
Journal of Artificial Intelligence Research 79 (2024) 447-482 Submitted 06/2023; published 02/2024

Weighted, Circular and Semi-Algebraic Proofs

Ilario Bonacina bonacina@cs.upc.edu
Maria Luisa Bonet bonet@cs.upc.edu
UPC Universitat Politecnica de Catalunya
Jordi Girona, 1-3
08034 Barcelona, Spain

Jordi Levy levy@iiia.csic.es

Artificial Intelligence Research Institute (IIIA)

Spanish Research Council (CSIC)

Campus UAB Carrer de Can Planas, Zona 2

08193 Barcelona, Spain

Abstract

In recent years there has been an increasing interest in studying proof systems stronger
than Resolution, with the aim of building more efficient SAT solvers based on them. In
defining these proof systems, we try to find a balance between the power of the proof system
(the size of the proofs required to refute a formula) and the difficulty of finding the proofs.

In this paper we consider the proof systems circular Resolution, Sherali-Adams, Null-
stellensatz and Weighted Resolution and we study their relative power from a theoretical
perspective. We prove that circular Resolution, Sherali-Adams and Weighted Resolution
are polynomially equivalent proof systems. We also prove that Nullstellensatz is polynomi-
ally equivalent to a restricted version of Weighted Resolution. The equivalences carry on
also for versions of the systems where the coefficients/weights are expressed in unary.

The practical interest in these systems comes from the fact that they admit efficient
algorithms to find proofs in case these have small width/degree.

1. Introduction

The Satisfiability (SAT) and Maximum Satisfiability (MaxSAT) problems are central in
computer science. SAT is the problem of deciding if a given CNF formula has an assignment
of 0/1 values that satisfies it. MaxSAT is the optimization version of SAT. Given a CNF
formula, we want to know what is the maximum number of clauses that can be satisfied by
an assignment. SAT and the decision version of MaxSAT are NP-complete. Problems in
many different areas like planning, computational biology, circuit design and verification,
etc. can be solved by encoding them into SAT or MaxSAT, and then using a SAT or a
MaxSAT solver.

Resolution-based SAT solvers can handle huge industrial instances successfully, but on
the other hand, seemingly easy tautologies like the Pigeonhole Principle require exponen-
tially long Resolution proofs (Haken, 1985). An important research direction is to implement
SAT-solvers based on stronger proof systems than Resolution. To be able to do that, the
proof systems should not be too strong, given that it is commonly believed that the stronger
a proof system is, the harder it is to build efficient algorithms to find refutations for the

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Bonacina, Bonet, & Levy

sets of clauses. This is related to the notion of automatability (Bonet, Pitassi, & Raz, 2000;
Atserias & Müller, 2019).

To overcome the limitations of Resolution, in the last few years, a number of proof
systems somewhat stronger than Resolution or with similar strength have been defined.
Among them are proof systems based on MaxSAT, such as MaxSAT Resolution with Ex-
tension (Larrosa & Rollón, 2020), or Dual-Rail MaxSAT (Ignatiev et al., 2017, Bonet et al.,
2021, Morgado et al., 2019), or Weighted Dual-Rail MaxSAT (Bonet et al., 2018, 2021), or
the SAT-to-Max2SAT strategy (Ansótegui & Levy, 2021), or proof systems based on semi-
algebraic reasoning, for instance Sherali-Adams (Sherali & Adams, 1994; Dantchev, Martin,
& Rhodes, 2009b) and SubCubeSum (Filmus et al., 2020), or proof systems allowing more
general proof structures such as circular Resolution (Atserias & Lauria, 2019). A com-
mon feature of all these systems is that they have polynomial-size proofs of the Pigeonhole
Principle.

Sherali-Adams (SA) is equivalent to circular Resolution (c-Res) (Atserias & Lauria,
2019) and low degree version of SA is connected to the TFNP class PPADS (Göös, Hollender,
Jain, Maystre, Pires, Robere, & Tao, 2022). MaxSAT Resolution with Extension simulates
Dual-Rail MaxSAT (Larrosa & Rollón, 2020), and weighted Dual-Rail MaxSAT simulates
Resolution (Bonet et al., 2018).

In the preliminary version of this work, Bonet and Levy (2020) defined weighted Res-
olution (w-Res), a system handling multisets of clauses with integer weights and proved
the equivalence between weighted Resolution and circular Resolution. Concurrently and
independently, Larrosa and Rollon (2020) and Rollon and Larrosa (2022) also proved a ver-
sion of this equivalence for a proof system similar to weighted Resolution but working with
infinite weights. The definition of weighted Resolution was inspired by the proof system
MaxSAT Resolution with Extension (Larrosa & Rollón, 2020). Indeed, weighted Resolu-
tion with weights in Z is equivalent to MaxSAT Resolution with Extension, and it simulates
Dual-Rail MaxSAT.

1.1 Our Contributions

This paper uses the framework of weighted Resolution that can be applied to solve both SAT
and MaxSAT, the only difference being the presence or not of limitations on the weights of
the initial clauses (see also Remark 1.1).

In this paper we substantially extend and simplify the results on weighted Resolution
by Bonet and Levy (Bonet & Levy, 2020). In weighted Resolution the initial clauses have
positive weights and from them we infer new weighted clauses using substitution rules, i.e.
rules that substitute the premises by the conclusions, in the manner of MaxSAT Resolution.
Arbitrary clauses may be introduced as assumptions at any time together with the same
clause with the corresponding negative weight. The negative weights are a way to control
these assumptions. The clauses with negative weights are eliminated by obtaining the
same clause with positive weight. At the end of the proof we have a multiset of clauses
containing the goal clause. In this multiset all weights must be positive, and therefore all
the assumptions will have been justified.

We simplify the equivalence between weighted Resolution and circular Resolution from
(Bonet & Levy, 2020) (Theorem 4.3) and we give a direct proof of the equivalence of weighted

448

Weighted, Circular and Semi-Algebraic Proofs

Resolution and Sherali-Adams (Theorem 5.7). Unlike (Larrosa & Rollon, 2020; Rollon &
Larrosa, 2022) working with finite weights allows us to have an explicit correspondence
between weights in weighted proofs and flows in circular proofs.

We also define a restricted version of weighted Resolution where at the end of the proof
not only all weights are positive but also all the final clauses, except the goal one, are weak-
enings of the initial clauses. We prove that restricted weighted Resolution is equivalent to
Nullstellensatz (NS), a well-studied algebraic proof system. This is also a new contribution.

Both weighted Resolution and its restricted version might be considered with weights
in unary (i.e. only ±1). Those systems are equivalent to unary versions of Sherali-Adams
and Nullstellensatz, proof systems that recently have been studied in connection with TFNP
complexity classes (Göös et al., 2022). This is also a new contribution.

Fig. 1 summarizes the simulations and equivalences among the proof systems we analyse
in this paper.

Sherali-Adams (SA)

unary Sherali-Adams

Resolution

tree-like Resolution

Nullstellensatz (NS)

unary Nullstellensatz

weighted Resolution (w-Res)
Thm. 5.7

Circular Resolution (c-Res)

(A
ts
er
ia
s &

La
ur
ia
, 2
01
9)

Thm
. 4.3

unary w-Res
Thm. 5.7

restr. w-Res
Thm. 5.7

restr. unary w-Res
Thm. 5.7

Figure 1: Diagram of known p-simulations. P Q means that P p-simulates Q.

P Q means that P does not p-simulates Q. We omit from the figure the

arrows implied by transitivity. For instance, w-Res unary w-Res but we omit
the arrow.

Remark 1.1 (SAT vs MaxSAT proofs). Notice that the format of weighted Resolution
can be used both in the context of SAT and weighted MaxSAT, the only difference being
that for weighted MaxSAT the weights of the initial clauses are given as part of the input.

449

Bonacina, Bonet, & Levy

Instead, for SAT, the weights of the premises could be arbitrary. The equivalences between
the weighted Resolution and the other systems equally hold in the context of MaxSAT.

Bonacina and Bonet (2022) also showed that a well studied logic-based proof system
(bounded-depth Frege) plus a weighted version of the Pigeonhole principle (that is given
as axioms) simulates Sherali-Adams, and this is a limitation on the strength of the system
given that Sherali-Adams efficiently proves that principle. Despite this limitation, we show
that Sherali-Adams has polynomial refutations of combinatorial principles like the HEX
principle (Section see 6), which is shown to be hard for Resolution (Buss, 2006).

1.2 Proof Search Algorithms

One of the reasons to study Sherali-Adams (circular Resolution, weighted Resolution) and
Nullstellensatz (restricted weighted Resolution) is that they are in a sweet spot: they are
powerful and yet not so powerful as to prohibit the existence of an efficient proof search
algorithm (under some restrictions, such as width or degree).

The question of finding refutations is a central question in automated theorem prov-
ing and SAT-solving that can be addressed more formally by the notion of automatability
(Bonet, Pitassi, & Raz, 1997). A proof system P is automatable if there is an algorithm
that, given as input an unsatisfiable CNF formula F , outputs a refutation of F in P and
runs in time polynomial in the shortest P -refutation of F .

Atserias and Müller (2020) showed that Resolution is not automatable, unless P =
NP. Therefore, any SAT-solver based on Resolution (for instance CDCL-solvers) will likely
require super-polynomial time even on unsatisfiable formulas that are easy to refute in
Resolution. Similarly, de Rezende et al. (2021a) showed that NS is not automatable , unless
P = NP. SA is also believed to be not automatable.1

Although the above systems are not automatable, they possess a weaker notion of au-
tomatability which allows refutations of small width/degree to be found efficiently: the
degree/width-automatability. Given a formula in n variables, it is well-known that Resolu-
tion refutations of width w can be found in time nO(w) (Beame & Pitassi, 1996). Similarly,
NS/SA refutations of degree d can be found by linear programming in time nO(d), see for
instance the monograph on this subject by Fleming, Kothari, and Pitassi (2019). The
fastest known algorithm to search for refutations of a CNF formula F in SA runs in time
2O(

√
n logS), where S is the size of the smallest SA-refutation of F . This follows from At-

serias and Hakoniemi’s (2019) size-degree tradeoff for SA and the degree-automatability of
SA.

Despite the fact that the algorithms to find proofs in SA are not competitive with state-
of-the-art SAT-solvers, this view of SA as circular/weighted Resolution might be useful
to inspire better algorithms to find refutations in these systems which are stronger than
Resolution.

1. de Rezende et al. (2021a) prove the non-automatability of NS and Polynomial Calculus, a sort of dynamic
version of NS. In the same article there is the claim that SA is non-automatable, but this claim has been
dropped. The non-automatability of SA is open.

450

Weighted, Circular and Semi-Algebraic Proofs

1.3 Organization of the Paper

Section 2 fixes preliminary definitions and notation. In Section 3, we introduce the
notion of weighted proofs, weighted Resolution and restricted weighted Resolution and we
prove basic facts about those systems. In Section 4, we recall the notion of circular
proofs and circular Resolution and we show the equivalence between weighted and circular
Resolution. In Section 5, we recall the definitions and basic properties of the algebraic proof
systems Nullstellensatz and Sherali-Adams, and then we prove the equivalences between
these systems and (restricted) weighted Resolution. In Section 6, we give examples of
small degree Sherali-Adams refutations of some natural combinatorial principles.

2. Preliminaries

This section contains preliminaries and notation used through the whole paper. We post-
pone preliminaries only relevant to specific sections. For instance, the notion of circular
proofs is only used in Section 4 and therefore it is presented there, and similarly the notions
of Nullstellensatz and Sherali-Adams are used in Section 5 and therefore introduced there.

For n ∈ N, let [n] := {1, 2, . . . , n}.

2.1 Clauses and CNF Formulas

A clause is a finite disjunction ∨ of literals, i.e. Boolean variables x or negated Boolean
variables ¬x. A clause C = ℓ1 ∨ · · · ∨ ℓr has width r, noted as |C| = r. The empty clause is
denoted as ⊥, and has width 0. A CNF formula is a set of clauses. The size of a formula
is the total number of symbols in it.

A truth-assignment is a function α : {x1, . . . , xn} → {1, 0}, that is a function that
assigns to each variable a truth-value True (1) or False (0). Truth-assignments evaluate
literals, clauses, and CNF formulas in the natural way through the usual interpretation of
negations and disjunctions. A truth assignment satisfies a clause C if it evaluates C to 1,
if it evaluates C to 0 we say it falsifies F . A clause C is a logical consequence of a set of
clauses S if every truth-assignment satisfying all clauses in S also satisfies C. For every
truth-assignment, the clause ⊥ evaluates to 0. A truth-assignment satisfies a CNF if it
satisfies all the clauses in it. A CNF formula is a contradiction if every truth-assignment
falsifies it.

2.2 Propositional Proof Systems

A propositional proof system is a polynomial-time function from {0, 1}∗ to the set of proposi-
tional tautologies. A propositional proof system P p-simulates a propositional proof system
Q if there is a polynomial-time function f such that P ◦ f = Q. If P p-simulates Q and Q
p-simulates P we say that P and Q are p-equivalent.

Several common proof systems are based on inference rules. An inference rule is given
by two multisets of clauses F ,G. The clauses in F are called antecedents (or premises), the
clauses in G are called consequents (or conclusions). We denote inference rules as F ⊢ G in
inline math, and as

F
G

451

Bonacina, Bonet, & Levy

in displayed equations. An instance of an inference rule F ⊢ G is obtained by applying a
substitution to the variables of the clauses in F and G.

Definition 2.1 (soundness). An inference rule F ⊢ G is sound if any truth-assignment that
satisfies all clauses in F , also satisfies all the clauses in G.

Definition 2.2 (strong soundness). An inference rule F ⊢ G is strongly sound if for any
truth-assignment, the number of falsified clauses in F equals the number of falsified clauses
in G.

The notion of strong soundness was introduced in the context of MaxSAT proof systems
as an analogue of the classical soundness.

Definition 2.3 (inference-based proof). Given a set of sound inference rules R, a set
H1, . . . ,Hm of hypotheses clauses, and a goal clause G, a proof of G from H1, . . . ,Hm

(using the rules in R) is a sequence of clauses that starts with the clauses H1, . . . ,Hm, ends
in G, and such that every clause in the sequence is one of the consequents of an instance of
an inference rule from R with all antecedents appearing earlier in the sequence. A refutation
of H1, . . . ,Hm is a proof of ⊥ from H1, . . . ,Hm. The size is the sum of the sizes of all the
clauses in the sequence. The width is the maximum width of a clause in the sequence.

Resolution The propositional proof system Resolution (Res) is a well-known inference-
based proof system with inference rules

x ∨A ¬x ∨B

A ∨B
Cut

A

A ∨B
Weakening

x ∨ ¬x
Excluded Middle ,

where A, B are clauses and x is a variable. For us, it is convenient to use the split rule
instead of the weakening and the symmetric cut instead of the cut:

x ∨A ¬x ∨A

A
Symm. Cut

A

x ∨A ¬x ∨A
Split . (1)

This change results in a p-equivalent proof system with rules of Res strongly sound.
Res is sound and complete, that is, if a clause is a logical consequence of a set of clauses

there is a Res derivation of it and vice versa.
It is well-known that if a CNF formula in n variables has Resolution refutations of width

w then it has a Resolution refutation of size nO(w) (Beame & Pitassi, 1996). This result is
tight: Atserias, Lauria, and Nordström (2016) showed that there are 3-CNF formulas that
can be refuted in width w but require Resolution size nΩ(w).

It is also well-known that Res is width-automatable, that is, if a CNF formula F in
n variables has a Resolution refutation of width w then there is an algorithm running in
time nO(w) that finds a Resolution refutation of F . See Section 1.2 for more details on
automatability.

2.3 Proof Systems for MaxSAT

Given a CNF formula F as input, SAT is the problem of determining if F is satisfiable, i.e.
there exists a truth assignment satisfying all the clauses in F . MaxSAT is the problem of

452

Weighted, Circular and Semi-Algebraic Proofs

finding an assigment that maximizes the number of satisfied clauses of F (or equivalently,
an assignment which minimizes the number of unsatisfied clauses of F).

Inference-based proof systems have also been used in the context of MaxSAT to certify
that, for a given CNF formula F , any truth assignment must falsify at least some number
k of the clauses in F .

Regarding the inference rules, it is convenient to use strongly sound inference rules (see
Definition 2.2) and use them as substitution rules.

Definition 2.4 (inference-based proof for MaxSAT). Given a set of strongly sound inference
rules R, a multiset of clauses {H1, . . . ,Hm} (hypotheses), and a goal clause G, a MaxSAT-
proof of G from H1, . . . ,Hm (using the rules in R) is a sequence of multisets of clauses
L1, . . . ,Ls such that

1. L1 = {H1, . . . ,Hm},

2. G ∈ Ls, and

3. for each i ∈ [s− 1], there is a rule in R of the form A1, . . . , Aℓ ⊢ B1, . . . , Br such that
{A1, . . . , Aℓ} ⊆ Li and Li+1 = Li \ {A1, . . . , Aℓ} ∪ {B1, . . . , Br}.

The size is the sum of the sizes of all the clauses in the sequence. A proof from H1, . . . ,Hm

of k copies of ⊥ is certifying that every truth assignment falsifies at least k clauses among
H1, . . . ,Hm.

Examples of inference-based proof systems for MaxSAT are MaxSAT-Resolution (Lar-
rosa & Heras, 2005) and the MaxSAT system that uses R = {split, symm. cut}. Göös
et al. (2022) defined a similar propositional proof system called reversible Resolution that
also uses the split and symm. cut rules. The difference between our MaxSAT system and
reversible Resolution is that in our system the initial clauses are allowed to appear only
once, since we are in the context of MaxSAT.

The notion of an inference-based proof system that replaces premises with conclusions
was originally proposed in the context of MaxSAT. However it can also be used in the
context of SAT, since a derivation of a ⊥ certifies the unsatifiability of the initial CNF
formula.

In the context of showing unsatisfiability of a set of clauses, these two systems above
are p-simulated by Res, and probably strictly weaker, given that the rules are substitution
rules and the same clause cannot be used multiple times. Some progress towards solving
this open problem was achieved by Py et al. (2022) and Cherif et al. (2022). They show
that if the Resolution refutation is “crossing-free”, then it can be converted into MaxSAT
Resolution with a polynomial increase in size.

There are several possible ways to overcome the limitations imposed by the use of
substitution rules. The easiest one is to allow an arbitrary number of multiple copies of the
initial clauses or to use initial clauses with weights. Another is to use clever encodings of
the initial clauses and then use the maxSAT-Resolution rule. Examples of these encodings
are the Dual-Rail encoding of Ignatiev et al. (2017), Morgado et al. (2019), and Bonet et al.
(2018, 2021), and the SAT-to-Max2SAT strategy of Ansótegui and Levy (2021).

The use of weighted clauses can be extended to a more powerful system allowing negative
weights, intuitively meaning that a negative-weighted clause is an assumption yet to be
justified.

453

Bonacina, Bonet, & Levy

3. Weighted Proofs and Weighted Resolution

In this section we develop formally the notion of weighted clauses and weighted Resolution
with weights in Z.

Definition 3.1 (weighted clause). A weighted clause is a pair (C,w) where C is a clause
and w ∈ Z. The width of a weighted clause (C,w) is the width of the clause C.

We consider multisets of weighted clauses modulo an equivalence relation, the fold-unfold
equivalence.

Definition 3.2 (fold-unfold equivalence). Two multisets of weighted clauses F and G are
fold-unfold equivalent (F ≈ G) if for every clause C,∑

u:(C,u)∈F

u =
∑

u:(C,u)∈G

u .

For instance, for any clause C and u ∈ Z,

• {(C, 2u)} ≈ {(C, u), (C, u)},

• ∅ ≈ {(C, 0)},

• ∅ ≈ {(C, u), (C,−u)}.
The fold-unfold equivalence between two multisets of weighted clauses may be seen as the
application of the following inference rules as substitution rules:

(C, u) (C, v)

(C, u+ v)
Fold ,

(C, u+ v)

(C, u) (C, v)
Unfold ,

(C, 0)
0-Fold ,

(C, 0)
0-Unfold .

where C is a clause and u, v ∈ Z.
The rules Fold/Unfold were previously considered in the context of weights in N, for

instance in (Bonet et al., 2021) under the name Extraction/Contraction. The use of
negative weights was used for the first time in the context of Resolution in (Larrosa &
Rollón, 2020). In the context of Constraint Satisfaction Problems, negative weights were
introduced by Cooper, de Givry, and Schiex (2007).

The inference rules generalize to weighted clauses and the same happens with the
notion of strongly sound inference rule (see Definition 2.2). Given any inference rule
A1, . . . , As ⊢ B1, . . . , Br we can transform it into the inference rule (A1, u), . . . , (As, u) ⊢
(B1, u), . . . , (Br, u) on weighted clauses, where u ∈ Z.

The following definition is the generalization of the notion of strong soundness to the
context of weighted clauses.

Definition 3.3 (soundess for weighted inferences). The inference rule F ⊢ G on weighted
clauses is (strongly) sound if for any truth-assignment, the total weight of the falsified clauses
in F equals the total weight of the falsified clauses in G, i.e. for every truth-assignment α,∑

(C,u)∈F
α(C)=0

u =
∑

(C,u)∈G
α(C)=0

u .

454

Weighted, Circular and Semi-Algebraic Proofs

We give now a notion of inference-based proof system in this context of weighted clauses.
We use the fold-unfold equivalence and the inference rules as substitution rules, but we have
to be careful with the negative weights. For instance, we saw that ∅ ≈ {(C, u), (C,−u)},
this does not mean we have “derived” the weighted clause (C, u), but, we could see this as
the fact that we are assuming the weighted clause (C, u), and (C,−u) is there as “book-
keeping”: a reminder that eventually we have to prove (C, u).

Formally the definition is the following.

Definition 3.4 (weighted proofs). Given a set of strongly sound inference rules R for
weighted clauses, a set H of weighted clauses as hypotheses, and a goal weighted clause
(C, u) with u > 0, a weighted proof of (C, u) from H is a sequence of multisets of weighted
clauses (F1, . . . ,Fs) such that:

1. F1 = H.

2. For every proof step i ∈ [s− 1], either it is
a fold-unfold equivalence: Fi+1 ≈ Fi,
or a regular inference: an instance of a rule in R of the form

(A1, u1) · · · (As, us)

(B1, w1) · · · (Br, wr)

where Fi+1 = Fi ∪ {(A1,−u1), . . . , (As,−us), (B1, w1), . . . , (Br, wr)}.

3. Fs contains (C, u), and possibly other weighted clauses, all of them with non-negative
weights.

The size of a weighted proof is the total number of symbols occurring in F1, . . . ,Fs including
the encoding of the weights. A weighted refutation over R is a weighted proof of (⊥, u) for
some positive u.

Notice that, in presence of fold-unfold equivalence item 2 in the definition of weighted
proofs is equivalent to

2′. For every proof step i, either it is
a fold-unfold equivalence: Fi+1 ≈ Fi,
or a regular inference: an instance of a rule in R of the form

(A1, u1) · · · (As, us)

(B1, w1) · · · (Br, wr)

such that {(A1, u1), . . . , (As, us)} ⊆ Fi and

Fi+1 = Fi \ {(A1, u1), . . . , (As, us)} ∪ {(B1, w1), . . . , (Br, wr)}.

We use this alternative presentation in the examples since it allows the use of slightly
smaller multisets of clauses. In the proofs we instead use the presentation from the defini-
tion.

A special case of weighted proofs is weighted Resolution.

455

Bonacina, Bonet, & Levy

Definition 3.5 (weighted Resolution, w-Res). A weighted Resolution (w-Res) derivation is
a weighted proof where the set of inference rules for weighted clauses are the following, used
as substitution rules:

(x ∨A, u) (¬x ∨A, u)

(A, u)
Symmetric-Cut

(A, u)

(x ∨A, u) (¬x ∨A, u)
Split

(x ∨ ¬x, u)
Excluded Middle

where A is a clause, x is a variable, and u ∈ Z. Notice that, due to the fold-unfold, the
Split and Symmetric-Cut can be seen as the same rule with opposite weights (one positive
and one negative).

Without loss of generality we assume the weights of the application of the Excluded

Middle to be always positive.
The definition of w-Res generalizes ideas of Larrosa and Heras (2005) and Bonet et al.

(2006, 2007) for weights in N and was introduced by Larrosa and Rollón (2020). The notion
of w-Res could be generalized further to clauses with weights in arbitrary ordered monoids,
like Q or Z∪{∞}. For simplicity, we focus on weights in Z since using weights in Q gives a
p-equivalent system. This is easy to see by multiplying all the weights in Q by the minimum
common multiple of the denominators.

Notice that, we have two natural ways of representing the weights. We can represent a
weight u in unary, or we can represent u in binary using (⌈log |u|⌉+ 1)-many bits. By the
fold-unfold equivalence, the unary representation can be equivalently seen as restricting all
the weights appearing in a weighted proof to be ±1.

Another way of restricting w-Res is by restricting the condition on the final multiset of
a w-Res derivation.

Definition 3.6 (restricted weighted proofs, restricted w-Res). Given a set of strongly sound
inference rules R for weighted clauses, a set H of weighted clauses as hypotheses, and a goal
weighted clause (C, u) with u > 0, a restricted weighted proof of (C, u) from H is a sequence
of multisets of weighted clauses (F1, . . . ,Fs) satisfying the same conditions of Definition 3.4
with the exception of item 3. Instead, the multiset Fs satisfies the following condition.

3′. Fs contains (C, u), and possibly other weighted clauses, all of them with non-negative
weights and weakening of weighted clauses in H, i.e. of the form (C ∨ D,w) where
(C,w′) ∈ H, D is some clause, and w,w′ ∈ Z.

If we consider this for the set of inference rules in Definition 3.5, we call it restricted w-Res.

The system restricted w-Res is similar to the system reversible Resolution with terminals
defined in (Göös et al., 2022). The difference between our system and theirs is that in
reversible Resolution with terminals the weights are only allowed to be 1, therefore the
clauses are considered with multiplicity.

(Restricted) weighted proofs make sense both in the context of SAT and MaxSAT. If
we have a CNF formula F = {C1, . . . , Cm} over n variables we may work using some set

456

Weighted, Circular and Semi-Algebraic Proofs

of inference rules and use a (restricted) weighted proof to show the unsatisfiability of F :
we have the freedom to choose the weights to give to C1, . . . , Cm, i.e. we look for weighted
refutations of {(C1, u1), . . . , (Cm, um)} for some ui ∈ N. In the case of MaxSAT we don’t
have this freedom: all the uis are 1. Similarly, in weighted MaxSAT the uis are also given.

Theorem 3.7 (Soundness of weighted proofs). Let R a set of strongly sound inference rules
on weighted clauses and F a multiset of weighted clauses. If there exists a weighted proof
of (⊥, s) from F (using the rules in R), then every truth-assignment must falsify clauses in
F with combined weight at least s, i.e. for every truth-assignment α∑

(C,u)∈F
α(C)=0

u ≥ s .

Proof. Let (F1,F2, . . . ,Fℓ) be a weighted proof of (⊥, s) from F . Let α be a truth-
assignment and let

cost(Fi, α) =
∑

(C,u)∈Fi

α(C)=0

u ,

that is, cost(Fi, α) is the total-weight of the clauses from Fi falsified by α.
Since F = F1, our goal is to show that cost(F1, α) ≥ s. By the soundness of the weighted

inference rules, we have that

cost(F1, α) = cost(F2, α) = · · · = cost(Fℓ, α) ,

and cost(Fℓ, α) = s + u1 + · · · + ur where u1, . . . , ur are the weights of the other clauses
in Fℓ falsified by α. All the weighted clauses in Fℓ must have positive weights, hence,
cost(Fℓ, α) ≥ s and therefore cost(F1, α) ≥ s.

Notice that this proof generalizes trivially to sets of rules R satisfying a relaxed version
of the strong soundness, where whenever F ⊢ G the total weight of the falsified clauses in F
is at least the total weight of the falsified clauses in G. That is for every truth-assignment
α, ∑

(C,u)∈F
α(C)=0

u ≥
∑

(C,u)∈G
α(C)=0

u .

Corollary 3.8 (soundness of (restricted) w-Res). Both w-Res and restricted w-Res are
sound.

Theorem 3.9 (completeness of (restricted) w-Res). Both w-Res and restricted w-Res are
complete, i.e. given a multiset of weighted clauses F , if for every truth-assignment α∑

(C,u)∈F
α(C)=0

u ≥ s ,

then there exists a (restricted) w-Res derivation of (⊥, s) from F .

457

Bonacina, Bonet, & Levy

Proof. Using the fold-unfold equivalence expand each clause (C, u) in F into u copies of
(C, 1). Then apply the split to each of those clauses on all the possible variables. If the
clause C had width w all the split rules generate 2n−w many clauses of width n and all of
them weakening of C. After having done this for each clause in F , let L be the obtained
multiset.

Let CTn be the complete tree CNF formula on n variables, i.e. the set containing all
possible 2n distinct clauses of width exactly n. Let wCTn = {(C, 1) : C ∈ CTn}, be the
weighted version of CTn. The multiset L contains s copies of wCTn, where s is the minimum
weight of the falsified clauses in F . To see this, suppose in L there are k copies of wCTn
together with a satisfiable set of clauses A. Then there is a total assignment that satisfies
all the clauses in A and falsifies exactly one clause in each wCTn, for a total of k clauses.
By the strong-soundness then k ≥ s.

It is immediate to see that wCTn has a w-Res derivation of (⊥, 1) where one only uses
the symm. cut rule and the last multiset is just {(⊥, 1)} (using Definition 3.4 item 2′).
Therefore, form L just using the symm. cut rule we obtain a (⊥, s). Since we apply the
split rule only to weakenings of the initial axioms, the w-Res derivation we just described
is also a restricted w-Res derivation.

Notice that, the completeness of weighted MaxSAT Resolution, proved by Bonet et al.
(2007), already implies the completeness of w-Res, since w-Res p-simulates weighted MaxSAT
Resolution.

We conclude this section showing a sort of normal form for (restricted) w-Res derivations.

Lemma 3.10 (Normal form of w-Res). Any w-Res derivation (F1, . . . ,Fs) can be converted
in polynomial time, with a polynomial increase in size and identical width, to a w-Res
derivation (F ′

1, . . . ,F ′
s) where all the regular inference steps have positive weights and there

is a single application of the fold-unfold rule between F ′
s−1 and F ′

s. The same holds for
restricted w-Res too.

Proof. Consider the w-Res derivation (F1, . . . ,Fs). First we observe how to get rid of the
negative weights in the applications of inference rules which could only be in Split and
Symm. Cut.

If from Fi to Fi+1 we applied a symm. cut {(x ∨A,−u), (¬x ∨A,−u)} ⊢ (A,−u) with
u ≥ 0 we have

Fi+1 = Fi ∪ {(x ∨A, u), (¬x ∨A, u), (A,−u)} ,

which is the same as applying the split rule (A, u) ⊢ {(x ∨A, u), (¬x ∨A, u)} on Fi.
Similarly, for the split (A,−u) ⊢ {(x ∨A,−u), (¬x ∨A,−u)} with u ≥ 0 we use the symm.

cut rule with weight u.
Now, we want to push all the fold-unfold towards the end of the derivation. Let R

be an instantiation of a rule and SR be the set of weighted clauses corresponding to the
premises and conclusions of the rule, where the premises will have negative weight and the

458

Weighted, Circular and Semi-Algebraic Proofs

conclusions will have positive weight. We have that

F ∪ {(C, u1) . . . (C, us)}
≈ (u1 + . . .+ us = v1 + . . .+ vr)

F ∪ {(C, v1) . . . (C, vr)}
R

F ∪ {(C, v1) . . . (C, vr)} ∪ SR

and

F ∪ {(C, u1) . . . (C, us)}
R

F ∪ {(C, u1) . . . (C, us)} ∪ SR
≈ (u1 + . . .+ us = v1 + . . .+ vr)

F ∪ {(C, v1) . . . (C, vr)} ∪ SR

are both valid derivations and the increase in size is just |SR|. This means that with just a
polynomial increase in size we can push all the ≈ at the end of the derivation. Now, by the
transitivity of ≈, all of them can be done at once using fold-unfold equivalence.

4. Circular Proofs as Weighted Proofs

We show that weighted proofs are the equivalent to circular proofs. Atserias and Lauria
(2019) introduced the notion of circular proofs as a way to enrich the structure of the proofs
allowed in Frege systems. We recall the notion of circular Resolution and then we show the
equivalence with weighted Resolution.

Definition 4.1 (circular Proof). Given a set of inference rules R , a set of hypotheses
clauses H and a goal clause G, a circular derivation of G from H (over R) is a bipartite
directed graph (I,J , E) where I,J are multisets, nodes are either inference rules (R ∈ I)
or clauses (A ∈ J), edges A → R ∈ E denote the occurrence of clause A as an antecedent
of the rule R, and edges R → A ∈ E the occurrence of clause A as a consequence of the
rule R.

A function Flow : I → N+ is called flow-assignment. Given a flow-assignment Flow, the
balance of a clause A is

Bal(A,Flow) =
∑

R∈N in(A)

Flow(R)−
∑

R∈Nout(A)

Flow(R) ,

where N in(A) = {R ∈ I | R → A ∈ E} and Nout(A) = {R ∈ I | A → R ∈ E} are the
sets of neighbours of A. We will use Bal(A) to mean Bal(A,Flow) when the Flow function
is clear from the context.

To ensure the soundness, we require the existence of a flow-assignment Flow satisfying
Bal(A,Flow) ≥ 0, for any clause A ∈ J \ H, and Bal(G,Flow) > 0, for the goal clause G.
The clauses in H may have negative balance. The size of a circular proof derivation is the
number of nodes in the bipartite graph and the width is the maximum width of a clause in
it.

Definition 4.2 (circular Resolution, c-Res). A circular Resolution (c-Res) derivation is a
circular proof using the set of inference rules R = {split, symmetric cut}.

459

Bonacina, Bonet, & Levy

Theorem 4.3. c-Res and w-Res are p-equivalent. Moreover, the width is either preserved
(w-Res p-simulation of c-Res) or it increases by one (c-Res p-simulation of w-Res).

The two simulations in this theorem are proved separately in Lemma 4.5 and Lemma 4.6
below. Before proving formally the connections between c-Res derivations and w-Res deriva-
tions we give an example.

Example 4.4. We give an example of a c-Res derivation of {x,¬y,¬x ∨ y} from {x ∨ y ∨
z, x∨ y ∨¬z, x∨¬y,¬x}. See Figure 2 and Figure 4. Next to the c-Res derivation we show
the corresponding w-Res derivation. To improve readability we apply immediately after
each inference rule a fold-unfold equivalence. In the c-Res derivation we highlight in red the
premises and in green the conclusions. Notice that in the symm. cut •1, we need to apply
it with both premises with weight 2, and since x ∨ y only has weight 1, we are left with
x ∨ y with weight −1 in the conclusions of the rule, and therefore it needs to be justified.
Notice also that we proved the clause x with weight 2, but it is only used as a premise with
weight 1, hence it remains in the conclusions of the proof.

symm. cutFlow=1 •0

x ∨ y ∨ z x ∨ y ∨ ¬z

x ∨ y

symm. cut •1Flow = 2

x ∨ ¬y

x

symm. cut •2Flow=1

¬x

⊥

split •3Flow=1

y¬y

split •4Flow=1

¬x ∨ y

(x ∨ y ∨ z, 1) (x ∨ y ∨ ¬z, 1)
(x ∨ ¬y, 2) (¬x, 1)

symm.cut & ≈ •0
(x ∨ ¬y, 2) (¬x, 1) (x ∨ y, 1)

symm.cut & ≈ •1
(¬x, 1) (x, 2) (x ∨ y,−1)

symm.cut & ≈ •2
(⊥, 1) (x, 1) (x ∨ y,−1)

split & ≈ •3
(y, 1) (¬y, 1) (x, 1) (x ∨ y,−1)

split & ≈ •4
(¬y, 1) (¬x ∨ y, 1) (x, 1)

Figure 2: A circular proof and its corresponding weighted proof.

Lemma 4.5. c-Res p-simulates w-Res. The weights of w-Res become the flows of c-Res
(except on the initial clauses where they take the opposite sign).

Proof. Assume we have a w-Res derivation (F1,F2, . . . ,Fℓ) of a weighted clause (C,w) with
w > 0, from a multiset of weighted clauses F . That is, in particular, F1 = F and Fℓ

460

Weighted, Circular and Semi-Algebraic Proofs

C

Split Flow = 1

C ∨ x C ∨ ¬x

Symmetric-Cut Flow = 1

C

Figure 3: A constant size c-Res derivation of C from C.

contains the weighted clause (C,w) and the rest of weighted clauses in Fℓ have positive
weights. Let H be the set of distinct clauses appearing in F .

If the goal clause C is already in H, we just construct the c-Res derivation of C from
C appearing in Figure 3. This c-Res derivation might increase the width in 1 and in a
c-Res derivation the goal clause needs to have positive balance. Therefore the multiset of
inference nodes cannot be empty since then C would have balance 0.

In the rest of the argument we assume the goal clause C /∈ H. By Lemma 3.10, we
can suppose in (F1,F2, . . . ,Fℓ) the regular inference rules are always applied with positive
weights and there is a single fold-unfold step between Fℓ−1 and Fℓ.

Recall that, if from Fi to Fi+1 we apply the rule

(A1, u) · · · (As, u)

(B1, u), . . . , (Br, u)
Rule R (2)

where u > 0, then Fi+1 = Fi ∪ {(A1, −u), . . . , (As, −u), (B1, u) · · · (Br, u)}.
We construct now a c-Res derivation associated to (F1,F2, . . . ,Fℓ) and at the same time

a flow-assignment. Consider the set J of all the distinct (unweighted) clauses appearing in⋃l
i=1Fi and the multiset I of all the regular inference rules in (F1,F2, . . . ,Fℓ), i.e. we do

not consider the last fold-unfold inference step.
For each instantiation of a Rule R as in eq. (2), we have an inference node R, we set

Flow(R) = u and we create edges Ai → R, for 1 = 1, . . . , s, and R → Bj , for j = 1, . . . , r.
Let G be the directed graph resulting from this construction. For each clause node A in G
we have that its balance is

Bal(A,Flow) =
∑

R∈N in(A)

Flow(R)−
∑

R∈Nout(A)

Flow(R) .

From the construction of G and the assumptions on (F1,F2, . . . ,Fℓ), for each clause A /∈ H
we have

{(A,Flow(R)) : R ∈ N in(A)} ∪ {(A,−Flow(R)) : R ∈ Nout(A)} ⊆ Fℓ−1 ,

that is, in Fℓ, we have the clause (A,Bal(A)). By assumption this is a w-Res derivation of
(C,w), therefore it must be that Bal(A) ≥ 0 for each J \ H and Bal(C) > 0.

461

Bonacina, Bonet, & Levy

Lemma 4.6. w-Res p-simulates c-Res. Given a flow-assignment of a c-Res proof, the
corresponding balance will be the weights in w-Res (exept for the initial clauses where it
takes the opposite sign).

Proof. Assume we have a c-Res derivation (I, J, E) with clauses nodes J , inference nodes
I, edges E, hypotheses H ⊂ J and goal clause C ∈ J . That is, there is a Flow assignment
such that for each A ∈ J

Bal(A,Flow) =
∑

R∈N in(A)

Flow(R)−
∑

R∈Nout(A)

Flow(R) , (3)

where Bal(C,Flow) > 0, and for each A ∈ J \H, Bal(A,Flow) ≥ 0. Moreover, by elementary
facts of linear programming, we can assume that for each R ∈ I, Flow(R) has bit-complexity
polynomial in |I|+ |J |.

Without loss of generality, we assume that the hypotheses clauses do not have incoming
edges, i.e. for any A ∈ H, N in(A) = ∅. If there was an incoming edge to A ∈ H, we can
make a copy of A and use it to redirect the previous edge from the old A ∈ H to the new
copy of A. Notice that redirecting these incoming edges in a circular proof only decreases
the balance of hypotheses clauses (that are already allowed to have negative balance) and
increases the balance of the copy. Without loss of generality we also assume the goal clause
C is not in H.

We produce a w-Res derivation by first placing the hypotheses H at the beginning,
then introducing all the remaining clauses C ∈ J \ H, and, finally, applying all the rules
R1, . . . , R|I| one by one with appropriate weights.

More precisely, we construct multisets F ′′
0 ,F ′

0,F0,F1, . . . ,F|I|,F|I|+1 such that in this
order they form a valid w-Res derivation of (C,Bal(C,Flow)).

The first multiset F ′′
0 corresponds to all the hypotheses clauses with the appropriate

weight:
F ′′
0 = {(A,−Bal(A)) | A ∈ H} .

The second multiset F ′
0 is obtained from F ′′

0 by fold-unfold equivalence and is the following:

F ′
0 = {(A,−Bal(A)) | A ∈ H} ∪

{(A,Bal(A)), (A,−Bal(A)) | A ∈ J \ H} .

The third multiset F0 is again fold-unfold equivalent to F ′
0 and is obtained expanding

−Bal(A) for all A ∈ J :

F0 = {(A,Bal(A)) | A ∈ J \ H} ∪
{(A,Flow(R)) | A ∈ J ∧R ∈ Nout(A)} ∪
{(A,−Flow(R)) | A ∈ J ∧R ∈ N in(A)} .

For i = 1, . . . , |I| we define

Fi = Fi−1 ∪
{(A,−Flow(Ri)) | A ∈ N in(Ri)} ∪
{(A,Flow(Ri)) | A ∈ Nout(Ri)} .

462

Weighted, Circular and Semi-Algebraic Proofs

Finally,
F|I|+1 = {(A,Bal(A)) | A ∈ J \ H} .

Now, we prove that this is really a valid w-Res derivation of (C,Bal(C)). First we have
to check that all weights in F ′′

0 are non-negative. This is because all clauses A ∈ H only
have outgoing edges, and therefore Bal(A) ≤ 0, and the weights in F ′′

0 are positive. Then
multisets F ′′

0 , F ′
0 and F0 are all fold-unfold equivalent and hence valid steps in w-Res.

Now, for each i ∈ [I] we see the step from Fi−1 to Fi as the application of the rule Ri

with weight Flow(Ri). The premises of Ri are the clauses A such that A ∈ N in(Ri) and the
conclusions are the clauses A such that A ∈ Nout(Ri).

The multiset F|I| then is the following:

F|I| = F0 ∪
{(A,−Flow(R)) | R ∈ I ∧A ∈ N in(R)} ∪
{(A,Flow(R)) | R ∈ I ∧A ∈ Nout(R)}

= {(A,Bal(A)) | A ∈ J \ H} ∪
{(A,Flow(R)) | A ∈ J ∧R ∈ Nout(A)} ∪
{(A,−Flow(R)) | A ∈ J ∧R ∈ N in(A)} ∪
{(A,−Flow(R)) | R ∈ I ∧A ∈ N in(R)} ∪
{(A,Flow(R)) | R ∈ I ∧A ∈ Nout(R)} ,

Now, trivially, for R ∈ I and A ∈ J we have R ∈ N in(A) if and only if A ∈ Nout(R) and,
similarly, R ∈ Nout(A) if and only if A ∈ N in(R), therefore

F|I|+1 = {(A,Bal(A)) | A ∈ J \ H} ≈ F|I| .

Moreover, all the weights in F|I|+1 are non-negative and (C,Bal(C)) ∈ F|I|+1.

Notice that the same argument we used in Theorem 4.3 generalizes trivially to a generic
set of inference rules, provided that Lemma 3.10 holds and the rules allow having constant
size c-Res derivations of clauses from themselves as in Figure 3.

5. Algebraic Proofs as Weighted Proofs

In Section 4 we showed that w-Res and c-Res are equivalent proof systems. In this section
we show the connection between weighted proofs and (semi)-algebraic proof systems in
particular the Nullstellensatz proof system and the Sherali-Adams proof system.

5.1 Extra Preliminaries

Let X be the set of variables x1, . . . , xn, x̄1, . . . , x̄n. The variables in X are intended to be
Boolean and the x̄i’s are new variables with intended meaning the negation of the xi’s. By
Z[X] we denote the set of polynomials in the variables X and coefficients in Z.

5.1.1 Nullstellensatz

The Nullstellensatz proof system (NS) was introduced by Beame, Impagliazzo, Krajicek,
Pitassi, and Pudlak (1994) and it is a way to get a proof system from (the weak form of)
Hilbert’s Nullstellensatz.

463

Bonacina, Bonet, & Levy

Definition 5.1 (Nullstellensatz, NSZ). Given polynomials p1, . . . , pm, s in Z[X], a Nullstel-
lensatz (NSZ) derivation of the equality s = 0 from the set of equalities {p1 = 0, . . . , pm = 0}
is a polynomial identity of the form

∑
i∈[m]

qipi +
n∑

j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) = s , (4)

where qi, rj , r
′
j ∈ Z[X]. A refutation of {p1 = 0, . . . , pm = 0} is a derivation of c = 0 where c

is a non-zero constant. The size of the polynomial identity in (4) is the length of a bit-string
representing the polynomials qi, rj , r

′
j , including the coefficients. If all the coefficients are

±1 we call the system unary NS. The degree of the polynomial identity in (4) is

max{deg qi + deg pi,deg rj + 2,deg r′j + 1: i ∈ [m], j ∈ [n]} ,

where deg p is the degree of the polynomial p.

Notice that in the left hand side (LHS) of (4) we don’t have a sum corresponding to
polynomials x̄2i − x̄i. The reason is that they are not needed to enforce the variables x̄i to
be Boolean, indeed:

x̄2i − x̄i = (x̄i − xi)(xi + x̄i − 1) + (x2i − xi) .

NS is sound and complete, i.e. the set of equations {p1 = 0, . . . , pm = 0} is unsatisfiable
over {0, 1}-assignments if and only if there is a NS refutation of it.

NS together with an encoding of CNF formulas into sets of polynomials is a propositional
proof system. A CNF formula {C1, . . . , Cm} is encoded as the set of polynomial equations
{MCi = 0, . . . ,MCm = 0}, where if C =

∨
i∈I xi ∨

∨
j∈J ¬xj , then MC is the monomial∏

i∈I x̄i
∏

j∈J xj . This encoding has the property that if a truth-assignment α satisfies the
clause C, then α satisfies the equation MC = 0, and if a truth-assignment α falsisfies
the clause C, then α satisfies the equation MC = 1. It is not hard to see that unary
NS p-simulates tree-like Res. NS is exponentially stronger than tree-like Res since it can
prove efficiently the onto-functional pigeonhole principle. Interestingly, Bonacina and Bonet
(2022) showed that, in some intuitive sense, the principles that NS can prove efficiently, and
(tree-like) Res cannot, are just formulas easily reducible to the onto-functional pigeonhole
principle. Göös et al. (2022) showed that degree-polylog(n) unary NS corresponds to the
TFNP class PPAD.

If a CNF formula in n variables has a degree-d NS refutation, then it has a refutation
of size nO(d) and coefficients of size nO(1) when expressed in binary. This bound is also
asymptotically tight, i.e. there are CNF formulas that can be refuted in degree-d NS but
require size nΩ(d) (Loera et al., 2009).

The main reason we have the formal variables x̄i is to allow this succinct encoding.
Semantically the variable x̄i is equivalent to the polynomial 1−xi, but encoding the clause∨

i∈[n] xi as the equation
∏

i∈[n] x̄i = 0 is very different from encoding it as the polynomial
equation

∏
i∈[n](1 − xi) = 0 in terms of number of monomials. In NS we are not allowed

to handle arbitrary algebraic expressions like
∏

i∈[n](1 − xi), but only polynomials, that is
sums of monomials. So, once written as a polynomial,

∏
i∈[n](1 − xi) has an exponential

number of monomials.

464

Weighted, Circular and Semi-Algebraic Proofs

A variant of NS without the x̄i variables (NS without twin variables) has been considered
in the literature. Essentially it amounts to an identity as in (4) where each instance of x̄i
is substituted with 1 − xi and the resulting algebraic expression is expanded as a sum of
monomials. This system is not suited to refute arbitrary CNF formulas due to the potential
exponential size encoding of CNFs, but it might be used to refute k-CNF formulas for
k = O(log n). de Rezende et al. (2021b) showed that this version of NS without twin
variables is exponentially weaker than NS.

Remark 5.2. The Nullstellensatz proof system could be defined for polynomials with co-
efficients in arbitrary rings, and a special case of interest is polynomials with coefficients
in finite fields such as GF (2). The characterization of Nullstellensatz as restricted w-Res
(Lemmas 5.13 and 5.11) could be adapted to this more general context. Indeed, while
w-Res cannot be generalized to GF (2), restricted w-Res could and, it would correspond to
Nullstellensatz over GF (2) with minor adaptations of the arguments in Lemmas 5.13 and
5.11. For simplicity we focus on Nullstellensatz and polynomials with integer coefficients.

5.1.2 Sherali-Adams

The Sherali-Adams proof system was introduced by Dantchev (2007) and Dantchev, Martin,
and Rhodes (2009a) as a way to get proof systems out of the hierarchy of relaxations
introduced by Sherali and Adams (1990) to solve Integer Linear Programs.

Definition 5.3 (Sherali-Adams, SA). Given a set of polynomials p1, . . . , pm and a polyno-
mial s in Z[X], a Sherali-Adams (SAZ) derivation of s ≥ 0 from p1 ≥ 0, . . . , pm ≥ 0 is a
polynomial identity of the form

∑
i∈[m]

qipi +
n∑

j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) + q = s , (5)

where q, qi, rj , r
′
j ∈ Z[X] and additionally q, qi have only positive coefficients. A refutation

of {p1 ≥ 0, . . . , pm ≥ 0} is a derivation of −c ≥ 0 for a positive constant c. The size of
the polynomial identity in (5) is the length of a bit-string representing the polynomials
q, qp, rj , r

′
j , including the coefficients. If all the coefficients are ±1 we call the system unary

SA. The degree of the polynomial identity in (5) is

max{deg qi + deg pi, deg rj + 2,deg r′j + 1, deg q : i ∈ [m], j ∈ [n]} ,

where deg p is the degree of the polynomial p.

An example of a SA derivation is in Example 5.8. In this section, we consider only
Sherali-Adams over the ring Z, hence we refer to SAZ simply as SA, omitting the reference
to Z.

Similarly as for NS, in (5) we might want to eliminate the variables x̄1, . . . , x̄n, and
hence consider the algebraic equality in (5) after the substitution x̄i for 1 − xi, for each
i ∈ [n]. As for NS, de Rezende et al. (2021b) showed that the resulting system is known to
be exponentially weaker than SA.

SA is sound and complete, i.e. the system of inequalities {p1 ≥ 0, . . . , pℓ ≥ 0} is
unsatisfiable over {0, 1}-assignments if and only if there is a SA refutation of it. SA together

465

Bonacina, Bonet, & Levy

with an encoding of CNF clauses into sets of polynomials is a propositional proof system.
We use the same encoding as for NS with the only difference that an equality is encoded as
two inequalities, i.e. the clause C =

∨
i∈I xi ∨

∨
j∈J ¬xj is encoded as the two inequalities∏

i∈I
x̄i

∏
j∈J

xj ≥ 0, −
∏
i∈I

x̄i
∏
j∈J

xj ≥ 0

 .

Notice that, the inequality
∏

i∈I x̄i
∏

j∈J xj ≥ 0 is indeed redundant since the corresponding
polynomial could be thought as being part of the polynomial q in (5). Thus we say that
the encoding of the clause C is just −

∏
i∈I x̄i

∏
j∈J xj ≥ 0. We will not use it in this work,

but the clause C could also be encoded as the linear inequality
∑

i∈I xi +
∑

j∈J x̄j ≥ 1.
If a CNF formula in n variables has a degree-d SA refutation, then it has a refutation

of size nO(d). See Section 1.2 for more details. This bound is also asymptotically tight, i.e.
there are CNF formulas that can be refuted in degree-d SA but require size nΩ(d) regardless
of the degree (Atserias et al., 2016).

Under this encoding of CNF formulas, it is immediate to see that SA p-simulates NS
and it is also well-known that SA p-simulates Res, see for instance Lemma 3.5 of (Atserias
& Ochremiak, 2018). Moreover, SA is exponentially stronger than Res since it can prove
efficiently the pigeonhole principle. Interestingly, Bonacina and Bonet (2022) showed that,
in some intuitive sense, what SA can prove efficiently and Res cannot, are just principles
reducible to a weighted version of the pigeonhole principle. Göös et al. (2022) showed that
degree-polylog(n) unary SA corresponds to the TFNP class PPADS.

5.2 Weighted Resolution and NS/SA

We now prove the equivalence between w-Res and SA, and between restricted w-Res and
NS. To show that w-Res p-simulates SA we need a simple lemma giving a sort of normal
form for SA/NS derivations. This lemma was implicitly used by Bonacina and Bonet (2022)
and Fleming et al. (2022). The p-simulation of w-Res by SA generalizes and follows the
known simulation of Res by SA.

The next lemmas show that the qis in the definitions of NS and SA can be taken as
positive constants. The first lemma shows that each product qipi, from the definitions of
NS and SA, can be expressed in a different way.

Lemma 5.4. Given polynomials p, q ∈ Z[X], there are polynomials r1, . . . , rn, a polynomial
q′ in Z[X] and a non-negative constant a such that

qp = (a− q′)p+
∑
j∈[n]

rj(xj + x̄j − 1) , (6)

where q′ has all coefficients non-negative. The degrees of q′ and rj(xj + x̄j − 1) are at most
the degree of q.

Proof. Let bxjm be a monomial in q, where b ∈ Z. If b < 0 consider the monomial −bxjm
to be part of q′. If b > 0 then we can rewrite bmxjp as

bmxjp = bmp(xj + x̄j − 1)− bmx̄jp+ bmp .

466

Weighted, Circular and Semi-Algebraic Proofs

Now we consider bmp(xj + x̄j − 1) as an element of
∑

j rj(xj + x̄j − 1), and the monomial
bmx̄j as part of q′. The procedure is repeated now on the polynomial bmp exhausting all
the variables in m one by one.

If the monomial in q is bmx̄j the identity used is analogous.
At the end we are left with a positive constant a equal to the sum of all positive

coefficients b corresponding to monomials in q.

From this auxiliary lemma we have two normal forms, one for NS and one for SA. Notice
that, Atserias and Lauria (2019) also introduce a notion of normal form for SA proofs but
this form is not related to the one we introduce here.

Lemma 5.5 (Normal form for NS proofs). Given a NS derivation as in eq. (4), it is
possible to transform it, in polynomial time, into a NS derivation of the same degree and
polynomially larger size, where all the polynomials qi have the form ai − q′i, ai is a positive
constant and q′i has positive coefficients.

Proof. Immediate from Lemma 5.4.

Lemma 5.6 (Normal form for SA proofs). Given a SA derivation as in eq. (5), if all the
polynomials pi have negative coefficients then it is possible to transform it, in polynomial
time, into a SA derivation

∑
i∈[m]

aipi +

n∑
j=1

(
rj(x

2
j − xj) + r′j(xj + x̄j − 1)

)
+ q = s , (7)

where ai’s are positive constants, q, rj , r
′
j ∈ Z[X], q has only positive coefficients, the degree

is the same of the original derivation and the size is polynomially larger.

Proof. It is immediate from Lemma 5.4:

qipi = (ai − q′i)pi +
∑
j∈[n]

rij(xj + x̄j − 1) ,

but, by assumption pi has negative coefficients, hence the polynomial −q′ipi has positive
coefficients and can be seen as part of the q-part of the SA derivation.

Notice, in particular, this normal form for SA holds when the initial set of polynomials
is the encoding of a CNF formula.

Theorem 5.7. SA is p-equivalent to w-Res and NSZ is p-equivalent to restricted w-Res.
The same p-equivalences hold between the unary version of the systems. Moreover, degree-d
NS/SA derivations correspond to width-d w-Res derivations.

By Theorem 4.3, w-Res is p-equivalent to c-Res, and Atserias and Lauria (2019) showed
that c-Res is p-equivalent to SA, therefore w-Res and SA are p-equivalent.

We give now a direct and self-contained argument showing the p-equivalence of w-Res
and SA that works also in the cases of NS and the systems with unary weights/coefficients.
Before proving the equivalence between w-Res and SA, we complete Example 4.4.

467

Bonacina, Bonet, & Levy

Example 5.8 (Example 4.4 cont’d). This is the continuation of Example 4.4 and Figure 2,
that is an example of a c-Res/w-Res/SA derivation of {x,¬y,¬x∨y} from {x∨y∨ z, x∨y∨
¬z, x∨¬y,¬x}. In the language of SA, this means the polynomial inequality −x̄−y−xȳ ≥ 0
is derivable from the set of inequalities {−x̄ȳz̄ ≥ 0,−x̄ȳz ≥ 0,−x̄y ≥ 0,−x ≥ 0}. See Figure
4 below.

symm. cutFlow=1 •0

x ∨ y ∨ z x ∨ y ∨ ¬z

x ∨ y

symm. cut •1Flow = 2

x ∨ ¬y

x

symm. cut •2Flow=1

¬x

⊥

split •3Flow=1

y¬y

split •4Flow=1

¬x ∨ y

(x ∨ y ∨ z, 1) (x ∨ y ∨ ¬z, 1)
(x ∨ ¬y, 2) (¬x, 1)

symm.cut & ≈ •0
(x ∨ ¬y, 2) (¬x, 1) (x ∨ y, 1)

symm.cut & ≈ •1
(¬x, 1) (x, 2) (x ∨ y,−1)

symm.cut & ≈ •2
(⊥, 1) (x, 1) (x ∨ y,−1)

split & ≈ •3
(y, 1) (¬y, 1) (x, 1) (x ∨ y,−1)

split & ≈ •4
(¬y, 1) (¬x ∨ y, 1) (x, 1)

−x̄ȳz̄ − x̄ȳz − 2x̄y − x

+ x̄ȳ(z + z̄ − 1) •0
+ 2x̄(y + ȳ − 1) •1
+ (x+ x̄− 1) •2
− (y + ȳ − 1) •3
− ȳ(x+ x̄− 1) •4
= −x̄− y − xȳ

Figure 4: A circular proof, its corresponding weighted proof and the related Sherali-Adams
proof.

To prove Theorem 5.7, we adopt a slightly more syntactic view of the clauses in a w-Res
derivation: we consider clauses C = ℓ1 ∨ · · · ∨ ℓr where literals might be repeated. In Res,
w-Res, and c-Res those clauses are handled implicitly, i.e. identifying C ∨ ℓ ∨ ℓ with C ∨ ℓ.

To facilitate the proof of Theorem 5.7, we consider w-Res derivations where this identi-
fication is done explicitly via the idempotency rule:

(C ∨ ℓ ∨ ℓ, u)

(C ∨ ℓ, u)
Idempotency ,

468

Weighted, Circular and Semi-Algebraic Proofs

where C is a clause and ℓ is a literal and u ∈ Z. Notice that this rule is redundant since
the same conclusion could be obtained using Excluded Middle, Split and Symm. Cut in
the following way:

(C ∨ ℓ ∨ ℓ, u)
Excluded Middle

(C ∨ ℓ ∨ ℓ, u) (ℓ ∨ ¬ℓ, u)
Split...
Split

(C ∨ ℓ ∨ ℓ, u) (C ∨ ℓ ∨ ¬ℓ, u) · · ·
Symm. Cut

(C ∨ ℓ, u) · · ·

For a clause C =
∨

i∈I xi ∨
∨

j∈J ¬xj , let

M(C) =
∏
i∈I

x̄i
∏
j∈J

xj ,

and vice versa, given a monomial m =
∏

i∈I x̄i
∏

j∈J xj , let

C(m) =
∨
i∈I

xi ∨
∨
j∈J

¬xj .

Using this translation, a clause C is encoded as the equality M(C) = 0 in NS, and as the
inequality −M(C) ≥ 0 in SA.

Lemma 5.9. Given multisets of weighted clauses F ,G, we have that F and G are fold-unfold
equivalent, F ≈ G, if and only if∑

(C,w)∈F

wM(C) =
∑

(C,w)∈G

wM(C) .

Proof. By definition, F ≈ G means that for every clause C,∑
w:(C,w)∈F

w =
∑

w:(C,w)∈G

w ,

that is ∑
C

 ∑
w:(C,w)∈F

w −
∑

w:(C,w)∈G

w

M(C) = 0 ,

and therefore ∑
(C,w)∈F

wM(C) =
∑

(C,w)∈G

wM(C) .

Vice versa, if ∑
(C,w)∈F

wM(C) =
∑

(C,w)∈G

wM(C)

469

Bonacina, Bonet, & Levy

it means that ∑
C

 ∑
w:(C,w)∈F

w −
∑

w:(C,w)∈G

w

M(C) = 0 ,

hence for each M(C) the coefficient in front of it must be 0 and the fact that F ≈ G follows
immediately.

We split the various p-simulations in Theorem 5.7 into distinct lemmas.

Lemma 5.10. w-Res p-simulates SA.

Proof. Let F = {C1, . . . , Cℓ}. By Lemma 5.6, without loss of generality, an SA refutation
of F has the form

−c = −
ℓ∑

i=1

aiM(Ci) +

n∑
j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) +
∑
i∈J

a′im
′
i , (8)

for some positive constants c, ai, a
′
i, polynomials rj , r

′
j , and monomials m′

i. Or, equivalently

−c−
∑
i∈J

a′im
′
i = −

ℓ∑
i=1

aiM(Ci) +
n∑

j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) . (9)

Notice that the LHS of eq. (9) has only negative coefficients. The constant −c is the
weighted clause (⊥, c) and −aiM(Ci) is (Ci, ai).

We construct a w-Res refutation (L1, . . . ,Ls) of F . The multiset

L1 = {(C1, a1), . . . , (Cℓ, aℓ)}

corresponds to−
∑ℓ

i=1 aiM(Ci). Suppose we already constructed Lt, then pick any binomial
of the form am(x2j − xj), not already picked from the sum

∑n
j=1 rj(x

2
j − xj), and let

Lt+1 = Lt ∪ {(C(m) ∨ ¬xj ∨ ¬xj , −a), (C(m) ∨ ¬xj , a)} .

This is an application of the Idempotency rule. Continue this way until all the binomials
from

∑n
j=1 rj(x

2
j − xj) are picked. Then continue with the trinomials from

∑n
j=1 r

′
j(xj +

x̄j − 1). Suppose we constructed Lk, then pick any trinomial of the form am(xj + x̄j − 1),
not already picked from the sum

∑n
j=1 r

′
j(xj + x̄j − 1), and let

Lk+1 = Lk ∪ {(C(m) ∨ ¬xj , −a), (C(m) ∨ xj ,−a), (C(m), a)} .

This is an application of a symmetric cut. Continue this process until all the trinomials
from

∑n
j=1 r

′
j(xj + x̄j − 1) are picked. Then, let Ls′ be the multiset we obtained, that is

Ls′ is constructed by exhausting all the terms from the RHS of eq. (9). By the equality (9)
and Lemma 5.9 this gives

Ls′ ≈ {(⊥, c)} ∪ {(C(m′
i), a

′
i) : i ∈ I} ,

470

Weighted, Circular and Semi-Algebraic Proofs

where recall that a′i ≥ 0. Lemma 5.9 justifies that every clause with negative weight in the
constructed proof has to have the same clause with the corresponding positive weight in
Ls′ .

Given the translation from monomials to clauses, we have constructed a w-Res derivation
of width equal to the degree of the SA. Moreover, if the coefficients of the SA derivation
are ±1, the weights of the clauses in the w-Res derivation are ±1 too.

Lemma 5.11. Restricted w-Res p-simulates NS.

Proof. In the case of a NS derivation the argument is analogous to the previous lemma. Let
F = {C1, . . . , Cℓ}. A NS refutation of {M(C1) = 0, . . . ,M(Cℓ) = 0} has the form

c =
∑
i∈[m]

qiM(Ci) +

n∑
j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) , (10)

where qi, rj , r
′
j ∈ Z[X] and c ̸= 0. We have two cases c > 0 and c < 0.

If c > 0 we apply the Normal Form of NS (Lemma 5.5) and get

c =
∑
i∈[m]

(ai − q′i)M(Ci) +

n∑
j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) ,

where the ais are positive and all the q′is have positive coefficients. We then change sign to
both sides of the equality and get

−c−
∑
i∈[m]

q′iM(Ci) = −
∑
i∈[m]

aiM(Ci) +

n∑
j=1

rj(x
2
j − xj) +

n∑
j=1

r′j(xj + x̄j − 1) .

If c < 0 we first change sign to both sides of (10) to reduce to the previous case.
Then we argue as in the previous lemma. To conclude, the only new small fact to notice

is that each monomial in the sum
∑

i∈[m] q
′
iM(Ci), is a weakening of an initial axiom, once

translated to a weighted clause.

Lemma 5.12. SA p-simulates w-Res.

Proof. We show now how to convert a w-Res refutation into a SA refutation. Let (L1, . . . , Lt)
be a w-Res refutation of some multiset of clauses F . We construct algebraic expressions
S1, . . . , St with the property that Si = −

∑
(C, w)∈Li

wM(C) and they are valid SA deriva-
tions.

Let S1 = −
∑

(C, w)∈L1
wM(C). By assumption, all the clauses C in L1 are clauses from

F . Then suppose we constructed an algebraic expression Si = −
∑

(C, w)∈Li
wM(C) having

the form of a SA derivation. We want then to construct Si+1.

• If Li ≈ Li+1 let Si+1 = Si.

• If Li+1 is obtained from Li by a Symmetric-Cut rule (C∨x, w) (C∨¬x, w)
(C, w) , then add

to the algebraic expression Si the terms

−wM(C) + wM(C ∨ x) + wM(C ∨ ¬x) = wM(C)(x+ x̄− 1) .

That is Si+1 = Si + wM(C)(x+ x̄− 1).

471

Bonacina, Bonet, & Levy

• If Li+1 is obtained from Li by a Split rule (C, w)
(C∨x, w) (C∨¬x, w) , then add to Si the

terms
wM(C)− wM(C ∨ x)− wM(C ∨ ¬x) = −wM(C)(x+ x̄− 1) .

That is Si+1 = Si − wM(C)(x+ x̄− 1).

• If Li+1 is obtained from Li by a Idempotency rule (C∨¬x∨¬x, w)
(C∨¬x, w) then add to Si the

terms
−wM(C ∨ ¬x) + wM(C ∨ ¬x ∨ ¬x) = wM(C)(x2 − x) .

That is Si+1 = Si + wM(C)(x2 − x).

• If Li+1 is obtained from Li by an Idempotency rule (C∨x∨x, w)
(C∨x, w) then add to Si the

terms

−wM(C ∨ x) + wM(C ∨ x ∨ x) = wM(C)(x̄2 − x̄)

= wM(C)(x2 − x)

+ (wM(C)x̄− wM(C)x)(x̄+ x− 1) .

That is Si+1 = Si + wM(C)(x2 − x) + (wM(C)x̄− wM(C)x)(x̄+ x− 1).

• If Li+1 is obtained from Li by an Excluded Middle rule (x∨¬x, w) then add to Si the
terms

−wM(x ∨ ¬x) = −wxx̄

= −wx(x+ x̄− 1) + w(x2 − x) .

That is Si+1 = Si − wx(x+ x̄− 1) + w(x2 − x).

It is immediate to see that Si+1 constructed above is such that

Si+1 = −
∑

(C, w)∈Li+1

wM(C) ,

and in particular St = −
∑

(C, w)∈Lt
wM(C). Since we started with a w-Res refutation

in Lt, we have the weighted clause (⊥, c) for some c > 0, and all the other clauses have
positive coefficients; therefore, St = −c−q where q is a polynomial with positive coefficients.
Therefore St + q = −c is a SA refutation.

Lemma 5.13. NS p-simulates restricted w-Res.

Proof. If instead of a w-Res refutation we had a restricted w-Res refutation, the argument
is the same as in the previous lemma, the only difference is that now q is a sum of multiples
of initial axioms, therefore Ss + q = −c is a NS refutation.

6. Examples

In the previous sections we saw some simple examples of SA/w-Res/c-Res derivations in
the context of exemplifying the equivalences among the systems. In this section we see
two families of contradictions provable in SA that are hard for Res: the graph pigeonhole
principle and the Hex principle. Moreover, there are polynomial time algorithms to find
their SA proofs.

472

Weighted, Circular and Semi-Algebraic Proofs

6.1 The Graph-Pigeonhole Principle

Let pij with i ∈ [m] and j ∈ [n] be the Boolean variables of the pigeonhole principle. With
the usual intended meaning that pij is 1 if the pigeon i flies to the hole j and 0 otherwise.
The pigeonhole principle PHPmn is the conjunction of the clauses:

(totality axioms)
∨
j∈[n]

pij for all i ∈ [m] ,

(injectivity axioms) ¬pij ∨ ¬pi′j for all i ̸= i′ ∈ [m] and for all j ∈ [n] .

The encoding of the pigeonhole principle PHPmn as a set of polynomial inequalities is

{−
∏
j∈[n]

x̄ij ≥ 0 : i ∈ [m]} ∪ {−xijxi′j ≥ 0 : i ̸= i′ ∈ [m], j ∈ [n]} .

We use Boolean variables xij for the algebraic encoding and pij for the propositional en-
coding just for clarity: xij = 1 if and only if pij = 1. The formula PHPmn is unsatisfiable
whenever m > n.

Given a bipartite graph G with bipartition (P,H), the graph pigeonhole principle PHP(G)

is PHP
|P |
|H| once restricted by the assignment mapping pij = 0 for each (i, j) /∈ E(G), and for

the algebraic encoding xij = 0, x̄ij = 1 for each (i, j) /∈ E(G).
It is well known that PHPn+1

n has polynomial-size SA refutations, but it requires linear
degree (see for instance (Rhodes, 2007)) and it is hard for Resolution. The same is true for
the bijective pigeonhole principle, which is hard for Resolution but easy for Sherali-Adams
(Göös et al., 2022). For completeness, in Appendix A, we give a short proof of PHPmn in
the language of SA. Other, seemingly different, proofs of PHPmn were given in the language
of c-Res (Atserias & Lauria, 2019, Theorem 4) and in the language of MaxSAT Resolution
with Extension by Larrosa and Rollon (2020). It is not hard to see that all those proofs are
essentially the same argument seen in different languages.

Proposition 6.1. Let G be a bipartite graph with bipartition ([m], [n]) and m > n. PHP(G)
has polynomial-size unary SA refutations of degree at most the degree of the graph G.

A direct consequence of Proposition 6.1 is that such refutations of PHP(G) can be found
in time nO(d), where d is the maximum degree of G.

We know that SA/c-Res/w-Res are able to p-simulate Res and to prove PHP(G). What
other combinatorial principles can be proved efficiently by these systems? Informally,
Bonacina and Bonet (2022) show that SA/c-Res/w-Res are able to prove (additionally to
what Res is able to prove) only principles reducible to a weighted version of PHP(G).

Notice that not all combinatorial principles reducible to PHPmn are provable efficiently
in SA. For instance, the bit-encoding of PHPmn requires exponential size refutations in
SA/w-Res/c-Res (Dantchev, Ghani, & Martin, 2020).

6.2 Hex

We can have principles that are equivalent to PHP(G) and efficiently refutable in SA, but
such that the equivalence is not at all obvious. One of those principles is Hex. Buss (2006)

473

Bonacina, Bonet, & Levy

show that a formalization Hex and PHP(G) are equivalent modulo bounded-depth Frege
reductions but is was not clear that such reduction could be carried out in systems working
on clauses such as Resolution or Sherali-Adams (seen as weighted Resolution).

Consider a Hex board of size n×n, i.e. a parallelogram of size n×n tiled with hexagons
and the tiles at the border have colors Blue (B), Cyan (C), Magenta (M), and Red (R). See
Fig. 5 for an example of Hex board with n = 8.

B
B
B
B
B
B
B

C
C
C
C
C
C
CR R R R R R R

M M M M M M M

Figure 5: A 8× 8 Hex board with borders filled in.

There are two players that take turns coloring the tiles of the board. Player I colors
tiles with either Blue or Cyan and Player II colors tiles with either Magenta and Red. The
goal of Player I is to create a path consisting only of Blue-Cyan tiles connecting opposite
sides of the board. Similarly, the goal of Player II is to create a path consisting only of
Magenta-Red tiles connecting opposite sides of the board.

Every completely filled Hex board has a winner, i.e. a path either consisting only of
Blue-Cyan tiles or Red-Magenta tiles connecting opposite sides of the board. Intuitively,
the HEXn formula asserts that there is no winner by forbidding those type of paths, and
therefore it is unsatisfiable. We use two pairs of similar colors to express this principle as
clauses; the non existence of a path connecting opposite sides of the board is expressed
saying that there are no adjacent Red-Magenta or Blue-Cyan tiles.

For the description of the HEXn formula we follow (Buss, 2006). Given an hexagon in
position (i, j), it is adjacent to the hexagons in positions (i, j − 1), (i, j + 1), (i+ 1, j − 1),
(i+1, j), (i− 1, j− 1), (i− 1, j+1). For each hexagon h we have 4 variables Bh, Ch,Mh, Rh

indicating its color (B for Blue, C for Cyan, M for Magenta, R for Red). The formula HEXn
is then the conjunction of the following clauses:

1. Unit clauses expressing that the borders of the board are pre-colored as in Fig. 5: i.e.
the clauses B1,1, . . . , B1,n−1, R1,n, . . . , Rn−1,n, Cn,2, . . . , Cn,n, and M2,1, . . . ,Mn,1.

2. Clauses stating that each hexagon gets exactly one color, i.e. for each hexagon h we
have the clauses Bh∨Ch∨Mh∨Rh together with the clauses ¬Bh∨¬Ch, ¬Bh∨¬Mh,
¬Bh ∨ ¬Rh, ¬Ch ∨ ¬Mh, ¬Ch ∨ ¬Rh, and ¬Mh ∨ ¬Rh.

3. Clauses stating that no adjacent hexagons can be colored red-magenta or blue-cyan,
i.e. the clauses ¬Rh ∨ ¬Mh′ , ¬Bh ∨ ¬Ch′ for each adjacent hexagons h, h′.

The clauses above in the context of SA derivations gets encoded as the following in-
equalities

1. −B̄1,1 ≥ 0, . . . ,−B̄1,n−1 ≥ 0, −R̄1,n ≥ 0, . . . ,−R̄n−1,n ≥ 0, −C̄n,2 ≥ 0, . . . ,−C̄n,n ≥ 0,
and −M̄2,1 ≥ 0, . . . ,−M̄n,1 ≥ 0.

474

Weighted, Circular and Semi-Algebraic Proofs

2. For each hexagon h we have the inequalities −B̄hC̄hM̄hR̄h ≥ 0 together with the
inequalities −BhCh ≥ 0, −BhMh ≥ 0, −BhRh ≥ 0, −ChMh ≥ 0, −ChRh ≥ 0, and
−MhRh ≥ 0.

3. The inequalities −RhMh′ ≥ 0, −BhCh′ ≥ 0 for each adjacent hexagons h, h′.

Notice that, the inequalities in item 2 are semantically equivalent to

Bh + Ch +Mh +Rh = 1 ,

and this has also short SA derivations from item 2.

Proposition 6.2. HEXn has polynomial-size SA/c-Res/w-Res refutations.

The HEXn principle looks very different from a pigeonhole principle but indeed it is a
pigeonhole principle in disguise, see (Buss, 2006).

Proof. We construct a pigeonhole principle associated to HEXn. The set of pigeons P are all
the vertices in the Hex n× n board where exactly three tiles meet. The set of holes H are
all the vertices in the same Hex board where exactly three tiles meet except the bottom-left
vertex (where two Blue tiles and a Magenta tile meet). Each pigeon is only allowed to fly to
the hole in the very same place where the pigeon is or to the (at most three) holes adjacent
to it. Let G be this bipartite graph of degree at most 4 and let xij be the variables of
PHP(G) in the polynomial encoding. For i ∈ P , let N(i) be the set of its neighbors in G.
Notice that G has a loop in each vertex in P \H, in particular, for each i ∈ P \H, i ∈ N(i).

By Proposition 6.1, we know there is a SA refutation of PHP(G) of the form

−1 = −
∑
i∈P

ci
∏

j∈N(i)

x̄ij −
∑

i ̸=i′∈P
j∈N(i)∩N(i′)

pi,i′,jxijxi′j

+
∑
i∈P

j∈N(i)

(qij(x
2
ij − xij) + q′ij(xij + x̄ij − 1))

+ p , (11)

where ci’s are positive constants, qij , q
′
ij ’s are polynomials, and p, pi,i′,j ’s are polynomials

with positive coefficients. Moreover, the size of the refutation is polynomial in |P |+ |Q| =
nO(1) and p has degree at most 4, the pi,i′,j ’s have degree at most 2, the qij ’s have degree
at most 2 and the q′ij ’s have degree at most 3.

To get from this a small size refutation of HEXn we look at the variables xij not as
indeterminates but as suitable polynomials in the variables of HEXn. In particular, the
polynomials

∏
j∈N(i) x̄ij , xijxi′j , x

2
ij − xij , and xij + x̄ij − 1 are not axioms anymore but

some polynomials we want to derive from the axioms of HEXn.
For i ∈ P and j ∈ N(i), let l(i, j) be the hexagon on the left of the vector i⃗j and r(i, j)

be the hexagon on the right of the vector i⃗j.
We want the polynomial xij = 1 if l(i, j) has color Blue and r(i, j) has color Magenta,

as in the following figure. In particular, the only vertex in P \H (the one at the bottom

475

Bonacina, Bonet, & Levy

B
M
. .
i

j

Figure 6: i and j are both pigeons and holes. The arrow shows pigeon i flying to hole j.

left of the Hex board) is mapped to its only neighbour in H. If no pair of tiles adjacent to
i is colored Blue/Magenta, we set xii = 1.

In other words, for i ∈ P and j ∈ N(i) \ {i}

xij = Bl(i,j)Mr(i,j)

x̄ij = 1− xij ,

and

xii =
∏

j∈N(i)\{i}

x̄ij

=
∏

j∈N(i)\{i}

(1−Bl(i,j)Mr(i,j))

x̄ii = 1− xii .

That is, by construction, the polynomials xij + x̄ij − 1 and xii + x̄ii − 1 are identically
0, and therefore derivable from the axioms of HEXn.

First let’s see what is the form of the polynomial p in eq. (11) now that it is a polynomial
in the variables of HEXn. We use the following identity on the variables X1, . . . , Xk:

1−
∏
i∈[k]

Xi =
∑
i∈[k]

X̄i

∏
j<i

Xj −
∑
i∈[k]

(Xi + X̄i − 1)
∏
j<i

Xj ,

to encode the negated variables in low degree.
The polynomial p has degree at most 4 and positive coefficients. Monomials in p in

the variables xij , x̄ij , using the identity above, can be transformed into a sum of positive
monomials in the variables of HEXn and multiples of Boolean axioms. Since the degree of p
is constant this is just a polynomial increase in the size.

For j ∈ N(i), the polynomial x2ij −xij has a simple derivation from the Boolean axioms
of HEXn:

(Bl(i,j)Mr(i,j))
2 −Bl(i,j)Mr(i,j) = B2

l(i,j)(M
2
r(i,j) −Mr(i,j)) +Mr(i,j)(B

2
l(i,j) −Bl(i,j)) .

Similarly, it is not hard to see that x2ii−xii has a simple derivation from the Boolean axioms
of HEXn.

The polynomials
∏

j∈N(i) x̄ij are also easy to derive from the Boolean axioms of HEXn
since

−
∏

j∈N(i)

x̄ij = −xii(1− xii) .

Now consider the polynomials xij · xi′j of PHP(G). We have two cases.

476

Weighted, Circular and Semi-Algebraic Proofs

case 1: i, i′, j are distinct vertices such that j ∈ N(i)∩N(i′), and the corresponding injectivity
axiom xij · xi′j for PHP(G) is

−xij · xi′j = −Bl(i,j) ·Mr(i,j) ·Bl(i′,j) ·Mr(i′,j) .

Intuitively, this follows from HEXn since if the injectivity was violated then there would
be a tile colored both Blue and Magenta, which is not allowed. More formally, either
l(i, j) = r(i′, j) or r(i, j) = l(i′, j) and xij · xi′j is a multiple of an axiom of HEXn, an
axiom stating that hexagons cannot be colored both Blue and Magenta.

case 2: i′ ∈ N(i) \ {i}, and the corresponding injectivity axiom xi′i · xii for PHP(G) is

−xi′i · xii = −Bl(i′,i) ·Mr(i′,i)

∏
j∈N(i)\{i}

(1−Bl(i,j)Mr(i,j))) .

Intuitively if the pigeon i′ flies to i, this means that the tile l(i′, i) has color Blue and
the tile r(i′, i) has color Magenta. Then, the third tile incident to i, (1) must have
some color, and (2) that color cannot be Cyan or Red. Therefore, its color must be
Blue or Magenta and therefore i does not fly to i. Let l = l(i′i), r = r(i′, i) and h be
the third hexagon adjacent to i. Then

−xi′i · xii = −Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl) .

We show this is derivable by a case analysis based on the color of h. The inequalities

Ch(−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl)) ≥ 0

Bh(−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl)) ≥ 0

Rh(−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl)) ≥ 0

Mh(−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl)) ≥ 0 ,

once expanded as sum of monomials, are all derivable from HEXn. Therefore, summing
the previous derivations,

(Ch +Bh +Rh +Mh)(−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl)) ≥ 0

is also derivable from HEXn, and since Ch +Bh +Rh +Mh = 1, then

−Bl ·Mr(1−BlMh)(1−BhMr)(1−BrMl) ≥ 0

is also derivable.

A direct consequence of the proof of Proposition 6.2 and the degree-automatability of SA
is that we can find SA refutations of HEXn in polynomial time in n using linear programming.

Acknowledgments

This work was supported by the Ministerio de Ciencia e Innovación/Agencia Estatal de In-
vestigación MCIN/AEI/10.13039/501100011033, Spain [grant numbers PID2019-109137GB-
C21, PID2019-109137GB-C22, IJC2018-035334-I, PID2022-138506NB-C21].

477

Bonacina, Bonet, & Levy

Appendix A. Proof of the Pigeonhole Principle in SA

We prove Proposition 6.1. That is, given G be a bipartite graph with bipartition ([m], [n])
and m > n, PHP(G) has polynomial-size unary SA refutations of degree at most the degree
of the graph G.

First we consider PHPmn .
Given j ∈ [n] and k ∈ [m] let Hkj =

∏
ℓ∈[k] x̄ℓj and H0j := 1. Notice that Hk+1,j =

x̄k+1,jHkj .

To improve readability, we highlight in yellow monomials with positive coefficients, in

blue Boolean axioms, in red injectivity axioms, and in green totality axioms.
For j ∈ [n] we have the following equality by a telescopic sum

1−
∑
i∈[m]

xij = Hm,j −
∑
i∈[m]

(
Hi−1,j(xij + x̄ij − 1) + xij − xijHi−1,j

)
,

where the underlined a polynomial has a simple SA derivation from PHPmn

xij − xijHi−1,j =
∑

ℓ∈[i−1]

(
xijHℓ−1,j(xℓj + x̄ℓj − 1)−Hℓ−1,j xijxℓj

)
.

That is, for each j ∈ [n] we have the following SA derivation of 1−
∑

i∈[m] xij from PHPmn :

1−
∑
i∈[m]

xij = Hm,j −
∑
i∈[m]

Hi−1,j(xij + x̄ij − 1)

+
∑
i∈[m]
ℓ∈[i−1]

(
xijHℓ−1,j(xℓj + x̄ℓj − 1)−Hℓ−1,j xijxℓj

)
. (12)

Let πj be the RHS of eq. (12).
Similarly, for i ∈ [m] and k ∈ [n] let Pik =

∏
ℓ∈[k] x̄iℓ. Let Pi0 := 1. As before,

Pi,k+1 = x̄i,k+1Pik and we have∑
j∈[n]

xij − 1 = − Pi,n +
∑
j∈[n]

(
Pi,j−1(xij + x̄ij − 1) + xij − xijPi,j−1

)
,

where the underlined polynomial has a simple SA derivation from PHPmn

xij − xijPi,j−1 =
∑

ℓ∈[j−1]

(
−xijPi,ℓ−1(xiℓ + x̄iℓ − 1) + Pi,ℓ−1xijxiℓ

)
That is, for each i ∈ [m] we have the following SA derivation of

∑
j∈[n] xij − 1 from PHPmn∑

j∈[n]

xij − 1 = − Pi,n +
∑
j∈[n]

Pi,j−1(xij + x̄ij − 1)

+
∑
j∈[n]

ℓ∈[j−1]

(
−xijPi,ℓ−1(xiℓ + x̄iℓ − 1) + Pi,ℓ−1xijxiℓ

)
. (13)

478

Weighted, Circular and Semi-Algebraic Proofs

Let ρi be the RHS of eq. (13). We have that

∑
j∈[n]

πj +
∑
i∈[m]

ρi =
∑
j∈[n]

1−
∑
i∈[m]

xij

+
∑
i∈[m]

∑
j∈[n]

xij − 1

 = n−m < 0 ,

and therefore
∑

j∈[n] πj +
∑

i∈[m] ρi = n−m is a SA refutation of PHPmn .
By inspecting the previous proof it is immediate to see that for PHP(G) the degree of the

refutation is the maximum degree of the graph G, indeed PHP(G) is the result of restricting
PHPmn mapping some variables xij to 0. Doing this same restriction to the proof above has
the effect of shrinking its degree to the maximum degree of a vertex in G.

References

Ansótegui, C., & Levy, J. (2021). Reducing SAT to Max2SAT. In Proc. of the 30th Inter-
national Joint Conference on Artificial Intelligence (IJCAI’21), pp. 1367–1373.

Atserias, A., & Hakoniemi, T. (2019). Size-degree trade-offs for sums-of-squares and pos-
itivstellensatz proofs. In Proc. of the 34th Computational Complexity Conference
(CCC’19), Vol. 137, pp. 24:1–24:20.

Atserias, A., & Lauria, M. (2019). Circular (yet sound) proofs. In Proc. of the 22nd Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT’19), Vol. 11628, pp.
1–18.

Atserias, A., Lauria, M., & Nordström, J. (2016). Narrow proofs may be maximally long.
ACM Trans. Comput. Logic, 17 (3), 19:1–19:30.

Atserias, A., & Müller, M. (2019). Automating resolution is NP-hard. In Proc. of the 60th
IEEE Annual Symp. on Foundations of Computer Science (FOCS’19), pp. 498–509.

Atserias, A., & Müller, M. (2020). Automating resolution is NP-hard. J. ACM, 67 (5).

Atserias, A., & Ochremiak, J. (2018). Proof complexity meets algebra. ACM Trans. Comput.
Logic, 20 (1), 1–46.

Beame, P., Impagliazzo, R., Krajicek, J., Pitassi, T., & Pudlak, P. (1994). Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. In Proc. of the 35th Annual
Symposium on Foundations of Computer Science (FOCS’94), pp. 794–806.

Beame, P., & Pitassi, T. (1996). Simplified and improved resolution lower bounds. In Proc.
of the 37th Annual Symposium on Foundations of Computer Science (FOCS’96), pp.
274–282.

Bonacina, I., & Bonet, M. L. (2022). On the strength of Sherali-Adams and Nullstellensatz
as propositional proof systems. In Proc. of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS’22), pp. 25:1–25:12.

Bonet, M. L., Buss, S., Ignatiev, A., Marques-Silva, J., & Morgado, A. (2018). Maxsat
resolution with the dual rail encoding. In Proc. of the 32nd AAAI Conference on
Artificial Intelligence (AAAI’18), pp. 6565–6572.

Bonet, M. L., Buss, S., Ignatiev, A., Morgado, A., & Marques-Silva, J. (2021). Propositional
proof systems based on maximum satisfiability. Artificial Intelligence, 300, 103552.

479

Bonacina, Bonet, & Levy

Bonet, M. L., & Levy, J. (2020). Equivalence between systems stronger than resolution.
In Proc. of the 23nd Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’20), pp. 166–181.

Bonet, M. L., Levy, J., & Manyà, F. (2006). A complete calculus for Max-SAT. In Proc. of
the 9th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’06), pp.
240–251.

Bonet, M. L., Levy, J., & Manyà, F. (2007). Resolution for Max-SAT. Artificial Intelligence,
171 (8-9), 606–618.

Bonet, M. L., Pitassi, T., & Raz, R. (2000). On interpolation and automatization for Frege
systems. SIAM J. Comput., 29 (6), 1939–1967.

Bonet, M., Pitassi, T., & Raz, R. (1997). No feasible interpolation for TC0-Frege proofs. In
Proc. of the 38th Annual Symposium on Foundations of Computer Science (FOCS’97),
pp. 254–263.

Buss, S. R. (2006). Polynomial-size Frege and resolution proofs of st-connectivity and Hex
tautologies. Theoretical Computer Science, 357 (1), 35–52.

Cherif, M. S., Habet, D., & Py, M. (2022). From crossing-free resolution to max-sat resolu-
tion. In Solnon, C. (Ed.), 28th International Conference on Principles and Practice
of Constraint Programming, CP 2022, July 31 to August 8, 2022, Haifa, Israel, Vol.
235 of LIPIcs, pp. 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Cooper, M. C., de Givry, S., & Schiex, T. (2007). Optimal soft arc consistency. In Veloso,
M. M. (Ed.), IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pp. 68–73.

Dantchev, S., Martin, B., & Rhodes, M. (2009a). Tight rank lower bounds for the Sherali-
Adams proof system. Theoretical Computer Science, 410 (21-23), 2054–2063.

Dantchev, S., Martin, B., & Rhodes, M. (2009b). Tight rank lower bounds for the Sher-
ali–Adams proof system. Theoretical Computer Science, 410 (21), 2054–2063.

Dantchev, S. S. (2007). Rank complexity gap for lovász-schrijver and sherali-adams proof
systems. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing, STOC ’07, p. 311–317, New York, NY, USA. Association for Computing
Machinery.

Dantchev, S. S., Ghani, A., & Martin, B. (2020). Sherali-Adams and the binary encoding of
combinatorial principles. In Proc. of the 14th Latin American Symposium (LATIN’20),
Vol. 12118, pp. 336–347.

de Rezende, S. F., Göös, M., Nordström, J., Pitassi, T., Robere, R., & Sokolov, D. (2021a).
Automating algebraic proof systems is NP-hard. In Proc. of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pp. 209–222. ACM.

de Rezende, S. F., Lauria, M., Nordström, J., & Sokolov, D. (2021b). The power of negative
reasoning. In Proc. of the 36th Computational Complexity Conference (CCC’21), Vol.
200, pp. 40:1–40:24.

480

Weighted, Circular and Semi-Algebraic Proofs

Filmus, Y., Mahajan, M., Sood, G., & Vinyals, M. (2020). MaxSAT resolution and subcube
sums. In Proc. of the 23nd Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT’20), pp. 295–311.

Fleming, N., Göös, M., Grosser, S., & Robere, R. (2022). On semi-algebraic proofs and algo-
rithms. In Proc. of the 13th Innovations in Theoretical Computer Science Conference
(ITCS’22), Vol. 215, pp. 69:1–69:25.

Fleming, N., Kothari, P., & Pitassi, T. (2019). Semialgebraic proofs and efficient algorithm
design. Found. Trends Theor. Comput. Sci., 14 (1-2), 1–221.

Göös, M., Hollender, A., Jain, S., Maystre, G., Pires, W., Robere, R., & Tao, R. (2022).
Separations in proof complexity and TFNP. In Proc. of the 63rd IEEE Annual Sym-
posium on Foundations of Computer Science (FOCS’22).

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–
308.

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2017). On tackling the limits of resolu-
tion in SAT solving. In Proc. of the 20th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’17), pp. 164–183.

Larrosa, J., & Heras, F. (2005). Resolution in Max-SAT and its relation to local consistency
in weighted CSPs. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI’05), pp. 193–198.

Larrosa, J., & Rollon, E. (2020). Towards a better understanding of (partial weighted)
maxsat proof systems. In Proc. of the 23nd Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’20), pp. 218–232.

Larrosa, J., & Rollón, E. (2020). Augmenting the power of (partial) MaxSAT resolution
with extension. In Proc. of the 34th Nat. Conf. on Artificial Intelligence (AAAI’20).

Loera, J. A., Lee, J., Margulies, S., & Onn, S. (2009). Expressing combinatorial problems
by systems of polynomial equations and Hilbert’s Nullstellensatz. Combinatorics,
Probability and Computing, 18 (4), 551–582.

Morgado, A., Ignatiev, A., Bonet, M. L., Marques-Silva, J., & Buss, S. (2019). DRMaxSAT
with MaxHS: First contact. In Proc. of the 22nd Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT’19), Vol. 11628, pp. 239–249.

Py, M., Cherif, M. S., & Habet, D. (2022). Proofs and certificates for max-sat. J. Artif.
Intell. Res., 75, 1373–1400.

Rhodes, M. (2007). Rank lower bounds for the Sherali-Adams operator. In Cooper, S. B.,
Löwe, B., & Sorbi, A. (Eds.), Computation and Logic in the Real World, pp. 648–659,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Rollon, E., & Larrosa, J. (2022). Proof complexity for the maximum satisfiability problem
and its use in SAT refutations. J. Log. Comput., 32 (7), 1401–1435.

Sherali, H. D., & Adams, W. P. (1990). A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM Journal
on Discrete Mathematics, 3 (3), 411–430.

481

Bonacina, Bonet, & Levy

Sherali, H. D., & Adams, W. P. (1994). A hierarchy of relaxations and convex hull char-
acterizations for mixed-integer zero—one programming problems. Discrete Applied
Mathematics, 52 (1), 83–106.

482

