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Abstract

Emotion recognition in conversations (ERC) has emerged as an important research
area in Natural Language Processing and Affective Computing, focusing on accurately
identifying emotions within the conversational utterance. Conventional approaches typi-
cally rely on labeled training samples for fine-tuning pre-trained language models (PLMs)
to enhance classification performance. However, the limited availability of labeled data in
real-world scenarios poses a significant challenge, potentially resulting in diminished model
performance. In response to this challenge, we present the Multi-modal Attentive Prompt
(MAP) learning framework, tailored specifically for few-shot emotion recognition in con-
versations. The MAP framework consists of four integral modules: multi-modal feature
extraction for the sequential embedding of text, visual, and acoustic inputs; a multi-modal
prompt generation module that creates six manually-designed multi-modal prompts; an at-
tention mechanism for prompt aggregation; and an emotion inference module for emotion
prediction. To evaluate our proposed model’s efficacy, we conducted extensive experiments
on two widely recognized benchmark datasets, MELD and IEMOCAP. Our results demon-
strate that the MAP framework outperforms state-of-the-art ERC models, yielding notable
improvements of 3.5% and 0.4% in micro F1 scores. These findings highlight the MAP
learning framework’s ability to effectively address the challenge of limited labeled data in
emotion recognition, offering a promising strategy for improving ERC model performance.

1. Introduction

Nowadays, a growing number of users are engaging in multi-party conversations and ex-
pressing their opinions on social media platforms (Gluz & Jaques, 2017; Zhang et al.,
2019). This has resulted in the generation of millions of conversation pages daily, which
serve as valuable resources for understanding public sentiments and emotions. As a result,
Emotion Recognition in Conversations (ERC) has emerged as an important research area
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in the natural language processing (NLP) community in recent years, owing to its numerous
potential applications (Zhang et al., 2021b; Huddar et al., 2019). Here are some examples:
(1) ERC can be applied in mental health domains to analyze and understand emotional
states during therapeutic conversations or in online support groups (Fei et al., 2020); (2) it
can be utilized in customer service interactions to gauge customer satisfaction, detect frus-
tration and dissatisfaction, and enable personalized responses (Han et al., 2020); (3) it can
be integrated into social robots or virtual assistants to enhance their ability to understand
and respond to human emotions (Spezialetti et al., 2020); (4) it can be utilized in market
research and advertising to analyze consumer sentiments and emotional responses to prod-
ucts, services, or advertisements (Le & Vea, 2016; Ribeiro et al., 2017). This information
can guide marketing strategies, content creation, and product development.

Traditional emotion recognition (ER) focuses on identifying emotions from individual
samples, such as text documents, images, or audio recordings. It aims to classify the emo-
tional state or expression present in a single instance without considering the contextual
information or interaction dynamics. The proposed ER approaches to multi-modal emo-
tion recognition primarily focus on feature alignment and fusion. For example, Xiao et
al. (2020) presented two domain adaptation methods, the generalized domain adversarial
neural network (GDANN) and the class-aligned GDANN (CGDANN), to learn generalized
domain-invariant representations for emotion recognition. Zhang et al. (2023) presented a
multi-modal multi-task interactive graph attention network, termed M3GAT, to simulta-
neously solve the problems of multi-modal fusion and multi-task fusion. The experimental
results proved the effectiveness.

In contrast, ERC specifically targets the identification of emotions within the conversa-
tional utterances. It takes into account the dynamic nature of conversations, where emotions
can be influenced by the dialogue context, speaker interactions, and the overall discourse.
This task aims to capture and interpret the emotional dynamics that emerge during con-
versations and understand how emotions evolve and are expressed throughout the dialogue.
Unlike traditional emotion recognition, which often analyzes isolated instances, emotion
recognition in conversations involves a broader analysis of the dialogue structure, speaker
interactions, turn-taking, and the exchange of emotional information between participants.
This contextual understanding is essential for accurately identifying emotions in conver-
sational settings. The proposed ERC approaches place greater emphasis on contextual
modeling. Since conversations involve multiple interacting participants and the temporal
evolution of dialogue, methods for conversation emotion recognition consider the dialogue
history and mutual influence among participants. This contextual modeling helps under-
stand the dynamics of emotion changes, empathy, and the expression of emotions (Song
et al., 2018a; Zhang et al., 2018). In spite of their success, recent studies have brought to
light a significant limitation of Emotion Recognition in Conversations (ERC) models: their
performance is greatly reliant on the availability of an ample supply of labeled samples.
Nevertheless, owing to the intricacy and subjectivity involved in emotional understanding,
the creation and annotation of a large-scale, high-quality ERC dataset pose a challeng-
ing undertaking with substantial annotation and time-related costs. Currently, only a few
labeled multi-modal ERC datasets are in existence, such as MELD (Poria et al., 2019)
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Figure 1: (a) The fine-tuning paradigm. (b) The prompt learning paradigm.

and IEMOCAP (Busso et al., 2008). IEMOCAP comprises approximately 12 hours of au-
diovisual conversations, while MELD encompasses 1,433 multi-party conversations, totaling
around 33 hours of conversations. Despite the ongoing enlargement of Pre-trained Language
Models (PLMs), the limited size of these datasets impedes the potential advancement of
ERC tasks.

To address this issue, we propose the prompt learning paradigm for few-shot ERC.
Few-shot ERC significantly differs from traditional ERC, where the few-shot ERC involves
less training samples. Recently, with the introduction of GPT-3 (Brown et al., 2020),
which has 175 billion parameters, a new PLM-based paradigm called ”prompt learning”
has emerged. This approach enables accurate predictions by designing novel task descrip-
tions (i.e., prompt), without updating any parameters of GPT-3. Unlike the “fine-tuning”
paradigm, it does not require a large training dataset, making it more suitable for few-shot
tasks, as illustrated in Fig. 1. One widely used framework in prompt learning involves
designing a predefined template, such as this movie is [MASK] for text classification. In
this case, the classification results depend on the probabilities of the predefined label words,
such as “fantastic” or “terrible”, within the masked PLMs, namely the cloze problem. Note
that the cloze problem refers to a type of language modeling task where a portion of the
text, typically a word or a few words, is masked or removed, and the language model is
required to predict the missing content based on the surrounding context. It is utilized as
a way to train and fine-tune language models. By creating prompts with masked portions,
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the model is prompted to generate the missing content, which helps in shaping its language
generation capabilities.

Prompt learning has quickly attracted attention of both academia and industry. An
increasing number of prompt learning based approaches have been proposed to address var-
ious few-shot NLP tasks. For example, Wu & Shi (2022a) introduced an adversarial soft
prompt tuning method (AdSPT) to improve cross-domain text sentiment analysis, achieving
new state-of-the-art results. AdSPT is a technique that allows for fine-grained control over
the behavior of language models by leveraging prompts. It involves tuning the prompts
or instructions given to language models to improve their performance and control their
outputs. The goal is to find an optimal set of prompts that guide the language model
towards generating desired responses while minimizing the generation of unwanted or bi-
ased outputs. Xu et al. (2022) designed a specialization-generalization training strategy,
called match prompt, to handle question-answering tasks. Shi et al. (2022b) presented a
soft prompt-based joint learning method for cross-domain aspect term extraction. By in-
corporating external linguistic features, the proposed method could learn domain-invariant
representations between source and target domains through multiple objectives. In view
that previous prompt learning methods often used text information, Yang et al. (2023) intro-
duced a multi-modal probabilistic fusion prompt learning approach, which provided diverse
cues for multi-modal sentiment detection. However, they did not consider the acoustic or
context information. Prompt learning-based approaches have achieved state-of-the-art re-
sults in sentiment analysis and emotion recognition. Inspired by this, we argue that the
recent prompt learning-based models have not fully considered a new research problem, i.e.,
multi-modal emotional prompt learning. This raises our research question: can we design
a multi-modal prompt learning model for ERC?

To answer this question, we aim to introduce multi-modal prompt learning into the
ERC scenario and explore its potential. We propose a Multi-modal Attentive Prompt
(MAP) learning framework for few-shot emotion recognition in conversations. The MAP
framework comprises four key modules: a multi-modal feature extraction module, a multi-
modal prompt generation module, an attention selection module, and an inference module.
First, the multi-modal feature extraction module embeds texts, videos, and speeches into the
vectors, referred to as text, video, and speech tokens. Second, based on these multi-modal
tokens and contextual utterances, the multi-modal prompt generation module designs six
contextual multi-modal prompts. Third, an attention mechanism selectively fuses these
prompts to produce a weighted prompt. Finally, we feed this multi-modal prompt into
PLMs (specifically RoBERTa and obtain the emotion label (Liu et al., 2019)).

We conduct empirical experiments on two benchmark datasets, MELD and IEMO-
CAP. A wide range of state-of-the-art baselines, including text-CNN (Kim, 2014), speech-
LSTM (Graves et al., 2013), multi-modal CNN (Song et al., 2018b), attention-based bidi-
rectional GRU (BiGRU+Att) (Liu et al., 2020), DialogueRNN (Majumder et al., 2019),
DialogueGCN (Ghosal et al., 2019), MMGCN (Hu et al., 2021), BERT (Devlin et al., 2019),
EmoBERTa, XLM-T (Barbieri et al., 2022) and EmoCaps (Li et al., 2022b), are compared
with the proposed MAP model. The experimental results demonstrate the effectiveness of
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the proposed MAP model, with a margin of 3.5% and 0.4% in terms of micro F1 over the
SOTA system. Additionally, we showcase the superiority and potential of prompt learning
over fine-tuning framework through a series of sub-experiments.

1.1 Our Contributions

The main innovations of this work are as follows:

• We make the first attempt to simultaneously incorporate the contextual dependency
and multi-modal interaction into a multi-modal prompt learning model.

• We treat ERC as a cloze problem and design six multi-modal templates.

• We validate the effectiveness of the proposed model by applying it to ERC. Exper-
imental results demonstrate that the proposed model outperforms state-of-the-art
baselines.

We clarify our innovation from three perspectives in detail.

(1) The difference from other studies. The recent multi-modal emotion recognition ap-
proaches have heavily dependent on the availability of sufficient labeled samples. Meanwhile
the recent prompt learning approaches have focused on text sentiment analysis, where how
to design the multi-modal emotional prompts still needs to be explored. To this end, we
propose a novel multi-modal attentive prompt learning model to incorporate the conversa-
tional context, multi-modal information and multi-prompts into a unified framework. We
argue that our proposed model is quite different from the existing models by analyzing and
discussing the related studies (Sec. 2).

(2) The novel research question. The existing multi-modal emotion recognition ap-
proaches suffer from one major issue: the large scale datasets are always needed. However,
due to the intricacy and subjectivity of emotional understanding, creating and annotating a
large-scale, high-quality ERC dataset is a challenging endeavor with substantial annotation
and time costs. This leaves us one novel question: How to deal with few-shot emotion recog-
nition in conversations? To answer this question, we make the first attempt to proposed an
attention based multi-modal prompt learning model. This focus on few-shot learning is a
key differentiator from previous works, as it enables effective emotion recognition even with
limited labeled data.

(3) The novel proposed model. Our work introduces a novel approach for multi-modal
prompt generation, creating six manually-designed prompts that capture the diverse aspects
of conversational emotion. This multi-modal prompt generation module is an innovative
contribution, as it considers multiple modalities, such as text, visual, and acoustic inputs, to
provide comprehensive cues for emotion recognition. This approach enhances the model’s
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ability to capture nuanced emotional information in conversations. In addition, the inclu-
sion of an attention mechanism for prompt aggregation is another novel aspect of our work.
This mechanism allows the model to focus on the most relevant prompts during the emo-
tion inference process, improving the model’s performance and interpretability. We offer
extensive experiments to prove that it achieves the best performance across two datasets,
and has the fewest parameters and shortest training time. This also proves the effectiveness
of the proposed MAP model.

The rest of this paper is organized as follows. Section 2 briefly outlines the related
work. Section 3 describes the proposed multi-modal attentive prompt (MAP) learning
framework in detail. In Section 4, we report the empirical experiments and analyze the
results. Section 5 concludes the paper and points out future research directions.

2. Related Work

We review related studies on multi-modal emotion recognition (including ERC) and prompt
learning.

2.1 Early Emotion Recognition

Early studies in emotion recognition primarily focused on uni-modal content, such as text,
images, and speech (Mohammad & Turney, 2013; Saxena et al., 2020). Traditional text-
based emotion recognition methods relied on words, phrases, and their associated seman-
tics (Mohammad & Turney, 2010; Mohammad & Kiritchenko, 2015; Mohammad et al.,
2015). In the case of image-based emotion recognition, early approaches used handcrafted
visual features like SIFT, Gabor, LBP, and coupled them with traditional classifiers such
as SVM and Random Forests (Mohammad et al., 2018; Zhao et al., 2014). Speech emo-
tion recognition methods of the past extracted acoustic cues like pitch, intensity, tempo,
spectral features, and modeled them using techniques like Gaussian mixture models and
support vector machines (Mohammad, 2016).

However, this limited unimodal perspective falls short in capturing the nuances of com-
plex human sentiment. The utilization of multiple modalities offers a more comprehensive
avenue for conveying rich emotional information, providing vivid descriptions, and uncover-
ing hidden insights that text alone may not capture. Multimodal data’s interplay between
complementarity and redundancy allows for the modeling of dynamic correlations and in-
teractions across different modalities. Recent advancements in deep multimodal fusion have
paved the way for integrated modeling of linguistic, visual, and acoustic cues, promising
enhanced capabilities in understanding emotions.
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2.2 Multi-Modal Emotion Recognition

Multi-modal emotion recognition aims to determine human basic emotions, such as sadness,
surprise, happiness, by analyzing multifarious source samples, such as psychological signals,
multi-modal documents, and dialogues (Ma et al., 2023; Liu et al., 2023). It is often viewed
as a fine-grained classification task. In earlier studies, machine learning based approaches
occupied the mainstream paradigm and achieve remarkable success. For instance, Chuang
& Wu (2004) constructed a multi-modal emotion recognition framework based on speech
signals and textual documents. Rozgic et al. (2012) incorporated binary SVMs into decision
trees as tree nodes to address multi-class emotion recognition problems. Traditional machine
learning relies heavily on feature engineering, with hand-crafted features prone to missing
emotional cues or overfitting nuances of the training set. However, machine learning models
can be more interpretable, lightweight, and data-efficient than large deep neural networks,
enabling faster iteration and deployment with less dependence on massive labeled datasets.

Recently, with the advent of deep learning, CNN, RNN, and their multifarious vari-
ants have been widely used to extract multi-modal features and build multi-modal emotion
recognition framework (Li et al., 2020, 2021, 2022a; Liu et al., 2021; Zhang et al., 2021a;
Liang et al., 2023). A few representative works are: Fan et al. (2016) adopted CNN to ex-
tract appearance and motion features, and fed them into the RNN for capturing sequence
features for video emotion recognition. Kollias & Zafeiriou (2020) utilized a similar man-
ner, training a deep CNN to extract low- and mid-level features, and using RNN subnets to
make emotion predictions. Zhang et al. (2021a) proposed a multi-task learning framework
that leveraged soft attention and multi-head self-attention to solve depression and emotion
detection. Though deep neural networks can achieve high accuracy for emotion recognition,
they lack transparency and interpretability compared to machine learning, with complex
black-box models making it hard to diagnose failures or biases. However, deep learning
automatically extracts optimal features without extensive feature engineering, and can ef-
fectively model subtle emotional cues and nuances when trained on large diverse datasets. In
summary, deep learning brings performance benefits but sacrifices interpretability, heavily
relying on big data rather than human-crafted heuristics to learn representations.

Now, the era of emotion recognition has moved to emotion recognition in conversations,
due to the booming of pre-trained language models and social interaction. Emotion recogni-
tion in conversation (ERC) has become a popular research topic. First, a few conversational
datasets were proposed to support the development of ERC. The representative datasets
contain MELD, IEMOCAP, etc. For example, Jia et al. (2022) constructed a multi-modal
emotion and desire recognition dataset, called MSED. It consisted of 9,190 text-image pairs
collected from a wide range of social media resources, e.g., Twitter, Getty Image, Flickr.
Specially, they set a list of keywords with strongly desire expression based on 16 basic
desires theory, e.g., curiosity, romance, family, vengeance, etc.

Based on the conversational datasets, an increasing number of deep learning based
ERC approaches have been proposed. They used and designed different deep learning
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models to deal with the core problems. Such approaches can be categorized into three
main paradigms: RNN-based, Transformer-based, and Graph Learning-based models. RNN
based approaches aim to capture the sequential features across utterances. For example,
Majumder et al. (2019) described a DialogueRNN model that kept track of the individ-
ual party states throughout the conversation and used this information for ERC. Zhang et
al. (2019, 2021c) designed a quantum-inspired interactive network (QIN) model for conver-
sational emotion recognition and showed its effectiveness. In addition, Transformer based
approaches aim to leverage the advance of Transformer architecture to model the contextual
feature. For example, Wang et al. (2022a) proposed to mitigate multi-bias knowledge from
Transformer for emotion recognition in conversations. They proposed a series of approaches
to mitigate five typical kinds of bias in textual utterances (i.e., gender, age, race, religion
and LGBTQ+) and visual representations (i.e, gender and age). Similarly, Ma et al. (2022)
also proposed a multiview network (MVN) to explore the emotional representation of a
query from two different views, i.e., word- and utterance-level views.

With the development of graph learning, an increasing number of approaches aim to
treat words/utterances as nodes, treat their relations as edges, and propose various graph
neural networks to solve this ERC problem. For example, Zhang et al. (2021b) also de-
signed the first quantum-inspired multi-task learning framework for sarcasm detection and
emotion recognition in conversations. Ishiwatari et al. (2020) presented a relational position
encodings-based graph attention network (RGAT), which could save sequential information
reflecting the relational graph structure. Ghosal et al. (2019) treated each utterance as a
vertex and constructed a dialogue graph. Then, they fed this graph to a graph convolution
network and achieved state-of-the-art performance. Lu et al. (2020) presented an iterative
emotion interaction network, which explicitly modeled the emotion interaction between ut-
terances. Tu et al. (2022) proposed a context- and sentiment-aware graph attention network,
which attempted to capture the sentimental consistency and context information.

2.3 Prompt Learning

Prompt learning-based approaches have emerged as the mainstream paradigm, yielding
satisfactory performance in many NLP tasks. There are two kinds of prompt learning ap-
proaches: hard and soft prompt learning. Hard prompt learning approaches aim to manually
design various prompts to make the downstream task similar to language modeling. For
instance, Xu et al. (2022) designed a specialization-generalization training strategy, match
prompt, to solve the question-answering task. Yi et al. (2022) developed a contextual infor-
mation and commonsense-based prompt learning model for conversational sentiment anal-
ysis, demonstrating superior performance over state-of-the-art models. Deng et al. (2022b)
also introduced a prompt tuning method that mimicked the pre-training objective of con-
trastive language-image pre-training (CLIP). It thus could leverage the rich image and text
semantics for image emotion classification. Wang et al. (2022b) constructed a dynamic
virtual template with label words and developed a hierarchy-aware prompt tuning method
to handle text classification tasks.
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In contrast, soft prompt learning refers to a methodology that involves the use of train-
able vectors or representations to guide the generation of prompts in natural language
processing tasks. Instead of using fixed or hard-coded prompts, soft prompt learning allows
the model to learn the optimal prompts by updating the parameters during training. In soft
prompt learning, the prompts are typically represented as continuous vectors that are opti-
mized alongside other model parameters. These vectors capture the contextual information
and provide guidance to the model for generating meaningful and contextually relevant re-
sponses. By adjusting the prompt vectors through training, the model can effectively adapt
and generate appropriate responses based on the given input or task. For example, Gu et
al. (2022) proposed to pre-train prompts by adding soft prompts into the pre-training stage
to obtain a better initialization. Wu & Shi (2022a) presented an adversarial soft prompt
tuning method (AdSPT) to better model cross-domain text sentiment analysis and get new
state-of-the-art results. Huang et al. (2022) aimed to provide a better initialization, to
improve the performance of prompt learning by considering latent structure within the pre-
training data. Shi et al. (2022b) presented a soft prompt-based joint learning method for
cross-domain aspect term extraction. Specifically, by incorporating external linguistic fea-
tures, the proposed method could learn domain-invariant representations between source
and target domains via multiple objectives. Shin et al. (2020) proposed an automated
method to create prompts for a diverse set of tasks based on a gradient-guided search.
They showed that their prompts elicited more accurate factual knowledge from PLMs than
the manually created prompts. Deng et al. (2022a) presented a prompt-based fine-tuning
strategy to learn task-specific sentiment representations while preserving knowledge con-
tained in CLIP, resulting in a conceptually simple but empirically powerful framework for
supervised image emotion classification. Zhou et al. (2023) designed two consistency train-
ing strategies for prompt learning and conducted experiments on two multi-label emotion
classification datasets. The prompting method has been shown to make the language models
more purposeful in prediction by filling the cloze or prefix prompts defined.

In summary, the two aforementioned types of studies have made good progress in many
NLP tasks and inspired our work. However, to the best of our knowledge, there is a lack
of mechanisms to build a multimodal prompt learning framework. Distinct from existing
works, we make the first attempt to simultaneously incorporate contextual dependency and
multi-modal interaction into a joint prompt learning framework.

3. The Proposed Approach

In this section, we depict the architecture of the proposed MAP model, which leverages
textual, visual, and acoustic information.
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Figure 2: The overall architecture of the MAP model.

3.1 Problem Setup

Assume that a conversational emotion dataset has N multi-modal dialogues, the ith dialogue
Xi could be represented as

{
Xi =

(
Ci, U i

)
, Y i

}
, where Ci, U i, Y i represent the contextual

utterance, the target utterance and its label respectively, and i ∈ [1, 2, ..., N ]. Both the
context and target utterance consist of textual, visual and acoustic modalities, i.e., Ci =(
Ci
t , C

i
v, C

i
a

)
, U i =

(
U i
t , U

i
v, U

i
a

)
. Given a multi-modal dialogue (including the context Ci

and target utterance U i), how to determine the emotion label of the target utterance Y i.
The research problem can be defined as:

ζ =
∏
i

p
(
Y i|Ci, U i,Θ

)
(1)

where Θ represents the parameter set.

3.2 Network Description

The network of the MAP model is depicted in Fig. 2. Specially, the MAP framework con-
sists of four building blocks: multi-modal feature extraction module, multi-modal prompt
generation module, attention selection mechanism, and inference module. (1) The tex-
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tual utterance, video clip, and speech segment of the target utterance U i
m and its con-

text Ci
m are fed into their corresponding encoders to obtain their sequential embeddings,

denoted as uim and cim, respectively, where m ∈ {t, a, v}. (2) Six multi-modal prompts
P = {P1, P2, P3, P4, P5, P6} are manually designed. For example, we may put the video
information in the front of the text information to build the first multi-modal prompt, and
we can also place the speech information in the front of the text information to build the
second multi-modal prompt. The different positions will produce different contextual ef-
fects, and thus provide different contextual knowledge for emotion recognition. (3) After
initializing such prompts, an attention selection mechanism is applied to generate the at-
tention weights and obtain the weighted prompt Pemo = Attention(P1, P2, P3, P4, P5, P6).
(4) According to the prompt, we feed it into a PLM (i.e., RoBERTa, EmoBERTa, etc.),
and the PLM predicts the masked tokens based on their contextual tokens. We obtain the
emotion label based on the mapping function F (·). We will detail each component in the
following subsections. Note that we chose RoBERTa and EmoBERTa as our PLMs among
the many BERT-like models because its structure is not only relatively simple, but it can
also handle affective information.

3.3 Multi-Modal Feature Extraction

We obtain multi-modal representations of the target utterance and its context in this section.

3.3.1 Textual Utterance

For the target utterance (denoted as TTar), suppose there are n terms (words) in the ith

target utterance, i.e., U i
t = {w1, w2, ..., wn}. Each term w ∈ Rdt will be initialized using the

pre-trained BERT vectors (Devlin et al., 2019). Then, the word vectors are forwarded to a
bi-directional Gated Recurrent Unit (BiGRU) to capture the contexts and get the refined
representation of textual utterance:

uit = BiGRU(BERT ([w1, w2, ..., wn])) (2)

Here, we clarify the motivations are: (1) Although BERT can provide contextual repre-
sentations of individual sentences, it may not fully capture the interplay and dependencies
between words in the different contexts, since it was pre-trained using other datasets. By
using a GRU, we can fine-tune a sequential model to incorporate the previous context and
the target utterance in a dynamic and adaptive manner. We take a “pre-trained+fine-tune”
way to obtain the utterance representation without re-training all the parameters of BERT.
(2) BERT and GRU have different strengths and capabilities. By combining the strengths
of both models, we can potentially achieve a more powerful representation.
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To model the contextual information (denoted as TCon), we take the contextual utter-
ances appearing in a fixed-window of length L into account. We will tune the length L to
find the optimal contextual information, i.e., C =

{
C1
t , C

2
t , ..., C

L
t

}
. Assume that the ith

context is composed of k words, i.e., Ci
t = {w1, w2, ..., wk}. We also use BERT to obtain the

pre-trained word embeddings, i.e., Hci = [hw1
t , hw2

t , ..., hwk
t ], and thus feed them to the Bi-

GRU for learning the feature representation of each contextual utterance, i.e., [c1t , c
2
t , ..., c

L
t ],

which can be formulated as:

cit = BiGRU(BERT (Ci
t)) (3)

Note that the default window length is set to L = 1. But we will try different window
lengths in the experiments, i.e., Sec. 4.6.

3.3.2 Visual Utterance

For the ith video in the dataset (denoted as VTar), we assume that it contains n clips,
i.e., Uv

i = {v1, v2, ..., vn}. To ensure the effectiveness of visual representation, we choose to
employ the pre-trained visual language model (ResNet50 as default in this work) to extract
features from each video clip and produce the corresponding features. Then, the clip vectors
are forwarded to a Transformer encoder, composed of six stacked encoder layers, to capture
the long-range context within the video. Each layer in the encoder consists of a multi-
head self-attention module (MSA) and a multilayer perceptron (MLP). The output can be
expressed as:

uiv = Transformer(ResNet({v1, v2, ..., vn})) (4)

In order to preserve the positional information, the visual feature vector uiv is added by
a learnable positional embedding up that is randomly initialized, i.e., uiv = uiv ⊕ up. For
the contexts (denoted as VCon), we adopt a similar manner approach to obtain the vector
representation, civ.

3.3.3 Acoustic Utterance

For the ith acoustic counterpart (denoted as ATar), we assume that it contains n frames, i.e.,
Ua
i = {a1, a2, ..., an}. To ensure the effectiveness of acoustic representation, we choose to

employ the VGGish network pre-trained on Audio Set, which is a large-scale labeled audio
dataset released by Google in 2017, to extract vocal features. The network outputs a 128-
dimensional feature vector for each temporal frame. To capture the contextual knowledge,
we feed the features through a BiGRU network to obtain the acoustic representation of the
target speech:

uia = BiGRU(V GGish([a1, a2, ..., an])) (5)

836



Multi-Modal Attentive Prompt Learning for Few-shot ERC

To model the contextual acoustic information (denoted as ACon), we choose to use
the same pre-trained model and the BiGRU network (refer to Eq.5) to obtain the context
representation, cia.

3.4 Prompt Generation

In prompt engineering, the input sentences are formalized as the natural language tem-
plate, and the emotion recognition task is treated a cloze task. The template provides a
background description of the current task, and label words are the high-probability words
predicted by PLMs in the given context. emotion labels are linked to the label words through
a mapping function. In this work, we denote the target multi-modal utterance as U i

m, its
contexts as Ci

m and the output label as Y i ∈ {anger, disgust, fear, joy, neutral, sadness,
surprise}. We suggest that an effective approach is to place the contextual utterances into
the former parts of the prompt template and put the target utterance into the latter parts.
In this manner, we can bridge the gap between the task of ERC and a cloze task and build
the mapping between them. Consequently, one can use the pre-trained knowledge from
PLMs to obtain the emotion labels of the target utterance by filling in the blank.

The procedure of multi-modal prompt generation is detailed here. Given a PLM M, i.e.,
RoBERTa, and its vocabulary V, we design six prompts that consist of different template
functions T (·) to convert the target utterance U i and its context to six prompt inputs
P = T (U i

m, Ci
m) with the [MASK] token. In order to construct a multi-modal prompt, our

approach is to leverage visual and acoustic knowledge as the auxiliary information. Since
the textual, visual, and acoustic features serve the same utterance, one natural choice is to
combine them and build a multi-modal prompt. Additionally, considering the importance of
contextual information, we incorporate contextual utterances into the multi-modal prompt.
We intuitively construct six prompts as the default setting. We have tried different numbers
of prompts in the experiments (please refer to Sec. 4.8).
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More specifically, these are:

P1 : {Speech :[ACon][ATar]. V ideo : [V Con][V Tar]. T ext : [TCon][TTar].

Overall, the emotion is [MASK].}
P2 : {V ideo :[V Con][V Tar]. Speech : [ACon][ATar]. T ext : [TCon][TTar].

Overall, the emotion is [MASK].}
P3 : {V ideo :[V Con][V Tar]. Speech : [ACon][ATar]. T ext : [TCon][TTar].

Which emotion is expressed? [MASK].}
P4 : {Speech :[ACon][ATar]. V ideo : [V Con][V Tar]. T ext : [TCon][TTar].

Which emotion is expressed? [MASK].}
P5 : {Speech :[ATar]. V ideo : [V Tar]. T ext : [TCon][TTar].

Which emotion is expressed?[MASK].}
P6 : {Speech :[ATar]. V ideo : [V Tar]. T ext : [TCon][TTar].

Overall, the emotion is [MASK].}

The actual prompt inputs consist of the embeddings of {textual, visual, acoustic} target
utterance, the embeddings of {textual, visual, acoustic} contextual utterances, the embed-
dings of the [MASK] token and the embeddings of two positional tokens [CLS] and [SEP].
Therefore, the actual prompt inputs can be represented as: [e ([CLS]) , e ({P1, P2, ..., P6}) , e ([MASK])
,e ([SEP ])], where e (·) represents the embedding functions. Now, we have obtained six
multi-modal prompts, which will be used to calculate the final weighted prompt.

We clarify that the different positions create distinct contextual effects, providing varied
contextual knowledge for emotion recognition. Here are some explanations about why all
possible orders and combinations are not taken into account: (a) Feasibility and resource
limitations in experimental design: In the context of multi-modal prompt learning, con-
sidering factors such as data availability and computational resources, it is not feasible to
consider all possible orders and combinations. Therefore, in our experimental design, we
selected a representative set of variations that cover different orders and combinations of
speech, video, and text information. This allows us to conduct experiments within practi-
cal constraints while still obtaining meaningful and interpretable results. (b) By selecting
variations with different orders, we facilitate the model’s learning of interactions and de-
pendencies between different modalities in the multi-modal input. This diversity aids in
improving the model’s generalization performance and its ability to learn richer feature
representations. However, due to practical considerations and experimental needs, it is not
possible to consider all possible orders and combinations.

3.5 Multi-Prompt Attention

The aforementioned six prompts are designed based on manual effort and guesswork, po-
tentially limiting their effectiveness due to unsuitable prompts. To address this issue, we
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introduce a self-attention mechanism to control the influence of the multi-modal prompts set
and produce a new fused prompt by calculating the attention scores from the six prompts.

Specifically, we randomly select a prompt from the set of the prompts {P1, P2, ..., P6}
as the initial prompt Pemo, and set it to be learnable. Then, we regard it as Query, i.e.,
Qk = WqPemo and treat the set of six hard prompts as Keys and V alues, i.e., Kj = WkPj ,
Vj = WvPj , where j ∈ [1, 2, ..., 6]. This results in:

αj = softmax

(
QkKj√

dk

)
Vj

= softmax

(
WqPemo ·WkPj√

dk

)
WvPj

Pemo =

6∑
j=1

αjPj

(6)

where Wq, Wk and Wv are weights. The attention-based prompt is fed through subsequent
layers of the PLM M. The PLM M implicitly models the inter-modal interaction and
generates the prediction for the [MASK] token. The inference process is detailed in the
following section.

3.6 Emotion Inference

In the inference process, we utilize a PLM (e.g., RoBERTa, EmoBERTa, etc.) and a
mapping function (also known as a verbalizer, denoted as F ) to predict the emotion of the
utterance. The PLM predicts the answer that is most likely to appear at the position of
[MASK], based on the embeddings of the input prompt Pemo. The mapping function is used
to map the answer to the emotion labels (i.e., anger, disgust, fear, joy, neutral, sadness,
surprise). It bridges the gap between the conversational input space and the prompt input
space. The mapping approach in our work involved manually designing answers for each
label based on synonyms. While the selection of synonyms is somewhat intuitive, which are
collected from the Oxford English Dictionary or Thesaurus.com1 which is world’s largest
online thesaurus. For example, we collect about 55 synonyms for “happy” emotion, 40
synonyms for “sadness” emotion, 45 synonyms for “fear” emotion, and so on. The collecting
process is that we take the emotion label word as the input, query it on the website and
collect the retrieval results. The synonyms list can be see Appendix.

For example, we set V(sad|unhappy| heartbroken| sorrow) = sadness, V(cheerful|delight|joyful)
= joy. Given the answer l, the mapping function outputs the corresponding emotion label.
Let the vocabulary of PLM to be V, and Y i be the emotion label. The inference process
can be expressed as:

P
(
Y i|U i, Ci, θ,Pemo

)
=

eM(F (l)|Pemo)∑
l′ e

M(F (l′ )|Pemo)
(7)

1. https://www.thesaurus.com/
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Where M (F (l)|Pemo) represents the predicted probability of the label word l appearing at
the position of [MASK]. F (l) maps the predicted word l into one emotion label Y i. With
this, the emotion prediction is obtained.

3.7 Model Training

We use cross entropy with L2 regularization as the loss functions for training and minimize
it with different weights.

J = − 1

N

∑
i

∑
m

Y m
i logŶ m

i + λr ∥θ∥2 (8)

where Yi denotes the ground truth and Ŷi is the predicted emotion distribution. i is the
utterance index, and m is the class index. λr is the coefficient for L2 regularization. We
use Adam to compute the gradients and update all the parameters. To avoid overfitting,
we employ a dropout strategy.

4. Experiments

In this section, we conduct extensive experiments to evaluate the performance of the pro-
posed MAP model.

4.1 Experimental Settings

Datasets. MELD2 (Poria et al., 2019) and IEMOCAP3 datasets (Busso et al., 2008) are
selected as our datasets. MELD contains 13,708 utterances from 1433 dialogues of Friends
TV series. It annotates each utterance with one of seven emotions (anger, disgust, fear, joy,
neutral, sadness or surprise). It contains a total of approximately 33 hours of dialogues.

IEMOCAP is a multi-modal database of ten speakers involved in two-way dyadic conver-
sations. Each utterance is annotated using one of the following emotion categories: anger,
happiness, sadness, neutral, excitement, frustration, fear, surprise, or others. It contains
approximately 12 hours of audio-visual recordings from 5 mixed gender pairs of actors. Each
conversation was about 5 minutes long. There are 8425 utterances in total.

MELD and IEMOCAP are multi-modal ERC datasets that involve all the textual, visual,
and acoustic information. The dataset details are provided in Table 1.

2. https://affective-meld.github.io/
3. http://sail.usc.edu/iemocap/
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Dataset Emotion Category
No. of Utterances
Train Dev Test

MELD

anger 1109 153 345
disgust 271 22 68
fear 268 40 50
joy 1743 163 402

neutral 4710 470 1256
sadness 683 111 208
surprise 1205 150 281

IEMOCAP

anger 804 # 158
happiness 377 # 127
sadness 592 # 191
neutral 1124 # 357
fear 572 # 129

surprise 542 # 104
other 2486 # 859

Table 1: Training, validation, and test data distribution in the datasets.

Evaluation metrics. Considering the imbalanced sample problem, we choose the
precision, recall, micro F1, and balanced accuracy as the evaluation metrics.

We clarify the reason to choose micro F1 as the evaluation metrics in our experiment is
that micro F1 is more suitable to deal with the imbalanced datasets. Micro F1 and Macro
F1 are two common metrics, and often applied to multi-class classification problem. Here
are their explanations from sklearn package (which is the most useful and robust library for
machine learning in Python). Micro F1 calculates F1 globally by counting the total true
positives, false negatives and false positives. Macro F1 calculates F1 for each label, and
finds their unweighted mean. Macro F1 does not take label imbalance into account. So
micro F1 reflects the accuracy on imbalanced data better than macro F1. Based on this,
the micro-F1 will adequately capture this class imbalance and take the imbalance problem
into consideration. In our experiment, both datasets, i.e., MELD and IEMOCAP, are
imbalanced datasets, where the number of each class is not equal. In addition, the balanced
accuracy is the average between the sensitivity and the specificity, which measures the
average accuracy obtained from both the minority and majority classes. Choosing balanced
accuracy as an evaluation metric is particularly beneficial when dealing with imbalanced
datasets, as it ensures a more fair and comprehensive assessment of the model’s performance
across all classes. In addition, all baselines are evaluated using the same metric, so the
performance gap among them is fair.

Hyperparameter Setting. The textual, visual, and acoustic inputs are initialized
with BERT, ResNet, and VGGish, respectively. All weight matrices are given their initial
values by sampling from a uniform distribution U(−0.1, 0.1). The optimal learning rate is
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set to 4e-7 for MELD dataset and 6e-7 for the IEMOCAP datasets. The batch size is set
to 1 and the number of epochs is set to 50 for MELD and 150 for IEMOCAP. The dropout
rate is set to 0.1 for MELD and 0.5 for IEMOCAP.

4.2 Baselines

We present and compare our model with a number of baselines. They are listed as follows.

(1) Text-CNN: we apply a deep convolutional neural network (CNN) on each utterance
to extract the textual features and put them through the softmax classifier to get the
decision.

(2) Speech-LSTM: we forward the acoustic counterpart represented by VGGish, into
an LSTM to obtain the emotion classification.

(3) Multi-modal CNN (Zhang et al., 2020): we adopt two deep CNNs to extract
textual and visual features and use the LSTM to extract acoustic features. Then, we merge
them and feed the multi-modal features into the softmax function for emotion recognition.

(4) BiGRU+Att: we use two separate bidirectional GRUs to extract the textual and
acoustic features and a CNN-BiGRU to extract video features. It forwards the concatenated
multi-modal representation through a softmax function for emotion detection.

(5) SVM+BERT (Zhang et al., 2022): we use BERT to produce the utterance
embeddings and use an SVM classifier to obtain the emotion prediction.

(6) DialogueRNN (Majumder et al., 2019): we implement a famous sequence-
based ERC model, which uses three GRUs to model the speaker, the context, and the
emotion behind the preceding utterances.

(7) DialogueGCN (Ghosal et al., 2019): we implement a state-of-the-art graph
learning-based ERC model, which models the conversation using two-layer graph neural
networks.

(8) XLNet (Yang et al., 2019): the XLNet baseline with the original segment recur-
rence and vanilla self-attention, initialized with the pre-trained parameters of the XLNet-
base.

(9) MMGCN (Hu et al., 2021): we report a state-of-the-art baseline. MMGCN
incorporates textual and visual knowledge into a unified ERC model.

Three open source emotion recognition baselines are listed below:

842



Multi-Modal Attentive Prompt Learning for Few-shot ERC

MELD dataset Model
Evaluation metric

Precision Recall F1 Accuracy

Emotions

Text-CNN 0.520 0.548 0.532 0.548
Speech-LSTM 0.481 0.503 0.493 0.497

Multi-modal CNN 0.536 0.547 0.543 0.547
BiGRU+Att 0.556 0.537 0.536 0.541
SVM+BERT 0.611 0.629 0.622 0.619
DialogueRNN 0.559 0.581 0.570 0.576
DialogueGCN 0.580 0.584 0.581 0.590

XLNet 0.609 0.617 0.617 0.620
MMGCN - - 0.587 -
EmoCaps - - 0.640 -
XLM-T 0.601 0.634 0.615 0.633

EmoBERTa 0.761 0.757 0.757 0.757
Text-MAP 0.600 0.628 0.628 0.628
Text&Video 0.602 0.624 0.624 0.624
Text&Speech 0.590 0.615 0.615 0.615

(RoBERTa) MAP 0.602 0.629 0.629 0.629
(EmoBERTa) MAP 0.784 0.785 0.784 0.785

IEMOCAP dataset Model
Evaluation metric

Precision Recall F1 Accuracy

Emotions

Text-CNN 0.534 0.564 0.538 0.564
Speech-LSTM 0.421 0.533 0.448 0.533

Multi-modal CNN 0.518 0.546 0.521 0.546
BiGRU+Att 0.550 0.547 0.546 0.554
SVM+BERT 0.657 0.649 0.641 0.649
DialogueRNN 0.619 0.631 0.627 0.634
DialogueGCN 0.640 0.644 0.641 0.653

XLNet 0.609 0.611 0.613 0.607
MMGCN - - 0.662 -
EmoCaps - - 0.718 -
XLM-T 0.546 0.546 0.545 0.546

EmoBERTa 0.658 0.666 0.667 0.666
Text-MAP 0.611 0.594 0.594 0.594
Text&Video 0.588 0.590 0.590 0.590
Text&Speech 0.416 0.492 0.492 0.492

(RoBERTa) MAP 0.615 0.631 0.631 0.631
(EmoBERTa) MAP 0.715 0.721 0.721 0.719

Table 2: Performance of all the baselines on the MELD and IEMOCAP datasets. The
best-performing system is indicated in bold.

(10) EmoCaps (Li et al., 2022b): we report a state-of-the-art baseline. EmoCaps
extracts emotion vectors through the Emoformer structure and obtains the emotion classi-
fication results from a context analysis model.
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(11) EmoBERTa 4: it a simple yet expressive scheme of solving the ERC (emotion
recognition in conversation) task. By simply prepending speaker names to utterances and
inserting separation tokens between the utterances in a dialogue, it can learn intra- and
inter- speaker states.

(12) XLM-T (Barbieri et al., 2022)5: it is designed to understand and classify
emotions, which supervised fine-tunes RoBERTa on multi-modal sentiment datasets.

One uni-modal and two bi-modal baselines are listed below:

(13)Text-MAP: we only design many textual prompts instead of using the multi-modal
prompts and making emotional inferences.

(14) Text&Video: we add visual information to build the bi-modal prompts and make
emotional inferences.

(15) Text&Speech: the acoustic information is used to design bi-modal prompts and
construct the fused attentive prompt.

4.3 Results on the MELD Dataset

The first set of experiments is conducted on the MELD dataset, which contains more samples
than IEMOCAP. The experimental results are shown in Table 2.

From Table 2, we observe that Speech-LSTM performs poorly, indicating that relying
solely on acoustic features is insufficient for the emotion label analysis. In contrast, Text-
CNN performs better, as expected, because textual information often plays a more critical
role in emotion detection. The introduction of the attention mechanism allows BiGRU+Att
to outperforms Text-CNN and Speech-LSTM by modeling the context information and as-
sign different weights to contexts. Multi-modal CNN surpasses BiGRU+Att by combining
text, video, and speech information, demonstrating the importance of multi-modal fusion in
emotion detection. The multi-modal representation provides more complementary knowl-
edge than the uni-modal representation. Two well-known ERC baselines, DialogueRNN and
DialogueGCN, show significant progress over the aforementioned baselines. Both consider
contextual utterance and the speaker information, make their models more complex and
capable of capturing the inter-speaker and intra-speaker dependencies. But neither of them
exceeds 60% in terms of F1. MMGCN performs very poor and gets comparable results
against DialogueGCN.

Incorporating pre-trained language models into ERC allows SVM+BERT to outper-
form DialogueGCN by a large margin of nearly 7.0% in terms of micro-F1 score. This

4. https://huggingface.co/tae898/emoberta-large
5. https://github.com/cardiffnlp/xlm-t
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significant improvement can be attributed to BERT’s robust capacity for contextual repre-
sentation.Similarly, XLNet surpasses DialogueRNN and DialogueGCN as it learns intra- and
inter-speaker states and context to predict the current speaker’s emotion in a pre-trained
language modeling manner. XLM-T achieves the similar performance against XLNet, as it
is mainly fine-tuned for multilingual sentiment analysis dataset, which may not adaptable
to multi-modal sentiment analysis. EmoCaps performs well due to its effective use of multi-
modal dependencies and speaker information. It achieves F1 result of 64.0%, significantly
higher than the above-mentioned baselines. It can effectively preserves the sequential order
of utterances and enables consecutive utterances to share information. EmoBERTa per-
forms the best, and achieves the best classification performance among all the baselines.
Because it can learn intra- and inter- speaker states and context to predict the emotion of
a current speaker.

Finally, Text-MAP performs well compared to XLNet and MMGCN. However, Text&
Video and Text&Speech show slightly decreases, suggesting our proposed multi-modal
prompts need further refinement to better model multi-modal complementary. The pro-
posed RoBERTa based MAP model takes the first step towards building a tri-modal prompt
learning model, achieving the third best classification results across all metrics and sig-
nificantly outperforms all the baselines. Using MAP, F1 increases by 0.6% compared to
SVM+BERT. Notably, we do not fine-tune the pre-trained language model. In addition,
in view that RoBERTa is not a SOTA emotional PLM, we also propose a EmoBERTa
based MAP model, which treats EmoBERTa as the base model. The improved EmoBERTa
based MAP model achieves the best classification performance, and defeats all the baselines.
Compared with the EmoBERTa model, our MAP model obtains significant improvements
of 3.56% and 3.69% in terms of F1 and accuracy scores. Overall, we attribute the main
improvements to both the multi-modal prompt and the attention mechanism, ensuring that
the MAP model can effectively adjust to downstream tasks. A detailed ablation study is
provided in subsection 4.5.

4.4 Results on the IEMOCAP Dataset

Table 2 presents the performance comparison of the MAP model with the baselines on the
IEMOCAP dataset, another widely used dyad conversational emotion dataset.

From Table 2, we can first observe the poor performance of Speech-LSTM. Text-CNN
works better than Speech-LSTM. Multi-modal CNN can produce improved results over
Speech-LSTM but fails to improve the performance over Text-CNN. One possible reason
is that the simple feature-level fusion method cannot effectively capture the correlation
between multi-modalities. It is necessary to develop an alternative multi-modal fusion ap-
proach. BiGRU+Att outperforms Speech-LSTM due to the introduction of an attention
mechanism. Unlike their performance on MELD, XLNet, XLM-T and DialogueRNN per-
form much worse on IEMOCAP, with a sharp drop in classification performance. The
reason is that the dark visual document cannot provide adequate information for multi-
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modal feature fusion. Another possible reason is that IEMOCAP provides fewer training
samples, so they cannot find the global optimum to fine-tune their pre-trained language
models. DialogueGCN outperforms them where it reaches 64.1% and 65.3% in terms of F1
and accuracy. Furthermore, EmoBERTa and MMGCN perform better than the above mod-
els, where EmoBERTa performs the better than MMGCN. The state-of-the-art approach
EmoCaps performs quite well, and gain the highest scores. It significantly outperforms all
of the above baselines (71.8% vs 66.7% of EmoBERTa). This proves the effectiveness of the
“fine-tuning” paradigm.

Finally, aiming to establish a multi-modal prompt learning framework, our proposed
RoBERTa based MAP model outperforms XLNet, DialogueRNN and XLM-T by 2.9%, 0.6%
and 15.7% in terms of the F1 score. However, our proposed RoBERTa based MAP model
obtains comparable results against DialogueGCN and SVM+BERT. But our MAP does
not need to train the model. The RoBERTa based MAP model is worse than EmoBERTa,
MMGCN and EmoCaps. There are two reasons: (1) we do not train the RoBERTa model,
and only use its pre-trained knowledge; (2) our designed multimodal prompts are not as
effective on IEMOCAP as they are on MELD. Because significant interference occurs in
our prompts due to the noise in visual information. When the visual information is full
of noise, significant interference occurs in our prompts. To fill this gap, we have adopted
the EmoBERTa as the base model to build an EmoBERTa based MAP model. This new
MAP model obtains an improvement of 8.1% in terms of F1 score over EmoBERTa. This
proves that the effectiveness of multi-modal prompt learning. In addition, the proposed
EmoBERTa based MAP model outperforms EmoCaps with a slight improvement of 0.4%
(72.1% vs 71.8%). It achieves the state-of-the-art results on IEMOCAP dataset. Moreover,
it has fewer parameters and needs less training time (see Sec. 4.7). Hence, it can be
more suitable for few-shot or real-time emotion recognition. In addition, we can also use
stronger PLMs as the base model to further enhance the performance. This demonstrates
its potential in ERC.

4.5 Ablation Study

In order to explore the contribution of different components of the proposed MAP model,
we design several submodels by removing one component at a time: (1) No-Atten which
removes the attention mechanism from the MAP model and randomly selects one of the six
prompts as the final prompt; (2) No-Prompt which removes all of the multi-modal prompts
and merges the multi-modal representation; (3) Uni-modal Prompt which removes the visual
and acoustic information from the MAP model and only keeps the textual prompts.

The experimental results are shown in Table 4. We can observe that the MAP model
achieves the best performance on both datasets, indicating that all the components con-
tribute to the classification performance. We then notice that the No-Prompt model per-
forms the worst on both datasets, which proves that the multi-modal prompt has the most
significant contribution to the classification performance. The No-Atten and Uni-modal
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Dataset Model
Metric

F1 Accuracy

MELD

EmoBERTa 0.757 0.757
SVM+EmoBERTa 0.763 0.760

MAP 0.784 0.785

IEMOCAP

EmoBERTa 0.667 0.666
SVM+EmoBERTa 0.684 0.685

MAP 0.721 0.719

Table 3: Comparison between different EmoBERTa based models.

Prompt models achieve the second-worst results, demonstrating that attention and multi-
modal information also play essential roles in improving performance. However, No-Atten
performs worse than Uni-modal Prompt, suggesting that the attention mechanism con-
tributes more than the multi-modal information. This supports our previous argument
that the proposed multi-modal fusion is too naive to model the inter-modal complementar-
ity. So when the visual information is full of noise, the effect of the multi-modal prompt will
be small. Overall, the ablation study suggests that a) an effective prompt learning model
could help the pre-trained language model better ”understand” multi-modal documents; b)
the attention mechanism is helpful in selecting prompts; (c) a refined multi-modal fusion
approach is needed.

In addition, we have improved SVM+BERT by relpacing BERT with EmoBERTa. The
target is to offer a fair comparison between our MAP+EmoBERTa and other EmoBERTa
based models. The experimental results are shown in Table 3. We can notice that the
proposed MAP model outperforms the new SVM+EmoBERTa baseline on both datasets
with a significant improvement of 2.7% and 4.9% (78.5% vs 76.0%; 71.9% vs 68.5%). This
comparison offers a more holistic view of our model’s capabilities and its potential to out-
perform baselines by leveraging domain-specific LLMs. Our model is designed as a flexible
and versatile plug-and-play plugin framework that can seamlessly integrate with different
pre-trained language models. By including EmoBERTa, we illustrate that our MAP method
can effectively harness the power of stronger, emotion-specific LLMs, offering improved re-
sults with shorter training time. This adaptability and compatibility with various language
models are key advantages of our proposed framework.

4.6 The Impact of the Window Length

In MAP, the default window length is set to L = 1. To find the optimal contextual informa-
tion, we have tried different window lengths ranging from {1, 2, 3}. We incorporate different
contexts into the multi-modal prompts according to different window lengths. The experi-
mental results are shown in Table 5. ”L=2” means treating the previous two utterances as
the context. ”L=3” means using the past three contexts to learn contextual representation.

847



Liang, Tu, Du, & Xu

Dataset Model
Metric

F1 Accuracy

MELD

No-Atten 0.627 0.627
No-Prompt 0.607 0.607

Uni-modal Prompt 0.628 0.628
MAP 0.629 0.629

IEMOCAP

No-Atten 0.588 0.588
No-Prompt 0.529 0.529

Uni-modal Prompt 0.594 0.594
MAP 0.631 0.631

Table 4: Ablated MAP for both MELD and IEMOCAP datasets.

Dataset Context Size
Sentiment

F1 Accuracy

MELD
L=1 0.629 0.629
L=2 0.627 0.627
L=3 0.601 0.601

IEMOCAP
L=1 0.631 0.631
L=2 0.530 0.530
L=3 0.509 0.509

Table 5: Effect of context range.

From Table 5, we observe that MAP with one context performs the best for emotion
recognition on MELD and IEMOCAP. This indicate that (1) modeling one context is suf-
ficient in prompt learning, and (2) modeling too many historical utterances can introduce
noise that may negatively impact performance. MAP with two contexts obtains better
results than MAP with three contexts, with improvements of 2.1% and 3.6% in terms of
F1 score. MAP with three contexts performs the worst among the three baselines. This
implies that it is an excellent choice to consider one contextual utterance in multi-modal
prompt learning.

4.7 Parameter Comparison and Complexity

Since prompt learning requires fewer parameters and less parameter updating compared
to previous approaches, we present and compute the number of parameters and the run-
ning time of the proposed MAP model and another five state-of-the-art baselines. The
experimental results are shown in Table 6.

From Table 6, we see that MAP, with only 1.2M parameters, displays clear advantages
in training efficiency over the larger models. The largest model, XLNet (380M parameters),
unsurprisingly takes the longest to train - 28.5 hours on MELD, and 18.4 on IEMOCAP.
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Dataset Baselines Parameters Time (hour)

MELD

XLNet 380M 28.5
SVM+BERT 110M 6.2

XLM-T 85M 4.4
EmoBERTa 116M 6.4
EmoCaps 15M 3.9
MAP 1.2M 2.2

IEMOCAP

XLNet 380M 18.4
SVM+BERT 110M 4.5

XLM-T 85M 4.0
EmoBERTa 116M 4.5
EmoCaps 15M 2.6
MAP 1.2M 1.4

Table 6: Comparison of training time.

This reflects its immense complexity coming from the multi-layer transformer architecture.
However, this high capacity enables XLNet to achieve state-of-the-art performance on many
other NLP tasks. SVM+BERT and EmoBERTa, with 110M and 116M parameters respec-
tively, take 4-6 hours to train. Their mid-size transformer architectures balance complexity
and training costs. EmoCaps at 15M parameters sees training times of 2.6-3.9 hours on
two datasets. This demonstrates the efficiency benefits of capsule network-based models
compared to transformers.

Clearly, MAP provides the best combination of training efficiency and architecture sim-
plicity. With 302x fewer parameters than XLNet, it trains over 10x faster on both datasets.
Its ultra-low parameter count enables drastically faster and cheaper training, while pre-
serving strong modeling performance as evidenced by competitive results on these datasets.
The design philosophy of prompt learning behind MAP demonstrates how future model
development can priorities parameter efficiency without sacrificing effectiveness.

4.8 The Impact of the Number of Prompts

In this subsection, we aim to explore the optimal number of prompts. In this work, the
default setting is six multi-modal prompts. We will try different numbers of prompts from
one to ten, and the experimental results are shown in Figure 3. While it is also possible
to consider the number of prompts as a hyperparameter and tune it during the experimen-
tal setup, we opted for a fixed number of prompts for two reasons: (a) introducing the
number of prompts as a hyperparameter would significantly increase the search space for
optimization. With a fixed number of prompts, we can focus on exploring other important
factors and variations in the experimental design. (b) Adding the number of prompts as a
hyperparameter could introduce additional complexity to the model and the training pro-
cess. Keeping it fixed simplifies the experimental setup and reduces the risk of overfitting
or model instability.

849



Liang, Tu, Du, & Xu

Figure 3: The impact of the number of prompts.

From Figure 3, we observe that the MAP model achieves the best classification perfor-
mance when the number of prompts is five on MELD and seven on IEMOCAP. When the
number of prompts is six or seven on MELD and six or eight on IEMOCAP, the MAP classi-
fication performance reaches the second-highest values for both datasets. As the number of
prompts increases, the performance of the MAP model exhibits an overall trend of initially
rising and then declining. This indicates that having either too many or too few prompts
limits MAP from obtaining its maximum advantage. When the number of prompts is too
small, the classification task cannot be effectively converted to a cloze task. When there
are too many prompt templates, more noise is introduced. When the number of prompt
templates reaches six, seven or eight, MAP strikes a balance between introducing knowledge
and noise.

4.9 The Effect of other PLMs

In this work, we use the RoBERTa model as the default for predicting emotion labels.
Although RoBERTa has apparent advantages in long-range dependency modeling, we are
interested in exploring the potential of other strong PLMs. Due to resource and compu-
tational limitations, we treated the choice of PLM as a fixed configuration rather than
tuning it as a hyperparameter in the paper. There are several reasons for this approach.
Firstly, we aim to provide a detailed analysis and comparison specifically for Roberta as
the baseline model. Secondly, treating the choice of PLM as a hyperparameter may require
larger-scale resources and computations that go beyond our computation scope. As a re-
sult, we also experiment with six widely used state-of-the-art PLMs: BERT, Transformer,
GPT-2, EmoBERTa, XLM-T, Flan-T5. We re-run the experiments with different PLMs
and obtain the experimental results, as shown in Table 7. Here, we clarify when referring
to the “standard Transformer”, we mean the basic architecture of the Transformer model
without any specific modifications or pre-training objectives. We acknowledge that BERT,
GPT-2, EmoBERTa and Flan-T5 (Chung et al., 2022) are built on the transformer architec-
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Dataset PLMs
Metric

F1 Accuracy

MELD

Transformer 0.610 0.607
BERT 0.627 0.629
GPT-2 0.631 0.633

EmoBERTa 0.784 0.785
XLM-T 0.648 0.648
Flan-T5 0.612 0.628
RoBERTa 0.629 0.629

IEMOCAP

Transformer 0.614 0.611
BERT 0.622 0.619
GPT-2 0.631 0.633

EmoBERTa 0.721 0.719
XLM-T 0.548 0.545
Flan-T5 0.471 0.494
RoBERTa 0.631 0.631

Table 7: The effect of different PLMs.

ture. However, each of these models has specific modifications and pre-training objectives
that differentiate them from the basic Transformer.

From Table 7, we can see that the classification performance of Transformer is the worst
on MELD since it is the basic pre-trained language model and has the least amount of
parameters. BERT outperforms the basic Transformer model but performs worse than
RoBERTa. The reason is that RoBERTa is an extension of BERT and can be seen as
a refined version of BERT, which was trained on a larger dataset. Hence, it learns more
knowledge than BERT. Given that GPT-2 and XLM-T have a significant number of param-
eters, both achieve better classification performance than the other three models. Despite
that Flan-T5 overcomes Transformer, but still performs poor on two datasets. One possible
reason is that The Flan-T5 model might have been trained on different types of tasks or
datasets, which may not be well-suited for sentiment analysis. Sentiment analysis requires
sensitivity to emotions, and datasets from different domains may have varied ways of ex-
pressing sentiments, which could negatively impact Flan-T5’s performance. In contrast,
EmoBERTa based MAP achieves the best performance, and significantly outperforms other
PLMs and MMGCN, XLNet, EmoCaps. In addition, it also achieves the best performance
on IEMOCAP datasets, and achieves the second best scores among all the baselines in
Table 2. This shows the effectiveness of the propsoed multi-modal prompt learning and
also proves that our proposed MAP has great potential and can gain better performance
by using a stronger PLM.
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Figure 4: The performance of few-show learning.

4.10 Few Shot Learning

In order to prove the few-shot learning ability of our proposed MAP model, we randomly
collect 20 samples from the dataset, where 13 samples are treated as the training set, the
remaining 7 samples are treated as the testing set. We re-run the EmoBERTa, EmoCaps
model and two MAP models. More specifically, we will re-train EmoBERTa and EmoCaps
on this small dataset. As for the MAP models, we can obtain the results directly by taking
the prompt as the input. The results are shown in Figure 4. We can notice that EmoCaps
and EmoBERTa drops very fast, where their F1 scores are 0.296 and 0.287. The reason
is that the EmoCaps and EmoBERTa models overfit on this small dataset. However, our
proposed two MAP models outperform them by a large margin, where both of their F1
scores are higher than 40%. This shows that the proposed MAP models are well suitable
to this few-shot scenario.

4.11 Error Analysis

In this section, we present a few misclassification cases to explore the potential limitations
of the proposed MAP model. Note that the case study is perform based on the RoBERTa
based MAP model. After careful selection, we highlight four cases here, as each represents
a type or scenario where the MAP struggles.

The first occurs when the speaker conceals his facial expression and utters neutral words.
In this situation, the MAP model makes the wrong decision as it cannot incorporate the
visual information. Thus, the decision relies solely on the textual words. The second
example demonstrates that the MAP has difficulty distinguishing between similar emotions,
such as disgust and surprise. Both emotions are expressed through exaggerated expressions
and a changing tone, leading to incorrect predictions.
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Figure 5: A few misclassification examples.

The third case presents a peculiar phenomenon with two different scenarios in one
utterance. The same speaker in two scenarios expresses different emotions, such as anger
toward to a friend and then joy upon seeing a cute girl, all within one utterance. The
MAP predicts one emotion correctly but misses the other one. The fourth case represents
sarcastic scenarios, where the speaker conveys a sarcastic attitude by combing positive
words and tones with negative facial expressions. As a result, the MAP model makes
the wrong decision, suggesting that further refinement is needed to deal with the sarcastic
phenomenon.

5. Ethical Considerations

In this section, we briefly present the ethical considerations associated with each step of the
development process, e.g., task, method and data (Mohammad, 2022).

Our research on multi-modal prompt learning for few-shot emotion recognition in con-
versations (ERC) is guided by ethical considerations throughout the study. We recognize
the importance of ethical conduct in data collection, model development, and potential so-
cietal impact. The following points highlight the ethics considerations associated with our
work:

Task. Emotion recognition in conversations involves analyzing and interpreting indi-
viduals’ emotions, which can touch upon personal experiences, traumas, or sensitive topics.
Researchers must consider the potential emotional impact on participants during data col-
lection, annotation, and analysis. It is essential to prioritize the emotional well-being and
mental health of the individuals involved and to handle the data and findings with sensitivity
and care.
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Emotion recognition in conversations often involves the use of automated systems and
machine learning algorithms. It is important to acknowledge the limitations and poten-
tial biases of these systems and consider the ethical implications of their decisions. Trans-
parency, explainability, and ongoing evaluation of the system’s performance can help ensure
that the automated analysis is fair, reliable, and accountable.

Data. (1) Data Collection: The data used in our study are sourced from publicly
available benchmark datasets, namely MELD and IEMOCAP. These datasets have been
previously released and annotated with consent from the participants. We acknowledge
the efforts of the original data collectors in obtaining necessary permissions and ensuring
compliance with ethical guidelines.

(2) Privacy and Anonymity: The data we used for model training and evaluation are
anonymized and do not contain personally identifiable information. We are committed to
preserving the privacy and confidentiality of individuals whose conversations are represented
in the dataset.

(3) Informed Consent: The original data collection processes for MELD and IEMOCAP
involved obtaining informed consent from the participants. However, as researchers using
pre-existing datasets, we did not directly interact with the participants nor had the oppor-
tunity to obtain additional consent. We respect the consent provided by the original data
collectors and comply with their ethical protocols.

Method. (4) Bias Mitigation: We acknowledge the potential presence of biases in the
labeled data used for training our model. While we have made efforts to minimize biases
during the data collection and annotation processes, it is important to note that biases may
still exist, reflecting societal and cultural influences present in the data. We encourage future
researchers to address bias mitigation techniques and ensure fairness in the development
and deployment of emotion recognition models.

(5) Responsible Use: As researchers, we advocate for the responsible use of emotion
recognition technology. While our proposed method aims to enhance few-shot emotion
recognition performance, we emphasize the need for ethical considerations in real-world
applications. It is essential to deploy such models in ways that respect user privacy, avoid
harmful consequences, and consider potential biases and limitations.

(6) Transparency and Explainability: As our MAP framework leverages deep learning
techniques, ensuring transparency and explainability is important. Model transparency
enables stakeholders to understand how the system works, how prompts are generated, and
how the model arrives at its predictions. Providing explanations for model outputs can
foster trust and enable users to understand and question the system’s decisions.

By incorporating these ethics considerations into our research, we aim to ensure trans-
parency, accountability, and responsible practices in the field of emotion recognition in
conversations.
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6. Conclusions and Future Work

Emotion Recognition in Conversation (ERC) presents a fascinating and complex challenge in
the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI). Most cur-
rent research has predominantly focused on fine-tuning pre-trained language models (PLMs)
using a plethora of labeled samples to improve classification performance. In contrast, we
propose a Multi-modal Attention Prompt (MAP) learning framework for few-shot ERC.
By creating multiple multi-modal prompts that integrate both multi-modal and contextual
information, our model effectively addresses the few-shot ERC problem. Our comprehen-
sive experiments demonstrate the efficacy of our proposed model, outperforming current
state-of-the-art ERC models and showcasing significant improvements in micro F1 scores.
Moreover, our experiments highlight the potential and flexibility of multi-modal prompt
learning in ERC tasks. In this work, we focus on the manual design of prompts instead
of constructing learnable soft prompts, which lays the foundation for future exploration in
this direction.

As we progress, our plans encompass the development of more efficient and sophisticated
prompts, as well as an extension of the application of the MAP model to other multi-modal
tasks. These tasks may include sentiment analysis, sarcasm detection, and multi-modal
question answering. Moreover, we aspire to delve into automated methods for prompt
generation and fusion, which hold the potential to further enhance our model’s performance
and make significant contributions to the broader field of Emotion Recognition and Natural
Language Understanding.

It’s important to note that both manual and automatic prompt generation approaches
possess their distinct advantages and limitations. Manual prompts, crafted by human de-
signers, bring expertise and domain knowledge to ensure the quality and relevance of the
prompts. Nevertheless, this manual process can be time-consuming and may not scale ef-
fectively to accommodate large datasets or diverse domains. On the other hand, automatic
prompt generation offers the advantages of adaptability and scalability, enabling the model
to generate prompts tailored to specific contexts or tasks. However, the effectiveness of
automatic prompt generation methods hinges upon the quality of the training data and the
learning algorithms utilized.

In our forthcoming work, we have set the objective of exploring and developing both
manual and automatic prompt generation approaches, aiming to enhance prompt efficiency
and sophistication. This involves refining and optimizing the design of manual prompts
based on empirical insights and user feedback. Additionally, we will investigate techniques
for automated prompt generation to adaptively create prompts that improve model perfor-
mance. Our ultimate goal is the ongoing enhancement of prompt quality and effectiveness
for emotion recognition in conversational contexts.
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Furthermore, it’s worth noting that the proposed MAP method has the potential for
application to more potent large language models, such as LLaMA/LLaMA 2. However,
this direction will be reserved for our future work.

Limitations. There are also a few limitations. (1) The experiments conducted in this
study were primarily focused on two benchmark datasets, MELD and IEMOCAP. It is
important to consider that the performance and generalizability of the MAP framework
to other datasets. (2) The MAP framework utilizes six manually-designed multi-modal
prompts. While these prompts were constructed based on intuition and considerations of
different modalities, there is a possibility that other prompt variations or combinations
could potentially yield different results. The exploration of alternative prompt designs or
automated prompt generation methods could further enhance the framework’s performance.
It is essential to acknowledge these limitations to provide a clear context for the proposed
model and to inspire our further investigation and improvements in the field of emotion
recognition in conversations.
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Appendix. The Synonyms List

The detailed synonyms list is shown in Table 8. We will map the synonyms into the
corresponding labels.

Emotions Synonyms

Anger anger, angry, annoyed, furious, bitter, acrimony, animosity, annoyance,
antagonism, displeasure, enmity, exasperation, fury, hatred, impatience,
indignation, ire, irritation, outrage, passion, rage, resentment, temper,
violence, chagrin, choler, conniption, dander, disapprobation, distemper,
gall, huff, infuriation, irascibility, irritability, miff, peevishness, petu-
lance, pique, rankling, soreness, stew, storm, tantrum, tiff, umbrage,
vexation
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Disgust disgust, distaste, antipathy, aversion, dislike, distaste, hatred, loathing,
repulsion, revulsion, abhorrence, abomination, detestation, hatefulness,
nausea, objection, repugnanc, revolt, satiation, satiety, sickness, surfeit,
nauseation, nauseousness

Fear fear, alarm, angst, anxiety, apprehension, awe, concern, despair, dismay,
doubt, dread, horror, jitters, panic, scare, suspicion, terror, unease, un-
easiness, worry, abhorrence, agitation, apprehensivenes, aversion, con-
sternation, cowardice, creeps, discomposure, disquietude, distress, faint-
heartedness, fearfulness, foreboding, fright, funk, misgiving, nightmare,
phobia, presentiment, qualm, reverence, revulsion, timidity, trembling,
trepidation, recreancy

Joy joy, happy, joyful, amusement, bliss, charm, cheer, comfort, delight, ela-
tion, glee, humor, pride, satisfaction, wonder, alleviation, animation,
delectation, diversion, ecstasy, exultation, exulting, felicity, festivity,
frolic, fruition, gaiety, gem, gladness, gratification, hilarity, indulgence,
jewel, jubilance, liveliness, luxury, merriment, mirth, prize, rapture, rav-
ishment, refreshment, rejoicing, revelry, solace, sport, transport, trea-
sure, treat, good humor, pride, joy, regalement

Neutral neutral, neuter, litmusless, disinterested, evenhanded, inactive, indiffer-
ent, nonaligned, nonpartisan, unbiased, uncommitted, undecided, un-
aligned, unconcerned, unprejudiced

Sadness sad, sadness, anguish, grief, heartache, heartbreak, hopelessness, melan-
choly, misery, mourning, poignancy, sorrow, blahs, bleakness, bummer,
cheerlessness, dejection, despondency, disconsolateness, dispiritedness,
distress, dolefulness, dolor, downer, dysphoria, forlornness, funk, gloomi-
ness, letdown, listlessness, moodiness, mopes, mournfulness, sorrowful-
ness, tribulation, woe, blue devils, blue funk, broken heart, dismals,
downcastness, grieving, heavy heart, the blues, the dumps

Surprise surprise, surprised, surprising, amazement, astonishment, awe, bewilder-
ment, consternation, curiosity, disappointment, jolt, miracle, revelation,
shock, wonder, abruptness, attack, bombshell, disillusion, epiphany, eu-
reka, fortune, godsend, incredulity, kick, marvel, miscalculation, phe-
nomenon, portent, precipitance, precipitation, unexpected, unforeseen

Table 8: A list of all synonyms
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