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Abstract
Social dilemmas are situations of inter-dependent decision making in which individual

rationality can lead to outcomes with poor social qualities. The ubiquity of social dilem-
mas in social, biological, and computational systems has generated substantial research
across these diverse disciplines into the study of mechanisms for avoiding deficient out-
comes by promoting and maintaining mutual cooperation. Much of this research is focused
on studying how individuals faced with a dilemma can learn to cooperate by adapting their
behaviours according to their past experience. In particular, three types of learning ap-
proaches have been studied: evolutionary game-theoretic learning, reinforcement learning,
and best-response learning. This article is a comprehensive integrated survey of these learn-
ing approaches in the context of dilemma games. We formally introduce dilemma games
and their inherent challenges. We then outline the three learning approaches and, for each
approach, provide a survey of the solutions proposed for dilemma resolution. Finally, we
provide a comparative summary and discuss directions in which further research is needed.

1. Introduction

The tension between individual interests and societal welfare is a fundamental problem in
systems comprised of self-interested individuals. Such systems are riddled with social dilem-
mas (Van Lange et al., 2013) in which individually rational decisions lead to outcomes in
which everyone is worse off than with another outcome. Dilemmas are widespread: many
critical real-world problems such as multi-national conservation of natural resources, over-
fishing and overgrazing of common property, and deforestation represent social dilemmas
(Colyvan et al., 2011). Dilemmas also arise in numerous other contexts such as traffic
networks (Bonnefon et al., 2016), public health management (Bauch & Earn, 2004), organi-
zational citizenship behaviours (Fu et al., 2011), Internet congestion (Huberman & Lukose,
1997), cybersecurity analysis (Schoenherr & Thomson, 2020), and pricing algorithms (Cal-
vano et al., 2020).

The ubiquity of social dilemma problems creates the need to understand the factors that
promote cooperative behaviour (i.e., behaviour directed toward socially desirable outcomes),
and those that inhibit it, so that dilemmas can be resolved by promoting and sustaining
cooperation, thereby avoiding outcomes of poor social quality. This understanding is crucial
not only for human societies, but also for distributed AI systems – our focus in this article
is on the latter. Further, when the individuals in the system are organised as a network,
dilemma situations are also useful for understanding how cooperative and selfish behaviours
spread in networks. This knowledge is again greatly useful in the design of both human
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and artificial societies. Besides, a better understanding of dilemmas is also necessary for
addressing the issue of tacit collusion (Calvano et al., 2019) between pricing algorithms.

Given its significance and its inherent complexity, the problem of social dilemmas has
generated significant research into its resolution. This research is spread across a wide range
of scientific disciplines: computer science (Rogers et al., 2007; Han et al., 2013; Leibo et al.,
2017; Peysakhovich & Lerer, 2018b; Noordman & Vreeswijk, 2019; Zhang et al., 2022, 2022),
physical science (Szabó & Fath, 2007; Perc & Szolnoki, 2008; Droz et al., 2009; Matsuzawa
et al., 2016; Huang et al., 2018; Zhang et al., 2019; Jusup et al., 2022), biological science
(Masuda & Ohtsuki, 2009; Bitsch et al., 2018; Eimontaite et al., 2019; Mantas et al., 2022;
Fu et al., 2010; Ifti et al., 2004; Killingback et al., 2010), and social science (Rapoport &
Mowshowitz, 1966; Smale, 1980; Rubinstein, 1986; Selten & Stoecker, 1986; Raub, 1988;
Kollock, 1998; Lopez et al., 2022). A primary objective of this research is to understand
what factors drive individual behaviours toward socially desirable outcomes, and what are
the ways in which such behaviours can be established and sustained in a society. In all of the
literature on this topic, consideration is given to the repeated play of a dilemma game. The
repeated play of a game creates opportunity for the participating agents to learn and adapt
on the basis of their experience in previous episodes (Erev & Roth, 2007; Shoham et al.,
2007; Brafman & Tennenholtz, 2004, 2002; Fudenberg & Kreps, 1993). However, effective
adaptation is a challenge: it requires agents to avoid those actions that incite retaliation as
well as exploitation, and choose actions so as to shape other’s behaviours toward mutually
beneficial outcomes. It is important to address this challenge in order to build AI systems
in which the agents learn to autonomously resolve dilemmas.

The means by which an agent learns to play a game depends on the agent’s degree of
rationality (Luce & Raiffa, 1989). Variations in the degree of rationality have led to a host
of learning models which can broadly be divided into three categories: evolutionary learning
(a population-level learning analogous to evolutionary inheritance), reinforcement learning
(an individual-level trial-and-error type of behavioural learning), and best-reply learning
(an individual-level epistemic learning in which each agent anticipates the future action of
others based on their observation of past plays, and uses this information to decide what to
do). These three primary forms of learning have been combined in various ways resulting
in hybrid learning models.

In this article, we survey the literature on these three main learning-theoretic ap-
proaches1 for dilemma resolution. Learning in games is a complex phenomenon that depends
on the interplay between a multitude of factors: on the parameters of the learning model,
but also on the parameters of the dilemma game itself. Over half a century of research
has gone into understanding this phenomenon since the first investigations by Flood (1958)
into the applicability of game theoretical models to human learning in games. In this long
history, there have been numerous studies with each choosing a small subset of parameters
and focusing attention only on those parameters. These different individual choices have
often led to apparently contradictory results, prompting further investigations and resulting
in new insights. However, these insights are limited to narrow instances of the problem and
our understanding of the general dilemma resolution problem remains incomplete.

1We will, as needed, make references to relevant experimental literature concerning dilemma games
played by human subjects, but our primary focus is on the mentioned learning approaches.
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1.1 Significance of This Survey

The existing literature on learning in dilemmas is vast and spread across many diverse
disciplines. This article provides the first comprehensive and integrated survey on learning
in dilemma games by bringing the fragmented results together and makes the following
contributions:

1. Overviews the various learning methods and identifies, for each learning method, the
key parameters.

2. For each learning method, provides a taxonomized description of dilemma solutions.

3. Enlists the cooperation indices proposed for the prediction of cooperation in dilemmas,
provides an abstraction of the key aspects that underlie these indices, and gives a
comparative summary of their performances.

4. Identifies gaps in the existing research and highlights future challenges for the field.

In particular, this article addresses the following research questions:

RQ1: How has the existing literature modelled learning in dilemma games?
This question is addressed in Sections 3.1 to 3.3 for evolutionary learning, in Sections
4.1 to 4.4 for reinforcement learning, and in Sections 5.1 to 5.5 for best-reply learning.

RQ2: What mechanisms has research on learning found to enhance cooperation in dilemmas?
This question is addressed in Section 3.4 for evolutionary learning, in Section 4.5 for
reinforcement learning, and in Section 5.6 for best-reply learning.

RQ3: What indices have been proposed to predict cooperation in a dilemma in terms of the
payoff matrix for the dilemma and how do their performances compare?
This question is addressed in Section 6.

RQ4: What are the main observations that result from this survey, and what are the key
problems that are still open for future research?
This question is addressed in Section 7.

1.2 Related Surveys

The existing reviews on social dilemmas have focused on their sociological aspects (Kollock,
1998), their psychological aspects (Dawes, 1980; Van Lange et al., 2013) aspects, or their
inherent challenges (Perc et al., 2019). In contrast, we take an AI perspective (Dafoe
et al., 2021) and focus specifically on the three main learning approaches that existing
literature has found to resolve dilemmas. The review (Perc et al., 2013) is targeted only
at evolutionary learning. Dal Bó and Fréchette (2018) reviewed the experimental literature
on learning in infinitely repeated Prisoner’s Dilemma games. This is a very focused survey
pertaining specifically to experimental literature while we provide a broad survey of the
different learning approaches for dilemma resolution. (Gotts et al., 2003) reviewed the
literature on agent-based simulation of social dilemmas focusing mainly on evolutionary
approach. However, they did not consider details pertaining to the variety of different
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Col
C D

Row C R, R S, T

D T, S P, P

Table 1: General payoff matrix for a two-agent social dilemma game. The first (second)
entry in each pair is Row’s (Col’s) payoff.

learning approaches. Further, this article is over two decades old and much new research
has been published since then. There are many surveys that focused specifically on a chosen
approach for learning in multi-agent systems (for example, (Bloembergen et al., 2015; Adami
et al., 2016; Newton, 2018) on evolutionary games, (Nowak et al., 2010; Shakarian et al.,
2012; Allen & Nowak, 2014; Dı́az & Mitsche, 2021) on evolutionary games on graphs, (Szabó
& Fath, 2007; Busoniu et al., 2008; Nguyen et al., 2020; Da Silva & Costa, 2019; Hernandez-
Leal et al., 2019; Gronauer & Diepold, 2022; Matsuo et al., 2022; Khetarpal et al., 2022)
on reinforcement learning, (Hernandez-Leal et al., 2017) on reinforcement learning and
opponent modeling). These surveys focus on learning per-se rather than on their use in
dilemmas. The key challenge that arises in multi-agent learning, not necessarily involving
dilemmas, is the non-stationarity of the environment. But this challenge is compounded
when the environment is an inherently complex social dilemma. Learning mechanisms that
are effective for other environments may not solve the dilemma problem. Therefore our aim
is to survey multi-agent learning methods focusing specifically on dilemmas.

The rest of the paper is organised as follows. Section 2 introduces the structure of
social dilemma games and motivates the need for introducing learning in dilemma games.
Sections 3, 4, and 5 provide a survey of the evolutionary, reinforcement, and best-reply
learning models respectively. Section 6 is a synopsis of cooperation indices proposed for
predicting cooperation in dilemmas played by humans in laboratory conditions. Section 7
provides a summary and highlights avenues for further research.

2. Social Dilemmas

A game (Von Neumann & Morgenstern, 1947) is a system of payoffs that depend on the
combination of choices made by the players. A dilemma is a game that satisfies certain
constraints. In a typical 2× 2 dilemma, each player makes one of two choices (see Table 1):
cooperate (denoted C) or defect (D). These two choices lead to four possible outcomes,
each with an associated payoff. R (reward) and P (punishment) are the payoffs for mutual
cooperation and defection respectively, whereas S (sucker) and T (temptation) are the
payoffs for cooperation by one player and defection by the other.

A dilemma has been defined in different ways. Initially, Dawes (1974, 1975, 1980)
defined a social dilemma as a game in which

1. each player has available a dominant strategy, i.e., a strategy that is better regardless
of the opponent’s choice, and
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2. the collective choice of dominant strategies results in a Pareto deficient outcome.

As per this definition, a dilemma is a game in which a Pareto deficient outcome is the
only individually rational course of action, as in the well-known Prisoner’s Dilemma (PD)
(Chammah, 1965). Subsequently, Liebrand (1983) proposed a less restrictive definition;
he did not consider Dawe’s dominant strategy requirement as crucial for considering a
situation a dilemma. Unlike Dawes’s definition, Liebrand’s criterion does not exclude the
possibility that rational behaviour may also result in Pareto-efficient outcomes. Much of
the literature has adopted Liebrand’s definition of a dilemma, and this also what we do
in this article. For 2 × 2 games, this definition is given considering that each player has a
strict preference ordering over the four possible outcomes. The definition uses the notion of
a most-threatening strategy. A strategy is called most-threatening if a rational player Row
prefers player Col not to choose that strategy irrespective of Row’s choice. In such a case,
Col has a most-threatening strategy. It is required that, for both players, a strategy, say D,
be most-threatening. That is, each player has a choice between C and the most-threatening
strategy D. Then a dilemma is characterised by the following properties Liebrand (1983):

1. C is not a dominant strategy for any player, and

2. both players are better off if both choose C than if both choose D.

Col

C D

Row
C 3, 3 1, 4

D 4, 1 2, 2

(a) Prisoner’s Dilemma

Col

C D

Row
C 3, 3 2, 4

D 4, 2 1, 1

Col

C D

Row
C 4, 4 1, 3

D 3, 1 2, 2

(b) Chicken (c) Stag Hunt

Figure 1: Example dilemmas

For the games shown in Figure 1, alternative D is each player’s most threatening strategy.
Further, C is not a dominant strategy for any player, and both players are better off if both
choose C than if both choose D. Thus, each game shown in Figure 1 is a dilemma as per
the definition. In general, there are many games that satisfy the above listed properties.

Definition 2.1. A two-person social dilemma is any ordering of the payoffs P , R, S, and
T that satisfies the properties listed above.

Between all possible 2 × 2 symmetric games with a strict preference ordering for each
player, the dilemma properties are satisfied by only three classes of games: T > R > S > P ,
R > T > P > S, and T > R > P > S. The following are some well-known examples of
these three classes of games:

• T > R > S > P : The Chicken game (Rapoport & Chammah, 1966; Kahn, 2017) is
an example of this class. For this game, Cooperate and Chicken are synonymous, and
Defect and Tough are synonymous. This game is also known by other names such as
the Hawk-Dove game and the Snowdrift (SD) game (Sigmund, 2010).
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Col
C D

Row C b− c, b− c −c, b

D b,−c 0, 0

Table 2: Payoff matrix for a Donation Game.

• R > T ≥ P > S: The Stag Hunt game (for this game, Cooperate and Stag are
synonymous, and Defect and Hare are synonymous), also known as assurance game
or common interest game, is an example of this class (Skyrms, 2004).

• T > R > P > S: The Prisoner’s Dilemma game and the Donations game (Chammah,
1965; Sigmund, 2010; Axelrod, 1990) are some examples of this class.

These orderings create tension between individual and collective interests. The tension
is apparent when the combination of individually preferred choices result in the outcome
that both players would prefer to avoid: mutual defection. This outcome is Pareto deficient
in all social dilemmas as there is always the mutual cooperation outcome that is preferred
by everyone since R > P . The problem is that mutual cooperation is Pareto optimal, yet
may be undermined by the temptation to cheat (if T > R), or the fear of being cheated
(P > S), or both. In the Chicken game (Rapoport & Chammah, 1966), the problem is
greed but not fear. In the Stag Hunt (Belloc et al., 2019), the problem is fear but not
greed. In the Prisoner’s Dilemma (Chammah, 1965), there is both fear and greed making it
arguably the most challenging problem, which is perhaps the reason why a major share of
the literature is devoted to PDs2. To make the PD game less complicated by avoiding the
possibility of multiple forms of tacit collusion3, Chammah (1965) introduced the additional
constraint 2R > S + T .

Often, a specific form of Prisoner’s Dilemma called the donation game is studied in the
literature. In a donation game, the payoff matrix is given in terms of only two parameters:
a cost c and benefit b. In a two-player donation game, each player can either Cooperate or
Defect. A cooperator incurs a cost c in order to give a benefit of b (where b > c) to their
co-player. A defector does not incur any cost. The payoff matrix for this game (Sigmund,
2010) is as shown in Table 2.

In this article, we will focus on two-person4 dilemma games. This is because the litera-
ture on learning in two-person dilemmas is still growing and is much more than the literature

2The PD has a long history and has been much studied for the light it may shed on the evolution of
altruistic or cooperative behaviour (Axelrod, 1997; Burguillo-Rial, 2009; Salazar et al., 2011; Santos et al.,
2019, 2020; Rodriguez-Soto et al., 2020).

3Rapoport and Chammah (Chammah, 1965) note two forms of tacit collusions: the tacit agreement to
play CC in a single-shot PD game, and the alternation between CD and DC in repeated plays of the game.
The constraint 2R > S + T dictates that players prefer mutual cooperation over an equal probability of
unilateral cooperation and defection. Under this constraint, alternating between cooperation and defection
cannot be more profitable than joint cooperation, so the possibility for players to collude in repeated plays
of the game is eliminated.

4Note that although we focus on two-player interactions, we nevertheless consider pairwise interactions
between the agents that comprise a large population.
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on n-person dilemmas. One reason for the continued interest in two-person dilemmas is that
the conditions for sustaining cooperative behaviour in a game depend on the number of play-
ers playing the game, and cooperative behaviour that can be sustained in a two-person case
may break down in a large group, as illustrated by Myerson (1997) for a repeated Pris-
oner’s Dilemma game. Another reason could be that it is easier to analyze and implement
learning in two-player settings; in a two-player repeated dilemma game, it is possible for an
individual to try to shape the other’s behaviour by choosing their own actions suitably. For
example, one could reward (punish) the other’s previous choice by choosing to cooperate
(defect). But when there are multiple players, the effect of a single player’s actions may be
less discernible.

Given a dilemma game, it can be subject to classical game theoretic analysis. In classical
game theory (Von Neumann & Morgenstern, 1947), the solution to a game is given in terms
of some notion of equilibrium (such as a dominant strategy or Nash) hypothesized to result
from reasoning and introspection by the players who have common knowledge about the
rules of the game, the rationality of the players, and the players’ payoffs. What behaviour
is rational crucially depends on the number of times the game is played.

For one-shot play, dominant strategy equilibrium predicts mutual defection in the PD
game. Nash equilibrium predicts unilateral defection in the Chicken game, and either mutual
cooperation or mutual defection in the Stag Hunt game. Repeated plays of a dilemma game
give rise to multiple Nash equilibria in the super-game. When there are multiple equilibria,
there is a loss of predictive power; the question of exactly which equilibrium arises is not
addressed by classical game theory. Implicit in equilibrium notions is the assumption that
the players somehow figure out what equilibrium to play. But how can all the players expect
the same equilibrium? If expectations are not coordinated, play need not correspond to any
equilibrium at all. Although some coordination procedures have been proposed (Harsanyi
& Selten, 1988), how such a procedure becomes common knowledge is left unexplained.
Further, there is no way to know the equilibrium dynamics; how play can arrive at a certain
equilibrium, or how it might be possible to move between equilibrium points.

Another limitation of classical game theory is that there is an underlying assumption
about the players’ cognitive capabilities; players having well-defined preferences and mak-
ing rational choices consistent with those preferences. Such forward-looking calculative
rationality may not be possible for bounded rational players. There is also the common
knowledge assumption which when relaxed results in much weaker conclusions (Börgers,
1994; Dekel & Fudenberg, 1990).

Yet another concern is that game theoretic prediction does not always match with be-
haviours observed in the real-world (Henrich et al., 2001). While theory predicts defection5,
there are examples of people cooperating in dilemma situations. This concern led to the
development of new notions of game-theoretic equilibrium (Capraro et al., 2013) for cer-
tain social dilemmas and, although shown to be statistically precise at predicting human
behaviour, are still based on complete information and rationality assumptions.

The aforementioned limitations led to a shift in attention toward boundedly ratio-
nal learning models. Learning is any change in behaviour owing to experience (Bush &

5For the finitely repeated PD game with complete information, theory predicts defection at each stage,
although cooperation can be explained under incomplete information (Basu, 1977; Kreps et al., 1982; An-
dreoni & Miller, 1993).
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Mosteller, 1955). When a game is played repeatedly, it is possible for the individual players
to gain experience and thereby learn and adapt. The dynamics that arises when all the
players learn is then studied (Tuyls & Stone, 2017). Attention is focused on the long term
behaviour of the players and how this relates to various game-theoretic equilibrium concepts.
Learning models of bounded rationality can broadly be divided into two categories: those
that treat learning as a population phenomenon derived from the genetic inheritance of in-
dividual member strategies, and those that treat learning as an individual cognitive process.
Evolutionary game theory belongs to the former category, while reinforcement learning and
best-reply learning belong to the latter category. The following three subsections describe
how these three learning approaches have been utilised in the context of dilemma games.

3. Learning in Evolutionary Games

The limitations of classical game theory led to its expansion to evolutionary game theory6

(EGT). Smith and Price (Smith & Price, 1973, 1973; Smith, 1982) founded EGT on Dar-
win’s (Darwin, 1871, 1909; Wright, 1929) and Fisher’s (1930) theory of natural selection, in
an attempt to study the behaviour of large populations of agents who repeatedly engage in
strategic interactions, that is, interactions in which each agent’s outcome depends on his own
choice but also on the distribution of others’ choices. The goal was to uncover the crucial
link between micro behaviour of individuals and the aggregate behaviour of the population.
However, they did not attribute rationality to the individuals, rather they maintained that
natural selection weeded out poorly adapted individuals. They defined evolutionary dynam-
ics in terms of two fundamental mechanisms: natural selection and mutation. Since then,
attention has been focused on another dynamic model known as the replicator dynamics.
Section 3.1 is an overview of the evolutionary game model and Section 3.2 that of replicator
dynamics.

3.1 Evolutionary Learning Model: Evolutionary Games

EGT (Nowak, 2006a; Sandholm, 2010; Phelps & Wooldridge, 2013; Tanimoto, 2015) pro-
vides a fundamentally different view on strategy selection to that proposed by classical
game theory (Colman, 1982; Tuyls & Parsons, 2007). An evolutionary game is a popula-
tion game in which each individual has the means to replicate by making copies of itself.
The individuals play games against each other. Let N be the set of all individuals in the
population. No individual overtly reasons or makes explicit decisions about which strategy
to play; a strategy is simply an individual’s genetically determined behaviour.

In an evolutionary game, there is a set N of individuals. The agents in N interact in
a pairwise fashion: each agent plays a game G against its co-player. Between all strategies
that are possible for G, an individual plays a certain strategy with different individuals using
potentially many different strategies. Each interaction results in a certain payoff to each
participating individual. An individual’s fitness7 depends on how it’s strategy interacts with
the other strategies in the population and is typically measured in terms of the cumulative

6See (Weibull, 1997; Vincent & Brown, 2005) for a description of the biological foundations of the theory
and the resulting concepts from an economic perspective.

7Analogous to payoff function in a classical game, there is a fitness function in an evolutionary game.
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payoff that results to the individual from all their interactions. An individual’s fitness
determines their offspring; the fitter the individual, the more numerous their offspring.

In more detail, each individual in the population plays a strategy from a given set
S = {s1, . . . , sn} of strategies. An individual playing strategy si is said to be of type
i. In a population, different strategies occur with different frequencies. An individual’s
fitness depends on its type and also on the relative frequencies of the other types in the
population. Two abstract evolutionary forces, natural selection and mutation, act on the
population. The players in the population generally inherit strategies through selection
and occasionally acquire a novel strategy as a mutation. These two forces account for the
evolutionary change of individuals in the population through the generations.

Selection, the primary evolutionary force, favors the fitter individuals over others for
replication and brings about changes to the relative frequencies of the strategies in S from
generation to generation. Depending on their fitness, some strategies can thus persist in
the population while others get eliminated in the long run. Natural selection also serves as
an agent of optimization; it favors traits that lead to individuals behaving as if they were
maximizing their evolutionary fitness. It may not be that the individuals are consciously
trying to maximize their fitness, just that natural selection will lead to individuals that
appear to be intending to do this.

The interactions, together with the evolutionary forces, shape the composition of the
population in any generation, with the composition changing from generation to generation.
The resulting dynamics and the equilibria which can arise become the object of study.

The game G (referred to as the inner game or the stage game) could be any classical
game such as a Prisoner’s Dilemma or a Stag Hunt. Each individual i ∈ N interacts in a
pair-wise fashion with each one of its co-player j ∈ Ci ⊆ N − {i} by playing G with them.
Each one of these interactions results in a certain payoff to each player. Then i’s fitness is
given by the payoff he accumulated in all the Ci interactions.

The dynamics of an evolutionary game is given by an outer game (also referred to as
supergame). The outer game describes how the strategy frequencies change during the
process of evolution, i.e., the manner in which strategies spread within the population via
inheritance and fitness. In more detail, the stage game G is played over a series of discrete
time periods. In each time period t = 1, 2, · · · , the individuals of a population are randomly
paired to play the stage game G once. If the proportion of individuals of type j is pj at
a particular time, the state of the population is σ = (p1, · · · , pn) where each pi ≥ 0 and∑n

i=1 pi = 1. Let πij denote the payoff that results to an individual of type i from its
interaction with a co-player of type j. The payoff to a player of type i when the state of
the population is σ is then given by

πiσ =
n∑

j=1
πij pj , (1)

which is the player’s expected payoff before being assigned a particular partner. An indi-
vidual’s fitness is a function of their payoff in the game with their co-player.

Once the stage game is played by the individuals, an evolutionary process of reproduction
is initiated which results in a change to σ, the strategy frequencies. The evolutionary process
is modelled by a stochastic process such as a Moran process (Moran, 1962). The outer game
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of an evolutionary game specifies how individuals are chosen for reproduction as well as how
the birth and death of individuals comes about.

Given a stage game and an outer game, the dynamics of strategy frequency becomes
the object of study. A stable solution to an evolutionary game is given using the notion of
evolutionarily stable strategy (ESS) (Smith, 1982). An ESS is a Nash equilibrium satisfying
an additional stability property. This stability property is interpreted as ensuring that if an
ESS is established in a population, and if a small proportion of the population adopts some
mutant behaviour, then the process of selection arising out of differing rates of reproduction
will eliminate the mutant. Once an ESS becomes established in a population, it should
therefore be able to withstand the pressures of mutation and selection.

3.2 Evolutionary Learning Model: Replicator Dynamics

In an evolutionary game, there are two basic elements: a selection mechanism and a muta-
tion mechanism (recall that an ESS is a strategy that is resistant to small mutations). In
contrast, the replicator dynamics is an evolutionary model that is focused only on the dy-
namics of natural selection. The replicator dynamic was first proposed by Taylor and Jonker
(Taylor & Jonker, 1978) to model the dynamics of an evolutionary game. The growth rates
of the individual strategies, i.e., the replicators, are proportional to their fitnesses (where
the fitness of an individual is a function of its payoff in the stage game) and are given by
the replicator equation (RE) (Samuelson, 1997) which is a system of differential equations
describing how the relative frequencies of strategies in a population change over time t as a
consequence of selection. In more detail, the RE is given as follows. Consider an evolution-
ary game with n strategies s1 · · · sn. Let the payoffs for the stage game be given by an n×n
matrix whose entries, aij , denote the payoff for strategy si versus strategy sj . If the relative
frequency of strategy si is given by xi where ∑n

i=1 xi = 1, then the fitness of strategy si is
given by fi = ∑n

j=1 xjaij and the average fitness of the population by ϕ = ∑n
i=1 xifi. The

fundamental replicator equation is given by

ẋi = xi(fi − ϕ) for 1 ≤ i ≤ n. (2)

The dot in ẋ indicates the derivative of x with respect to t, i.e., ẋ = dx/dt. Equation 2
describes the evolutionary game dynamics (frequency dependent selection) in the deter-
ministic limit of an infinitely large, well-mixed population. The fundamental RE given by
Equation 2 describes pure selection dynamics, mutation is not considered.

When used for the study of dilemma games, the basic RE has been generalised in various
ways: by considering populations with varying interaction rates (Taylor & Nowak, 2006),
and by considering structured populations (Ohtsuki & Nowak, 2006b).

3.3 Evolutionary Learning: Key Parameters

The population dynamics in an evolutionary game depends on the game parameters. These
are summarized in Table 3. Three types of parameters may be distinguished: the exogenous
stage game parameters, the parameters of the outer game, and the parameters pertaining
to the individuals in the population:

1. The type of stage game: The stage game may be deterministic (Hauert et al.,
2002; Santos et al., 2006b; Wang et al., 2015; Han et al., 2017; Perc et al., 2017)
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Stage game (SG) parameters

Payoff matrix Deterministic or non-deterministic
Symmetric or asymmetric

Outer game parameters
Population size Finite or infinite

Population type
Unstructured Random

Well-mixed

Structured Lattice
Graph

Boundary conditions Constant or Periodic

Partner links Static/dynamic
Exogenous/endogenous

Partner restructuring Synchronous/asynchronous

Evolutionary
dynamics
(strategy update)

Moran
process

Birth-death update
Death-birth update
Imitation update

Wright-Fisher process
Fermi update

Type of evolution
Evolution of stage game strategies alone
Co-evolution of SG strategies and graph topology

Individual player parameters

Cognitive traits Memory bound
Ability to recognize other individuals

Strategic traits Aspiration level
Ability to choose co-players

Psychological traits Emotion, mood

Table 3: Evolutionary games: A summary of key parameters

where matrix entries are deterministic variables, or random (Fudenberg & Harris,
1992; Galla & Farmer, 2013; Gross et al., 2009; Duong et al., 2020). Most of the
literature considered symmetric payoff matrix.

2. Population size: The number of individuals in the population may be finite (Taylor
et al., 2004) or infinite (Gokhale & Traulsen, 2010).

3. Population type: The population may be unstructured or structured. In an un-
structured population, any two random individuals can be chosen as co-players for
the stage game. A special class of unstructured populations is the well-mixed popula-
tion in which any two individuals interact with the same probability. It is a mean-field
approximation (Tembine et al., 2012) of a general population structure. In a struc-
tured population, the individuals occupy the vertices of a spatial lattice or a graph
(Allen & Nowak, 2014). Interactions between two individuals are allowed if they are
connected by an edge. Structured interactions are modeled using evolutionary graph
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theory (Lieberman et al., 2005; May, 2006; Casasnovas, 2012). Evolutionary games
have a long history of being studied on lattices (Nowak & May, 1992; Killingback &
Doebeli, 1996; Nakamaru et al., 1998; Van Baalen & Rand, 1998; Irwin & Taylor,
2001; Szabó & Hauert, 2002; Hauert & Doebeli, 2004; Ifti et al., 2004; Nakamaru &
Iwasa, 2005; Jansen & Van Baalen, 2006; Traulsen et al., 2010), and more recently,
on graphs (Nowak & May, 1992; Lieberman et al., 2005; Santos & Pacheco, 2005;
Santos et al., 2005; Ohtsuki et al., 2006; Ohtsuki & Nowak, 2006a, 2006b; Santos
et al., 2006c, 2006b; Ohtsuki et al., 2006).
Within this broad framework of structured populations, there are many possible ways
of organising the underlying graph. These include the celebrated Watts-Strogatz
(Watts & Strogatz, 1998) small-world (SW) networks and scale-free (SF) networks
(Barabási & Albert, 1999). Apart from this, random graphs, regular graphs (each
node is connected to k neighbours), lattice graphs (each interior node is connected
to k neighbours), and cyclic graphs (each node is linked to two neighbours) have also
been studied (Ohtsuki et al., 2006). Further, as in (Sun et al., 2018), each link in a
graph may be weighted by the strength of the relationship between the two nodes.
While most of the evolutionary games literature has considered lattice or graph struc-
tured populations, some works (Tarnita et al., 2009; Nowak et al., 2010) have used
sets to structure populations. In evolutionary set theory, the individuals of a popula-
tion are distributed over sets. An individual can belong to several sets. Whether an
individual cooperates with another depends on how many sets they have in common.
The more the number of common sets between any two individuals, the greater the
rate of interaction between them. In a set-structured population, attention is focused
on investigating set membership conditions for cooperation to evolve in a population.

4. Type of boundary condition: For a structured population, boundary conditions
(Kim et al., 2002) are needed if each individual is required to interact with the same
number of co-players. For example, a lattice gives rise to two types of boundary con-
ditions: constant boundary condition and periodic boundary condition. For the former,
all individuals on the lattice interact only with each of their connected neighbor, but
the boundary players (0, · · · , 9 and a, · · · , f in the example of Fig 2) are excluded
from calculations. For periodic boundary condition, all individuals on the lattice in-
teract with each of their connected neighbor, and, in addition, the boundary players
on a lattice edge interact with the corresponding row/column individual on the oppo-
site edge (in Fig 2, individual 0’s co-players will be its two connected neighbors and
individuals 4 and 5).

5. Partnership links: For structured populations, the links between nodes may be
set exogenously or endogenously by the individual players. Further, links may either
remain static throughout the evolutionary process or may be dynamically created and
severed during evolution (Pacheco et al., 2006). In a dynamic model, members of a
population choose their partners, i.e., who they interact with and for how long. The
key idea is that partner choices will be made such that mutually beneficial interactions
endure longer than interactions in which one party exploits the other. Partnerships
can form in various ways. In some treatments (Eshel & Cavalli-Sforza, 1982; Noë &
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Figure 2: Boundary conditions

Hammerstein, 1994; Biely et al., 2007; Bala & Goyal, 2001; Ebel & Bornholdt, 2002;
Egúıluz et al., 2005; Skyrms & Pemantle, 2009; Iyer & Killingback, 2020) individuals
meet assortatively, by means of a selective partner choice8. In other treatments (Peck
& Feldman, 1986; Hauert et al., 2002; Hauert & Szabo, 2003; Aktipis, 2004; Szabó
& Hauert, 2002), individuals meet by means of volunteering participation. Another
possibility is to allow individuals to migrate to empty sites of a network (Vainstein
et al., 2007). For the case of dynamic networks, a key aspect is the timescale for
link updates. Suppose links are updated every τL time units and that the timescale
for evolutionary dynamics is τE . The two timescales may be same (synchronous) or
different (asynchronous), and the relation between them impacts on the evolutionary
dynamics (Pacheco et al., 2006).

6. The type of evolutionary dynamics: Strategies are updated by a stochastic pro-
cess. The main forms of stochastic processes studied are:

(a) Moran process (Nowak et al., 2004; Taylor et al., 2004): At each time step,
a random individual is chosen for reproduction proportional to its fitness; the
offspring replaces a randomly chosen neighbor. The population size remains
constant throughout the evolutionary process. The following are ways of imple-
menting a Moran process:

i. Birth-Death (BD) update rule (Ohtsuki & Nowak, 2006b): An individual is
chosen from the population with a probability proportional to their fitness.
Then the strategy of the chosen node replaces the strategy of one of its
randomly chosen neighbours.

ii. Death-Birth (DB) update rule (Ohtsuki & Nowak, 2006b): A random indi-
vidual from the entire population is chosen to die; the neighbors compete
for the empty site proportional to fitness.

iii. Imitation (IM) update rule (Hofbauer & Sigmund, 2003; Ohtsuki & Nowak,
2006b): A player’s strategy is changed to that of an individual chosen ran-
domly from the entire population or from its own neighborhood, with a
certain probability. The probability depends on the difference in the payoffs
of the two players.

8See Section 3.4 for details on selective partner choice, voluntary participation, and migration.
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(b) Wright-Fisher process (Imhof & Nowak, 2006): Each individual produces a num-
ber of offspring proportional to its fitness; the next generation is sampled from
this pool of offspring. The total population size remains constant.

(c) Fermi rule: For this rule (Traulsen et al., 2007), with a certain probability, an
individual’s strategy is updated to one of its randomly chosen neighbor. Player
x will adopt y’s strategy with a probability given by the Fermi function:

p(sx ← sy) = 1
1 + eβ(πx−πy) (3)

where πx (πy) is x’s (y’s) fitness, β is a tunable parameter that represents the
imitation strength or intensity of selection, i.e., how strongly the individuals base
their decision to imitate on fitness comparison. Note that, in order to use the
above rule, an individual must know the fitness of the other players. When this
information about the fitness/payoff of the other players is unreliable, then using
averaged payoffs (calculated by surveying an available neighborhood) can lead
to increased cooperation as shown in (Szolnoki & Perc, 2021).

Stage game strategies alone may undergo evolution, or co-evolve with the interaction
topology as in (Ashlock et al., 1996).

7. Individual traits: Individuals can vary in terms of their cognitive traits: the con-
straints on their memory (i.e, how far back they can recall the past), and their ability
to recognize other individuals. There are also variations in their strategic ability to
adjust their aspiration payoffs (see Section 3.4 for details) and their ability to choose
co-players. Some models of evolutionary learning ascribe psychological traits such as
emotion and mood to individuals. These traits are not part of evolutionary model
per-se but are added on mostly to achieve cooperation through increased rationality.

3.4 Mechanisms for Incentivizing Coopertion

Since evolution by selection is based on competition between individuals, it rewards only
selfish behaviour. Hence, mechanisms that extend elementary natural selection are needed
for supporting cooperation. In the context of evolutionary games, a variety of incentivizing
mechanisms, many of which use ideas from social theory (Coleman, 1994), have been shown
to enhance cooperation. These mechanisms (summarized in Table 4) can be taxonomized
into three main categories: strategic, structural, and psychological, although some may be-
long to multiple categories.

Strategic: Individuals strategically employ the following mechanisms:

1. Kinship and green beards: Hamilton (1963, 1964a, 1964b) proposed the theory
of kin selection which hypothesises that social evolution can be understood as a pro-
cess of inclusive fitness maximization. An individual’s inclusive fitness is defined as a
weighted sum of its personal fitness and the fitness of its genetically related individ-
uals. Weights are given by a coefficient of relatedness (Wright, 1922; Ohtsuki, 2010).
The core of kin-selection theory is Hamilton’s rule which tells that natural selection
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Strategic
(Individual)

Kinship
Reciprocity
Group selection
Altruism
Reward/ punishment
Aspiration level

Structural
(Interaction structure)

Fixed exogenously
Evolves endogenously

Psychological
(Individual)

Emotion
Mood

Table 4: Evolutionary mechanisms for dilemma resolution: A taxonomized summary.

will favour an altruistic behaviour so long as the cost to the altruist is offset by a
sufficient amount of benefit to sufficiently closely related recipients. Kin selection has
been shown in (Nowak, 2006b; Nowak & Sarah, 2013) to result in the evolution of
cooperation in dilemmas. Apart from genetic relationship, there are other ways to
manifest relations. A green beard is a tag or a conspicuous feature that allows the
bearer to recognize it in other individuals, and causes the bearer to behave differently
towards other individuals depending on whether or not they possess the feature. In a
green-beard model (Jansen & Van Baalen, 2006), an individual’s decision to cooperate
depends on the tags associated with the agents. Tags may be interpreted as imposing
an abstract topology on the agents in which an agent’s neighbourhood is defined by
its tag and a threshold of similarity tolerance. Green beard models require individuals
to have only a rudimentary ability to detect environmental signals and, no memory
of past encounters is required.

2. Reciprocity: The theory of kin selection is useful for explaining cooperation among
relatives. In contrast, reciprocity is a model for explaining cooperation between unre-
lated individuals engaged in repeated encounters. There are three types of reciprocity:
direct, indirect, and network.
Direct reciprocity: Trivers (1971) proposed a model of direct reciprocity for repeated
encounters between the same two individuals: if one individual cooperates now, the
other may cooperate later. Direct reciprocity can lead to the evolution of cooperation
in a well-mixed population if the probability, w, of another encounter between the
same two individuals exceeds the cost-to-benefit ratio of the altruistic act, i.e., w > c/b
(Nowak, 2006b; Nowak & Sarah, 2013).
Reputation and indirect reciprocity: Direct reciprocity is possible only when the same
two individuals encounter each other repeatedly. Indirect reciprocity, based on the idea
‘I help you and somebody else helps me’, is another mechanism useful for the evolution
of cooperation in dilemmas (Nowak & Sigmund, 1998, 2005). In pairwise interactions,
one individual typically acts as donor, the other as recipient. The donor can decide
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whether or not to cooperate. The interaction is observed by a subset of the population
who might inform others. An individual’s reputation is built from these observations
(Ohtsuki & Iwasa, 2004; Panchanathan & Boyd, 2004; Nowak & Sigmund, 2005).
When others reputations are available, they can be used to define one’s individual
behaviour (Santos et al., 2021). One could formulate simple heuristic strategies, for
example, by having the probability of cooperating with an individual proportional
to their reputation (Gross & De Dreu, 2019). Further, switching partners based
on reputation can also lead to stable cooperation in networked Prisoner’s Dilemma
(Fu et al., 2008). A key consideration in reputation-based models is the timescale for
updating reputations and that for strategy updates (Xu et al., 2019). Both reputation
building and strategy learning are dynamic processes assumed to happen at different
timescales. The individuals adopt a fixed behavioural strategy for a sufficiently long
time that the reputation distribution stabilizes before they explore other strategies.

Indirect reciprocity was shown to lead to the evolution of cooperation (Hamilton &
Taborsky, 2005; Nowak & Roch, 2007; Rankin & Taborsky, 2009; Alexander, 2017;
Santos et al., 2018; Berger & Grüne, 2016; Paiva et al., 2018) and social norms
(Brandt & Sigmund, 2004; Ohtsuki & Iwasa, 2004). However, this mechanism has
substantial cognitive demands relative to direct reciprocity and kin selection where
individuals cooperate with those who are related to them. Memory is needed to
establish reputations and language is needed to gain and spread information about
reputation.

Network reciprocity: This is useful for supporting the evolution of cooperation in a
structured population. In a structured population, natural selection can result in co-
operation although in a well-mixed population, it results in defection. This is because
reciprocity can be induced in a structured population. The players are arranged on a
spatially structured topology and interact only with their direct neighbors. In such a
setup, if one individual imitates a neighbor’s altruistic act, then the neighbor will sub-
sequently experience reciprocity so that two altruistic neighbors help each other, and
two defecting neighbors harm each other. This phenomenon of network reciprocity
facilitates the spread of cooperation and retards the spread of defection (Nowak &
May, 1992; Nowak, 2006b; Wang et al., 2013). For the Prisoner’s Dilemma, the con-
dition for network reciprocity to arise is b/c > k (Ohtsuki et al., 2006) where b/c is
the benefit-to-cost ratio, and k is the degree of the underlying static regular graph
(the condition was generalized in (Allen et al., 2017) to non-regular graphs where k is
the average degree). It is noteworthy that, in (Ohtsuki et al., 2006), there is no direct
or indirect reciprocity, the evolutionary dynamics is driven by a simple death-birth
strategy update rule and this is sufficient for cooperation to evolve. Thus individuals
do not need to have cognitive abilities such as those needed by other incentivizing
mechanisms such as direct reciprocity (requires recalling previous interactions), indi-
rect reciprocity (requires establishing and maintaining reputations), or kin selection
(requires recognising kin). Network reciprocity has been confirmed in several other
models (Lieberman et al., 2005; Santos et al., 2006b; Ohtsuki & Nowak, 2007; Nowak
& Roch, 2007; Iwagami & Masuda, 2010; Van Doorn & Taborsky, 2011; Konno, 2011;
Perc et al., 2013; Débarre et al., 2014; Dercole et al., 2019; Su et al., 2022).
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3. Group selection: Natural selection is known to act at multiple levels: at the level
of individuals and at the level of groups (Wright, 1945). Many researchers (Williams
& Williams, 1957; Taylor & Wilson, 1988; Rogers, 1990; Rainey & Rainey, 2003;
Wilson & Hölldobler, 2005; Keller, 1999; Michod, 2000) have used this insight to
study the evolution of cooperation in populations organised into groups. A simple
yet very effective model of group selection9 was studied in (Traulsen & Nowak, 2006).
In this model, the population subdivides into groups. Cooperators help others in
their own group. Defectors do not help. Individuals reproduce proportional to their
payoff and offspring are added to the same group. A group is split into two if it
outgrows a certain limit. The splitting of a group is accompanied by the extinction
of another group so as to constrain the population size. Only individuals reproduce
but selection emerges on two levels. There is competition between groups; some
groups grow faster and split more often. In particular, pure cooperator groups grow
faster than pure defector groups, while in any mixed group, defectors reproduce faster
than cooperators. Therefore, selection within groups favors defectors, while selection
between groups favors cooperators. It was shown that cooperation evolves if the
benefit-to-cost ratio b/c of the altruistic act satisfies b/c > 1 + (n/m) where n is the
maximum allowed group size, and m is the maximum number of allowed groups.

4. Altruism: Kin selection can explain cooperation among related individuals. Dif-
ferent ideas are required to explain the emergence of cooperation among unrelated
individuals. Trivers (1971) proposed the theory of reciprocal altruism to explain this
phenomenon. He defined altruistic behaviour as one in which an individual (the altru-
ist) benefits another individual, not closely related, despite having to incur a cost. The
theory posits that that if there are opportunities for repeated interactions between the
same individuals, then an individual who behaves altruistically only to those which
reciprocate the altruistic act will be favored by natural selection. In general, such
reciprocal altruism can evolve only if the same individuals meet repeatedly, if they
are capable of memory and recognition, and if the benefits to the individual who is
helped exceed the costs to the helper. There is strong evidence for reciprocal altruism
in a number of animal systems. Inspired by this theory, numerous studies used it to
demonstrate that it can lead to a gradual evolution of cooperation in dilemma games
from an initially non-cooperative state and sustain cooperation thereafter (Stephens,
1996; Killingback & Doebeli, 2002; Skyrms, 2010).

5. Reward/Punishment Several field experiments with humans have shown that al-
truistic punishment (altruistic punishment means that individuals punish defectors,
although the punishment is costly for them) of defectors is a key factor in the expla-
nation of cooperation in the ultimatum game (Henrich et al., 2001), a public goods
game (Fehr & Gächter, 2002), and social dilemmas (Gurerk et al., 2006). In computer
simulations, punishments have also been shown to enhance cooperation when com-
bined with indirect reciprocity (Sigmund et al., 2001), group selection (Boyd et al.,
2003; Bowles & Gintis, 2004), and network reciprocity (Nakamaru & Iwasa, 2005).
In the context of the Prisoner’s Dilemma, Han et al. (2013) combined punishment

9See (Marshall, 2011) for the relationship between group selection and kin selection.
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costs (which they refer to as ‘apology’) with prior commitment to show how it can
lead to the evolution of cooperation if the punishment are costly enough. While many
studies considered punishment in isolation, (Chen et al., 2015) showed how combining
rewards with penalties can be a successful mechanism for promoting cooperation in a
public goods game using replicator dynamics.

6. Aspiration levels: In aspiration-based models, individuals evaluate their achieved
payoffs in relation to their aspiration payoff. Each individual has an aspiration pay-
off which may be calculated in different ways. Typically, this is done in terms of
received payoffs and the number of neighbors. The players update their strategies
with a probability that depends on the difference between their actual payoffs and
their aspiration payoff. Chen and Wang (2008) studied the Prisoner’s Dilemma on
a population structured as Newman-Watts small-world network (Newman & Watts,
1999) for different average aspiration levels under stochastic rules for strategy updat-
ing. They found that the level of cooperation depends on the aspiration level and
that cooperation is maximised for intermediate levels of aspiration. Similar works on
the role of aspiration in cooperation include (Liu et al., 2016; Zeng et al., 2017; Liu
et al., 2019; Zhang et al., 2019; Wang et al., 2021; You et al., 2021; Du et al., 2023).

Structural: Much of the early literature on evolutionary games focussed on the evolution
of player strategies given a fixed and exogenously defined population structure. However,
social networks are dynamic structures; over time, individuals create and terminate social
ties, thereby altering the structure of the network in which they participate. Such interac-
tions are modelled by extending evolutionary games to allow for the co-evolution (Perc &
Szolnoki, 2010) of strategies and network structure. In a co-evolutionary system, (Cardillo
et al., 2010; Rezaei & Kirley, 2012; Ranjbar-Sahraei et al., 2014; Tanimoto, 2017; Bandy-
opadhyay & Kar, 2018; Li et al., 2020) strategies evolve by strategy update rules, and the
network topology evolves by means of link update rules. A weight is associated with each
network link, and link update rules are used for updating weights, creating new links, and
breaking existing links. Co-evolution leads to richer dynamics with more variable parame-
ters and interesting inter-plays between them. In such systems, the timescale that separates
the different aspects that co-evolve has a major influence on the dynamics of co-evolution
(Pinheiro et al., 2016; Bara et al., 2022).

1. Fixed exogenously: The evolutionary dynamics on a static graph crucially depends
on the underlying graph and the strategic game that the nodes of the graph play10.
Different games and different graph structures give rise to a vast combination of cases
to consider. The dynamics are, in general, very complex; even in an evolutionary game
on a graph in which all nodes play the same strategy (called resident strategy), the
problem of determining whether a given mutant strategy introduced at a random node
in the graph can invade the entire population under frequency dependent selection is
NP-hard and in PSPACE (Lieberman et al., 2005). The probability of a mutant

10See (Iyer & Killingback, 2016) for a comparative study of the effects of the structural properties of a
graph, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity
coefficient, on the promotion of cooperative behaviour in all three classes of dilemma games, and (Szabó &
Fath, 2007) for a comprehensive review of evolutionary PD on graphs.
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invading a population and driving the resident strategy to extinction is called the
fixation probability. Computing an approximate fixation probability is #P-hard and
in PSPACE (Ibsen-Jensen et al., 2015). Further, it is an open problem to characterize
the set of graphs that promote cooperation in dilemmas. Because there is no efficient
algorithm for this problem, special cases such as regular graphs (Ohtsuki et al., 2006),
complete graphs (Dı́az et al., 2014), or some other exogenously defined structure
(Nakamaru et al., 1997; Richter, 2019; Locodi & O’Riordan, 2021; Hsiao & Nau,
2022; Zhang et al., 2022) are considered for the study of evolution of cooperation
in dilemma games. Under various conditions, structured populations (including set
structured populations (Tarnita et al., 2009; Nowak et al., 2010)) have been shown
to enhance cooperation in dilemmas relative to well-mixed populations; the extent to
which cooperation improves depends on factors such as the stage-game payoffs and
the degree distribution of the underlying graph (or the set membership distribution
for set structured populations).
An important aspect relating to structured populations is the contagion or herd be-
haviour. Herding is a phenomenon in which individuals imitate group behaviours even
if it sub-optimal for them to do so (Fowler & Christakis, 2010; Centola et al., 2005;
Willer et al., 2009). In order to study the relation between contagion and cooperation,
Masuda (2012) introduced zealous cooperators (a zealous cooperator is an individual
who often mimics the cooperation of neighbors even if defection is more lucrative than
cooperation) in the population. For Prisoner’s Dilemma and Snowdrift games, they
showed that a small fraction of zealous cooperators can reliably induce cooperation
at the population level in a well-mixed population. However, for structured popula-
tion, Matsuzawa et al. (2016) showed that zealous cooperators do not always enhance
cooperation and that they may be counterproductive depending on the underlying
graph topology.

2. Evolves endogenously: Structure can evolve in various ways: through voluntary
participation, through partner selection by the players (see (Stanley et al., 1995;
Ashlock et al., 1996) for partner selection), or through player migration and mobility.
In voluntary participation, players can choose whether or not to participate in a game,
with players typically making a decision on the basis of previous payoffs. This choice
leads to three strategy types: cooperators, defectors, and loners. Voluntary participa-
tion has been shown to boost cooperation in dilemmas played on both unstructured
and structured populations (Hauert et al., 2002; Szabó & Hauert, 2002).
Partner selection allows individuals to decrease the risk associated with cooperation
by having them choose and refuse their partners. Partners are typically chosen on the
basis of the expected payoffs; a partner is chosen only if the previous payoff exceeds
a certain threshold. This gives rise to interesting population dynamics; the entangled
evolution of individual strategy and network structure constitutes a key mechanism
for sustaining cooperation in dilemmas (Stanley et al., 1994; Ashlock et al., 1996;
Santos et al., 2006a).
In a population of mobile agents, the individuals occupy some nodes of a graph while
some nodes remain unoccupied. The graph edges determine who interacts with whom.
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Individuals can migrate to vacant sites where migration is typically payoff driven.
Immigration enhances cooperation in dilemmas (Vainstein et al., 2007; Helbing & Yu,
2008; Droz et al., 2009; Meloni et al., 2009; Jiang et al., 2010; Cheng et al., 2010; Yang
et al., 2010; Cheng et al., 2010; Roca & Helbing, 2011; Lütz et al., 2021) relative to
no-migration case and the level of cooperation depends on the threshold payoff that
individuals use for deciding to migrate.

Since the individuals in an evolutionary game imitate others, two types of individuals
can be distinguished: leaders whose strategies are imitated and followers who imitate
leaders. In time varying networks, leader/ follower roles also vary with time. It is
therefore possible to study the dynamics of leadership. For example, in the context
of PD games, Zimmermann et al. (2001) allowed individuals to create and terminate
links and showed how this leads to global cooperation with the emergence of a leader
who is a cooperator with the maximum number of connections. Others (Kim et al.,
2002; Szolnoki & Szabó, 2007; Rong et al., 2019) have studied the evolution of leaders
in the context of a variety of population structures.

Psychological: Individual psychological traits such as emotion and mood can effect their
learning behaviour. Emotion, a mental state resulting from one’s assessment of the world
from their own viewpoint, is known to have a place in human motivation and behaviour
(Frijda et al., 1986; Scherer & Moors, 2019; Boone & Buck, 2003). This knowledge lead
to the investigation of the impact of player emotion on the evolution of cooperation in
dilemmas. A novel form of imitation in which the players imitate the emotional profiles
of other players was examined in (Szolnoki et al., 2011, 2013). Each player is assigned
an emotional profile. Player x’s emotional profile is defined as a pair (αx, βx) where αx is
the probability that x will cooperate with a player y if px ≥ py (where pi denotes player
i’s payoff) and βx is the probability that x will cooperate with y if px < py. Goodwill
is associated with the former and envy with the latter. For Snowdrift, Stag-Hunt and
Prisoner’s Dilemma games, they found that players are much more likely to cooperate
with less successful neighbors than they do with the more successful ones, suggesting that
goodwill facilitates the evolution of cooperation while envy favors the evolution of defection.

Some works (Chen et al., 2021) considered a Prisoner’s Dilemma played on a square
lattice with four types of player emotion: joy, anger, regret, and neutral. Players’ emotions
were quantified, and accumulated over the most recent interactions. They assumed two
types of players: competitive (who consider only their own payoffs) and non-competitive
(who consider their own payoffs together with others’). They showed that the proportion
of non-competitive individuals plays a key role in promoting overall cooperation. The
probability that a player adjusts their strategy to that of a random neighbor is calculated
in terms of the player’s emotion and the difference between their own payoff and that of a
random neighbor. They showed that the existence of non-competitive individuals promotes
cooperation and that cooperation rate depends on the emotion accumulation length.

Apart from emotion, certain mood motivated strategies (Dercole et al., 2019) have been
shown to give rise to network reciprocity and result in the fixation of cooperation in a graph
structured Prisoner’s Dilemma.
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4. Reinforcement Learning

Reinforcement learning (RL) (Littman, 2015; Sutton & Barto, 2018) is learning what to do –
how to map situations to actions – so as to maximize a numerical reward function. Learning
is accomplished by trial-and-error; the learner is not told which actions to take, but is given
evaluative feedback (in the form of rewards/payoffs) when it tries an action. The learner
must try different actions and use the received feedback to discover which actions yield
the most reward. RL is a stimulus-response model grounded in theories of learning from
cognitive psychology. It is derived from the eminent psychologist Thorndike’s law of effect
(Thorndike, 1898, 1931; Postman, 1947; Thorndike, 2013; Estes, 1967) which states that if
responses to environmental stimuli are rewarded (punished), they are likely to be repeated
(avoided). What consitutes as reward or punishment depends on the learner’s aspirations.
With this law as the basis, reinforcement learning models originated in the mathematical
psychology literature with the works of Estes (1950, 1967), Bush and Mosteller (1955),
and Suppes and Atkinson (1960). Similar models were subsequently developed in other
disciplines. In the economics literature, early pioneering work by Simon (1955) led to a huge
follow up literature but the Roth and Erev model (Roth & Erev, 1995; Erev & Roth, 1998)
has been very influential in the context of RL in games. In the computer science literature,
there are various RL models such as Narendra and Thathachar’s learning automata model
(Narendra & Thathachar, 1974; Rubinstein, 1986; Thathachar & Sastry, 2003; Narendra
& Thathachar, 2012) and Watkins and Dayan’s (1992) Q-learning model (and its variants
such as SARSA, temporal difference learning, actor-critic model (Sutton & Barto, 2018))
built on the theory of dynamic programming (Bellman & Dreyfus, 1962).

In all of these different RL models, the learning agent is bounded in terms of its ra-
tionality. Game-theoretic rationality is not needed but cognitive abilities are needed for
trial-and-error learning (contrast this with the pre-dominantly inheritance base learning in
evolutionary games that does not require such cognitive abilities). Thus, an RL agent must
be able to observe the feedback for its previous actions and revise its strategies through
reinforcement rules that favor the best and inhibit the worst actions. However, reinforce-
ment learners do not need to know their opponent’s strategies or payoffs. Despite being
modest in terms of the learner’s cognitive abilities, RL models have been used successfully
for explaining many deviations from game-theoretic solutions that are empirically observed
in laboratory experiments with human subjects (McAllister, 1991; Roth & Erev, 1995;
Mookherjee & Sopher, 1997; Chen & Tang, 1998; Erev & Roth, 1998, 2002; Erev et al.,
1999).

The early RL models were intended for single-agent learning. In these models, the agent
is situated in an environment that it interacts with repeatedly by responding to environ-
mental stimuli. The interactions take place over a series of discrete time periods with one
stimulus-response interaction in each time period. In any time period, the learner uses their
past experience to choose a response (i.e., action). Those actions that previously resulted
in positive stimuli (i.e., satisfactory outcomes, rewards or payoffs) tend to be repeated in
the future while those that resulted in unsatisfactory outcomes are avoided. An agent’s
strategy is defined by a probability distribution over the available actions and an action is
chosen randomly as per the distribution. The probabilities are initialised arbitrarily and
then updated iteratively through a process of learning.
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The single agent RL models were subsequently extended to multi-agent strategic games
(Shoham et al., 2003; Busoniu et al., 2010). Bendor et al. (2001a) provide a good overview
of RL in repeated games. In multi-agent learning, each agent’s environment includes all the
other agents in the system. The players repeatedly play a stage game (which in our case is
a dilemma game) in successive time periods. For the stage game, each player has a finite set
of pure strategies to choose from and all players simultaneously and independently make
this choice. After choices are made, each player receives a reward/ payoff which depends
on the combination of choices of all the players and is given in terms of the payoff matrix
for the stage game. Learning is stochastic; an agent learns a distribution over the possible
actions such that the resulting choices maximise their reward accumulated over a series of
time periods. Learning is formally modeled under the general framework of a stochastic
game (SG) (Shapley, 1953) also referred to as a Markov game (MG). In a stochastic game,
the process of learning begins with action probabilities initialised randomly and ends when
the strategies converge. The speed and the point of convergence depend on the probability
update rules employed by the agents. Probabilities can be updated in a variety of ways
giving rise to a host of RL methods. Many of these are derived from three fundamental
models: the Bush-Mosteller model, the Roth-Erev model, and the Q-learning model. The
following sections provide an overview of these three methods.

4.1 The Bush-Mosteller Model

Bush and Mosteller (Bush & Mosteller, 1951, 1955; Mosteller, 1956) introduced a sequential
probability learning model that was derived from Estes’ statistical theory of learning (Estes,
1950). It was first introduced in the context of single-agent learning but was subsequently
extended to multi-agent settings (Flood, 1952; Bales et al., 1952; Hays & Bush, 1954)
including dilemma situations. It has been used to achieve cooperation in dilemmas and to
explain observed data in laboratory studies with humans (Flache & Macy, 2002; Macy &
Flache, 2002; Izquierdo et al., 2007; Izquierdo & Izquierdo, 2008).

We will overview (Izquierdo et al., 2007; Izquierdo & Izquierdo, 2008) as a representative
extension of the BM model (Bush & Mosteller, 1955) to two-player dilemma games. The
agents learn over a series of time periods by playing a PD game in each stage. The players
decide what action to choose stochastically: each player’s strategy is defined by a probability
distribution over their actions. The probabilities are initialised arbitrarily and then updated
in each time period as per an update rule.

In each stage, each player chooses an action according to their strategy and receives
the corresponding payoff. Each player then updates their strategy as follows. Each player
increases their probability of undertaking a certain action if it led to payoffs above their
aspiration level, and decreases this probability otherwise. In any time period t, strategy
updating is done in two steps. First, each player i calculates her stimulus si(y) (where
y denotes the pure strategy profile played in time period t, and si(y) is a number in the
interval11 [−1, 1]) from the payoff ui(y) she received in that time period as follows:

si(y) = ui(y)−Ai

supk∈Y |ui(k)−Ai|
(4)

11A special case of the BM model where all stimuli are positive was originally considered in (Cross, 1973),
and later analyzed in (Börgers & Sarin, 1997), where it was also related to the replicator dynamics.
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where Y denotes the space of all pure strategy profiles, and Ai denotes i’s aspiration level.
The players are thus assumed to know supk∈Y |ui(k)−Ai|. Next, each player i updates her
probability pi,yi(t + 1), of undertaking the selected action yi at time t + 1 as follows:

pi,yi(t + 1) =
{

pi,yi(t) + li × si(y)× (1− pi,yi(t)) if si(y) ≥ 0
pi,yi(t) + li × si(y)× pi,yi(t) otherwise

(5)

where 0 < li < 1 denotes the learning rate. Thus, the higher the stimulus magnitude (or the
learning rate), the larger the change in probability. The updated probability for the action
not selected derives from the constraint that probabilities must add up to one. The next
iteration then begins with an action being chosen as per the updated probabilities. When
learning, players in the BM model use only information concerning their own past choices
and payoffs. Information about the payoffs and choices of their co-player is not needed.

4.2 The Roth-Erev Model

The Roth and Erev (RE) model (Roth & Erev, 1995) originated from the works done by
experimental psychologists Skinner (1938) and Herrnstein (1961, 1970). This is a stochastic
model in which an agent’s strategy is a probability distribution over the available actions.
The probability of choosing an action is proportional to the total accumulated rewards from
choosing it in the past. In the basic model of (Roth & Erev, 1995), the probabilities are
calculated as follows. At time t = 1, (before any experience has been acquired) each player
i has an initial propensity to play his kth pure strategy, given by some number qi,k(1). If
player i plays his kth pure strategy at time t and receives a payoff of x, then the propensity
to play strategy k is updated by setting

qi,k(t + 1) = qi,k(t) + x (6)

while for all other pure strategies j,

qi,j(t + 1) = qi,j(t) (7)

The probability pi,k(t) that player i plays his kth pure strategy at time t is

pi,k(t + 1) = qi,k(t)/
∑

qi,j(t) (8)

where the sum is over all of player i’s pure strategies j. There are similarities and differences
between the RE and the BM models. Like the BM model, the RE model also obeys the law
of effect (choices that have led to good outcomes in the past are more likely to be repeated
in the future). However, in contrast to the RE model, the BM model allows for negative
stimuli. Further, unlike the BM model, the RE model obeys the law of practice (learning
curves tend to be steep initially, and then flatten).

The above described RE model was later extended (Erev & Roth, 1998) by introducing
additional parameters for ‘experimentation’ and ‘forgetting’ (i.e., weighing recent stimuli
more heavily than past ones) to make it more robust at explaining and predicting human
behaviour observed in experiments.
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4.3 The Q-Learning Model

The Q-learning model (Watkins & Dayan, 1992) and its variant SARSA (Modified Con-
nectionist Q-learning) (Rummery & Niranjan, 1994) originated from the theory of dynamic
programming (Bellman & Dreyfus, 1962). These models were intended for single agent
systems and have the property of guaranteed convergence to optimal strategies. A key
difference between single and multi-agent settings is that the environment for the former
is stationary while for the latter it may be non-stationary (Tuyls & Weiss, 2012). As a
result, optimality of learnt behaviours cannot be guaranteed if there are multiple agents.
These single agent learning models were later extended to make them suitable for multiagent
settings (Bloembergen et al., 2015; Busoniu et al., 2008).

At a high level, multi-agent Q-learning is modelled by a Markov game. In each time
period, each player is in one of several possible states and chooses one of the available
actions. For example, for the Prisoner’s Dilemma, the actions available to any agent i
are Ai = {C, D}, and the rewards are given by the payoff matrix for the dilemma game.
If an agent receives a payoff rt at time t, his discounted reward for the time period is
δt−1 × rt where 0 < δ ≤ 1 is the discount factor. The next state that results depends on
the combination of actions chosen by all the players. The goal for each agent is to learn a
policy, i.e., a mapping from states to actions such that the expected sum of their discounted
future rewards is maximized.

Q-learning works by calculating approximate numerical estimates of state-action values.
For any time period t and state s, a player’s Q-value Q(s, a) for action a is the maximum
discounted sum of future rewards the agent can expect to receive if it starts in s, chooses
the action a, and then continues to follow an optimal policy. The initial Q-values are set
arbitrarily for all the states and then iteratively updated as follows. Suppose that r is the
reward received from executing a in s at time t and that the resulting new state is s′. Then
Q(s, a) is updated as follows:

Q(s, a) = Q(s, a) + α
(
r + δ ×max

x
Q(s′, x)−Q(s, a)

)
. (9)

Here, α is the agent’s learning rate and δ is the discount factor. For calculating max, the
payoff to the focal player is calculated under the assumption that the other players play
certain strategies.

How an agent’s state s is defined depends on the number of agents playing the game
and the agent interaction structure. For the two-player case, s is typically defined in
terms of the action the agent chose in the previous time period. Such a player can dis-
tinguish between two states: s = C, and s = D. Alternatively, state may be given
by the combination of choices made by the player and their opponent, leading to s ∈
{(C, C), (C, D), (D, C), (D, D)}. A state may be more elaborate and include longer histo-
ries and payoffs (Vrancx et al., 2008; Bazzan et al., 2011).

A Q-learner chooses actions seeking to balance the exploration of new and seemingly
sub-optimal actions, with the exploitation of those actions that are optimal as per their
Q-values. Each action is chosen with a certain probability, with the probability for any
action being determined in terms of the Q-value (as per Equation 9) for the action.

Most of the literature on RL in dilemmas has used one of these three models or some
variant of it. Although all RL models follow the same underlying principle that actions
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resulting in satisfactory payoffs are more likely to be repeated, there are variations in terms
of the model parameters. The following section lists the key parameters.

Stage game (SG) parameters

Payoff matrix
Deterministic or Non-deterministic
Symmetric or Asymmetric
Positive or negative payoffs

Structural parameters

Types of learners Homogeneous or heterogeneous

Partner links Static or dynamic
Exogenous or endogenous

Partnership duration Frequency of restructuring partnerships

Individual player parameters

Cognitive

Learning speed
Memory bound
Inertia
Ability to reognize co-players

Strategic Ability to choose co-players
Aspiration level

Psychological Emotion, mood

Table 5: Reinforcement learning models: A summary of key parameters.

4.4 Reinforcement Learning: Key Parameters

The learning trajectory of a model is determined by its parameters. The various models
differ in terms of their parameters. The key parameters of an RL model (summarized in
Table 5) are as follows:

1. Type of stage game: The stage game payoffs could be deterministic or non-
deterministic, symmetric or asymmetric. Much of the literature is focused on de-
terministic and symmetric games. Further, payoffs may be positive only or else allow
both positive and negative payoffs. This difference leads to a difference in the type of
RL stimulus. In RL, there are two main types of behaviours: approach and avoidance.
Approach behaviour is the tendency to repeat the associated choices after receiving a
positive stimulus; avoidance behaviour is the tendency to avoid the associated actions
after receiving a negative stimulus. It is possible to allow for avoidance behaviour in
addition to approach behaviour. Some models, such as (Cross, 1973), consider only
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positive stimuli. Others, such as (Lahkar, 2017), allow for both positive and negative
stimuli. Learning may converge to different points depending on the type of stimulus.

2. Types of learners: The population may be homogeneous (Stimpson & Goodrich,
2003; Crandall & Goodrich, 2005) or heterogeneous (Vassiliades et al., 2011)) in that
the players use the same (different) learning strategies.

3. Partner links: The interaction structure defines an agent’s co-players and is given
by a lattice or a graph structure. The structure may be imposed exogenously or evolve
endogenously. Further the links may be held static throughout the learning process
(Bazzan et al., 2011; Ezaki & Masuda, 2017; Feehan & Fatima, 2022), or allowed
to change dynamically during the course of play (Skyrms, 2004; Ezaki & Masuda,
2017). A key aspect related to dynamic links is the frequency of re-structuring, i.e.,
the number of times a matched pair will play a game before re-matching occurs.

4. The speed of learning: The speed of learning may be held constant or may be
allowed to change during the process of learning. Some models such as the RE model
(Roth & Erev, 1995; Erev & Roth, 1998) vary the learning rate, initially learning fast
but gradually slowing down, thus obeying the law of practice. In other models such
as the BM model (Bush & Mosteller, 1955) the learning rate does not change. This
parameter is a key determinant of the time taken for learning to converge and also the
point of convergence; see (Izquierdo & Izquierdo, 2008) for an account of the effect of
learning rate on the evolution of cooperation in a PD game.

5. The learner’s ability to forget the past: When taking experience into account,
a learner may give equal weight to all experiences regardless of the time (the distant
past or the recent past) the experience was gained. Alternatively, newer experience
could be given a higher weight than old ones giving the learner the ability to forget
the past (Erev & Roth, 1998; Rustichini, 1999; Beggs, 2005). How far back a player
can remember depends on their memory bound.

6. Inertia: In some models such as (Izquierdo et al., 2008), the action that an agent
chooses in any time period is given by the following rule. If the payoff of the action
chosen in the previous time period is no less than their aspiration, then the same
action is chosen again. Otherwise, some other action is chosen with probability 1− p
where p indicates inertia toward the recently chosen action. In some models such as
(Karandikar et al., 1998; Bendor et al., 2001a, 2001b), there is inertia, i.e., a positive
bias toward most recently selected actions. Others such as (Bush & Mosteller, 1955;
Macy & Flache, 2002) lack inertia. Learning strategies are typically formulated so as
to balance inertia and experimentation, i.e., trying new actions regardless of the past
payoff experience.

7. Ability to recognize co-players: Some RL models ascribe higher levels of ratio-
nality to the individuals. For example, the ability to recognize co-players. Defections
become safe if players are anonymous. The identification of individuals is a possible
means for discouraging defections (Ozaita et al., 2020).
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8. Ability to choose co-players: In the context of dynamic networks, individuals
must be able to strategically choose and refuse co-players (Skyrms, 2004).

9. The aspiration level: The payoffs received during RL are evaluated against an
aspiration payoff. In some models such as (Roth & Erev, 1995) the aspiration payoffs
are not explicit while in others such as the BM model (Bush & Mosteller, 1955) they
are explicit. A learner’s aspiration level may be fixed as in (Bendor et al., 1994)
or varied endogenously as in (Karandikar et al., 1998; Bendor et al., 2001a, 2001b;
Macy & Flache, 2002). Learning agents can thus respond to stimulus by i) adapting
their behaviour, and ii) by adapting their aspirations, a process known as habituation.
Aspirations may be varied in many different ways, and the level and adaptability of
aspirations crucially determine the learning trajectory.

10. Psychological traits: The important role of psychology in human behaviour led to
explorations of psychologically motivated RL models. In this context, several works
(Gracia-Lázaro et al., 2012b; Feehan & Fatima, 2022) combined individual psycho-
logical traits such as emotion and mood with the rational decision making abilities of
individuals to show how these traits impact on cooperation in dilemmas.

4.5 Mechanisms for Incentivizing Coopertion

In the context of games, RL can be used for various purposes. One of the uses is to learn
to play some equilibrium. However, our focus is on the use of RL for dilemma resolu-
tion. Many studies (Sandholm & Crites, 1996; Leibo et al., 2017) using RL for dilemma
games showed that, by itself, an RL model may be insufficient for dilemma resolution. In
order to overcome this problem, a basic RL model is typically supported with some mecha-
nisms for incentivising cooperation. With such mechanisms, many theoretical (Kim, 1999;

Strategic

Prosociality
Sanctions

(Individual) Reputation
Aspiration
Reciprocation

Structural
(Interaction structure)

Fixed exogenously
Evolve endogenously

Psychological Emotion
(Individual) Mood

Table 6: Reinforcement learning: A taxonimized summary of mechanisms.

Palomino & Vega-Redondo, 1999; Bendor et al., 2001a, 2001b; Izquierdo et al., 2007; Nor-
man, 1968, 1972) and empirical (Macy, 1991; Crandall & Goodrich, 2005; Izquierdo et al.,
2007; Izquierdo & Izquierdo, 2008; Masuda & Ohtsuki, 2009; Bazzan et al., 2011; Yu et al.,
2015; Ezaki & Masuda, 2017; Ozaita et al., 2020) works have shown mutual cooperation
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as the outcome for dilemma games. Literature on this topic has utilized a variety of mech-
anisms which may be taxonomised into three main categories: strategic, structural, and
psychological, although some may belong to multiple categories. These are summarized in
Table 6.
Strategic: The following strategic mechanisms are employed at the level of individuals:

1. Prosociality: Prosociality, an individual’s tendency to take into account the rewards
of others for the appraisal of their own rewards, has the capacity to resolve dilemmas.
For example, in the context of Stag-Hunt coordination games, Peysakhovich and Lerer
(2017, 2018a) examined a deep RL strategy by adding an element of prosociality to
it. Starting from randomly initialized policies, they compared performance in three
different situations: both agents are selfish, one is selfish and the other prosocial, and
both are prosocial. Coordination was best achieved when both agents are prosocial,
but having just one prosocial agent can also help lead the agents to coordinate on
Pareto-dominant outcomes. More recently, Fan et al. (2022) studied Q-learning for
a PD played on a square lattice with periodic boundary conditions. By defining and
individual’s reward to include the rewards of their neighbours they showed that Q-
learning can effectively promote cooperation. Their results generalised well to small-
world and scale-free networks.

2. Sanctions: Cooperation may be achieved by means of sanctioning mechanisms for
punishing non-cooperative behaviours. Sanctions may be administered in various ways
by various sanctioning agencies. For example, payoffs may operate as sanctions in PD
games. In this case, the sanctioning mechanism may be centralized (Babes et al.,
2008; Grimm & Mengel, 2011), or a decentralized one (Kosfeld & Riedl, 2004) in
which those individuals who cooperate punish free riders by decreasing their payoffs.
For spatial PD games, individuals can be punished by making participation voluntary
(this allows cooperators the opportunity to decline interaction with free riders), or by
allowing individuals to create and terminate links with co-players (Macy, 1991). For
all these mechanisms, the achievement of cooperation depends on the magnitude and
severity of sanctions (Macy, 1991), the players initial propensities to cooperate, and
the number of individuals in the population.

3. Reputation: A key obstacle for cooperative behaviour is the anonymity of players.
Free riders can get away without retaliation if they cannot be identified. It is therefore
crucial to be able to identify free riders. This can be realized by means of reputations
or some form of identification marks. Phelps (2013) studied a donations game played
by a structured population in which reputations are used by the players to manipulate
the network connections to their strategic advantage and showed how the network
evolves. Ozaita et al. (2020) investigated a Bush-Mosteller model together with
ethnic markers12 (a marker is an observable agent characteristic useful for identifying
individuals) in coordination dilemma games in order to study the influence of markers
on agent coordination. In addition to choosing a strategy for playing the coordination
game, agents also choose partners on the basis of their markers. The authors showed

12Contrast this with (Macy & Flache, 2002) where aspirations are considered without ethnic markers.

922



Learning to Resolve Social Dilemmas: A Survey

that markers allow to resolve the coordination problem through RL provided the agent
aspiration levels lie in a suitable range.

4. Aspiration: In any RL model, there are two distinct cognitive mechanisms that guide
a learner toward better outcomes: approach which is driven by rewards, and avoidance
which is driven by punishments. What is reward and what is punishment depends on a
learner’s aspiration level. Aspirations thus crucially shape the learning process, and in
the context of dilemmas, whether behaviours converge and how quickly they converge
to cooperation depends on the aspirations of the learners. Many studies have demon-
strated this phenomenon. Karandikar et al. (1998) extended the fixed-aspiration
model given in (Bendor et al., 1994) (which, in turn, has its origins in (Mosteller,
1956)) by varying aspirations endogenously. For a class of 2× 2 games which includes
PD, they showed analytically that, conditional on the speed at which aspirations are
updated, both players ultimately cooperate most of the time. Other variants of the
BM model (Bush & Mosteller, 1955), have been studied elsewhere (Izquierdo et al.,
2007; Izquierdo & Izquierdo, 2008). Flache and Macy (2002) and Macy and Flache
(2002) introduced a model which integrates the BM (Bush & Mosteller, 1955) and the
RE (Roth & Erev, 1995; Erev & Roth, 1998) models, and used computer simulations
to analyse the effect of interaction of the model parameters (the aspiration level, the
learning rate, and a probability update parameter) on the cooperation rate for three
social dilemmas, viz., Prisoner’s Dilemma, Stag Hunt, and Chicken. Stimpson and
Goodrich (2003) extended the model in (Karandikar et al., 1998) ((Karandikar et al.,
1998) is for 2 × 2 games) to multi-agent games and showed how it leads to mutual
cooperation in self play. Izquierdo et al. (2008) extended Macy and Flache’s (2002)
work on aspiration-based reinforcement learning for 2× 2 dilemma games by provid-
ing analytical insights into the dynamics of the model. In particular, they analyzed
the robustness of (Macy & Flache, 2002) to occasional mistakes made by players in
choosing their actions (i.e. trembling hands) and showed how the inclusion of small
quantities of randomness in the players’ decisions can change the dynamics of the
model dramatically.

5. Reciprocation: RL in which the learning is over repeated game strategies (rather
than only stage game strategies) help enhance cooperation. Repeated game strategies
facilitate reciprocation; they are typically conditioned on some history of choices made
previously, rather than being guided merely by rewards. This approach was used in
(Erev & Roth, 2002) for the RE model to enable agents to reciprocate, thereby result-
ing in more cooperation in PD and a better prediction of experimental data relative
to an approach in which only stage game strategies are learnt. Other works have
also shown that learning repeated strategies leads to more cooperation in dilemmas.
For example, Crandall and Goodrich (2005, 2011) introduced an RL algorithm called
M-Qubed (an acronym for Max or Minimax Q-learning) in which the agents learn to
make compromises to reach mutually beneficially outcomes. In self-play, which may
be viewed as a form of reciprocation, M-Qubed agents were shown to resolve dilem-
mas. The effectiveness of repeated game strategies was also confirmed in (Masuda
& Ohtsuki, 2009) for PD game using a temporal-difference variant of the SARSA
algorithm.
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Structural: The following mechanisms are employed at the population level:

1. Exogenously fixed structure: For dilemmas that are played by a population, coop-
eration can be achieved by using an appropriate interaction structure. One possibility
(Bazzan et al., 2011) is to have a hierarchical structure over the population with in-
dividuals who are above in the hierarchy using knowledge about the Q-values for the
agents below to recommend to them actions directed toward reaching socially desir-
able outcomes. In this approach, the underlying assumption is that such a hierarchy
exists and that knowledge about other agents’ Q-values is available. In contrast to
this approach, others have considered independent learners without any hierarchy.
For example, Ezaki and Masuda (2017) considered a PD played on a static regular
graph by learners using the BM model and observed network reciprocity under certain
conditions that are given in terms of the relation between the benefit-to-cost ratio for
the dilemma game and the degree of a node. Similar results were also confirmed in
(Cassar, 2007; Grujić et al., 2010; Rand et al., 2011; Gracia-Lázaro et al., 2012b;
Rand et al., 2014; Fan et al., 2022).

2. Endogenously evolving structure: Interaction structure may be imposed exoge-
nously, or else allowed to evolve endogenously by having players choose their co-players
in addition to choosing their stage game strategies. The partner selection approach
is instrumental in resolving dilemmas. For the Prisoner’s Dilemma, Skyrms (2004)
studied reinforcement learning for partner selection; the player strategies are fixed but
the interaction structure changes as a result of players being allowed to choose their
co-players. The players use RL to learn who to choose as co-players. The number of
interactions in a given duration is not the same for each individual. If dynamic aspi-
rations are introduced, cooperators learn to visit only cooperators. Defectors learn to
interact with defectors. The population of players gets segregated into two mutually
exclusive classes, each of which interacts exclusively with itself. Partner selection has
been used in many other works including (Macy, 1991; Phelps, 2013).

Psychological: Instead of viewing individuals as purely rational decision makers, a broader
perspective can be taken by combining an individual’s affect with their rationality to study
learning dynamics. Despite the nascent state of research on the role of affect on decision
making, there is growing evidence that emotion and mood are potent and predictable drivers
of decision making (Schwarz, 2000; Lerner et al., 2015). This finding led to investigations
on the existence of a link between affect and cooperation in dilemmas. For a Chicken
dilemma, Hertel et al. (2000) studied the effect of mood on human cooperative choices
under laboratory conditions. They concluded that, contrary to the presumed simple relation
stating positive mood leads to higher cooperation than negative mood, positive mood led
to quicker heuristic style decision making. On the other hand, negative mood produced a
more time-consuming decision making possibly leading to more cooperation than positive
mood. Yu et al. (2015) extended the Q-learning model by endowing agents with emotions
and studied dilemma games played on different network structures. The individual agents
have an internal model for emotion appraisal. Emotions are appraised in terms of individual
and social welfare (the term ‘social’ is used to refer to the agent’s neighbourhood in the
network topology) and the relation between them. They studied different ways of appraising
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emotions together with different network topologies and showed how these differences can
impact cooperation in two-person Prisoner’s Dilemma, Stag Hunt, and Chicken games.
Horita et al. (2017) examined whether moody conditional coperation (MCC) (Gracia-Lázaro
et al., 2012b; Grujić et al., 2014; Cimini & Sánchez, 2014; Ezaki et al., 2016; Gutiérrez-Roig
et al., 2014) observed in humans playing a repeated PD could be explained by RL. MCC
is a behaviour rule under which a player’s probability to choose an action depends on the
amount of cooperation they observed in the previous round and their own previous action.
More specifically, a player cooperates more when more of their neighbors cooperated in the
previous round, and further, a player’s probability to cooperate also depends on his mood,
i.e., whether the player himself cooperated in the previous round. They showed that the BM
model (Bush & Mosteller, 1955) and the RE model (Roth & Erev, 1995; Erev & Roth, 1998)
account for the observed human behaviour roughly as accurately as the MCC model did.
Some works (Collenette et al., 2017b, 2017a; Feehan & Fatima, 2022) introduced simulated
mood (Marsella et al., 2010), in the decision-making process of reinforcement learners and
showed how the addition of mood influences cooperation in a spatial Prisoner’s Dilemma. In
general, the literature on this topic is recent and scant, the existing results lack robustness
as the studied models are very stylized with huge variations in terms of the methods used
for affect communication, appraisal, and reasoning.

To sum up, RL is directed toward bounded rational behaviour: the players satisfice
rather than maximise payoffs. Players choose their current actions on the basis of their
past experience: those actions that resulted in satisfactory (satisfaction is judged against an
aspiration level which they may acquire through social inheritance or experience) payoffs are
more likely to be chosen relative to actions with unsatisfactory payoffs. In contrast to players
in classical game theory, RL agents are informationally and cognitively less demanding. RL
agents do not have a model of their environment, i.e., the strategic structure of the game.
Yet, by combining aspirations, reciprocation, and forgiving strategies, myopic reinforcement
learners can learn to play dominated strategies and enhance cooperation in dilemma games.
Further, these models provide support to data observed in experiments with human subjects.

Although the basic principles of reinforcement learning and evolutionary game theory
appear to be different, there are links between them. The principles that underlie strategy
update rules are analogous; in both, evolution and RL, the probability that an individual
uses a given strategy increases if the associated payoff is above some benchmark and de-
creases if below. In evolution, the benchmark is typically assumed to be the mean payoff
for the population. In RL, the benchmark depends on an individual’s aspirations. Börgers
and Sarin (1997) gave a formal analogy between reinforcement learning at the individual
level and biological evolution. They used the BM model (Bush & Mosteller, 1955) with
aspiration level exogenously fixed at zero. The sets of stimuli in their learning model cor-
respond to the populations of players in the biological model. The re-programming of
stimuli in their learning model is the analog of the reproduction and death processes in
the biological model. For two-player normal form games, they showed that their model
converges to replicator dynamics. On a related note, Tuyls et al. (2003) and Tuyls et al.
(2006) considered certain classes of two-player matrix games and derived a connection be-
tween the exploration-exploitation scheme of RL and the selection-mutation mechanisms
of evolutionary game theory; exploration being analogous to mutation and exploitation to
selection. Further, there are links between RL and replicator dynamics; Kaisers and Tuyls
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(2010) showed empirical confirmation of the match between the learning trajectories of their
frequency-adjusted Q-learning (FAQ-learning) algorithm and replicator dynamics for three
2× 2 games, viz., Prisoner’s Dilemma, Battle of Sexes, and Matching Pennies.

5. Best-Reply Learning

The cognitive ability of a reinforcement learner is limited to suitably adjusting their strate-
gies according their own received feedback without any knowledge of their opponent’s strate-
gies or payoffs, i.e., reinforcement is based on the learner’s personal past experience. In
contrast, best responders have a relatively higher degree of rationality. Best responders are
epistemic learners; they possess knowledge about the structure of the game and how the
combination of others’ actions and their own affect their payoffs (Walliser, 1998; Fudenberg
et al., 1998). Owing to their high rationality13, best-reply models have been heavily used in
the literature to explain data gathered from laboratory experiments with humans playing
dilemma games. To this end, the parameters of a best-reply model are fitted to experimen-
tal data. The fitted learning model can then be used to simulate the behaviours of players
under various conditions of interest that could not easily be tested with human subjects,
for example when the horizon is too long for subjects to play under laboratory conditions.

In more detail, best-response learning works as follows. A learner observes all past moves
of their opponent and uses this information to form a model of the opponent. The model
contains their beliefs about how the opponent acted in the past. Learning is an iterative
process; the learner updates its model of the opponent, uses it to anticipate the opponent’s
next move and play a myopic best response to the anticipated move.

Since a learner’s best response depends on their acquired beliefs, some form of belief
revision rules are needed for updating beliefs as the process of learning unfolds and new ex-
perience is gained. On the basis of their beliefs, a learner extrapolates the future behaviours
of the other players. Extrapolation can be done in a variety of ways giving rise to a host of
best-response models described in Sections 5.1 to 5.4.

5.1 Best Reply Model: Cournot Dynamics

In Cournot learning (Cournot, 1838), a stage game is played repeatedly over a series of
discrete time periods. A learner’s opponent model simply contains the action that the
opponent played in the previous time period. A learner assumes that the opponent will do
the same thing they did in the previous time period. The learner then chooses a strategy
that is their best response under this assumption. The dynamics that results when all
players do this is called Cournot dynamics.

13Note that while best responders have a higher degree of rationality relative to reinforcement learn-
ers, both RL and best-reply models are individual learning models as opposed to the population learning
phenomenon of evolutionary games.
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5.2 Best-Reply Model: Fictitious Play

Fictitious play (Luce & Raiffa, 1957; Shapley, 1964; Cournot, 1838; Fudenberg et al., 1998;
Berger, 2007) was introduced by Brown 14 (1951) and Robinson (1951). In fictitious play,
a stage game is played repeatedly over a series of discrete time periods. In each round,
each player can observe the action chosen by their opponent. Based on these observations,
each player forms certain beliefs about their opponent in the form of an opponent model.
In each round, beliefs are updated by considering the entire history up to a current round,
and under the assumption that the opponent is playing a stationary mixed strategy. Beliefs
are initialised arbitrarily and then updated in each round as follows. If A is the set of
the opponent’s available actions for the stage game, and for each a ∈ A, w(a) denotes
the number of times that the opponent played action a so far, then the agent assesses the
probability of a in the opponent’s mixed strategy as

P (a) = w(a)∑
a′∈A w(a′) .

Each player then chooses an action that is a best reply with respect to the updated prob-
abilities breaking any ties randomly. The next iteration begins after an action is chosen
by both agents. Beliefs thus evolve over time as a player gains experience. The learning
process15 was shown to converge in a large class of games (Berger, 2007) though not in all
games (Shapley, 1964).

More generalised versions of this basic form have incorporated various additional fea-
tures. One variation is to use different weights for different observations; in traditional
fictitious play, all observations are weighted equally. Weights can be calculated in more
general ways, possibly giving more importance to the recent plays (Fudenberg et al., 1998)
or having time-varying weights (Crawford, 1995). Placing the entire weight on the most
recent play results in Cournot dynamics. Another possible variation to the basic framework
is to choose different tie-breaking rules in the event of multiple optimal actions. Yet another
possible variation is to consider different initial beliefs. Another possibility is to vary the
basic framework by allowing the players to choose actions that are suboptimal (within a
bound) with respect to their beliefs (Fudenberg & Kreps, 1993). Other generalizations are
stochastic fictitious play (Fudenberg et al., 1998) in which players randomize when they
are nearly indifferent between choices thereby allowing a best reply to be a mixed strategy,
dynamic fictitious play (Shamma & Arslan, 2005) in which players use the best response to
a forecasted opponent strategy, and moderated fictitious play (MacKay, 1992; Rezek et al.,
2008) in which the probabilities over opponent’s actions are moderated for possible errors
and uncertainties. Finally, some generalizations (Kaniovski & Young, 1995) have considered
incomplete information and stochastic perturbations.

14Brown (Brown, 1951) introduced fictitious play as an iterative method of solving an iterated unper-
turbed game, and Robinson (Robinson, 1951) proved convergence for 2 × 2 games. Fictitious play has since
been examined in many articles including (Kaniovski & Young, 1995; Fudenberg & Levine, 1995; Fudenberg
et al., 1998; Benaım & Hirsch, 1999) as a learning rule for perturbed (in a perturbed game (Harsanyi, 1973),
payoffs vary randomly around a mean that defines the unperturbed or classical game) games.

15No-regret learning (Jafari et al., 2001) is a type of best-response learning whose behaviour closely
resembles fictitious play in that, for many games including dilemmas, learning converges to a game-theoretic
equilibrium.
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5.3 Best-Reply Model: Adaptive Play

In fictitious play, the agents choose an action that is optimal considering the entire history
of their opponent’s actions. In contrast, in adaptive play, the agents base their decisions
on limited information about actions of other agents in the recent past, and they do not
always optimize. Young (1993) showed that, for general games, adaptive play need not
converge to a Nash equilibrium, either pure or mixed strategies. However, for repeated play
of a certain restricted class of coordination games with multiple Nash equilibria, he showed
that regardless of the initial choice of strategies, there exists a sequence of best replies that
converges to a strict, pure strategy Nash equilibrium. It cannot be said in advance which
equilibrium will prevail, since this depends on the learning process and on the initial state.

5.4 Hybrid Models

The best-reply and RL approaches model different aspects of human cognition. Best-reply
models start with the premise that players keep track of the history of previous play by
other players and form some belief about what others will do in the future based on their
past observations. Then they tend to choose a best-response, a strategy that maximizes
their expected payoffs given the beliefs they formed. In contrast, RL assumes that strategies
are reinforced by their previous payoffs, and the propensity to choose a strategy depends on
its stock of reinforcements. Players who learn by reinforcement do not generally have beliefs
about what other players will do. The information used by each approach is quite differ-
ent. Best-reply models do not reflect past successes (reinforcements) of chosen strategies.
RL models do not reflect the history of how others played. Further, RL models were pri-
marily used by psychologists while best-reply models by game-theorists. These differences
prompted a comparison of their descriptive powers for explaining human behaviour. The
results of such comparative studies have generally been inconclusive; with RL appearing
to do better in constant-sum games (Mookherjee & Sopher, 1997) while fictitious play in
coordination games (Ho & Weigelt, 1996). However, the different comparative studies vary
widely in terms of model specifications and parameter estimation techniques. These differ-
ences led to the development of more general hybrid models that include several different
models as special cases. The hybrid models are parameterized such that its special cases
can be simulated by suitable adjusting those parameters. This facilitates a more systematic
comparison of the various models.

Cheung and Friedman (1997) constructed a one-parameter hybrid model that includes
Cournot and fictitious play as special cases. In this model, any player i observes a portion of
the current outcome of the stage game and forms a belief si. What is observed as outcome
depends on the institutional arrangements of the played game, for example, the observed
outcome could be i’s own payoff or perhaps the entire combination of payoffs of the others.
The learning rule is given by:

si(t + 1) =
si(t) +

t−1∑
u=1

γu
i si(t− u)

1 +
t−1∑
u=1

γu
i

(10)
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where γi denotes player i’s discount factor. Setting γ = 0 in yields the Cournot learning
rule, and setting γ = 1 yields fictitious play. The case 0 < γ < 1 is adaptive learning where
all observations influence the state but the more recent observations have greater weight.
The case γ > 1 implies that older observations have greater weight. Such values would
characterize a player who relies on first impressions. The case γ < 0 is counter-intuitive in
that it implies that the influence of a given observation changes sign each period. For 2× 2
games, they defined the probability that player i chooses the first action as:

P (ai,t = 1 | ri,t · αi, βi) = F (αi + βiri,t) (11)

where ri,t is the expected advantage of the first action given si(t) and the payoff matrix for
the stage game, βi is i’s degree of responsiveness to ri,t and her own idiosyncractic tendency
αi to favor the first action, and F (x) is a cumulative distribution function on (−∞,∞) such
as a logistic function F (x) = (1 + e−x)−1.

Camerer and Hua Ho (1999) and Camerer (2003) introduced a more generalized learn-
ing model which includes reinforcement learning and fictitious play as special cases and hy-
bridizes their key elements. They called this model experience-weighted attraction (EWA).
The key idea that underlies EWA is the actual relation between RL and fictitious play:
best-reply models do not reflect past reinforcements and reinforcement models do not re-
flect the history of how others played. In RL, if player 1 (player 2) picks strategy sj

1 (sk
2),

then player 1’s strategy sj
1 is reinforced according to the payoff π1(sj

1, sk
2) while unchosen

strategies sh
1(h ̸= j) are not reinforced at all. In EWA, an expanded notion of reinforce-

ments which includes foregone payoffs is used: unchosen strategies are reinforced based on
a multiple δ of some hypothetical payoff π1(sh

1 , sk
2) they would have earned. The model

weights hypothetical payoffs that unchosen strategies would have earned by δ, and weights
the payoff actually earned from a chosen strategy by 1 − δ so that the total weight is 1.
Action probabilities are then calculated in terms of these reinforcements.

The EWA learning model (Camerer & Hua Ho, 1999) was subsequently extended in
various ways. Camerer et al. (2002) extended it to capture sophisticated learning and
strategic teaching. In the extended model, the players develop multi-period rather then
single-period forecasts of others’ behaviours. This was shown to perform better than RL
and other belief models at fitting and predicting data pertaining to human behaviours in
several games including dilemmas (Ho et al., 2007; Zhu et al., 2012).

The EWA was extended in another way taking into account the growing evidence sug-
gesting that social norms are successful in the provision and maintenance of cooperation
in everyday life (Fehr & Fischbacher, 2004). Given the role of norms in the emergence
of cooperation, Realpe-Gómez et al. (2018a) introduced a cognitive-inspired model, called
Experience Weighted Attraction with Norm Psychology (EWAN), that incorporates some
key features of norm psychology into the EWA model (Camerer & Hua Ho, 1999). The
EWAN model was shown in (Realpe-Gómez et al., 2018b) to support human cooperation
in large-scale PD games on square lattices.

More recently, Vazifedan and Izadi (2023) generalized the EWA model by combining it
with cognitive hierarchical models for learning in games (Camerer et al., 2003) and showed
that their model describes and predicts human behaviour better than some existing models.
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Stage game (SG) parameters

Payoff matrix
Deterministic or Non-deterministic
Symmetric or Asymmetric
Cooperation index

Horizon Finite or indefinite
Nature of equilibria Cooperative or non-cooperative

Structural parameters

Types of learners Homogeneous or heterogeneous

Partner matching Exogenous or endogenous
Static or dynamic

Partnership duration Frequency of restructuring partnerships

Individual player parameters

Cognitive
Memory bound
Ability to recognize co-players
Foresight

Strategic Ability to create/ break partnerships
Psychological Emotion, mood

Table 7: Best-reply models: A summary of key parameters.

5.5 Best-Reply Models: Key Parameters

The key parameters pertaining to best-reply learning are as follows (see Table 7 for a
summary):

1. Type of stage game: The stage game payoffs could be deterministic or non-
deterministic, symmetric or asymmetric (Ahn et al., 2007). A lack of determinism
can result in lower cooperation rates, as demonstrated in (Poppe, 1980) for the case
of probabilistic payoff matrices used in laboratory experiments with the Prisoner’s
Dilemma. Another aspect related to stage game is the cooperation index. Coopera-
tion index, a function of the payoffs R, T , P , and S, is a useful predictor of cooperation
in humans (see Section 6 for details).

2. The horizon: Game-theoretic predictions for repeated games crucially depend on
whether a game is finitely or infinitely repeated: in a finitely repeated dilemma
game, cooperation usually cannot occur (Luce & Raiffa, 1989), but in the infinite
case, some equilibria generate cooperative choices while some generate individualistic
choices (Roth & Murnighan, 1978). Given the significance of horizon16 in theory,
numerous studies (Engle-Warnick & Slonim, 2006; Camera & Casari, 2009; Dal Bó &

16Horizon is relevant only to best-reply models. In contrast, EGT and RL models do not have horizon.
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Fréchette, 2011; Sherstyuk et al., 2013; Fréchette & Yuksel, 2017) have investigated
the influence of horizon in laboratory experiments with humans and also in simula-
tions with learning models to show how the horizon can impact on cooperation rates.
Many different horizon rules have been used with much disagreement about their pros
and cons. Broadly, these rules can be divided into three main categories:

– A known finite horizon rule: The stage game is repeated a finite number of times
and the players know in advance how many times the game will be repeated, as
in (Flood, 1952; Rapoport et al., 1965).

– An unknown horizon rule: The players are not informed about the number of
times the stage game will be repeated. The players only know that there will be
a certain minimum number of periods they will play, but the actual number of
periods is unknown, as in (Fouraker & Siegel, 1963).

– A random stopping rule: In each time period, there is a non-zero probability p
that the game will be played again in the next time period (i.e., each period has
probability 1 − p of being the last), and p is made known to the players (Roth
& Murnighan, 1978; Axelrod, 1980; Fréchette & Yuksel, 2017). This is known
as indifinitely repeated game, and for experiments conducted in the laboratory,
this is a very common way of implementing an infinite horizon since it is impos-
sible to experimentally study infinite horizon games17. Another type of design
(Sabater-Grande & Georgantzis, 2002; Cabral et al., 2014) has also been used to
implement infinite horizon: a fixed number of rounds are played with certainty
with payoffs that are exponentially discounted at rate p, after those rounds, a
random termination rule with probability p of continuation is used. Now, for an
indefinitely repeated game with continuation probability p, the length T of the
repeated game is a random variable with expected value E(T ) = 1

1−p and stan-
dard deviation

√
( p

(1−p)2 ). In standard theory, only the expected match length
should matter for behaviour in indefinitely repeated dilemma games with con-
tinuation probability p, and match length realizations should be irrelevant for
behaviour (Mengel et al., 2022). However, given that match length realizations
will be small in practice, several studies have focussed on understanding whether
match length realization influences behaviour. These investigations (Murnighan
& Roth, 1983; Blonski et al., 2011; Dal Bó & Fréchette, 2018; Mengel et al.,
2022) have demonstrated that the sequence of match length realizations has a
substantial effect on cooperation in dilemma games. Further, in their experi-
ments with humans, Normann and Wallace (2012) compared cooperation rates
in the iterated PD game for three different horizon rules: known, unknown, and
random, and showed that cooperation rates increased significantly with the ex-
pected length of the game. Numerous other studies (Battalio et al., 2001; Bó,
2005; Camera & Casari, 2009; Dal Bó & Fréchette, 2011; Fréchette & Yuksel,
2017; Dal Bó & Fréchette, 2018; Bernard et al., 2018; Embrey et al., 2018; Mengel
et al., 2022) have confirmed the dependence of cooperation on the horizon.

17See (Dal Bó & Fréchette, 2018) for a recent survey on cooperation in infinitely repeated games.
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3. The nature of equilibrium: In the infinitely repeated play (usually implemented
with a certain continuation probability p) of the Prisoner’s Dilemma some equilibria
generate cooperative choices, while some generate individualistic choices. For example,
(Roth & Murnighan, 1978) showed that there are cooperative equilibria which may
generate cooperative choices by both players at every period if p ≥ (T −R)/(T − P ),
but no such equilibria exist if p < (T − R)/(T − P ). Several studies on laboratory
experiments with PD games (Roth & Murnighan, 1978; Fréchette & Yuksel, 2017),
showed that subjects made the cooperative choice more frequently when cooperation
formed an equilibrium strategy.

4. Types of learners: The interactants in a dilemma may be homogeneous in that
they employ the same learning algorithm or heterogenous with different individuals
employing different learning algorithms.

5. Partner matching: A matching rule prescribes how the players in a population will
be paired for playing a stage game. This can be prescribed exogenously or decided
endogenously (Kandori, 1992; Hauk, 2001) by the players. Further, the links may be
static or may vary dynamically during play.

6. Partnership duration: Once matching is done, the duration of play can be varied for
the matched pairs. The frequency of restructuring partnerships effects the behaviours
that individuals learn.

7. Individual traits: Individuals may vary in terms of their cognitive abilities such as
their memory bound, their ability to recognize co-players, and the degree of foresight
(i.e., looking ahead into the future to decide the current optimal action). Further,
there may be variations in strategic abilities relating to partner choice, and how their
psychological traits such as emotion and mood combine with their rationality.

Strategic
(Individual)

Reward/ punishment
Trust and reputation
Communication
Reciprocity

Structural
(Interaction structure)

Fixed exogenously
Endogenously evolving

Psychological
(Individual)

Emotion
Mood
Intelligence

Table 8: Best-reply models: A taxonomized summary of mechanisms.
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5.6 Mechanisms for Incentivizing Coopertion

In the context of best-reply models, many different mechanisms have been shown to enhance
cooperation. These can be categorised into strategic, structural, and psychological as shown
in Table 8. Some of the mechanisms may belong to more than one category.

Strategic: Individuals strategically employ the following mechanisms:

1. Reward/punishment: In the context of computer-computer interactions, Baumann
et al. (2020) introduced an external agent for promoting cooperation between agents
learning to play dilemma games by actor-critic reinforcement learning. The external
agent can observe the actions of the players and distribute (positive or negative)
rewards to the players after observing their actions, so as to guide the learners to
a socially desirable outcome. In addition to the reward from the external agent, the
players also receive a reward as per the payoff matrix for the dilemma game. Empirical
results showed that their model guides the learners to the socially preferred outcome
of mutual cooperation in PD, Chicken, and Stag Hunt games.

2. Trust/ reputation: In an attempt to resolve the finitely repeated PD in the con-
text of rational self-interested behaviour, Kreps et al. (1982) introduced incomplete
information about one or both players’ options, motivation or behaviour, and ana-
lytically showed how reputation effects due to information asymmetries can generate
significant levels of cooperation in sequential equilibrium. Ahn et al. (2001) examined
cooperative behaviour in one-shot PD games as a function of the payoff structure of
the PD games and the history of prior play in a series of Stag Hunt coordination
games. In their experiments with human subjects, they found that the history of
prior play in coordination games is a good predictor of cooperation in the PD games.
In particular, the importance of history was significantly more pronounced if players
were matched repeatedly with the same person, due to trust and reputation effects,
compared to random matching. In a similar vein, Ivanov et al. (2023) used a hybrid
approach. They used RL together with a trusted mediator, who can collect informa-
tion and act on behalf of the dilemma game players, to achieve cooperation in their
computer simulations.

3. Communication: Several studies have shown that communication is a key deter-
minant of cooperation. This finding was confirmed for spoken as well as written
communication. For example, Steinfatt (1973) showed that spoken communication
promoted cooperation in laboratory experiments with humans playing a repeated
PD. Lindskold and Finch (1981) experimentally studied the repeated PD allowing the
participants to communicate by sending hand written notes after playing some initial
rounds. Many other studies (Balliet, 2010; Kagel, 2018) showed a mixed bag of re-
sults possible through communication, with the main message being that cooperation
increases with the effectiveness of communication in inducing trust. Trust is induced
not just by sending conciliatory notes but by demonstration of cooperative choices.
Crandall et al. (2018) examined an RL approach that employs computing a variety
of expert strategies optimized for a range of 2 × 2 games that include dilemmas. A
meta-strategy is used by agents to select an expert to follow. Agents are allowed to
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exchange non-binding signals with co-players. This model was shown to cooperate
with people and also with a wide range of other learning algorithms. All the above
works are based on the assumption that the environment in which a dilemma is played
is noise-free, i,e., that the players’ actions can never be mis-executed. Rogers et al.
(2007) relaxed this assumption and introduced a method that uses communication
between players for enhancing cooperation in a noisy IPD.

4. Reciprocity: The effectiveness of best-response models at solving a dilemma depends
on who a best-responder is paired with. If the interactants use different learning
models, cooperation is hard to achieve. However, in self-play, it is possible for best
responders to reciprocate and thereby learn to cooperate. Several studies (Smale,
1980; Kendall et al., 2007; Banerjee & Sen, 2007; Han et al., 2011; Foerster et al.,
2018; Willi et al., 2022) have confirmed the efficacy of best-response in self-play. Most
of the literature on learning in repeated dilemma games has focused on having one
single game played in each stage. Thus, learning takes place specifically for the chosen
stage game. In contrast, LiCalzi and Mühlenbernd (2022) took a broader perspective
and studied best-reply learning across similar games (Mengel, 2012). In this learning
approach, the games are segregated into partitions, as distinguishing all games can
be too costly (require too much reasoning resources), the higher the cardinality of
the partition, the greater the reasoning cost. The learning approach allows agents
to learn to categorize games such that they tend to play the same action for games
placed in the same category. This category based learning was shown to fit empirical
data better than competitor models from the literature.

Structural: The interaction structure can be fixed exogenously or varied endogenously to
facilitate cooperation:

1. Exogenous structure: Several studies have shown how cooperation can emerge in
dilemmas when the structure is defined exogenously. For the Prisoner’s Dilemma,
Johnson et al. (1998) analytically investigated a best-reply model based on fictitious
play in which the players choose optimal strategies with probability less than one.
The players of a population are matched randomly to play the PD game. The payoff
matrix is given by S = 0, T = R + 1, and P = 1, i.e., R is the only variable. Under
the assumptions that all the players have a discount factor δ, and all the players have
access to global historical information, they concluded that cooperation emerges for
sufficiently large R and sufficiently small δ. Airiau et al. (2014) used fictitious play
(Fudenberg et al., 1998), Q-learning (Watkins & Dayan, 1992), and WoLF (Bowling
& Veloso, 2002) to show the emergence of conventions in social dilemma games such
as those that arise when two drivers arrive simultaneously at an intersection. The
agent interactions are given by a fixed network topology. While Airiau et al. (2014)
showed that an agent’s own experience is sufficient for the emergence of conventions,
prior work (Epstein, 2001; Kandori & Rob, 1995; Young, 1993) had shown the same
result but required agents to have knowledge about non-local interactions between
other agents. Duffy and Ochs (2009) showed that cooperation is supported in labo-
ratory experiments with humans for PD games for certain matching rules. In their
experiments, they compared the levels of cooperation for random matching and fixed
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matching in PD games with a high continuation probability p and showed that coop-
eration is supported in sequential equilibrium. They found that cooperation increases
as subjects gain more experience under fixed matching but not under random match-
ing, suggesting that random matching tends to suppress the inclination of subjects to
treat all stage games in a given session as a single supergame. Several other studies
(Camera & Casari, 2009; Bigoni et al., 2013) have also shown how cooperation can
be sustained in dilemmas for exogenously defined structures.

2. Endogenously evolving structure: Kandori (1992) considered situations where
each player carries a reputation, defectors are sanctioned, and the players change
their partners dynamically over time. He showed analytically how a population of
players can sustain cooperation in repeated PD games even when each individual
knows nothing more than his personal experience, and how the population can realize
any mutually beneficial outcome when each agent carries a reputation and reputations
are revised in a systematic way. Hauk (2001) studied a choice-refusal mechanism for
boundedly rational agents using an individual learning approach. The agents are
capable of remembering the past behaviour of their opponents and adjusting their
behaviour accordingly. The agents use an endogenously varying payoff tolerance level
for each possible pairing. Partners are accepted or rejected on the basis of tolerance
level. The model was shown to converge to stable cooperative behaviour.

Psychological: Certain psychological traits pertaining to individuals can influence coop-
eration rates:

1. Emotion: Nobel Laureate Herbert Simon (Simon, 1983) noted that, in order to un-
derstand human rationality, we have to understand what role emotion plays in it.
Recent research (Frank, 1988; Van Kleef et al., 2010; De Melo et al., 2014) provides
evidence that affect is influential in shaping human decision making. These findings
led to new decision-making models (Lerner et al., 2015; De Melo et al., 2014; de Melo
& Terada, 2019, 2020) that synthesize traditional rational choice inputs and emotional
inputs. These new models have been used in experimental investigations of the effect
of emotion on human behaviours in dilemma games. The emotion component is then
used to disambiguate the intentions of one’s counterpart. Results of these works sup-
port the correlation between an individual’s expectation of other’s behaviour based
on their observed emotion and actual cooperation in dilemmas. Studies (de Melo &
Terada, 2019) of human-human and human-machine interactions in dilemma games
have shown that humans cooperated just as much with humans as with a machine’s
virtual face that expressed cooperative emotion (e.g., joy following cooperation as op-
posed to joy following exploitation). All these findings have implications for dilemma
resolution; it is therefore critical to understand methods for reasoning with emotions
and methods for conveying intent through emotion.

2. Mood: Grujić et al. (2010) conducted laboratory experiments with human subjects
playing a lattice-structured PD game. They fitted an agent-based learning model
to their experimental data and explained human behaviours as being one of three
types: almost always defect, almost always cooperate, and moody conditional coopera-
tor (MCC). An MCC’s propensity to cooperate in any round depends on the number of
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cooperative neighbors observed in the previous round, and their own mood modelled
in terms of their own action in the previous round. These findings were confirmed in
(Gracia-Lázaro et al., 2012b, 2012a; Grujić et al., 2014).

3. Intelligence: Several studies considered the relationship between human cognitive
abilities (such as their information processing ability, memory, and emotional intelli-
gence) and their behaviour in PD games. Pincus and Bixenstine (1977) investigated
the effect of information about the PD payoff matrix on human behaviours in a lab-
oratory setting. The study revealed the same payoff matrix in different formats to
the participants. One format was the standard PD matrix while the other was a de-
composed PD matrix such that the summed payoffs of the components were equal to
the standard matrix. Their findings suggest that the effect on cooperation produced
by the decomposed format is due to the revealing of information that is not readily
grasped for the standard matrix. Pincus and Bixenstine (1979) showed that subjects
above the median on abstract information-processing ability, quantitative ability, and
verbal ability were more likely to achieve a cooperative resolution of the PD than
those below the median on these variables. Sela and Herreiner (1999) examined the
effect of memory; using fictitious play with bounded and unbounded recall for pure
coordination games (a pure coordination game is one for which payoffs off the diagonal
are zero), it was shown that players with unbounded recall coordinated almost surely
against their own type as well as against players with bounded recall. For PD games,
Fernández-Berrocal et al. (2014) showed that individuals with a high emotional in-
telligence score are not pre-disposed to cooperate but are able to respond flexibly to
others’ strategies in order to maximize long-term gains.

In short, best-reply models (especially the hybrid ones), owing to their higher level
of rationality relative to the other learning approaches, are not only useful for dilemma
resolution, but have been shown to effectively explain human behaviour in experiments
pertaining to dilemma games. As such, these models can be particularly useful for the
resolution of dilemmas arising in human-machine interactions.

6. Cooperation Indices

In the context of the learning methods studied in the previous sections, focus is on building
support mechanisms for promoting cooperation in dilemmas. In contrast, the topic of
cooperation indices is concerned with the understanding how the exogenous payoff structure
of a dilemma game impacts human cooperative behaviour. Human behaviour does not
match game-theoretic rational behaviour. People’s decisions can be more socially oriented.
When individuals have social preferences, they derive utility from the positive payoffs that
other decision makers receive. Recall that a dilemma is not just one game but a class of
games that satisfy certain properties. For example, PD is that class of games that satisfy
T > R > P > S. Different PD games have different relative payoffs and when the decision
makers hold heterogeneous social preferences, different games yield different behaviors. Not
all games in a class are equal in terms of elicited behaviour; all else being equal, cooperation
may be higher in certain games relative to others in the same class (Moisan et al., 2018).
It is therefore important to understand how the exogenous parameters, i.e., the payoffs
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R, T , P , and S of a dilemma game relate to cooperative behaviour. To this end, several
cooperation indices were proposed.

A cooperation index is some function of R, T , P , S, and the horizon, defined to be a
predictor of cooperation. The idea of cooperation index is appealing because it is simple;
cooperation can be predicted only in terms of these exogenous parameters. A variety of
cooperation indices were suggested. These are listed in Table 9.

Rapoport et al. (1965) proposed two indices of cooperation : r1 and r2. Subsequently,
numerous other indices were introduced. While most of these are defined in terms of payoffs
alone, the index g and the index BAD (basin of attraction for defection) consider also the
number of times a dilemma is repeated. These indices differ in terms of how they combine
various aspects of a dilemma game. The key aspects may be abstracted as follows:

• The risk that a dilemma presents; i.e., the loss in unilaterally cooperating against a
defector.

• The temptation that a dilemma presents; i.e., the gain in unilaterally defecting against
a cooperator.

• The efficiency, i.e., how much can be gained by mutual co-operation as opposed to
mutual defection.

Owing to differences in how these aspects are combined, the indices differ in terms of
their usefulness for explaining human cooperation in dilemma games. These differences
motivated a comparison of the indices in terms of their effectiveness as predictors of coop-
eration. The findings of this research may be summarized as follows.

Rapoport et al.’s (1965) preliminary analysis of r1 and r2, as well as the analysis by
others (Steele & Tedeschi, 1967) supported the predictions of r1 in repeated PD games.
Wyer’s (1969) comparative evaluation of Thibaut and Kelly’s (Thibaut & Kelly, 1959) and
Harris’s indices (Harris, 1969) is more supportive of the former. Murnighan and Roth (1983)
correlated various indices to cooperative choices made by human subjects playing indefinite
horizon PD games and showed that, as r1, r2, k1, k2, k4, and g increase (or r4, e1, e2 and k3
decrease), the percentage of mutual cooperative choices decreases. Further, the cooperation
rates for p > g exceeded those for p ≤ g. More recently, Mengel (2018) defined two indices
risk and temptation (as listed in Table 9). Treating these as two separate dimensions
(observe from Table 9 that this is in contrast to several other indices that combine these
two aspects), she showed that risk better explains cooperation rates in experimental data
obtained from humans playing one-shot PD, while temptation and several other indices are
better for finitely repeated PD games in which there is no pre-play communication.

7. Summary and Avenues for Future Research

Given its inherent challenge and its breadth of applicability, the dilemma resolution prob-
lem has been subject of study across a range of scientific disciplines and the problem has
been investigated from many different angles: three different models of boundedly rational
learning, viz., evolutionary games, reinforcement learning, and best-reply learning, have
been investigated for the study of the dilemma problem. All of this research has resulted in
a substantial improvement in our understanding of the underlying challenges and led to the
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Index References
k1 = (R + S − T − P )

(Thibaut & Kelly, 1959; Wyer,
1969)k2 = (R− S + T − P )

k3 = (R− S − T + P )

k4 = (R + T + P + S)

r1 = (R− P )/(T − S) (Rapoport et al., 1965; Rapoport,
1967)

r2 = (R− S)/(T − S)

r3 = (P − S)/(T − S) (Harris, 1969)
r4 = (T −R)/(T − S)

e1 = (T −R)/(R− P ) (Roth & Murnighan, 1978;
Murnighan & Roth, 1983)e2 = (T −R)/(R− S)

g = (R− T + p(T − P ))/(1− p)

Dg = (T −R) (Tanimoto & Sagara, 2007;
Tanimoto, 2009; Wang et al.,
2015; Arefin et al., 2020)Dr = (P − S)

BAD = (P−S)/
(
(R−P )×m+x

)
(Dal Bó & Fréchette, 2011;
Mengel, 2018; Dal Bó et al., 2021)

x = 2P − S − T

D′
g = (T −R)/(R− P )

(Wang et al., 2015)
D′

r = (P − S)/(R− P )

Risk = (T −R)/T
(Mengel, 2018)

Temptation = (P − S)/P

K = α + β × e1 + γ × r3 (Ahn et al., 2001)
0 < α < 1, −1 < β < 0, −1 < γ < 0

Table 9: A summary of indices. The symbol p denotes continuation probability, and m
the number of times a dilemma game is repeated. The labels for the indices are
adopted from their respective references.

development of a range of methods for dilemma resolution. This article is a consolidated
survey of the methods useful for mitigating the problem. The key insights that emerge from
bringing the different pieces of literature together may be abstracted as follows.
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I1: The three basic learning models (i.e., without the addition of any cooperation en-
hancing mechanisms) vary widely in terms of their cognitive demands. Evolutionary
models are the least and best-reply the most demanding while the requirements for
reinforcement learning lie in between these two extremes. Despite this difference, the
three models are strikingly similar in the sense that, on their own, they are mostly in-
sufficient for dilemma resolution. This is particularly true for evolutionary games and
reinforcement models owing to their lower rationality relative to best-reply models.
It is therefore necessary to support these learning methods to varying extents with
some supplementary mechanisms for incentivising cooperation.

I2: The support mechanisms impose additional cognitive demands over and above those
required by the underlying learning method. These mechanisms primarily require
the ability to remember history, recognise co-players, and forecast the future. These
additional requirements diminish the pre-existing cognitive differences between the
learning methods.

I3: Although evolutionary games, reinforcement learning, and best-reply learning differ
in terms of the modelling approach (individual versus aggregate population level),
interestingly, there are major overlaps in the support mechanisms. For example, pro-
sociality, sanctions, reputation, reciprocation, and the ability to choose partners are
useful for promoting cooperation in all the three learning models.

I4: While learning models enable a study of the dynamics of interaction between bound-
edly rational behaviours for a given payoff matrix, cooperation indices are useful for
understanding how the exogenous payoff structure of a dilemma game impacts coop-
erative behaviour. These indices are very simple functions of the payoffs R, T , P , and
S, yet they can be effective indicators of cooperation.

I5: Regardless of the learning model, the proliferation of cooperation is a complex phe-
nomenon that depends on the interplay between numerous parameters such as the
dilemma game, the interaction structure, and the strategic behaviour of the par-
ticipating individuals. This complexity makes it hard to find efficient algorithmic
solutions to the dilemma problem. Although it is known that certain interaction
structures promote the evolution of cooperation more than others, characterizing the
set of cooperation enhancing structures is computationally hard (Ohtsuki et al., 2006;
Ibsen-Jensen et al., 2015). Because an efficient algorithm does not exist, the existing
studies have focused on special cases which pertain to specifically chosen parameters.

For the aforementioned reason, the existing models used are highly stylized; they use a
single stage game such as a PD with specifically chosen parameters such as the payoffs,
the information available to the players, and the matching rule. A number of aspects
therefore need further investigation. In general, a more rigorous conceptual and practical
understanding of the dynamics of learning is needed to confirm the robustness and general
validity of the existing findings. In particular, the following open problems stand out:

P1: There are three different approaches to learning in games and it appears as though the
three approaches are fundamentally different. Indeed these models differ in terms of

939



Fatima, Jennings, & Wooldridge

the information that agents use and whether they optimize. Despite these differences,
existing research has found some connections between the three approaches. For
example, the learning trajectories for RL and replicator dynamics were shown to
match for certain PD games (Kaisers & Tuyls, 2010). However, many of the findings
that connect the different learning approaches are not readily relevant to dilemma
games. For example, Tuyls et al. (2003) showed that by plotting the direction field
of replicator dynamics, it is possible to better tune the parameters for reinforcement
learning such that learning converges to Nash equilibrium. Hopkins (2002) drew
similarities between RL and fictitious play in that both converge to a point that is close
to Nash equilibrium. However, in the context of dilemmas, the challenge is to avoid
deficient equilibria. The question therefore arises ‘how do the the different learning
methods inter-relate in the context of dilemmas and how can insights gained from one
approach be utilized for addressing issues in others’? In this regard, hybrid models
that encompass several individual models as special cases can be useful, especially
those in which switching between different methods can be achieved by means of a
simple parameter adjustment. Further, software tools such as OpenSpiel (Lanctot
et al., 2019) can be greatly useful for doing an empirical comparative analysis.

P2: The existing research has modeled repeated interactions with a payoff matrix that re-
mains constant over the iterations. However, in dynamic and uncertain environments,
the payoff matrix may change in random ways during the course of an interaction. For
example, the context of resource allocation dilemmas, the available resource and con-
sequently the payoff matrix changes as the players take actions toward consuming the
resources from a common pool. How can such dynamic and uncertain environments
be modeled? A possibility is to use a stochastic game in which the payoff matrix is a
part of state and there is uncertainty over the state transitions. Research on the use
of stochastic games for the study of dilemmas has only just begun (Hilbe et al., 2018).

P3: Another avenue for future investigation is to address the issue of incomplete informa-
tion about the payoffs for dilemma games. In the existing literature dilemmas, it is
commonly assumed that the payoffs are exogenously known. However, in real-world
dilemmas, payoffs may be unknown. How can the payoffs for a dilemma game be
learnt? To this end, inverse reinforcement learning (IRL) seems to be a promising
approach to investigate. However, a challenge is that existing IRL methods (Arora &
Doshi, 2021; Fu et al., 2021) are based on the assumption that the underlying game
has a unique equilibrium, but many dilemmas have multiple equilibria. A related
aspect is the correctness of information pertaining to individual players. For example,
reputation-based mechanisms proposed in the literature are useful for resolving dilem-
mas only if the reputations are true. The question that remains open is as follows.
How can fake reputations be detected and avoided, and to what extent can noise in
reputations be tolerated?

P4: Another key topic for future research is human-computer interactions in dilemmas.
A majority of the existing literature on dilemmas is devoted to computer only tour-
naments or else human-human interactions. However, human-computer interactions
are crucial for future applications such as autonomous driving; autonomous vehicles
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must be designed to interact and coordinate with human-driven cars. It remains to
be seen how effective the computational learning models are at resolving dilemmas
against humans.

P5: While existing research has uncovered various different mechanism for enhancing co-
operation in dilemmas, little attention has been paid to how cooperation can be en-
hanced by continual learning (CL) (Khetarpal et al., 2022) and transfer of learning
(ToL) (Da Silva & Costa, 2019). CL and ToL are vital in light of sociological the-
ories (Blau, 1964) of cooperation that describe the development of cooperation as a
slow process, starting with less risky interactions and eventually expanding into much
riskier situations that require significantly higher levels of trust to generate cooper-
ative behaviour. Trust building works because a counterpart’s behaviour in the less
risky situation serves as a precedent for their behaviour in the riskier situation. There
is experimental evidence of these theories; studies of dilemmas with human partici-
pants not only confirmed that previous experience in a less risky PD enhances future
cooperation in more risky PDs (Bettenhausen & Murnighan, 1991), but that coop-
eration also transfers from coordination dilemmas to PDs (Knez & Camerer, 2000).
The question ‘how can this human aspect be introduced into computational models
of learning?’ remains to be investigated.

P6: Much of the existing literature has focused on homogeneous individuals, i.e., all in-
teractants use the same learning method. However, given that humans vary in their
cognitive abilities (Boogert et al., 2018), a more reasonable approach is to study the
evolution of cooperation for heterogenous learners. This knowledge will be particularly
relevant to human-computer interactions.

P7: Although the existing literature has studied the relation between cooperation indices
and actual cooperation rates in dilemmas in the context of best-reply models, we have
not found any such studies for EGT and RL models. Thus there is scope for further
enhancing our understanding of the relation between exogenously fixed payoff matrix
and the EGT and reinforcement learning dynamics.

P8: The field has just started to explore issues such as the role of an individual’s emotion,
mood, and culture on their learning in social dilemmas. Further investigation is needed
to understand how the interplay between affect and rationality impacts the evolution
of cooperation.

P9: In the experimental literature on individual learning models such as RL, best-reply,
and their hybrids, little attention has been paid to the problem of heterogeneity bias.
The empirical comparisons typically begin with a pooled estimate, i.e., a single shared
vector of learning model parameters is assumed for all subjects in a sample. However
if subjects are in fact heterogeneous, pooled estimates tend to bias empirical com-
parisons in favor of a particular learning model (Wilcox, 2006; Salmon, 2001; Erev
& Haruvy, 2005). Aside from the statistical shortcomings, prior research (Collabo-
ration, 2015; Klein et al., 2018; Serra-Garcia & Gneezy, 2021) has raised concerns
about the robustness and replicability of the results generated in the experimental
economics and psychology literature, triggering attempts to develop agreed-upon best
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practices (Sánchez, 2018; Dreber & Johannesson, 2019; Muthukrishna & Henrich,
2019; Fréchette et al., 2022). Awareness of the crisis and the recommended best-
practices is crucial for future research.
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