agent is
certain about a decision.

Such a warning light could be based on uncertainty estimation and be activated when
the uncertainty rises above a given threshold. Jain et al. (2021) give an example of how
epistemic uncertainty can be estimated to a certain degree. The introduction of such an
approach could help the user focus on the given task and interaction with the robot, while
still being in control and able to intervene when required.
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Such an intervention approach is demonstrated by Wu et al. (2021a). They allow the
HITL operator to intervene when the agent makes erroneous decisions and, furthermore,
allow the model to learn from those interventions.

The startup sequence approach could complement this concept of error handling. Liu
et al. (2021) for example proposes an error detection framework, where the HITL operator
is presented with a list of the most relevant and explainable features to detect unusual or
nonsensical behavior. This list is evaluated during startup with a quick glance and provides
considerable trust benefits.

6.4 Discussion, Outlook, and Use-Case

In the agent deployment phase, we find only a few suitable xAI approaches. The application
of current approaches is most often hindered by the failure to speak the user’s language,
limited available computation, or too much complexity to be usable in a real-time context.
Additionally, many HITL RL approaches fail to gain (and deserve) the user’s trust, in
addition to failing to communicate uncertainty when warranted.

We propose that the currently available approaches look beyond the use-cases of au-
tonomous driving focused on visual aspects and consider other modalities. An example is
the context of credit or policy computations, which require explaining textual facts. Ad-
ditionally, modalities beyond graphic dashboards must be considered to ensure, such as
auditory and tactic perspectives. Furthermore, visual perspectives should be explored in
different form factors such as smartwatches, LED indicators, and image projections.

We emphasize the need for simple and fast explanations, as there are only a few such
current approaches. We furthermore recommend considering explaining agent actions via
different modalities, such as visual indicators, but also haptic or auditory signals, aspects
which are largely unexplored as of now. Finally, we envision a suite of tools equipped with
warning indicators that show when the agent encounters difficult situations, allowing the
user to trust the agent when it is within its generalization capabilities, and inform the user
if that is not the case. Ultimately, a start-up sequence with different checks would allow
the user to ensure that the agent is properly initialized and trustworthy.

With regard to our use-case, we now similarly recommend relying on simple, robust,
and nonintrusive indicators to communicate the agent state to the user. For example, the
robot may use visual cues to show its operating intentions accompanied by a warning light
or an audible alarm that communicates uncertainty (Jain et al., 2021). Additionally, a
display that can be connected to the machine could be used to allow the user to view
and understand the models’ perception (Glanois et al., 2021). This will provide easy and
quick explanations for the user, helping them identify and avoid obstacles along the way.
Furthermore, its actions could be justified with textual explanations (Ben-Younes et al.,
2022), which ideally also allow the user to provide feedback and correct mistakes (Wu et al.,
2021a).

6.5 Agent Deployment Summary

To summarize, the agent deployment phase according to Table 1, the main requirement is
that the explanations are understandable by the end-user. Additionally, they will be used in
the field and therefore should not incur significant overhead, either with too much cognitive
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load or long and costly computation times. We highlight the need to focus on how to best
handle errors and communicate model uncertainty to the end-user. Humans are involved
as end-users in deploying the agent, defining the usage context, and specific agent tasks.

Explainability can be provided in the form of a combined explainability dashboard,
communicating the agent’s intents, actions, and ways of handling uncertainty and errors
in a bidirectional fashion. Explanations can visualize important aspects of the agents’
perception, or provide textual or other explanations for the agent’s decision and intent. For
visualization, currently used techniques are saliency maps, dendrograms, and bounding-
boxes, which, in combination with textual explanations and visual or auditory indicators,
could be used to communicate the agent’s intent. This phase is the first entirely focused
on the end-user and on generating user trust in the system, allowing one to accurately
assess its strengths and weaknesses and enabling efficient real-world cooperation. This does
not require providing insights into the model architecture as in the agent development and
deployment phase, but rather highlighting relevant aspects of its perception and decision-
making as in the agent learning phase.

We have now covered the four phases that lead to the deployment of HITL RL systems.
In the next section, we open up the discussion on propositions for general research directions
that emerged in this paper.

7. Research Directions

We refer to Subsection 2.3 to emphasize that we consider RL to be a challenging problem
setting that could greatly benefit from HITL approaches. We highlight that there is no one-
size-fits-all solution for explainability and that the requirements for suitable HITL xAI differ
between each phase. We do not propose a strict separation of explainability techniques in
different phases, but rather recognize the suitability of certain types of xAI for each phase
depending on the nature of the human involvement, the aspect of the agent in focus (e.g.,
model architecture, its decision-making process, or its perception of the world), and the task
to be tackled. The types of xAI approaches we recommend are informed by the explanation
requirements listed in Table 1, the strengths and weaknesses of xAI methods as per Table 2,
as well as the nature of human participation, the types of users, and the directionality of
the interaction between the human and the agent. Explainability plays a central role in
each phase of the agent deployment process, and discussed how it influences safety and trust
considerations at each step.

Our broader vision is that the HITL RL approaches depicted could, in the future,
enhance the productivity of a human-robot team. Khatib et al. (1999) stated that the HITL
contributes experience, domain knowledge, and is able to ensure the correct execution of
tasks. The robot, on the other hand, can increase human capabilities in terms of force,
speed, and precision. Moreover, the robot should reduce human exposure to harmful and
hazardous conditions. However, it is essential to allow both a machine and a human operator
to react to the environment and human beings to correctly understand and interpret the
machine’s actions, as the underlying algorithms and their decisions must be understandable
to a wide variety of different audiences with different goals (Heuillet et al., 2021). Therefore,
we highlight the importance of explainability in HITL RL.
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An exemplary instance of applying human feedback can be seen with RLHF in Chat-
GPT, where the integration of human feedback for fine-tuning the model plays a pivotal role
in its success (Li et al., 2023). RLHF allows models to learn from human interactions and
feedback, resulting in improved performance and more natural conversation generation, ex-
hibiting impressive capabilities in generating coherent and contextually relevant responses.
RLHF can furthermore help to enhance sample efficiency, relying on only moderately large
labelled sample sets (5̃0,000 samples), thereby also possibly reducing training time (Lam-
bert et al., 2022). This advantage is particularly valuable considering the extensive training
durations needed for renowned RL models like AlphaGo and OpenAI Five, which require
one month and ten months of training time, respectively (OpenAI et al., 2019; Silver et al.,
2017). These instances highlight the ample scope for improvement in terms of both training
time and sample efficiency.

However, it is essential to consider the limitations associated with incorporating human
feedback. Biases present in training data and introduced through human feedback can
lead to incorrect or biased responses, and ChatGPT models have been known to generate
hallucinations and provide factually inaccurate information, posing significant drawbacks
to their applicability (Peng et al., 2023).

Explainability techniques can alleviate these limitations by shedding light on the
decision-making process, enabling users to identify and address issues. Incorporation of
HITL and explainability mitigates the risks of biased or incorrect outputs by involving
human oversight and intervention (Peng et al., 2023), underscoring the importance of ex-
plainability in comprehending the decision-making process of LLMs. Additionally, lack of
transparency, coupled with biased training data, may result in the dissemination of inaccu-
rate or harmful content by users (Ray, 2023).

Various explanation approaches, including classic attention mechanisms in NLP
(Glanois et al., 2021), text-based explanations by LLMs (Xu et al., 2023; Zini & Awad,
2022), and symbolic representation (Saba, 2023), can enable users to understand the model’s
reasoning and identify potential flaws. In particular, the use of LLMs to generate expla-
nations has garnered attention recently. For example, Zini and Awad (2022) employ the
model itself to provide transparent explanations for its decision-making. Similarly, Xu et al.
(2023) introduce an explainable metric that combines human instructions and the implicit
knowledge of GPT, offering explanations aligned with human judgment for given outputs.

Another caveat to explainability is that most of the work on xAI is heavily biased
by what researchers assumed to be good explanations for a given task or domain (Miller,
2019b), not taking into account the preferences and expertise of human end-users. Based
on the feedback of the operators, models and approaches must adapt their language and
modalities to be effective, which requires a more human-centered development (Puiutta &
Veith, 2020). To ensure that explainability methods actually align with users’ expectations,
we call for a comprehensive set of guidelines and requirements for developing xAI systems.

But human-robot collaboration comes with challenges beyond explainability. When the
agent is deployed, the trust requirement is essential; otherwise, the agent will not be used.
According to De Santis et al. (2008), only trustworthy robots can work in this team. Humans
tend to anthropomorphize robots (Damiano & Dumouchel, 2018), thus overestimating their
cognitive capabilities. De Santis et al. (2008) argue that a user’s mental model might
result in a fake robot dependability, which exacerbates the problem of safety in human-
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robot collaboration. This collaboration relies on the predictability of the robot’s actions,
testability, explainability of the policies, as well as performance increases, which leads us to
emphasize a research focus on trust and safety issues in HITL RL in the long term.

We finally propose future research on the use of explainable AI in safety. One area
of interest is the development of safety-critical systems that incorporate explainable AI
methods to ensure that the agent’s decision-making process is transparent, interpretable,
and can be easily understood by human decision-makers. This could include the use of
techniques such as counterfactuals, which allows for the examination of the factors that
led to a particular decision, and the use of natural language explanations to communicate
the agent’s decision-making process to human users. Another area of research could be
on the development of methods for evaluating and testing the safety and robustness of AI
agents, such as testing for robustness to distributional shift and adversarial attacks, and
methods for detecting and mitigating bias in the agent’s decision-making process. We also
want to highlight that both trust and user experience play critical roles in determining
the overall success of an AI application. While safety and trust are paramount in many
applications, especially fields such as healthcare, education, and entertainment rely on user
experience for their effectiveness and acceptance. Users must feel comfortable, confident,
and satisfied with the AI system to fully engage and benefit from it (Holzinger, 2021;
Holzinger et al., 2022a). Building trust involves ensuring transparency, explainability, and
accountability in the decision-making process, enhancing user confidence. Simultaneously,
providing a positive and seamless user experience through intuitive interfaces, personalized
interactions, and effective problem-solving capabilities is essential for user satisfaction and
adoption (Arzate Cruz & Igarashi, 2020b). Striking a balance by establishing both trust and
an exceptional user experience is crucial in driving the success and widespread acceptance of
AI applications in various domains. Further research is needed to explore how to effectively
combine both goals in order to avoid the fact that trust-building measures hinder (or are
sacrificed for the sake of) a fluid user experience. In this section, we have proposed different
research directions. In the next section, we summarize the content and central insights of
this paper and conclude with the vision we have for the future of HITL RL.

8. Conclusion and Future Outlook

In summary, we emphasize that RL is a fundamentally difficult problem setting and could
benefit greatly from HITL interactions. A human expert can contribute to the conceptual
understanding gained through many years of experience in the task at hand, thus signif-
icantly improving robustness and explainability (Holzinger, 2021). Numerous approaches
have shown that RL benefits from human-centered approaches (Li et al., 2019; Mathewson
& Pilarski, 2022).

We further argue that HITL RL in particular benefits greatly from xAI approaches.
These are, after all, fundamentally human approaches, which, in turn, ensure successful
interactions, acceptance, and trust, as well as conceptual knowledge about the agents’
limitations (Heuillet et al., 2021; Milani et al., 2022).

We identify the following phases for deploying HITL RL solutions: (1) initial agent
development, (2) agent learning, (3) agent evaluation, and (4) agent deployment. In our
work, we discuss how xAI can support each of these phases and what are some considerations
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for a successful deployment. Thus, the HITL combination enables better human-robot
collaboration and ultimately increases on-task productivity and efficiency.

In the deployment phase, interactive, thorough, and coherent model summaries can
enable an agile and transparent workflow. During the agent’s interactive learning, xAI
approaches can enable more efficient training in the field through interactive replanning
and imitation learning. In the evaluation phase, comprehensive explanations of model
decisions can provide detailed insight into the trained model and lead to informed decisions
about whether to proceed with the deployment or start another development cycle. In the
deployment phase, simple and quick explanations of actions and different explanations for
error handling could significantly increase user confidence in the agent and lead to more
efficient collaboration.

Last but not least, we propose a vision of an interactive human-robot collaboration that
enables new use-cases for RL applications and allows both humans and robots to realize their
full potential and respective strengths. Such a collaboration requires strong interaction and
trust between both parties, which can only be achieved through comprehensive explanation
and a deep and intuitive understanding of the mental model generated by the agent.

Acknowledgments

Parts of this work have been funded by the Austrian Science Fund (FWF), Project: P-32554
“explainable Artificial Intelligence”. Part of this work has taken place in the Intelligent
Robot Learning (IRL) Lab at the University of Alberta, which is supported in part by
research grants from the Alberta Machine Intelligence Institute (Amii); a Canada CIFAR
AI Chair, Amii; Compute Canada; Huawei; Mitacs; and NSERC. We also thank Dr. Antonie
Bodley for her editorial and proofreading assistance.

References

Abel, D., Salvatier, J., Stuhlmüller, A., & Evans, O. (2017). Agent-agnostic human-in-the-
loop reinforcement learning. arXiv preprint arXiv:1701.04079.

Aiyappa, R., An, J., Kwak, H., & Ahn, Y.-Y. (2023, March). Can we trust the evaluation
on ChatGPT? [arXiv:2303.12767 [cs]]. https://doi.org/10.48550/arXiv.2303.12767

Akanksha, E., Jyoti, Sharma, N., & Gulati, K. Review on Reinforcement Learning, Research
Evolution and Scope of Application. In: In 2021 5th International Conference on
Computing Methodologies and Communication (ICCMC). 2021, April, 1416–1423.
https://doi.org/10.1109/ICCMC51019.2021.9418283.

Akrour, R., Schoenauer, M., & Sebag, M. Preference-based policy learning (D. Gunopulos,
T. Hofmann, D. Malerba, & M. Vazirgiannis, Eds.). In: Machine learning and knowl-
edge discovery in databases (D. Gunopulos, T. Hofmann, D. Malerba, & M. Vazir-
giannis, Eds.). Ed. by Gunopulos, D., Hofmann, T., Malerba, D., & Vazirgiannis, M.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 12–27. https://doi.org/978-3-
642-23780-5.

Akrour, R., Tateo, D., & Peters, J. Towards reinforcement learning of human readable
policies. In: In Workshop on deep continuous-discrete machine learning. 2019.

400



Human-in-the-Loop Reinforcement Learning
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D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki,
J., Petrov, M., Pinto, H. P. d. O., Raiman, J., Salimans, T., . . . Zhang, S. (2019, De-
cember). Dota 2 with Large Scale Deep Reinforcement Learning [arXiv:1912.06680
[cs, stat]]. Retrieved July 13, 2023, from http://arxiv.org/abs/1912.06680

Parisi, S., Rajeswaran, A., Purushwalkam, S., & Gupta, A. The unsurprising effectiveness
of pre-trained vision models for control. In: In International conference on machine
learning, ICML 2022, 17-23 july 2022, baltimore, maryland, USA. PMLR, 2022,
17359–17371. https://proceedings.mlr.press/v162/parisi22a.html

410



Human-in-the-Loop Reinforcement Learning

Pearl, J. (2009). Causality: Models, reasoning, and inference (2nd edition). Cambridge Uni-
versity Press.

Pearl, J., et al. (2000). Models, reasoning and inference. Cambridge, UK: CambridgeUni-
versityPress, 19, 2.

Peng, B., Galley, M., He, P., Cheng, H., Xie, Y., Hu, Y., Huang, Q., Liden, L., Yu, Z.,
Chen, W., & Gao, J. (2023, March). Check Your Facts and Try Again: Improv-
ing Large Language Models with External Knowledge and Automated Feedback
[arXiv:2302.12813 [cs]]. https://doi.org/10.48550/arXiv.2302.12813

Peng, B., MacGlashan, J., Loftin, R., Littman, M. L., Roberts, D. L., & Taylor, M. E.
A Need for Speed: Adapting Agent Action Speed to Improve Task Learning from
Non-Expert Humans. In: In Proceedings of the 2016 International Conference on
Autonomous Agents and Multiagent Systems ( AAMAS ). International Foundation
for Autonomous Agents; Multiagent Systems, 2016, 957–965.

Penkov, S., & Ramamoorthy, S. Learning programmatically structured representations with
perceptor gradients. In: In Proceedings of the 7th international conference on learn-
ing representations. OpenReview.net, 2019. https ://openreview.net/ forum?id=
SJggZnRcFQ

Popova, M., Isayev, O., & Tropsha, A. (2018). Deep reinforcement learning for de novo drug
design. Science advances, 4 (7), eaap7885. https://doi.org/10.1126/sciadv.aap7885

Puiutta, E., & Veith, E. M. Explainable reinforcement learning: A survey. In: In Inter-
national cross-domain conference for machine learning and knowledge extraction.
Springer. 2020, 77–95. https://doi.org/doi.org/10.1007/978-3-030-57321-8 5.

Ragunath, P., Velmourougan, S, Davachelvan, P, Kayalvizhi, S, & Ravimohan, R. (2010).
Evolving A New Model (SDLC Model-2010) For Software Development Life Cycle
(SDLC). International Journal of Computer Science and Network Security, 8.

Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key
challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-
Physical Systems, 3, 121–154. https://doi.org/10.1016/j.iotcps.2023.04.003

Rodriguez, A., Tabassum, A., Cui, J., Xie, J., Ho, J., Agarwal, P., Adhikari, B., & Prakash,
B. A. (2021). Deepcovid: An operational deep learning-driven framework for ex-
plainable real-time covid-19 forecasting. medRxiv, 2020–09. https ://doi .org/10 .
1101/2020.09.28.20203109

Roy, N., Posner, I., Barfoot, T., Beaudoin, P., Bengio, Y., Bohg, J., Brock, O., Depatie, I.,
Fox, D., Koditschek, D., et al. (2021). From machine learning to robotics: Challenges
and opportunities for embodied intelligence. arXiv preprint arXiv:2110.15245.

Saba, W. S. (2023, May). Towards Explainable and Language-Agnostic LLMs: Symbolic
Reverse Engineering of Language at Scale [arXiv:2306.00017 [cs]]. https://doi.org/
10.48550/arXiv.2306.00017
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