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Abstract

Focusing on Stable Roommates (SR), we contribute to the toolbox for conducting
experiments for stable matching problems. We introduce the polynomial-time computable
mutual attraction distance to measure the similarity of SR instances, analyze its properties,
and use it to create a map of SR instances. This map visualizes 460 synthetic SR instances
(each sampled from one of ten different statistical cultures) as follows: Each instance is a
point in the plane, and two points are close on the map if the corresponding SR instances
are similar with respect to our mutual attraction distance to each other. Subsequently, we
conduct several illustrative experiments and depict their results on the map, illustrating
the map’s usefulness as a non-aggregate visualization tool, the diversity of our generated
dataset, and the need to use instances sampled from different statistical cultures. Lastly,
we extend our approach to the bipartite Stable Marriage problem.

1. Introduction

Since their introduction by Gale and Shapley (1962), stable matching problems have been
extensively studied, both from a theoretical and a practical viewpoint. Numerous practi-
cal applications have been identified, and theoretical research has influenced the design of
real-world matching systems (Knuth, 1976; Gusfield & Irving, 1989; Manlove, 2013). In
addition to the rich theoretical literature, there are also several works containing empirical
investigations of stable matching problems.1 Although the examples given in Footnote 1
indicate that experimental works regularly occur, many papers on stable matchings do not
include an experimental part and instead solely focus on the computational or axiomatic
aspects of some mechanism or problem. However, to understand the properties of problems
and mechanisms in practice, computational experiments are vital. Note that in this paper,
we focus on computational experiments (also known as numerical experiments or simula-
tions). This explicitly excludes other forms of experiments such as lab or live experiments.

1. We give a certainly incomplete list of experimental works here: Teo & Sethuraman, 2000; Mertens,
2015; Genc, Siala, Simonin, & O’Sullivan, 2019; Erdem, Fidan, Manlove, & Prosser, 2020 conducted ex-
periments on general one-to-one matchings known as Stable Roommates, Podhradsky, 2010; Manne,
Naim, Lerring, & Halappanavar, 2016; Genc, Siala, O’Sullivan, & Simonin, 2017; Cooper & Manlove,
2019; Delorme, Garćıa, Gondzio, Kalcsics, Manlove, & Pettersson, 2019; Cooper & Manlove, 2020; Tzi-
avelis, Giannakopoulos, Johansen, Doka, Koziris, & Karras, 2020; Pettersson, Delorme, Garćıa, Gondzio,
Kalcsics, & Manlove, 2021; Agarwal & Cole, 2023; Boehmer, Heeger, & Niedermeier, 2022b; Brilliantova
& Hosseini, 2022 on bipartite one-to-one matchings known as Stable Marriage, Irving & Manlove,
2009; Kwanashie & Manlove, 2013; Delorme et al., 2019; Pettersson et al., 2021; Manlove, Milne, &
Olaosebikan, 2022 on bipartite many-to-one matchings known as Hospital Residents; and Siala &
O’Sullivan, 2017 on the bipartite many-to-many problem.
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Examples of computational experiments include the evaluation of the running time of an
algorithm or the quantitative analysis of the properties of a computed matching.

One reason for the lack of experimental work might be the rarity of real-world data
(exceptions can be found in Irving & Manlove, 2009; Delorme et al., 2019; Manlove et al.,
2022). As a result of this general lack, researchers typically resort to some distribution,
known as a statistical culture or synthetic model, for generating synthetic data. Remarkably,
the vast majority of previous works simply use random preferences, where all possible valid
preferences are sampled with the same probability (out of the 19 works listed above, 17 use
this model, nine of them as a single data source). However, as we will see later, instances
where preferences are sampled uniformly at random share many properties. Accordingly,
conclusions drawn from experiments using only such instances (or, generally speaking, only
instances sampled from one model) should be treated with caution, as it is unclear whether
their results generalize.

Similar in spirit to the line of works on “maps of elections” started by Szufa, Faliszewski,
Skowron, Slinko, and Talmon (2020) in the context of voting, we want to lay the foundation
for more experimental work around stable matchings by contributing to the toolbox for
conducting computational experiments in various ways. Among other things, we introduce
a polynomial-time computable measure for the similarity of instances and create a diverse
synthetic dataset for testing together with a convenient framework to visualize and analyze
it as a map (see Figure 2 for an example). We focus on instances of the Stable Roommates
(SR) problem, where we have a set of agents, and each agent has strict preferences over
all other agents. We selected the SR problem for this first, illustrative study because it
is the mathematically most natural stable matching problem (agents’ preferences do not
contain ties and are complete, and there are no different “types” of agents). Consequently,
statistical cultures for SR instances are relatively simple. Nevertheless, our general approach
and several of our ideas and techniques can also be used to carry out similar studies for
other stable matching problems, as demonstrated in Section 7, where we describe how to
adapt our results to Stable Marriage (SM) instances (SM is the bipartite analog of SR).

As part of our agenda to empower experimental work on stable matchings, we carry out
the following steps:

Distances Between SR Instances (Section 3). To judge the diversity of a dataset
for testing and to compare different statistical cultures to each other, a similarity measure
of SR instances is needed. For this, we introduce the notion of isomorphism between SR
instances and show how distances between preference orders naturally extend to distances
between SR instances. Most importantly, we propose the polynomial-time computable
mutual attraction distance2, which we use in the following.

Understanding the Space of SR Instances (Section 4). To better understand the
space of SR instances induced by our mutual attraction distance, we introduce four canonical
“extreme” instances, which are far away from each other. Moreover, we prove that two of
them form a diameter of our space, i.e., they are at the maximum possible distance.

2. Note that we use the terms “distance (measure)” in an informal sense to refer to some function mapping
pairs of instances to a positive real number; in particular, all our distance measures are pseudometrics
but not all are metrics (see Proposition 11).
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A Map of Stable Roommates Instances (Section 5). We define multiple statistical
cultures to generate SR instances, striving to put together a diverse dataset for testing
that shows a large range of possible behaviors. From them, we generate a diverse test set
for experimental work and picture it as a map of SR instances, by first computing the
mutual attraction distance between each pair of instances, and subsequently embedding the
instances as points in the Euclidean plane such that the Euclidean distances between points
resemble the underlying distances between instances as accurately as possible (see Figure 2
for an example). The use cases of the map are multifaceted. For instance, by observing the
position of an instance on the map, we can learn something about its nature. Moreover,
by coloring points according to the outcome of some experiment on the respective instance,
the map can be used as a convenient framework to visualize non-aggregate experimental
results, which may also help with designing more focused, follow-up experiments. In this
section, we also give intuitive interpretations of different areas on the map. In addition, we
analyze where different statistical cultures land on the map and how they relate to each
other.

Using the Map (Section 6). To demonstrate possible use cases for the map, we perform
some experimental studies as examples and use the map as a visualization tool. We analyze a
quality measure for stable matchings, the number of blocking pairs for random matchings,
and the running time to compute an “optimal” stable matching using an Integer Linear
Program (ILP). In sum, the instance-based view on experimental results provided by the
map allows us to identify several important phenomena, for example, that instances sampled
from the same culture all behave very similarly in our experiments; an observation that has
been neglected in the experimental design of many previous papers. Moreover, we further
observe that instances from the same area of the map exhibit a similar behavior, which
justifies the distance we use.

A Map of Stable Marriage Instances (Section 7). To demonstrate the general ap-
plicability of our framework to draw maps of stable matching instances, we create a map of
Stable Marriage (SM) instances—SM is the bipartite analog of SR. For this, we describe
how to transfer the mutual attraction distance, extreme instances, and statistical cultures
from the SR to the SM setting. Finally, we illustrate the usefulness of the map of SM
instances and verify that instances that are close to each other on the map have similar
properties by again conducting some example experiments.

From a methodological perspective, our work follows a series of recent papers on
(ordinal) elections3 (Faliszewski, Skowron, Slinko, Szufa, & Talmon, 2019; Szufa et al.,
2020; Boehmer, Bredereck, Faliszewski, Niedermeier, & Szufa, 2021b; Boehmer, Bredereck,
Elkind, Faliszewski, & Szufa, 2022; Boehmer, Faliszewski, Niedermeier, Szufa, & Was,
2022a): Faliszewski et al. (2019) introduced the problem of computing the distance be-
tween elections, focusing on isomorphic distances. Following up on this, Szufa et al. (2020)
created a dataset of synthetic elections sampled from a variety of different cultures and
visualized them as a map of elections. Subsequently, Boehmer et al. (2021b) added sev-
eral canonical elections to the map to give absolute positions a clearer meaning and added

3. Note that the term “election” is used in a formal sense here to describe a mathematical object defined
by a set of candidates and a set of voters with strict preferences over candidates.
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some real-world elections. Recently, Szufa, Faliszewski, Janeczko, Lackner, Slinko, Sornat,
and Talmon (2022) created and analyzed a map of approval elections. The usefulness of
the maps has already been demonstrated in different contexts. For example, Szufa et al.
(2020) identified that for elections from a certain region of the map, election winners are
particularly hard to compute, Boehmer et al. (2021b) and Boehmer and Schaar (2023)
analyzed the nature and relationship of real-world elections by placing them on the map,
and Boehmer, Bredereck, Faliszewski, and Niedermeier (2021a) evaluated the robustness of
election winners using the map. Although our general agenda and approach are similar to
the works of Faliszewski et al. (2019), Szufa et al. (2020) and Boehmer et al. (2021b), the
intermediate steps, used distance measures, cultures, experiments, and technical details are
naturally quite different.

The code for generating the map and conducting our experiments is available at
https://github.com/szufix/mapel. The generated datasets of SR and SM instances
are available at https://github.com/szufix/mapel_data.

2. Preliminaries

Preference Orders. Let A be a finite set of agents. We denote by L(A) the set of all
strict and total orders over A which we call preference orders. We usually denote elements
of L(A) as � and for two agents a and b, we say that a is preferred to b if a � b. We
sometimes specify the preferences of some agent a by writing a : b � c � d to denote that
a prefers b to c to d. Moreover, for a preference order � ∈ L(A) and an agent a ∈ A, let
pos�(a) denote the position of a in �, i.e., the number of agents that are preferred to a in
� plus 1. Furthermore, for i ∈ [|A|], let ag�(i) be the agent ranked in i-th position in �,
i.e., the agent b ∈ A such that i = pos�(b).

Distances between Preference Orders. For two preference orders �,�′ ∈ L(A), their
swap distance swap(�,�′) is the number of agent pairs on whose ordering � and �′ dis-
agree. For two preference orders �,�′ ∈ L(A), their Spearman distance spear(�,�′) is∑

a∈A |pos�(a) − pos�′(a)|. As proven by Diaconis and Graham (1977), it holds that
swap(�,�′) ≤ spear(�,�′) ≤ 2 · swap(�,�′).

Stable Roommates. A Stable Roommates (SR) instance I consists of a set A of
agents, with each agent a ∈ A having a preference order �a ∈ L(A \ {a}) over all other
agents. For simplicity, we will focus on instances with an even number of agents, as other-
wise, stable matchings leave one agent unmatched.

(Stable) Matchings. A matching of agents A is a subset of all possible agent pairs {a, a′}
with a 6= a′ ∈ A where each agent appears in at most one pair. We say that an agent is
unmatched in a matching M if a does not appear in any pair from M ; otherwise, we say
that a is matched. For a matched agent a ∈ A and a matching M , we write M(a) to denote
the partner of a in M , i.e., M(a) = a′ if {a, a′} ∈M . A pair {a, a′} of agents blocks a
matching M if it simultaneously hold that (i) a is unmatched or prefers a′ to M(a) and
(ii) a′ is unmatched or prefers a to M(a′). A matching that is not blocked by any agent
pair is called a stable matching.
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Mapping of Instances. For two sets X and Y with |X| = |Y |, we denote by Π(X,Y )
the set of all bijections σ : X → Y between X and Y . Let A and A′ be two sets of
agents with |A| = |A′| and let σ ∈ Π(A,A′). Then, for an agent a ∈ A and a preference
order �a ∈ L(A \ {a}), we write σ(�a) to denote the preference order over A′ \ {σ(a)}
arising from �a by replacing each agent b ∈ A \ {a} by σ(b) ∈ A′ \ {σ(a)}.

Pearson Correlation Coefficient. In our experiments, to evaluate the correlation be-
tween two measures, we use the Pearson Correlation Coefficient (PCC). The PCC is a
measure of linear correlation between two quantities x and y. A Pearson correlation coeffi-
cient of 1 means that x and y are perfectly positively linearly correlated, i.e., it always holds
y = mx + b for some b ∈ R and m > 0. A Pearson correlation coefficient of 0 indicates no
linear correlation, and −1 describes a perfect negative correlation (m < 0). As established
by Schober, Boer, and Schwarte (2018), an absolute Pearson correlation coefficient between
0.4 and 0.69 indicates a moderate correlation, a value between 0.7 and 0.89 indicates a
strong correlation, and a value between 0.9 and 1 indicates a very strong correlation.

3. Distance Measures

This section is devoted to measuring the distance between two SR instances, a key ingre-
dient of our map. Other use cases include the meaningful selection of test instances, the
comparison of different statistical cultures, and the analysis of real-world instances. In Sec-
tion 3.1, we define an isomorphism between two SR instances, show how distance measures
over preference orders can be generalized to distance measures over SR instances, and prove
that computing the Spearman and swap distance between SR instances is computationally
intractable. In Section 3.2, we introduce our mutual attraction distance and make some
observations concerning its properties and the associated mutual attraction matrices.

3.1 Isomorphism and Isomorphic Distances

Two SR instances are isomorphic if renaming the agents in one instance can produce the
other instance. For this, as each agent is associated with a preference order defined over
other agents, a single mapping describing a renaming of agents suffices. Accordingly, we
define an isomorphism on SR instances:

Definition 1. Two SR instances (A, (�a)a∈A) and (A′, (�a′)a′∈A′) with |A| = |A′| are
isomorphic if there is a bijection σ ∈ Π(A,A′) such that �σ(a) = σ(�a) for all a ∈ A.

We give an example for two isomorphic SR instances:

Example 2. Let I with agents {a, b, c, d} and I ′ with agents {x, y, z, w} be two SR instances
with the following preferences:

a : b � c � d, b : c � a � d, c : b � d � a, d : a � c � b,
x : y � w � z, y : z � w � x, z : w � y � x, w : z � x � y.

I and I ′ are isomorphic as witnessed by the mapping σ(a) = y, σ(b) = z, σ(c) = w, and
σ(d) = x.
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One can easily check whether two SR instances (A, (�a)a∈A) and (A′, (�a′)a′∈A′) are
isomorphic: Let us assume that we know that some isomorphism σ∗ ∈ Π(A,A′) maps a ∈ A
to a′ ∈ A′. Then, this already completely characterizes σ∗, as for each agent b ∈ A \ {a}
with pos�a

(b) = i, we must have σ∗(b) = ag�a′
(i). Thus, it suffices to fix an arbitrary

agent a ∈ A and then check for each a′ ∈ A′ whether the resulting mapping σ∗ is an
isomorphism.

Observation 3. Deciding whether two SR instances with 2n agents are isomorphic can be
done in O(n3) time.

For any distance measure p between preference orders, our notion of isomorphism can
be easily used to extend p to a distance measure over SR instances: The resulting distance
between two SR instances is the minimum (over all bijections σ between the agent sets) sum
(over all agents) of the distance between the preferences of a and the preferences of σ(a)
(measured by p):

Definition 4. Let p be a distance measure between preference orders. Let I = (A, (�a)a∈A)
and I ′ = (A′, (�a′)a′∈A′) be two SR instances with |A| = |A′|. Their dp-distance is:
dp(I, I ′) := minσ∈Π(A,A′)

∑
a∈A p(σ(�a),�σ(a)).

In particular, for all distance measures p between preference orders where, for �,�′ ∈
L(A), p(�,�′) = 0 if and only if � = �′, for any two SR instances I and I ′ it holds that
dp(I, I ′) = 0 if and only if I and I ′ are isomorphic. We call such a distance an isomorphic
distance.

Example 5. Applying Definition 4, the Spearman distance spear(·, ·) and the swap dis-
tance swap(·, ·) between preference orders (as defined in Section 2) can be lifted to distance
measures dspear and dswap between SR instances. Let I with agents a, b, c, and d and I ′ with
agents x, y, z, and w be two SR instances with the following preferences:

a : b � c � d, b : a � c � d, c : a � b � d, d : a � b � c,
x : y � z � w, y : x � z � w, z : w � y � x, w : z � y � x.

Then, for the mapping σ(a) = x, σ(b) = y, σ(c) = z, and σ(d) = w, the Spearman distance
of I and I ′ is 8 and the swap distance is 6. While for the Spearman distance this is
the optimal mapping (so dspear(I, I ′) = 8) for the swap distance the mapping σ(a) = y,
σ(b) = x, σ(c) = z, and σ(d) = w results in a smaller distance of 4. Indeed, we have
dswap(I, I ′) = 4.

We consider the Spearman distance dspear and the swap distance dswap as “ideal” dis-
tances, as they are quite fine-grained and isomorphic. Unfortunately, we will show in the
following that both are hard to compute. We first show that computing the Spearman
distance between two SR instances is at least as hard as deciding whether two graphs are
isomorphic, which is a famous candidate for the complexity class NP-intermediate.

Proposition 6. There is no polynomial-time algorithm to compute dspear, unless Graph
Isomorphism is in P.
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Proof. For a graph G = (V,E) and a vertex v ∈ V , let NG(v) be the set of vertices adjacent
to v in G. In the Graph Isomorphism problem, we are given two graphs G = (V,E) and
G′ = (V ′, E′) with |V | = |V ′| and the question is whether there is a bijection µ : V → V ′ such
that {v, u} ∈ E if and only if {µ(v), µ(u)} ∈ E′. We will now reduce Graph Isomorphism
to the problem of computing dspear.

Construction. Given an instance (G = (V,E), G′ = (V ′, E′)) of Graph Isomorphism,
we construct two SR instances as follows. Without loss of generality, we assume that there
are no isolated vertices in G and G′ and that ν := |V | = |V ′| > 2. From G, we construct
an SR instance I with agent set A as follows: First, we add each vertex v ∈ V as an agent
to A. Moreover, we add a set D of ν4 dummy agents. We now describe the preferences of
the agents. In order to do so, we denote, for a set B of agents by [B] an arbitrary but fixed
strict and total order of agents from B. For an agent b ∈ B, we denote by [B] \ {b} the
order arising from [B] by removing b. The preferences of the agents are as follows:

v : [NG(v)] � [D] � [V \ (NG(v) ∪ {v})] ∀v ∈ V
d : [D] \ {d} � [V ] ∀d ∈ D

From G′ = ({v′1, . . . , v′ν}, E′), we construct the second SR instance I ′ with agent set A′.
We add each vertex v′ ∈ V ′ as an agent to A′ and for each i ∈ [ν] a set D′i of ν3 dummy
agents. We set D′ :=

⋃
i∈[ν]D

′
i. The preferences of the agents are as follows:

v′ : [NG′(v
′)] � [D′] � [V ′ \ (NG′(v

′) ∪ {v′})] ∀v′ ∈ V ′

d′ : [D′] \ {d′} � v′i � v′i+1 � v′i+2 � . . .
� v′ν � v′1 � · · · � v′i−1 ∀d′ ∈ D′i,∀i ∈ [ν]

We now prove that the given Graph Isomorphism instance is a yes-instance if and
only if dspear(I, I ′) ≤ ν3 · (

∑
j∈[ν]

∑
i∈[ν] |i− j|) + ν3 = 1

3ν
4(ν2 − 1) + ν3.

Proof of Correctness. (⇒) Let π : D → D′ be the mapping that maps for i ∈ [ν4] the
dummy agent ranked in position i in [D] to the dummy agent ranked in position i in [D′].
Assume that G and G′ are isomorphic as witnessed by the bijection µ : V → V ′. Then,
we construct a bijection σ : A → A′ by mapping v to µ(v) for all v ∈ V and d to π(d) for
all d ∈ D. To estimate dspear(I, I ′), we start by upper-bounding the Spearman distance
between σ(�v) and �σ(v) for v ∈ V . As µ is an isomorphism between G and G′, we have
that {σ(w) | w ∈ NG(v)} = NG′(σ(v)). Moreover, we have {σ(w) | w ∈ V \(NG(v)∪{v})} =
V ′ \ (N ′G(σ(v)) ∪ {σ(v)}). Thus, in σ(�v) the same agents from V ′ appear before the first
dummy agent as in �σ(v) and the same agents from V ′ appear after the last dummy agent.
Moreover, note that all dummy agents are ranked in the same position in the two preference
orders. Thus, we can upper bound spear(σ(�v),�σ(v)) ≤ ν2: For each of the ν − 1 agents
from V ′ \ {σ(v)} their position in the two preference orders can differ by at most ν, since
in both preference orders the same at most ν agents appear before the first dummy agent
and the same at most ν agents appear after the last dummy agent. Overall, we get that∑

v∈V
spear(σ(�v),�σ(v)) ≤ ν3 . (1)
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Turning to the preferences of the dummy agents, note that for each d ∈ D, d ranks all
dummy agents in the same position as σ(d). Thus, only the different ordering of the agents
from V ′ in σ(�d) and �σ(d) contribute to the Spearman distance between the two. Observe
that for each two b, d ∈ D, each agent from V ′ appears in the same position in σ(�b) as in
σ(�d). Moreover, observe that considering the preference orders of all agents from D′, each
agent v′ ∈ V ′ appears exactly ν3 times in position (ν4 − 1) + i for each i ∈ [ν].

Let us now focus on agent v′ := σ(v) ∈ V ′ where v is ranked in position (ν4 − 1) + j
for j ∈ [ν] by �d for each d ∈ D. Then v′ contributes |j − i| to spear(σ(�d),�σ(d)) for
each d ∈ D where v′ is ranked in position (ν4 − 1) + i in �σ(d). Together with our previous
observation that each vertex agent appears ν3 times in position (ν4− 1) + i for each i ∈ [ν]
in the preferences of agents from D′ this implies that the misplacement of agent v′ overall
contributes ν3 · (

∑
i∈[ν] |i − j|) to the Spearman distance between the mapped preference

orders of dummy agents. Summing up over all j ∈ [ν], we get that the total Spearman
distance between the mapped preference orders of dummy agents is ν3 ·

∑
j∈[ν]

∑
i∈[ν] |i− j|.

Combining this with Equation (1), we get that dspear(I, I ′) ≤ ν3 ·(
∑

j∈[ν]

∑
i∈[ν] |i−j|)+ν3,

which proves the forward direction.

(⇐) Let σ : A→ A′ witness dspear(I, I ′) ≤ 1
3ν

4(ν2 − 1) + ν3.

We first show that σ does not map any agent from D to an agent from V ′. To show
this, let X ⊆ D be the subset consisting of all agents from D which are mapped to agents
from V ′ in σ and Y ′ := σ(X) ⊆ V ′ be the subset of agents from V ′ to which an agent from
X ⊆ D is mapped in σ. Assume for the sake of contradiction that x := |X| = |Y ′| > 0. Now
we compute the summed distance between the preferences of the agents from D \ X and
the preferences of the agents they are mapped to in σ and show that this distance already
exceeds the given budget. In particular, we give a lower bound on∑

d∈D\X

spear(σ(�d),�σ(d)) ≥
∑

d∈D\X

∑
v′∈V ′\Y ′

|pos�d
(σ−1(v′))− posσ(�d)(v

′)|

+
∑

d∈D\X

∑
y′∈Y ′

|pos�d
(σ−1(y′))− posσ(�d)(y

′)| . (2)

We first give a lower bound on the first summand, i.e.,
∑

d∈D\X
∑

v′∈V ′\Y ′ |pos�d
(σ−1(v′))−

posσ(�d)(v
′)|. Note that for each two agents b, d ∈ D \X and each v′ ∈ V ′ \Y ′ it holds that

σ(�b) and σ(�d) rank v′ in the same position. In other words, for each agent v′ ∈ V ′ \ Y ′,
there is some j ∈ [ν] such that v′ is ranked in position (ν4 − 1) + j in σ(�d) for each
d ∈ D \ X. We define id(v′) := j. Then, for each d ∈ D \ X with v′ being ranked in
position (ν4 − 1) + i in �σ(d), agent v′ contributes |id(v′)− i| to spear(σ(�d),�σ(d)). From
this together with the facts that there are ν3 agents from D′ ranking v′ in position i for
each i ∈ [ν], |X| = x, and |id(v′)− i| ≤ ν, we get that∑

d∈D\X

|pos�d
(σ−1(v′))− posσ(�d)(v

′)| ≥ ν3 ·
(∑
i∈[ν]

|i− id(v′)|
)
− xν . (3)

We now turn to the second summand of Equation (2), i.e.,∑
d∈D\X

∑
y′∈Y ′ |pos�d

(σ−1(y′)) − posσ(�d)(y
′)|. Note that for each agent y′ ∈ Y ′,

we have that it is placed in position ν4 − i ≤ ν4 − 1 for some i ∈ [ν4 − 1] in σ(�d) for
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all d ∈ D \ X, as a dummy agent is mapped to y′ and dummy agents appear only in the
first ν4 − 1 positions in σ(�d). Thus, as there are ν3 agents in D′ that rank y′ in position
(ν4 − 1) + j for each j ∈ [ν] and as |X| = x, we get that∑

d∈D\X

|pos�d
(σ−1(y′))− posσ(�d)(y

′)|

≥ −xν + ν3
ν∑
j=1

j = ν3 · ν · (ν + 1)

2
− xν = ν4 + ν3 ν

2 − ν
2
− xν . (4)

Summing Equations (3) and (4) over all v′ ∈ V ′ and using (for the second inequality)

that
∑

i∈[ν] |i− j| ≤
ν2−ν

2 for all j ∈ [ν], we get∑
d∈D\X

spear(σ(�d),�σ(d)) ≥

∑
v′∈V ′\Y ′

(
ν3 ·

(∑
i∈[ν]

|i− id(v′)|
)
− xν

)
+
∑
y′∈Y ′

(
ν4 + ν3 ν

2 − ν
2
− xν

)
≥ |Y ′| · ν4 +

∑
v′∈V ′

(
ν3 ·

(∑
i∈[ν]

|i− id(v′)|
)
− xν

)
= xν4 + ν3 ·

(∑
j∈[ν]

∑
i∈[ν]

|i− j|
)
− xν2

> ν3 ·
(∑
j∈[ν]

∑
i∈[ν]

|i− j|
)

+ ν3,

where we used our assumption ν > 2 as well as x > 0 for the last inequality. Thus, we
have reached a contradiction to σ witnessing a solution as the resulting distance exceeds the
given upper bound, implying that |X| = 0. Consequently, we may assume in the following
without loss of generality that σ matches dummy agents from D to dummy agents from D′

and vertex agents from V to vertex agents from V ′ in σ.
Observe that the arguments given in the forward direction of the proof imply that

independent of how σ maps vertex agents to vertex agents and dummy agents to dummy
agents we have that

∑
d∈D spear(σ(�d),�σ(d)) ≥ 1

3ν
4 · (ν2− 1). Thus, it needs to hold that∑

v∈V spear(σ(�v),�σ(v)) ≤ ν3 < ν4. As we have ν4 dummy agents, this implies that for
each v ∈ V , we need to have that σ(�v) and �σ(v) rank the same agents before the first
dummy agent: The position difference of an agent that appears in one preference order
before the dummy agents and in the other after the dummy agents would be at least ν4,
which is not possible. Thus, we have that {σ(w) | w ∈ NG(v)} = NG′(σ(v)). Thus,
restricting the mapping σ to the agents from V leads to a mapping µ : V → V ′ that induces
an isomorphism from G to G′.

We leave it as an open question whether computing dspear is indeed NP-hard. For
dswap, the NP-hardness follows from the NP-hardness of computing the Kemeny score of an
election (Dwork, Kumar, Naor, & Sivakumar, 2001; Biedl, Brandenburg, & Deng, 2005):

Proposition 7. Given two SR instances I and I ′ and an integer `, deciding whether
dswap(I, I ′) ≤ ` is NP-complete.
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Proof. In the NP-hard Kemeny Score problem, we are given an election E = (C, V )4

and an integer k, and the question is whether there is a central order v∗ ∈ L(C) such that∑
v∈V swap(v, v∗) ≤ k (Dwork et al., 2001).

Claim 8. Kemeny Score is NP-complete even if |C| = |V | and each candidate appears
as the top choice of exactly one voter.

Proof of Claim 8. We reduce from the Kemeny Score problem with four voters which was
shown to be NP-hard by Dwork et al. (2001). Let (E = (C, V ), k) with V = {v1, v2, v3, v4}
be an instance of this problem (where we assume that C is even, as otherwise we can
add a candidate and add it to all votes in the last position). We construct an instance
(E′ = (C ′, V ′), k′) of Kemeny Score with candidate set is C ′ := C ∪ {c1, c2, c3, c4}. We
construct the set V ′ of voters as follows: As the first voter, we add to V ′ a voter whose
preferences start with c1 � c2 � c3 � c4 followed by the candidates from C in the order
in which they appear in v1. We also insert such a voter for each of v2, v3, and v4, whose
preferences start with c2 � c1 � c3 � c4, c3 � c1 � c2 � c4, and c4 � c1 � c2 � c3,
respectively. By adding c1 � c2 � c3 � c4 to the beginning of some central order over C,
the summed distance of this central order to the four voters increases by 6.

Let P ⊆ C × C be an arbitrary partitioning of the candidates from P into pairs. For
each (c, c′) ∈ P , let v ∈ L(C ′) be an arbitrary vote starting with c and ending with c′.
We add v to V ′ as well as a vote ranking the candidates in the opposite order as they
are ranked in v. Each of these pairs has a summed swap distance of

(|C′|
2

)
to any central

order. In the constructed election E′ = (C ′, V ′), we have |C ′| = |V ′| and each voter has a

different top-choice. With k′ := k + 6 + |C|
2 ·
(|C′|

2

)
, it is easy to see that the two instances

are equivalent. �

Given an instance (E = (C, V ), k) of the NP-hard restricted version of the Kemeny
Score problem from Claim 8, let π : C → V be the bijection between candidates and
voters where each candidate is mapped to the unique voter where this candidate appears
in the first position.

We construct two SR instances I and I ′ with |C| agents as follows. The first SR
instance I has agent set A = {a1, · · · , a|C|}. All agents from A rank the other agents
increasingly by their index in their preferences. The second SR instance I ′ has agent
set A′ = C. Each agent c ∈ A′ orders the agents except for themselves as they are ordered

in π(c). We set ` = k −
∑|C|−1

i=0 i.

(⇒) Assume that there is a central order v∗ ∈ L(C)such that
∑

v∈V swap(v, v∗) ≤ k. Let
σ be a bijection between the agents A and A′, where agent ai ∈ A is mapped to agent c ∈ A′
if c appears in position i in v∗. Then for i ∈ [|C|], we have that

swap(σ(�ai),�σ(ai)) = swap(v∗, π(σ(ai)))− (i− 1),

as σ(�ai) is the central order v∗ without σ(ai) and the preferences of �σ(ai) is the
vote π(σ(ai)) without σ(ai), which appears in position i in v∗ and in position one in π(σ(ai)).

4. An election E = (C, V ) is defined by a set C of candidates and a set V of voters. Each voter v ∈ V is
identified with a preference order, also known as their vote, from L(C).
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Consequently, we have:

∑
i∈[|C|]

swap(σ(�ai),�σ(ai)) ≤ k −
|C|−1∑
i=0

i.

(⇐) Assume that there is a bijection between the agents A and A′ with∑
i∈[|C|] swap(σ(�ai),�σ(ai)) ≤ k −

∑|C|−1
i=0 i. Let v∗ ∈ L(C) be a vote where candi-

date c ∈ C appears in position i if ai is mapped to c by σ. Then analgous to as argued
above, for i ∈ [|C|], we have that swap(v∗, π(σ(ai))) = swap(σ(�ai),�σ(ai)) + (i − 1) and

consequently that
∑

v∈V swap(v, v∗) = dswap(I, I ′) +
∑|C|−1

i=0 i ≤ k.

Note that in the context of voting, similar to our approach, Faliszewski et al. (2019)
extended the Spearman and swap distances between preference orders to distances between
elections. They proved that for both swap and Spearman, computing the distance between
two elections is NP-hard and hard to approximate unless Graph Isomorphism is in P.
While their reductions are from the same problems as ours, our constructions are quite
different and more involved, as we no longer have both candidates and voters but just
agents.

3.2 Mutual Attraction Distance

In this section, we introduce and discuss our main distance measure, which we call mutual
attraction distance.

Intuition. One characteristic of SR instances is that each agent is associated with a
preference order and also appears in the preference order of other agents. Thus, when
considering, for instance, stable matchings, for an agent a it is not only important which
agents a likes, but also whether they like a as well. Accordingly, our mutual attraction
distance focuses on how pairs of agents rank each other. In particular, each agent a is
characterized by a mutual attraction vector whose i-th entry contains the position in which
a appears in the preferences of the agent who is ranked in i-th position by a. In the new
mutual attraction distance, we match the agents from two different instances such that the
`1-distance between the mutual attraction vectors of matched agents is minimized.

Notation. For p, q ∈ N, some i ∈ [p], and a matrix M ∈ Np×q, let Mi denote the i-th
row of M . For an SR instance I = (A = {a1, . . . a2n}, (�a)a∈A), an agent a ∈ A, and some
i ∈ [2n − 1], let MAI(a, i) be the position of a in the preference order of the agent a′

that a ranks in position i, i.e., MAI(a, i) := pos�a′
(a) where a′ := ag�a

(i). The mutual

attraction vector of agent a is MAI(a) =
(
MAI(a, 1), . . . ,MAI(a, 2n − 1)

)
. Lastly, the

mutual attraction matrix MAI of I is the matrix whose i-th row is the vector MAI(ai).

Definition 9. For two mutual attraction matrices MAI and MAI′ of SR instances I
and I ′ on 2n agents, we define their mutual attraction distance as

dMAD(MAI ,MAI′) := min
σ∈Π([2n],[2n])

∑
i∈[2n]

`1
(
MAIi ,MAI

′

σ(i)

)
.
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The mutual attraction distance dMAD(I, I ′) between two SR instances I with agents A and
I ′ with agents A′ with |A| = |A′| is the mutual attraction distance of their mutual attraction
matrices.

Example 10. Consider the two SR instances I and I ′ defined in Example 5. Their mutual
attraction matrices are:

MAI =


1 2 3

a 1 1 1
b 1 2 2
c 2 2 3
d 3 3 3

, MAI′ =


1 2 3

x 1 3 3
y 1 2 2
z 1 2 2
w 1 3 3


Their mutual attraction distance is 2 + 0 + 2 + 2 = 6 as witnessed by the mapping σ(a) = z,
σ(b) = y, σ(c) = x, and σ(d) = w.

Pseudometric. We now show that the mutual attraction distance is a pseudometric (note
that we will prove in Observation 14 that two non-isomorphic instances can be at mutual
attraction distance zero, which implies that it is not a metric).

Proposition 11. The mutual attraction distance dMAD is a pseudometric.

Proof. For two SR instances I and I ′, it trivially holds that dMAD(I, I) = 0 and
dMAD(I, I ′) = dMAD(I ′, I), so it remains to verify the triangle inequality. Consider three
SR instances I1, I2 , and I3 with 2n agents. Let δ and σ be the matchings that minimize
the mutual attraction distances between I1 and I2 and between I2 and I3, respectively. We
have that:

dMAD(I1, I3) ≤
∑

i∈[2n] `1
(
MAI1i ,MA

I3
σ(δ(i))

)
≤
∑

i∈[2n] `1
(
MAI1i ,MA

I2
δ(i)

)
+
∑

i∈[2n] `1
(
MAI2δ(i),MA

I3
σ(δ(i))

)
= dMAD(I1, I2) + dMAD(I2, I3),

where the second inequality follows from the fact that the `1-distance fulfills the triangle
inequality.

Computation. Given two SR instances I over agents A and I ′ over agents A′ with
|A| = |A′|, computing their mutual attraction distance reduces to finding a minimum-weight
perfect matching in a complete bipartite graph G = (A∪· A′, E) where edge {a, a′} ∈ E has
weight `1(MAI(a),MAI′(a′)).

Observation 12. Given two SR instances I and I ′ with 2n agents each, dMAD(I, I ′) can
be computed in O(n3) time.

Unsuitability of Positionwise Distance. The papers of Szufa et al. (2020) and
Boehmer et al. (2021b) on the map of elections used a different distance measure defined
over the so-called position matrices. In a position matrix of an election, we have one row
for each candidate and one column for each position, and an entry contains the fraction of
voters that rank the respective candidate in the respective position. This distance naturally
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extends to SR instances by introducing a row for each agent capturing in which positions the
agent is ranked by the other agents. Intuitively, this representation might appear appealing,
as it captures the general popularity/quality of agents in the instance. However, the posi-
tion matrix ignores that each agent is not only ranked by other agents, but also associated
with a preference order itself. Consequently, the positionwise distance disregards mutual
opinions, i.e., what agents think of each other, which are essential for stability-related con-
siderations. The unsuitably of the positionwise distance for SR instances is also illustrated
in a Pearson correlation coefficient (PCC) of only 0.457 with the Spearman distance (see
also Figure 1).5 Lastly, note that the mutual attraction matrix of an SR instance captures
all information contained in its position matrix, as MAI(a) for some agent a contains the
positions in which a is ranked by the other agents in I.

3.2.1 Realizable Mutual Attraction Matrices

Not every (2n) × (2n− 1)-matrix is the mutual attraction matrix of some SR instance.
Accordingly, we call a matrix M realizable if there is an SR instance I with MAI =
M . Realizable matrices exhibit certain characteristics. For example, since each agent
ranks exactly one agent in position j for every j ∈ [2n − 1], every realizable matrix M ∈
N(2n)×(2n−1) contains each number from [2n− 1] exactly 2n times. Unfortunately, checking
whether a matrix is realizable is NP-hard, which means that we (presumably) cannot hope
for a polynomial-time checkable “well-behaved” characterization (Woeginger, 2003).

Theorem 13. Given a (2n) × (2n − 1) matrix M , deciding if there is an SR instance I
with MAI = M is NP-complete.

Proof. We reduce from the NP-complete problem of deciding whether the edge set of a 3-
regular graph can be partitioned into three edge-disjoint perfect matchings (Holyer, 1981).

Construction. Given a 3-regular graph G = (V = {v1, . . . , vν}, E), let
{vp1 , vq1}, {vp2 , vq2}, . . . , {vpz , vqz} be a list of all vertex pairs that are not adjacent in G
(this means that z =

(
ν
2

)
− 3ν

2 ).
To construct matrix M , we first construct a dummy SR instance J consisting of dummy

and vertex agents: We introduce one vertex agent av for each vertex v ∈ V . Moreover, we
introduce one dummy agent di,j for i ∈ [z] and j ∈ [ν] \ {pi, qi}. Concerning the agent’s
preferences, we start by constructing the preferences of some vertex agent av` for some
` ∈ [ν]. Vertex agent av` ranks the three agents corresponding to the three vertices adjacent
to v` in G in the first three positions in arbitrary order. For the subsequent positions
for i ∈ [z], if ` = pi or ` = qi, then av` ranks aqi , respectively, api in position i+3; otherwise
av` ranks di,` in position i + 3. All remaining agents are appended to the preferences in
some fixed, arbitrary order. Concerning the dummy agents, agent di,j for i ∈ [z] and
j ∈ [ν] \ {pi, qi} ranks agent avj in the first position. Moreover, the dummy agents rank
all other dummy agents in an arbitrary order in the subsequent positions such that no two
dummy agents rank each other in the same position (this can be achieved by performing
cyclic shifts). Subsequently, they rank all vertex agents in some arbitrary ordering.

5. To compute this value we used the test dataset of 460 instances that we will describe in Section 5.1 for
twelve agents. We computed the Spearman distance by iterating over all possible agent mappings σ and
twelve was the largest number of agents we could handle within weeks.
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Let M ′ := RJ . To obtain M we modify M ′: For each vertex agent, we set the first
entry of its vector to one, the second entry to two, and the third entry to three.

Proof of Correctness. (⇒) Given a partitioning of E into three perfect matching M1,
M2, and M3, for each ` ∈ [ν] and i ∈ [3], let v`,i be the vertex adjacent to v` in Mi. To
construct an SR instance I realizing M , we start with the above-constructed instance J
and modify the first three positions in the preference order of each vertex agent as follows:
For ` ∈ [ν] and i ∈ [3], agent av` ranks av`,i in position i. Note that as M1, M2, and M3

are perfect disjoint matchings, in the resulting instance each agent ranks all other agents
in its preferences. We now claim that RI = M . Note that RI and RJ are identical up to
the first three entries in rows corresponding to vertex agents. As for each edge {v, w} ∈Mi

for i ∈ [3] agent av ranks aw in position i and aw ranks av in position i, in RI the mutual
attraction vector of each vertex agent starts with 1, 2, 3. Thus, RI = M .

(⇐) Assume that there is an SR instance I with RI = M . For convenience, we assume
that the names of agents in I are the same as in our construction. First observe that in
M for each i ∈ [4, z + 3] there are exactly two rows which contain an i at position i, that
are, the two rows corresponding to vertex agents avpi−3

and avqi−3
: All other vertex agents

rank a dummy agent in this position, which in turn ranks the vertex agent first. Moreover,
by construction, we have that dummy agents rank only other dummy agents in position
4 to z + 3 and that no two dummy agents rank each other in the same position. Thus,
it follows that in I avpi−3

and avqi−3
rank each other in position i. This implies that a

vertex agent av ranks all agents corresponding to vertices that are not adjacent to v in G
between positions 4 to z + 3. We claim that this further implies that av ranks the agents
corresponding to vertices adjacent to v in G in the first three positions in I. By construction,
for no dummy agent does its mutual attraction vector contain an i at position i for i ∈ [3].
Thus, av needs to rank vertex agents in the first three positions, and the vertex agents for
adjacent vertices are the only remaining ones. Furthermore, observe that if av ranks aw
in position i for i ∈ [3], then by the construction of M , agent aw ranks av in position i.
For i ∈ [3], let Mi := {{v, w} | av and aw rank each other in position i in I}. Note that
Mi is clearly a matching as each agent can only rank one other agent in each position.
Moreover, by our above observations, Mi is perfect. Furthermore, M1, M2, and M3 need to
be disjoint again because each agent can rank only one agent on each position. Thus, we
found a partition of the given graph into three perfect matchings M1, M2, and M3.

Another implication of this result is that we cannot easily move between SR instances
and their mutual attraction matrices. This is in contrast to the “map of elections” context
where elections’ aggregate representations admit a nice characterization and the realizability
problem is polynomial-time solvable (Boehmer et al., 2021b).

3.2.2 Further Properties of the Mutual Attraction Distance

Unfortunately, in contrast to the swap and Spearman distance, the mutual attraction dis-
tance is not isomorphic, i.e., there exist multiple non-isomorphic SR instances having the
same mutual attraction matrix:6

6. Note that the positionwise distance between elections used in the map of elections (Szufa et al., 2020;
Boehmer et al., 2021b) is also not isomorphic.
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Observation 14. The mutual attraction distance is not an isomorphic distance.

Proof. Let I with agents a, b, c, and d and I ′ with agents a′, b′, c′, and d′ be two SR instances
with the following preferences:

a : b � c � d, b : a � c � d, c : a � d � b, d : a � b � c,
a′ : b′ � c′ � d′, b′ : a′ � d′ � c′, c′ : a′ � b′ � d′, d′ : a′ � c′ � b′.

The mutual attraction matrices of the two instances are:

MAI =


1 2 3

a 1 1 1
b 1 3 2
c 2 3 2
d 3 3 2

, MAI′ =


1 2 3

a′ 1 1 1
b′ 1 3 2
c′ 2 3 2
d′ 3 3 2

.
So we have dMAD(I, I ′) = 0, yet I and I ′ are not isomorphic: Every isomorphism would
need to map a to a′, implying that the isomorphism also maps b to b′, c to c′, and d to d′.
However, the second choice of b is c, but c is matched to c′ while the second choice of b′

is d′. Thus, I and I ′ are not isomorphic.

Thus, we say that a matrix has a unique realization if each pair of SR instances realizing
the matrix are isomorphic. Unfortunately, there even exist mutual attraction matrices
realized by two non-isomorphic SR instances I1 and I2 where I1 admits a stable matching
but I2 does not. This indicates that the mutual attraction distance between two instances
has only a limited predictive value for their relationship in terms of their (distance to)
stability. However, this is in turn not too surprising given that stability is dependent on
local configurations.

Observation 15. There are two non-isomorphic instances I1 and I2 such that
dMAD(I1, I2) = 0, I1 admits a stable matching, and I2 does not admit a stable match-
ing.

Proof. Consider the following two instances:

a1 : a2 � a3 � a4 � a5 � a6 b1 : b2 � b6 � b4 � b5 � b3
a2 : a3 � a1 � a6 � a4 � a5 b2 : b3 � b1 � b6 � b4 � b5
a3 : a1 � a2 � a5 � a6 � a4 b3 : b4 � b2 � b5 � b6 � b1
a4 : a5 � a6 � a2 � a1 � a3 b4 : b5 � b3 � b2 � b1 � b6
a5 : a6 � a4 � a1 � a3 � a2 b5 : b6 � b4 � b1 � b3 � b2
a6 : a4 � a5 � a3 � a2 � a1 b6 : b1 � b5 � b3 � b2 � b4

For both instances, the mutual attraction matrix is the following:

2 1 4 3 5
2 1 4 3 5
2 1 4 3 5
2 1 4 3 5
2 1 4 3 5
2 1 4 3 5


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The left instance does not admit a stable matching, while the right instance admits the two
stable matchings M1 = {{b1, b2}, {b3, b4}, {b5, b6}} and M2 = {{b2, b3}, {b4, b5}, {b6, b1}}.

This is in partial contrast to the Spearman distance, where instances at distance zero are
isomorphic, and thus either both or neither of them admits a stable matching. Regarding
pairs of instances that are at a non-zero distance, for Spearman, there also exist SR instances
at distance 2 (which is the smallest achievable non-zero distance) where one admits a stable
matching and the other one does not. However, for the Spearman distance it holds that if
a matching M is stable in instance I, then M admits at most dspear(I, I ′) blocking pairs
in instance I ′ (Ostrovsky & Rosenbaum, 2015). Thus, under Spearman, if two instances
are close to each other and one of them admits a stable matching, then the other instance
is also guaranteed to contain a matching that is almost stable. An analogous statement
holds for the swap distance: If matching M is stable in instance I, then M admits at
most dswap(I, I ′) blocking pairs in instance I (as any swap can create at most one blocking
pair). However, this is not the case for the mutual attraction distance: By Observation 15,
there are two instances I and I ′ such that I admits a stable matching while I ′ does not.
We can merge k copies of I respectively I ′ into an instance Ik respectively I ′k (where the
preferences are extended to the agents from other copies in the same way for Ik and I ′k)
such that dMAD(Ik, I ′k) = 0. Then, Ik admits a stable matching, but any stable matching
for I ′k has at least k blocking pairs. In Section 6.1.1, we will demonstrate that all our
synthetically generated instances are anyway close to admitting a stable matching in the
sense that in all instances there is a matching blocked by only a few pairs.

To better understand the general properties of the mutual attraction distance, we con-
tinue by proving upper and lower bounds on the distance of two SR instances.

Proposition 16. For any two SR instances I1 and I2 with 2n agents each and
dMAD(I1, I2) > 0, we have 2 ≤ dMAD(I1, I2) ≤ 4 · (n− 1) · n2.

Proof. Let M1 := MAI1 and M2 := MAI2 . As every realizable matrix M ∈ N(2n)×(2n−1)

contains each number from [2n−1] exactly 2n times, both M1 and M2 contain each number
from [2n− 1] exactly 2n time.

For the upper bound, note that from this it follows that each number from [2n − 1]
appears exactly 4n times in M1 and M2 together. Since |x − y| = max{x, y} − min{x, y}
holds for all x, y ∈ R, we can upper bound dMAD(M1,M2) by summing up the 2n · (2n− 1)
largest numbers appearing in M1 and M2 and subtracting the 2n ·(2n−1) smallest numbers
appearing in M1 and M2. Consequently, we have

dMAD(M1,M2) ≤ 4n · (
2n−1∑
j=n+1

j −
n−1∑
j=1

j) = 4n · (
n−1∑
j=1

(n+ j)−
n−1∑
j=1

j)

= 4n · (n · (n− 1) +

n−1∑
j=1

j −
n−1∑
j=1

j) = 4n2 · (n− 1)

For the lower bound, note that if dMAD(M1,M2) 6= 0, then for each σ ∈ Π([2n], [2n])
there is some i ∈ [2n] and j ∈ [2n − 1] with M1i,j 6= M2σ(i),j . As each number appears in
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M1 and M2 the same number of times from this it follows that there also needs to be at
least one other pair i′ ∈ [2n] and j′ ∈ [2n − 1] with M1i′,j′ 6= M2σ(i′),j′ and (i, j) 6= (i′, j′).
From this it follows that dMAD(M1,M2) ≥ 2.

In fact, it is easy to see that the lower bound is tight. Later in Proposition 23, we will
also establish the tightness of the upper bound.

Observation 17. There are two SR instances I and I ′ with dMAD(I, I ′) = 2.

Proof. Let I with agents a, b, c, and d and I ′ with agents a′, b′, c′, and d′ be two SR instances
with the following preferences:

a : b � c � d, b : a � c � d, c : a � b � d, d : a � b � c,
a′ : c′ � b′ � d′, b′ : a′ � c′ � d′, c′ : a′ � b′ � d′, d′ : a′ � b′ � c′.

The mutual attraction matrices of the two instances are:

MAI =


1 2 3

a 1 1 1
b 1 2 2
c 2 2 3
d 3 3 3

, MAI′ =


1 2 3

a′ 1 1 1
b′ 2 2 2
c′ 1 2 3
d′ 3 3 3

.
It clearly holds that dMAD(MAI ,MAI′) = 2.

Correlation of Mutual Attraction and Spearman Distance. As the Spearman
distance dspear is a very natural and intuitively appealing distance measure, we checked
the correlation between the mutual attraction and Spearman distance. For this, we used
the test dataset of 460 instances that we will describe in Section 5.1 for twelve agents.7

The Pearson Correlation Coefficient (PCC) between the mutual attraction and Spear-
man distance on our test dataset is 0.801, which is typically regarded as a strong cor-
relation (Schober et al., 2018). In particular, for 95% of instance pairs (I, I ′) we have that
0.82 · dMAD(I, I ′) ≤ dspear(I, I ′) ≤ 1.48 · dMAD(I, I ′). Figure 1 (a) depicts this correlation
on the instance level.

Unfortunately, despite the observed correlation in practice, the ratio between the mutual
attraction and Spearman distance is unbounded: First, as the Spearman distance is iso-
morphic but the mutual attraction distance is not, there are instances at mutual attraction
distance zero but positive Spearman distance. Second, we show that there are instances
with mutual attraction distance zero but unbounded Spearman distance:

Observation 18. For any n ≥ 2, there are SR instances I1 and I2 on n agents with
dspear(I1, I2) = 2 but dMAD(I1, I2) ≥ n− 2.

7. We computed the Spearman distance by iterating over all possible agent mappings σ and twelve was
the largest number of agents we could handle within weeks. We decided to use the Spearman distance
instead of the swap distance here because the latter required more time to compute in practice.
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(a) Mutual attraction distance
(PCC = 0.801)

(b) Positionwise distance
(PCC = 0.457)

Figure 1: Correlation between the Spearman distance and our mutual attraction distance
or the positionwise distance of Szufa et al. (2020) on the dataset described in Section 5.1 for
twelve agents. Each pair of instances is represented by a point with its x-axis representing
their distance according to one of the measures and its y-axis representing their distances
according to the other.

Proof. Consider the following SR instance I1 with n agents.

a1 : a2 � an � an−1 � · · · � a3

ai : a2 � a3 � · · · � ai−1 � a1 � ai+1 � ai+2 � · · · � an, ∀i ∈ [2, n]

Let I2 be the instance arising from this SR instance by swapping a2 and an in the preferences
of a1. We will denote the agents of the instance belonging to I2 by a′1, a′2, a′3, . . . , a′n. Then
dspear(I1, I2) = 2.

It remains to show that dMAD(I1, I2) ≥ n−2. Let σ be a bijection from {a1, a2, . . . , an}
to {a′1, a′2, . . . , a′n} corresponding to the minimum distance dMAD(I1, I2). Note that for
each i ∈ [2, n], we have MAI1(ai, j) = i − 1 = MAI2(a′i, j) for all j 6= i. Thus, if
σ(ai) 6= a′i for some i ∈ [2, n], then dMAD(I1, I2) ≥ n−2. Otherwise, we have σ(ai) = a′i for
all i ∈ [n]. However, we have MAI1(a1) = (1, n − 1, n − 2, n − 3, . . . , 2) and MAI2(a′1) =
(n−1, 1, n−2, n−3, . . . , 2). Thus, in this case we would have dMAD(I1, I2) ≥ 2 ·(n−2).

Note that the bound from Observation 18 is certainly not tight.

4. Navigating the Space of SR Instances

In this section we will identify four somewhat “canonical” extreme mutual attraction ma-
trices, which are far away from each other and thus fall into four very different parts of the
map. Naturally, the corresponding SR instances also form extreme points of the space of
SR instances induced by our distance measure. Such extreme instances have the potential
to give meaning to different regions on the map and typically make the embedding more
structured (Boehmer, 2023, Section 2.3.1). Related to this, when visualizing the outcome
of some experiment by coloring points on the map accordingly, it might be easy to explain
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why canonical instances behave in a certain way (Boehmer, 2023, Section 8.4.2). Thereby,
such canonical instances can give some intuition for why some region on the map behave in
a certain way. The proofs of all statements from this section can be found in the appendix.

Identity. Our first extreme case is that all agents have the same preferences, i.e., there
exists a central order called master list of the agents A and the preferences of an agent a ∈ A
are derived from the master list by deleting a. Stable matching instances with master lists
have already attracted significant attention in the past (Irving, Manlove, & Scott, 2008; Cui
& Jia, 2013; Kamiyama, 2019; Bredereck, Heeger, Knop, & Niedermeier, 2020). For n ∈ N,
the identity matrix is defined by

ID2n[i, j] :=

{
i j ≥ i
i− 1 j < i

for each i ∈ [2n] and j ∈ [2n − 1]. We prove that, in fact, only SR instances where all
preferences are derived from a master list realize the identity matrix:

Proposition 19. For every n ∈ N, an SR instance I is a realization of ID2n if and only if
the preferences in I are derived from a master list. In particular, the realization of ID2n is
unique.

Mutual Agreement. Our second extreme case is mutual agreement: For each pair a and
a′ of agents, a and a′ evaluate each other identically, i.e., a ranks a′ on the i-th position
if and only if a′ ranks a on the i-th position.8 For n ∈ N, this is captured in the mutual
agreement matrix MA2n where we have MA2n[i, j] = j for each i ∈ [2n] and j ∈ [2n−1]. At
first glance, it is unclear whether the mutual agreement matrix is realizable. It turns out
that the realizations of MA2n correspond to Round-Robin tournaments: In a Round-Robin
tournament of 2n agents, there are 2n−1 days with each agent competing exactly once each
day and exactly once against each other agent (Harary & Moser, 1966). The intuition here
is that an agent in the SR instance corresponding to a Round-Robin tournament ranks in
the i-th position the agent against whom it competes on the i-th day. Formally, we have:

Proposition 20. For every n ∈ N, there is a bijection between realizations of MA2nand
the set of Round-Robin tournaments. In particular, there are several non-isomorphic real-
izations of MA2n for n = 4.

Mutual Disagreement. Our third extreme case is mutual disagreement. For each pair
a and a′ of agents, their evaluations for each other are diametrical, i.e., a ranks a′ in the
i-th position if and only if a′ ranks a in the (2n− i)-th position. For n ∈ N, this is captured
in the mutual disagreement matrix MD2n where we have MD2n[i, j] = 2n − j for each
i ∈ [2n] and j ∈ [2n−1]. There exists a straightforward realization of MD2n with 2n agents
a1, . . . , a2n where the preferences of agent ai are derived from the preferences of agent ai−1

8. Notably, in the Stable Marriage with Symmetric Preferences (O’Malley, 2007; Abraham, Levavi,
Manlove, & O’Malley, 2008) problem we are given a set of men and women with preferences over each
other, where a woman w ranks a man m in position i if and only if m ranks w in position i, an idea
very similar to mutual agreement (see O’Malley, 2007, Chapter 6 for additional motivation). O’Malley
(2007) and Abraham et al. (2008) study the computational complexity of various traditional questions
on such instances (in the presence of ties).
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by performing a cyclic shift, i.e., ai : ai+1 � ai+2 � · · · � an � a1 � a2 � · · · � ai−1.
However, this realization is not unique:

Proposition 21. For every n ∈ N, matrix MD2n is realizable. For n = 3, matrix MD2n

has multiple non-isomorphic realizations.

Chaos. Our fourth extreme mutual attraction matrix is the chaos matrix CH2n, which is
defined for each i ∈ [2n] and j ∈ [2n− 1] as

CH2n[i, j] =

{
j, for i = 1

i+ nj − n− 1 mod 2n− 1, otherwise.

Unlike the other three matrices, we have no natural interpretation of the chaos matrix. We
added this matrix to the other three because it is far away from each of them and thus falls
into an otherwise vacant part of the map. Its name “chaos” stems from the fact that this
matrix is typically placed close to instances with uniformly at random sampled preferences
on the map. We prove that for infinitely many n ∈ N, CH2n is realizable (note that in case
2n− 1 is divisible by 3, the matrix is never realizable):

Proposition 22. For every n ∈ N such that 2n − 1 is not divisible by 3, matrix CH2n is
realizable, and the realization is unique.

Distances Between Matrices. The mutual attraction distances between our extreme
matrices are as follows:

Proposition 23. For each n ∈ N, we have

1. dMAD(MA2n,MD2n) = 4 · (n− 1) · n2,

2. dMAD(ID2n,MA2n) = dMAD(MA2n,CH2n) = 8
3n

3 − 4n2 + 4
3n,

3. dMAD(ID2n,MD2n) = dMAD(MD2n,CH2n) = 8
3n

3 − 2n2 − 2
3n,

4. dMAD(ID2n,CH2n) = 8
3n

3 ±O(n2).

As proven in Proposition 16, D(2n) := 4 · (n − 1) · n2 is the maximum possible dis-
tance between two mutual attraction matrices of SR instances with 2n agents. Thus,
the mutual agreement matrix and the mutual disagreement matrix are at the maximum
possible distance and therefore form a diameter of our space. For each two matrices X
and Y among ID, MA, CH, and MD, we define their asymptotic normalized distance as:
ndMAD(X,Y ) := limn→∞ dMAD(X2n,Y 2n)/D(2n). It turns out that for all pairs of matrices
X,Y ∈ {ID,MA,MD,CH} with {X,Y } 6= {MA,MD} we have ndMAD(X,Y ) = 2

3 , while
ndMAD(MA,MD) = 1. This implies that our extreme matrices are indeed far from each
other. In the following, we will often consider normalized mutual attraction distances where
we divide the computed distance by D(2n).

5. A Map of Stable Roommates Instances

In this section, we present a map of synthetic SR instances. In Section 5.1, we describe how
we create the map and how we generate the instances. In Section 5.2, we explain the map
by giving the horizontal and vertical axes a natural interpretation and by analyzing where
different statistical cultures land.
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5.1 Creating the Map

We first describe our dataset of 460 SR instances generated from the following statistical
cultures (see Table 1 for an overview). To the best of our knowledge, only the Impartial
Culture, Attributes, Mallows, and Euclidean models have been previously considered.

Impartial Culture (IC). Agent a ∈ A draws its preferences uniformly at random from
the set of all possible preference orders over A excluding a, i.e., L(A \ {a}).

2-IC. Given some p ∈ [0, 0.5], we partition A into two sets A1 ∪· A2 with |A1| = bp · |A|c.
Each agent a ∈ A samples a preference order � from L(A1 \ {a}) and preference order �′
from L(A2 \ {a}). Next, if a ∈ A1, then we let a’s preferences start with all agents from
A1 \ {a} ordered according to � and then all agents from A2 ordered according to �′. If
a ∈ A2, then it is the other way around, i.e., the preferences start with �′ and end with �.
The intuition is that there are two groups of different sizes (e.g., representing demographic
groups), and each agent prefers all agents from its group to agents from the other group;
preferences within each group are random.

Mallows Model. In the original Mallows model (Mallows, 1957), for a parameter φ ∈
[0, 1] and a preference order �∗ ∈ L(A), the Mallows distribution D�

∗,φ
Mallows assigns preference

order � ∈ L(A) a probability proportional to φswap(�∗,�). The intuition is that there is
a central order and the probability of sampling a preference order is proportional to its
distance to the central one, where the expected distance is controlled by φ. However,
as argued by Boehmer et al. (2021b) and Boehmer, Faliszewski, and Kraiczy (2023) one
disadvantage of the Mallows model is that choosing the dispersion parameter φ uniformly
at random leads to a skewed dataset. That is why we use a normalized variant of the
Mallows model D�

∗,norm-φ
Mallows proposed by Boehmer et al. (2021b), which is parameterized by

a normalized dispersion parameter norm-φ. The idea here is that preference orders sampled
from D�

∗,norm-φ
Mallows are at an expected swap distance of norm-φ× n(n−1)

4 from �∗. By setting
norm-φ = 1, we recover IC, whereas norm-φ = 0 results in only �∗ being sampled, and
norm-φ = 0.5 results in preferences orders that fall in some sense exactly between the
two. Specifically, sampling from D�

∗,norm-φ
Mallows , norm-φ is internally converted to a value ψ of

the dispersion parameter such that the expected swap distance between �∗ and a sampled
preference order from D�

∗,ψ
Mallows is norm-φ times n(n−1)

4 . Subsequently a preference order

from D�
∗,ψ

Mallows is drawn. Now, given a normalized dispersion parameter norm-φ ∈ [0, 1], to
generate an SR instance, we draw �∗ uniformly at random from L(A). Afterwards, for each

agent a ∈ A, we obtain its preferences by drawing a preference order from D�
∗|A\{a},norm-φ

Mallows .

Euclidean (Arkin, Bae, Efrat, Okamoto, Mitchell, & Polishchuk, 2009). Given
some d ∈ N, for each agent a ∈ A, we uniformly at random sample a point pa from [0, 1]d.
Agent a ranks other agents increasingly by the Euclidean distance between their points,
i.e., by `2(pa,pb) for b ∈ A \ {a}. The intuition is that each dimension represents some
continuous property of the agents and agents prefer similar agents.

Reverse-Euclidean. Given some p ∈ [0, 1] and d ∈ N, we partition A into two sets A1∪·A2

with |A1| = bp · |A|c. Each agent corresponds to some uniformly at random sampled point
pa from [0, 1]d and ranks other agents according to their Euclidean distance. However, here
an agent a ∈ A1 ranks agents decreasingly, i.e., from the furthest to the closest one, by
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model parameter number of instances

Impartial Culture (IC) — 20
2-Impartial Culture (2-IC) p ∈ {0.25, 0.5} 20 for each p

Mallows norm-φ ∈ {0.2, 0.4, 0.6, 0.8} 20 for each norm-φ
Mallows-MD norm-φ ∈ {0.2, 0.4, 0.6} 20 for each norm-φ

1D-Euclidean — 20
2D-Euclidean — 20
Reverse-2D-Euclidean p ∈ {0.05, 0.15, 0.25} 20 for each p
Mallows-2D-Euclidean norm-φ ∈ {0.2, 0.4} 20 for each norm-φ
Expectations-2D-Euclidean σ ∈ {0.2, 0.4} 20 for each σ
Fame-2D-Euclidean f ∈ {0.2, 0.4} 20 for each f
Attributes d ∈ {2, 5} 20 for each d

Table 1: Composition of our synthetic dataset with 460 instances (see Section 5.1).

their Euclidean distance to pa and an agent a ∈ A2 ranks agents increasingly, i.e., from the
closest to the furthest one, by their Euclidean distance to pa. The intuition is similar to
Euclidean, but a p-fraction of agents prefers agents that are different from them.

Mallows-Euclidean. Given a normalized dispersion parameter norm-φ ∈ [0, 1] and some
d ∈ N, we start by generating agents’ intermediate preferences (�a)a∈A according to the
Euclidean model with d dimensions. Subsequently, for each a ∈ A, we obtain its final
preferences by sampling a preference order from D�a,norm-φ

Mallows . The resulting instances are
perturbed Euclidean instances.

Expectations-Euclidean. Given some d ∈ N and σ ∈ R+, for each agent a ∈ A, we
sample one point pa uniformly at random from [0, 1]d. Subsequently, we sample a second
point qa from [0, 1]d using a d-dimensional Gaussian function with mean pa and standard
deviation σ. Agent a ranks the agents increasingly according to `2(pa,qb) for b ∈ A \ {a}.
Again, agents are characterized by continuous attributes; however, their “ideal” points are
not necessarily where they are, yet there is a certain correlation.

Fame-Euclidean. Given some d ∈ N and f ∈ [0, 1], we sample for each agent a ∈ A
uniformly at random a point pa ∈ [0, 1]d and a number fa ∈ [0, f ]. Agent a ranks the
other agents increasingly by `2(pa,pb)− f b for b ∈ A \ {a}. The intuition is similar as for
Euclidean, but some agents have a higher quality/fame fa and are thus more attractive to
everyone.

Attributes (Bhatnagar, Greenberg, & Randall, 2008). Given some d ∈ N, for each
agent a ∈ A we uniformly at random sample pa ∈ [0, 1]d and wa ∈ [0, 1]d. Agent a ranks
the other agents decreasingly by the inner product of wa and pb, i.e., by

∑
i∈[d] w

a
i ·pbi . The

intuition is that there are different objective evaluation criteria and agents assign a different
importance to them.

Mallows-MD. Given a normalized dispersion parameter norm-φ ∈ [0, 1], we start with
an instance that realizes the mutual disagreement matrix MD2n where for each i ∈ [2n]
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agent ai has preferences ai+1 �ai ai+2 �ai · · · �ai an �ai a1 �ai a2 �ai · · · �ai ai−1.
Subsequently, for each ai ∈ A, we obtain its final preferences by sampling a preference

order from the Mallows model D�ai ,norm-φ
Mallows . The reason we consider this model is that it

covers a part of the map that would otherwise remain uncovered.

Our dataset consists of 460 instances sampled from the above-described statistical cul-
tures. That is, we sampled 20 instances for each of the following cultures: Impartial Culture,
2-IC with p ∈ {0.25, 0.5}, Mallows with norm-φ ∈ {0.2, 0.4, 0.6, 0.8}, 1D/2D-Euclidean
(with d ∈ {1, 2}), Reverse-Euclidean with d = 2 and p ∈ {0.05, 0.15, 0.25}, Mallows-
Euclidean with d = 2 and norm-φ ∈ {0.2, 0.4}, Expectations-Euclidean with d = 2 and
σ ∈ {0.2, 0.4}, Fame-Euclidean with d = 2 and f ∈ {0.2, 0.4}, Attributes with d ∈ {2, 5},
and Mallows-MD with norm-φ ∈ {0.2, 0.4, 0.6}. In addition, on our maps, we include the
four extreme matrices. Our experiments presented in the following will provide evidence
that our dataset covers the space of SR instances quite uniformly. We focus on 200 agents
in the following (maps for, e.g., 50 and 100 agents look similar).

5.1.1 Drawing the Map

To draw a map of our dataset, we compute for each pair of instances/matrices their mutual
attraction distance. Subsequently, we embed the instances as points in the two-dimensional
Euclidean space. Our goal is that the Euclidean distance between two points reflects the
mutual attraction distance between the two respective instances. To obtain the embedding,
we use a variant of the force-directed algorithm of Kamada and Kawai (1989).9 The general
idea here is that we start with an arbitrary embedding of the instances, then we add
an attractive force between each pair of instances whose strength reflects their mutual
attraction distance and a repulsive force between each pair ensuring that there is a certain
minimum distance between each two points. Subsequently, the instances move based on the
applied forces until a minimal energy state is reached. We depict the map visualizing our
dataset of 460 instances for 200 agents in Figure 2. In Appendix B, we also include maps
for instances with 500 or 750 agents, which look very similar.

Quality of the Embedding. To correctly interpret the map, we stress that our embed-
ding algorithm does not optimize a global objective function. Instead, the algorithm works
in a decentralized fashion also aiming at producing a visually pleasant image. Consequently,
the position of instances on the map can be different in different runs and certainly depend
on which other instances are part of the map. To verify the quality of the embedding, we
now want to analyze whether the two-dimensional visualization of our dataset as a map
adequately reflects the mutual attraction distances between instances. We consider two
different quality measures for the embedding which both use normalized distances, i.e., we
divide them by the respective distance between mutual agreement and mutual disagree-
ment. First we compute for each pair of instances (I, I ′) its distortion which is defined as
the maximum of (a) the normalized mutual attraction distance between I and I ′ divided
by the normalized Euclidean distance between the points representing I and I ′ on the map
and (b) the normalized Euclidean distance between the points representing I and I ′ on the

9. Szufa et al. (2020) and Boehmer et al. (2021b) used the closely related Fruchterman–Reingold algorithm;
however, in our case the results provided by the Kamada-Kawai algorithm were visually more appealing.
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Figure 2: Map of 460 SR instances for 200 agents. Each instance is represented by a point.
Roughly speaking, the closer two points are on the map, the more similar are the respective
SR instances under the mutual attraction distance. Colors indicate the statistical culture
that points were sampled from.

map divided by the normalized mutual attraction distance between I and I ′. The average
distortion is 1.8, indicating that distances between instances are certainly not represented
perfectly on the map. Nevertheless, this also underlines that the map creates a roughly
correct picture of the space of SR instances (distances on the map are typically “off” only
by a factor of two). However, we want to remark here that some error in the embedding is
certainly to be expected because our space of SR instances is naturally too complex to be
perfectly embedded into two-dimensional space. In Figure 3, we analyze which of the in-
stances on the map are particularly challenging to embed and are thus misplaced. We do so
by coloring each point on the map according to the average distortion10 of all pairs involving
this instance. We see that instances that fall into the middle of the map are particularly
problematic and that instances close to MA and MD are embedded nearly perfectly.

Moreover, as a slightly simpler measure, we also consider for each pair of instances their
normalized Euclidean distance on the map divided by their mutual attraction distance. We
visualize the results as a histogram in Figure 4. We see that instances are mostly placed
“too close to each other” and that for a majority of instances, the normalized Euclidean
distance on the map is more than half of their mutual attraction distance. Overall, the
results from this section draw a mixed picture: While the map is naturally not perfect,
most distances are presented approximately accurately. In particular, as argued in the next
section, the map groups instances sampled from the same culture together, implying that it
is capable of detecting the shared underlying similarities between instances from the same
culture. Moreover, in the experiments presented in the following, we will see that instances

10. Note that individual distortion values can be quite high, especially if two instances are very close to
each other on the map. The largest singular distortion is 47.97 and is due to two IC elections, which are
indeed embedded next to each other (while being not that similar).
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Figure 3: Average distortion for each in-
stance on our map of SR instances for 200
agents.

Figure 4: This histogram visualizes the nor-
malized Euclidean distance of instance pairs
on the map divided by their normalized mu-
tual attraction distance.

close on the map oftentimes have similar properties to each other, which underlines that
instances placed in the same region on the map are structurally similar and highlights the
usefulness of the map as a visualization tool for experimental results.

5.2 Understanding the Map

We now take a closer look at the map of SR instances shown in Figure 2 and the average
distance between instances sampled from different cultures shown in Figure 5. Our discus-
sion will include an explanation of the different regions of the map and their properties,
how to “navigate” the map as well as some additional arguments for why the grouping of
instances on the map is meaning- and insightful.

Examining the map, what stands out is that for all cultures, instances sampled from
this culture are placed close to each other on the map, resulting in an island-like structure.
In fact, instances sampled from the same culture are usually close to each other under
the mutual attraction distance (or at least closer to each other than to instances sampled
from other cultures; see the diagonal line in Figure 5). While this is to be expected to
a certain extent, this observation validates our approach in that the mutual attraction
distance is seemingly able to identify the shared structure of instances sampled from the
same statistical culture and in that our embedding algorithm can detect these clusters.

Moreover, interestingly, the different statistical cultures have different “variation”, i.e.,
the average mutual attraction distance of two instances sampled from the same culture
substantially differs for the different cultures. The Impartial Culture model has the highest
variation with 0.59, while the Euclidean model for d = 1 has the lowest variation with 0.07
(see Figure 5). The value for Impartial Culture is quite remarkable, as it means that Impar-
tial Culture instances are on average almost as far away from each other as, for example, ID
is from the other extreme points. Because of the limitations of two-dimensional Euclidean
space, this is not adequately represented on the map, as Impartial Culture instances are
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Figure 5: For each pair of statistical cultures, average mutual attraction distance between
instances sampled from the two (normalized by the maximum possible distance between
two SR instances). The first four lines/columns contain, for each statistical culture, the
average distance of instances sampled from that culture to our four extreme matrices. The
diagonal contains the average distance of two instances sampled from the same statistical
culture.

still placed close to each other. The reason for this embedding is that Impartial Culture
instances are all at a similar (even larger) distance from the other instances. In the fol-
lowing experiments, we observe that Impartial Culture instances nevertheless behave quite
similarly to each other, justifying their placement next to each other on the map.

Taking a closer look at the map, we observe that our four extreme points fall into four
different parts. On the right, we have the mutual agreement matrix MA. Accordingly,
models for which mutual agreement is likely to appear all land on the right side of the map.
These models are (i) the Euclidean model (where intuitively speaking agent a likes agent
b if they are placed close to each other in the underlying space, making it also likely that
b likes a), (ii) the Fame-Euclidean model for f = 0.2, the Mallows-Euclidean model for
norm-φ = 0.2, and the Reverse-Euclidean model for p = 0.05 (these three are basically all
differently perturbed variants of Euclidean models with a “low” level of perturbation; as a
result, they are also on average slightly further away from MA than Euclidean instances),
and (iii) the 2-IC model for p = 0.5 (where we have some guaranteed level of mutual
agreement because there are two equal-sized groups of agents and the agents from one
group prefer each other to the agents from the other group).
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(a) Mutuality (b) Rank distortion

Figure 6: Map of 460 SR instances for 200 agents visualizing different quantities for each
instance.

On the left, we have the mutual disagreement matrix MD with only instances from the
Mallows-MD model being close to it (in general, it is to be expected that if we apply the
Mallows model on top of some other model X , then for small values of norm-φ the sampled
instances are close to the ones from X but that they move further and further away towards
Impartial Culture instances as norm-φ grows). That the mutual (dis)agreement matrices
are at the two ends of the horizontal axis raises the question of whether the horizontal
axis can be indeed interpreted as an indicator for the degree of mutuality in SR instances.
This hypothesis gets strongly confirmed in Figure 6 (a) where we color the points on the
map according to their mutuality value, which we define as the total difference between the
mutual evaluations of agent pairs, i.e.,

∑
a∈A

∑
i∈[|A|−1] |MA(a, i)−i|. For MA this quantity

is zero, whereas for MD it takes the maximum possible value. The nicely continuous shading
in Figure 6 (a) indicates a strong correlation between the mutuality value of an instance
and its x-coordinate on the map with instances that are close on the map having similar
mutuality values. Moreover, the continuous coloring indicates that our dataset provides
good and almost uniform coverage of the space of SR instances (at least in terms of their
mutuality value).

Turning to the middle part of the map, the identity matrix ID can be found at the bot-
tom. Close to ID are instances from cultures where agents’ quality is “objective”. Namely,
Mallows model with norm-φ = 0.2 (where the preferences of agents are still often quite
close to the central order) and the Attributes model with d = 2 (where each agent has
two quality scores and the preferences of agents only differ in how they weight the quality
scores). The chaos matrix CH is placed on the top of the map together with Impartial
Culture instances. Mallows instances naturally form a continuous spectrum between Iden-
tity and Chaos. These observations give rise to the hypothesis that in instances placed
at the bottom of the map most agents have similar preferences, while in instances placed
at the top all agents have roughly the same popularity among the other agents and few
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agents are particularly (un)popular. To quantify this, we measure the rank distortion of an
instance, i.e., for each agent we sum up the absolute difference between all pairs of entries
in its mutual attraction vector

∑
a∈A

∑
i,j∈[|A|−1] |MA(a, i) −MA(a, j)|. Note that, for

example, for an agent that is always ranked in the same position by all other agents this
absolute difference is zero, whereas it is maximum for agents that are ranked exactly once
in position j for each j ∈ [2n − 1] by the other agents. We show in Figure 6 (b) a map
colored by the rank distortion of instances. The picture here is slightly different than for
the horizontal axis (previously explained by the mutuality value) in that instances with the
same y-coordinate might still have a very different rank distortion. In fact, what we rather
see here is that the further a point is from ID on the map, the larger is its rank distortion
and thus the higher is the disagreement concerning the quality of an agent (which is quite
intuitive recalling that for both MA and MD the rank distortion is maximal, whereas for
ID it is minimal).

6. Using the Map

To illustrate the usefulness of the map to evaluate experiments and to confirm our previous
observation that instances that are close to each other on the map have indeed similar
properties, we perform some example experiments.

6.1 Blocking Pairs and Stable Matchings

We start by analyzing various properties related to the number of pairs that block some
matching. Specifically, we first compute for each SR instance the minimum number of
blocking pairs over all matchings and then the average number of blocking pairs for a
random matching. Lastly, we examine how many pairs block minimum-weight matchings.
We visualize the results of our experiments in Figures 7 and 8.

6.1.1 Blocking Pair Minimizing Matching

Naturally, the most important question related to an SR instance is whether the instance
admits a stable matching or not. Slightly more nuanced, it is also possible to ask for a
matching minimizing the number of blocking pairs. As computing the minimum number
of blocking pairs in an SR instance is NP-hard (Abraham, Biró, & Manlove, 2005), we
solve this problem using an ILP. We visualize the results of this experiment on the map in
Figure 7.

First, considering which instances admit a stable matching (green points on the map),
we do not see a clear correlation with the instance’s position on the map. This is also
quite intuitive, given that whether an instance admits a stable matching might depend on
some local configuration. Such configurations can naturally not be fully captured in the
mutual attraction matrix. However, what is clearly visible is that for different cultures the
probability of admitting a stable matching is quite different: On the one hand, instances
sampled from the Euclidean, Fame-Euclidean, and Reverse-Euclidean models almost always
admit a stable matching (for the Euclidean model this is even guaranteed). On the other
hand, instances sampled from the Mallows-Euclidean and Expectations-Euclidean models
only very rarely admit a stable matching. The drastic contrast between the Euclidean model
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Figure 7: Map of 460 SR instances for 200 agents visualizing the minimum number of
blocking pairs.

and the Mallows-Euclidean model with norm-φ = 0.2 and between the Reverse-Euclidean
and Expectations-Euclidean models is quite remarkable, as they are conceptually quite
similar.

However, moving to the minimum achievable number of blocking pairs, the picture of our
dataset becomes more uniform: A large majority of the map (and cultures) solely consists
of SR instances where the minimum number of blocking pairs is at most one (recall that all
our experiments here are for n = 200 agents). Only in instances sampled from the Mallows-
Euclidean and Expectations-Euclidean model (which only rarely admit a stable matching)
is the minimum number of blocking pairs often two or more. Some further such instances
can be found close to ID.

Overall, what we find here is that the minimum number of blocking pairs clearly depends
on the model from which the respective SR instance was sampled, leading to a clustering
of (very close to) stable instances on the map. However, there are also regions on the
map exhibiting a mixed picture, for instance, the regions around Mutual Agreement and
Identity; interestingly, it seems that while highly structured instances always admit a stable
matching (like Euclidean instances where this is even guaranteed to be the case), slightly
perturbing these instances leads to an increase in the minimum number of blocking pairs.
Lastly, it is remarkable that a matching admitting at most four blocking pairs exists in all
our 460 SR instances. This indicates that instances that are “far away” from stability are
quite exceptional and motivates a future search for statistical cultures regularly producing
such instances.

6.1.2 Expected Number of Blocking Pairs

Motivated by the fundamental importance of blocking pairs for stable matchings, we mea-
sure the expected number of blocking pairs for an arbitrary perfect matching. For this, for
each instance, we sampled 100 perfect matchings uniformly at random from the set of all
possible perfect matchings of agents and for each counted the number of blocking pairs. The
observed averages are depicted in Figure 8 (a). As for the mutuality value, we get a nicely
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(a) Average number of blocking pairs for a
random perfect matching

(b) Number of blocking pairs for a minimum-
weight matching (the scale is logarithmic)

Figure 8: For Section 6.1, maps of 460 SR instances for 200 agents visualizing different
quantities for each instance.

continuous shading along the horizontal axis, which highlights a clear correlation between
the mutuality value and the expected number of blocking pairs. This correlation is quite
intuitive: If the mutual agreement in an instance is high, then agents in this instance are
also more likely to form blocking pairs. If an agent a prefers an agent b to its current part-
ner, then, because the mutuality is high, b also tends to like a and tends to prefer a to its
current partner. If there is mutual disagreement, the situation is reversed: An agent prefers
the agents that tend to dislike them to its current partner, which makes blocking pairs for
random matchings less likely. This is also clearly visible in Figure 8 (a), as instances close
to MA have a low expected number of blocking pairs, whereas for instances close to MD
the expected number is much higher. Moreover, Figure 8 (a) again validates that instances
that are close to each other on the map have similar properties and that our test dataset
provides a good and uniform coverage of the space of SR instances.

6.1.3 Number of Blocking Pairs for Minimum-Weight Matching

We define the minimum-weight matching M in an instance as the perfect matching
minimizing the summed rank that agents assign to their partner, i.e., M minimizes∑

a∈A pos�a

(
M(a)

)
. If stability is not vital or if a stable matching might be too compli-

cated to compute, a minimum-weight matching is a natural candidate matching to choose
and might even serve as a heuristic for choosing a stable matching. Thus, it is an interesting
question “how” stable such minimum-weight matchings are. We depict in Figure 8 (b) the
number of pairs that block a minimum-weight matching for all instances from our dataset.
Analyzing the results, we find that for almost all of our instances from the dataset, a
minimum-weight matching is only blocked by a few pairs. There are two exceptions: In-
stances sampled from the Reverse-Euclidean model and instances close to identity. For both
of these types of instances, the number of pairs blocking the minimum-weight matching is
often above 1000. For Reverse-Euclidean, we see that these instances behave very differently
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than instances close to them sampled from different models. Slightly counterintuitively, for
this model the higher p gets (i.e., the fraction of agents preferring agents further away), the
lower the number of pairs that block a minimum-weight matching. For the identity region,
we see that the minimum-weight matching is blocked by many pairs in all instances from
this region. In general, what stands out from the map again is that instances sampled from
the same model exhibit a very uniform behavior. Overall, the outlier behavior of Reverse-
Euclidean (that we will see again in Figure 9 (a)) underlines that the map is not perfect and
our mutual attraction distance and matrix (naturally) do not capture all facets of similarity.
Nevertheless, the other results highlight the usefulness of the map as a visualization tool
and an intuition provider.

6.2 Different Types of Stable Matchings

In this section, we analyze different types of stable matchings. Because multiple stable
matchings in one instance can exist, formulating desirable properties for a stable matching,
and computing the stable matching that performs best according to the desiderata is an
active area of research (Manlove, 2013). In the following, we focus on different types of
stable matchings related to agents’ satisfaction.

6.2.1 Summed Rank Minimal Stable Matching

We start by analyzing summed rank minimal stable matchings, i.e., stable matchings
M minimizing

∑
a∈A pos�a

(
M(a)

)
(these matchings are also sometimes called egalitar-

ian matchings). Such a matching can also be interpreted as a stable matching maximizing
the summed satisfaction of agents and is thus a natural candidate to pick if multiple stable
matchings exist. However, computing it is NP-hard (Feder, 1992) and thus we resorted to an
ILP. We visualize the quality of summed rank minimal stable matchings in Figure 9 (a) (we
depict instances without a stable matching as transparent points). Focusing on instances
that admit a stable matching, first observe that instances sampled from one culture again
behave remarkably similarly. In addition, there is some, but certainly not a perfect corre-
lation between the results and instances’ position on the map: Ignoring Reverse-Euclidean
instances which are a clear outlier here, if we move from chaos to mutual agreement, then
the minimal summed rank decreases (as for perfect mutual agreement every agent can be
matched to its top choice); in contrast, if we move from chaos to mutual disagreement or
from chaos to identity, then the minimal summed rank increases monotonically. Remark-
ably, instances close to identity have a higher minimum summed rank than instances close to
mutual disagreement, while for instances realizing the two matrices, the minimum summed
rank for an instance with 2n agents is 2n2 for both of them.

6.2.2 Minimum Regret Stable Matching

Moreover, we consider the stable matching that maximizes the satisfaction of the agent who
is worst off, which is known as the minimum regret stable matching and can be computed
in linear time (Gusfield & Irving, 1989). That is, we consider the maximum rank an
agent assigns to its partner, i.e., maxa∈A pos�a

(M(a)) in a stable matching M and want
to minimize this value. It is another naturally attractive special stable matching. We
show the results in Figure 10. Examining the map, the first remarkable observation is that
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(a) Minimum summed rank of agents for
partner in any stable matching (transparent
points have no stable matching)

(b) Maximum summed rank of agents for
partner in any stable matching (transparent
points do not admit a stable matching)

(c) Difference between maximum and minimum summed rank of agents for partner in any stable
matching (transparent points do not admit a stable matching)

Figure 9: For Section 6.2, maps of 460 SR instances for 200 agents visualizing different
quantities for each instance.

instances that are close to Euclidean instances may behave very differently, even if they are
sampled from the same statistical culture. A possible explanation for this is that in those
instances stable matchings are often unique, leaving little flexibility to satisfy the worst-off
agent. Moreover, again, some clear patterns on the map can be identified. For impartial
culture instances and 2-IC instances the satisfaction of the worst-off agent is quite high.
For instances close to mutual agreement the picture is quite mixed, while for instances
close to identity, it is not possible to satisfy all agents adequately (this is quite intuitive
because someone needs to be matched to the agents that are collectively considered to have
a low quality in such instances). Moving from identity to mutual disagreement or chaos the
situation of the worst-off agent monotonically improves.
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Figure 10: Maximum rank an agent assigns to its partner in a stable matching minimizing
this value (transparent points do not admit a stable matching).

6.3 “Richness” of Set of Stable Matchings

Another question motivated by the fact that there might be multiple stable matchings in
the same instance is to analyze how large the influence of the selected stable matching is.
In other words, how much does it matter which matching is selected? We restrict our focus
to the summed agent’s satisfaction. For this, we consider the objective opposition to the
summed rank minimal stable matching, i.e., we analyze the stable matching that maximizes
the rank that agents assign to their partner (this is, in some sense, the worst stable matching
that minimizes agents’ satisfaction). We visualize the results in Figure 9 (b).11

Now, to quantify the “richness” of the set of stable matchings for an instance we use the
difference between the maximum and minimum summed rank of agents for their partner
in a stable matching as a proxy. We present the results in Figure 9 (c). Remarkably, this
is the first of our maps where we see a very different behavior of instances sampled from
the same culture. The reason for this might be that in most cases, the difference between
the best and worst matching is small in comparison to the total satisfaction of the agents.
This is particularly true for instances sampled from the Euclidean or similar models, which
is quite intuitive, as in Euclidean instances there only exists a single stable matching.

6.4 Running Time Analysis

Lastly, to illustrate another possible application of the map, in Figure 11 we visualize the
time our ILP, which we solved using Gurobi Optimization, LLC (2021), needed to find a
summed rank minimal stable matching (from Section 6.2.1). Analyzing the results, again

11. While there is no simple pattern visible on the map, disregarding Reverse-Euclidean instances, there
is a clear correlation between instance’s behavior and their position on the map. The behavior can be
nicely described by moving along the extreme matrices. Moving from mutual disagreement to chaos,
the maximum summed rank monotonically decreases and if we move further towards identity (ignoring
Reverse-Euclidean instances) it decreases even further. If we move from chaos to identity, then the
maximum summed rank substantially increases, while moving from identity to mutual disagreement it
first decreases and then increases again.
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Figure 11: Seconds needed to compute summed rank minimal stable matching (transparent
points have no stable matching).

instances from the same culture behave quite similarly to each other and the behavior of an
instance is clearly connected to their position on the map. More specifically, instances from
the Euclidean and Fame-Euclidean model seem to be particularly easy to solve, whereas
instances close to ID and close to MD seem to be particularly challenging (possibly, because
here the achievable minimum summed rank is quite high). Remarkably, for election-related
problems typically Impartial Culture elections are the most challenging ones, and the more
structure there is in an election, the easier it is to solve (Szufa et al., 2020). In sharp contrast
to this, we observe that instances close to ID and MD, which are both heavily structured,
are particularly challenging. We remark that naturally our observations on which instances
are easy and which are hard are limited to the specific problem and solution method we
considered.

7. A Map of Stable Marriage Instances

The framework developed in this paper to draw a map of synthetic Stable Roommates
(SR) instances can also be applied to different types of matching under preferences problems.
In this section, we demonstrate how this can be done for the Stable Marriage (SM)
problem, focusing on describing the adjustments necessary compared to the discussed SR
setting.

Stable Marriage Instances. A SM instance I consists of a set A of agents partitioned
into two sets U and W , which are traditionally referred to as men and women, respectively.
We assume for simplicity that |U | = |W |. Each man u ∈ U has a preference order �u ∈
L(W ) over all women and each woman w ∈ W has a preference order �w ∈ L(U) over all
men. A matching is a subset M of man-woman pairs where each agent appears in at most
one pair and a matching is stable if no man-woman pair exists preferring each other to their
assigned partner. Note that a stable matching is guaranteed to exist in every SM instance
(Gale & Shapley, 1962).
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Mutual Attraction Distance between SM Instances. Let I = (U =
{u1, . . . , un},W = {w1, . . . wn}, (�u)u∈U , (�w)w∈W ) be an SM instance. Recall that for
some i ∈ [2n − 1] and a ∈ U ∪· W , MAI(a, i) is the position of a in the preference
order of the agent a′ which is ranked in position i by a, i.e., MAI(a, i) = pos�a′

(a)

where a′ := ag�a
(i). The mutual attraction vector of an agent a ∈ U ∪· W is MAI(a) =(

MAI(a, 1), . . . ,MAI(a, n)
)
.

For each instance I, we define two mutual attraction matrices: MAI,U and MAI,W .
Matrix MAI,U is the mutual attraction matrix of men, where the i-th row of MAI,U is
the vector MAI(ui). Matrix MAI,W is the mutual attraction matrix of women, where
the i-th row of MAI,W is the vector MAI(wi). Thus, notably, an SM instance does not
correspond to a single mutual attraction matrix but a pair of mutual attraction matrices.

The mutual attraction distance between two SM instances I with agents U ∪· W and I ′
with agents U ′ ∪· W ′ with |U | = |W | = |U ′| = |W ′| = n is defined as:

min
(

dMAD(MAI,U ,MAI′,U ′) + dMAD(MAI,W ,MAI′,W ′),

dMAD(MAI,U ,MAI′,W ′) + dMAD(MAI,W ,MAI′,U ′)
)
, (5)

where for two n× n mutual attraction matrices A and B their mutual attraction distance
dMAD(A,B) is still defined as: minσ∈Π([n],[n])

∑
i∈[n] `1

(
Ai, Bσ(i)

)
. The idea behind Equa-

tion (5) is that we do not fix that the “women” in one instance are matched to the “women”
in the other instance (as in applications of bipartite one-to-one matching problems the two
sides are in some sense exchangeable). Accordingly, we compute the distance between the
two instances for both possible mappings. The first alternative is to map men in I to men
in I ′ and women in I to women in I ′. The second alternative is to map men in I to women
in I ′ and women in I to men in I ′. Subsequently, we return the minimum.

Navigating the Space of SM Instances. Also for SM instances, it will prove useful to
identify “canonical” pairs of extreme mutual attraction matrices. The first three extreme
matrices identified for SR instances are still clearly relevant here: Identity here corresponds
to the situation where all women have the same preferences over the men and all men have
the same preferences over the women. This results in the following pair of matrices:

(
1 . . . 1
2 . . . 2

...
n . . . n

 ,


1 . . . 1
2 . . . 2

...
n . . . n

)

For mutual agreement, we still require that if agent a ranks agent b in position i, then
b also ranks a in position i. This results in the following pair of matrices:

(
1 2 . . . n− 1 n
1 2 . . . n− 1 n

...
1 2 . . . n− 1 n

 ,


1 2 . . . n− 1 n
1 2 . . . n− 1 n

...
1 2 . . . n− 1 n

)
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Notably, this pair of matrices is realizable. We can simply partition a complete bipartite
graph with n vertices on each side into n perfect matchings M1, . . . ,Mn, where Mi gives
the agent that is ranked in the position i in the agent’s preferences. By Hall’s theorem,
such a partition into perfect matchings always exits.

For mutual disagreement, we analogously require that if a ranks agent b in position i,
then b ranks a in position n− i+ 1. This results in the following pair of matrices:

(
n n− 1 . . . 2 1
n n− 1 . . . 2 1

...
n n− 1 . . . 2 1

 ,

n n− 1 . . . 2 1
n n− 1 . . . 2 1

...
n n− 1 . . . 2 1

)

One realization of this matrix pair is an SM instance where for i ∈ [n] woman wi has
preferences mi+1 � mi+2 � · · · � mn � m1 � m2 � · · · � mi and man mi has preferences
wi � wi+1 � · · · � wn � w1 � w2 � · · · � wi−1.

Our fourth extreme matrix, which is the chaos matrix, has no naturally defined analog in
the SM setting, which is why we omit it.12 Moreover, determining the maximum distance
between two realizable matrix pairs remains an open problem (in our experiments, the
mutual agreement and mutual disagreement pairs are furthest away).

Creating and Drawing the Map. To create our map of SM instances, we sample from
statistical cultures similar to the ones for SR. Notably, to maintain focus, we assume that
the preferences of both women and men are generated using the same statistical culture (of
course, in principle it would also be possible to combine different cultures, but we focus on
the simpler case here).

We now describe how to adapt the cultures for SR instances to the bipartite SM setting
and refer to Section 5.1 for the full descriptions. For the Impartial Culture and Mallows
models, using the described procedure for SR instances, we sample for each woman w ∈W a
preference order from L(U) and independently for each man u ∈ U a preference order from
L(W ). For the 2-IC model, given some p ∈ [0, 0.5], we partition U into two sets U1 ∪· U2

with |U1| = bp · |U |c and we partition W into two sets W1 ∪· W2 with |W1| = bp · |W |c.
Each man u ∈ U , respectively woman w ∈W , samples one preference order � from L(W1),
respectively L(U1), and one order �′ from L(W2), respectively L(U2). If a ∈ U1 ∪W1, then
a’s preferences start with � followed by �′. If a ∈ U2 ∪W2, then a′’s preferences start with
�′ followed by �. For the Euclidean, Mallows-Euclidean, Expectations-Euclidean, Fame-
Euclidean, and Attributes models, we sample for each agent a point and a vector as described
for the respective model for SR. Subsequently, a woman ranks all men according to their
“distance” (as defined for the respective model) and a man ranks all women according to
their distance. For the Reverse-Euclidean model, given some p ∈ [0, 1], we partition U into
two sets U1 ∪· U2 with |U1| = bp · |U |c and W into two sets W1 ∪· W2 with |W1| = bp · |W |c.
We sample the agents’ preferences as in the Euclidean model and subsequently reverse the
preferences of all agents in U2∪W2. Lastly, for Mallows-MD, we start with an SM instance
realizing MD, where for i ∈ [n] woman wi has preferences mi+1 �wi mi+2 �wi · · · �wi

12. Note that intuitively taking one matrix from the mutual agreement pair and one matrix from the mutual
disagreement pair could be a viable fourth extreme point. However, it is easy to see that the resulting
(and similar) matrix pairs are not realizable.
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Figure 12: Map of 460 SM instances. Each instance is represented by a point. Roughly
speaking, the closer two points are on the map, the more similar the respective SM instances
under the mutual attraction distance. The color of a point indicates the statistical culture
the respective instance was sampled from.

mn �wi m1 �wi m2 �wi · · · �wi mi and man mi has preferences wi �mi wi+1 �mi · · · �mi

wn �mi w1 �mi w2 �mi · · · �mi wi−1. As for SR, for each agent a ∈ U ∪W , we obtain its
final preferences by sampling a preference order from Mnorm-φ,n,�a .

As for SR, our dataset consists of 460 SM instances sampled from the above-described
statistical cultures, where we use the same parameter configurations as for SR (as described
in Section 5.1; see also Table 1). In addition, on our maps, we include the three extreme
matrix pairs described previously.

Moreover, as for SR, to draw the map, we first compute the mutual attraction distance
of each pair of instances and subsequently embed them into the two-dimensional Euclidean
space using a variant of the force-directed Kamada-Kawai algorithm (Kamada & Kawai,
1989). We depict the map visualizing our dataset of 460 instances for 100 men and 100
women in Figure 12. Overall, the map of SM instances from Figure 12 is very similar to
the map of SR instances from Figure 2, where the only cultures that are placed slightly
differently in the two maps are 2-IC and Expectations-Euclidean.

Furthermore, we depict in Figure 13 the average distance between the different statistical
cultures. Unsurprisingly, the general picture in Figure 13 is very similar as in Figure 5 for
SR, with Expectations-Euclidean being the culture that produces the largest differences
between SR and SM (which is then also reflected on the map, as this culture is placed
differently in the two maps).

Using the Map. To showcase possible use cases of our map of SM instances we repeat
some of the experiments that we conducted for SR in Section 6.

Specifically, analogous to Figure 8 (a), in Figure 14 (a), we visualize the average number
of blocking pairs for a random perfect matching in our SM instances (by sampling 100
perfect matchings and taking the average of the number of pairs blocking them). The
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Figure 13: For each pair of statistical cultures for sampling SM instances, average normal-
ized mutual attraction distance between instances sampled from the two. The first three
lines/columns contain, for each statistical culture, the average distance of instances sam-
pled from the culture to our three extreme matrix pairs. The diagonal contains the average
distance of two instances sampled from the same statistical culture.

results are very similar as for SR and in particular the average number of blocking pairs
strongly correlates with the position of instances on the map.

Moreover, analogous to Section 6.1.3, in Figure 14 (b), we show the number of blocking
pairs for a matching minimizing the summed rank agents have for their partner. Remark-
ably, for a large majority of instances, this matching is quite close to being stable. The
general picture here is again very similar as for SR; in particular, for both SM and SR the
different statistical cultures produce instances with very similar properties.

Next, we consider the stable matching that minimizes/maximizes the summed rank
that agents have for their partner (as in Section 6.2.1). We show the summed rank that
agents have for their partner in Figure 15 (a) for the summed rank minimal matching and
in Figure 15 (b) for the summed rank maximal matching. The general picture here looks
again very similar as for SR. In particular, for certain regions on the map instances falling
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(a) Average number of blocking pairs for a per-
fect matching

(b) Number of blocking pairs for a minimum-
weight matching (the scale is logarithmic)

Figure 14: Map of 460 SM instances for 100 men and 100 women visualizing different
quantities for each instance.

in this region show a uniform behavior. Moreover, in Figure 15 (c), we show the difference
between the summed rank agents have for their partner in the stable matching maximizing
and minimizing this value. Comparing this map to the respective map for SR, what stands
out is that for SM for some instances there is a larger difference between the summed rank
minimal and summed rank maximal matching than for SR, indicating that the space of
stable matchings for some of the sampled SM instances is “richer”. Nevertheless, still for
most of our SM instances there is only little difference between the summed rank minimal
and maximal matching; this holds in particular for most of the instances from the bottom-
right region of the map.

Lastly, analogous to Section 6.2.2, in Figure 16, we depict the maximum rank an agent
has for its partner in a stable matching minimizing this value. Notably, here, the results
for SM differ from the results for SR. In particular, for SM, there are more instances where
some agent is always matched to its almost least preferred agent than for SR (this contrast
is most clear for 1D- and 2D-Euclidean instances). Overall, ignoring 2-IC, in Figure 16, a
split of the map for SM instances is visible where in instances from the bottom right part
some agent is matched to one of its least preferred agents in every stable matching, whereas
in instances from the top left part of the map, in some stable matching even the worst-off
agent is matched to a partner that is not in the bottom 20% of its preferences.

8. Discussion

Contributing to the toolbox for experiments for stable matching problems, we have intro-
duced the polynomial-time computable mutual attraction distance and analyzed its prop-
erties as well as the space it induces. As a second step, we have described a variety of
statistical cultures for generating synthetic stable matching instances. In our following ex-
periments, we have provided evidence that the instances produced by the different cultures
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(a) Minimum summed rank of agents for partner
in any stable matching

(b) Maximum summed rank of agents for part-
ner in any stable matching

(c) Difference between maximum and minimum
summed rank of agents for partner in any stable
matching

Figure 15: Map of 460 SM instances for 100 men and 100 women visualizing different
quantities for each instance.

behave quite differently from each other, which makes our collection of cultures well-suited
to create diverse easily customizable test datasets. One specific application of these two
contributions is our map of stable matching instances. We have verified that the produced
map is meaningful in the sense that it groups instances with similar properties together,
and have provided intuitive interpretations of the different regions on the map.

To demonstrate the capabilities of the map and our test dataset, we have conducted some
example experiments. Overall, our experimental results underline the importance of using
diverse test data. Among others, we have observed that sampling preferences uniformly
at random results in instances that behave very similarly (and often very differently than
instances sampled from other models) and that such instances only cover a small part of
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Figure 16: Map of 460 SM instances for 100 men and 100 women visualizing the maximum
rank an agent assigns to its partner in a stable matching minimizing this value.

the space of instances. Overall, this questions the common practice of only examining
preferences sampled uniformly at random in experiments, as it is quite unclear whether the
results of these experiments generalize.13 Specifically, our results presented in Section 6
(and Section 7) demonstrate the insufficiency of only using uniformly at random sampled
preferences in SM and SR instances when analyzing properties of specific stable matchings
and performances of algorithms. For instance, assume that one would be interested in
analyzing the maximum total satisfaction of agents in a stable matching in an SR instance
(cf. Figure 9 (a)) and only examine instances generated from the Impartial Culture model.
Then, one’s conclusion would probably be along the following lines: “The maximum total
satisfaction of agents in a stable matching is similar in all instances and generally quite
high, i.e., in an SR instance with 200 agents the average rank that agents have for their
partner is close to 15.” However, this conclusion is rendered invalid as soon as one moves
beyond Impartial Culture instances. As we observe in Section 6.2.1, the maximum total
satisfaction of agents highly varies based on the instance, with some instances admitting
matchings where everyone is almost perfectly satisfied while others only admit matching
where the total satisfaction of agents is quite low. For instance, in SR instances with 200
agents sampled from the Mal-MD model with parameter 0.2 the average rank that agents
have for their partner is never below 60, a behavior that would remain unseen when only
examining Impartial Culture instances. This is slightly worrisome given that in the past
several papers have analyzed properties of different types of stable matchings (Cooper &
Manlove, 2019, 2020) and conducted performance evaluations of algorithms (Genc et al.,
2017; Cooper & Manlove, 2020; Erdem et al., 2020) in SM and SR instances only using
random preferences.

13. Further, it is also unclear why instances with uniformly at random sampled preferences are particularly
practically useful. Quite the contrary, there is some evidence that preferences, in reality, are often not
drawn uniformly at random: In the general setting of agents ranking different alternatives, Boehmer
et al. (2021b) and Boehmer and Schaar (2023) analyzed real-world preference data from a variety of
sources observing that only few of these match a random preference sampling.
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Moreover, our experiments and analysis of the map also reveal that instances that have
a small mutual attraction distance (and thus are close to each other on the map) tend to
have similar properties. This underlines the usefulness of the mutual attraction distance
measure to assess the similarity of instances. Furthermore, it highlights the capabilities of
the map as a non-aggregate visualization tool: Instead of presenting experimental results by
listing different (sometimes non-robust) statistical quantities, on the map, we can depict the
results on an instance level, thereby showing the full picture. Using this, it is often possible
to identify general high-level trends and typical behavior of instances from different parts of
the space. In a similar vein, the map also supports the informed planning of more focused
follow-up experiments, by looking for parts on the map that show an interesting behavior
and analyzing the respective cultures in more detail. To use the map for this purpose, a
meaningful placement of the instances on the map which groups similar instances together
is vital. In fact, the maps shown in this paper provide some initial clear evidence that
this is indeed the case, which also justifies the usage of the mutual attraction distance as a
practically useful and sufficient distance measure.

For future work, from a theoretical perspective, it would be interesting to extend our
theoretical analysis of the space of SR instances to SM instances, and to analyze the theo-
retical properties of the space of SM and SR instances induced by other distance measures
such as the swap or Spearman distance. From a more practical perspective, it would be
very valuable to see where real-world instances lie on the map, which first of all requires the
collection of such data. Moreover, while our experiments indicate that our collected dataset
is quite diverse, it is also clear that not all possible behaviors will be seen in one of its
instances. For instance, our dataset does not contain any instances where every matching is
“far away” from being stable, indicating that there are certain “holes” in the space of sta-
ble matching instances covered by our dataset. Designing cultures that generate instances
falling into these holes and thereby further extending the diversity of the dataset would
be a valuable addition. Lastly, applying our framework to other types of stable matching
problems is another interesting direction for the future.
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Appendix A. Additional Material for Section 4

In this section, we present all missing proofs from Section 4.
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A.1 Identity

Given n ∈ N, the 2n× (2n− 1)-matrix ID2n can be written as follows:

1 1 1 1 . . . 1 1
1 2 2 2 . . . 2 2
2 2 3 3 . . . 3 3
3 3 3 4 . . . 4 4

...
2n− 2 2n− 2 2n− 2 2n− 2 . . . 2n− 2 2n− 1
2n− 1 2n− 1 2n− 1 2n− 1 . . . 2n− 1 2n− 1


Proposition 24. For every n ∈ N, an SR instance I is a realization of ID2n if and only if
the preferences in I are derived from a master list. In particular, the realization of ID2n is
unique.

Proof. (⇒): Let I∗ be a realization of ID2n. We refer to the agents from I∗ as a1, a2, . . . , a2n

and assume without loss of generality that the i-th row of ID2n belongs to ai for every i ∈
[2n]. We show by induction on i that agent ai is the i-th agent in the preferences of aj for
j > i and the (i − 1)-th agent in the preferences of aj for j < i (which is equivalent to I∗
being derived from the master list a1 � a2 � · · · � a2n). For i = 0, there is nothing to show
(as agent a0 does not exist). So fix i > 0. The i-th row of ID2n contains the entry “i− 1”
precisely i − 1 times and the entry i precisely 2n − i times. By the induction hypothesis,
the preferences of aj for j > i start with a1 � a2 � · · · � ai−1, so ai cannot be the (i−1)-th
agent in the preferences of aj . Consequently, ai is the i-th agent in the preferences of aj
for every j > i. It follows that ai is the (i− 1)-th agent in the preferences of all remaining
agents, that is, of agent aj for every j < i (because the 2n− i entries of value i in the i-th
row belong to agents aj′ for j′ > i).

(⇐): Let I be derived from the master list a1 � a2 � · · · � a2n. Then ai is the (i−1)-th
agent in the preferences of aj for j < i and the i-th agent in the preferences of aj for j > i.

It follows that the mutual attraction matrix R of I fulfills that R[i, j] =

{
i j ≥ i
i− 1 j < i

, i.e.,

we have R = ID2n.

A.2 Mutual Agreement

Given n ∈ N, the 2n× (2n− 1)-matrix MA2n can be written as follows:

1 2 3 4 . . . 2n− 2 2n− 1
1 2 3 4 . . . 2n− 2 2n− 1
1 2 3 4 . . . 2n− 2 2n− 1

...
1 2 3 4 . . . 2n− 2 2n− 1
1 2 3 4 . . . 2n− 2 2n− 1


Proposition 25. For every n ∈ N, there is a bijection between realizations of MA2nand
the set of Round-Robin tournaments. In particular, there are several non-isomorphic real-
izations of MA2n for n = 4.
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Proof. We prove the statement by giving an injective function from the realizations of MA2n

to the set of Round-Robin tournaments as well as an injective function from Round-Robin
tournaments to realizations of MA2n.

Formally, we interpret Round-Robin tournaments as colored 1-factorizations of the com-
plete graph K2n.

Definition 26. A colored 1-factorization of the complete graph K2n is a function f :
E(K2n)→ [2n− 1] such that f−1(j) is a perfect matching for every j ∈ [2n− 1].

Accordingly, in the following, we speak of colored 1-factorizations of K2n. Further, we
identify the vertices of K2n with the agents of a realization of MA2n.

We start by describing an injective function from the realizations of MA2n to the set
of colored 1-factorizations of K2n. Let I be a realization of MA2n. We create a colored
1-factorization f of K2n as follows (where we identify the vertices of K2n with the agents
of I). For every j ∈ [2n − 1], we set f({a, a′}) = j if and only if a is the j-th agent in
the preferences of a′. Since MA2n[i, j] = j for every j ∈ [2n − 1], this is indeed a colored
1-factorization. This function from the realizations of MA2n to the colored 1-factorizations
of K2n is clearly injective.

Next, we give an injective function from the set of colored 1-factorizations to the real-
izations of MA2n. Given a colored 1-factorization on K2n, we create preferences for each
vertex as follows: The j-th vertex in the preferences of some vertex v is the vertex w such
that f({v, w}) = j. Since we have a colored 1-factorization, these are well-defined and
feasible preferences. Let I be the resulting SM instance. The function is clearly injective.
It remains to show that the mutual attraction matrix R of I is MA2n. For every vertex v
with vertex w at the j-th position in its preferences, we have f({v, w}) = j, implying that
also w has v in the j-th position in its preferences. Consequently, we have R[i, j] = j for
every i ∈ [2n] and j ∈ [2n− 1], i.e., R = MA2n for n ≥ 4.

We remark that in general, there may be multiple non-isomorphic 1-factorizations (Dick-
son & Safford, 1906) and thus also multiple non-isomorphic realizations of MA2n.

A.3 Mutual Disagreement

Given n ∈ N, the 2n× (2n− 1)-matrix MD2n is defined as follows:

2n− 1 2n− 2 2n− 3 2n− 4 . . . 2 1
2n− 1 2n− 2 2n− 3 2n− 4 . . . 2 1
2n− 1 2n− 2 2n− 3 2n− 4 . . . 2 1

...
2n− 1 2n− 2 2n− 3 2n− 4 . . . 2 1
2n− 1 2n− 2 2n− 3 2n− 4 . . . 2 1


Proposition 27. For every n ∈ N, matrix MD2n is realizable. For n = 3, matrix MD2n

has multiple non-isomorphic realizations.

Proof. We start by proving the first part. The following preferences on agents a1, . . . , a2n

are a realization for MD2n:

ai : ai+1 � ai+2 � · · · � a2n � a1 � a2 � · · · � ai−1 .
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It remains to show that this is indeed a realization of MD2n. So fix i ∈ [2n] and j ∈ [2n−1].
For the rest of the proof, all indices are taken modulo 2n. The j-th position in the preferences
of ai is ai+j . In the preferences of ai+j , agent ai is at the (2n−j)-th position. Consequently,
the preference profile realizes MD2n.

We now turn to the second part. For n = 3, the following realization is not isomorphic
to the one described above, but its mutual agreement matrix is MD2n:

a1 : a2 � a3 � a4 � a5 � a6

a2 : a4 � a6 � a5 � a3 � a1

a3 : a5 � a2 � a6 � a1 � a4

a4 : a3 � a5 � a1 � a6 � a2

a5 : a6 � a1 � a2 � a4 � a3

a6 : a1 � a4 � a3 � a2 � a5

A.4 Chaos

Given n ∈ N, the 2n× (2n− 1)-matrix CH2n can be written as follows:

1 2 3 4 . . . 2n− 2 2n− 1
1 n+ 1 2 n+ 2 . . . 2n− 1 n
2 n+ 2 3 n+ 3 . . . 1 n+ 1
3 n+ 3 4 n+ 4 . . . 2 n+ 2
4 n+ 4 5 n+ 5 . . . 3 n+ 3

...
2n− 2 n− 1 2n− 1 n . . . 2n− 3 n− 2
2n− 1 n 1 n+ 1 . . . 2n− 2 n− 1


Proposition 28. For every n ∈ N such that 2n − 1 is not divisible by 3, matrix CH2n is
realizable, and the realization is unique.

Proof. We remark that for each ` ∈ [n] and i ∈ [2, 2n] it holds that CH2n[i][2`−1] = i+`−2
mod 2n−1. Further, for each ` ∈ [n−1] it holds that CH2n[i][2`] = i+`+n−2 mod 2n−1.
First, we show that n− 1, n, and n+ 1 are coprime to 2n− 1 (assuming that 2n− 1 is not
divisible by 3). Any integer dividing n− 1 and 2n− 1 also divides 2n− 1− 2 · (n− 1) = 1.
Any integer dividing n and 2n − 1 also divides 2 · n − (2n − 1) = 1. Any integer dividing
n+ 1 and 2n− 1 also divides 2 · (n+ 1)− (2n− 1) = 3. Since 3 is prime and does not divide
2n− 1, it follows that n+ 1 and 2n− 1 are coprime.

Since 2n− 1 and n are coprime, each row of CH2n contains each number from [2n− 1]
exactly once. Since the entries in the first column of rows 2 to 2n are 1, 2, . . . , 2n − 1, it
follows that each number from [2n − 1] is contained exactly once in each row and once in
each column of the submatrix arising from deleting the first row. Consequently, for every
j ∈ [2n− 1], there exists exactly one i ∈ {2, 3, 4, . . . , 2n} with CH2n[i, j] = j.

Fix i > 1 and let j ∈ [2n − 1]. Let j∗ := CH2n[i][j] and assume that j∗ 6= j. We claim
that there exists exactly one i∗ ∈ {2, 3, . . . , 2n} such that CH2n[i∗][j∗] = j and that i∗ 6= i.
Existence and uniqueness of i∗ follows as j is contained once in each column (so in particular
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also in column j∗). It remains to show that i∗ 6= i. So assume towards a contradiction that
i∗ = i. We have j∗ = i+ nj − n− 1 mod 2n− 1. Since j∗ 6= j, it follows that

i+ (n− 1) · j − n− 1 6= 0 mod 2n− 1. (6)

Since CH2n[i][j∗] = j, we have i+ n(i+ nj − n− 1)− n− 1 = j mod 2n− 1 which (using
the identity (n2 − 1)j = (n+ 1)(n− 1)j) is equivalent to

(n+ 1) · (i+ (n− 1) · j − n− 1) = 0 mod 2n− 1 (7)

Since n + 1 and 2n − 1 are coprime, Equation (7) implies that i + (n − 1) · j − n − 1 = 0
mod 2n− 1, contradicting Equation (6).

In the realization of CH2n, agent ai ranks at position j with CH2n[i][j] = j∗ the agent i∗

with CH2n[i∗][j∗] = j. The resulting preference profile clearly realizes CH2n, so it remains
to show that it is indeed a preference profile, i.e., each agent appears exactly once in the
preferences of some other agent. It suffices to show that no agent ai∗ appears twice in
the preferences of an agent ai. So assume towards a contradiction that ai∗ appears at
positions j1 and j2 (where j1 6= j2) in the preference of ai. Thus, we have j1 = i∗ + ni +
n2j1−n2−2n−1 mod 2n−1 and j2 = i∗+ni+n2j2−n2−2n−1 mod 2n−1. Consequently,
we have (n2 − 1) · j1 = i∗ + ni − n2 − 2n − 1 = (n2 − 1)j2 mod 2n − 1. It follows that
(n− 1)(n+ 1) · (j1− j2) = 0 mod 2n− 1. Since n− 1 and 2n− 1 as well as n+ 1 and 2n− 1
are coprime, it follows that j1 = j2 mod 2n− 1, a contradiction.

The uniqueness of the realization is easy to see as agent ai must rank at position j an
agent ai∗ with CH2n[i∗][CH2n[i][j]] = j.

A.5 Proof of Proposition 23

This section is devoted to proving the following statement:

Proposition 29. For each n ∈ N, we have

1. dMAD(MA2n,MD2n) = 4 · (n− 1) · n2,

2. dMAD(ID2n,MA2n) = dMAD(MA2n,CH2n) = 8
3n

3 − 4n2 + 4
3n,

3. dMAD(ID2n,MD2n) = dMAD(MD2n,CH2n) = 8
3n

3 − 2n2 − 2
3n,

4. dMAD(ID2n,CH2n) = 8
3n

3 ±O(n2).

Lemma 30. dMAD(MA2n,MD2n) = 4 · (n− 1) · n2.

Proof. Independent of the mapping of agents, we get the following distance per row:

2n−1∑
j=1

|j − (2n− j)| =
2n−1∑
j=1

|2j − 2n| =
n−1∑
j=1

(2n− 2j) +
2n−1∑
j=n+1

(2j − 2n)

= 2n · (n− 1)− 2

n−1∑
j=1

j + 2

n−1∑
j=1

j = 2n · (n− 1) .

Summing over all 2n rows proves the lemma.
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Note that Proposition 16 and Lemma 30 imply that the distance between MA2n and
MD2n is the maximum possible distance between any two realizable matrices.

Lemma 31. dMAD(ID2n,MA2n) = 8
3n

3 − 4n2 + 4
3n.

Proof. For the i-th row of ID2n, the distance to any row from MA2n is

i−1∑
j=1

((i− 1)− j)+
2n−1∑
j=i

(j − i) = (i− 1)2 −
i−1∑
j=1

j +
2n−1−i∑
j=1

j

= (i− 1)2 − 0.5 · (i− 1) · i+ 0.5 · (2n− 1− i) · (2n− i)

This is a polynomial of second degree in i and n. Thus, summing over all rows (i.e., from
i = 1 to 2n) yields a polynomial of third degree in n. This is uniquely determined by any four
points, e.g., by dMAD(ID2·1,MA2·1) = 0, dMAD(ID2·2,MA2·2) = 8, dMAD(ID2·3,MA2·3) =
32, and dMAD(ID2·4,MA2·4) = 112. Consequently, we have dMAD(ID2n,MA2n) = 8

3n
3 −

4n2 + 4
3n.

Lemma 32. dMAD(ID2n,MD2n) = 8
3n

3 − 2n2 − 2
3n.

Proof. For any i ≤ n, the distance of the i-th row of ID2n to any row from MD2n is

i−1∑
j=1

(2n− j − (i− 1)) +
2n−i∑
j=i

(2n− j − i) +
2n−1∑

j=2n−i+1

i− (2n− j)

This is a polynomial of second degree in n and i.

For any i > n, the distance of the i-th row of ID2n to any row from MD2n is

2n−i∑
j=1

(2n− j − (i− 1)) +
i−1∑

j=2n−i+1

(i− 1− (2n− j)) +
2n−1∑
j=i

i− (2n− j)

=
2n−i∑
j=1

(2n− j − (i− 1)) +
2n−1∑

j=2n−i+1

i− (2n− j)− (i− (2n− i+ 1))

Again, this is a polynomial of second degree in n and i.

Consequently, summing up the distance over all rows (i.e., summing over i from
1 to 2n) yields a polynomial of third degree in n. A polynomial of third degree is
uniquely characterized by any four points on the polynomial. Using dMAD(ID2,MD2) = 0,
dMAD(ID4,MD4) = 12, dMAD(ID6,MD6) = 52, and dMAD(ID8,MD8) = 136, we get that
dMAD(ID2n,MD2n) = 8

3n
3 − 2n2 − 2

3n.

Lemma 33. dMAD(MA2n,CH2n) = 8
3n

3 − 4n2 + 4
3n.

Proof. As every row from MA2n is identical, the mapping between the rows is irrelevant.
The first row of CH2n is identical to any row of MA2n and thus does not contribute to
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the mutual attraction distance. Fix some i > 1. Let j∗odd := min{n, 2n + 1 − i} and
j∗even := min{n− 1, n+ 1− i}. For i > 1, the i-th row of CH2n contributes

2n−1∑
j=1

|j − CH2n[i][j]| =
n∑
`=1

|CH2n[i][2`− 1]− (2`− 1)|+
n−1∑
`=1

|CH2n[i][2`]− 2`|

=

j∗odd∑
`=1

|i+ `− 2− 2`+ 1|+
n∑

`=j∗odd

|i+ `− 2− (2n− 1)− 2`+ 1|

+

j∗even∑
`=1

|i+ `+ n− 2− 2`|+
n∑

`=j∗even

|i+ `+ n− 2− (2n− 1)− 2`|

=

j∗odd∑
`=1

|i− `− 1|+
n∑

`=j∗odd

|i− `− 2n|

+

j∗even∑
`=1

|i− `+ n− 2|+
n∑

`=j∗even

|i− `− n− 1|

One easily verifies that this is a polynomial of second degree in n and i. Conse-
quently, summing up the distance over all rows (i.e., summing over i from 1 to 2n)
yields a polynomial of third degree in n. A polynomial of third degree is uniquely
characterized by any four points on the polynomial. Using dMAD(CH2·1,MA2·1) = 0,
dMAD(CH2·3,MA2·3) = 40, dMAD(CH2·4,MA2·4) = 112, and dMAD(CH2·6,MA2·6) = 448,
we get that dMAD(MA2n,CH2n) = 8

3n
3 − 4n2 + 4

3n.

Lemma 34. dMAD(MD2n,CH2n) = 8
3n

3 − 2n2 − 2
3n.

Proof. As every row from MD2n is identical, the mapping between the rows is irrelevant.
The first row of CH2n is identical to any row of MD2n and thus does not contribute to the
distance. Fix some i > 1. Let j∗odd := min{n, 2n+ 1− i} and j∗even := min{n− 1, n+ 1− i}.
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For i > 1, the i-th row of CH2n contributes

2n−1∑
j=1

|2n− j − CH2n[i][j]| =
n∑
`=1

|CH2n[i][2`− 1]− (2n− (2`− 1))|

+

n−1∑
`=1

|CH2n[i][2`]− (2n− 2`)|

=

j∗odd∑
`=1

|i+ `− 2− 2n+ 2`− 1|+
n∑

`=j∗odd

|i+ `− 2− (2n− 1)− 2n+ 2`− 1|

+

j∗even∑
`=1

|i+ `+ n− 2− 2n+ 2`|+
n∑

`=j∗even

|i+ `+ n− 2− (2n− 1)− 2n+ 2`|

=

j∗odd∑
`=1

|i+ 3`− 3− 2n|+
n∑

`=j∗odd

|i+ 3`− 4n− 2|

+

j∗even∑
`=1

|i+ 3`− n− 2|+
n∑

`=j∗even

|i+ 3`− 3n− 1|

One easily verifies that this is a polynomial of second degree in n and i. Consequently,
summing up the distance over all rows yields a polynomial of third degree in n. A poly-
nomial of third degree is uniquely characterized by any four points on the polynomial.
Using dMAD(CH2·1,MD2·1) = 0, dMAD(CH2·3,MD2·3) = 52, dMAD(CH2·4,MD2·4) = 136,
and dMAD(CH2·6,MD2·6) = 500, we get that dMAD(CH2n,MD2n) = 8

3n
3 − 2n2 − 2

3n.

Lemma 35. dMAD(ID2n,CH2n) = 8
3n

3 ±O(n2)

Proof. We only prove the leading term. In order to do so, we use a (non-realizable) 2n ·
(2n − 1)-matrix ID∗ which is very similar to ID2n but has an even simpler structure: The
i-th row of ID∗ consists solely of i’s, i.e., ID∗[i][j] = i for every j ∈ [2n − 1]. We have
dMAD(ID2n, ID∗) = O(n2) as ID∗[i][j] − ID2n[i][j] ∈ {0, 1} for every i ∈ [2n] and j ∈
[2n− 1]. Since every row of ID∗ contains only one number and each row of MA2n as well as
CH2n contain each number from [2n− 1] exactly once, it follows that dMAD(ID∗,MA2n) =
dMAD(ID∗,CH2n). Thus, we have

dMAD(ID2n,CH2n) = dMAD(ID∗,CH2n)±O(n2)

= dMAD(ID∗,MA2n)±O(n2)

= dMAD(ID2n,MA2n)±O(n2)

=
8

3
n3 ±O(n2)

We conjecture that dMAD(ID2n,CH2n) = 8
3n

3−3n2− 5
3n+ 2 (we verified this conjecture

for different values of n with the help of a computer).
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(a) 500 agents (b) 750 agents

Figure 17: Maps of 460 SR instances.

(a) Average number of blocking pairs for a
perfect matching

(b) Minimum summed rank of agents for
partner in any stable matching (transparent
points have no stable matching)

Figure 18: Map of 460 SR instances for 500 agents visualizing different quantities for each
instance.

Appendix B. Maps of Roommates for Different Agent Numbers

In the main body, we have focused on SR instances with 200 agents. Here, we present some
maps for instances with 500 and 750 agents. It turns out that the maps for 500 agents
(Figure 17 (a)) and 750 agents (Figure 17 (b)) are very similar to the map for 200 agents
presented in the main body (Figure 2). The main difference is that the placement of the
2-IC instances with p = 0.25 and of the Expectations-Euclidean instances changes. These
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instances still appear as one cluster but in a slightly different position as in the map for 200
agents. However, their placement in the maps for 500 and 750 agents is very similar, making
these two maps almost indistinguishable. We also reran our experiments for 500 agents,
observing very similar high-level trends as reported in our experiments for 200 agents. As
examples, we show in Figure 18 (a) the map for 500 agents visualizing the average number
of blocking pairs for a perfect matching and in Figure 18 (b) the map visualizing the value
of the summed rank minimal matching.
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