
Journal of Artificial Intelligence Research 79 (2024) 173-239 Submitted 07/2023; published 01/2024

Visually Grounded Language Learning: a Review of
Language Games, Datasets, Tasks, and Models

Alessandro Suglia a.suglia@hw.ac.uk
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, Scotland (UK)

Ioannis Konstas i.konstas@hw.ac.uk
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, Scotland (UK)

Oliver Lemon o.lemon@hw.ac.uk

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh, Scotland (UK)

Abstract

In recent years, several machine learning models have been proposed. They are trained
with a language modelling objective on large-scale text-only data. With such pretrain-
ing, they can achieve impressive results on many Natural Language Understanding and
Generation tasks. However, many facets of meaning cannot be learned by “listening to
the radio” only. In the literature, many Vision+Language (V+L) tasks have been defined
with the aim of creating models that can ground symbols in the visual modality. In this
work, we provide a systematic literature review of several tasks and models proposed in
the V+L field. We rely on Wittgenstein’s idea of ‘language games’ to categorise such tasks
into 3 different families: 1) discriminative games, 2) generative games, and 3) interactive
games. Our analysis of the literature provides evidence that future work should be fo-
cusing on interactive games where communication in Natural Language is important to
resolve ambiguities about object referents and action plans and that physical embodiment
is essential to understand the semantics of situations and events. Overall, these represent
key requirements for developing grounded meanings in neural models.

1. Introduction

Symbols of a language acquire meanings when used to do things in the world (Clark, 1996).
In such cases, language is a cooperative enterprise used by humans to achieve specific
goals. During such cooperative activities, humans coordinate meanings (Clark & Brennan,
1991). Meanings are therefore dynamic entities that humans agree upon in conversation. It
is important to underline that learning a language cannot happen in isolation. Learning a
language is achieved by humans engaged in activities such as language games (Wittgenstein,
Anscombe, & Rhees, 1953). Such language games involve one or more interlocutors, who
use language as a communication protocol used to express preferences, goals, and execute
actions (Austin, 1975).
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There have been many attempts at computationally representing the meanings of words
in a language. From symbolic approaches (e.g., (Winograd, 1971)), statistical approaches
(e.g., (Landauer & Dumais, 1997)) to distributed representations (e.g., (Elman, 1990)), AI
researchers have managed to achieve some significant results. Particularly, after the recent
introduction of large-scale neural language models (e.g., BERT (Devlin, Chang, Lee, &
Toutanova, 2019a), GPT (Radford, Wu, Amodei, Amodei, Clark, Brundage, & Sutskever,
2019)), the goal of achieving real understanding seems closer than before. However, upon
careful inspection and probing, such models demonstrate only a superficial level of under-
standing of Natural Language. Many researchers in the field of AI and, more specifically
Computational Linguistics, have argued that real understanding cannot be achieved by ex-
posing machines to text corpora only (Bender & Koller, 2020). This would mean expecting
somebody to learn a language by reading alone (Bisk, Holtzman, Thomason, Andreas, Ben-
gio, Chai, Lapata, Lazaridou, May, Nisnevich, et al., 2020a). They argue that meaning
is a result of grounding symbolic representations via multimodal perceptual experiences of
concepts in the world. Such a level of perceptual experience can be obtained only when the
agent is embodied in the environment.

Motivated by the need to expose artificial agents to more sophisticated perceptual in-
formation, in this survey we focus on the visual modality as a source of perceptual informa-
tion. In particular, we are interested in tasks that have been proposed to study the symbol
grounding problem (Harnad, 1990) in situated and embodied visual contexts. The main
contributions of this survey are the following:

1. We provide a novel categorisation of visually grounded language games based on the
skills and capabilities required to solve them;

2. We apply the categorisation to a collection of 50 datasets presented in the last 20
years in the literature on Artificial Intelligence and Natural Language Processing;

3. We report an analysis of 51 recent visually grounded models that have been proposed
to tackle the tasks studied in this work;

4. We propose relevant research questions that will guide future research in grounded
language learning.

Our survey is divided into several sections that are described as follows: Section 2
presents a discussion of the background topics that are required to understand the impor-
tance of language games for V+L research; Section 3 reports our task categorisation that
analyses the V+L tasks presented so far in the literature; Section 4 presents a survey of
the V+L models that are able to encode the vision and language modalities; finally Sec-
tion 5 presents a discussion on promising research directions for the future of V+L research;
Section 7 concludes the paper.

2. Visually Grounded Language Learning

Teaching agents to understand Natural Language has been the main objective of several
research projects since the early days of Artificial Intelligence (Winograd, 1971; Newell,
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Simon, et al., 1972). However, understanding the meanings of words in Natural Language
can be brought back to the Symbol Grounding problem (Harnad, 1990):

“How can the meanings of the meaningless symbol tokens, manipulated solely
on the basis of their (arbitrary) shapes, be grounded in anything but other
meaningless symbols?”

Figure 1: An example of the symbol grounding problem: a non-native speaker coming
across the word “pasticciotto” for the first time will struggle to understand it because it is
expressed only via amodal symbols. When the speaker receives an image associated with
it, they are able to perform a perception/categorisation step thanks to which the word is
grounded in experience, finally revealing its meaning.

Associating a referent in the real world with a symbolic representation via a specific
and contextualised meaning still represents a challenge for artificial agents. For instance in
Figure 1, interpreting the meaning of the word “pasticciotto” would not be possible without
a categorisation step that associates the meaningless symbols of the word to a concept which
stands for a composition of several perceptual features such as visual, functional, olfactory
and gustatory features. These are a result of the agent’s experience of the concept in a
given physical context.

This problem immediately implies that teaching computers Natural Language just by
providing textual information might not be enough to effectively demonstrate that the agent
understands language just like humans do. Artificial agents should experience the object
whose symbols refer to, completing the so-called Semiotic Triad defined by (Peirce, 1902)
as follows:

“I define a sign as anything which is so determined by something else, called
its Object, and so determines an effect upon a person, which effect I call its
interpretant, that the latter is thereby immediately determined by the former.”

From this statement we recognise the importance of the perceptual experience in the lan-
guage learning process. The agent has to be exposed to a representation of the entity in
the world (Object) that the word used (sign) refers to. The connection between the sign
and the object becomes concrete once the object is perceived by the sensory organs of the
agent. This process is what we consider as grounding.
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Figure 2: Semiotic Triad defined by (Ogden & Richards, 1923) which describes the relation
that holds between symbols and objects in the world as well as the mental process that
connects them.

The connection between language and thought was the main topic of interest of the
seminal work by (Ogden & Richards, 1923). Particularly, they define Symbols as the tools
to organise, communicate and direct Thoughts. As illustrated in the diagram in Figure 2, a
symbol has a causal relationship with a thought that is instantiated when we speak. On the
other hand, we use a symbol to refer to a given reference in the external world. Between
the abstract Thought and the Referent (object in the world) a direct (or indirect) causal
relation exists as well.

2.1 Compositionality & Meaning

The term ‘compositionality’ is defined as the following property of language: the ability to
construct larger linguistic expressions by combining simpler parts. The focus of linguistic
studies has been on semantic compositionality, i.e., the principle whereby the meaning of
a linguistic expression is a function of the meaning of its components and the rules used
to combine them (Montague, 1970). This ability to recombine known grounded symbols
is what enables the grounding of complex expressions to occur. Following the example in
(Harnad, 1990), suppose we are aware that both the symbols “horse” and “stripes” are
grounded by appropriate representations learned from experience. Now we can consider a
new category “zebra” which is obtained as a combination of the elementary categories as
follows: “zebra” = “horse” & “stripes”. The answer by (Harnad, 1990) to the question
“What is the representation of a zebra?” is as follows:

“It is just the symbol string ‘horse & stripes’. But because ‘horse’ and ‘stripes’
are grounded, ‘zebra’ inherits the grounding, through its grounded symbolic
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representation. In principle, someone who had never seen a zebra (but had
seen and learned to identify horses and stripes) could identify a zebra on first
acquaintance armed with this symbolic representation alone.”

This ability to combine grounded representations to generate other grounded repre-
sentations is the result of associating meaning with a given representation. In this sense,
compositionality can be considered as a more general learning bias that humans leverage
in order to learn new tasks by reusing their knowledge about previously learned tasks and
concepts (Fodor & Pylyshyn, 1988; Fodor & Lepore, 2002). Indeed, compositionality rep-
resents a key element to cope with the huge amount of labelled data required by classical
Deep Learning algorithms (Marcus, 2018) which learn tasks in an end-to-end fashion, di-
rectly from the raw data (LeCun, Bengio, & Hinton, 2015). Therefore, we are interested
in learning representations of concepts that are grounded in perceptual experience and also
demonstrate some degree of compositionality.

A prerequisite for learning and developing meanings is to develop grounded represen-
tations that can favour systematic generalisation to novel combinations of concepts that
we have never seen before. Possessing such flexibility assumes that such learned concep-
tual representations should, by definition, not be static. They must dynamically change
depending on the context and signals that the agent receives when interacting with the
environment. Compositionality comes into play when an agent has to dynamically refine
its internal representations when tasked to coordinate with another agent to collabora-
tively achieve a goal (Lake & Murphy, 2021). In such Natural Language interactions, words
acquire meanings that are instantiated in the ways in which they are used as part of a
systematic communication protocol which is a language.

2.2 Language Games

The definition of language as a tool for human communication underlines the social functions
of language. Additionally, humans use it to express themselves and to manipulate objects
in their environment. Therefore, learning a language means being able to communicate
effectively using a predefined communication protocol based on symbols and transformations
of them. The meaning associated with each symbol can be acquired by engaging in goal-
oriented conversations with other agents. This practice is what (Wittgenstein et al., 1953)
defined as “language games”. Therefore, language functions within the active, practical lives
of speakers involved, and is deeply connected (i.e., grounded) with non-linguistic elements
and behaviours that are part of their environment. Indeed, (Wittgenstein et al., 1953)
considers language as a system of signs that acquire meaning in situ, embedded in speakers’
lives.

When completing real-world tasks, artificial agents must communicate in order to un-
derstand what the goal and requirements of a certain task are. Therefore, in this work, we
underline the importance of the hypothesis that “human communication is thus a funda-
mentally cooperative enterprise, operating most naturally and smoothly within the context
of (1) mutually assumed common conceptual ground, and (2) mutually assumed coopera-
tive communicative motives” (Tomasello, 2010). This definition highlights the importance
of using the terminology of language games as an experimental framework for understanding
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the complexity, properties, and importance of certain tasks for the overall goal of language
understanding and visual grounding.

In contrast to fully symbolic approaches which argue that language can be defined
as an abstract symbol manipulation system (Newell et al., 1972; Pylyshyn, 1986; Fodor,
1983), (Wittgenstein et al., 1953) considers language as a system that has a function, and
acquires meaning, only when it is actually used to do things in the world. As in the Builder
example (Wittgenstein et al., 1953), the phrase “pick up” will acquire meaning only when
the Architect will instruct the Builder to pick a specific object up.

In this survey, we underline the importance of the functional and goal-oriented nature
of Natural Language, investigating how artificial agents can acquire visually grounded rep-
resentations by playing situated and embodied language games.

3. Visually Grounded Language Learning Tasks

This paper surveys the state of the art in Visually Grounded Language Learning, which is
a type of Interactive Grounded Language Learning. This can be considered as an instance
of Interactive Task Learning (Gluck, Laird, & Lupp, 2018), i.e., “any process by which an
agent (A) improves its performance (P) on some task (T) through experience (E), when
E consists of a series of sensing, effecting, and communication interactions between A, its
world, and crucially other agents in the world”. We explore the idea of Wittgenstein’s
language games (Wittgenstein et al., 1953) as a means to assess the linguistic capabilities of
interactive learning agents. Specifically, as in the case of the “Talking Heads” experiments
(Steels, 2015), we explore the idea that linguistic capabilities could be assessed by 3 relevant
language games: 1) guessing games that require the agent to guess an unknown object in a
scene; 2) action games that involve the execution of actions by an agent as requested by a
specific command; and 3) descriptive games which require that the agent is able to describe
the scene that it observes.

We report an analysis of the state-of-the-art in terms of datasets and tasks that were
proposed to study the problem of visual grounding for the English language (summarised
in Table 1). We will divide the tasks into 3 macro categories following the different types
of language games: 1) discriminative tasks; 2) generative tasks; and 3) interactive tasks.
Furthermore, we analyse each paper along the following key dimensions:

• Embodied: is the agent able to explore, perceive and act in the environment?

• Discriminative: does the agent have to produce a single output by selecting it from
a given set of candidates?

• Generative: does the agent have to produce a sequence of outputs conditioned on
its input?

• Interaction with environment: is the agent able to manipulate and change the
state of the environment?

• Interaction with other agents: does the agent have to communicate with other
agents to solve the task?
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Table 1: Systematic analysis of several state-of-the-art datasets for Grounded Language Learning tasks. The analysis considers specific
characteristics of the tasks and environments that are important for learning grounded meanings. We use “x” to mark that a
dataset satisfies a given property.

Authors
Dataset Embodied Discriminative Generative Inter.

with Env
Inter.
with

Agents

Size

(Gordon et al., 2018) IQA yes x x x 75K

(Suhr et al., 2019b) NLVR no x 100K

(Suhr et al., 2019a) CerealBar yes x x 1.2K

(Shridhar et al.,
2020)

ALFRED yes x x 25K

(Ku et al., 2020) RxR yes x 126K

(Padmakumar et al.,
2021)

TEACh yes x x 3.2K

(Deitke et al., 2020) RoboTHOR yes x x

(Wortsman et al.,
2019)

yes x x

(Jain et al., 2019) yes x x

(Kottur et al., 2021) SIMCC
2.0

no x x 11K

(Chen et al., 2019) Touchdown yes x 9.3K

(Haber et al., 2019) Photobook no x 2.5K

(Hermann et al.,
2017)

yes x

(Yan et al., 2018) CHALET yes

(Mirowski et al.,
2019)

StreetLearn yes

(De Vries et al.,
2018)

Talk The
Walk

yes x x 10K

(Kim et al., 2019) CoDraw no x 10K

(Brodeur et al.,
2017)

HOME yes

(Ramakrishnan
et al., 2021)

HM3D yes

(Savva et al., 2019) Habitat yes

(Kiela et al., 2020) Hateful
Memes

no x 10K

(Ruis et al., 2020) gSCAN no x x 300K

(Shekhar et al.,
2017)

FOIL no x 297K

(Zellers et al., 2019) VCR no x 290K

(Park et al., 2020) VisualCOMET no x 1.46M

(Das et al., 2017a) VisDial no x x 1.4M

(Bogin et al., 2021a) COVR no x 262K

(Liu et al., 2021) MaRVL no x 5.6K

(Narayan-Chen
et al., 2019)

Collab-
Minecraft

yes x x 509

(Zarrieß et al., 2016) PentoRef no x 1.3K

(Pezzelle &
Fernández, 2019)

MALeViC no x 20K

(Pezzelle et al.,
2020)

BD2BB no x 18K

(Huang et al., 2016) no x 20.2K

(Da et al., 2021) EMU no x x 48K

(Clark et al., 2021) Iconary no x 55K

(Goyal et al., 2017a) VQA 2.0 no x 1.1M

(Hudson &
Manning, 2019)

GQA no x 22M

(Kafle & Kanan,
2017)

TDIUC no x 1.6M

(Yang et al., 2021) no x 53.2K

Continued on next page
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Table 1: Systematic analysis of several state-of-the-art datasets for Grounded Language Learning tasks. The analysis considers specific
characteristics of the tasks and environments that are important for learning grounded meanings. We use “x” to mark that a
dataset satisfies a given property. (Continued)

Authors
Dataset Embodied Discriminative Generative Inter.

with Env
Inter.
with

Agents

Size

(Kottur et al., 2019) CLEVR-
dialog

no x 4.25M

(Zellers et al., 2021) PIGLeT yes x 280K

(Abramson et al.,
2020)

Playroom yes x x

(Ilinykh et al.,
2019b)

Tell-me-
More

no x 22K

(Dobnik et al., 2020) CUPS no x 1.3K

(Yu et al., 2017b) BURCHAK no x 2.5K

(Tokunaga et al.,
2012)

REX no x x 9.8K

(Chevalier-Boisvert
et al., 2018)

BabyAI yes x

(Thomason et al.,
2019a)

CVDN yes x x 2K

(Ilinykh et al.,
2019a)

MeetUp yes x x 430

(Puig et al., 2020) Watch-
And-Help

yes x x 1.3K

(Zheng et al., 2022) Spot the
difference

no x 95K

(Kiseleva et al.,
2022)

IGLU yes x x 509

(Bisk et al., 2016) BlocksWorld no x x 12K

(Zhong et al., 2021) SILG no x x

(Elliott et al., 2016) Multi30K no x 150K

(Wang et al., 2021) Multisubs no x 4.5M

(Kazemzadeh et al.,
2014)

ReferitGame no x 20K

(Johnson et al.,
2016)

DenseCap no x 4.1M

(Krishna et al.,
2017a)

ActivityNet no x 20K

(Thrush et al., 2022) Winoground no x 1.6K

(Bugliarello et al.,
2022)

IGLUE no x 28K

(Krojer et al., 2022) ImageCoDe no x 22K

(Shridhar et al.,
2021)

ALFWorld yes x x 25K

(Gao et al., 2022) Dialfred yes x x 53K

(Gao et al., 2023) Alexa
Arena

yes x x 46K

3.1 Discriminative Tasks

A discriminative task is defined as a language game in which the agent, given an image I and
a corresponding textual information t, has to select an option ĉ among a set of candidates C.
The agent is successful if ĉ matches the target option c∗. Such tasks have been the very first
instance of grounded language learning tasks inspired by well-known image classification
tasks in the Computer Vision community (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009).

One of the most famous tasks in this category is Visual Question Answering (VQA).
The generic formulation of this task, as shown in Figure 3, assumes that the agent receives a
question about an image and has to provide an answer to it. The answer can be in free-form
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What is the mustache 
made of?

VQA system bananas

Figure 3: Example from the Visual Question Answering dataset (Antol et al., 2015): the
agent should learn to generate the answer “bananas” given the image and the question.

text. However, current implementations of VQA tasks, such as the one presented by (An-
tol et al., 2015), assume that the agent has a specific answer vocabulary (vocabulary-based
VQA) that it has to choose from. In this task, the agent should learn to reason about the
objects in the image to answer the question. Questions usually require that the agent is
aware of specific categories of objects, their colour, or their relative position in the image.
However, the first release of the dataset had a bias according to which questions could be
answered by relying only on one modality or only by relying on a specific subset of tokens
in the question. For this reason, as described by (Goyal, Khot, Summers-Stay, Batra, &
Parikh, 2017b), a proper balancing procedure for the dataset is required. This prevents
the case where high-capacity models obtain high accuracy only because they learn spurious
correlations in the data. Other ways to mitigate this problem have been proposed. For in-
stance, the TDIUC dataset (Kafle & Kanan, 2017) divides the questions into 12 categories
to have a better understanding of the model’s capabilities. A related effort in this direction
is the GQA dataset (Hudson & Manning, 2019). GQA is a VQA dataset automatically
generated by relying on Visual Genome scene graphs (Krishna, Zhu, Groth, Johnson, Hata,
Kravitz, Chen, Kalantidis, Li, Shamma, et al., 2017b). Having a structured representation
of the scene adds a semantic layer on top of the purely perceptual one. Thanks to this
additional level, it is possible to perform a more fine-grained analysis of the model’s ability.
For instance, the authors propose measures of consistency of the model predictions (i.e.,
is the answer to semantically similar questions the same?), validity (i.e., is the agent re-
sponding some colour to a colour question?), and plausibility (i.e., does the answer make
sense given the question?). However, because the problem is cast as a classification task,
models learn to model the head of the answer probability distribution only. Therefore, they
perform very poorly when generalising to out-of-distribution examples. To address this
problem, specific datasets that test the generalisation abilities of VQA models have been
proposed (e.g., (Agrawal, Kembhavi, Batra, & Parikh, 2017)). The community proposed
the CLEVR (Johnson, Hariharan, van der Maaten, Fei-Fei, Lawrence Zitnick, & Girshick,
2017) dataset to complete a more in-depth evaluation of the elementary visual reasoning
skills of an agent using synthetic images generated using the Blender render engine.

Another instance of a discriminative task is Visual Entailment (VE) (Xie et al.,
2018). It is inspired by Textual Entailment tasks in Natural Language Processing (e.g.,
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Figure 4: Example from the Visual Entailment task from (Xie et al., 2018). Given the state
of the world (exemplified by the image), the agent has to verify, for each hypothesis, the
validity of the statement. Figure adapted from (Xie et al., 2018).

(Bowman, Angeli, Potts, & Manning, 2015)) defined as follows: given a text premise P
and a text hypothesis H, the goal is to determine if P implies H. This task is usually
cast as a 3-way classification problem where the label set includes “entailment”, “neutral”,
or “contradiction”, based on the relation conveyed by the (P, H) text pair. As shown in
Figure 4, VE replaces premise P with a real-world image. Based on this idea of entailment,
several other tasks can be defined. For instance, the Cornell Natural Language Visual
Reasoning (NLVR) dataset (Suhr, Lewis, Yeh, & Artzi, 2017) is a corpus containing 92,244
sentence-image pairs, whose aim is to teach an agent whether a given statement is true
or false for a given image. What makes this dataset interesting is that it includes several
semantic phenomena such as cardinality (soft/hard) statements, existential and universal
relations, as well as spatial relations. Sentences associated with the images are collected
from real users, however, the corresponding images are synthetic and composed of simple
coloured blocks. (Suhr et al., 2019b) extended this dataset with real-world images.

Another discriminative task is the Find One mismatch between Image and Lan-
guage caption (FOIL) dataset (Shekhar et al., 2017). It defines 3 different discriminative
sub-tasks described as follows (see Figure 5 for an example):

1. Binary Classification: Given an image and a caption, the model is asked to mark
whether the caption is correct, or wrong. The aim is to understand whether trained
models can spot mismatches between their coarse representations of language and
visual input;

2. Foil Word Detection: Given an image and a caption, the model has to detect the foil
word (i.e., a single word that is incorrect for the caption). The aim is to evaluate the
understanding of the system at the word level;

3. Foil Word Correction: Given an image, a caption and the foil word, the model has to
detect the foil and provide its correction. The aim is to check whether the system’s
visual representation is fine-grained enough to be able to extract the information
necessary to correct the error.
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Figure 5: Example extracted from the FOIL dataset. It describes the 3 discriminative
tasks: binary classification, foil word detection and foil word correction. Figure adapted
from (Shekhar et al., 2017).

Most of these datasets have been annotated relying on image datasets that were derived
from an English lexical database (i.e., WordNet (Miller, 1995)). However, this imposes a bias
on the data collection because all the elicited concepts will be familiar only to people with a
European/American background. Since an over-arching goal in this area is to create general-
purpose agents, they must rely on an unbiased source of training data. (Liu et al., 2021)
proposed MaRVL, a novel dataset for multicultural reasoning over vision and language.
First of all, they propose a novel concept hierarchy that can be considered universal and
not specific to the English language. After this step, they collect a dataset using a similar
approach to (Suhr et al., 2019b). The resulting dataset contains 5.6K captions using 5
typologically, geographically and genealogically diverse languages. As shown in Figure 6,
this makes MaRVL a very challenging benchmark for multimodal and multilingual language
understanding.

Similar to FOIL, MALeViC (Pezzelle & Fernández, 2019) defines a sentence verification
task to study how Vision+Language (V+L) models can learn the meaning of gradable
adjectives of size from different visual contexts. This benchmark includes several tasks
that are specifically designed to study how an agent can learn to identify the reference set
of a given statement in a specific visually-grounded context. This is a crucial skill that
agents have to master when dealing with complex Embodied AI tasks involving a high
level of ambiguity. Another task formulated as a discriminative language game is “Be
Different to Be Better” (Pezzelle et al., 2020). It is defined as a candidate selection
task where the agent, based on a certain intention (i.e., their goal, attitude or feeling), has
to choose, among a set of candidate actions, the one that a person would perform. Other
instances of these tasks involve matching the correct caption to a given image. This is
the case of Winoground (Thrush et al., 2022) where an agent has to be able to score
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Figure 6: Examples extracted from the MaRVL dataset. The first image shows an example
in Indonesian and the second in Tamil. Figures adapted from (Liu et al., 2021).

higher the correct (image, caption) pair instead of the others inspired by the Winograd
Schema Challenge (Levesque, Davis, & Morgenstern, 2012). This dataset is extremely
challenging because it contains images having an intricate visual structure that have been
manually sourced by a team of experts. Humans are able to match the correct caption to
its image while state-of-the-art models have a really hard time completing this task with
top performance being just above random chance.

The dataset ImageCoDe provides an additional benchmark for contextual image re-
trieval (Krojer et al., 2022) where the agent has to select the image that matches a contextual
caption given a set of 9 distractors. As a result of their evaluation, they show that their
benchmark is highly multi-modal (i.e., the agent requires both modalities to do well) and
that current state-of-the-art V+L models are still far away from human-level performance.
Most likely, this is because some of the situations require understanding the unfolding of
events over time and cannot be learned from static images only. Similarly to the effort in
VQA to inspect the visual grounding ability of the model, (Bogin et al., 2021a) proposes
a new benchmark for compositional language understanding (COVR). The task,
inspired by NLVR (Suhr et al., 2019b), is formulated as a sentence verification problem
having multiple reference images (see Figure 7). The dataset has been created by defining
specific splits having different compositional generalisation skills. It uses the GQA (Hudson
& Manning, 2019) scene graphs to first find adversarial images to a target image. Then,
it instantiates questions from language templates and finally uses manual validation and
paraphrasing to generate the actual text. The generated examples require the agent to
master the use of quantifiers and other operations, such as counting. This makes the task
particularly challenging, especially in zero/few-shot splits where the agent has the chance
to learn from a few examples of a given logical operator.

Most of these tasks can be solved by relying on information immediately available in
the image (e.g., the properties of the objects or the relationship between them). However,
understanding the effects of given actions as well as the goal of specific actors in an image
plays an important role in visual commonsense reasoning. To tackle this important problem,
(Zellers et al., 2019) propose the Visual Commonsense Reasoning challenge. It is de-
fined as a multiple-choice classification task where the agent has to select the correct answer
to a given question as well as specify “why” that answer was relevant. PIGLeT (Zellers
et al., 2021) studies the problem of learning physical commonsense knowledge. The authors
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Figure 7: Example extracted from the COVR dataset. At training time, the agent is
exposed to specific usages of quantifiers as well as object attributes. At test time, novel,
unseen usages are presented so that the model has to systematically generalise to novel
statements. Figure adapted from (Bogin et al., 2021a).

Figure 8: Example extracted from the PIGLeT dataset. Each example contains the rep-
resentation of the state of the world before and after the action “throw object” happens.
The world state is expressed in terms of visual attributes derived from the 3D environment.
Language annotations are available for each step of the transition. Figure adapted from
(Zellers et al., 2021).

automatically generated trajectories of actions using a planner and then annotated specific
transitions where a state change happens. In particular, as shown in Figure 8, for each
transition they collect a set of visual attributes for each state as well as a description of
the action that triggered the state change, and a description of the final state. One of the
main tasks involves predicting the attributes of the final state given the action executed by
the agent. VisualCOMET (Park et al., 2020) is another dataset for visual commonsense
reasoning in static images. Given an image, a person that appears in it is selected and
multiple reasoning inferences are annotated that are supposed to describe: 1) what needed
to happen before; 2) the intents of the person; and 3) what will happen next.

Another multimodal dataset that requires higher-order reasoning skills is the Hateful
Memes challenge (Kiela et al., 2020). This dataset was created to develop models that are
able to detect internet abuse, an important problem in current social media platforms where
sarcasm and other very subtle visual and language cues are used in an offensive manner.
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This problem is particularly important because it underlines the fact that words can assume
different meanings depending on the multi-modal context in which they are used. Being
able to derive their meaning is therefore a highly complex reasoning task.

3.2 Generative Tasks

Generative (or descriptive) language games are formally defined by assuming that there is an
agent that receives an image I and has to generate a sequence of tokens t̂ = ⟨t1, t2, . . . , tn⟩.
The task is evaluated by considering a specific semantic similarity measure S that determines
how close t̂ is to the ground-truth target sequence t.

Figure 9: Image captioning example from the MSCOCO dataset (Lin et al., 2014). A
possible caption for this image is: “a teddy bear that has been placed on a pile of rocks.”

One of the first tasks that have been proposed in the literature is Image captioning
in which the main objective is to generate a meaningful description of an input image (see
Figure 9 for an example). One of the most used datasets for this task is MSCOCO (Lin
et al., 2014) which provides 5 captions for every image as well as segmented objects. A
similar dataset is Flickr30K (Young, Lai, Hodosh, & Hockenmaier, 2014). In a similar
fashion, video captioning tasks have been proposed (e.g., (Wang, Wu, Chen, Li, Wang,
& Wang, 2019; Lei, Yu, Berg, & Bansal, 2020)) where either the subtitle or a caption
has to be generated for a given video clip. A more complex scenario is represented by
video summarisation (e.g., (Papalampidi, Keller, Frermann, & Lapata, 2020)). Analogous
to text summarisation (Nenkova & McKeown, 2011), video summarisation involves a more
structured approach that resembles classic Natural Language Generation pipelines (Reiter
& Dale, 2000). It usually involves several steps: 1) selecting the video frames that are worth
considering for the summary; 2) aggregating the information in a coherent way to favour
sound summaries; and 3) using the aggregated pieces of information to generate the text of
an appropriate summary. Another task that involves multiple video frames as part of the
input data is visual storytelling (Huang et al., 2016). In this case, the agent is provided with
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multiple images that describe the progression of some event over time. This task is more
complex than video captioning because it is not only limited to factually describing the
image but involves also adding some extra contextual cues (e.g., emotional and time-related
aspects). Another generative task that involves describing a visual scene in multiple rounds
is Tell-me-More (Ilinykh et al., 2019b). In their data collection, they ask their users to
imagine they are talking to someone over the phone about an image they can see. This
image belongs to a set of candidate images that are available to the other agent only. The
receiver has to select which image the speaker is referring to.

Most of the generation tasks described so far assume that the agent has to generate a
description for the entire visual input. To evaluate how fine-grained visual representations
are it is useful to focus only on certain parts of the image. This task is commonly called
dense captioning or referential expression generation. In this task, an agent has to generate
a description that applies to a very specific region of the image (i.e., a bounding box). For
instance, (Kazemzadeh et al., 2014) propose the ReferIt game intended as a generic data
collection procedure for referential expression generation. This procedure has been then
applied to several datasets such as COCO (Lin et al., 2014) and ImageCLEF (Grubinger,
Clough, Müller, & Deselaers, 2006). Concurrently, rich semantic annotations of images
have been collected via the VisualGenome project (Krishna et al., 2017b). From these
annotations, (Johnson et al., 2016) released the DenseCap dataset to learn to generate
descriptions associated with specific bounding boxes of the image. (Krishna et al., 2017a)
collected a dataset for captioning in videos as well. Particularly, this dataset was annotated
by dividing the video into key activities (or moments) and then asking the annotator to
report a sentence describing each activity.

Another important research direction is to use visual information to boost performance
in machine translation. The first dataset to be proposed for this task was Multi30K (Elliott
et al., 2016). The dataset was created by creating German translations for each image
description available in Flickr30K (Young et al., 2014). However, this process was completed
without providing images to the annotators introducing an apparent bias in the collected
data (Li, Ataman, & Sennrich, 2021). To mitigate this issue, (Wang et al., 2021) proposed
Multisubs, a large-scale multimodal and multilingual dataset that facilitates research on
grounding words to images in the context of their corresponding sentences. This dataset is
based on movie subtitles but due to missing copyright, the authors didn’t use the images
of the video as reference. Instead, they relied on a multilingual knowledge base to find
references to general images about certain concepts (i.e., BabelNet (Navigli & Ponzetto,
2010)).

3.3 Interactive Tasks

In Section 2, we introduced the concept of language games as an experimental framework
for studying machine learning tasks aimed at assessing certain language understanding skills
of artificial agents. This is important because if we want to aim to create artificial agents
that are trained to solve ecologically valid tasks (De Vries, Bahdanau, & Manning, 2020),
we need to consider the fact that the real world contains: 1) sophisticated visual stimuli in
the form of videos or images; 2) ambiguous, spontaneous, and incremental language that is
typically used when communicating in natural language.

187



Suglia, Konstas & Lemon

The grounded language learning tasks that we described so far did not have a real con-
nection with the concept of language games that we described in previous sections. Although
each language game could be considered as situated in the visual scene exemplified by the
image, there was no notion of interaction between the learning agent and the environment
or other agents. Each task involved either generating one or multiple elements associated
with the input. To get closer to the idea of language games described by (Wittgenstein
et al., 1953), we are interested in exploring interactive tasks where the agent is either sit-
uated or embodied in the environment and has to interact in particular ways. This can be
either by communicating with other agents to solve a given task or by executing actions in
the environment to achieve a given goal.

3.3.1 Situated Interactive Games

Agents who are able to support a conversation are much more human-like than agents that
are able to answer single questions only. For this reason, the VQA task has been extended
by the Visual Dialogue (VisDial) dataset (Das et al., 2017a). In the VisDial dataset,
as depicted in Figure 10, the agent receives in input the dialogue history composed of a
sequence of question/answer pairs, the current question and the current reference image.
Two different tasks have been proposed for this dataset: 1) answer selection, where the
agent has to select the correct answer among a set of 100 candidates, and 2) answer gener-
ation, where the agent should generate a response token by token. However, as highlighted
by (Massiceti, Dokania, Siddharth, & Torr, 2018), state-of-the-art results can be achieved
by using the Canonical Correlation Analysis algorithm that relies on ad-hoc feature extrac-
tors for images (image features extracted from a pretrained ResNet (He, Zhang, Ren, &
Sun, 2015)) and text (question and answer representations are learned using FastText (Bo-
janowski, Grave, Joulin, & Mikolov, 2017)). Another downside of this task is the relevance
of history. (Agarwal, Bui, Lee, Konstas, & Rieser, 2020) show that the number of dialogues
actually requiring dialogue history is very low. Therefore, models can do well just by using
the current question to generate the answer.

A dataset that proposes to give the role of first-class citizen to dialogue history and
common ground is Photobook (Haber et al., 2019). It is a dataset of 2,500 human-human
goal-oriented English dialogues between two participants that have to identify shared images
in their photobook by exchanging text messages. In their evaluation, they focus on the task of
reference resolution and reference generation in such visually grounded dialogues. However,
they do not assess the ability of artificial agents to actually play the game in a collaborative
fashion by both generating utterances as well as selecting target photos.

3.3.2 Language Evolution and Emergent Communication

Another line of work is focused on language evolution and emergent communication in
referential language games (Lewis, 1969). A specific instance of the game, depicted in
Figure 11, can be described as follows: a speaker describes an object in a scene using a
set of symbols and the hearer needs to select, among a set of distractors, which one is
the object described by the speaker. A recent implementation of the game was studied
by several authors (e.g., (Lazaridou, Hermann, Tuyls, & Clark, 2018; Havrylov & Titov,
2017; Bouchacourt & Baroni, 2018)) who use either synthetic images or real-world images
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Figure 10: An example from the VisualDialog dataset. The agent has access to a reference
image, to the dialogue history composed of the question/answer pairs generated so far, and
it has to generate an answer for the current question. Figure adapted from (Das et al.,
2017a).

coming from MSCOCO. A downside of these approaches is that they focus on single-turn
interactions, and are thus not considering the intricacies of dialogue phenomena which are
essential for an agent that has to learn by natural language interaction. It is important to
underline the fact that in the language evolution and emergent communication literature,
agents start tabula rasa and form communication protocols that maximise task rewards.
While this purely utilitarian framework results in agents that successfully learn to solve the
task by creating a communication protocol, these emergent communication protocols do
not bear core properties of Natural Language (Kottur, Moura, Lee, & Batra, 2017). This
is ultimately what agents are required to develop if we want them to be embodied in the
environment and join in conversations with humans.

Due to the complexity introduced by having situated dialogues divided into many turns,
there have been several initiatives that tried to study very specific problems in isolation.
For example, (Clark et al., 2021) proposes Iconary, a collaborative game with two agents:
1) a Drawer that receives a phrase and has to draw it using a specific set of icons; and
2) a Guesser who generates a text to guess the phrase. This dataset is appealing because
it involves an asymmetry of information that favours communication between players to
guess the correct phrase. PentoRef (Zarrieß et al., 2016) is another puzzle game where
the Instruction Follower has to manipulate specific game pieces to achieve the goal that
the Instruction Giver has in mind. In the same spirit, (Kottur et al., 2019) developed
CLEVR-dialog, a two-player collaborative game where the aim is to reconstruct a hidden
scene graph representation known only to one of the players. The focus of this task is on
the dialogue history and its importance for reference resolution. Similarly, the CODRAW
game (Kim et al., 2019) involves two players: a Teller and a Drawer. The Drawer asks
questions to the Teller in order to accurately reconstruct the image that only the Teller
can see. The task requires that the agents develop Natural Language understanding and
generation skills in order to complete the game. They use the quality of the reconstructed
image as a proxy for the quality of the communicative skills of the Drawer.
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Figure 11: Referential game used by (Lazaridou et al., 2018) as a benchmark for emergent
communication between two agents: the Speaker and the Listener. The Speaker, given
a representation of the target image—which could be either symbolic or in the form of
pixels—generates a message by sampling symbols from a fixed lexicon. Given the message
sent by the Speaker, the Listener has to understand which one is the target object among
the distractors. Figure adapted from (Lazaridou et al., 2018).

Another situated interaction dataset is Situated and Interactive Multimodal Con-
versations (SIMMC) (Kottur et al., 2021). It represents a collaborative task where a
user is looking for an item of clothing and has to ask an AI assistant for help in a simulated
clothes shop. Another interactive situated dialogue task is CUPS (Dobnik et al., 2020).
In this setup, the authors define a situated context represented by a table with multiple
coloured cups. They assume there are multiple speakers that have different perspectives of
the same scene, each with different objects missing. Their task consists of spotting which
objects are missing and different. The difference in perspective favours communication be-
tween the players to succeed in the game. In this setup, we assume that the two speakers
have knowledge of the language used to communicate. Instead, in BURCHAK (Yu et al.,
2017b), the authors collected a dataset where one of the agents, the Teacher, is trying to
teach new visually grounded words in a completely made-up language to the Student, who
is not familiar with it. Again, the concept of asymmetry of information is leveraged to
favour communication between agents.

In contrast to the previously described tasks, the GuessWhat?! dataset (De Vries et al.,
2017) represents the first benchmark that involves a goal-oriented dialogue that favours: 1)
the acquisition of discriminative features associated with the objects in the scene by playing
the role of the Questioner – a module which generates questions about a given image; and 2)
the development of Natural Language understanding capabilities by playing the role of the
Oracle – the module which has to coherently reply to the Questioner. As shown in Figure
12, the Questioner has to understand the image in order to generate coherent questions
about the reference scene and, at the same time, has to understand the feedback provided
by the Oracle in order to adapt its dialogue strategy. Differently from all other tasks,
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(a) GuessWhat?! scene (b) GuessWhat?! dialogue

Figure 12: An example dialogue extracted from the GuessWhat?! dataset (De Vries et al.,
2017). Figure 12(a) shows a possible scene and Figure 12(b) shows the game played by
the Questioner and the Oracle. The Oracle is aware that the target object is the “Donut”
highlighted in green, and has to support the Questioner in guessing it by replying Yes/No
to their questions.

GuessWhat?! involves both generation and understanding of Natural Language expressions
that are grounded in the reference scene. We consider both capabilities as fundamental in
learning grounded language learning. This is because agents able to support a conversation
in natural language with other agents should be able to understand and generate coherent
responses.

In a scenario in which agents are divergent – they have different perspectives, different
skills, and different languages – Natural Language communication emerges because it is
essential to coordinate upon certain references, and certain goals (Chandu, Bisk, & Black,
2021; Benotti & Blackburn, 2021). The dataset Spot the Difference presented by (Zheng
et al., 2022) contains 95K simulated dialogues based on two agents trying to solve a ref-
erential game. Another example of divergent agents is MeetUp! (Ilinykh et al., 2019a).
This is a game situated in a simulated environment where two players have to converse and
coordinate in order to meet in the same room. Differently from GuessWhat?!, in this game
the two agents have different visual perspectives. This asymmetry of information forces
agents to communicate and clarify their references in order to complete their tasks.

3.3.3 Embodied Interactive Games

Differently from situated tasks, many approaches can be classified as Embodied AI tasks (Savva
et al., 2019) which are focused on the execution of actions either in the real world or within
3D virtual environments (e.g., Matterport3D (Chang, Dai, Funkhouser, Halber, Niebner,
Savva, Song, Zeng, & Zhang, 2017), HoME (Brodeur et al., 2017), CHALET (Yan et al.,
2018), HABITAT (Savva et al., 2019), and AI2THOR (Kolve, Mottaghi, Han, Vander-
Bilt, Weihs, Herrasti, Gordon, Zhu, Gupta, & Farhadi, 2017)). (Misra, Bennett, Blukis,
Niklasson, Shatkhin, & Artzi, 2018a) jointly model navigation and plan execution by re-
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ceiving visual information from the current scene and generating a plan of a sequence of
task-dependent actions such as moving forward, changing the orientation of the camera as
well as object interaction. (Hermann et al., 2017) use the DeepMind Lab (Beattie, Leibo,
Teplyashin, Ward, Wainwright, Küttler, Lefrancq, Green, Valdés, Sadik, et al., 2016) en-
vironment to define a language-guided navigation task where the agent has to reach an
object indicated in a natural language instruction. (Gordon et al., 2018) present an in-
teractive VQA task in AI2THOR (as shown in Figure 13) where the agent has to answer
questions related to specific objects in the environment. The agent has to navigate in the
environment to discover the objects and answer questions about them. Therefore the task
involves both reasoning and navigation skills to be successfully solved. A navigation task
for the CHALET environment, called LANI, has been proposed by (Misra et al., 2018a). In
addition, they propose an instruction-following dataset called CHAI that requires the agent
to execute a set of actions to complete a given “recipe” in the household domain.

Figure 13: Example from the IQA dataset based on AI2THOR environment presented in
(Gordon et al., 2018). The agent starts from an initial position in the environment and
receives the question as well. It has to move in the environment in order to find the clues
that will help it to answer the question.

Another line of work is interested in studying navigation tasks in simulated environ-
ments with photo-realistic scenes. Several datasets involving photo-realistic environments
have been proposed: (Mirowski et al., 2019) introduce StreetLearn as a simulated envi-
ronment to foster research in perception, planning, memory and navigation. The Room-
to-Room dataset (Anderson, Wu, Teney, Bruce, Johnson, Sünderhauf, Reid, Gould, &
Van Den Hengel, 2018b) is another relevant benchmark for navigation tasks in which the
agent receives an instruction that tells it where to go and the agent has to generate a se-
quence of actions to reach the destination. (Chen et al., 2019) propose another Google
Street View-based environment associated with navigation instructions that should be fol-
lowed by the agent to reach a given goal position in the world. The Room-across-Room
dataset (Ku et al., 2020) was designed to study more fine-grained abilities of the agent to
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ground the instruction in temporally relevant referents of a photo-realistic 3D environment.
This dataset also includes information in different languages to study how people refer to
objects in space in different cultures. The dataset TalkTheWalk (De Vries et al., 2018)
comprises a cooperative task involving a guide and a tourist. The guide is aware of the
map and has to give instructions to the tourist about how to reach a specific goal position
in New York City. This dataset represents a very complex challenge for AI agents because
it requires both navigation and communication skills. CerealBar (Suhr et al., 2019a) is
another collaborative game situated in a 3D environment where a follower has to collect a
set of cards (with specific symbols) following the instructions of another agent. The follower
has a limited set of actions that are mostly related to navigating the environment and pick-
ing up cards. Another collaborative task that requires natural language communication is
MeetUp (Ilinykh et al., 2019a). In this task, one agent has to follow instructions and ask
for feedback to reach a room that another agent is aware of. The navigator has to provide
correct spatial references so that the other agent can give instructions about where to go. A
variant of this interactive navigation task has been proposed by (Thomason et al., 2019a),
namely CVDN. It is a bigger dataset comprising 2050 human-human navigation dialogues
of 7k navigation trajectories composed of question-answer exchanges across 83 houses.

Figure 14: An example of a task to be solved in the ALFRED benchmark (Shridhar et al.,
2020). The agent has to master several skills to succeed such as navigation, visual memory
and object manipulation. Figure adapted from (Shridhar et al., 2020).

Such navigation-oriented tasks have a very important role in developing embodied agents
with sophisticated reasoning and memory skills (for a more comprehensive list of these
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tasks refer to (Gu, Stefani, Wu, Thomason, & Wang, 2022)). However, learning grounded
meaning only by moving in the environment is rather limiting. In this way, the agent is
not able to experience the effect of specific actions on specific objects. This is a concept
that is related to the theory of affordances (Gibson, 1977) and its importance for learning
grounded meanings of objects (Glenberg & Kaschak, 2002). (Chevalier-Boisvert et al., 2018)
propose a virtual environment with a teacher that emits synthetic language generated by
a context-free grammar. They define a curriculum for the agent based on increasingly
complex tasks involving navigation (e.g., “navigate to a specific object”) and manipulation
tasks (e.g., “open the door on your left”). The agent has to master preliminary levels to
solve successive stages of the game. The game culminates with the BossLevel in which all
the previous capabilities are required.

Another example of a task where the agent has a richer action set is Collaborative
Minecraft (Narayan-Chen et al., 2019) where an Architect has a goal structure that wants
to build and has to communicate specific instructions to the Builder that has to move
around coloured blocks to create the desired shape. In this case, the resulting dialogues are
complex and rich in spatial referential expressions required to specify the position of given
game pieces. An up-to-date version of this task is presented in the IGLU challenge (Kise-
leva et al., 2022). Another similar task that presents a similar blocks manipulation task
is BlocksWorld (Bisk et al., 2016). However, the set of actions that the agent is able to
execute in these tasks is rather limited. The same is true for another interactive task that
was proposed by (Abramson et al., 2020). They define Playroom, a 3D environment where
a learning agent has to perform several tasks of different complexities such as Q&A and
instruction following. Again the action set is limited to navigation actions (e.g., forward,
back, etc.) and one manipulation action (grab). This downside makes them an unsuitable
benchmark for learning the meaning of specific actions that have an effect on the environ-
ment. AI2Thor (Kolve et al., 2017) is the only 3D environment with rich simulated physics
that models a variety of actions for the agent such as pick up, slice, toggle. Based on this
3D environment, the research community has proposed several challenges. For instance,
ALFRED (Shridhar et al., 2020) is the first language-guided task completion benchmark
that requires both navigation and manipulation actions. As shown in Figure 14, the agent
has to complete a goal specified by a Natural Language instruction. In addition to the over-
all goal instruction, instructions are provided for the agent for every sub-goal. Therefore,
it can be intended as an interactive language game where the follower only executes the
actions required to complete the task. In ALFRED, every task is very complex, as it is
composed of very long action sequences (average trajectory length is 40) compared to other
navigation tasks (average trajectory length is around 6). Each trajectory can be divided
into a sequence of sub-goals required to achieve the final goal. Manipulating sub-goals
might involve irreversible actions (e.g., slicing an apple). It is therefore essential for the
agent to learn that specific actions should not be executed on specific objects. Another
set of interactive tasks is presented in the SILG (Zhong et al., 2021) where they integrate
under the same framework grid-like worlds such as NetHack (Küttler, Nardelli, Miller,
Raileanu, Selvatici, Grefenstette, & Rocktäschel, 2020) as well as 3D simulated environ-
ment like Touchdown (Chen et al., 2019). They all share the same symbolic representation
of the scene that incredibly simplifies the visual scene that an agent is supposed to receive
in input. For example, the Touchdown environment (Chen et al., 2019) scenes have been
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converted to symbols by segmenting its panoramas into semantic grids indicating pixels that
belong to specific classes (e.g., sky, bicycle, etc.). This makes the visual grounding problem
even harder considering that the model is not able to learn from a variety of signals coming
from real-world scenes. ALFWorld (Shridhar et al., 2021) is another embodied AI dataset
that benefits from language feedback and annotations that are automatically generated us-
ing the same game engine used for text adventure games. In this work, they stress the
importance of teaching AI agents to “imagine” the sequence of instructions that can be
executed to achieve a goal, and decouple this from the actual plan execution which depends
on the underlying environment. Thanks to this new environment, they demonstrate that
the agent can more efficiently learn language commands in text-world environments, and
reliably generalise to unseen environments.

Figure 15: An example of a task to be solved in the TEACh challenge (Padmakumar et al.,
2021). The Commander has to support the Follower in completing the task. The Follower
is the only agent that can actually execute actions in the environment. Figure adapted from
(Padmakumar et al., 2021).

In the ALFRED benchmark, it is assumed that the agent has perfect vision and is
always able to find all the objects required to complete the task. Unfortunately, this is not
realistic and the current setup does not allow the agent to resolve ambiguities or possible
misunderstandings because there is not a real interaction between the agents. In this sense,
promoting a symbiotic relationship (Rosenthal, Biswas, & Veloso, 2010) between the user
and the agent, where both humans and artificial agents can solve tasks and mitigate each
other’s limitations is essential for language learning. Natural language offers the user a
medium to flexibly express their desired outcomes and provide guidance to avoid task failure;
but as we also often provide underspecified, ambiguous, or even incorrect instructions, the
agent is challenged to understand known aspects of their environment and pose informative
questions when uncertain, in order to minimise the risk of failure. To promote action
coordination and object ambiguity resolution, (Gao et al., 2022) created Dialfred, a set
of 53K question/answer pairs that can be used to resolve ambiguities in the ALFRED
environment. To the idea of collaboration between agents even further, (Padmakumar
et al., 2021) propose the TEACh challenge, a two-player game situated in the AI2Thor
environment. Inspired by ALFRED, there are multiple tasks of different complexity to be
solved. As shown in Figure 15, there are two players with different roles: Follower and
Commander. The Follower executes the instructions provided by the Commander while the
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Commander knows the task to be solved and provides assistance to the Follower without
actually executing any actions. The ultimate challenge of this dataset is to train an agent
that can support a human in completing daily tasks. Finally, to advance the state-of-the-art
in Embodied Conversational AI, (Gao et al., 2023) proposed the Alexa Arena, a novel
multi-room simulated environment that was used as the main benchmark for the Amazon
Simbot challenge, a university competition to advance the state-of-the-art in Embodied
Conversational AI (Shi, Ball, Thattai, Zhang, Hu, Gao, Shakiah, Gao, Padmakumar, Yang,
et al., 2023).

4. Grounded Language Learning Models

In this section, we will provide a critical survey and analysis of ML models that have
been proposed to tackle some of the grounded language learning tasks reviewed in the
previous sections. The search of the studies was focused on the topic of grounded language
learning and was limited to the time period 2015-2022. We used Scopus 1 to complete the
search, considering only published works in relevant Machine Learning or Natural Language
Processing conferences. From the original search completed in 2019 we selected a total of
32 papers. Such papers were then extended with additional references published in major
conferences in the field such as ACL, EMNLP, etc. Overall, we analysed a total of 50 studies
according to specific criteria. These criteria have been selected because we consider them
essential for artificial agents able to support the visually grounded interactive language
games that we described in this work. The selected criteria are reported as follows:

• Compositionality : is the representation of a complex entity the result of the combina-
tion of simpler ones learned by the model?

• Dialogue: is the model able to support a conversation in natural language with another
agent?

• Architecture: is the proposed approach designed as an end-to-end neural architecture
or as a modular architecture?

• Visual representation: which kind of visual representation is used?

• Reasoning : does the model support any kind of reasoning mechanism able to leverage
the learned representations?

• Concept representation: which kind of representations are learned and used by the
system?

• Few-shot learning : Is the model able to solve a task by having access to a few learning
examples?

• Real-world vision: is the model exposed to real-world images?

• Natural Language: is the model exposed to Natural Language (i.e., English content
generated by real users)?

1. https://www.scopus.com/
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A summary of the comparison is reported in Table 2. A more detailed explanation of the
work is reported in the following section.

From the completed literature review it emerged that in studying grounded language
learning, often one of the two modalities (i.e., vision and language) is lacking or is not
considered at all. Indeed, several of the analysed papers either use real-world vision or
synthetic images while focusing on more complex language structures. Bridging this gap
is really important in order to understand how well current neural models are able to
handle complex visual scenes, as well as interesting Natural Language phenomena available
in human language annotations. Running experiments in the real world would be ideal
to simulate such complex visual scenes—although this is not always practical. One way
to cope with this limitation is by designing rich 3D environments that expose models to
photo-realistic visual scenes. Instead, when analysing the language dimension, another
simplification is that the tasks typically involve discriminative or generative tasks involving
a single interaction. Only very few approaches consider interactive tasks where the dialogue
history is actually relevant for the task at hand (Agarwal et al., 2020). In some cases,
the developed models are actually able to learn a dialogue strategy to complete the task
whereas others assume that the dialogue is somehow scripted in advance via a hand-crafted
procedure.

4.1 Learned Multi-modal Representations

We are interested in understanding the type of learned representations these systems are
learning, and the way they are using them for specific grounded language learning tasks.

4.1.1 Visual Representations

A few approaches rely on low-level sensory features modelling RGB colour channels or shape
information(Antunes et al., 2017; Patki & Howard, 2018). Based on the assumption that
an image can be expressed as a bag of visual words (Csurka, Dance, Fan, Willamowski, &
Bray, 2004; Grauman & Darrell, 2005; Sivic, Russell, Efros, Zisserman, & Freeman, 2005),
several works (e.g., (Thomason et al., 2019b; Yu, Eshghi, & Lemon, 2017a)) use a set of
visual classifiers that are manually mapped to specific classes that represent visual concepts.
Due to the expressivity of deep neural networks, a common practice is to use latent features
learned by a Convolutional Neural Network (CNN) trained on a large-scale image dataset
(e.g., ImageNet (Deng et al., 2009)). Specifically, the features belonging to the last layer of
a CNN, have been widely adopted due to their ability to be re-used for other tasks other
than image classification. With such features, it is possible to represent an entire scene with
a single distributed representation. However, as demonstrated in the VisDial challenge, us-
ing an object detector to predict object bounding boxes (e.g., FastRCNN (Anderson, He,
Buehler, Teney, Johnson, Gould, & Zhang, 2018a)) really improves performance. Having
such object-centric representations allows the agent to learn the task by reasoning over ob-
jects and their relationships which are potentially invariant across scenes. In this setup, the
model receives in input a high-dimensional feature vector for every detected object (Region
Of Interest (ROI) vector). Additionally, to provide the model with positional information
about the objects, bounding box coordinates are encoded as additional features. To incor-
porate class information associated with each object, either class labels are encoded (Tan &
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Bansal, 2019a) or a probability distribution over the object detector label set (Zhou et al.,
2020). This provides the model with more fine-grained information associated with the
scene as well as a better representation of the objects in it. This approach was used by
several recent models (e.g., (Xie et al., 2018; Lu et al., 2018; Yi et al., 2018; Tan & Bansal,
2019a; Zhou et al., 2020)). However, extracting features from an object detector is a very
time-consuming operation and limits the ability of the model to encode specific objects that
are not part of the object detector training set. Therefore, some approaches revisited grid
features generated by a CNN to improve the efficiency of multi-modal models (e.g., (Jiang,
Misra, Rohrbach, Learned-Miller, & Chen, 2020; Kim, Son, & Kim, 2021)).

4.1.2 Language representations

Language representations, on the other hand, are typically trained separately, either using
the reference task dataset or by pretraining using self-supervised techniques. Such repre-
sentations are either in the form of word embeddings (e.g., (Mikolov, Yih, & Zweig, 2013;
Pennington, Socher, & Manning, 2014)) or contextual embeddings (e.g., (Devlin, Chang,
Lee, & Toutanova, 2018)). The latter have had tremendous success in both Natural Lan-
guage Understanding, and Natural Language Generation tasks (e.g., GPT-3 (Brown, Mann,
Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, et al., 2020)).

4.1.3 Vision+Language representations

Once we have a representation for each modality, how do we derive a multimodal representa-
tion? A multimodal representation is a representation of data that is obtained by combining
multiple sources of input such as visual, perceptual or symbolic information (Baltrušaitis,
Ahuja, & Morency, 2018). Representing multiple modalities poses many difficulties regard-
ing the way we combine heterogeneous sources and how to deal with noise in them (i.e. when
they are just noisy or completely missing). Therefore, designing mechanisms to meaning-
fully represent such data becomes a crucial problem in multimodal representation learning.
In recent work by (Baltrušaitis et al., 2018), several multimodal fusion mechanisms have
been reviewed:

• early: the model learns multi-modal representations as part of the learning objec-
tive by jointly minimising a loss function that optimises a posterior involving both
modalities;

• middle: the model uses independent training data and objectives for specific modal-
ities. A parameterised similarity function can be used to learn the relationships be-
tween features in multi-modal spaces;

• late: it is the converse of the previous approach because it first computes the similarity
scores between the representations and then it aggregates them together.

As highlighted by (Kiela, 2017), a combination between early and middle fusion can be
considered plausible from a cognitive perspective because “it allows for learning unimodal
representations independently but which also allows for combining said representations into
an overall multimodal one that takes all modalities into account, possibly in varying de-
grees”.
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Figure 16: An overview of the VLP architecture presented by (Zhou et al., 2020). It uses
a single Transformer stack to encode both visual tokens and textual tokens. Then, it is
pretrained on Conceptual Captions using both masked language modelling and sequence-
to-sequence loss. Figure adapted from (Zhou et al., 2020).

For instance, early fusion models have been relatively successful in multimodal tasks
thanks to the development of large-scale unimodal encoders. Concatenating, averaging or
summing unimodal representations are some of the methods used to generate multimodal
representations (e.g., (Shekhar et al., 2019; Das et al., 2018)). More powerful multimodal
architectures have been proposed that use specific co-attention mechanisms (e.g., (Deng
et al., 2018; Yu et al., 2018a; Lu et al., 2018)). More recently, Transformers have been used
to learn multimodal representations by combining modality-specific inputs via self- and
cross-attention. Such models are indeed closer to the early/middle fusion models identified
by (Kiela, 2017).

Transformer-based models have been particularly successful in most of the grounded
language learning tasks that we reviewed. Following (Bugliarello, Cotterell, Okazaki, & El-
liott, 2021), we can define two different types of multimodal architectures: 1) single-stream
Transformers; and 2) dual-stream Transformers. Single-stream Transformers assume that
there is a single Transformer stack that receives in input both visual and textual inputs.
Dual-stream Transformers instead assume that each modality is encoded by a modality-
specific encoder whose outputs are fused by using a dedicated cross-modal encoder. This
distinction was similarly described by (Baltrušaitis et al., 2018) as joint encoder represen-
tations and coordinated encoder representations, respectively. However, (Bugliarello et al.,
2021) demonstrates dual-stream attention functions act as restricted versions of the atten-
tion function in any single stream Transformer architecture. So dual-stream architectures
have an inductive bias that favours interactions between modalities.

Single-stream Multimodal Transformers One of the first single-stream multimodal
models, together with many others (e.g., (Chen, Li, Yu, Kholy, Ahmed, Gan, Cheng, &
Liu, 2020; Li, Yatskar, Yin, Hsieh, & Chang, 2019; Li, Yin, Li, Hu, Zhang, Zhang, Wang,
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Hu, Dong, Wei, Choi, & Gao, 2020)), is VLP (Zhou et al., 2020). Its architecture is de-
picted in Figure 16. First of all, the architecture mimics the one used by BERT (Devlin
et al., 2019a). Following BERT, it represents the language input as Wordpieces (Schus-
ter & Nakajima, 2012). It introduces visual tokens which are derived from object-centric
representations generated by FastRCNN. Such visual tokens are then projected to a dimen-
sionality comparable to textual tokens. In this way, they can be passed in input to the
stack of Transformer layers to generate multimodal representations of the input. Following
the success of self-supervised learning for text-based Transformers, VLP is initialised with a
pretrained BERT and then is pretrained using several multimodal losses on the Conceptual
Captions dataset (Sharma, Ding, Goodman, & Soricut, 2018). In order to support both
discriminative and generative tasks, VLP is trained with both masked language modelling
loss as well as with a sequence-to-sequence loss (they are randomly alternated during train-
ing). In this way, it is one of the few models that can be used for both VQA and image
captioning. Other models have also proposed additional self-supervised losses for the visual
modality as well. For instance, UNITER (Chen et al., 2020) uses masked region mod-
elling which consists in reconstructing the original visual tokens or predicting their class.
By learning to predict missing objects, the model learns to model the visual context in
a better way which can enhance language understanding. Another model that belongs to
this family is FLAVA (Singh, Hu, Goswami, Couairon, Galuba, Rohrbach, & Kiela, 2022),
which takes advantage of the advancements in Vision Transformers (Dosovitskiy, Beyer,
Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, et al.,
2020) to learn representations of the image directly from pixels without any object detector
features. Both language and visual features are then fed into modality-specific Transform-
ers that derive representations for each modality. Then, a single cross-modal Transformer
derives multimodal representations. The main novelty of FLAVA is represented by its abil-
ity to perform both multimodal and unimodal tasks. In particular, it is pretrained with
both multimodal and unimodal datasets so that it can simulate scenarios where only some
modalities are available. Additionally, it can leverage the additional signal that is derived
from both unimodal and multimodal task-specific losses.

Dual-stream Multimodal Transformers In contrast with single-stream multimodal
Transformers, many dual-stream transformers have been proposed in the literature. As
highlighted before, these models have two dedicated modality-specific encoders that are
used to encode language and vision separately. An additional cross-modal Transformer
block is then used to “fuse” the hidden representations generated for the two modalities.
One instance of these models is LXMERT (Tan & Bansal, 2019b) which has a “Object-
relationship Encoder”, a dedicated Transformer block that encodes object representations
derived from a pretrained object detector, and a “Language encoder” implemented as a
Transformer block that encodes language tokens. Additionally, a “Cross-modality Encoder”,
implemented as another Transformer block, is used to fuse the two modalities and favours
the development of cross-modal representations that are used for the downstream tasks.
This process is performed in a symmetric way. First, language representations are used
as queries in the self-attention operations against the vision token representations. Then,
vision token representations are used as queries in the multi-head self-attention operation.
Concurrently, ViLBERT (Lu, Batra, Parikh, & Lee, 2019) defined an alternative way of
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Figure 17: The co-attention layer implemented in ViLBERT to fuse vision and language
representations. The co-attention layer relies on multi-head self-attention, and is applied in
parallel to both vision and language representations to derive multimodal representations.
Figure adapted from (Lu et al., 2019).

using cross-attention to “fuse” the vision and language modalities. This is implemented as
a two-step approach where, after using modality-specific encoders to generate latent repre-
sentations for language and vision respectively, the model uses a ‘co-attention‘ transformer
layer (showed in Figure 17) for a target modality that performs multi-head self-attention
using as queries the representations from the target modality, and as keys and values the
representations associated with the other modality.

4.2 Compositionality

Natural Languages are characterised by immense productivity meaning that they can gener-
ate an infinite number of expressions. According to linguists, this is possible thanks to the
property of compositionality. Of specific interest is semantic compositionality, the principle
whereby the meaning of a linguistic expression is a function of the meaning of its compo-
nents and the rules used to combine them (Frege, 1892; Montague, 1970). In this paper,
we intend a broader definition of compositionality that is related to the ability to combine
simpler features to obtain novel objects/entities. This broader definition can be extended
to compositionality in vision where an object can be seen in terms of its attributes (i.e., cat
= has fur, has eyes, has 4 legs, etc.). When studying the generalisation power of artificial
agents, it is fundamental to consider compositionality because it can be conjectured to be a
landmark not only of language but of human thought in general (Fodor & Pylyshyn, 1988;
Lake, Ullman, Tenenbaum, & Gershman, 2017). Following (Harnad, 1990), this broader
definition of compositionality is the key ingredient of learning grounded representations. As
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demonstrated in the GROLLA evaluation framework (Suglia, Konstas, Vanzo, Bastianelli,
Elliott, Frank, & Lemon, 2020), learning grounded representations should result in high per-
formance for in-domain examples as well as generalisation to examples never seen during
training.

Several papers take into account only some aspects of compositionality which are not
fully integrated into the learned representation nor in the model reasoning mechanism. The
work presented by (Choi et al., 2018) studies how, in a referential game, two agents evolve
their linguistic skills to generate a compositional language. In particular, they develop a
two-player image description game: the speaker and hearer receive two random images.
The speaker needs to generate a sequence of characters to describe the image that they
see. The hearer looks at its image and needs to decide if they are looking at the same
image or not. They base their model on the Obverter model (Batali, 1998). The obverter
technique motivates an agent to search over messages and generate the ones that maximise
their own understanding. They study the properties of the language that evolved from the
communication game. Additionally, they complete a zero-shot evaluation by holding out
five objects from the dataset during the training and observing how agents describe them
during the test phase. Discriminative features in this case are just colour and shape (with a
strong bias towards the colour) so the task cannot tell to what extent these networks are able
to compose the learned representations. (Mordatch & Abbeel, 2018) study the properties
of the evolved communication protocol in a population of agents that can interact with
each other via either verbal or non-verbal communication (i.e., pointing or guiding). The
environment contains a fixed number of agents and landmarks. Every agent can either
execute an action (i.e., go to location, look at location and do nothing) or utter a symbol.
Every agent has a goal that is not revealed to the other agents requiring communication
skills in order to be successful.

Differently from these models that try to analyse to what extent neural networks are
able to learn grounded compositional language, the work presented by (Thomason et al.,
2019b; Kottur et al., 2019; Yi et al., 2018) includes logical form as a structural bias in
their models. (Thomason et al., 2019b) uses a semantic parser—separately trained from
the agent—to derive semantic representations of the language in the form of predicative
structures.

Powerful generalisation capabilities can be obtained when compositional representations
are directly integrated in the model. For instance, (Yi et al., 2018) presents a model that
learns to answer questions about images by “executing” a sequence of predefined functional
programs. First, it learns to generate a rich scene graph for the reference image and, as
a second step, generates a functional program for the given question that, once executed
against the scene graph, returns the answer. (Kottur et al., 2019) uses CorefNMN (Kottur,
Moura, Parikh, Batra, & Rohrbach, 2018) for the CLEVR-dialog task with an approach
similar to (Yi et al., 2018). CorefNMN is a neural model equipped with a program decoder
that generates functional programs given the dialogue history and the current question.
Then, it derives the answer by executing the extracted functional programs. A specific
program “Refer” can be used by the model to have access to a pool of previously mentioned
entities in order to complete visual coreference resolution over the turns of the dialogue.
Integrating these functional programs in the model guarantees a high level of generalisation
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Figure 18: The Neural compositional module developed by (Bogin et al., 2021b). It uses
a CKY-like algorithm to derive, in a bottom-up fashion, a compositional representation of
the question that is then used, via its denotation, to generate the answer. Figure adapted
from (Bogin et al., 2021b).

because the model does not focus on learning spurious correlations between the dataset but
it learns to effectively use the provided “modules” to complete the task.

Relying on ad-hoc symbolic representations to facilitate the generation of compositional
representations was proposed first by (Socher, Lin, Ng, & Manning, 2011) and then revisited
by (Bogin et al., 2021b). As shown in Figure 18, (Bogin et al., 2021b) use a CKY-based
algorithm (Kasami, 1966; Younger, 1967) that starts by grounding the single word embed-
dings associated to the words in the question. After this step, in a bottom-up fashion,
compositional representations are induced from sub-span latent representations. They use
a weighted sum of sub-span representations to make the computation differentiable. Each
sub-span weight is derived as an attention score that represents how suitable that span
is for a given context. Similar in spirit, a denotation for each span is used to derive the
meaning of the sub-expression, and ultimately to derive the answer. Following the work by
(Andreas, Rohrbach, Darrell, & Klein, 2016), they have several hand-crafted modules for
executing operations on the object set that the model learns to execute. This model seems
to do very well on the synthetic dataset CLEVR (Johnson et al., 2017) but, when tested on
questions written by humans, it generalises marginally better than a fully neural counter-
part (e.g., MAC (Hudson & Manning, 2018)). This might be because some operators (e.g.,
computing the maximum value in a set) cannot be obtained by composing elements in the
question, but instead, require higher-order reasoning. The other problem is that more so-
phisticated grounding is required in some cases. Their model only grounds specific phrases
to objects. However, in some cases, more fine-grained properties or numbers have to be
grounded which is something that the model doesn’t support. The same ground-compose

204



Visually Grounded Language Learning: a Review

approach was implemented in the work presented by (Zhang et al., 2021). They apply
a syntactic parser on a caption to generate a symbolic representation that will guide the
composition of grounded elements. First, specific noun phrases are grounded via dedicated
modules to obtain a visually-grounded representation. Then, the symbolic representation
is used to combine such grounded representations together.

All of the analysed papers rely on distributed representations for the words that com-
pletely ignore the extralinguistic information associated to a concept and only capture
information about the use of the word in context (Westera & Boleda, 2019). In fact, these
models do not have a representation for the concept of cat that defines a cat as an animal
with 4 legs, a nose, and coloured fur, etc. Even multi-modal models can partially incorpo-
rate in their latent representation information related to the colour and to specific shapes
that can be associated with specific concepts. However, these models do not seem to be
able to take into account more complex attributes that people learn about concepts. In
this sense, a compositional representation of cat should be derived by integrating specific
sensory-motor properties (e.g., visual, auditory, etc.) as well as situational properties (e.g.,
affordances) that uniquely characterise a cat. Additionally, because such learned represen-
tations are typically encoded in a single vector representation, it is harder to understand
what the relevant factors of variations are, and how they have been combined together.
For instance, (Gardenfors, 2014) in its Conceptual Spaces theory defines an object category
as composed of domains, a set of convex regions in such domains, and information about
mereonomic (part-whole) relations as well as relations between dimensions across different
domains. It is very possible that distributed representations derived from CNNs are able, for
example, to extract information about object colours, which resemble one possible domain
identified in (Gardenfors, 2014)’s theory. However, it is not clear to what extent distributed
representations are expressed in terms of relational information. Such relational knowledge
can be intended as the essence of compositionality because it would allow representations
to be derived by composing simpler ones together.

4.2.1 Assessing Compositionality

Despite neural networks’ impressive performance on several benchmarks, many researchers
have advocated that their representations and reasoning mechanisms are still very brittle
(Marcus, 2018). As stated in (Linzen, 2020), current Deep Learning models are evaluated
using a protocol that does not assess their ability to generalise to out-of-distribution data.
This is a capability akin to systematic generalisation, and is therefore a core property of com-
positionality. Previous work on visual question answering (VQA) measures generalisation
to novel question-answer pairs generated for natural (Agrawal et al., 2017; Whitehead, Wu,
Ji, Feris, & Saenko, 2021), or synthetic images (Bahdanau, Murty, Noukhovitch, Nguyen,
de Vries, & Courville, 2018b; Johnson et al., 2017). Similarly, (Suglia et al., 2020), proposes
an evaluation framework that augments a goal-oriented evaluation metric with two auxil-
iary tasks aimed at assessing systematic generalisation. Prior work has examined systematic
generalisation for image captioning (Atzmon, Berant, Kezami, Globerson, & Chechik, 2016;
Nikolaus, Abdou, Lamm, Aralikatte, & Elliott, 2019; Bugliarello & Elliott, 2021). (Ruis
et al., 2020) examines compositionality in the context of language-guided action execution
in grid world environments extending the framework developed by (Lake, 2019).
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Systematic generalisation is not the only property that a compositional system can
demonstrate. For instance, (Pantazopoulos, Suglia, & Eshghi, 2022) extends the multi-
faceted compositional evaluation framework presented by (Hupkes, Dankers, Mul, & Bruni,
2020) to image captioning. According to their definition, an image captioning model can be
considered compositional if possesses 3 different properties: (1) systematicity : the ability
to generalise to unseen combinations of concepts learned in isolation during training; (2)
productivity : the capacity to extend predictions beyond the training observations; and (3)
substitutivity : the robustness of predictions under synonym substitution.

By analysing a model under the above-mentioned compositional frameworks, we can
assess its ability to be robust to unseen examples. Therefore, concepts such as composition-
ality and robustness, are connected to the concept of visual grounding. In the context of
visual question answering, there have been several other works that have tested the robust-
ness of V+L models. For instance, (Hudson & Manning, 2019) proposes a VQA benchmark
that augments the VQA accuracy with robustness measures such as plausibility, validity,
and consistency. The work presented in (Thrush et al., 2022) assesses the ability of the
model to discriminate correct (image, caption) pairs from foil ones that are obtained by
rearranging nouns and adjectives. CrossVQA (Akula, Changpinyo, Gong, Sharma, Zhu,
& Soricut, 2021) presents a collection of test splits for assessing VQA generalisation in a
variety of visual domains spanning from photographs (e.g., VQA v2) to real-world images
taken by visually impaired users (e.g., VizWiz (Gurari, Li, Stangl, Guo, Lin, Grauman,
Luo, & Bigham, 2018)).

4.3 The importance of Dialogue for Language Learning

We argue that Interactive Grounded Language Learning is a plausible paradigm for training
embodied agents to understand and use Natural Language. However, few of the papers that
we analysed try to solve a task involving a multi-turn conversation between two agents. Ad-
ditionally, the analysed papers can be further categorised based on the degree of interaction
that they implement.

4.3.1 Scripted Dialogue Policy

Dialogue can be scripted such as in the work by (Patki & Howard, 2018) and (Antunes et al.,
2017). In this case, the dialogue policy follows a predefined script that allows the model to
complete the reference task. A modification of this setup involves having dedicated dialogue
managers to learn when to learn (Yu et al., 2017a; Thomason et al., 2019b). Specifically,
the dialogue policy relies on specific intents to detect when the model should update its
internal representation as a result of an error in classification.

4.3.2 Learned Dialogue Policy

A more relevant setup for this work is one where the agent is supposed to learn when and
what to generate directly from the data. For instance, (Agarwal et al., 2019) propose a
collaborative game where two bots are present. One of them – A-bot – receives an image
and a caption. The other – the Q-bot – receives only the caption. Given the caption, it has
to generate the image after asking the other bot some questions about it. In this way, it
can create a representation that is suitable for retrieving, ranking or generating that image.
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In this way, no human supervision is required and a reward can be defined in terms of how
close to the target the generated representation is (based on Euclidean distance). To tackle
the GuessWhat?! dataset (see Section 3.3), (De Vries et al., 2017) propose to train separate
models for the 3 different tasks that need to be solved namely question generation, target
object guessing and answer generation. (Shekhar et al., 2019) propose an end-to-end neural
model that uses a multi-task learning approach to jointly train the question generation
and the guesser module. However, their model treats the image as a single feature vector
generated by a pretrained CNN ignoring more fine-grained information present in real-world
scenes.

An approach that tries to more directly integrate the image features in the process of
discovering the target object was presented in (Deng et al., 2018). They propose a model
that implements an iterative attention process that tries to co-ground the query feature to
object-centric features associated with the image. However, they take into account only
the guessing problem reducing its applicability to the full set of tasks that has to be solved
in GuessWhat?!. A similar setup is also described in visual dialogue (e.g., (Kottur et al.,
2019; Das, Kottur, Gupta, Singh, Yadav, Moura, Parikh, & Batra, 2017b)). For instance,
CLEVR-Dialog (Kottur et al., 2019) has been defined to study visual coreference resolution
in a multi-turn dialogue involving two agents. However, their main interest is to define
models that are able to correctly track the state of the conversation rather than actually
generating the questions/answers.

4.3.3 Multi-turn Interaction

Another important element is the relevance of multi-turn interaction and what is the gran-
ularity of the learning task. Specifically, some papers consider only single-turn interactions
while others assume that the interaction can last up to N steps.

Papers studying Natural Language evolution (e.g., (Lazaridou et al., 2020, 2016; Choi
et al., 2018; Havrylov & Titov, 2017)) can be considered as instances of a simplified dialogue
namely a signalling game (Lewis, 1969). Here, they limit the interaction to single-turn
exchanges where an agent (Speaker) generates a message and the other (Hearer) has to
select the target image among a set of distractors. For instance, (Lazaridou et al., 2018)
studies the communication protocol developed by agents equipped with different types of
visual encoders. In these studies, they are interested in the type of language developed by
the agents as a result of the task completion objective.

For instance, a system that tries to learn word meanings in an interactive fashion was
presented by (Zhang et al., 2018). They present a synthetic task where an agent needs to
learn the mapping between an image of an object, and a phrase, as shown in Figure 19. The
images depict small-sized animals. They trained the model in a one-shot learning regime
where the model learns to classify a test instance by relying on a single training instance of
that class. To implement their model, they rely on a multimodal variant of the Neural Turing
Machine read-write memory mechanism (Graves, Wayne, & Danihelka, 2014). Specifically,
it learns to associate a specific word (e.g., “cat”) with a corresponding visual representation
(e.g., “cat image”). In this paper, the dialogue involves learning multiple object categories
at the same time. A single turn is required to learn the association between an image
and a given category. Furthermore, the language used was synthetically generated by a
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grammar and therefore lacks the diversity of Natural Language. Despite these limitations,
they tackle an important problem in the Machine Learning community namely Few-shot
Learning (Wang & Yao, 2019): the agent needs to learn to maximise the performance P for
a task T using a limited amount of experience E about it. In addition, they use a training
strategy for their agent that combines both Imitation Learning and Reinforcement Learning.
In particular, they assume that early in the training the agent is incapable of generating
meaningful responses so it imitates what the teacher says. Later on in the training, it
starts generating more interesting responses so they use Reinforcement Learning to provide
a more precise signal about the quality of the generated response. This will give the agent
the chance to learn to “babble” and to correctly solve the conversational game.

Figure 19: Model presented by (Zhang et al., 2018). The Speaker learns to mimic the
Teacher by generating a statement associated with the images available. The Speaker has
to learn animal concepts (and fruits) in a one-shot learning regime. After a single example
of the class is shown to the Speaker by the Teacher, they are asked to classify an image
associated with the same concept.

A model able to support a conversation composed of multiple turns can automatically
generate extra training data from a very small bootstrap set. For instance, the work pre-
sented by (Misra et al., 2018b) describes a learning by asking paradigm where the model
improves its VQA accuracy by learning to ask relevant questions about a given image. In
this way, the model is able to retrieve data points that go beyond the training set and
therefore learn better representations for the downstream task.

Depending on the task, it is debatable whether dialogue history plays an important role
in the decision-making strategy of the learning agent. Particularly, tasks requiring single-
turn interaction do not model the history in the first place. Additionally, even tasks based on
multi-turn interaction do not necessarily require dialogue history. For instance, VisDial (Das
et al., 2017b) is designed as a dialogue task but the questions that the humans develop can
be answered by simply looking at the image. (Agarwal et al., 2020) show that models having
sophisticated history encoding mechanisms bring very marginal improvements due to the
fact that only a portion of the data actually requires the dialogue context. Therefore,
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special attention should be paid to the task design to make sure that dialogue history
actually matters.

4.4 Embodiment & Grounding

In the analysed papers a common trend emerges. In most of the studies, the reference for
grounding is an image that represents the context of a situated interaction. As discussed in
the previous section about action execution tasks (see Section 3.3), 3D simulators and virtual
environments have been used to study the problem of grounding in visually rich contexts.
(Yu et al., 2018a) propose Guided Feature Transformation which is a grounded language
model extending classical CNN with an end-to-end differentiable component able to model
the interactions between language and vision. They compute a recursive relationship where
the input representation generated by the CNN is refined after J steps according to the
words in the input command. They design several navigation tasks, as shown in Figure 20,
in a 2D/3D environment: 1) nav : navigate to a specific object; 2) nav nr : navigate to an
object near the specified one; 3) nav bw : navigate to a location between two objects; 4)
nav avoid : navigate to any object but the specified one; and 5) nav dir : navigate to an
object specified by a relative direction w.r.t. another object.

Figure 20: Examples of navigation tasks solved in the work presented by (Yu et al., 2018a).

(Chevalier-Boisvert et al., 2018) propose a first model for the BabyAI environment.
They use a GRU module to model the language instruction and a FiLM (Perez, Strub,
De Vries, Dumoulin, & Courville, 2018) for the vision module which learns to condition the
visual representation on the question representation. The agent accuracy on these tasks
seems to be very high (nearly 100%) posing some doubts related to the complexity of the
world and of the language expressions used. Instead, (Bahdanau et al., 2018a) describes a
learning framework for instruction-conditional RL agents having to execute instructions in a
grid world. In their RL setup, the agent learns from a reward that is derived from a reward
model trained from expert demonstrations. The proposed model is able to learn a reward
model that performs well from a limited amount of data. Specifically, with a training set of
only 8000 examples, the agent could reach a performance of 60% that can be improved to
reach optimal performance when a set of 100,000 examples is used to train the model.

Motivated by the desire to create artificial agents that can follow instructions in domes-
tic environments, there have also been several efforts transitioning from grid-world setups to
benchmarks for language-guided navigation in indoor 3D environments with photo-realistic
images. Several models have been proposed in the literature to solve this problem. For
instance, several Transformer-based models have been designed for this task (e.g., (Majum-
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Figure 21: Architecture of the Episodic Transformer model presented by (Pashevich et al.,
2021). It jointly encodes language instruction, camera observations and previous actions
using a dedicated multimodal encoder. The hidden state representation of the last state is
then used to predict the action and the object class. Figure adapted from (Pashevich et al.,
2021).

dar, Shrivastava, Lee, Anderson, Parikh, & Batra, 2020b; Magassouba et al., 2021; Hong,
Wu, Qi, Rodriguez-Opazo, & Gould, 2020)). An important ingredient for all of these mod-
els is a careful pretraining design. Specifically, to deal with the complexity of the language
instructions, language-only pretrained weights are used (e.g., BERT (Devlin, Chang, Lee, &
Toutanova, 2019b)). Then, large-scale image-text pairs from the Web are leveraged to train
the model. Using such additional pretraining data helps finetuning the cross-modal encoder
that will be used for the downstream task evaluation in a photo-realistic environment such
as Matterport3D (Chang et al., 2017).

Several projects have tried to investigate visual question-answering capabilities in 3D
environments. For instance, the work presented by (Gordon et al., 2018) introduces the
IQA dataset that requires the agent to move in the environment in order to answer the
questions. It extends VQA in several ways: 1) navigation in the environment; 2) under-
standing of the environment (object, actions, affordances); and 3) executing actions con-
ditioned on the question. The main question types are 1) counting; 2) existence; and 3)
spatial relationships. They present Hierarchical Interactive Memory Network (HIMN), a
Deep Learning model that incorporates a hierarchy of modules: a Planner intended as the
decision-making component responsible for activating several task-specific modules. The
designed sub-modules are 1) navigator; 2) scanner; 3) detector; 4) manipulator; and 5)
answerer. HIMN is unable to differentiate between an object being inside a container or
on top of the container. From the language perspective, the questions are scripted and the
language is relatively simple, a downside whose solution is considered as future work by the
authors.

With the aim of solving the ALFRED benchmark (Shridhar et al., 2020), several models
have been proposed. The proposed solutions are very specific to the task at hand. In the
work presented by (Pashevich et al., 2021), they propose a Transformer-based architecture
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Figure 22: Overview of the FILM architecture for language-guided task completion in AL-
FRED. They developed a modular architecture composed of several pretrained components
that are connected together to solve specific tasks. The goal instruction is the only linguis-
tic information that is available. From it, an execution plan is derived where a semantic
search policy looks for the relevant objects in the scene, while a deterministic policy actually
executes the relevant actions. Figure adapted from (Min et al., 2021).

that encodes the CNN representation associated with each timestep, together with the
language embeddings as well as the previous actions (see Figure 21). In this way, they
can use the hidden state representations to generate actions conditioned on the context.
Specifically, they use the hidden state of the last trajectory timestep, to predict the action
to be executed as well as a possible object class that the agent should manipulate. The
limitation of such an approach is that their architecture is specifically designed and trained
only for ALFRED. For instance, for manipulation actions, they assume that only a single
instance of a given object class is available in the manipulation area (e.g., the counter
will contain only one “apple” so no ambiguity is present). Therefore, it is possible to
use an external object detector to detect the objects and then just select the one that
we want to manipulate based on the class predicted by the model. This forces the model
to reason only in terms of which actions can manipulate certain classes but it doesn’t
allow the model to have a good understanding of the actual objects that the agent has
in its front view because its visual representation is not fine-grained enough. A more
generic approach was proposed by (Suglia, Gao, Thomason, Thattai, & Sukhatme, 2021)
who designed a multi-modal Transformer able to model the fine-grained, and multi-modal
ALFRED trajectories represented in terms of detected objects in the visual scene. As
highlighted by (Storks, Gao, Thattai, & Tur, 2021), navigating towards the target object
is the hardest task in ALFRED because it can easily put the agent in a situation that
the agent cannot recover from. Additionally, the navigation problem is exacerbated by the
training regime used to train such models. Their policy is trained using supervised learning,
mimicking human trajectories. However, at training time, agents do not have the ability to
explore the environment to gain a better understanding of the objects and their location in
the environment which might be important to successfully solve the tasks.

Another possible solution to this problem is to avoid solving the problem in an end-to-end
fashion, and instead divide it into multiple modules. For instance, as shown in Figure 22,
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modular architectures such as FILM (Min et al., 2021) can achieve better performance
for this task. First, a dedicated module derives a semantic representation from the goal
instruction. This will represent a high-level plan that the agent will have to execute. Specific
navigation modules, paired with a map of the environment, are then used to navigate
towards target objects. Despite its effectiveness compared to concurrent approaches 2, its
utility is debatable for models that are able to learn grounded representations that are useful
for multiple tasks as well as domains. Indeed, such a model relies on specific algorithms
that are used at inference time to complete the task. At the same time, it is important
to understand that future models should have a way to derive a map of the environment
in which they are located if they want to solve increasingly complex tasks with complete
autonomy.

5. Discussion

In this section, we provide a summary of our study of the literature on visually grounded
language learning. As a result of our analysis, we derive several research questions that
will be detailed in the following subsections. To answer these questions, novel evaluation
benchmarks that are more suitable for grounded language learning as well as novel modelling
solutions will be required. This survey represents an important reference for studying how
to extend both models and related benchmarks to push the boundaries of grounded language
learning. Finally, we compare our analysis with previous surveys in the field of V+L, and
describe the importance of our categorisation to further study the field of V+L in the future.

5.1 How does this survey relate to other V+L surveys?

The main focus of this survey is to provide a systematic categorisation of several tasks
that have been explored in the V+L community. In particular, we provide a categorisation
based on 3 broad categories namely discriminative games, generative games, and interac-
tive games. This aims to provide a higher-level perspective of the different tasks that we
believe will help researchers in sharing knowledge and in generalising results that have been
produced by a specific task but that could be applied to another one as well. For instance,
(Ferraro, Mostafazadeh, Huang, Vanderwende, Devlin, Galley, & Mitchell, 2015) presents a
survey of image captioning datasets that dates back only to 2015 which can be categorised
in the generative games category of our survey. The work from (Li, Zhang, Zhang, Liu, Guo,
Ni, Zhang, & Zhang, 2022) presents a very detailed analysis of recent Transformer-based
architectures that focuses on discriminative and generative games only ignoring the impor-
tance of interactive and embodied games for grounded language learning. A recent survey
presented by (Gu et al., 2022) underlines the importance of embodiment and interactive
learning. They analyse the field of Vision+Language navigation in great detail. However,
as specified in our description of embodied interactive games, visual navigation ignores an
important part of learning which is object interaction. (Mogadala, Kalimuthu, & Klakow,
2021) presents a very broad survey of general vision and language research up to the year
2019, whereas this paper provides a more up-to-date survey and analysis focused on Inter-
active Grounded Language Learning tasks. We consider Interactive Grounded Language

2. FILM was 2nd in the ALFRED leaderboard as of 5th May 2022.
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Learning a new avenue for multimodal machine learning research. In particular, we argue
for the importance of bringing together two relevant problems such as “symbol ground-
ing” and “conversational grounding”, which we believe should be studied together to build
flexible learning agents that can smoothly adapt to different speakers and domains using
Natural Language.

Finally, we discuss the relationship between our survey and surveys which provide a
broader view of artificial agents able to learn language. For instance, (Schlangen, 2019b)
uses the notion of language games for describing Natural Language Processing tasks. This
survey identifies the task of “unrestricted situated language interaction” as “a natural supre-
mum” in NLP tasks which is akin to the interactive language games that we consider in
this work. In our survey, as first defined in (Bisk, Holtzman, Thomason, Andreas, Bengio,
Chai, Lapata, Lazaridou, May, Nisnevich, et al., 2020b), we underline the importance of
considering NLP tasks that require that the agent can “experience” the result of its actions
in the world as well as communicate and collaborate with other agents uncovering the social
role of Natural Language.

5.2 How can Language Games be used for Visually Grounded Representation
Learning?

In this survey, we have analysed several tasks as well as associated models that have been
proposed to solve them. Each of them has a specific focus of interest in modelling visual
scenes as well as language. Depending on the way the output was generated, we divided
them into three types: discriminative, generative, and interactive tasks. We argue that
interactive tasks are the most important for future work because they are closer to the
language games scenario that we have described. Among them, we consider visual guess-
ing games an important task for learning grounded representations of objects. Objects
in an environment, and their attributes, are the first step in learning grounded represen-
tations. Other interactive language games are embodied ones. Particularly, we consider
language-conditioned action execution in a 3D world as the most relevant benchmark for
learning other important elements of grounded representations, such as actions and events.
In particular, it will be important to consider new modelling techniques that facilitate the
development of agents that can negotiate and coordinate plans of actions in the world.

5.3 What Type of Representations can be Learned via Language Games?

When investigating the quality of distributed representations, it is possible to define several
desiderata for distributed representations (Bengio, Courville, & Vincent, 2013). This is an
important problem, especially for symbol grounding where we want to learn representations
that are compositions of elements that are in turn grounded in the real world (Harnad, 1990).
As previously stated, if we focus only on increasing the performance on the downstream task
which is evaluated based on a held-out test set, we might have an opaque understanding
of the real system capabilities. Most datasets and models assume this scenario where
the model is never confronted with novel object categories. Its generalisation abilities are
assessed only via novel instances of known categories. Therefore, we want to make sure
to investigate language games that are complex enough to let the agent learn grounded
representations. A representation can be considered grounded when it is a composition of
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other grounded elements. Therefore, to assess this ability of the model, we should consider
tasks involving zero-shot learning scenarios where novel categories are involved. In this
case, the only way for the agent to solve the task is to use what it has learned during
training in novel ways, therefore demonstrating its ability to systematically generalise. To
mitigate this issue, (Suglia et al., 2020) describes a novel multi-task evaluation framework
that extends the traditional evaluation framework for grounded language learning to give
value to the quality of the learned representations. Thanks to this evaluation framework,
the authors have shown several limitations of current multimodal models used for situated
visual guessing games. Therefore, it is very important that future benchmarks address this
issue by designing evaluation setups that assess the model generalisation capabilities in a
more systematic way (Linzen, 2020).

5.4 Are Learned Multimodal Representations generic enough to be
transferred to other tasks?

From the works described in Section 4, a common trend in the V+L literature is to propose
a model architecture having inductive biases that can be applied to a specific task only.
However, it is important to underline that another property of high-quality distributed
representations is their suitability for other tasks different from the one they have been
originally trained on. Concretely, this implies that language games should favour the emer-
gence of important properties of the real world that can be captured by the model. If such
knowledge is generic enough, the agent should be able to reuse it for solving other tasks
as well. For instance, (Suglia, Bisk, Konstas, Vergari, Bastianelli, Vanzo, & Lemon, 2021)
argue that visual guessing games can be developed as a generic transfer learning procedure
for grounded language learning. This stresses the idea that more general architectures able
to solve multiple tasks are required (Brown et al., 2020).

When considering the generalisation power of the developed models, it is also important
to study the ability of these multimodal models to be applied to scenarios where not all
the modalities are involved. For instance, it is still not clear whether current instances
of multimodal architectures are able to bring an improvement in text-only scenarios such
as Question Answering, Natural Language Inference, and so on. Several recent works have
tried to address this issue (e.g., Vokenization (Tan & Bansal, 2020)) but they are not generic
enough to be easily transferred to other tasks because they rely on additional components
that are not part of the same trained architecture. It is important that future work inves-
tigates truly multimodal models that can rely on multimodal modalities to create richer
semantic representations that can be reused in scenarios that are different from the one
they were originally trained on.

5.5 What Representations are useful for Action-driven and Event-driven
Language Games?

Among the grounded language learning tasks in the literature, visual guessing games rep-
resent the first step in a curriculum for learning object categories and their attributes.
However, objects are only one part of the spectrum required for understanding. As argued
in (McClelland, Hill, Rudolph, Baldridge, & Schütze, 2020), the main target of language is
the understanding of situations (Barwise & Perry, 1981). Situations are highly relational
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constructs composed of entities and relationships between them. Quoting (McClelland
et al., 2020): “To understand a situation is to construct a representation of it that captures
aspects of the participating objects, their properties, relationships and interactions, and
resulting outcomes”. This resonates with the idea that even the understanding of nouns
(i.e., entities) requires composing affordances of them (Glenberg & Kaschak, 2002). Fol-
lowing the idea of grounded cognition (Barsalou, 2008), embodied experiences of concepts
and events are required for the development of meanings. Thanks to the development of
3D environments, it is now possible to study embodied tasks and their relationship with
grounded cognition.

We have analysed several interactive tasks that study the problem of completing a task
guided by Natural Language. First, language-guided navigation was proposed as a bench-
mark for embodied AI. Equipping the agent only with navigation actions is limiting its
ability to learn grounded meanings. Therefore, several other benchmarks have been pro-
posed to study more complex task-completion tasks involving manipulating objects as well.
These environments represent an important avenue for embodied AI. Particularly, a gen-
eral embodied AI architecture should be able to encode arbitrary long action sequences and
make decisions upon them. However, simulated environments are limited by the capabilities
of the physics engine, the object repertoire and the number of scenes available. Another
interesting perspective for a learning agent is represented by videos in the third-person
view (i.e., exocentric view). Learning from such multimodal inputs can expose the learning
agents to many more situations that are useful in real-world contexts.

5.6 How does Symbol Grounding relate to Conversational Grounding?

As we highlighted in the introduction, interaction with the world and with other agents are
key ingredients for language learning. When playing language games, speakers coordinate
among themselves to refer to things in the world and achieve goals. Additionally, the ability
to engage in conversation allows agents to be more robust in situations of uncertainty. Many
recent works have indicated the importance of conversational grounding (Brennan & Clark,
1996) as foundational for the future of conversational systems. More importantly, many
recent position papers have convincingly argued the importance of connecting symbols and
conversational grounding to create truly collaborative systems (Liu, Fang, She, & Chai,
2013; Chai, Fang, Liu, & She, 2016; Schlangen, 2019a; Benotti & Blackburn, 2021; Chandu
et al., 2021). It is therefore important to define new tasks where symbol grounding and
conversational grounding together have the role of first-class citizens, and where commu-
nicating agents have divergent information which they need to coordinate (Lemon, 2022).
The need for divergence is essential because it is what motivates agents to communicate
to achieve specific goals. Additionally, this idea of divergence is related to the concept of
Theory of Mind (Astington & Baird, 2005) which is used in this context to refer to social
understanding. Following (Tomasello, 2010), social understanding interacts with language
communication in two ways depending on the type of social understanding desired. In par-
ticular, understanding the goals and perceptions of an agent will engage different language
activities than the ones demonstrated when trying to understand one’s desires and beliefs.

Studying the interplay between symbol and conversational grounding in a systematic
way will require dedicated data collection processes aimed at collecting data in realistic
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embodied environments from which it is possible to elicit both symbol and communicative
grounding phenomena that a model can learn from. These phenomena require additional
methods to model both the conversational context as well as to derive relevant signals from
the language feedback provided by other agents. It is important to consider a learning
scenario that is closer to a real-world scenario involving tasks providing an ecologically
valid scenario (De Vries et al., 2020) for studying multimodal conversational grounding.

6. Future Research Directions

In this section, we will describe potential interesting research directions that we argue are
worth exploring as a result of this literature review. These research directions are important
for the development of truly generalist agents that can perceive, reason, and act in novel
scenarios.

6.1 Perceptual Symbols

Language is a means of communication, which has evolved by transmitting symbols grounded
in perceptual experience (e.g., gestures, sounds, etc.). However, as described in Section 4,
current AI models learn a language only from symbolic representations derived from a to-
kenizer that are: 1) specific for a given language and are costly to transfer to low-resource
languages, so limiting people’s to access technology; 2) sensitive to noise (e.g., spelling mis-
takes); 3) hand-crafted because they do not represent language input in a multimodal way,
as humans do.

Thanks to recent innovations in Computer Vision, researchers have attempted to render
language data as images, and use new Deep Learning architectures for Computer Vision to
attempt this task. This solution was first proposed for Machine Translation by (Salesky,
Etter, & Post, 2021) who use a CNN architecture to derive visual representations of the
input text that was rendered as an image. From these representations, the authors were
able to translate to a target language without the need for an input tokenizer. (Rust, Lotz,
Bugliarello, Salesky, de Lhoneux, & Elliott, 2022) generalised this approach by proposing
PIXEL, the first language model pre-trained with rendered images only. This model is
pretrained using a self-supervised reconstruction loss that uses the image patches to learn
latent representations of the language. In their paper, the authors demonstrate comparable
performance with BERT on several tasks such as POS tagging and Natural Language in-
ference. Most importantly, they show superior performance for very low-resource languages
as well as languages that do not have a Latin script.

Deriving language representations from the audio signal is another recent trend that
goes under the name of textless NLP (Kharitonov, Copet, Lakhotia, Nguyen, Tomasello,
Lee, Elkahky, Hsu, Mohamed, Dupoux, et al., 2022). For instance, the work presented
in (Harwath & Glass, 2017) demonstrates how to derive word-like representation units
directly from visual and audio features. Additionally, there is a very interesting line of
work interested in learning representations from vision, language, and audio data (e.g.,
(Zellers, Lu, Lu, Yu, Zhao, Salehi, Kusupati, Hessel, Farhadi, & Choi, 2022)). However,
this approach is still constrained by the use of a tokenizer which limits applicability to
specific language scripts.
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Deriving language representations from multimodal inputs is essential to achieve more
realistic NLP systems that are more widely applicable such as Spoken Language Under-
standing systems. Second, spoken language carries many nuances (prosody, irony, anger,
etc.) and expressive vocalisations (laughter, yawning, etc) that are not captured by text.
Additionally, modelling language via the visual modality can allow the implementation of
more sophisticated agents that are able to understand the content of websites, forms, and
other media that contain multimodal content. In general, modelling language directly from
other perceptual modalities has the potential to make AI applications more natural and
expressive. To advance the state of the art in Multimodal Representation Learning, we
should aim to design perceptual symbol systems whose aim is to derive language represen-
tations from multimodal perceptual experiences in a process akin to the seminal work from
(Barsalou, 1999).

6.2 Multimodal Robustness

To date, many large-scale V+L pretrained models have been proposed, and they are typ-
ically only used for V+L tasks. However, there are very few works (e.g., (Tan & Bansal,
2020; Singh et al., 2022)) that demonstrate the ability of such models to bring a performance
gain when it comes to single-modality tasks (e.g., vision-only or language-only). Therefore,
we believe that the new generation of V+L models should be able to effectively encode the
input modalities as well as be robust to perturbations of them (i.e., cases where such are
potentially missing or are noisy). For instance, the work by (Ma, Ren, Zhao, Testuggine,
& Peng, 2022) shows how multimodal models receiving noisy or missing modalities achieve
performance that is inferior or just on par with unimodal models. Therefore, another impor-
tant ingredient for the implementation of a sound and effective perceptual symbol systems
is the ability to encode and reconstruct modalities when these are missing or noisy.

Crucially, it is important to investigate the robustness of multimodal representations in
general. Much recent literature has tackled this problem from the point of view of domain
generalisation (e.g., (Akula et al., 2021)) as well as the effect of spurious correlations and
noise (e.g., (Tu, Lalwani, Gella, & He, 2020)). This calls for a more systematic empirical
investigation of the effect of such shifts in distribution and how they affect models across
multiple tasks. For this reason, it is important to develop experimental frameworks that
diagnose what matters in learning representations for V+L tasks (e.g., (Zhu, Qi, Narayana,
Sone, Basu, Wang, Wu, Eckstein, & Wang, 2022; Akula, Gella, Al-Onaizan, Zhu, & Reddy,
2020)).

6.3 Interaction with the World and with other Agents

As we described in Section 5.6, future V+L agents need to develop the ability to interact with
the world around them. This is important because the ultimate goal is to create AI systems
that can communicate with humans in Natural Language and develop a seamless symbiotic
relationship with them. The current wave of Generative AI models has demonstrated that
having conversational skills is essential for user-facing systems such as ChatGPT (OpenAI,
2022).

In this scenario, we will assume that the agent is embodied in an environment (either
simulated or realistic) and that there are one or multiple agents in it. The agent, motivated
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by a goal g, will have to produce a sequence of actions that will achieve their goal. There
could be two types of actions that the agent can perform: physical actions and verbal actions.
Physical actions involve a change in the agent’s position or a change in the environment
around them. In both cases, the agent will be able to observe the results of their actions
and derive signals from these changes that can be used for learning purposes. Verbal actions
instead are intended as utterances that are formulated when engaging in conversations with
other agents. This is required to acquire information and resolve possible ambiguities arising
in the process of conversational grounding. Additionally, we also envision other types of
verbal actions that involve inner monologue (Vygotsky, 2012). This form of self-referential
dialogue could be very effective if intended as a form of planning that allows the agent to
foresee the outcome of certain actions, and recover from possible problems. This approach
has already been implemented in some form in text-only language models via chain of
thought (Wei, Wang, Schuurmans, Bosma, Chi, Le, & Zhou, 2022; Yao, Zhao, Yu, Du,
Shafran, Narasimhan, & Cao, 2022) as well as using text-only models for planning in 3D
simulated environments (e.g., (Huang, Xia, Xiao, Chan, Liang, Florence, Zeng, Tompson,
Mordatch, Chebotar, et al., 2022)).

7. Conclusions

In this work, we surveyed datasets and tasks proposed to study the problem of visual symbol
grounding in multimodal machine learning models. Following the language games proposed
in the Talking Heads experiments (Steels, 2015), we proposed a categorisation of these
tasks into 3 main categories: discriminative, generative, and interactive language games.
We argue that interactive games represent the most relevant class of language games to
study the problem of grounded language learning. Additionally, we studied the properties
and the skills required for solving the proposed language games. We find that language
games situated in 3D environments enabling navigation and object manipulation represent
an important step forward. In this way, artificial agents can learn object reference in the
world (i.e., required when navigating in an environment), as well as the effects of certain
actions on certain objects (i.e., observed when manipulating objects) which are essential for
the development of rich grounded meaning representations.

After categorising all the available tasks, we analysed the multimodal machine learning
models that have been proposed to solve them. We completed an analysis based on several
key characteristics that these models have. We find that in order to support interactive
language games, we need more sophisticated ways of encoding rich multimodal context, as
well as supporting conversations aimed at collecting important information for the task at
hand. In addition, we highlighted the need for multimodal models able to generate repre-
sentations that are meaningful even in scenarios where some modalities are missing (i.e.,
text-only models), or when some of the modalities are noisy. This is an essential ingredient
for developing systems that are resilient to adverse scenarios that are very common in the
real world.

As a result of this survey, we have identified several weaknesses primarily concerned
with the datasets used to train such models. The development of sophisticated 3D engines
has sparked research into embodied multimodal models able to solve tasks in simulated
environments. This represents an important direction for future work with the aim of de-
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veloping more ecologically valid studies (De Vries et al., 2020) of how grounded meanings
can be developed. Additionally, to adequately study language learning, we stressed the idea
that we require datasets that require multi-agent communication skills. These are essen-
tial to account for recovery from possible breakdown and uncertainty during task solving.
Moreover, it will facilitate agents to learn new tasks by learning from interaction (Gluck
et al., 2018).
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A., Green, S., Valdés, V., Sadik, A., et al. (2016). Deepmind lab..

Becerra-Bonache, L., Christiansen, H., & Jiménez-López, M. D. (2018). A Gold Standard to
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