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Abstract

We introduce Boolean Observation Games, a subclass of multi-player finite strategic
games with incomplete information and qualitative objectives. In Boolean observation
games, each player is associated with a finite set of propositional variables of which only
it can observe the value, and it controls whether and to whom it can reveal that value. It
does not control the given, fixed, value of variables. Boolean observation games are a gen-
eralization of Boolean games, a well-studied subclass of strategic games but with complete
information, and wherein each player controls the value of its variables.

In Boolean observation games, player goals describe multi-agent knowledge of variables.
As in classical strategic games, players choose their strategies simultaneously and therefore
observation games capture aspects of both imperfect and incomplete information. They
require reasoning about sets of outcomes given sets of indistinguishable valuations of vari-
ables. An outcome relation between such sets determines what the Nash equilibria are. We
present various outcome relations, including a qualitative variant of ex-post equilibrium.
We identify conditions under which, given an outcome relation, Nash equilibria are guaran-
teed to exist. We also study the complexity of checking for the existence of Nash equilibria
and of verifying if a strategy profile is a Nash equilibrium. We further study the subclass of
Boolean observation games with ‘knowing whether’ goal formulas, for which the satisfaction
does not depend on the value of variables. We show that each such Boolean observation
game corresponds to a Boolean game and vice versa, by a different correspondence, and
that both correspondences are precise in terms of existence of Nash equilibria.

1. Introduction

Reasoning about strategic agents is an important problem in the theory of multi-agent
systems and game-theoretic models and techniques are often used as a tool in such analysis.
Strategic games (Osborne & Rubinstein, 1994) is a classic and well-studied framework that
models one-shot multi-player games where agents make their choice simultaneously. It
forms a simple and intuitive formalism to analyse and reason about the strategic behaviour
of agents. From the perspective of computer science and artificial intelligence, one of the
main drawbacks of strategic games is that the explicit representation of the payoff (or
utility) function is exponential in the number of players and the strategies available for
each player. In many applications, compact representation of the underlying game model
is highly desirable.

Various approaches have been suggested to achieve compact representation of games and
these mainly involve imposing restrictions on the payoff functions. For instance, constrain-
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ing the payoff functions to be pairwise separable (Janovskaya, 1968; Cai & Daskalakis, 2011)
results in the well-studied class of games with a compact representation, called polymatrix
games. Additively separable hedonic games (Aziz & Savani, 2016) form another subclass of
strategic games with pairwise separable payoff functions which can be used to analyse coali-
tion formation in multi-agent systems. It is also possible to achieve compact representation
by explicitly restricting the dependency of payoff functions to a “small” number of other
agents (or neighbourhood) as done in graphical games (Kearns, Littman, & Singh, 2001).

An alternative approach to imposing quantitative constraints on payoffs is to restrict
the payoffs to qualitative outcomes which are presented as logical formulas. For example,
“extensive” games played on graphs where the goal formulas can specify the evolution of play
with a combination of temporal and epistemic specifications. Although originally defined
as two-player perfect information games motivated by questions in automata theory and
logic, these models are now sophisticated to reason about multi-player games and imperfect
information (Chatterjee, Doyen, Henzinger, & Raskin, 2007; Apt & Grädel, 2011; Gutierrez,
Murano, Perelli, Rubin, & Wooldridge, 2017). Boolean games (Harrenstein, van der Hoek,
Meyer, & Witteveen, 2001), a subclass of strategic games with complete information where
objectives are expressed as Boolean formulas, is also a well-studied framework with such
qualitative outcomes.

In Boolean games, each player controls a disjoint subset of propositional variables where
their strategies correspond to choosing values for these variables and each player’s goal is
specified by a Boolean formula over the set of all variables. While the model was originally
defined to analyse two-player games, the framework has been extended in many directions.

Multi-player, non-zero-sum Boolean games are studied in (Harrenstein, 2004; Bonzon,
Lagasquie-Schiex, Lang, & Zanuttini, 2006). In (Harrenstein et al., 2001; Harrenstein, 2004)
Boolean games are modelled as imperfect information games by taking the uncertainty over
the other player’s actions as an information set, as in (van Benthem, 2001). In (Dunne &
van der Hoek, 2004; Bonzon et al., 2006; Dunne & Wooldridge, 2012) the computational
properties of Boolean games are adressed, in (Bonzon, Lagasquie-Schiex, & Lang, 2009)
graphical dependency structures for Boolean games and their implications for various struc-
tural and computational properties, and in (Ianovski & Ong, 2014) mixed strategy Nash
equilibria and related computational questions. The issue of equilibrium selection is consid-
ered in (Ågotnes, Harrenstein, van der Hoek, & Wooldridge, 2013a). Iterated Boolean games
(Gutierrez, Harrenstein, & Wooldridge, 2015; Gutierrez, Harrenstein, Perelli, & Wooldridge,
2016) model repeated interaction between players with temporal goals specified in linear
time temporal logic (LTL). Partial ordering of the run-time events in terms of a dependency
graph on propositions is studied in (Bradfield, Gutierrez, & Wooldridge, 2016).

Epistemic Boolean games, wherein goal formulas may be epistemic, were proposed in
(Ågotnes, Harrenstein, van der Hoek, & Wooldridge, 2013b; Herzig, Lorini, Maffre, &
Schwarzentruber, 2016). Both works combine the control of variables with the observation
of variables (or formulas), where some of this is strategic and some is given with the game.
This hybrid setting allows the authors to continue to analyse these epistemic Boolean games
as complete information strategic form games. Realizing epistemic objectives depends on
the valuation of variables resulting from strategic action.

In this paper, we introduce Boolean observation games as a qualitative model to analyse
and reason about a subclass of strategic games with incomplete information. In Boolean
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observation games, players control whether and to whom they reveal (announce) the value
of propositional variables that can only be observed by them. This constitutes a multi-
player game model with concise representation where players have (qualitative) epistemic
objectives. It is incomplete information because realizing the objectives depends on a given
fixed valuation that the players cannot control. Players do not know what that valuation is
and therefore do not know what game they play. Realizing epistemic objectives depends on
the unknown valuation of variables that is independent from strategic action. (We should
note that such incomplete games of imperfect information can also be modelled as complete
games of imperfect information by assuming an initial random move of a player ‘nature’
determining the valuation.)

Since Boolean observation games define a subclass of strategic games, they form an ideal
framework to analyse interactive situations that incorporate aspects of both imperfect as
well as incomplete information games. Please consider the following examples.

Example 1 (A West Side Story). Tony and Maria (or was Romeo and Juliet? or Shanbo
and Jingtai?) are in love with each other. But they have not declared their love to each
other yet. This is risky business, as they are both uncertain about the feelings of the other
one. Surely, given that they both love each other, their objective is to get to know that. But
they consider it possible that the other person does not love them, in which case they might
prefer not to declare their love. Their personalities are different in that respect. What Tony
wants to know, depends on how his feelings (being in love / not being in love) relate to the
other person’s: if they match, he wants the other person to know, otherwise, he doesn’t.
Whereas what Maria wants to know only depends on the other person’s feelings: if the other
one is in love, she wants the other one to know her true feelings and otherwise not.

Given their state of mind and their personalities, should they declare their love to each
other?

Let Tony be player 1 and Maria be player 2, and let p1 represent ‘Tony is in love’ and
p2 represent ‘Maria is in love’. Propositions p1 and p2 are both true and remain so forever
after. They cannot be controlled. The objectives (goals) denoted γi for player i, and where
Kipj means ‘player i knows pj’, are:

γ1 = γ2 = p1 ∧ p2 → K1p2 ∧K2p1 ∧
p1 ∧ ¬p2 → K1¬p2 ∧ ¬K2p1 ∧
¬p1 ∧ p2 → ¬K1p2 ∧ ¬K2¬p1 ∧
¬p1 ∧ ¬p2 → ¬K1¬p2 ∧K2¬p1

They each have two strategies: declare their feelings (revealing the value of pi), or not.
We succinctly explain that in this game, whatever the facts are, there is a strategy profile
in which both players win by satisfying their goal formulas, but that they can never know
that they win. It is not so clear whether there (hopefully) is an equilibrium strategy profile
allowing them to declare their love to each other. As p1 and p2 are true, it is an equilibrium
when they both announce that, as K1p2 ∧ K2p1 is then true and they both win (the other
three strategy profiles result in both losing, including another equilibrium namely when both
don’t declare). But Tony considers it possible that ¬p2 in which case announcing p1, and
Maria’s behaviour being equal, goal K1¬p2 ∧ ¬K2p1 will fail. In that case he should have
kept his mouth shut to have them win. Given the uncertainty over the game he has to reason
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about not two but four strategies for Maria: depending on whether she is in love or not,
whether she would show her feelings or not. What he will do given this information set
of two indistinguishable outcomes, also depends on his risk aversity. If he’s an optimist,
he might still go for it. But if he’s a pessimist, maybe better not. Maria’s considerations
are not dissimilar, but recall that she has a different personality (the goals are a different
function from their value of pi, in other words, permuting all occurrences of 1 and 2 in the
goal results in a different goal). Example 11 on page 321 will reveal it all.

Example 2 (A game of pennies that do not match). Consider two players Odd and Even
both having a penny. They also both have a dice cup wherein they put their penny, shake the
cup, and then put it on the table and watch privately whether their penny is heads or tails.
Now they decide whether to inform the other player of the result, or not. If they both do or
if they both don’t, Even wins. So, Even wins if either 2 players know or 0 players know, so
that one might therefore say that their state of knowledge is ‘even’. Otherwise, Odd wins.
For the outcome it only matters whether they know that the penny is heads or tails, it does
not matter whether it is heads or tails. What should they do?

We let Odd be player 1 and Even be player 2, and we let p1 represent ‘Odd’s penny is
heads’, whereas p2 stands for ‘Even’s penny is heads’. The goals are therefore (where Kw ipj
abbreviates Kipj ∨Ki¬pj and means ‘player i knows whether pj):

γ1 = Kw1p2 ↔ ¬Kw2p1

γ2 = Kw1p2 ↔ Kw2p1

On first sight it seems quite straightforward what they should do, as the outcome does not
depend on the valuation of p1 and p2. If Odd and Even both announce the result of their
throw with the penny, Odd would then have done better not to make that announcement.
But if that were to have happened, Even would have done better not to announce either.
And so on. There is no equilibrium. Or is there? Yes, there is. And it is pure. Example 12
on page 321 will reveal it all.

Our framework of Boolean observation games clearly builds upon (Ågotnes et al., 2013b;
Herzig et al., 2016) but a main difference is that these are complete information games
whereas ours are incomplete information games. Thus we have very different strategies.
Players do not control the values of variables, but they control whether they reveal the fixed
values of variables that only they can observe. In that respect our framework also builds on
the public announcement games of (Ågotnes & van Ditmarsch, 2011; Ågotnes, van Benthem,
van Ditmarsch, & Minica, 2011). They only allow strategies that are public announcements
wherein the same information is revealed to all players. However, they permit announcing
any epistemic formula, not merely propositional variables. A more detailed comparison
with all these approaches is only possible after having given our framework in detail and is
therefore in a later Section 3.3.

Our games are strictly qualitative and thus abstract from truly Bayesian approaches
(Harsanyi, 1968) with probabilities. To determine equilibrium we compare information
sets, called ‘expected outcomes’. As the expected outcome may not be a value and the
relation may not be a total order, our work is therefore in ordinal game theory (Durieu,
Haller, Quérou, & Solal, 2008; Cruz & Simaan, 2000; Amor, Fargier, & Sabbadin, 2017).
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Our Contributions. We analyse structural and computational properties of Boolean
observation games. We define Boolean observation games as incomplete and imperfect in-
formation games, a novel perspective in Boolean games. We show that Boolean observation
games form a fragment of strategic games with compact representation. We determine
equilibria based on four different profitable deviations from information sets, namely de-
fined as: the worst outcome is better, the best outcome is better, the expected outcome
is better, and the outcome without uncertainty is better (the outcome is better even if all
information sets are singleton, so that the game is one of complete information). We also
provide existence results for such equilibria, which highly depends on what is considered a
profitable deviation. We identify various fragments of Boolean observation games including
one where your goal may be to keep others ignorant but not to keep yourself ignorant,
the self-positive goals, and another one where the goals are ‘knowing whether formulas’ of
which the realization does not depend on the valuation. The latter we call knowing-whether
games. We provide an embedding of the standard Boolean games into a fragment of the
knowing-whether games, and we also provide an embedding of the knowing-whether games
into the Boolean games. Employing these embeddings we show that the knowing-whether
games correspond to Boolean games in terms of existence of equilibrium outcomes. We also
provide complexity results for the natural questions of verification and checking of emptiness
of equilibrium outcomes in Boolean observation games, for most of the profitable deviations
considered, and stretching the results as much as possible to also include fragments with
ignorance goals. An overview of these complexity results is found in the conclusions in
Table 3.

Overview of Contents. Section 2 provides technical preliminaries needed to define
Boolean observation games, that are then defined in the subsequent Section 3, of which
the final Subsection 3.3 compares our proposal to other epistemic Boolean games. Section 4
presents the correspondence between Boolean games and Boolean observation games. Sec-
tion 5 provides various results for the existence of Nash equilibria and Section 6 contains
the results on the computational complexity of determining whether a strategy profile is an
equilibrium, and whether equilibria exist.

2. Preliminaries

In this section we introduce an auxiliary notion that is a complete information strategic
game, which is played with strategies that are epistemic actions, that has epistemic for-
mulas as goals and for which we propose a greatly simplified epistemic logic, and where
outcomes are the truth values of those goals. Boolean observation games, that are incom-
plete information strategic games with more complex strategies and outcomes, will then be
defined in the next section. The logic is simple in order to ensure a compact representation
allowing to obtain complexity results comparable to those for Boolean games. Some logical
details that are fairly elementary but that might distract from the game theoretical content
that is our focus, are deferred to the Appendix.

2.1 Strategies Consisting of Players Revealing Observations

Let N = {1, . . . , n} be a finite set of players i and P a finite set of (propositional) variables
such that (Pi)i∈N defines a partition of P . The set Pi is the set of variables pi observed by
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player i (that is, of which player i, and only player i, observes the value). A valuation is a
subset v ⊆ P , where pi ∈ v means that pi is true and pi /∈ v means that pi is false. The set
P(P ) of all valuations is denoted V .

A strategy for player i is a function si : N → P(Pi) that assigns to each player j the
set si(j) ⊆ Pi of variables that player i reveals (announces) to player j. We require that
si(i) = Pi. Let Si denote the set of all strategies of player i. A strategy profile is a member
s of S = S1 × · · · × Sn. The set Pi(s) = {pj ∈ P | pj ∈ sj(i)} consists of the variables
revealed to i in s. As si(i) ⊆ Pi, Pi ⊆ Pi(s). For i ∈ N , we denote the n-tuple s as (si, s−i)
where s−i represents the (n− 1)-tuple of the strategies of other players. Strategy s∅i is such
that for all j ∈ N with j 6= i, si(j) = ∅. This means that player i does not reveal anything
to anyone. Strategy s∀i is such that for all i, j ∈ N , si(j) = Pi. This means that player i
reveals everything and to everyone.

Given i ∈ N and strategy profile s, the observation relation ∼si on V is defined as, for
v, w ∈ V :

v ∼si w iff v ∩ Pi(s) = w ∩ Pi(s).

Observation relation ∼si encodes the informative effect of s. For ∼s∅i we write ∼i. This is the

initial observation relation. We further note that Pi(s
∀) = V for any player i, so that ∼s∀i

is the the identity relation =. A ∼si equivalence class, defined as [v]si := {w ∈ V | w ∼si v}
(where [v]s

∅
i is denoted [v]i), is also called an information set (of player i given valuation v

and observation relation ∼si ).
Inasfar as strategies consist of each player i selecting a subset P ′i of her variables Pi,

these are like the strategies in Boolean games. However we interpret this differently: player
i does not make the variables in P ′i true, but reveals the value of the variables in P ′i
according to a fixed valuation v. Another departure (or generalization) from Boolean games
is that different variables are revealed to different agents. This is because we felt that more
interesting game theoretical results could be obtained for such a generalization, and because
more interesting communicative scenarios could then be treated with the game theoretical
machinery.

Example 3. We assume a strategy profile to take place in some instantaneous, synchronous,
fashion, such as, when s1(2) = {p1, q1}, s1(3) = {p1, q1}, and s1(4) = ∅, player 1 informing
player 2 and player 3 that p1 and q1 are both true, and such that player 4 observes this
without being party to the message content (for example, 1 whispering to 2 and 3). In other
words, player 4 knows that player 1 informs player 2 and player 3 whether p1 and q1, but
player 4 remains uncertain of the value of p1 and q1, so does not know that 1 informs 2 and
3 that p1 and q2.1

Now consider s′1 that is like s1 except that s1(4) = {p1, q1} as well. This is the public
announcement of p1 and q1 by player 1 to all players.

What if for example s′′1(2) = {p1} but s′′1(3) = {p1, p2}? And what about s2, s3 and s4?
This cannot be done instantaneously. But we can ensure independence: all players commit

1. In a different semantics for strategies, less informative to the players, each player only learns what
variables have been revealed by others to herself, and what variables she reveals to others. Applied to
Example 3, this would also leave player 4 uncertain whether player 1 has informed player 2 and player
3. See Appendix A.3.
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to their si before they execute it, and not after they see what variables are revealed to other
players before it is their turn to reveal. Instead of whispering we can all have prepared closed
envelopes adressed to all others on which is written for example, ‘from player 1 to player 2:
contains the truth about p1 and p2’. All envelopes are collected blindly and then put on the
table for all to see and are then handed out.

Such forms of communication are known as semi-public announcement (van Ditmarsch,
2002), see Appendix A.2 on dynamic epistemic logic for details.

2.2 Goals that are Epistemic Formulas

The language of epistemic logic is defined as follows, where i ∈ N and pi ∈ Pi.

LK 3 α := pi | ¬α | α ∨ α | Kiα

Here, ¬ is negation, ∨ is disjunction, and Kiϕ stands for ‘player i knows ϕ.’ Other proposi-
tional connectives are defined by abbreviation, and also K̂iα := ¬Ki¬α (player i considers
α possible), and Kw iα := Kiα ∨ Ki¬α (player i knows whether α). The members of LK

are goals and may as well be called, suiting our purposes formulas.
The following fragments of LK also play a role, where i, j ∈ N and pi ∈ Pi.

LB 3 α := pi | ¬α | α ∨ α
LKnnf 3 α := pi | ¬pi | α ∧ α | α ∨ α | Kiα | K̂iα
L+ 3 α := pi | ¬pi | α ∧ α | α ∨ α | Kiα
LKw 3 α := Kw jpi | ¬α | α ∨ α
LKw
nnf 3 α := Kw jpi | ¬Kw jpi | α ∨ α | α ∧ α

The language LB of the Booleans is the fragment of LK without Ki modalities. In the
language LKw of knowing whether formulas (Kw formulas) the constructs Kw jpi play the
role of propositional variables. The fragments LKnnf and LKw

nnf are those of the negation normal
form (nnf) of respectively LK and LKw , where the language L+ of the positive formulas
is the fragment of LKnnf without K̂i modalities (corresponding to a universal fragment of
first-order logic). Note that LKw and LKw

nnf are really propositional languages, not modal
languages. A goal is guarded if it has shape γi = Kiα.

Apart from the above fragments yet another fragment plays a role in our contribution,
namely that of the self-positive goals. The self-positive goal formulas are defined as Lself+ :=⋃
j∈N L

j+, where each Lj+ is given by the following BNF, wherein i, k ∈ N and k 6= j.

Lj+ 3 αj ::= pi | ¬pi | αj ∧ αj | αj ∨ αj | Kjαj | Kkαj | K̂kαj

Here, αj is the goal for player j. Note that L+ is a fragment of Lj+, namely the fragment
where all occurrences of Kk are positive, and that Lj+ is a fragment of LKnnf , namely the
fragment wherein all occurrences of Kj are positive. In a self-positive goal for agent j, j’s
objective is to (get to) know others’ variables and others’ knowledge and ignorance,
although other players may either know or remain ignorant of j’s knowledge. This implies
that j’s goal also cannot be for others to know j’s ignorance. A larger number of com-
municative scenarios seem to have self-positive goals than merely positive goals: it seems
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fairly typical that you wish others to remain ignorant even when you are only interested in
obtaining (factual) knowledge.

The inductively defined semantics of LK formulas are relative to a valuation v and a
strategy profile s, where i ∈ N and pi ∈ Pi.

v, s |= pi iff pi ∈ v
v, s |= ¬α iff v, s 6|= α
v, s |= α1 ∨ α2 iff v, s |= α1 or v, s |= α2

v, s |= Kiα iff w, s |= α for all w such that v ∼si w

For v, s∅ |= α we write v |= α. This is a bit sneaky: by definition this represents what
players know after the strategy profile is executed wherein nobody reveals anything, but we
can therefore just as well let it stand for what players initially know, before anything has
been revealed.

We let s |= α denote “for all v ∈ V , v, s |= α,” and |= α denote “for all s ∈ S, s |= α”. In
our semantics, Kipi, Ki¬pi, and Kw ipi are always true (equivalent to the trivial assertion
>). We therefore informally assume that they do not occur in goal formulas.

We note that our epistemic semantics is not the usual one for the epistemic language,
interpreted on arbitrary Kripke models, but a greatly simplified epistemic semantics ded-
icated to reason about strategies that are joint revelations of observed variables. We do
not even use the word ‘model’. And we do not allow announcements (revelations) of other
information than variables. In Appendix A.2 we show how (valuation, strategy) pairs in-
duce multi-agent Kripke models. All these simplifications are in order to obtain a smooth
comparison with Boolean games and with comparable complexities, unlike the higher com-
plexities common in multi-agent epistemic reasoning.

We continue with some elementary properties of this simple logical semantics, in the
form of propositions.

Proposition 4. Each formula in LK is equivalent to a formula in LKnnf . Similarly, each
formula in LKw is equivalent to a formula in LKw

nnf .

Proof. This well-known result in modal logic for LK is shown by induction on formula
structure, using the equivalences ¬¬α↔ α, ¬(α∨β)↔ (¬α∧¬β) and ¬Kiα↔ K̂i¬α. For
LKw , as this is essentially a propositional and not a modal language, we only need to use
the first equivalence.

Proposition 5. For all ϕ ∈ LKw , valuations v, and strategy profiles s: v, s |= ϕ iff s |= ϕ.

The basic but lengthy proof of this proposition is in Appendix A.1. Prop. 5 says in
other words, that if v, s |= ϕ for some v ∈ V , then v, s |= ϕ for all v ∈ V .

Proposition 6. For any α ∈ LKw , |= α↔ Kiα.

Proof. Let valuation v and strategy profile s be given.
Assume v, s |= α. Then from Prop. 5 it follows that for all w ∈ V , w, s |= α. Therefore,

in particular, w, s |= α for all w ∼si v, which is by definition v, s |= Kiα.
Now assume v, s |= Kiα. From v ∼si v and the semantics of knowledge now directly

follows v, s |= α.
As v and s were arbitrary, we have shown |= α↔ Kiα.
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As a consequence each formula in the fragment Kw ipj | ¬α | α ∨ α | Kiα is equivalent
to a formula in LKw , in other words, knowledge can then be eliminated. This explains why
we defined the fragment LKw without an inductive clause for knowledge.

Knowledge cannot generally be eliminated from a language with knowing whether vari-
ables. For example, Anne (1) may know whether Bill (2) passed the exam (p2), but Bill
may be uncertain whether she knows. So we have Kw1p2∧¬K2Kw1p2. Props. 5 and 6 (and
the subsequent Prop. 7) do not hold for knowing whether fragments on arbitrary Kripke
models.

Proposition 7. For all i, j, k ∈ N : |= Kw iKw jpk.

Proof. Formula Kw iKw jpk is by definition equivalent to KiKw jpk ∨ Ki¬Kw jpk. From
Prop. 6 it follows that this is equivalent to Kw jpk ∨ ¬Kw jpk which is a tautology.

Therefore, in our very simple epistemic logic it is common knowledge whether a player
knows a variable. This reflects the dynamics of revealing variables. Suppose all players hold
cards named p1, q1, p2, . . . on the back side and the value 0 or 1 on the front (face) side.
You may not know that your neighbour has shown to your other neighbour that the value
of the card p1 is 1 (true). But you know whether your neighbour has shown card p1 to your
other neighbour. You saw it happen.

2.3 Pointed Boolean Observation Games

A pointed Boolean observation game (pointed observation game) is a pair (G, v), denoted
G(v), where v ∈ V and where G is a triple (N, (Pi)i∈N , (γi)i∈N ), where all γi ∈ LK . The
players’ strategies in the pointed observation game are the strategies si ∈ Si. The players’
goals in the pointed observation game are the γi ∈ LK . Given i ∈ N , the outcome function
ui : V × S → {0, 1} of a pointed observation game is defined as:

ui(v, s) = 1 if v, s |= γi and ui(v, s) = 0 if v, s 6|= γi.

A strategy profile s is a Nash equilibrium of G(v) iff for all i ∈ N and s′i ∈ Si we have
ui(v, s) ≥ ui(v, (s′i, s−i)). That is, no player has a profitable deviation from s in G(v), which
would therefore be a s′i ∈ Si such that ui(v, s) < ui(v, (s

′
i, s−i)). Observe that a player

can only make a profitable deviation from s if her goal is not satisfied in s. Let NE (G(v))
denote the set of Nash equilibria of G(v).

The pointed observation game is an auxiliary notion, matching the intuition that after
revealing variables a player wins when her goal has become true. The game is one of
complete information because the valuation is known to you, the reader. But the valuation is
typically not known to the players. It already uses the parameters of the Boolean observation
game that we will now define in the next section.

Example 8. We recall Example 1. We summarily describe a pointed Boolean observation
game and its equilibria, where a fuller development is only given in Example 11. Consider
pointed game G(v) with G = ({1, 2}, ({p1}, {p2}), ({γ1, γ2}) where γ1, γ2 are as in Example 1,
and where valuation v = {p1, p2} (both are in love). The strategies are to reveal nothing or
to reveal all, that is: s∅1, s∀1, s∅2, and s∀2.
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The strategy profile (s∀1 , s
∀
2) is an equilibrium strategy profile of the pointed game G(v),

with outcome 1 for both players. This is the only way to make K1p2 ∧K2p1 true. However,
both players not announcing their variable is also an equilibrium with outcomes 0.

The pointed game G(w) for valuation w = {p1} (only Tony is in love) has equilibrium
(s∅1, s

∀
2). We now need to make K1¬p2 ∧ ¬K2p1 true. (Another equilibrium (s∀1 , s

∅
2) is when

both get outcome 0.)

3. Defining Boolean Observation Games

We will now define the Boolean observation game. A Boolean observation game is an incom-
plete information strategic form game with uniform strategies (uniform functions from
valuations to strategies) and expected outcomes (information sets of outcomes), whereas
the auxiliary notion of a pointed observation game is a complete information strategic form
game with strategies and with (Boolean-valued) outcomes.

3.1 Boolean Observation Games

This section contains the crucial game theoretical notions of our contribution.

Boolean Observation Game. A Boolean observation game (or observation game) is a
triple G = (N, (Pi)i∈N , (γi)i∈N ), where all γi ∈ LK . Formula γi is the goal (objective) of
player i. It is played with uniform strategies and the payoffs are expected outcomes. Both
will now be defined.

Uniform Strategy. A uniform strategy for player i ∈ N is a function si : V → Si such
that for all v, w with v ∼i w, si(v) = si(w). It is globally uniform iff for all v, w ∈ V ,
si(v) = si(w).

So, uniform means the same for all indistinguishable valuations, which is different from
globally uniform, which means the same for all valuations. Let Si denote the set of uniform
strategies of player i, and S = S1× · · · ×Sn the set of uniform strategy profiles. Let Sgi and
Sg denote the set of globally uniform strategies of player i and the set of globally uniform
strategy profiles respectively. Given a valuation v, a uniform strategy profile s determines a
strategy profile s(v) = (s1(v), . . . , sn(v)). Note that (s(v)i, s(v)−i) = (si, s−i)(v). For i ∈ N
and si ∈ Si, we define ṡi ∈ Sgi as: for all v ∈ V , ṡi(v) = si. Similarly for s ∈ S we define
ṡ ∈ Sg as the globally uniform strategy profile such that for all v ∈ V , ṡ(v) = s. It follows
from the definition that every globally uniform strategy profile s ∈ Sg is of the form ṡ for
some strategy profile s ∈ S.

Expected Outcome. Given i ∈ N , the expected outcome function is a function ui :
V × S → {0, 1}∗ that is uniform in V , and defined as ui(v, s) = (ui(w, s(w)))w∼iv. So,
expected outcome ui(v, s) is a vector of outcomes ui(w, s(w)) for each valuation w in the
information set of player i. In our setting where outcomes are 0 (lose) or 1 (win) this vector
is a bitstring.

As far as nomenclature is concerned, we are putting the reader on the wrong foot, as
a uniform strategy is not a kind of strategy (as defined in the previous section), nor is
expected outcome a kind of (binary valued) outcome. However, we are in good company:
an artificial brain is not a brain, and a cable car is not a car. So we hope the reader will
allow us this slight abuse of language.
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Outcome Relation and Nash Equilibrium. To define the notion of an equilibrium in
observation games, we need to first define a comparison relation between uniform strategy
profiles. Note that unlike in classical strategic games, the expected outcome function in
observation games generates a vector of outcomes. Therefore, there is no canonical definition
for the comparison relation. We define an outcome relation > over vectors of outcomes and
write ui(v, s) > ui(v, s

′) for “player i prefers si over s′i in the information set containing v”;
we also say that si is a profitable deviation from s′i.

This outcome relation may not be a total order. We therefore prefer not to use notation
≤ to compare the bitstrings that are outcome sets, as it is ambiguous whether x ≤ y means
(x < y or x = y) or x ≯ y (and even when defined as either one or the other, it seems
unkind to the reader).

Given an outcome relation >, a uniform strategy profile is a Nash equilibrium if no
player has a profitable deviation.

A uniform strategy profile s is a Nash equilibrium of G iff for all i ∈ N , s′i ∈ Si
and v ∈ V , we have that ui(v, (s

′
i, s−i)) ≯ ui(v, s).

Given an observation game G, NE (G) denotes its Nash equilibria, and among those NE g(G)
denotes the globally uniform Nash equilibria.

Also, a uniform strategy si ∈ Si is dominant if for all s ∈ S with s = (si, s−i), for all
s′i ∈ Si, and for all v, ui(v, (s

′
i, s−i)) ≯ ui(v, s).2

Four Outcome Relations. It remains to define the outcome relation. We propose four.

optimist : ui(v, s) >opt ui(v, s
′) iff max ui(v, s) > max ui(v, s

′)
pessimist : ui(v, s) >pess ui(v, s

′) iff min ui(v, s) > min ui(v, s
′)

realist : ui(v, s) >real ui(v, s
′) iff Σui(v, s) > Σui(v, s

′)
maximal : ui(v, s) >max ui(v, s

′) iff ui(w, s(w)) > ui(w, s
′(w)) for some w ∼i v

The optimist, pessimist and realist outcome relations are (strict) total orders, as it suffices
to assign a number to the information set constituting an expected outcome. The maximal
outcome relation is not a total order.

We let NE pess(G), NE opt(G), NE real(G), and NEmax(G) denote the Nash equilibria
under the pessimist, optimist, realist and maximal outcome relation, respectively. The
optimist, pessimist and realist outcome relations are (strict) total orders, as it suffices to
assign a number to the information set constituting an expected outcome. The maximal
outcome relation is not a total order as illustrated in Example 9. However, defining this
relation is useful since NEmax(G) has an interesting interpretation which we discuss below.

Example 9. Let us consider an abstract example where a player has to choose between
expected outcomes (bitstrings) 00, 10, 01, 11. We then get (where clustered bitstrings means
equally preferred):

{01, 10, 11} >opt 00
11 >pess {00, 01, 10}
11 >real {01, 10} >real 00
ij >max kl iff i > k or j > l

2. This is weak dominance of the kind ‘always at least as good’ where we emphasize that we do not define
it as ‘always at least as good and sometimes strictly better’, which is also common in game theory.
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The >max relation is neither antisymmetric nor transitive. For instance, in Example 9
we have that 10 >max 01 but also 01 >max 10, and it is not transitive because 01 >max

10 >max 01 however 01 ≯max 01. Thus the >max relation is neither a total order nor a
preorder. However, it has a maximum and a minimum: the expected outcome where the
player always wins is preferred over all other expected outcomes, and the expected outcome
where the player always loses is less preferred than all other expected outcomes.

The maximal outcome relation also satisfies the important property that all outcomes
can be compared and therefore, the notion of a Nash equilibrium is well-defined. If ui(v, s) 6=
ui(v, s

′), then ui(v, s) >max ui(v, s
′) or ui(v, s

′) >max ui(v, s). The disjunction in the
consequent is inclusive, both may hold (we recall that 10 >max 01 as well as 01 >max 10, as
in Example 9). To require this property is common in ordinal game theory (Durieu et al.,
2008).

The outcome relations that we have proposed are qualitative versions of well-known
criteria in decision theory and Bayesian reasoning. None assume a probability distribution,
however, all assume a strictly positive probability for each valuation.

• The optimist outcome relation is the max instantiation (as there is only one maximal
value) of the minimax regret decision criterion (Savage, 1951). With respect to the
highest possible outcome in the information set, a lower possible outcome in the
information set (which can only be 0 instead of 1) would cause regret if this were to
happen.

• The pessimist outcome relation is the min instantiation of the maximin or Wald de-
cision criterion (Wald, 1945). We then choose the information set with the best worst
outcome. This outcome relation has been used to model uncertainty in voting (with
similar considerations involving Nash equilibria and dominance) in (Conitzer, Walsh,
& Xia, 2011; van Ditmarsch, Lang, & Saffidine, 2013; Bakhtiari, van Ditmarsch, &
Saffidine, 2019).

• The realist outcome relation is a qualititative version (lack of justification to rule out
any outcome) of a random decision in Bayesian terms, also known as the insufficient
reason or Laplace decision criterion, or as the principle of indifference (Keynes, 1921,
Chapter IV).

Instead of taking the sum of the outcomes in the information set we could of course
have normalized this so it adds up to 1, suggesting an even distribution of probability
mass. Such scaling is irrelevant for our purposes of determining Nash equilibria and
dominance, wherein we only need to compare outcomes. That comparison relation
remains the same.

This outcome relation was used in (Ågotnes & van Ditmarsch, 2011; Ågotnes et al.,
2011) to determine equilibria of similar incomplete information games, but where
more complex formulas than mere variables could be ‘revealed’ (however, they could
only be publicly announced). An issue for the realist outcome relation is whether
bisimilar game states (that therefore satisfy the same goals for all players) should be
counted once or twice.3 On the one hand, if two game states are bisimilar this is

3. Personal communication by Martin Otto.
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justification / sufficient reason to rule out one of them, according to Laplace. On the
other hand these bisimilar game states might have originated from playing strategy
profiles (executing epistemic actions) in initial game states that were non-bisimilar.
It is relevant to observe this as we note that this phenomenon cannot occur in our
simpler setting involving observation relations.

• The notion of Nash equilibrium for the maximal outcome relation has an interesting
interpretation. A maximal Nash equilibrium is a uniform strategy profile where no
player has a profitable deviation even if the player has complete information about the
game. There is an equivalent formulation of maximal Nash equilibrium as a qualitative
version of ex-post equilibrium (Apt, 2011), which we show in Proposition 10.

Various of the above outcome relations have also been considered in (Parikh, Tasdemir, &
Witzel, 2013).

Proposition 10. A uniform strategy profile s is a maximal Nash equilibrium for G iff for
all v ∈ V , s(v) is a Nash equilibrium for G(v).

Proof. Suppose s 6∈ NEmax(G). Then there exist v ∈ V , i ∈ N , and s′i ∈ Si such that
ui(v, (s

′
i, s−i)) >

max ui(v, s). It follows that there is w ∼i v such that ui(w, (s
′
i, s−i)(w)) >

ui(w, s(w)), so ui(w, (s
′
i, s−i)(w)) = 1 and ui(w, s(w)) = 0. Therefore s(w) /∈ NE (G(w)).

Suppose s(w) /∈ NE (G(w)) for some valuation w. Then there exist i ∈ N , s′i ∈ Si such
that ui(w, (s

′
i, s−i(w)) > ui(w, s(w)). Let s′i ∈ Si be the uniform strategy such that for all

v ∼i w, s′i(v) = s′i (so in particular, s′i(w) = s′i), and for all v 6∼i w, s′i(v) = si(v). By the
maximal relation, from ui(w, (s

′
i, s−i)(w)) = ui(w, (s

′
i, s(w)−i) > ui(w, s(w)) it follows that

ui(w, (s
′
i, s−i)) >

max ui(w, s). Therefore s /∈ NEmax(G).

In the remaining sections we focus on optimist, pessimist and maximal Nash equilibrium
and not on realist Nash equilibrium. We use the operational definition of maximal Nash
equilibrium given by the correspondence in Proposition 10. It is easy to see that a maximal
Nash equilibrium is also an optimist, pessimist, and realist Nash equilibrium. In that sense
the maximal outcome relation is the strongest notion, resulting in the smallest number of
equilibria for a game (if any).

3.2 Various Classes of Observation Games

With all the technical tools now at our disposal, very different observation games are of
specific interest. We can distinguish them by which outcome relation they employ, and in-
dependently by the shape of the epistemic goals. Concerning goals it is useful to distinguish
the following.

• In two-player zero-sum games, γi = ¬γj and in two-player symmetric games γi = γj ,
where |N | = 2, i 6= j, and i, j ∈ N . In cooperative games

∧
i∈N γi is consistent.

Example 11 below is symmetric, and Example 12 is zero-sum (and therefore not
consistent). Communicative scenarios obeying the Gricean cooperative principle are
clearly consistent observation games (and might still be considered games inasfar as
people want to outdo each other in being informative). Whereas security protocol
settings with eavesdroppers (consider observing an SMS code that you were sent to
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confirm a bank transfer) tend to be zero-sum; that is, a generalization of zero-sum:
the objectives of the principals are the opposite of those of the eavesdroppers.

We do not have theoretical results for zero-sum or symmetric games.

• In knowing-whether observation games (knowing-whether games, Kw games) all goals
γi are in LKw . In knowing-whether games the outcome does not depend on the
valuation. Whether some Kw ipj is true only depends on player j revealing pj to
player i, and does not depend on the valuation, because the truth of pj does not
depend on the value of pj .

Section 4 is entirely devoted to knowing-whether games, and Section 5 contains re-
sults on existence of equilibria. They relate well to the usual Boolean game. Not
surprisingly, as the outcome does not depend on the valuation, they also score better
on the computational complexity of determining whether a uniform strategy profile is
a Nash equilibrium, or whether Nash equilibria exist, than other classes of observation
game. That will be investigated in Section 6.3.

• In observation games with guarded goals (of shape γi = Kiα, see Subsection 2.2)
the players know whether they have achieved their objective after playing the game.
Whereas in games where the goals are not guarded they may not and need an oracle
to inform them of the outcome (such as, when standing in front of an ATM teller,
the bank’s interface informing them). If goals are guarded, Nash equilibria always
exists for the optimist and the pessimist outcome relation, as formulated and shown
in Theorem 28 in Section 5.

• In games where all γi are positive formulas (in the fragment L+ where negations do not
bind Kj modalities, see Subsection 2.2), a player’s goal is never to remain ignorant
of a fact, or even for other players to remain ignorant. Under such circumstances
revealing all you know is a dominant strategy. This is therefore rather restricted.

• More interesting than positive goals are the observation games with self-positive goals
wherein your goal is to become less ignorant yourself although you may wish to keep
other players ignorant (see again Subsection 2.2). We provide a result for self-positive
goals in Corollary 29 in Section 5.

For all these, results on existence of equilibria and complexity also depend on which outcome
relation is used, as already occasionally listed above.

Last but not least one can consider iterated observation games with temporal eventu-
ality goals, where players successively reveal more and more of their observed variables.
An example are (successive) question-answer games wherein the strategic aspect is what
variable(s) to ask another player(s) to reveal, which seems of particular interest for strategic
negotiation (if you give me this, I’ll give you that, and so on). All these come with specific
questions on compact representation and existence of equilibria.

We defer the investigation of iterated games and question-answer games to future re-
search. In this work we focus on knowing-whether games and their relation to Boolean
games, on the existence of equilibria for various outcome relations (where the realist out-
come relation plays no role), and on complexity results for some of our variations.

We now continue with some detailed examples.
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Example 11. Recall Example 1 (page 309) and Example 8. We now give full details.
Consider the observation game G where N = {1, 2}, P1 = {p1}, P2 = {p2} and the

(symmetric) goals:

γ1 = γ2 = p1 ∧ p2 → K1p2 ∧K2p1 ∧
p1 ∧ ¬p2 → K1¬p2 ∧ ¬K2p1 ∧
¬p1 ∧ p2 → ¬K1p2 ∧ ¬K2¬p1 ∧
¬p1 ∧ ¬p2 → ¬K1¬p2 ∧K2¬p1

As there are only two players and each player observes a single variable the strategies are
to reveal nothing or to reveal all, that is: s∅1, s∀1, s∅2, and s∀2.

For each valuation v the pointed observation game G(v) has an equilibrium where both
players get outcome 1. For example, if p1 and p2 are both true, then both players revealing
(announcing) that is an equilibrium with outcome 1 for both players. However, both players
not announcing their variable is also an equilibrium with outcome 0.

Let us now determine equilibria for G, with uniform strategies instead of strategies, and
let us consider the different outcome relations.

• pessimist. Player 1 cannot distinguish between the valuations {p1, p2} and {p1}.
Thus, for all s ∈ S and for all v ∈ V , min u1(v, s) = 0. The situation is symmetric
for player 2. Therefore, for all s ∈ S, s ∈ NE pess(G).

• optimist. Similarly, for all s ∈ S, for all v ∈ V and for all i ∈ {1, 2}, max ui(v, s) =
1. Therefore, for all s ∈ S, s ∈ NE opt(G).

• realist. In this example, whatever the valuation v, Σui(v, s) = max ui(v, s) = 1, so
that also, for all s ∈ S, s ∈ NE real(G).

• maximal. NEmax(G) = ∅. There are no maximal Nash equilibria, because every
information set for both players always contains a win and a lose, so if they were to
know the real valuation, one of those is not an equilibrium for the pointed game.

Possibly, the equilibria depend on what we called the ‘personalities of Tony and Maria’,
that is on the shape of the goals? We considered two different personalities that therefore
allow four different goals, but (the reader can check that) none makes a difference for any
of the four outcome relations, as the property that each information set contains a win and
a lose persists throughout such transformations. The best is always win, and the worst is
always lose. However for other ‘personalities’ (for lack of a better term) this need not be, for
example, change ¬K1p2 ∧ ¬K2¬p1 in the third conjunct into ¬K1p2 ∧K2¬p1 (we removed
one negation symbol). It is now dominant for player 1 to announce the value of p1 in the
information set wherein p1 is false.

Example 12. Recall Example 2 on page 310 about the pennies that do not match. We
can now model this as a knowing-whether Boolean observation game G where N = {1, 2},
P = P1 ∪ P2 with P1 = {p1}, P2 = {p2}, and

γ1 = Kw1p2 ↔ ¬Kw2p1

γ2 = Kw1p2 ↔ Kw2p1
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For i = 1, 2, player i has strategy s∅i wherein she reveals nothing (‘hide pi’) and strategy
s∀i wherein she reveals the value of pi. Irrespective of the valuation, in the strategy profiles
(s∅1, s

∅
2) and (s∀1 , s

∀
2), player 1 has a profitable deviation in the corresponding pointed obser-

vation game. Similarly, in (s∅1, s
∀
2) and (s∀1 , s

∅
2), player 2 has a profitable deviation. Thus

it can be verified that NEmax(G) = ∅. Also, within the set of all globally uniform strategy
profiles, G does not have a Nash equilibrium for the pessimist and optimist outcome relation.

However, this game has a Nash equilibrium with uniform strategies that are not globally
uniform, for the pessimist and for the optimist outcome relation. Consider the uniform
strategy profile s = (s1, s2) where in s1, player 1 reveals p1 to 2 when p1 is true and hides
p1 from 2 when p1 is false, and in s2, player 2 reveals p2 to 1 when p2 is true and hides p2

from 1 when p2 is false. Thus min u1(v, s) = min u2(v, s) = 0. It can then be verified that
no player has profitable deviation from s and therefore s ∈ NE pess(G). Similarly, it can be
noted that max u1(v, s) = max u2(v, s) = 1. Therefore, s ∈ NE opt(G).

3.3 Comparison to Related Work

In this section we compare in more detail our epistemic Boolean games to the two prior
proposals in the literature known to us (Ågotnes et al., 2013b; Herzig et al., 2016), that
were already mentioned in the introductory section. We recall that these are imperfect
information games (they feature epistemic objectives), however they are not incomplete
information games. We also succinctly compare our proposal to an incomplete information
game, that is however not a Boolean game (Ågotnes & van Ditmarsch, 2011).

Comparison to ‘Boolean Games with Epistemic Goals’. In ‘Boolean games with
epistemic goals’ (Ågotnes et al., 2013b) the set of variables P is partitioned into |N | = n
mutually disjoint subsets of variables Pi, for i ∈ N , such that the variables in Pi can only be
controlled by player i. This is as usual in Boolean games, and therefore the strategies played
are also as usual, so that a strategy profile is a valuation of all variables. However, the goals
are different from the usual in Boolean games, and like ours: these are not merely Boolean
goals (formulas in the language LB) whose satisfaction depends on this valuation but these
are epistemic goals (the language LK) whose satisfaction depends on what the players know
about this valuation. This is where another parameter of their games comes into play: apart
from a set Pi of ‘controlled variables’ each player i also has a finite ‘visibility set’ consisting of
Boolean formulas, that is, some finite subset of the language LB: those are the propositions
whose value that player can observe of the outcome valuation. Such Booleans may involve
variables not controlled by player i but by other players j. Already, this seems to beg
some questions on logical closure, for example if p ∧ q is in the visibility set but neither
variable p nor variable q (where we note that the epistemic goal formulas have the usual
compositional semantics, so Ki(p∧ q) is true if and only if Kip and Kiq are true). However,
a special case is when the visibility set consists of variables only, which (Ågotnes et al.,
2013b) call atomic games, and this suffices for a comparison with our results. The visibility
set determines what is known by the players and thus which epistemic goals are satisfied in
a valuation. Because the players altogether control the value of all variables the game is not
one of incomplete information (strategies do not depend on an unknown initial valuation)
although it is one of imperfect information (over the outcome valuation). The authors then
determine that model checking goal formulas is PSPACE-complete and that the existence of
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Nash equilibria is in PSPACE, although they do not show a lower bound. They also provide
an interesting embedding of their epistemic Boolean games into the standard Boolean games
by observing that an epistemic goal corresponds to an exponentially larger Boolean goal
that is the disjunction of all valuations over which the epistemic goal is uncertain. For
example, in some given game, Kip may abbreviate (p ∧ ¬q) ∨ (p ∧ q). This is therefore a
rather different embedding from our embedding of knowing-whether Boolean observation
games into Boolean games wherein the goals remain the same but the set of variables (and
thus valuations) is larger: we recall that a Kw game G for variables pi is transformed into
a Boolean game BG for variables Kw jpi: the knowing-whether formulas are now considered
atomic propositions. The goals remain the same in our approach, because knowing-whether
goals are Booleans in the language wherein Kw jpi are atomic propositions.

Comparison to ‘Epistemic Boolean Games Based on a Logic of Visibility and
Control’. The authors of this work (Herzig et al., 2016) propose a very expressive logical
language and semantics for players controlling the value of propositional variables or ob-
serving the value of propositional variables. They also axiomatize this logic. They then use
the logic to formalize game theoretical primitives, in particular the existence of equilibria,
in an epistemic extension of Boolean games. This formalization allows them to determine
the complexity of these games. The problems of determining whether a profile is Nash
equilibrium as well as the existence of Nash equilibrium are both in PSPACE.

Their language extension includes knowledge, common knowledge, and for control or
observation of propositional variables they propose additional propositional variables. We
not only have, for example, a variable p, but also Sip, for ‘player i observes the value of
p’ and Cip for ‘player i controls the value of p’. But also variables like CjSip, for ‘player
j controls whether player i observes p’, and so on for any stack of Cj or Si predicates.
The interest of these complex propositional variables is that they induce relational Kripke
models or can be used to formalize strategies in Boolean games.

In the epistemic Boolean games of (Herzig et al., 2016) the strategies assign values to
variables that are stacks of Si binding some atom p (so without any Ci or Ki), as in SiSjp,
saying that i can see whether j can see the value of p, whereas the goals are epistemic
formulas in the language for such atoms p (so without Si or Ci), as in Kip ∧ ¬Kjp.

4 One
might say that their epistemic Boolean games essentially remain Boolean games, because
the players still only control the value of variables, but this is only by a (quite smart)
stretch of the modeling imagination, because their Boolean variables hard-code arbitrarily
complex higher-order multi-agent observations. However, these are not games of incomplete
information.

The focus of (Herzig et al., 2016) is the axiomatization of their logic of visibility and
control (it also contains program modalities with primitive operations assigning values to
variables). The game-theorical contribution is mainly ‘proof of concept’.

4. As Si stacks are arbitrarily long, there is an infinite set of such atoms to consider. However, the partition
among players controlling variables is of a finite subset only of that infinite set. This permits Sip but
not p to be in that finite subset, which would rule out to determine the value of a goal Kip (as no player
gives a value to p, that is, no player controls p). In their accompanying examples, the finite subset jointly
controlled by all players is always subformula closed. This therefore seems an omitted requirement.
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Comparison to ‘Public Announcement Games’. ‘Public announcement games’ which
are studied in (Ågotnes & van Ditmarsch, 2011) and the related ‘question answer games’
(Ågotnes et al., 2011) also present incomplete games of imperfect information. Expected
outcomes are compared with the realist outcome relation. The value of variables is not
controlled in any way in (Ågotnes & van Ditmarsch, 2011; Ågotnes et al., 2011), the valu-
ations are fixed. Public announcement games are not Boolean games, because the players’
strategies are revelations of any formula, not merely of Booleans. Of course one could
consider a class of public announcement games wherein the strategies are restricted to an-
nouncing propositional variables only. However, we recall that public announcements are
revelations of the same information to all players simultaneously, so this is not as general
as our proposal.

4. Knowing-Whether Boolean Observation Games

In this section we show a correspondence between knowing-whether Boolean observation
games (Kw games) and Boolean games. We provide polynomial time reductions that convert
a Boolean game to a Kw game and vice-versa.

We first recall the definition of Boolean game. We then show that every Boolean game
defines a Kw Boolean observation game, and that every Kw Boolean observation game
defines a Boolean game. These embeddings are different, the first is not the converse of the
second.

We further show a utility preserving equivalence between strategies in Boolean games
and equivalence classes of globally uniform strategies in Kw games (Lemmas 18, 22). As a
consequence, we prove a correspondence between the existence of Nash equilibria in Boolean
games and the existence of maximal Nash equilibria in Kw games, and for both reductions
(Theorems 19, 24).

We finally show that there always exists a pessimist equilibrium for 2-player Kw games,
but not for Kw games in general: we give an 8-player Kw game without a Nash equilibrium
(where we do not know if such games exist for between 3 and 7 players).

Recall that for any v ∈ V and α ∈ LKw , v, s |= α iff s |= α (Prop. 5). This justifies
writing ui(s) for the outcome ui(v, s) of a pointed Kw game. Now consider a globally
uniform strategy profile ṡ ∈ Sg. As ui(v, ṡ) = ui(v, ṡ(v)) = ui(v, s), this justifies writing
ui(ṡ) for the expected outcome of a such a Kw game.

4.1 Boolean Games

Boolean games have the same parameters as Boolean observation games but simpler strate-
gies. A Boolean game is denoted B to distinguish it from a Boolean observation game
G.

A Boolean game is a tuple B = (N, (Pi)i∈N , (γi)i∈N ) where all γi ∈ LB (all goals are
Boolean). For i ∈ N , a strategy vi for player i is a (local) valuation vi ⊆ Pi, where,
slightly abusing notation, we identify a strategy profile v = (v1, . . . , vn) with a valuation
v = (v1 ∪ . . . ∪ vn) ∈ V . For Boolean games, the outcome function is denoted uB to
distinguish it from the outcome function u of pointed Boolean observation games. We define
uBi (v) = 1 if v |= γi and uBi (v) = 0 if v 6|= γi. Equilibrium is as for pointed observation
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games: a strategy profile v ∈ V is a Nash equilibrium in B if for all i ∈ N and v′i ⊆ Pi,
uBi (v) ≥ uBi (v′i, v−i). Given B, its Nash equilibria are denoted NE (B).

Let us emphasize the difference between Boolean games and Boolean observation games.
In Boolean observation games, as in Boolean games, a player i selects a subset vi of her local
variables Pi. However, in Boolean observation games this subset may be a different subset
si(j) ⊆ Pi for each other player j. Also, in Boolean games, excuting strategy vi means
that the pi ∈ vi become true whereas the pi ∈ Pi \ vi become false. Whereas in Boolean
observation games, executing strategy with component si(j) means that the pi ∈ si(j), that
already have an observed truth value, are revealed (to j).

4.2 Boolean Games to Knowing-Whether Games

We construct a Kw game denoted GB from a Boolean game B as follows. Let B =
(N, (Pi)i∈N , (γi)i∈N ). Then GB := (N, (Pi)i∈N , (βi)i∈N ) where each βi := λ(γi) is defined
as follows. Let i+ := i + 1 for i = 1, . . . , n − 1 and n+ := 1. Then λ : LB → LKw is
inductively defined as: for all i, pi ∈ Pi, λ(pi) := Kw i+pi, and (trivially) λ(¬α) := ¬λ(α)
and λ(α1 ∨α2) := λ(α1)∨λ(α2). Note that B and GB are defined for the same players and
variables.

Given a strategy profile v ∈ V for B, we define globally uniform strategy profile ṡv ∈ Sg

for GB such that for all i ∈ N and pi ∈ Pi: pi ∈ svi (i+) if pi ∈ v; svi (i) = Pi; and for all
j ∈ N with j 6= i, i+, svi (j) = ∅. Note that for all valuations w, including v, ṡv(w) = sv.
Notation sv is therefore not to be confused with notation s(v) for uniform profiles s. In this
section we will show how the v strategy for B corresponds to the ṡv strategy for GB.

Note that for all i ∈ N , we have |βi| = O(|γi|) where |βi| and |γi| denote the size of
(number of symbols in) βi and γi respectively. Thus given B, the associated Kw game GB
can be constructed in polynomial time.

Example 13. We illustrate how to construct a Kw game GB from a Boolean game B. (We
will not analyze the equilibria of the game, if any.) Consider

B = ({1, 2, 3}, ({p1}, {p2}, {p3}), (p1 ↔ p3, p3 → p1,¬p1 → p2))

Then GB has the same variables p1, q1, p2, p3 but different goals, namely Kw2p1 ↔ Kw1p3

for player 1, Kw1p3 → Kw2p1 for player 2, and ¬Kw2p1 → Kw3p2 for player 3.
In the Boolean game, for player 1 to obtain her goal γ1 = p1 ↔ p3, player 1 has to make

p1 true, it does not matter whether player 2 makes p2 true or false, and player 3 has to
make p3 true. In the Kw game, in order to achieve the goal β1 = Kw2p1 ↔ Kw1p3, player
1 has to reveal p1 to player 2, it does not matter whether player 2 reveals p2 to player 3, and
player 3 has to reveal p3 to player 1, and all three do this independently from the valuation.
Because in fact, for example, player 1 reveals the value of p1 to player 2, but what the
value is does not matter as the outcome of a Kw game is independent from the valuation.
So they players execute globally uniform strategies. More precisely, in order to ensure β1

globally uniform strategy ṡ is required such that s1(2) = {p1}, s3(2) does not matter, and
s3(1) = {p3}.

Lemma 14. Let GB be the Kw game associated with the Boolean game B. For all i ∈ N ,
for all w ∈ V , sw |= λ(γi) iff w |= γi.
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Proof. This is shown by induction where only the base case is not-trivial. For that, we have
that sw |= Kw i+pi iff w |= pi by definition of the embedding.

Therefore, for any i ∈ N and v ∈ V : ui(v, ˙sw) = ui(v, s
w) = ui(s

w) = uBi (w). This
correspondence allows us to relate Nash equilibria in B to Nash equilibria in GB. The result
uses an interesting property of NEmax in Kw games (this property does not hold for, e.g.,
the pessimist outcome relation).

Lemma 15. Let Kw game G be given. Let s ∈ NEmax(G) and v ∈ V . Let s = s(v). Then
ṡ ∈ NEmax(G).

Proof. Consider an arbitrary v ∈ V and let s = s(v). Suppose that s ∈ NEmax(G), we
claim that the globally uniform strategy profile ṡ ∈ NEmax(G). Suppose not. Then there
exists i ∈ N , w ∈ V and s′i ∈ Si such that ui(w, (s

′
i, ṡ−i(w))) > ui(w, ṡ(w)). This implies

that w, (s′i, ṡ−i(w)) |= γi and w, (ṡ(w)) 6|= γi. Since for all j ∈ N , ṡj(w) = sj(v), we have
w, (s′i, s−i(v)) |= γi. Since γi ∈ LKw , we have v, (s′i, s−i(v)) |= γi. Also, since w, ṡ(w) 6|= γi,
we have v, ṡ(w) 6|= γi and by definition of ṡ, we have v, s(v) 6|= γi. Therefore, s 6∈ NEmax(G)
which gives the required contradiction.

Corollary 16. Let Kw game G be given. If NEmax(G) 6= ∅ then NE g
max(G) 6= ∅.

An Equivalence Relation over Global Strategy Profiles. Recall that every s ∈ Sg

is of the form ṡ where s ∈ S(GB). We define an equivalence relation over Sg in GB as
follows. For i ∈ N , ṡi ≡i ṫi iff si(i

+) = ti(i
+). For ṡ, ṫ ∈ Sg, we define ṡ ≡ ṫ iff for all i ∈ N ,

ṡi ≡i ṫi. Let Sg/≡ denote the set of equivalence classes and [s] denote the equivalence class
containing s ∈ Sg.

Lemma 17. Given s ∈ Sg, for all t ∈ [s], for all i ∈ N , for all v ∈ V , ui(v, s(v)) =
ui(v, t(v)).

Proof. Let s = ṡ and t = ṫ. For all i ∈ N , since t ∈ [s], we have si(i
+) = ti(i

+). By
induction of the structure of γi, we can prove the following: for all v ∈ V , for all i ∈ N and
for all γi ∈ LKw , we have v, (ṡ(v)) |= γi iff v, (ṫ(v)) |= γi. This implies that for all i ∈ N ,
for all v ∈ V , ui(v, ṡ(v)) = ui(v, ṫ(v)).

An Outcome Preserving Bijection. We now show that there is an outcome preserving
bijection χ between strategy profiles in B and equivalence classes in Sg/≡. For a Boolean
game B, and v ∈ V , χ(v) = [ṡv].

Lemma 18. Given a Boolean game B, the function χ : V → Sg/≡ is a bijection.

Proof. Given ṡ ∈ Sg, consider v ∈ V defined as follows: for all i ∈ N and pi ∈ Pi, pi ∈ v iff
pi ∈ si(i+). We then have χ(v) = [ṡ] and therefore χ is onto. For v, w ∈ V such that v 6= w,
there exists i ∈ N , there exists pi ∈ Pi such that pi ∈ v and pi 6∈ w. Thus, for χ(v) = [ṡ]
and χ(w) = [ṫ], we have ṡ 6≡i ṫ, which implies that ṡ 6≡ ṫ. Therefore, χ is a bijection.

Consequently, we can prove a correspondence between Nash equilibria existence.

Theorem 19. Let B be a Boolean game. Then NEmax(GB) 6= ∅ iff NE (B) 6= ∅.
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Proof. (⇐) We argue that if w ∈ NE (B) then ˙sw ∈ NEmax(GB). Suppose not, then
there exists i ∈ N , v ∈ V and ti ∈ Si such that ui(v, (ti, ˙sw−i(v))) > ui(v, ˙sw(v)). Let
w′ = χ−1([ṫi, s−i]) From Lemmas 14, 17 and 18 it follows that uBi (w′) = ui(v, (ṫi, s−i)(v)) >
ui(v, ˙sw(v)) = uBi (w) for all v ∈ V . Therefore w 6∈ NE (B) which is a contradiction.

(⇒) Suppose NEmax(GB) 6= ∅. By Lemma 15 there exists s ∈ Sg such that s ∈
NEmax(GB). Let w = χ−1([s]). We claim that w ∈ NE (B). Suppose not, then there
exists i ∈ N and w′i such that uBi (w′i, w−i) > uBi (w). Let w′ = (w′i, w−i). Note that by

definition w 6= w′. From Lemma 14 it follows that for all v we have uBi (w′) = ui(v,
˙sw′(v)).

From Lemmas 14, 17 and 18 it follows that uBi (w) = ui(v, s(v)) for all v ∈ V . Therefore

for all v ∈ V , ui(v,
˙sw′(v)) = uBi (w′) > uBi (w) = ui(v, s(v)) which contradicts the fact that

s ∈ NEmax(GB).

Other ways to get a Kw Game from a Boolean Game. Let us imagine our n players
sitting round a table numbered in clockwise fashion. In the embedding λ : LB → LKw with
basic clause

λ(pi) := Kw i+pi,

every player i reveals the value of her observed variable pi to her left neighbour (while other
players observe her doing that). There are many other embeddings that would serve equally
well to obtain our results. For example, every player i could reveal her variable to her right
neighbour. This would be a λ′ with basic clause

λ′(pi) := Kw i−pi

where i− is i− 1 except for 1− := n. A more interesting embedding would be every player
publicly announcing pi to all other players. We then have a λ′′ for which

λ′′(pi) :=
∧
j∈N

Kw jpi.

4.3 Knowing-Whether Games to Boolean Games

A Kw Game to a Boolean Game. We now construct a Boolean game denoted BG from a
knowing-whether Boolean observation game G. Let G = (N, (Pi)i∈N , (γi)i∈N ). Assume that
the goals γi do not contain trivial constituents Kw ipi.

5 Then BG := (N, (Qi)i∈N , (γi)i∈N )
where for all i ∈ N , Qi = {Kw jpi | pi ∈ Pi, i 6= j}. We view Kw jpi, for each i and j with
i 6= j, as atomic propositions in BG. Let Q =

⋃
i∈N Qi.

Observation. Both G and BG are defined over the same set of players and goal formulas.
The number of variables in BG for each i ∈ N is |Qi| = (n − 1)|Pi|. Thus given G,
the associated Boolean game BG can be constructed in polynomial time. Also, note that
BGB

6= B and GBG
6= G, the constructions are unrelated. Let us give an example of that.

5. As such Kw ipi are always true, this would otherwise cause a problem in the translation, because the
players in the constructed Boolean game would then be able to control the value of propositional variables
Kw ipi (which is undesirable), unlike the players in the given Kw game. One can also address this formally,
without assumptions, with an inductively defined translation mapping Kw ipi to >.
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Example 20. As an illustration to construct a Boolean game from a Kw game, let us take
the Kw game just constructed in Example 13. We recall that

GB = ({1, 2, 3}, ({p1, q1}, {p2}, {p3}), (γ1, γ2, γ3))

where

• γ1 = Kw2p1 ↔ Kw1p3,

• γ2 = Kw1p3 → Kw2p1,

• γ3 = ¬Kw2p1 → Kw3p2.

The Boolean game BGB
constructed from that has the same goals but has more variables,

namely Kw ipj for all i, j ∈ N with i 6= j and for all pj ∈ Pi, that is: Kw1p2, Kw1p3, Kw2p1,
Kw2q1, Kw2p3, Kw3p1, Kw3q1, Kw3p2. Therefore BGB

has more variables than B. The
constructions are not each other’s converse. However, in order to realize the goals of BGB

the players only need to assign a value to variables Kw ipj occurring in the goal formulas,
so with respect to playing this game the extra variables do not play a role. After replacing
Kw2p1 by p1, etcetera for other variables ocurring in goal formulas, we recover the original
Boolean game for, however, far more variables that are not used in goals.

Let W = P(Q) be the set of valuations over Q. We define a function η : Sg → W and
argue that it is a bijection which is outcome equivalent. Given ṡ ∈ Sg, define w = η(ṡ) as
follows: for i ∈ N , Kw jpi ∈ η(ṡ)i iff pi ∈ si(j).

Lemma 21. Let BG be the Boolean game associated with the Kw game G. For all i ∈ N ,
for all s ∈ S and for all γi, s |= γi iff η(ṡ) |= γi.

Proof. This is shown by induction using as the base case that s |= Kw jpi, iff η(ṡ) |= Kw jpi
The other cases are trivial.

It therefore also follows, similarly to the above, that ui(ṡ) = ui(s) = uBi (ws).

Lemma 22. Given a Kw game G, let BG be the associated Boolean game. The function
η : Sg →W is a bijection.

Proof. For an arbitrary w ∈ W , consider ṡ ∈ Sg defined as follows. For all i ∈ N , and for
all pi ∈ Pi, pi ∈ si(j) iff i = j or Kw jpi ∈ wi. By definition, η(ṡ) = w and thus η is onto.

Consider ṡ, ṫ ∈ Sg where ṡ 6= ṫ. Then there exists i, j ∈ N with i 6= j and there
exists pi ∈ Pi such that pi ∈ si(j) and pi 6∈ ti(j). This implies that Kw jpi ∈ η(ṡ)i and
Kw jpi 6∈ η(ṫ)i. Therefore η is a bijection.

Non-global Uniform Strategies as Mixed Strategies for Boolean Games. We allow
ourselves a little detour. We can straightforwardly adjust the function η mapping globally
uniform strategy profiles of the Kw game to valuations that are strategy profiles of the
Boolean game, to a function mapping arbitrary uniform strategy profiles of the Kw game
G to mixed strategy profiles of the Boolean game BG. We simply define the ‘revised η’ on
the level of strategy profiles s ∈ S. Given a uniform strategy profile s ∈ S, for each s ∈ S
such that s(v) = s for some v ∈ V , we let π(s) := |{v ∈ V | s(v) = s}|/2|P |. Note that
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2|P | = |V |. So π(s) is the probability that a valuation is mapped in s, given s. We can now
define a mixed strategy profile ws of the Boolean game BG as the one executing each s ∈ S
with probability π(s). We defer the investigation of embeddings into a mixed equilibrium
to future research and for now restrict ourselves to a relevant example, finally closing the
loop with matching pennies.

Example 23. Once more we recall Example 2 on page 310 about the pennies that do not
match, already further developed in Example 12, wherein it was shown that this game does
not have a Nash equilibrium with globally uniform strategies for the pessimist and optimist
outcome relation, but has a Nash equilibrium with uniform strategies that are not globally
uniform: the uniform strategy profile s = (s1, s2) where in s1, player 1 reveals p1 to 2 when
p1 is true and hides p1 from 2 when p1 is false, and in s2 player 2 reveals p2 to 1 when p2

is true and hides p2 from 1 when p2 is false.

When translating this game into a Boolean game, we can now observe that this uniform
strategy s becomes a mixed strategy η(s) where player 1 randomly chooses between revealing
or hiding her propositional variable Kw2p1 and where player 2 randomly chooses between
revealing or hiding his propositional variable Kw1p2. To realize that this is indeed random
it is important to observe that in Example 2 the probability of observing p1 or ¬p1 was
determined by Odd flipping its penny before privately watching the outcome under the dice
cup, and similarly for p2 and Even. So after all, for those who may have wondered, there
was a reason for setting up the experiment just like that.

We continue with a relevant result for the maximal outcome relation.

Theorem 24. Let G be a Kw game. Then NE (BG) 6= ∅ iff NEmax(G) 6= ∅.

Proof. (⇐) Suppose NEmax(GB) 6= ∅. By Lemma 15 there exists s ∈ Sg such that s ∈
NEmax(GB). Let w = η(s), we argue that w is a Nash equilibrium. Suppose not, there
exists i ∈ N , there exists w′i such that uBi (w′i, w−i) > uBi (wi, w−i). Consider the globally
uniform strategy profile t = η−1(w′i, w−i) (this is well defined by Lemma 22). From Lemmas
21 and 22 it follows that ui(v, t(v)) = uBi (w′i, w−i) > uBi (w) = ui(v, s(v)). This implies that
s 6∈ NEmax(GB) which is a contradiction.

(⇒) Suppose w ∈ NE (BG). Let s = η−1(w), we claim that s ∈ NEmax(G). Suppose
not, then there exists i ∈ N , v ∈ V and ti ∈ Si such that ui(v, (ti, s−i(v))) > ui(v, s(v)).
Let w′ = η(ṫi, s−i). From Lemmas 21 and 22 it follows that uBi (w′) = ui(v, (ṫi, s−i)(v)) >
ui(v, s(v)) = uBi (w). This implies that w 6∈ NE (BG) which is a contradiction.

5. Existence of Nash Equilibrium

In this section we focus on the question of existence of Nash equilibria for observation games
and identify various subclasses in which a Nash equilibrium is guaranteed to exist.

5.1 Existence of Pessimist Nash Equilibrium in Knowing-Whether Games

Example 12 shows that in the Kw fragment a maximal Nash equilibrium is not guaranteed
to exist even for two-player games. It is natural to ask if a similar observation holds for
pessimist Nash equilibrium. We first show that for two-player Kw games, a pessimist Nash
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equilibrium always exists (Proposition 25). However, for general Kw games, existence is
not guaranteed. Example 26 gives an 8-player Kw game without a Nash equilibrium.

Proposition 25. All two-player Kw games have a pessimist Nash equilibrium.

Proof. We construct a uniform strategy profile (s∗1, s
∗
2) as follows. For i ∈ {1, 2}, let ı denote

the player such that ı 6= i. If i ∈ {1, 2} has a uniform strategy si that is dominant, then set
s∗i (v) = si for all v ∈ V and let s∗ı be the best response to s∗i . It can be verified that s∗ as
defined above is a Nash equilibrium.

If neither player has a uniform strategy that is dominant, then we have the following

• For all s1 ∈ S1, there exists s2 ∈ S2 such that v, (s1, s2) 6|= γ1 for all v ∈ V .

• For all t2 ∈ S2, there exists t1 ∈ S1 such that v, (t1, t2) 6|= γ2 for all v ∈ V .

For two player games there is a bijection between the set of strategies Si and the set of
(local) valuations Vi (one can think of a strategy as deciding for each proposition whether
to reveal to the other player). Therefore for each t1 and s2 as described above, we can set
s∗1(v1) = t1 and s∗2(v2) = s2 appropriately for some v1 and v2.

To see that (s∗1, s
∗
2) is a Nash equilibrium, note that for all i ∈ {1, 2} and for all v ∈ V ,

min ui(v, s
∗) = 0. Also, for all v ∈ V , min ui(v, (s

′
i, s
∗
−i)) = 0 due to the above condition.

However, for more than two players a Kw game need not have a pessimist Nash equi-
librium. We present a counterexample for eight players.

Example 26. Consider the observation game G where N = {1, 2, . . . , 8} and Pi = {pi} for
i ∈ N . Player 8 acts as an “observer” whose goal γ8 = >. To specify the goals of the other
players we use the following formulas.

A = Kw3p1 ∧Kw4p1 B = Kw3p1 ∧ ¬Kw4p1

C = ¬Kw3p1 ∧Kw4p1 D = ¬Kw3p1 ∧ ¬Kw4p1

The main idea is to exploit that player 1 controls a single variable. Therefore in any
uniform strategy player 1 can choose to satisfy at most two of A,B,C,D. E.g., “when p1

is true reveal p1 to 3 and 4 (A), when p1 is false reveal p1 to 4 but not to 3 (C).

Definition of the Goal Formulas. For players {2, . . . , 7} the goal formulas are as fol-
lows.

γ2 = ((C ∨A)→ Kw8p2) ∧ (¬(C ∨A)→ ¬Kw8p2),
γ3 = (((B ∨D)→ Kw8p3) ∧ (¬(B ∨D)→ ¬Kw8p3))∨

((A ∨D) ∧Kw8p2 ∧ ¬Kw8p3),
γ4 = ((D ∨ C)→ Kw8p4) ∧ (¬(D ∨ C)→ ¬Kw8p4)∧

(((B ∨ C) ∧Kw8p5)→ ¬Kw8p4),
γ5 = (((A ∨B)→ Kw8p5) ∧ (¬(A ∨B)→ ¬Kw8p5))∨

((A ∨ C) ∧Kw8p7 ∧ ¬Kw8p5),
γ6 = (((A ∨D)→ Kw8p6) ∧ (¬(A ∨D)→ ¬Kw8p6))∨

((A ∨B) ∧ (Kw8p3 ∨Kw8p7) ∧ ¬Kw8p6),
γ7 = ((B ∨ C)→ Kw8p7) ∧ (¬(B ∨ C)→ ¬Kw8p7)
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A 2, 5, 6 D,C,B

B 3, 5, 7 A,C,A

C 2, 4, 7 D,B,A

D 3, 4, 6 A,B,B

Table 1: Uniform strategies for player 1. Explanations are given in the text.

The goal of player 1 is defined as γ1 :=
∨6
j=1 αj where α1 = Kw8p2∧D, α2 = Kw8p3∧A,

α3 = Kw8p4 ∧ B, α4 = Kw8p5 ∧ C, α5 = Kw8p6 ∧ B and α6 = Kw8p7 ∧ A. We will now
verify that NE pess(G) = ∅.

The goals of the players (except 8) involve assertions about whether players 2, . . . , 7
reveal the proposition that they control to player 8 along with whether 1 reveals p1 to players
3 and 4. For the purpose of this example, note that for all j ∈ {2, . . . , 7}, for all sj ∈ Sj
and k 6= 8, the value of sj(k) is irrelevant.

We now argue that NE pess(G) = ∅. To simplify the presentation, we split the reasoning
into two parts. First we argue that no globally uniform strategy of player 1 can be part of
a pessimist Nash equilibrium in G. In the second part we extend this to cover all uniform
strategy profiles.

Globally Uniform Strategies of Player 1. We show that for all uniform strategy
profiles s ∈ S, if s1 is globally uniform then s 6∈ NE pess(G). In other words, no uniform
strategy profile in G with a globally uniform strategy for player 1 can be a pessimist Nash
equilibrium.

Consider an arbitrary uniform strategy profile s ∈ S where s1 = ṡ1 ∈ Sg1. The uniform
strategy ṡ1 satisfies exactly one of the formulas A,B,C,D. From the goal formulas we can
see that there exists a non-empty subset of players X ⊆ {2, . . . , 7} such that for all j ∈ X,
min uj(v, (ṡ1, ṡ

∀
j , sN−{1,j})) = 1 for all v. Thus if s ∈ NE pess(G) then uj(v, s) = 1 for all

j ∈ X and for all v. From the goal formulas it also follows that there exists ṡ′1 6= ṡ1 such
that min u1(v, (ṡ′1, ṡ

∀
j , sN−{1,j})) = 1 for all j ∈ X and for all v.

In Table 1 we list all such possibilities. The first column in Table 1 lists the formula in
A,B,C,D that is satisfied by a globally uniform strategy ṡ1. The second column lists the
players j ∈ {2, . . . , 7} who can ensure an outcome 1 with ṡ∀j given ṡ1. The third column
gives the corresponding formulas in A,B,C,D that player 1 should satisfy to achieve an
outcome 1. For example suppose ṡ1 satisfies A (first row), players 2, 5 and 6 can reveal
their proposition to player 8 to ensure an outcome of 1 given ṡ1. Player 1 can then choose
to satisfy D (corresponding to α1), C (corresponding to α4), B (corresponding to α5),
respectively to achieve an outcome of 1. Using Table 1 it can be verified that any s ∈ S
where s1 is a globally uniform strategy is not a pessimist Nash equilibrium.

Arbitrary Uniform Strategies of Player 1. Next, note that since player 1 controls
a single proposition p1, any uniform strategy (of player 1) can satisfy at most two of
A,B,C,D. For example, consider the uniform strategy s1: when p1 is true reveal p1 to 3 but
not to 4 (B), when p1 is false do not reveal p1 to 3 and do not reveal p1 to 4 (D). Using an
argument similar to the one above we can show that if s ∈ NE pess(G) then min u1(v, s) = 1
for all v ∈ V .
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Now consider the uniform strategy s1 which is mentioned above for player 1 that satisfies
B or D. We can argue that there is no uniform strategy s∗ with s∗1 = s1 such that s∗ ∈
NE pess(G). Given the uniform strategy s1 of player 1, we have the following.

• Player 2 can ensure an outcome of 1 (for all v ∈ V ) by not revealing p2 to player 8.

• Player 3 can ensure an outcome of 1 (for all v ∈ V ) by revealing p3 to player 8. But
this would in turn imply that player 1 can satisfy α2 by deviating to a uniform strategy
that satisfies A.

• If player 4 reveals p4 to player 8 then player 1 can satisfy α3 by deviating to a uniform
strategy that satisfies B.

• If player 5 reveals p5 to player 8 then player 1 can satisfy α4 by deviating to a uniform
strategy that satisfies C.

• If player 6 reveals p6 to player 8 then player 1 can satisfy α5 by deviating to a uniform
strategy that satisfies B.

• If player 7 reveals p7 to player 8 then player 1 can satisfy α6 by deviating to a uniform
strategy that satisfies A.

Recall that the goal of player 1 is γ1 :=
∨6
j=1 αj. Now consider any uniform strategy

profile s∗ where s∗1 = s1, players 2 and 3 are playing their best responses and players 4,5,6
and 7 do not reveal the proposition that they control to player 8. Then α3, α4, α5 and α6

are not satisfied by s∗. From items 1 and 2 above, we have that in s∗3, player 3 reveals
p3 to player 8 and subsequently player 1 has a profitable deviation to a uniform strategy
that satisfies A. Thus s∗ 6∈ NE pess(G). If at least one of the players 4, . . . , 7 reveal the
proposition that they control to player 8, then for player 1 to ensure the outcome 1 for all v,
it need not necessarily have to satisfy α2 but can choose to satisfy the corresponding formula
α3, . . . , α6. But this would also imply deviating from s1 as listed in items 3-6 above. Thus
we can conclude that for all uniform strategy s∗ with s∗1 = s1 we have that s∗ 6∈ NE pess(G).

In Table 2 we enumerate all possibilities. In the first column we list all the possible
combinations of the formulas in A,B,C,D that player 1 can possibly satisfy in any uniform
strategy. Corresponding to each row which denotes a uniform strategy s1 of player 1, in the
second column in Table 2, we list the minimal set of players X which satisfy the following
conditions. Given the uniform strategy s1 of player 1,

• For all j ∈ X, player j cannot ensure the outcome 1 (for all v ∈ V ) by not revealing
its proposition to player 8 (assuming player 1 chooses s1).

• If for all j ∈ X, sj is a uniform strategy of player j that reveals pj to player 8 then
in the resulting uniform strategy profile s, we have u1(v, s) = 1 for all v ∈ V .

In other words, if all the players in X reveal their proposition to player 8 then the outcome
for player 1 under the strategy s1 is 1 for all v. For example, consider the uniform strategy
s′1 of player 1 defined as follows: “when p1 is true reveal p1 to 3 and 4 (A), when p1 is false
reveal p1 to 4 but not to 3 (C)”. Given s′1, player 3 violates the first condition above as
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C ∨A {5, 7}
B ∨D ∅
D ∨ C ∅
A ∨B {3, 6}, {6, 7}
A ∨D {2, 3}
B ∨ C {4, 5}

Table 2: Uniform strategies for player 1. Explanations are given in the text.

player 3 can ensure the outcome 1 by not revealing p3 to player 8. If both the players 5 and
7 reveal p5 and p7, respectively, to player 8, then in the resulting uniform strategy profile s′

we have u1(v, s′) = 1 for all v ∈ V . However, note that then s′ 6∈ NE pess(G). In s′ since
player 7 reveals p7 to player 8 and s′1 satisfies C ∨A, player 5 can deviate to not reveal p5

and ensure an outcome of 1 (for all v ∈ V ). Thus player 5 has a profitable deviation from
s′ and therefore, s′ 6∈ NE pess(G). A similar reasoning applies to the other rows in Table
2. From the goal formulas γ1, . . . , γ7 we can verify that for every such set X, there is a
player k ∈ X who can ensure an outcome of 1 by not revealing pk to player 8. Therefore
NE pess(G) = ∅.

5.2 Existence of Nash Equilibrium in the General Case

Following up on Example 26 we now determine more generally for which fragments of
observation games the existence of a Nash equilibrium is guaranteed. An initial step would
be to consider observation games where the goal formulas for all players are restricted to
the positive fragment of LK . For this fragment, the following result is straightforward.

Proposition 27. Let G = (N, (Pi)i∈N , (γi)i∈N ) be an observation game where γi ∈ L+ for
all i ∈ N . Then NE (G) 6= ∅ for all outcome relations.

Proof. Observe that when γi ∈ L+ for all i ∈ N , the globally uniform strategy ṡ∀i (public
announcement by player i of Pi) is dominant for all i ∈ N . Thus ṡ∀ ∈ NE (G) for any
outcome relation.

In this section, we present a more general structural result that identifies a class of
observation games in which a Nash equilibrium is guaranteed to exist. Our results show
that the existence of equilibrium crucially depends on the combination of positive/negative
epistemic assertions made by players in their goal formulas. Observation games where the
goal formulas are restricted to the positive fragment of LK can be viewed as a particular
simple case in this setting.

We assume that the goal formulas are in negation normal form. For i, j ∈ N (where
j may be i) and γi in LKnnf , we first define xji (γi) for x ∈ {+,−}. Intuitively, +j

i (γi) and

−ji (γi) encode the fact that player i makes a positive and negative (respectively) epistemic

assertion about a variable assigned to player j in the goal formula γi. Formally, xji (γi) is
defined as follows.

• For γi = pj and γi = ¬pj we have +j
i (pj) and +j

i (¬pj).

333



Van Ditmarsch & Simon

• γi = Kkϕ (where k ∈ N): +j
i (Kkϕ) iff +j

i (ϕ) and −ji (Kkϕ) iff −ji (ϕ).

• γi = K̂kϕ (where k ∈ N): +j
i (K̂kϕ) iff−ji (ϕ) and −ji (K̂kϕ) iff +j

i (ϕ).

• γi = ϕ ∧ ψ:

– +j
i (ϕ ∧ ψ) iff +j

i (ϕ) or +j
i (ψ) and −ji (ϕ ∧ ψ) iff−ji (ϕ) or −ji (ψ).

• γi = ϕ ∨ ψ:

– +j
i (ϕ ∨ ψ) iff +j

i (ϕ) or +j
i (ψ) and −ji (ϕ ∨ ψ) iff−ji (ϕ) or −ji (ψ).

Note that the definition of +j
i (γi) is intended to encode the fact that player i makes a

positive epistemic assertion about a variable assigned to player j in the goal formula γi. So
in item 4, we have that +j

i (ϕ∧ψ) holds iff the same holds for at least one of the subformulas

ϕ or ψ. A similar comment applies to definition of −ji (γi).
For every player i, we define type(i) ⊆ {+,−, c+, c−} as follows. For x ∈ {+,−},

• x ∈ type(i) if there is a player j 6= i such that xji (γi),

• cx ∈ type(i) if xii(γi).

In other words, + and − are in type(i) if there exists some player j with j 6= i such that
player i makes a positive and negative (respectively) epistemic assertion about a variable
assigned to player j in γi. Likewise, c+ and c− is in type(i) if player i makes a positive and
negative (respectively) epistemic assertion about its own variable in γi.

For example, for i ∈ N , consider the goal formula γi given in Example 12, under its
translation to negation normal form (NNF). We have the following for player 1.

• K1p2 occurs as a subformula in the NNF of γ1 and therefore + ∈ type(1). K̂1p2 occurs
as a subformula in the NNF of γ1 and therefore − ∈ type(1).

• K2p1 occurs as a subformula in the NNF of γ1 and therefore c+ ∈ type(1). K̂2p1

occurs as a subformula in the NNF of γ1 and therefore c− ∈ type(1).

For player 2, the reasoning is similar and therefore, we have that type(i) = {+,−, c+, c−}
for all i ∈ N . In fact, Theorem 32 given below shows that it is crucial that |type(i)| > 3 in
this example.

Based on the notion of type, we define the following subsets of N . Let

• X+ = {i ∈ N | c+ ∈ type(i)}, X− = {i ∈ N | c− ∈ type(i)},

• Wl = {i ∈ N | type(i) = {c+, c−}},

• W+ = {i ∈ N | type(i) = {+, c+, c−}}, W− = {i ∈ N | type(i) = {−, c+, c−}}.

For the proofs in this section, we also find it useful to define an ordering < over the set of
strategy profiles. Let X ⊆ N and sX , tX ∈ SX . We say that sX < tX if for all i ∈ X and
j ∈ N , ti(j) ⊆ si(j). We can then show the following existence result.
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Algorithm 1:

Input: G = (N, (Pi)i∈N , (γi)i∈N ).
Output: A uniform strategy profile s ∈ NE pess(G).

1 Let Wo := X+ ∪X− ∪Wl;

2 ∀i ∈ X+, ∀v ∈ V , set si(v) := s∅i ; /* a dominant uniform strategy */

3 ∀i ∈ X− \X+, ∀v ∈ V , set si(v) := s∀i ; /* a dominant uniform strategy */

4 ∀i ∈Wl, ∀v ∈ V , if ∃s ∈ S such that ∀w : w ∼i v, ui(w, s) = 1 then ∀w : w ∼i v, set

si(w) := si else si(w) := s∅i ; /* ui does not depend on others’ choice */

5 ∀i ∈W+, ∀j ∈W−, ∀v ∈ V set si(v) := s∅i ; sj(v) := s∀j ; /* initialisation */

6 ∀v ∈ V , set Y (v) := ∅; Z(v) := ∅;
7 repeat
8 ∀v ∈ V , set Y ′(v) := Y (v); Z ′(v) := Z(v);

/* process players who make positive assertions about variables

controlled by others */

9 while ∃v ∈ V , ∃i ∈W+ \ Y (v), ∃si, such that ∀w : w ∼i v, ∀sW−\Z(w), we have

(si, sW+\{i}(w), sZ(w)(w), sW−\Z(w), sWo(w)), w |= γi do

10 ∀w : w ∼i v, set si(w) := si; Y (w) := Y (w) ∪ {i};
/* process players who make negative assertions about variables

controlled by others */

11 while ∃v ∈ V , ∃i ∈W− \ Z(v), ∃si such that ∀w : w ∼i v, ∀sW+\Y (w), we have

(si, sW−\{i}(w), sY (w)(w), sW+\Y (w), sWo(w)), w |= γi do

12 ∀w : w ∼i v, set si(w) := si; Z(w) := Z(w) ∪ {i};

13 until ∀v ∈ V , Y (v) = Y ′(v) and Z(v) = Z ′(v);
14 ∀i ∈W+ \ Y (v), ∀j ∈W− \ Z(v) and ∀v ∈ V , set sj(v)(i) := ∅;
15 ∀i ∈W− \ Z(v), ∀j ∈W+ \ Y (v) and ∀v ∈ V , set sj(v)(i) := Pj ;
16 return s;

Theorem 28. Let G = (N, (Pi)i∈N , (γi)i∈N ) be an observation game where all goals γi are
guarded. If for all i ∈ N , |type(i)| ≤ 3, then

1. NE pess(G) 6= ∅.

2. NE opt(G) 6= ∅.

Proof. Part 1. NE pess(G) 6= ∅. Consider the procedure described as Algorithm 1. We argue
that Algorithm 1 always terminates and constructs a uniform strategy profile s ∈ NE pess(G).
First, we note that the sets X+, X− \X+, Wl, W+ and W− form a partition of N .

In each iteration of the outer loop in Algorithm 1 (steps 7 - 13), the size of the set Y (v)
or Z(v) strictly increases for some v ∈ V . We also have that for all v ∈ V , 0 ≤ |Y (v)| ≤ |N |
and 0 ≤ |Z(v)| ≤ |N |. It follows that Algorithm 1 always terminates. Let s be the strategy
profile constructed by Algorithm 1. From the description of the procedure, it can also be
verified that s is a uniform strategy profile. Thus to prove the claim, it suffices to show that
s ∈ NE pess(G).
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Note that for all i ∈ X+, s∅i is a dominant uniform strategy and for all i ∈ X−, s∀i is a
dominant uniform strategy. Therefore, for all v ∈ V , for all i ∈ X+∪X− and for all s′i ∈ Si,
ui(v, s(v)) ≥ ui(v, (s′i, s−i(v))).

For all i ∈Wl, for all v ∈ V , we have ui(v, (ti, t−i)) = ui(v, (ti, t
′
−i)) for all v ∈ V , ti ∈ Si

and for all t−i, t
′
−i ∈ S−i. Therefore, by the choice of si made in line 4 of Algorithm 1, we

have for all i ∈Wl, for all v ∈ V , for all s′i ∈ Si, ui(v, s) ≥ ui(v, (s
′
i, s−i)).

Now consider a player i ∈W+. For v ∈ V , suppose si(v) is assigned a value in the while
loop (steps 9-10). Let sk denote the resulting strategy profile after this assignment (step 10)
and Zk denote the value of Z in the corresponding iteration. By definition of the while loop,
for all w with v ∼i w, for all sW−\Zk(w), (si, s

k
W+\{i}(w), sZk(w), sW−\Zk(w), sWo(w)), w |= γi.

Since i ∈ W+, this implies that for all tW+\{i} ∈ SW+\{i} such that tW+\{i} < skW+\{i}(w),

for all sW−\Zk(w), (si, tW+\{i}, sZk(w)(w), sW−\Zk(w), sWo(w)), w |= γi. By definition, we have

sW+\{i}(w) < skW+\{i}(w) and for all j ∈ Zk(w), skj (w) = sj(w). Therefore, it follows that

(si, sW+\{i}, sZ(w), sW−\Z(w), sWo(w)), w |= γi and ui(v, s) = 1.

Consider a player i ∈W−. For v ∈ V , suppose si(v) is assigned a value in the while loop
(steps 11-12). Let sk denote the resulting strategy profile after this assignment (step 12)
and Y k denote the value of Y in the corresponding iteration. By definition of the while loop,
for all w with v ∼i w, for all sW+\Y k(w), (si, s

k
W−\{i}(w), sY k(w)(w), sW+\Y k(w), sWo(w)), w |=

γi. Since i ∈ W−, this implies that for all tW−\{i} ∈ SW−\{i} such that skW−\{i}(w) <
tW−\{i}, for all sW+\Y k(w), (si, tW−\{i}, sY k(w)(w), sW+\Y k(w), sWo(w)), w |= γi. By definition,

skW−\{i}(w) < sW−\{i}(w). Thus (si, sW−\{i}, sY (w), sW+\Y (w), sWo(w)), w |= γi. Therefore,

ui(v, s) = 1.

Now suppose there exists v ∈ V and i ∈ W+ such that i /∈ Y (v) (on termination of
the repeat loop, steps 7-13). By definition, for all si, there exists w with v ∼i w and
there exists tW−\Z(w) such that (si, sW+\{i}(w), sZ(w)(w), tW−\Z(w), sWo(w)), w 6|= γi. Since
i ∈ W+ and sj(v)(i) = ∅ for all j ∈ W− \ Z(v), it follows that for all si, there exists a w
with v ∼i w such that (si, sW+\{i}(w), sZ(w), sW−\Z(w), sWo(w)), w 6|= γi. Therefore, for all
s′i ∈ Si, ui(v, s) ≥ ui(v, (s

′
i, s−i)).

Suppose there exists v ∈ V and i ∈ W+ such that i /∈ Z(v). Using a similar proof as
above and using the fact that sj(v)(i) = ∅ for all j ∈W− \Z(v) we can argue that for all si,
there exists a w with v ∼i w such that (si, sW−\{i}(w), sY (w)(w), sW+\Y (w), sWo(w)), w 6|= γi.
Therefore, for all s′i ∈ Si, ui(v, s) ≥ ui(v, (s

′
i, s−i)).

Part 2. To show that NE opt(G) 6= ∅, we modify Algorithm 1 to reflect the optimist decision
rule. This is achieved by changing the conditional in both the While loops (line 9 and line
11) as described below. Note that the only change is a switch to existential quantification
over the valuations w in order to capture the definition of the optimist decision rule.

Line 9.
While ∃v ∈ V , ∃i ∈ W+ \ Y (v), ∃si, such that ∃w : w ∼i v, ∀sW−\Z(w), we have
(si, sW+\{i}(w), sZ(w)(w), sW−\Z(w), sWo(w)), w |= γi do.

Line 11.
While ∃v ∈ V , ∃i ∈ W− \ Z(v), ∃si such that ∃w : w ∼i v, ∀sW+\Y (w), we have
(si, sW−\{i}(w), sY (w)(w), sW+\Y (w), sWo(w)), w |= γi do.
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The result in Theorem 28 is tight in the sense that there exist observation games where
|type(i)| = 4 for i ∈ N and NE pess(G) = ∅. This is illustrated in Example 26 where for
players i ∈ {2, . . . , 7}, type(i) = {+,−, c+, c−}.

An interesting corollary of Theorem 28 is for self-positive goals: my objective is never
to remain ignorant of others’ variables even when it may be for others to remain ignorant.
(We recall their definition in Section 2.2.)

Corollary 29. Let G = (N, (Pi)i∈N , (γi)i∈N ) be an observation game where all (γi)i∈N are
guarded and self-positive, then NEpess(G) 6= ∅ and NE opt(G) 6= ∅.

Proof. Follows from Theorem 28, since ∀i, − 6∈ type(i).

For NEmax(G) we show a weaker result (Theorem 30) which can be strengthened for
Kw games (Theorem 32).

Theorem 30. Let G = (N, (Pi)i∈N , (γi)i∈N ) be an observation game where the goal formu-
las (γi)i∈N are guarded. If for all i ∈ N , |type(i)| ≤ 2 then NEmax(G) 6= ∅.

Proof. Let G = (N, (Pi)i∈N , (γi)i∈N ) be an observation game. Let X+ = {i ∈ N | c+ ∈
type(i)} and X− = {i ∈ N | c− ∈ type(i)}. Consider the uniform strategy profile s defined
as follows.

• For i ∈ X+ ∩ X−, we define si using the iterative procedure: for v ∈ V where si(v)
is not defined, if there exists s ∈ S such that ui(v, s) = 1 then set si(w) = si for all
w : v ∼i w. Otherwise set si(w) = s∅i for all w : v ∼i w.

• For all i ∈ X+, for all v ∈ V , let si(v) = s∅i .

• For all i ∈ N \ [(X+ ∩X−) ∪X+], for all v ∈ V , let si(v) = s∀i .

Note that for all i ∈ X+, s∅i is a dominant uniform strategy. For all i ∈ X−, s∀i is a
dominant uniform strategy and for all i ∈ (X+∪X−), both s∅i and s∀i are dominant uniform
strategies.

Since the goal formulas are guarded, we have for all i ∈ N and for all v ∈ V , v, s(v) |= γi
iff w, s(v) |= γi for all w : v ∼i w. Also, for all i ∈ X+ ∩X−, with type(i) ≤ 2, we have that
ui(v, s(v)) = ui(v, (si(v), s′−i)) for all s′−i ∈ S−i. It then follows that s ∈ NEmax(G).

5.3 Existence of Maximal Nash Equilibrium in Knowing-Whether Games

For the subclass of Kw games, we show that Theorem 30 can be strengthened. We argue
that if G is a Kw game where for all i ∈ N , |type(i)| ≤ 3 then the output of Algorithm 2 is
a globally uniform strategy profile s such that s ∈ NEmax(G).

Lemma 31. Algorithm 2 always terminates and it satisfies the following properties.

• After each iteration of the while loops, steps 9-10 and steps 11-12, the strategy profile
s constructed is a globally uniform strategy profile.

• The strategy profile s which is the output of Algorithm 2 is a globally uniform strategy
profile.
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Algorithm 2:

Input: A Kw game G = (N, (Pi)i∈N , (γi)i∈N ).
Output: A uniform strategy profile s ∈ NEmax(G).

1 Let Wo := X+ ∪X− ∪Wl;

2 ∀i ∈ X+, ∀v ∈ V , set si(v) := s∅i ; /* a dominant uniform strategy */

3 ∀i ∈ X− \X+, ∀v ∈ V , set si(v) := s∀i ; /* a dominant uniform strategy */

4 ∀i ∈Wl, if ∃s ∈ S, and ∃v ∈ V such that ui(v, s) = 1 then ∀w ∈ V set si(w) := si
else set si(w) := s∅i ; /* ui does not depend on others’ choice */

5 ∀i ∈W+, ∀j ∈W−, ∀v ∈ V set si(v) := s∅i ; sj(v) := s∀j ; /* initialisation */

6 Set Y := ∅; Z := ∅;
7 repeat
8 set Y ′ := Y ; Z ′ := Z;

/* process players who make positive assertions about variables

controlled by others */

9 while ∃i ∈W+ \ Y (v), ∃si and ∃v ∈ V such that ∀sW−\Z , we have

v(si, sW+\{i}(v), sZ(v), sW−\Z , sWo(v)) |= γi do

10 ∀w ∈ V , set si(w) := si; Y := Y ∪ {i};
/* process players who make negative assertions about variables

controlled by others */

11 while ∃i ∈W− \ Z, ∃si, ∃v ∈ V , such that ∀sW+\Y , we have

v(si, sW−\{i}(v), sY (v), sW+\Y , sWo(v)) |= γi do

12 ∀w ∈ V , set si(w) := si; Z := Z ∪ {i};

13 until Y = Y ′ and Z = Z ′;
14 ∀i ∈W+ \ Y , ∀j ∈W− \ Z, ∀v ∈ V , set sj(v)(i) := ∅;
15 ∀i ∈W− \ Z, ∀j ∈W+ \ Y , ∀v ∈ V , set sj(v)(i) := Pj ;
16 return s;

Proof. First, note that in each iteration of the outer loop in Algorithm 2 (steps 7 - 13), the
size of the set Y or Z strictly increases. Therefore Algorithm 2 always terminates.

At the end of the initialization steps (2 - 6), s ∈ Sg by definition. So it suffices to argue
that at the end of each iteration of the two While loops (steps 9 - 10 and 11 - 12), the
following invariant is maintained: s ∈ Sg. We can argue by induction on the number of
iterations of the while loops (steps 7 - 13). The claim follows from the definition of the
assignment statements: steps 10 and 12.

Thus on termination of the outer loop (steps 7 - 13) we have that s ∈ Sg. It follows
from the definition of lines 14 and 15 that the output of Algorithm 2, s ∈ Sg.

Theorem 32. Let G = (N, (Pi)i∈N , (γi)i∈N ) be a Kw game. If for all i ∈ N , |type(i)| ≤ 3
then NEmax(G) 6= ∅.

Proof. We argue that the output of Algorithm 2 is a globally uniform strategy profile s such
that s ∈ NEmax(G). As in the case of Theorem 28, note that the sets X+, X− \ X+, Wl,
W+ and W− form a partition of N .
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By Lemma 31, Algorithm 2 always terminates. Let s be the profile constructed by
Algorithm 2. To prove the claim, it suffices to argue that s ∈ NEmax(G).

Note that for all i ∈ X+, s∅i is a dominant uniform strategy and for all i ∈ X−, s∀i
is a uniform strategy that is dominant. Therefore, for all v ∈ V , for all i ∈ X+ ∪ X−,
ui(v, s(v)) ≥ ui(v, (s′i, s−i(v))).

For all i ∈ Wl we have that ui(v, s(v)) = ui(v, (si(v), s′−i)) for all s′−i ∈ S−i. Since the
goals are knowing whether formulas, we have if there exists v ∈ V and there exists s ∈ S
such that ui(v, s) = 1 then for all w ∈ V , for all s′−i ∈ S−i, ui(w, (si, s′−i)) = 1. Therefore,
for all v ∈ V , for all i ∈Wl, ui(v, s(v)) ≥ ui(v, (s′i, s−i(v))).

Now consider a player i ∈ W+. For v ∈ V , suppose si(v) is assigned a value in the
while loop (steps 9-10). Let sk denote the resulting strategy profile after this assignment
(step 10). Let Zk denote the value of Z in the corresponding iteration. By Lemma 31, we
have sk ∈ Sg and by definition of the while loop, there exists v such that for all sW−\Zk ,

v, (si, s
k
W+\{i}(v), sZk , sW−\Zk , sWo(v)) |= γi. By Lemma 31 and the fact that γi ∈ LKw

it follows that for all w, for all sW−\Zk , v, (si, s
k
W+\{i}(v), sZk , sW−\Zk , sWo(v)) |= γi. Since

i ∈W+, this implies that for all w ∈ V , for all tW+\{i} ∈ SW+\{i} such that tW+\{i} < sW−\Zk ,

w, (si, tW+\{i}, sZk(w), sW−\Zk(w), sWo(w)) |= γi. By definition, sW+\{i}(w) < skW+\{i}(w)

and for all j ∈ Zk, skj (w) = sj(w). Thus we have
w, (si, sW+\{i}, sZ(w), sW−\Z , sWo(w)) |= γi. Therefore, ui(w, s) = 1 for all w ∈ V .

Consider a player i ∈ W−. For v ∈ V , suppose si(v) is assigned a value in the
while loop (steps 11-12). Let sk denote the resulting uniform strategy profile after this
assignment (step 12) and Y k denote the value of Y in the corresponding iteration. By
Lemma 31, sk ∈ Sg. By definition of the while loop, there exists v such that for all sW+\Y k ,

v, (si, s
k
W−\{i}(v), sY k(v), sW+\Y k , sWo(w)) |= γi. By Lemma 31 and the fact that γi ∈ LKw ,

we have for all w such that for all sW+\Y k , w, (si, s
k
W−\{i}(w), sY k(w), sW+\Y k , sWo(w)) |=

γi. Since i ∈ W−, this implies that for all tW−\{i} ∈ SW−\{i} such that skW−\{i}(w) <
tW−\{i}, for all sW+\Y k(w), w, (si, tW−\{i}, sY k(w)(w), sW+\Y k(w), sWo(w)) |= γi. By definition,

skW−\{i}(w) < sW−\{i}(w). Thus w, (si, sW−\{i}, sY (w), sW+\Y (w), sWo(w)) |= γi. Therefore,

ui(w, s) = 1 for all w ∈W .

Now suppose there exists i ∈ W+ such that i /∈ Y (on termination of the repeat
loop, steps 7-13). By definition, for all si, for all v ∈ V , there exists tW−\Z such that
v, (si, sW+\{i}(v), sZ(v), tW−\Z , sWo(v)) 6|= γi. Since i ∈ W+ and sj(v)(i) = ∅ for all j ∈
W− \Z, it follows that for all si, for all v ∈ V v, (si, sW+\{i}(v), sZ(v), sW−\Z , sWo(v)) 6|= γi.

Suppose there exists v ∈ V and i ∈W+ such that i /∈ Z. Using a similar proof as above
and using the fact that sj(v)(i) = ∅ for all j ∈W− \Z(v) we can argue that for all si, for all
v ∈ V , v, (si, sW−\{i}(w), sY (w), sW+\Y , sWo(w)) 6|= γi. It follows that s ∈ NEmax(G).

Examples 33 and 34 show that Theorems 30 and 32 are tight.

Example 33. Consider the two-player game where N = {1, 2}, P1 = {p} and P2 =
{q1, q2, q3}. Let γ1 = (Kw1q

2∧Kw2p)∨(Kw1q
3∧¬Kw2p) and γ2 = (q1 → Kw1q

2)∧(¬q1 →
Kw1q

3) ∧ (¬Kw1q
2 ∨ ¬Kw1q

3). Note that in this game, |type(1)| = 3 and |type(2)| = 2.
The goal of player 1 is a Kw formula. It can be verified that NEmax(G) = ∅.
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Example 34. Consider the two-player game where P1 = {p1, q1} and P2 = {p2}. Let the
goal formulas be: γ1 = (¬Kw1p2 → (Kw2p1 ∧ ¬Kw2q1)) ∧ (Kw1p2 → (¬Kw2p1 ∧ Kw2q1))
and γ2 = (Kw2p1∧Kw1p2)∨ (Kw2q1∧¬Kw1p2). In this game, both goals are Kw formulas.
We have |type(1)| = 4 and |type(2)| = 3. It can be verified that NEmax(G) = ∅.

6. Representation and Complexity

For an observation game G = (N, (Pi)i∈N , (γi)i∈N ), let |N | = n, |P | = k and maxi∈N |γi| =
m (where |γi| denotes the number of symbols in γi). For i ∈ N , every strategy si : N →
P(Pi), can be represented in size O(nk). That is, both observation games and strategies
have compact representations — linear in n, k and m.

On the other hand, each uniform strategy si : V → Si can be encoded as a tuple of
Boolean functions (sji (pi))j∈N,pi∈Pi where each sji (pi) : P(P )→ {>,⊥}. Here sji (pi)(v) = >
is viewed as player i revealing the variable pi to player j under the valuation v. We assume
that the Boolean function sji (pi) is represented as a propositional formula βji (pi) over the
propositions P . It is well known that every such Boolean function can be represented as a
propositional formula, in the worst case the size of sji (pi) can be exponential in k.

In this section we address the computational complexity of the following two basic
algorithmic questions.

• Verification. Given an observation game G and a uniform strategy profile s ∈ S, is
s ∈ NE x(G) for an outcome relation x ∈ {pess, opt,max}?

• Emptiness. Given an observation game G is NE x(G) = ∅ for an outcome relation
x ∈ {pess, opt,max}?

We show that the verification and emptiness questions are PSPACE-complete and
NEXPTIME-complete respectively for the maximal outcome relation. We also show that for
the pessimist and optimist outcome relations, the verification and emptiness questions are
in PSPACE and NEXPTIME respectively. To obtain these results it is crucial to establish
the complexity of the model checking problem of the logic LK . The following result shows
that the model checking problem is PSPACE-complete. It follows directly from Proposition
2 in (Ågotnes et al., 2013b)6.

Theorem 35. Given α ∈ LK along with a strategy profile s ∈ S and a valuation v ∈ V ,
checking if v, s |= α is PSPACE-complete.

It is well known that the model checking problem for epistemic logic formulas over
Kripke structures (for example, formulas of multi-agent S5) can be solved in polynomial
time (Fagin, Halpern, Moses, & Vardi, 1995a; Halpern & Vardi, 1991). Note that in our
setting, a Kripke structure is not explicitly part of the input, rather the underlying relational
structure is compactly presented in terms of the valuation v and strategy s. This is the
reason for PSPACE-hardness of the model checking problem.

6. We thank Paul Harrenstein for providing us an unpublished full version of (Ågotnes et al., 2013b) which
includes a proof of Proposition 2. For the sake of completeness, we give a full proof of Theorem 35 in
the Appendix.
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6.1 Verification

In the rest of this section, we refer to valuations over various sets of variables and therefore
find it convenient to use the following notations. Let A be a finite set of variables. We use
V (A) to denote the set of all valuations over A.

Theorem 36. Given an observation game G = (N, (Pi)i∈N , (γi)i∈N ) and a uniform strategy
profile s ∈ S, checking if s ∈ NEmax(G) is PSPACE-complete.

Proof. We can argue that the complement of the problem is in PSPACE. That is, given G
and s ∈ S, the problem is to verify if s 6∈ NEmax(G). This can be solved with the following
two steps:

1. Guess i ∈ N , v ∈ V and si ∈ Si.

2. Verify that ui(v, (si, s(v)−i)) > ui(v, s(v)).

For step 1 note that the size of a strategy |si| = O(nk). So the triple (i, v, s) which forms
a possible witness to the fact that s 6∈ NEmax(G) has a polynomial representation. By
Theorem 35 it follows that step 2 can be solved in PSPACE. Since PSPACE is closed under
complementation and NPSPACE = PSPACE due to Savich’s Theorem, the membership in
PSPACE follows.

To show PSPACE-hardness, we give a reduction from the model checking problem for
LK . That is, given α ∈ LK , a strategy profile s ∈ S and a valuation v ∈ V we construct
an observation game G and a uniform strategy s as follows. Let P (α) denote the set of
variables occurring in α and p1 ∈ P (α) be an arbitrary fixed variable. Let q be a variable
such that q 6∈ P (α).

The set of players N = {1, 2}. P1 = P (α) and P2 = {q}. To define the goal formulas
we make use of the following notations. Let δv denote the Boolean formula over P1 which
uniquely characterises the valuation v. That is, δv :=

∧
p∈v p ∧

∧
p/∈v ¬p. For the (fixed)

variable p1 ∈ P1, we define the formula flip(p1) as follows.

flip(p1) =

{
Kw2q if p1 6∈ s1(2),

¬Kw2q if p1 ∈ s1(2).
The goal formulas are then defined as:

• γ1 = δv ∧ (α ∨ flip(p1))

• γ2 = >.

Let s be any uniform strategy profile such that for all w ∈ V (P1 ∪ {q}) with w ∩P1 = v
we have s(w) = s. Now consider a w ∈ V (P1 ∪ {q}) such that w ∩ P1 = v.

Suppose w, s 6|= α. By the definition of flip(p1), we have that w, s(w) 6|= flip(p1) and thus
w, s(w) 6|= γ1. Again, by the definition of flip(p1), there exists s′1 such that w, (s′1, s−1(w)) |=
flip(p1) and therefore u1(w, (s′1, s−1(w))) > u1(w, s(w)). Thus s 6∈ NEmax(G).

Conversely, suppose w, s |= α. Then for player 1, w, s(w) |= γ1. For all w′ ∈ V (P1∪{q})
such that w′∩P1 6= v, for all s′1 ∈ S1, w′, (s′1, s−1(w) 6|= δv and therefore, w′, (s′1, s−1(w′)) 6|=
γ1. For player 2, for all valuations u ∈ V (P1 ∪ {q}), we have u, s(u) |= γ2. Therefore
s ∈ NEmax(G).

By Theorem 35 PSPACE-hardness follows, which gives the desired result.
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In the case of pessimist and optimist outcome relations, the following computational
upper bounds for the verification question are relatively straightforward. Whether matching
lower bounds can be shown is an interesting question.

Theorem 37. Given an observation game G = (N, (Pi)i∈N , (γi)i∈N ) and a uniform strategy
profile s ∈ S, checking if s ∈ NE x(G) is in PSPACE where x ∈ {pess, opt}.

Proof. Observe that by Theorem 35, for i ∈ N , s ∈ S and v ∈ V , checking if ui(v, s(v)) = 1
can be done in PSPACE. It follows that checking if max ui(v, s) = 1 (respectively, if
min ui(v, s) = 1) can be checked in PSPACE. Therefore, to check if s 6∈ NE pess(G) (re-
spectively, if s 6∈ NE opt(G)), it suffices to perform the following two steps.

1. Guess a player i, a valuation v and a strategy s′i ∈ Si.

2. Verify if min ui(v, s) < min ui(v, (ṡ
′
i, s−i)),

(respectively, if max ui(v, s) < max ui(v, (ṡ
′
i, s−i))).

For step 1 note that the size of the strategy |si| = O(nk). Thus the triple (i, v, si) that
forms a possible witness to the fact that s 6∈ NE pess(G) (respectively, s 6∈ NE opt(G)), has
a polynomial representation. By the observation above, step 2 can be solved in PSPACE.
Since PSPACE is closed under complementation and NPSPACE = PSPACE, the member-
ship in PSPACE follows.

6.2 Emptiness

Next we address the complexity of checking for emptiness of maximal Nash equilibria in
observation games. We find it useful to introduce the following definitions. Let A =
{a1, . . . , al} and B = {b1, . . . , bl} be two finite sets of variables where |A| = |B| and let ζ :
A→ B be a bijection. For valuations v1 ∈ V (A) and v2 ∈ V (B), we say that consζ(v

1, v2)
holds if for all j : 1 ≤ j ≤ l, aj ∈ v1 iff ζ(aj) ∈ v2. We also define the formula Cζ(A,B) :=
∧lj=1(aj ↔ ζ(aj)).

Given a uniform strategy si and a set Z ⊆ Pi, we say that si is globally Z-uniform if
for all v, v′ ∈ V , if v ∩ Z = v′ ∩ Z then si(v) = si(v

′). For i ∈ N , let SZi = {si ∈ Si |
si is globally Z-uniform}. Note that SZi can be viewed as a natural generalisation of Sgi by
parameterising the uniform strategies on the set Z.

An NEXPTIME-complete Problem. We now show that given an observation game
G, checking if NEmax(G) is empty is NEXPTIME-complete. To prove the hardness, we
give a reduction from the Dependency quantifier Boolean formula game (Dqbfg)
(Hearn & Demaine, 2009, p.87). Dqbfg involves a three player game with players 1, 2 and
3. There are four finite sets of variables which are mutually disjoint, X2, X3, A2 and A3

along with a Boolean formula ϕ over the variables X2∪X3∪A2∪A3. Let X = X2∪X3 and
A = A2 ∪A3. For the rest of this section we use LB to denote the set of Boolean formulas
over the variables X ∪A. Players’ strategies are defined as follows.

• Player 1: a strategy t1 ∈ V (X).

• Player 2: a strategy t2 : V (X2)→ V (A2).
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• Player 3: a strategy t3 : V (X3)→ V (A3).

In other words, a strategy for player 1 is to select a valuation for variables in X. Player
2 chooses a valuation for variables in A2 and his strategy can depend on the valuation for
variables in X2. Similarly, a strategy for player 3 is to choose a valuation for variables in
A3 which can depend on the valuation of variables in X3.

For player i ∈ {1, 2, 3} let Ti denote the set of strategies of player i and T the set
of strategy profiles. It is easy to observe that a strategy profile t = (t1, t2, t3) defines a
valuation over the set of variables X ∪ A. For a formula α ∈ LB we then have the natural
interpretation for t |= α. Given strategies t2 ∈ T2 and t3 ∈ T3, we say that the pair (t2, t3)
is a winning strategy for the coalition of players 2 and 3 if for all t1 ∈ T1, (t1, t2, t3) |= ¬ϕ.

An instance of Dqbfg is then given by the tuple H = ((Xi)i∈{2,3}, (Ai)i∈{2,3}, ϕ) and
the associated decision problem is to check if the coalition of players 2 and 3 have a winning
strategy in H.

Theorem 38 ((Hearn & Demaine, 2009)). Dqbfg is NEXPTIME-complete.

The reduction. Given an instance of DqbfgH = ((Xi)i∈{2,3}, (Ai)i∈{2,3}, ϕ), we construct
an observation game GH = (N, (Pi)i∈N , (γi)i∈N ) as follows. The set of players N = {1, 2, 3}.
For i ∈ {2, 3}, let Yi be a copy of the variables in Xi, so |Yi| = |Xi| and let Y = Y2 ∪ Y3.
Let P1 = X, P2 = A2 ∪Y2 ∪{q} and P3 = A3 ∪Y3 ∪{r}. For the rest of this section, we use
V and LK to denote the set of all valuations and the set of all formulas over the variables
in the observation game GH respectively (so V = V (X ∪ Y ∪A ∪ {q, r})).

We also define the bijection ζ : X → Y as the function that maps each variable in
Xi to its corresponding copy in Yi. Formally, let X1 = {x1

1, . . . , x
l
1}, Y1 = {y1

1, . . . , y
l
1},

X2 = {x1
2, . . . , x

h
2} and Y2 = {y1

2, . . . , y
h
2}. Then ζ(xj1) = yj1 for all j ∈ {1, . . . , l} and

ζ(xj2) = yj2 for all j ∈ {1, . . . , h}. To simplify notation, we denote consζ by cons and Cζ by
C for this fixed bijection ζ.

In order to define the goal formulas, we first inductively define a function λ : LB → LK

that transforms ϕ to a formula in LK as follows.

• For p ∈ X, λ(p) := p.

• For p ∈ A2, λ(p) := Kw3p.

• For p ∈ A3, λ(p) := Kw2p.

• λ(¬α) := ¬λ(α).

• λ(α1 ∨ α2) := λ(α1) ∨ λ(α2).

Let ψ2 = (Kw2r ↔ ¬Kw3q) and ψ3 = (Kw2r ↔ Kw3q). Recall that Example 12 shows
that already for the Kw fragment of observation games, NEmax need not always exist.
Observe that the formulas ψ2 and ψ3 precisely correspond to γ1 and γ2 respectively as used
in Example 12. We define the players’ goal formulas as follows.

• γ1 = >.

• For i ∈ {2, 3}, γi = (λ(¬ϕ) ∨ ψi) ∧ C(X2, Y2) ∧ C(X3, Y3).
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Properties of GH . It is easy to see that the resulting observation game GH is polynomial
in the size of H. We first make the following observations about GH .

Lemma 39. Let GH be the observation game corresponding to H and let s ∈ S. If there
exists v ∈ V such that cons(v ∩ X1, v ∩ Y1), cons(v ∩ X2, v ∩ Y2) and v, s(v) |= λ(ϕ) then
s /∈ NEmax(GH).

Proof. Suppose there exists v ∈ V such that cons(v ∩X1, v ∩ Y1), cons(v ∩X2, v ∩ Y2) and
v, s(v) |= λ(ϕ). Then v, s(v) |= C(X2, Y2) ∧ C(X3, Y3). By Example 12, we have that there
exists i ∈ {2, 3} such that v, s(v) 6|= ψi and there exists si ∈ Si such that v, (si, s−i(v)) |= ψi.
Therefore we have ui(v, s(v)) < ui(v, (si, s−i(v))). Thus s 6∈ NEmax(GH).

Lemma 40. For i ∈ {2, 3}, for all s ∈ S, for all v, v′ ∈ V such that v∩(X∪Y ) = v′∩(X∪Y )
we have v, s |= γi iff v′, s |= γi.

Proof. For i ∈ {2, 3}, the claim clearly holds for formulas ψi and C(Xi, Yi). Thus for γi, the
claim follows by a simple induction on ϕ.

Next, we show that if the set of maximal Nash equilibria in GH is non-empty then this
set contains certain restricted types of maximal Nash equilibria.

Let R denote the set of uniform strategy profiles s ∈ S that satisfy the following condi-
tions:

• s1 ∈ Sg1,

• for i ∈ {2, 3}, si ∈ SYii .

In other words, R consists of the set of all uniform strategy profiles s such that s1 is
globally uniform and for i ∈ {2, 3}, si is globally Yi-uniform.

Lemma 41. If NEmax(GH) 6= ∅ then there exists s∗ ∈ NEmax(GH) such that s∗ ∈ R.

Proof. For players i ∈ {2, 3} we define an equivalence relation ∼=i⊆ V × V as follows. For
v, v′ ∈ V , v ∼=i v

′ if v ∩ Yi = v′ ∩ Yi. For v ∈ V , let [v]i denote the equivalence class
containing the valuation v and civ ∈ [v]i denote a fixed valuation which is interpreted as the
canonical representative element in the equivalence class [v]i.

Suppose s ∈ NEmax(GH). Consider the uniform strategy profile s∗ ∈ R defined as
follow.

• For player 1, fix a valuation w ∈ V and let s∗1(v) = s1(w) for all v ∈ V .

• For players i ∈ {2, 3}, for all v ∈ V , s∗i (v) = si(c
i
v).

We claim that s∗ ∈ NEmax(GH). Suppose not, then there exists i ∈ {2, 3}, there
exists w ∈ V , there exists si ∈ Si such that ui(w, (si, s

∗
−i(w))) > ui(w, s

∗(w)). Then
w, (si, s

∗
−i(w)) |= γi and w, s∗(w) 6|= γi.

Now consider the valuation u defined as follows: u ∩ P1 = w ∩ P1 and for i ∈ {2, 3},
u∩Pi = ciw ∩Pi. By definition of u we have that u∩ (X ∪ Y ) = w ∩ (X ∪ Y ) and therefore,
w ∼=i u. From the definition of s∗ it follows that s∗(w) = s(u).
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Since w, (ai, s
∗
−i(w)) |= γi we have that w, (ai, s

∗
−i(u)) |= γi. By Lemma 40 we have

that u, (ai, s
∗
−i(u)) |= γi. Since w, s∗(w) 6|= γi we have that w, s∗(u) 6|= γi. By Lemma

40 we have that u, s∗(u) 6|= γi. However, this implies that s∗ /∈ NEmax(GH) which is a
contradiction.

Strategy Translation. Note that by the construction of GH , the strategies of player 1 are
irrelevant in terms of existence of maximal Nash equilibria. Player 1 can ensure a utility
of 1 by choosing any strategy. We now define two functions which translate strategies of
players 2 and 3 between H and GH . For the rest of the section we make use of the following
concise notation. For i = 2, let i+ = 3 and for i = 3, let i+ = 2.

For i ∈ {2, 3}, let χi : Ti → SYii be the function that translates every strategy ti of player
i in H to a globally Yi-uniform strategy si = χi(ti) in GH as defined below.

• For all v ∈ V , if cons(v ∩ Xi, v ∩ Yi) then si(v)(i+) = ti(v ∩ Xi) and si(v)(i+) = ∅
otherwise. For all v ∈ V , si(v)(1) = ∅ and si(v)(i) = Pi.

For i ∈ {2, 3}, let µi : SYii → Ti be the function that translates every globally Yi-uniform
strategy si of player i in H to a strategy ti = µi(si) in GH as defined below.

• For all v ∈ V , such that cons(v ∩Xi, v ∩ Yi), ti(v ∩Xi) = si(v)(i+).

Note that since si ∈ SYii , µi is well defined.

Lemma 42. For all i ∈ {2, 3} and for all si ∈ SYi, let s′i = χi(µi(si)). For all s1, s
′
1 ∈ S1,

for all i ∈ {2, 3} and for all v ∈ V such that cons(v∩Xi, v∩Yi) we have v, (s1, s2, s3)(v)) |= γi
iff v, (s′1, s

′
2, s
′
3)(v)) |= γi.

Proof. For i ∈ {2, 3}, the claim clearly holds for the formulas ψi and C(Xi, Yi). Thus for γi,
the claim follows by induction on ϕ.

Lemma 43. For all α ∈ LB, for all t ∈ T , for all i ∈ {2, 3} and for all v ∈ V such that
t ∩X = v ∩X and cons(v ∩Xi, v ∩ Yi) we have t |= α iff v, (s1, χ2(t2), χ3(t3))(v)) |= λ(α)
for all s1 ∈ S1.

Proof. For i ∈ {2, 3}, let si = χi(ti). The proof is by induction on the structure of α where
the interesting cases involve the three base cases.

• α = p ∈ X. Then we have λ(p) = p and the following sequence of equivalences. t |= p
iff p ∈ t1 iff p ∈ v (since t1 ∩X = v ∩X) iff v, (s1, s2, s3)(v)) |= p for all s1 ∈ S1.

• α = p ∈ A2. Then we have λ(p) = Kw3p and the following sequence of equivalences.
t |= p iff p ∈ t2(t1∩X2) iff p ∈ s2(v)(3) (since cons(v∩X2, v∩Y2)) iff v, (s1, s2, s3)(v)) |=
Kw3p for all s1 ∈ S1.

• α = p ∈ A3. Then we have λ(p) = Kw2p and the following sequence of equivalences.
t |= p iff p ∈ t3(t1∩X3) iff p ∈ s3(v)(2) (since cons(v∩X3, v∩Y3)) iff v, (s1, s2, s3)(v)) |=
Kw2p for all s1 ∈ S1.

• For α = ¬α1 and α = α1∨α2 the claim follows by a direct application of the induction
hypothesis.
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Lemma 44. Let H = ((Xi)i∈{2,3}, (Ai)i∈{2,3}, ϕ) be an instance of Dqbfg and GH the
associated observation game. The coalition of players 2 and 3 have a winning strategy in H
iff NEmax(GH) 6= ∅.

Proof. Let (t2, t3) be a winning strategy for the coalition of players 2 and 3 in H. By
definition of a winning strategy, for all t1 ∈ T1, we have (t1, t2, t3) |= ¬ϕ. Let t = (t1, t2, t3)
and consider the observation game GH .

Note that in GH , by the definition of player 1’s goal γ1, we have for all v ∈ V and for
all s ∈ S, u1(v, s(v)) = 1. Now consider an arbitrary valuation v ∈ V . There are two cases
to consider.

Case 1. Suppose there exists i ∈ {2, 3} such that cons(v ∩ Xi, v ∩ Yi) does not hold. By
semantics, for all s ∈ S and for all i ∈ {2, 3} we have v, s(v) 6|= C(X2, Y2) ∧ C(X3, Y3)
and thus v, s(v) 6|= γi. Therefore, ui(v, s(v)) = 0.

Case 2. Suppose for all i ∈ {2, 3}, cons(v∩Xi, v∩Yi) holds. By semantics we have for all s ∈ S,
for all i ∈ {2, 3}, v, s(v) |= C(X2, Y2)∧C(X3, Y3). Let t′1 = v∩X and t′ = (t′1, t2, t3). By
definition of t′, we have t′∩X = v∩X. Since (t2, t3) is a winning strategy for players 2
and 3 in H, we have (t′1, t2, t3) |= ¬ϕ. By Lemma 43 v, (s1, χ2(t2), χ3(t3))(v) |= λ(¬ϕ).

Since the choice of v was arbitrary, we can conclude that (s1, χ2(t2), χ3(t3)) ∈ NEmax(GH).
In fact, note that the argument shows a stronger claim - for all s′1 ∈ S1, the uniform strategy
profile (s′1, χ2(t2), χ3(t3)) ∈ NEmax(GH).

(⇐) Suppose NEmax(GH) 6= ∅. By Lemma 41, there exists a s ∈ R such that s ∈
NEmax(GH). Let (t2, t3) = (µ2(s2), µ3(s3)). We argue that (t2, t3) is a winning strategy for
the coalition of players 2 and 3 in H.

Suppose not, then there exists t′1 ∈ T1 such that for the strategy profile t′ = (t′1, t2, t3),
we have t′ |= ϕ. Consider the pair of strategies (s′2, s

′
3) = (χ2(t2), χ3(t3)) and a valuation

v ∈ V such that v ∩X = t′ ∩X and for all i ∈ {2, 3}, cons(v ∩Xi, v ∩ Yi). By Lemma 43
we have that v, (s′1, s

′
2, s
′
3) |= λ(ϕ) for all s′1 ∈ S1. In particular, v, (s1, s

′
2, s
′
3) |= λ(ϕ). Since

s′i = χi(µi(si)) for i ∈ {2, 3}, by Lemma 42 we have that v, (s1, s2, s3) |= λ(ϕ). By Lemma
39, s 6∈ NEmax(GH) which is a contradiction.

Theorem 45. Given an observation game G, checking if NEmax(G) 6= ∅ is NEXPTIME-
complete.

Proof. Recall that for each player, a uniform strategy si can be encoded as a tuple of Boolean
functions (sji (pi))j∈N,pi∈Pi each of which can be represented by a propositional formula

βji (pi) whose size is at most exponential in k. To show that the problem is in NEXPTIME,
we first guess a uniform strategy profile s. This involves guessing n2k formulas each of
which can be exponential in k. Membership in NEXPTIME then follows from Theorem 36.

By Lemma 44, it follows that checking if NEmax(G) 6= ∅ is NEXPTIME-hard. Thus the
claim follows.
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In the case of pessimist and optimist outcome relations, an argument similar to that
given in the proof of Theorem 45 along with Theorem 37 immediately gives us an upper
bound on the complexity of emptiness problem.

Theorem 46. Given an observation game G, checking if NE x(G) 6= ∅ is in NEXPTIME
where x ∈ {pess, opt}.

6.3 Knowing-Whether Observation Games

In the case of Kw games, we show that both the verification problem and the emptiness
problem have “better” complexity bounds which match the known complexity results for the
corresponding questions in Boolean games. We first recall the relevant results for Boolean
games.

Theorem 47 ((Harrenstein, Turrini, & Wooldridge, 2017)). (Verification) Given a Boolean
game B along with a strategy profile v checking if v ∈ NE (B) is co-NP-complete.

Theorem 48 ((Bonzon et al., 2006)). (Emptiness) Given a Boolean game B, checking if
NE (B) 6= ∅ is Σp

2-complete.

In the context of Kw games, as an immediate consequence of Proposition 5 we get that
the model checking question for the fragment LKw is in polynomial time.

Corollary 49. Given α ∈ LKw along with a strategy profile s ∈ S and a valuation v ∈ V ,
checking if v, s |= α is in PTIME.

We then have the following results for the complexity of verification and emptiness in
Kw games.

Theorem 50. Given a Kw game G = (N, (Pi)i∈N , (γi)i∈N ) and a uniform strategy profile
s ∈ S, checking if s ∈ NEmax(G) is co-NP-complete.

Proof. Membership in co-NP follows immediately from Corollary 49. For hardness, we show
a reduction from the corresponding verification problem in Boolean games which is: given
a Boolean game B and a strategy profile v in B, to check if v ∈ NE (B). By Theorem 47
this problem is known to be co-NP-complete.

Given a Boolean game B and a strategy profile w in B, let GB and ˙sw be the corre-
sponding observation game and the globally uniform strategy profile in GB as defined in
Section 4.2. We argue that w ∈ NE (B) iff ˙sw ∈ NEmax(GB).

(⇒) This direction is exactly the same as the first part of the proof of Theorem 19. Suppose
w ∈ NE (B) and ˙sw 6∈ NEmax(GB). Then there exists i ∈ N , v ∈ V and ti ∈ Si such that
ui(v, (ti, ˙sw−i(v))) > ui(v, ˙sw(v)). Let w′ = χ−1([ṫi, s−i]) From Lemmas 14, 17 and 18 it
follows that uBi (w′) = ui(v, (ṫi, s−i)(v)) > ui(v, ˙sw(v)) = uBi (w) for all v ∈ V . Therefore
w 6∈ NE (B) which is a contradiction.

(⇐) Suppose ˙sw ∈ NEmax(GB) and w 6∈ NE (B). Then there exists i ∈ N and w′i
such that uBi ((w′i, w−i) > uBi (w). Let w′ = (w′i, w−i). From Lemma 14 we have that

ui(v,
˙sw′(v)) = uBi (w′) > uBi (w) = ui(v, ˙sw(v)). This implies that ˙sw 6∈ NEmax(GB) which

is a contradiction.
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Theorem 51. Given a Kw game G, checking if NEmax(G) 6= ∅ is ΣP
2 -complete.

Proof. Membership in ΣP
2 follows immediately from Corollary 16 and Theorem 50. For

ΣP
2 -hardness, notice that the translation from observation games to Boolean games that we

provide in Section 4.3 is polynomial time computable. Thus given an instance of an obser-
vation game G, we can construct a Boolean game BG in polynomial time. By Theorem 24,
NEmax(G) 6= ∅ iff NE (BG) 6= ∅. From Theorem 48 it follows that checking if NEmax(G) 6= ∅
is ΣP

2 -complete.

7. Discussion and Conclusion

Summary. We introduced Boolean observation games as a qualitative model which com-
bines aspects of imperfect and incomplete information games. For these games we studied
Nash equilibria based on different ways to compare sets of outcomes, that result in differ-
ent expectations of outcomes. Our main technical contributions are for the existence of
Nash equilibria, for the computational analysis of Nash equilibria, as well as for identify-
ing knowing-whether games, a fragment of observation games that precisely corresponds to
Boolean games in terms of existence of Nash equilibria. A summary of our results are listed
in Table 3.

Existence Complexity
|type(i)| ≤ 2 |type(i)| ≤ 3 |type(i)| > 3 Verification Emptiness

Observation games
NE pess Yes (Theorem 28) Yes (Theorem 28) No (Example 26) PSPACE

(Theorem 37)

NEXPTIME
(Theorem 46)

NE opt Yes (Theorem 28) Yes (Theorem 28) — PSPACE
(Theorem 37)

NEXPTIME
(Theorem 46)

NEmax Yes (Theorem 30) No (Example 33) No (Example 33) PSPACE-
complete
(Theorem 36)

NEXPTIME-
complete
(Theorem 45)

Kw games
NE pess Yes (Theorem 28) Yes (Theorem 28) — — —
NE opt Yes (Theorem 28) Yes (Theorem 28) — — —
NEmax Yes (Theorem 32) Yes (Theorem 32) No (Example 34) Co-NP-

complete
(Theorem 50)

Σp
2-complete

(Theorem 51)

Table 3: Summary of results.

Complexity and Existence. Note that in Boolean observation games, the underlying
relational structure (the Kripke model) is not explicit. It is implicitly presented in terms of
a valuation v and strategy profile s. Therefore, even the basic model checking problem is
PSPACE-complete given the compact presentation. This in turn is one of the main reasons
for the “high” complexity bounds that we obtain for the computational analysis of this
model.

An alternative would be to explicitly have a Kripke model as part of the input. Suppose
the Kripke model is defined over a set of worlds W . Then a uniform strategy can be thought
of as a uniform function from W to the set Si of strategies for player i, which would have
a polynomial representation in terms of the number of worlds |W |, the number of agents
n, and the number of variables (atoms) |P |. Computing ui(v, s(v)) can then also be done
in polynomial time. As a consequence it can be shown that the verification problem is in
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co-NP and the emptiness problem is in ΣP
2 . However, the size of the Kripke structure can

in the worst case be exponential in |P |.
Clearly, the computational complexity of the model requires further analysis. There

are two approaches which are interesting. The first is to try and identify fragments of
the model which provide better complexity bounds. In the subclass of knowing-whether
games we obtain bounds which match the known bounds for the corresponding questions in
Boolean games. It is also known that in two player Boolean games where the goal formulas
are restricted to Horn-renamable DNF, 2CNF or monotone CNF, the emptiness of Nash
equilibrium can be checked in polynomial time (Bonzon et al., 2006). By modifying the
arguments appropriately, we can identify subclasses of knowing-whether games in which
the corresponding emptiness question can be solved in polynomial time. In general, any
natural restriction of the logical specification language which results in the corresponding
model checking question to have “better” complexity is a promising fragment.

The second approach would be to identify the specific parameters within the model
which contribute to the exponential complexity bounds. Some of the natural candidates
are the number of players and the number of variables used in the goal formulas. Since
the hardness results given in Theorem 36 and Theorem 44 are for two and three players
respectively, bounding the number of players alone is not sufficient. Analysis of fragments
where the number of variables in the goal formulas are bounded appears to be a promising
research direction which require more careful study.

Analysing the lower bounds in the case of pessimist and optimist outcome relations is
another question which is relevant.

In Section 5.1, we analyse existence of Nash equilibria in knowing-whether games, and
in Section 5.2 we identify conditions based on positive/negative epistemic assertions which
ensure existence of Nash equilibria. Identifying other fragments where Nash equilibria are
guaranteed to exist is an obvious direction of future research. It would be particularly
interesting if the existence result can be related to structural properties of the underlying
game.

Extensions of the Model. There are many extensions of the model which are interesting
for further research. One could imagine a whole and ever widening range of qualitative
incomplete information games of imperfect information. For the strategies, instead of merely
revealing the value of propositional variables, we could consider revealing the value of any
epistemic proposition, as already considered in (Ågotnes & van Ditmarsch, 2011; Ågotnes
et al., 2011) for more complex, arbitrary, Kripke models. Instead of having merely partitions
(exhaustive and exclusive) of all variables, one could consider overlapping sets of variables
(exhaustive but not exclusive, so more than one player may observe the same variables)7 as
for example employed in (Belardinelli, Grandi, Herzig, Longin, Lorini, Novaro, & Perrussel,
2017). Doing the same for Boolean games would create the possibility of conflict, as not
more than one player can control the value of a variable. But as many agents as you wish
can make the same observation.

Another interesting extension to explore would be to consider iterated Boolean obser-
vation games, wherein players can gradually reveal more and more of their variables. This
would be a generalization similar to that already studied for Boolean games in (Gutierrez

7. Kindly suggested by Paul Harrenstein.
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et al., 2015, 2016). It would involve epistemic temporal goals or dynamic epistemic goals.
Different from iterated Boolean games, in iterated Boolean observation games one can only
reveal more and more variables in every round, until all have been revealed. This should
therefore considerably reduce the complexity of iterated Boolean observation games with
respect to otherwise comparable iterated Boolean games.

Yet another relevant direction is (epistemic) incentive engineering in Boolean observation
games, similar to what is studied in Boolean games (Wooldridge, Endriss, Kraus, & Lang,
2013; Turrini, 2013; Harrenstein et al., 2017).
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Appendix A. Dynamic Epistemic Logic

A.1 Proof in Section 2.2

Proposition 5. For all ϕ ∈ LKw , valuations v, and strategy profiles s: v, s |= ϕ iff s |= ϕ.

Proof. The proof is by induction on the structure of Kw formulas in negation normal form
(LKw

nnf ). The direction from right to left is by definition. For the direction from left to right
we proceed as follows.

Case atom: v, s |= Kw ipj , iff (for all w ∼si v, w, s |= pj iff v, s |= pj), iff (for all w with
w ∩ Pi(s) = v ∩ Pi(s), w, s |= pj iff v, s |= pj), iff pj ∈ Pi(s). As v no longer appears in the
final statement, v is arbitrary. Therefore, the initial statement v, s |= Kw ipj is equivalent
to “for all w ∈ V , w, s |= Kw ipj ,” in other words, to s |= Kw ipj .

Case negated atom: v, s |= ¬Kw ipj , iff (there are w, x ∈ V with w ∼s v and x ∼s v and
such that w, s |= pj and x, s |= ¬pj), iff (there are w, x ∈ V with w ∩ Pi(s) = x ∩ Pi(s) =
v ∩ Pi(s) and such that w, s |= pj and x, s |= ¬pj), iff pj /∈ Pi(s). As in the previous case,
the final statement is independent from v and therefore the initial statement is equivalent
to s |= ¬Kw ipj .

Case conjunction: v, s |= α ∧ β, iff v, s |= α and v, s |= β, iff (IH) s |= α and s |= β, iff
s |= α ∧ β.

Case disjunction: v, s |= α ∨ β, iff v, s |= α or v, s |= β, iff (IH) s |= α or s |= β, iff
s |= α ∨ β.

A.2 Strategies as Epistemic Actions

In this section we compare our modelling and our results with related work in epistemic
logic. We model strategy profiles as epistemic actions in a dynamic epistemic logic, where
we also discuss an alternative semantics of strategies resulting in far larger models. The
alternatives can be compared on their game theoretical implications, which may help to
motivate our preference.
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The situation wherein each player only observes the value of its own variables, corre-
sponds to a Kripke model where the accessibility relation is the initial observation relation,
and a strategy profile corresponds to an action model that, when executed in this Kripke
model, results in an updated model wherein the accessibility relation is the observation
relation (for that strategy profile). In this section we make precise how. It may serve to
illustrate that our setting is very simple. This was why we were able to obtain modelling
and computational results for Boolean observation games that are close or analogous to
those for Boolean games.

An epistemic model (Kripke model) M is a triple (W,∼, π) where W is an (abstract)
domain of worlds or states, where ∼ is a collection of equivalence relations on W , one for
each agent, denoted ∼a (also known as indistinguishability relations), and where π is a
valuation (function) mapping each state w ∈W to the subset of the propositional variables
P that are true in that state. A pointed epistemic model (M,w) is a pair consisting of an
epistemic model and a state w ∈W .

Now consider the situation in our observation games where each of n players 1, . . . , n
only observes the value of its own variables Pi, but before they enact/play a strategy si.
We have implicitly modelled this as the strategy profile s∅ wherein no player reveals any
variable. We can identify this situation with the following epistemic model.

The initial observation model (IM , v), where IM = (V,∼, π), is such that:

• domain V is the set of valuations of P (V = P(P ));

• for each player i ∈ N and valuations v, w ∈ V , v ∼i w iff v ∩ Pi = w ∩ Pi;
• for each v ∈ V , π(v) = v.

Note that the relations are exactly as in interpreted systems (Fagin, Halpern, Moses, &
Vardi, 1995b).

Similarly, the result of playing strategy profile s ∈ S given valuation v ∈ V of observed
variables, corresponds to an updated epistemic model.

The observation model (IM s, v), where IM s = (V,∼s, π), is such that V and π
are as for IM , whereas in this case v ∼si w iff v ∩ Pi(s) = w ∩ Pi(s).

We recall that Pi(s) = {p ∈ P | there is a j ∈ N with p ∈ sj(i)}, the variables revealed to i
in s, where by definition Pi(i) = Pi so that always Pi ⊆ Pi(s).

Surely more interestingly, we can model a strategy profile as an independent semantic
primitive namely as an action model U such that

v, s |= ϕ iff IM ⊗ U, (v, s) |= ϕ

where the former is the satisfaction relation in our logical semantics for LK and the latter
is the satisfaction relation in action model semantics. In order to establish that we first
need to define action models and their execution (following details as in (Baltag, Moss, &
Solecki, 1998; van Ditmarsch, van der Hoek, & Kooi, 2008; Moss, 2015)).

An action model U is a triple (E,≈, pre) where E is a domain of actions, for each player
i = 1, . . . , n, ≈i is an equivalence relation on E, and pre is a precondition function mapping
each action e ∈ E to an executability precondition pre(e) that is a formula in some logical
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language L. The execution of an action model in an epistemic model M = (W,∼, π) is
then defined as the restricted modal product M ⊗ U = (W ′,∼′, π′) where W ′ = {(w, e) |
w ∈ W, e ∈ E,M,w |= pre(e)}, where (w, e) ∼′i (w′, e′) iff w ∼i w′ and e ≈i e′, and where
π′(w, e) = π(w).

In the case of strategy profiles for observation games, the logical language of action
model preconditions can be restricted to LB, the Booleans (the language required to describe
preconditions is therefore simpler than the language LK to describe epistemic goals), and
a rather simple action model corresponds to a strategy profile s. A strategy profile can be
identified with the following action model. In the definition, δv ∈ LB is the description of
the valuation v, defined as δv :=

∧
p∈v p ∧

∧
p/∈v ¬p.

A strategy profile action model U s is a triple (V,∼s, pre) where the set of actions
is the set of valuations V , where for each i = 1, . . . , n, v ∼si w iff v ∩ Pi(s) =
w ∩ Pi(s), and where for each action v ∈ V , pre(v) = δv.

The domain of the strategy profile action model is therefore the same as the domain of an
observation model, namely the set of all valuations.

In can be verified that

IM ⊗ U s is isomorphic to IM s.

This is fairly elementary. We note that each action can only be executed in a single world
— IM , v |= δv, so that the size of IM s is the same as the size of IM . Then, (v, v) ∼i (w,w)
iff, by definition of action model execution, v ∼i v (in IM ) and v ∼si w (in U s), iff, by
definition of these relations, v ∩ Pi = w ∩ Pi and v ∩ Pi(s) = w ∩ Pi(s). As the latter is
a refinement of the former, the desired result that v ∩ Pi(s) = w ∩ Pi(s) follows. Finally,
π′(v, v) = π(v) = v. And the valuations π do not change.

In fact, already U s is isomorphic to IM s (slightly abusing the notion, but when we
identify valuations with their description). It should be noted that it is common that action
models are isomorphic to updated models when executed in initial models consisting of all
valuations (and representing some sort of initial maximal ignorance over those valuations).

As a word of warning: the ‘actions’ that are the points in our action model U s do
not correspond to the strategies, that are sometimes also called actions. The action model
‘action’ combines the strategies of all players simultaneously, so they rather correspond to
strategy profiles.

More Succinct Action Models. A slightly more succinct modelling of strategy profiles
as action models is conceivable, that is a quotient of the action model U s defined above
with respect to variables that are not revealed by any player. Let us call this set P s, that is
therefore defined as the complement of the set P s := {p ∈ P | ∃i, j ∈ [1..n], i 6= j, p ∈ si(j)}.
We can now redefine U ssmall as (P(P s),∼s, pre) where in this case for any v, w ⊆ P s (so for
partial valuations of atoms revealed by some agent only), v ∼i w iff v ∩ Pi(s) = w ∩ Pi(s).
This looks the same as before, but note that Pi(s) may involve far more variables, namely
in P s, than v and w, that are both restricted to P s. Also, still pre(v) = v for all v ∈ P s
(and where pre(∅) = > in case P s = ∅).

Again, it is elementary to show that IM ⊗ U ssmall is isomorphic to IM s. We now have
that IM , w |= pre(v) iff v ⊆ w. But in this case U ssmall is typically smaller than the resulting
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updated model IM s. The resulting IM s, as before, has the same domain as the initial model
IM .

We now have, for example, that the action model corresponding to the ‘reveal nothing’
strategy profile s∅ is the trivial singleton action model U s

∅
small with precondition > (as P s

∅
=

∅), and in this case IM ⊗ U s∅small is isomorphic to the initial observation model IM again:
the relations ∼i have not changed.

A.3 Strategies for Weaker Observations give Bigger Models

In our modelling, it is common knowledge to all players what variables have been revealed
by who and to whom: the strategy profile s is common knowledge ‘after the fact’. But,
although I therefore know what variables are revealed by other players to yet other players,
I still have not learnt the values of these variables.

For example: After player 1 reveals atom p1 to player 2 and atom q1 to player
3, player 2 knows whether p1 and player 3 knows whether q1. Also, player 2
knows that player 3 knows whether q1, and player 3 knows that player 2 knows
whether p1.

In a different modelling, each player only learns what variables have been revealed by
other players to herself, and what variables she reveals to others.

For example: After player 1 reveals atom p1 to player 2 and atom q1 to player
3, player 2 knows whether p1 and player 3 knows whether q1. However, player 2
does not know that player 3 knows whether q1, and player 3 does not know that
player 2 knows whether p1. Player 2 also considers it possible that no variable
has been revealed to 3, in which case 3 does not know whether q1. And similarly
for player 3.

So, clearly, depending on which modelling one prefers, different goal formulas γ of ob-
servation games may be satisfied, and it will therefore affect the existence of Nash equilibria
and what the optimal strategies are.

Let us first formalize this as an action model, and let us be explicit about the (rather
different) updated model as well. The strategies si and profiles s = (s1, . . . , sn) remain the
same, and thus also the Pi(s), the set of atoms revealed to agent i. However, we can no
longer define an updated observation model as one wherein only the indistinguishability
relations have been changed, namely as v ∼si w iff v ∩ Pi(s) = w ∩ Pi(s), while keeping the
domain (and the valuation).

Instead of models consisting of valuations (domain V ) we now need much larger models
consisting of pairs (v, t) for valuations v and profiles t (domain V × S) and define:

For all v, v′ ∈ V and for all s, t, t′ ∈ S and for all players i ∈ N : (v, t) ∼si (v′, t′)
if v ∩ Pi(s) = v′ ∩ Pi(s) [same valuation inasfar observed], ti = t′i = si [same
variables revealed to others], and Pi(s) = Pi(t) = Pi(t

′) [same variables revealed
by others to you].
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As a consequence, we cannot describe the initial observation model as the one wherein s∅ is
executed, because that would still blow up the model and introduce maximal uncertainty
about what is revealed by who. So the initial observation model IM needs to be given
separately (namely as the model already defined in Appendix A.2). However, once this is
done, that is all. An action model can also be given for this modelling.

In this alternative modelling the players would remain far more ignorant about other
players: optimist expected outcome would be more optimist, pessimist expected outcome
would be more pessimist, realist expected outcome would quantify over a far larger set of
possible outcomes. Basically, any epistemic feature is diluted. It therefore appeared to us
that our preferred modelling provides more interesting results and variations.

Beyond that, the envisaged iterated Boolean observation games would become less mean-
ingful for such strategies encoding weaker observations, as a player remains unaware of other
players’ increasing knowledge over such iterations, unless as a consequence of that player
informing those other players.

Appendix B. Representation and Complexity

Theorem 35. Given α ∈ LK along with a strategy profile s ∈ S and a valuation v ∈ V ,
checking if v, s |= α is PSPACE-complete.

Proof. The membership in PSPACE is straightforward. For PSPACE-hardness, we give a
reduction from Quantified Boolean Formula (QBF) which is a canonical PSPACE-
complete problem (Papadimitriou, 1994). A QBF instance consists of a formula of the form
Q1x1Q2x2 . . . Qnxn ψ(x1, x2, . . . , xn) where every Qi is either a ∃ or ∀ quantifier, every xi
is a propositional variable and ψ(x1, x2, . . . , xn) is a Boolean formula over the variables
x1, . . . , xn. From the definition, it follows that every QBF instance is either true or false
(irrespective of the valuation under which it is evaluated).

Given an instance ϕ = Q1x1Q2x2 . . . Qnxn ψ(x1, x2, . . . , xn) of QBF, we associate with
each variable xi, a player i (thus N = {1, . . . , n}) and let P = {x1, . . . , xn}. We use the
following notation introduced in Section 4.2: for i = 1, . . . , n−1 let i+ := i+1 and n+ := 1.
For all i ∈ N , let Pi = {xi+} and let s∗i denote the strategy where player i reveals xi+ to
all players except player i+. That is, s∗i (i

+) = ∅ and s∗i (j) = Pi for all j 6= i+.
Let αϕ ∈ LK be the formula obtained from ϕ by replacing all occurrence of ∀xi by

Ki and all occurrence of ∃xi by ¬Ki¬. Let v⊥ = ∅ denote the valuation that assigns all
variables the value false. We show that the QBF instance ϕ is true iff v⊥, s

∗ |= αϕ.
We first argue that for all QBF instances ϕ and for all valuations v over P , v |= ϕ iff

v, s∗ |= αϕ. The proof is by induction on the structure of ϕ and the non-trivial cases involve
quantifiers. Suppose ϕ = ∀xiψ so that αϕ = Kiαψ, then

v |= ∀xiψ iff for all valuations u where u ∩ (P \ {xi}) = v ∩ (P \ {xi}), u |= ψ
iff for all valuations u where u ∩ (P \ {xi}) = v ∩ (P \ {xi}), u, s∗ |= αψ
iff for all u where u ∼s∗i v we have u, s∗ |= αψ
iff v, s∗ |= Kiαψ.

Since all variables in the QBF instance ϕ are bound, we have the following. ϕ is true
iff v⊥ |= ϕ iff v⊥, s

∗ |= αϕ. The claim then follows from the PSPACE-completeness of
QBF.
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