
Journal of Artificial Intelligence Research 79 (2024) 515-567 Submitted 06/2023; published 02/2024

On Mitigating the Utility-Loss in Differentially Private

Learning: A New Perspective by a Geometrically Inspired

Kernel Approach

Mohit Kumar mohit.kumar@uni-rostock.de

Faculty of Computer Science and Electrical Engineering

University of Rostock, Germany

and

Software Competence Center Hagenberg GmbH

A-4232 Hagenberg, Austria

Bernhard A. Moser bernhard.moser@scch.at

Institute of Signal Processing

Johannes Kepler University Linz, Austria

and

Software Competence Center Hagenberg GmbH

A-4232 Hagenberg, Austria

Lukas Fischer lukas.fischer@scch.at

Software Competence Center Hagenberg GmbH

A-4232 Hagenberg, Austria

Abstract

Privacy-utility tradeoff remains as one of the fundamental issues of differentially private
machine learning. This paper introduces a geometrically inspired kernel-based approach
to mitigate the accuracy-loss issue in classification. In this approach, a representation
of the affine hull of given data points is learned in Reproducing Kernel Hilbert Spaces
(RKHS). This leads to a novel distance measure that hides privacy-sensitive information
about individual data points and improves the privacy-utility tradeoff via significantly
reducing the risk of membership inference attacks. The effectiveness of the approach is
demonstrated through experiments on MNIST dataset, Freiburg groceries dataset, and a
real biomedical dataset. It is verified that the approach remains computationally practical.
The application of the approach to federated learning is considered and it is observed that
the accuracy-loss due to data being distributed is either marginal or not significantly high.

1. Introduction

Privacy-preserving machine learning is the central topic of this study. Differential pri-
vacy (Dwork & Roth, 2014) is a standard framework to quantify the degree to which the
data privacy of each individual in the dataset is preserved while releasing the output of
any statistical analysis algorithm. Differential privacy, being a property of an algorithm’s
data access mechanism, automatically provides protection against arbitrary privacy-leakage
risks. The goal of protecting sensitive information (that is embedded in training data) from
any leakage through machine learning models has been addressed within the framework of
differential privacy (Abadi et al., 2016; Phan et al., 2016). The classical approach for design-
ing differentially private algorithms is output perturbation, where the idea is to perturb the
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function output via adding noise calibrated to the global sensitivity of the function (Dwork
et al., 2006). A common form of output perturbation is the Gaussian mechanism, where
Gaussian noise calibrated to the L2 sensitivity is added. Differential privacy has been de-
fined for functions and functional data (Hall et al., 2013). Specifically for functions in RKHS
generated by the covariance kernel of the Gaussian process, the correct noise level is estab-
lished by the sensitivity of the function in the RKHS norm (Hall et al., 2013). The iterative
nature of machine learning algorithms causes a high cumulative privacy loss and thus a high
amount of noise need to be added to compensate for the privacy loss. A moments accoun-
tant method (Abadi et al., 2016), based on the properties of a privacy loss random variable,
has been suggested to keep track of the privacy loss incurred by successive iterations for
composition analysis. The moments accountant method can be combined with the use of
privacy amplification effect of subsampling to deal with the iterative algorithms (Park et al.,
2020).

An obvious effect of adding noise into an algorithm for preserving differential privacy
is the loss in algorithm’s accuracy. As differential privacy remains immune to any post-
processing of released output, the output data can be denoised using statistical estimation
theory (Balle & Wang, 2018). It is not surprising that efforts have been made to optimize the
privacy-accuracy tradeoff (Geng et al., 2018; Balle & Wang, 2018; Ghosh et al., 2012; Gupte
& Sundararajan, 2010; Geng & Viswanath, 2016a; Geng et al., 2015; Geng & Viswanath,
2016b). Previously, the studies (Kumar et al., 2019, 2021) have derived the probability den-
sity function of noise that minimizes the expected noise magnitude together with satisfying
the sufficient conditions for (ǫ, δ)−differential privacy. Given N number of p−variate data
points (represented by a matrix Y ∈ R

N×p), any computational algorithm operating on the
data matrix Y can be represented by a mapping, alg : RN×p → Range(alg). The input per-
turbation method achieves the (ǫ, δ)−differential privacy of alg via adding a random noise
matrix V ∈ R

N×p to Y such that the following inequality holds good:

Pr{alg(Y + V ) ∈ O} ≤ exp(ǫ)Pr{alg(Y ′ + V ) ∈ O}+ δ (1)

for any measurable set O ⊆ {alg(Y + V) | Y ∈ R
N×p,V ∈ R

N×p} and for neighboring
matrices pair (Y, Y ′). Previously, the noise distribution (from which each element of noise
matrix V is independently sampled), that achieves differential privacy inequality (1) with
the minimum possible noise magnitude, has been derived (Kumar et al., 2019) using an
entropy based approach. The optimal expected noise magnitude is given as (Kumar et al.,
2019):

Ef∗

vi
j

[|v|] = (1− δ)
d

ǫ
, (2)

where d ∈ R+ is a scalar defining the adjacency between Y and Y ′, and vij is the (i, j)−th
element of noise matrix V with its probability density function as fvij

(v). It follows from (2)

that despite an optimization, a low value of privacy-loss bound ǫ requires a large amount
of noise leading to a considerable loss in the accuracy of a subsequent machine learning
algorithm operating on the noise added data.

To mitigate the effect of noise, the flexibility of defining computational algorithm alg
in (1) can be leveraged without compromising on the privacy-loss bound ǫ. Specifically, a
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(a) original data samples and corresponding dif-
ferentially private approximations using optimal
noise adding mechanism (ǫ = 1)
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(b) original data samples and corresponding dif-
ferentially private fabricated data samples (ǫ = 1)

Figure 1: An example of the data fabrication by means of a geometric model ensuring the
geometric modeling error of fabricated data samples not to exceed that of original
data samples without compromising on the value of privacy-loss bound ǫ.

model of the geometric structure induced by noise added data points can be integrated in
the definition of alg for a smoothing. The alg can be defined as a composition of a smoothing
and the machine learning algorithm:

alg := machine_learning ◦ smoothing. (3)

Here, the smoothing is based on a model (that represents the geometric structure induced
by the noise added data points) ensuring that the smoothing leads to the fabrication of
new data points which are not only differentially private but also their geometric modeling
error does not exceed that of original data points. Fig. 1 provides an example of the data
fabrication by means of such a geometric model. The central problem of this study is stated
in the following:

Problem 1 (Central Problem). To mitigate the accuracy-loss issue of differential privacy,
the post-processing property of differential privacy is leveraged for fabricating new data sam-
ples by means of a geometric model ensuring the geometric modeling error of fabricated data
samples not to be larger than that of original data samples while simultaneously achieving
the privacy-loss bound.

Remark 1 (Motivation). To our best knowledge, the state-of-the-art does not address Prob-
lem 1. It requires an approach to learn the representation of geometric structure induced by
a finite set of data points. Encouraged by the fact that kernel-based solutions can be com-
puted analytically and analyzed using a broad range of mathematical techniques, the approach
opted in this study to address Problem 1 is of learning in Reproducing Kernel Hilbert Spaces
(RKHS) the representation of data points to design a geometrically inspired model such that
the model output range defines a bounded geometric structure in the affine hull of given data
samples.

Kernels have been widely used in machine learning (Ghojogh et al., 2021; Hofmann et al.,
2008) and can be scaled up for their applicability in large scale scenarios (Rudi et al., 2017).
Not only the parallels between the properties of deep neural networks and kernel methods
have been established (Belkin et al., 2018), but also deep kernel machines have been intro-
duced (Wilson et al., 2016; Nikhitha et al., 2021). Kernel autoencoders are effective models

517



Kumar, Moser, & Fischer

for representation learning. The kernel formulation of an autoencoder has been considered
in (Gholami & Hajisami, 2016) from a hashing perspective. A deep autoencoder, that aligns
the latent code with a user-defined kernel matrix to learn similarity-preserving data repre-
sentations, has been suggested (Kampffmeyer et al., 2018). Further, a kernel autoencoder
based on the composition of mappings from vector-valued reproducing kernel Hilbert spaces
has been studied (Laforgue et al., 2019). Recently, a fuzzy theoretic approach to kernel based
wide and conditionally deep autoencoders has been introduced (Kumar & Freudenthaler,
2020; Kumar et al., 2021; Zhang et al., 2022; Kumar et al., 2021; Zhang et al., 2023; Ku-
mar et al., 2021b, 2021a, 2023), wherein analytical solutions are derived for the learning of
models using variational optimization technique. This approach has been further extended
to privacy-preserving learning under a differential privacy framework (Kumar, 2023; Kumar
et al., 2021; Kumar, Rossbory, Moser, & Freudenthaler, 2020). As an alternative to the
SVM, the idea of affine hull large margin classifier has been investigated (Cevikalp et al.,
2010). Although kernel methods have been studied (Jain & Thakurta, 2013; Chaudhuri
et al., 2011; Zhang et al., 2019) under differential privacy, no previous study has consid-
ered geometrically inspired kernel methods to mitigate the accuracy-loss issue of differential
privacy. State of the art lacks geometrically inspired kernel machines for scalable learning
solutions that remain accurate even after providing differential privacy guarantee.

This study solves Problem 1 via making the following contributions (C1-C7):

Kernel Affine Hull Machines (C1): For given distinct data points (yi)i=1,...,N in some
vector space we study the sets of the affine form

L =

{

y =

(

w1/

N
∑

i=1

wi

)

y1 + · · ·+
(

wN/

N
∑

i=1

wi

)

yN | wi ∈ R

}

, (4)

and ask for reasonable conditions on the real-valued scalars (wi)i to serve our purpose of
representing the geometric structure induced by data points. First of all, in our approach
(wi)i are considered to be functions in a RKHS. By postulating that indicator functions
(specifically, their RKHS approximations) define scalar-valued functions (wi)i, the set L
actually can be identified by functions defining a subset in RKHS that represents our data
points. This way we introduce the concept of Kernel Affine Hull Machine (KAHM) to learn
kernel-based representation of multivariate scattered data as in the following:

Let n, p,N be the positive integers and X ⊂ R
n be a region. Let Hk(X ) be the reproduc-

ing kernel Hilbert space of functions from X to R for a reproducing kernel k : X × X → R.
For a finite set of ordered pairs {(xi, yi) ∈ X ×R

p | i ∈ {1, · · · , N}} such that {x1, · · · , xN}
are pairwise distinct points, a point yi can be represented using indicator functions as

yi = 1{x1}(x
i) y1 + · · · + 1{xN}(x

i) yN , (5)

where 1{xi} is the indicator function of the set {xi}. We approximate the indicator function

1{xi} through a function in Hk(X ) that fits to the ordered pairs {
(

xj,1{xi}(x
j)
)

| j ∈
{1, · · · , N}}. The function in RKHS approximating 1{xi} is given as the solution of the
following kernel regularized least squares problem:

hi = arg min
f∈Hk(X )





N
∑

j=1

∣

∣

1{xi}(x
j)− f(xj)

∣

∣

2
+ λ ‖f‖2Hk(X )



 , λ ∈ R+, (6)
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(c) third example

Figure 2: A few examples of 3-dimensional samples {y1, · · · , yN} and geometric structures
in aff({y1, · · · , yN}) defined by the images of corresponding KAHMs.

where ‖f‖Hk(X ) :=
√

〈f, f〉Hk(X ) is the norm induced by the inner product on Hk(X ). The

fact that hi is an approximation of 1{xi} (i.e. the value hi(x) represents kernel-smoothed

“membership” of x to the set {xi}) allows introducing a model based on the affine combina-
tion of y1, · · · , yN as in the following:

A(x) =
h1(x)

∑N
i=1 h

i(x)
y1 + · · · + hN (x)

∑N
i=1 h

i(x)
yN . (7)

Let aff({y1, · · · , yN}) denote the affine hull of {y1, · · · , yN}. The function A : X →
aff({y1, · · · , yN}) is referred to as kernel affine hull machine, since it maps a point x ∈ X onto
the affine hull of {y1, · · · , yN} via learning representation of x1, · · · , xN through functions
in reproducing kernel Hilbert space. The image of A,

A[X ] := {A(x) | x ∈ X} ⊂ aff({y1, · · · , yN}), (8)

defines a geometric structure in aff({y1, · · · , yN}). Fig. 2 displays a few examples of 3-
dimensional samples and geometric structures defined by KAHMs’ images.

Regularization Parameter for Kernel Regularized Least Squares (C2): Since in-
dicator functions are approximated via solving a regularized least squares problem, the kernel
regularized least squares problem is revisited in a deterministic setting with focus on the
determination of regularization parameter. A reasonable choice for regularization parameter
is to set it larger than the mean-squared-error on training samples. With this choice, the
problem of determining regularization parameter can be reduced to an equivalent problem
of finding the unique fixed point of a real-valued positive function. An iterative scheme,
together with the mathematical proof of convergence, is provided to find the fixed point and
thus to determine the regularization parameter.

Boundedness of KAHM and Distance Function (C3): The KAHM mapping is a
bounded function and thus the image of KAHM defines a bounded region in the affine hull
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of data samples. The boundedness of KAHM on data space is proven via deriving upper
bounds on the Euclidean norm of KAHM output. The KAHM induces a function on data
space, referred to as distance function, which is defined on a data point as equal to the
distance between that point and its image under KAHM. The distance of an arbitrary point
from its image (by the KAHM onto the affine hull of given data samples) is a measure of
the distance between that arbitrary point and the given data samples. This is proven via
deriving upper bounds on the ratio of these two distances.

KAHM Compositions for Data Representation Learning and Classification (C4):
The KAHM could serve as the building block for deep models. A nested composition of
KAHMs, referred to as Conditionally Deep Kernel Affine Hull Machine, is considered for
data representation learning. The conditionally deep KAHM discovers layers of increasingly
abstract data representation with lowest-level data features being modeled by first layer
and the highest-level by end layer. Further, a parallel composition of conditionally deep
KAHMs, referred to as Wide Conditionally Deep Kernel Affine Hull Machine, is considered
to efficiently learn the representation of big data. Similarly to the KAHM, both conditional
deep KAHM and wide conditionally deep KAHM induce the distance function with value
on a point indicating the distance of the point from data samples. This property of the
distance function is leveraged to build a KAHM based classifier via modeling the region of
each class through a separate KAHM based composition.

Membership-Inference Score for KAHM Based Classifier (C5): Since the KAHM
based classifier assigns a class-label to a data point based on the closeness of the point to the
training data samples of that class, there is a possibility of an inference of the membership of
a data point to the set of training data samples. To evaluate the potential of KAHM induced
distance function in inferring the membership of a data point to the training dataset, a score,
referred to as membership-inference score, is defined for evaluating the risk of membership
inference attack. The membership-inference score is defined as the L2 distance between
density of probability distribution on values of the distance function at training data points
and the density of probability distribution on distance function values at test data points.

Differentially Private Data Fabrication for Classification (C6): To ensure that
KAHM based classifier keeps the privacy of training data protected, an optimal differentially
private noise adding mechanism (Kumar et al., 2019) is applied on training data samples.
The noise added training data samples are smoothed through a transformation such that
the error in KAHM modeling of smoothed data is not larger than the error in KAHM
modeling of original data. It is shown that the error in KAHM modeling of smoothed data
can be reduced to an arbitrary low value. The smoothed data samples, guaranteeing not
only the differential privacy but also the geometric modeling error not to be larger than
that of original data samples, serve as the fabricated data. The fabricated data samples
are finally used to build the KAHM based differentially private classifier. The advantage
of using fabricated data for classification is that fabricated data leads to a considerable
reduction in the risk of membership inference attack with relatively much smaller loss of
accuracy. Hence, the accuracy-loss issue of differential privacy is mitigated. Fig. 3 provides
an example of differentially private classifier built with a 2-dimensional fabricated dataset
with 3 classes.
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Figure 3: An example of differentially private classifier built with a 2-dimensional fabricated
dataset with 3 classes.

Application to Differentially Private Federated Learning (C7): The different KAHMs
built independently using different datasets can be combined together using the KAHM in-
duced distance function. This allows introducing a federated learning scheme that combines
together the local privacy-preserving KAHM based classifiers to build a global classifier.
A significant feature of the scheme is that the evaluation of global classifier requires only
locally computed distance measures.

The relation of the current study with previous works is confined to the following three
points: 1) The wide and conditionally deep architecture consisting of the composition of
kernel based models follows from (Kumar & Freudenthaler, 2020; Kumar et al., 2021, 2021;
Zhang et al., 2022; Kumar et al., 2021a), wherein a kernel based variational fuzzy model
(motivated by measure theoretic basis (Kumar et al., 2021b)) is used. In contrast, the current
study explores geometrically inspired kernel affine hull machines. 2) The input perturbation
method (where noise is added to original data to achieve (ǫ, δ)−differential privacy of any
subsequent computational algorithm) was earlier considered in (Kumar et al., 2021, 2020;
Kumar, 2023). However, the current study complements the input perturbation method
with a transformation to mitigate the accuracy-loss issue of differential privacy. 3) The
current study follows the federated learning architecture of (Kumar et al., 2021, 2020, 2023)
with the difference that instead of fuzzy attributes, the KAHM induced distance measures
are applied to aggregate the distributed local models for federated learning.

The significance and novelties of the contributions have been highlighted in Table 1 and
Table 2 respectively.

The paper is organized into the following sections. The mathematical notation used
throughout the paper is provided in Section 2. Section 3 introduces the concept of KAHM.
KAHM based wide and deep models are presented in Section 4 for data representation
learning. Differentially private classification application is considered in Section 5 followed
by experimentation in Section 6. Finally, the concluding remarks are presented in Section 7.
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Table 1: The significance of the contributions.
Significance

C1 Representations learning in RKHS for defining a geometric structure in the affine hull of data samples

C2 Determination of the regularization parameter for kernel regularized least squares

C3
Because of the boundedness of KAHM, the distance of an arbitrary point from its KAHM image

is a measure of the distance between that arbitrary point and the given data samples

C4
KAHM compositions learn geometrically inspired representations at varying abstraction level

facilitating classification via modeling the region of each class through a separate composition

C5 Evaluation of the risk of membership inference attack on KAHM based classifier

C6
Differentially private data fabrication to mitigate the accuracy-loss issue associated with

the differentially private classifier

C7 Application to differentially private federated learning

Table 2: The novelties in the contributions.
Novelty

C1 The concept of KAHM (Definition 1) is novel.

C2
Determination of the regularization parameter as the unique fixed point of a

function (Theorem 1) is novel.

C3
The idea of using bounded geometric structure (Theorem 2) to define a measure of the distance

from given data samples (Theorem 3) is novel.

C4
Geometrically inspired representations learning at varying abstraction level and corresponding

induced measure of the distance from given data samples (Theorem 4, Theorem 5) is novel.

C5
Quantification of membership inference attack risk as L2 distance between density of distance

from training data samples and density of distance from test data samples (Eq. (69)) is novel.

C6
Data fabrication via transforming differentially private data samples to reduce

geometric modeling error (Definition 13, Theorem 6, Definition 14) is novel.

C7
The feature of the federated learning that the evaluation of global classifier requires only

locally computed KAHM induced distance measures (Fig. 11) is novel.

2. Notations

The following notations are introduced:

• Let N,n, p,M, S,C ∈ Z+ be the positive integers.

• Let µmax(K) and µmin(K) denote the maximum eigenvalue and minimum eigenvalue
respectively of a square matrix K.

• Let σmax(K) and σmin(K) denote the maximum singular value and minimum singular
value of a matrix K.

• Let aff(Y) denote the affine hull of a set Y ⊂ R
p.

• For a vector y ∈ R
p, ‖y‖ denotes the Euclidean norm of y.
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• For a matrix Y ∈ R
N×p, ‖Y ‖2 denotes the spectral norm, ‖Y ‖F denotes the Frobenius

norm, ‖Y ‖1 denotes the 1-norm, ‖Y ‖max denotes the max norm, (Y )i,: denotes the
i−th row, (Y ):,j denotes the j−th column, and (Y )i,j denotes the (i, j)−th element of
Y .

• Let ◦ denote the Hadamard product.

• Let IN denote the identity matrix of the size N and 1N denotes the N × 1 vector of
ones.

• Let 1Y denote the indicator function of the set Y.

• Let X ⊂ R
n be a region.

• K ≻ 0 denotes that a symmetric matrix K is positive definite.

• A Reproducing Kernel Hilbert Space (RKHS), Hk(X ), is a Hilbert space of functions
f : X → R on a non-empty set X with a reproducing kernel k : X ×X → R satisfying
∀x ∈ X and ∀f ∈ H,

– k(·, x) ∈ Hk(X ),
– 〈f, k(·, x)〉Hk(X ) = f(x),

where 〈·, ·〉Hk(X ) : Hk(X )×Hk(X )→ R is an inner product on Hk(X ).

• Let ‖f‖Hk(X ) :=
√

〈f, f〉Hk(X ) denote the norm induced by the inner product on

Hk(X ).

3. Kernel Affine Hull Machines

The computation of KAHM requires solving a kernel regularized least squares problem.
Therefore the kernel regularized problem is revisited (in Section 3.1) with focus on the
determination of regularization parameter (in Section 3.2). The obtained solution is applied
(in Section 3.3) to learn data representation in RKHS facilitating the definition of KAHM
(in Section 3.4).

3.1 Kernel Regularized Least Squares

Given a training data set
{

(xi, yi) ∈ X × R
p | i ∈ {1, · · · , N}

}

such that {x1, · · · , xN} are
pairwise distinct points, consider a positive-definite real-valued kernel k : X × X → R

on X with a corresponding RKHS Hk(X ). Assuming that X ⊂ R
n, real-valued matrices

X ∈ R
N×n and Y ∈ R

N×p are defined as

X = [x1 · · · xN ]T (9)

Y = [ y1 · · · yN ]
T
. (10)

Let (Y ):,j denote the j−th column of Y , i.e.,

(Y ):,j =
[

y1j · · · yNj
]T

, (11)
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where j ∈ {1, · · · , p} and yij is the j−th element of i−th output sample yi. The solution of
the following regularized least squares problem:

f∗
k,X,(Y ):,j ,λ

= arg min
f∈Hk(X )

(

N
∑

i=1

∣

∣yij − f(xi)
∣

∣

2
+ λ ‖f‖2Hk(X )

)

, λ ∈ R+, (12)

using the representer theorem (Schölkopf, Herbrich, & Smola, 2001), can be written as

f∗
k,X,(Y ):,j ,λ

(x) =
[

k(x, x1) · · · k(x, xN )
]

(KX + λIN )−1 (Y ):,j (13)

where IN is the identity matrix of size N and KX is N ×N kernel matrix whose (i, j)−th
entry is given as

(KX)ij = k(xi, xj). (14)

The regularized least squares problem can be solved for each output dimension resulting in
a vector-valued function f

∗
k,X,Y,λ : X → R

p defined as

f
∗
k,X,Y,λ(x) :=

[

f∗
k,X,(Y ):,1,λ

(x) · · · f∗
k,X,(Y ):,p,λ

(x)
]T

(15)

= Y T (KX + λIN )−1 [
k(x, x1) · · · k(x, xN )

]T
. (16)

3.2 Determination of Regularization Parameter

To compute the kernel regularized least squares solution (13), a choice for regularization
parameter λ ∈ R+ need to be made. A possible choice could be of setting λ larger than
the mean squared error on training data. The mean squared error on training data, which
obviously depends on the choice of regularization parameter λ, is given as

e(λ) =
1

pN

p
∑

j=1

N
∑

i=1

|yij − f∗
k,X,(Y ):,j ,λ

(xi)|2 (17)

=
1

pN

p
∑

j=1

‖(Y ):,j −KX (KX + λIN )−1 (Y ):,j‖2. (18)

We choose λ to be larger than e. That is, there exists a constant τ ∈ R+ such that

λ = e(λ) + τ, i.e., (19)

λ =
1

pN

p
∑

j=1

‖(Y ):,j −KX (KX + λIN )−1 (Y ):,j‖2 + τ. (20)

Eq. (20) can be solved for λ via applying the following result:

Theorem 1. Let Rk,X,Y : R+ ×R+ → R+ be a function defined as

Rk,X,Y (e, τ) :=
1

pN

p
∑

j=1

‖(Y ):,j −KX (KX + (e+ τ)IN )−1 (Y ):,j‖2. (21)

We have followings:
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1. For e, τ ∈ R+,

Rk,X,Y (e, τ) ∈ (0,
‖Y ‖2F
pN

). (22)

2. For e, τ ∈ R+,

dRk,X,Y (e, τ)

de
∈ (0,

2

(e+ τ)

‖Y ‖2F
pN

). (23)

3. For a given τ ∈ R+, Rk,X,Y (e, τ) has at least one fixed point in (0, ‖Y ‖2F /pN).

4. If we choose

τ ≥ 2

pN
‖Y ‖2F , (24)

then the iterations

e|it+1 = Rk,X,Y (e|it, τ), it ∈ {0, 1, · · · } (25)

e|0 ∈ (0,
‖Y ‖2F
pN

) (26)

converge to the unique fixed point of Rk,X,Y (e, τ).

Proof. The proof is provided in Appendix A.

It follows from Theorem 1 that the iterations (25)-(26) converge to the unique fixed point
of Rk,X,Y (e, τ) for any τ satisfying (24). Let ê be the unique fixed point corresponding to
the minimum possible value of τ satisfying (24) (which is equal to 2

pN
‖Y ‖2F ), i.e.,

ê = Rk,X,Y (ê,
2

pN
‖Y ‖2F ). (27)

Now, the value of regularization parameter λ satisfying (20) for τ = 2
pN
‖Y ‖2F is given as

λ∗ = ê+
2

pN
‖Y ‖2F . (28)

3.3 Learning Representation of Data Points in RKHS

Given a finite number of pairwise distinct points: X = [ x1 · · · xN ]T with x1, · · · , xN ∈
X ⊂ R

n, a data point xi can be represented using indicator functions as

xi = 1{x1}(x
i) x1 + · · ·+ 1{xN}(x

i) xN , for any i ∈ {1, · · · , N}. (29)

For a kernel-based representation of data points, the indicator functions 1{x1}, · · · ,1{xN}

are approximated through functions in RKHS Hk(X ). To approximate 1{xi}, a function is
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fitted on the ordered pairs {
(

xj,1{xi}(x
j)
)

| j ∈ {1, · · · , N}} via solving the following
kernel regularized least squares problem:

hik,X,λ = arg min
f∈Hk(X )





N
∑

j=1

∣

∣

1{xi}(x
j)− f(xj)

∣

∣

2
+ λ ‖f‖2Hk(X )



 , λ ∈ R+. (30)

Using the representer theorem (Schölkopf et al., 2001), the solution of (30) is as follows:

hik,X,λ(x) = (IN )i,: (KX + λIN )−1 [
k(x, x1) · · · k(x, xN )

]T
, (31)

where KX is kernel matrix defined as in (14) and (IN )i,: denotes the i−th row of identity
matrix of size N . The function hik,X,λ : X → R is a kernel-smoothed approximation of

1{xi} : X → {0, 1}, and thus hik,X,λ(x) represents the kernel-smoothed “membership” of x

to the set {xi}. Given a response variable yi ∈ R
p associated to data point xi, a regression

model based on the affine combination of response variables can be defined as in the following:

A(x) =
h1k,X,λ(x)

∑N
i=1 h

i
k,X,λ(x)

y1 + · · · +
hNk,X,λ(x)

∑N
i=1 h

i
k,X,λ(x)

yN , (32)

where hik,X,λ(x)/
∑N

i=1 h
i
k,X,λ(x) represents kernel-smoothed relative membership of x to

the set {xi}. The regression model A : X → aff({y1, · · · , yN}) maps a point x ∈ X onto
the affine hull of {y1, · · · , yN} through an affine combination where the coefficients are
computed from the functions in RKHS Hk(X ). The model A is referred to as a kernel affine
hull machine in this study.

3.4 An Affine Hull Machine

For a finite set {y1, · · · , yN} ⊂ R
p of N pairwise distinct points, we aim to learn repre-

sentation of data points in RKHS. For this, we consider a special case of the regression
model A : X → aff({y1, · · · , yN}) (defined as in (32)) for X = {Py | y ∈ R

p}, where
P ∈ R

n×p (n ≤ p) is an encoding matrix such that product Py is a lower-dimensional en-
coding for y. In this case, the indicator function 1{Pyi} is approximated through a function

in RKHS fitted on the ordered pairs {
(

Pyj,1{Pyi}(Pyj)
)

| j ∈ {1, · · · , N}}. This leads to
the development of a kernel affine hull machine defined formally in Definition 1.

Definition 1 (Kernel Affine Hull Machine (KAHM)). Given a finite number of samples:

Y = [ y1 · · · yN ]
T

with y1, · · · , yN ∈ R
p and a subspace dimension n ≤ p; a kernel affine

hull machine AY,n : Rp → aff({y1, · · · , yN}) maps an arbitrary point y ∈ R
p onto the affine

hull of {y1, · · · , yN} such that

AY,n(y) :=
h1
kθ,Y PT ,λ∗(Py)

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

y1 + · · ·+
hN
kθ,Y PT ,λ∗(Py)

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

yN . (33)

Here,

• P ∈ R
n×p (n ≤ p) is an encoding matrix such that product Py is a lower-dimensional

encoding for y. For a given subspace dimension n, P is defined by setting the i−th row
of P as equal to transpose of eigenvector corresponding to i−th largest eigenvalue of
sample covariance matrix of dataset {y1, · · · , yN}.
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• kθ : X × X → R is a positive-definite real-valued kernel on X with a corresponding
reproducing kernel Hilbert space Hkθ(X ) where

X = {Py | y ∈ R
p}. (34)

The kernel function kθ is chosen of Gaussian type:

kθ(x
i, xj) := exp

(

− 1

2n
(xi − xj)T θ−1(xi − xj)

)

(35)

where θ is sample covariance matrix of dataset {Py1, · · · , PyN} defined as

θ =
1

N − 1
P

(

Y − 1N

∑N
i=1(y

i)T

N

)T (

Y − 1N

∑N
i=1(y

i)T

N

)

P T . (36)

• The function hi
kθ,Y PT ,λ

: X → R, such that hi
kθ ,Y PT ,λ

∈ Hkθ(X ), approximates the

indicator function 1{Pyi} : X → {0, 1} as the solution of following kernel regularized
least squares problem:

hikθ ,Y PT ,λ = arg min
f∈Hkθ

(X )





N
∑

j=1

∣

∣

1{Pyi}(Pyj)− f(Pyj)
∣

∣

2
+ λ ‖f‖2Hk(X )



 , λ ∈ R+.(37)

The solution follows as

hikθ ,Y PT ,λ(·) = (IN )i,: (KY PT + λIN )−1 [
kθ(·, Py1) · · · kθ(·, PyN )

]T
(38)

where (IN )i,: denotes the i−th row of identity matrix of size N and KY PT is N × N
kernel matrix with its (i, j)−th element defined as

(KY PT )ij := kθ(Pyi, Pyj). (39)

The value hi
kθ,Y PT ,λ

(Py) represents the kernel-smoothed membership of point Py to

the set {Pyi}.

• The regularization parameter λ∗ ∈ R+ is given as

λ∗ = ê+
2

pN
‖Y ‖2F , (40)

where ê is the unique fixed point of Rkθ,Y PT ,Y such that

ê = Rkθ,Y PT ,Y (ê,
2

pN
‖Y ‖2F ), (41)

with Rkθ,Y PT ,Y : R+ ×R+ → R+ defined as

Rkθ,Y PT ,Y (e, τ) :=
1

pN

p
∑

j=1

‖(Y ):,j −KY PT (KY PT + (e+ τ)IN )−1 (Y ):,j‖2. (42)
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Figure 4: A few examples of two dimensional data sets and KAHM images.

The following iterations

e|it+1 = Rkθ,Y PT ,Y (e|it,
2

pN
‖Y ‖2F ), it ∈ {0, 1, · · · } (43)

e|0 ∈ (0,
1

pN
‖Y ‖2F ) (44)

converge to ê.

• The image of AY,n defines a region in the affine hull of {y1, · · · , yN}. That is,

AY,n[R
p] := {AY,n(y) | y ∈ R

p} ⊂ aff({y1, · · · , yN}). (45)

Fig. 4 provides examples of two dimensional datasets and KAHM images.

Remark 2 (Computational complexity). The computational complexity of the KAHM is
asymptotically dominated by the computation of inverse of the N × N dimensional matrix
(KY PT + λIN ). Therefore, computational complexity of the KAHM is given as O(N3).

KAHM is a bounded function as stated in Theorem 2 in the following.

Theorem 2. The KAHM AY,n, associated to Y = [ y1 · · · yN ]
T

with y1, · · · , yN ∈ R
p, is

a bounded function on R
p such that for any y ∈ R

p,

‖AY,n(y)‖ < ‖Y ‖2
λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
< ‖Y ‖2

(

1 +
pN2

2‖Y ‖2F

)

(46)

where λ∗ ∈ R+ is defined as in (40) and KY PT is defined as in (39). Thus, the image of
AY,n is bounded such that

AY,n[R
p] ⊂

{

y ∈ R
p | ‖y‖ < ‖Y ‖2

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )

}

. (47)

Proof. The proof is provided in Appendix B.

A distance function can be associated to KAHM as in Definition 2:
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Definition 2 (A Distance Function Induced by KAHM). Given a KAHM AY,n, the distance
of an arbitrary point y ∈ R

p from its image under AY,n is given as

ΓAY,n
(y) := ‖y −AY,n(y)‖ . (48)

A significant property of the distance function is that its value at a point can not be
arbitrary large provided that the point is sufficiently close to the samples represented by
KAHM. This property is being stated by Theorem 3 in the following.

Theorem 3. The ratio of the distance of a point y ∈ R
p from its image under AY,n to the

distance of y from {y1, · · · , yN} evaluated as ‖[ y − y1 · · · y − yN ]‖2 remains upper bounded
as

ΓAY,n
(y)

‖[ y − y1 · · · y − yN ]‖2
<

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
< 1 +

pN2

2‖Y ‖2F
(49)

where λ∗ ∈ R+ is defined as in (40), KY PT is defined as in (39), and Y = [ y1 · · · yN ]
T
.

Proof. The proof is provided in Appendix C.

Theorem 3 signifies that if a point y is close to points {y1, · · · , yN}, then the value
ΓAY,n

(y) can not be large. Thus, a large value of the distance function at a point y indicates

that y is at far distance from {y1, · · · , yN}.

4. KAHM for Data Representation Learning

For data representation learning, KAHM based models are introduced (in Section 4.1) and
applied to the classification problem (in Section 4.2). To evaluate the risk of membership
inference attack through KAHM based classifier, a membership-inference score is defined (in
Section 4.3).

4.1 Wide and Conditionally Deep KAHMs

Definition 3 (Conditionally Deep Kernel Affine Hull Machine). Given a finite number

of samples: Y = [ y1 · · · yN ]
T

with y1, · · · , yN ∈ R
p, a subspace dimension n ≤ p, and

number of layers L ≤ n; a conditionally deep kernel affine hull machine DY,n,L : Rp →
aff({y1, · · · , yN}) maps an arbitrary point y ∈ R

p onto the affine hull of {y1, · · · , yN} through
a nested composition of kernel affine hull machines (as illustrated in Fig. 5) such that

DY,n,L(y) =MY,n,l̂(y)(y), (50)

MY,n,l(y) = (AY,n−l+1 ◦ · · · ◦ AY,n−1 ◦ AY,n) (y), (51)

l̂(y) = arg min
l∈{1,2,··· ,L}

‖y −MY,n,l(y)‖ , (52)

where AY,· is a KAHM (Definition 1) andMY,n,l(y) is the image of y onto the affine hull of
{y1, · · · , yN} by the l−th layer and the output DY,n,L(y) is equal to the image of y onto the

affine hull of {y1, · · · , yN} by l̂−th layer (which is the layer resulting in minimum Euclidean
distance between input vector y and its image onto the affine hull of {y1, · · · , yN}). The
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y
AY,n AY,n−L+1

MY,n,L(y)

output
layer

MY,n,1(y)

y

DY,n,L(y)

DY,n,Ly DY,n,L(y)

Figure 5: The structure of conditionally deep L−layered kernel affine hull machine.

Figure 6: A dataset Y consisting of 1000 randomly chosen samples of digit 8 from MNIST
dataset was considered. Corresponding to an input sample y (displayed at extreme
left of the figure), the outputs of different layers (i.e. MY,n,1(y), · · · ,MY,n,20(y))
have been displayed. The output of conditionally deep KAHM (i.e. DY,n,20(y))
has been displayed at extreme right of the figure.

deep KAHM discovers layers of increasingly abstract data representation with lowest-level
data features being modeled by first layer and the highest-level by end layer. Fig. 6 illustrates
through an example the data representation learning at varying abstraction levels across
different layers such that MY,n,1(y) is least abstract representation and MY,n,L(y) is most
abstract representation of the input vector y.

Definition 4 (A Distance Function Induced by Conditionally Deep KAHM). Given a con-
ditionally deep KAHM DY,n,L, the distance of an arbitrary point y ∈ R

p from its image
under DY,n,L is given as

ΓDY,n,L
(y) := ‖y −DY,n,L(y)‖ . (53)

Theorem 4. The ratio of the distance of a point y ∈ R
p from its image under DY,n,L to the

distance of y from {y1, · · · , yN} evaluated as ‖[ y − y1 · · · y − yN ]‖2 remains upper bounded
as

ΓDY,n,L
(y)

‖[ y − y1 · · · y − yN ]‖2
≤

ΓAY,n
(y)

‖[ y − y1 · · · y − yN ]‖2
< 1 +

pN2

2‖Y ‖2F
(54)

where Y = [ y1 · · · yN ]
T
.
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y WY,n,L,S(y)WY,n,L,S

y

DYS ,n,L

DY1,n,L

output
layer WY,n,L,S(y)

Figure 7: The structure of S−branches wide conditionally deep L−layered KAHM.

Proof. The proof is provided in Appendix D.

For big datasets, the total data can be partitioned into subsets and corresponding to each
data-subset a separate KAHM can be built to avoid computational challenges associated to
big datasets. This motivates to introduce a wide condition deep KAHM in the following:

Definition 5 (Wide Conditionally Deep Kernel Affine Hull Machine). Given a big but finite

number of samples: Y = [ y1 · · · yN ]
T

with y1, · · · , yN ∈ R
p, a subspace dimension n ≤ p,

number of layers L ≤ n, and number of branches S ≤ N ; a wide conditionally deep kernel
affine hull machine WY,n,L,S : Rp → aff({y1, · · · , yN}) maps an arbitrary point y ∈ R

p onto
the affine hull of {y1, · · · , yN} through a parallel composition of conditionally deep L−layered
kernel affine hull machines (as illustrated in Fig. 7) such that

WY,n,L,S(y) = DYŝ(y),n,L(y), (55)

ŝ(y) = arg min
s∈{1,2,··· ,S}

‖y −DYs,n,L(y)‖ , (56)

Ys = [ y1,1 · · · yNs,s ]
T

(57)
{

{y1,1, · · · , yN1,1}, · · · , {y1,S , · · · , yNS ,S}
}

= clustering({y1, · · · , yN}, S), (58)

where DY·,n,L is the conditionally deep KAHM (Definition 3) and clustering({y1, · · · , yN}, S)
represents k−means clustering into S subsets, where S can be chosen e.g. as equal to round-
ing of N/1000 towards nearest integer i.e.

S = ⌈N/1000⌉. (59)

Each of S data clusters leads to a separate conditionally deep KAHM and the outputWY,n,L,S(y)
is equal to the image of y onto the affine hull of {y1, · · · , yN} by ŝ−th conditionally deep
KAHM (which is the KAHM resulting in minimum Euclidean distance between input vector
y and its image onto the affine hull of {y1, · · · , yN}).
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Definition 6 (A Distance Function Induced by Wide Conditionally Deep KAHM). Given
a wide conditionally deep KAHM WY,n,L,S, the distance of an arbitrary point y ∈ R

p from
its image under WY,n,L,S is given as

ΓWY,n,L,S
(y) := ‖y −WY,n,L,S(y)‖ . (60)

Theorem 5. The ratio of the distance of a point y ∈ R
p from its image under WY,n,L,S

to the distance of y from {y1, · · · , yN} evaluated as ‖[ y − y1 · · · y − yN ]‖
F

remains upper
bounded as

ΓWY,n,L,S
(y)

‖[ y − y1 · · · y − yN ]‖
F

< min
s∈{1,2,··· ,S}

(

1 +
pN2

s

2‖Ys‖2F

)

(61)

where Ys is given as in (57).

Proof. The proof is provided in Appendix E.

4.2 Classification Applications

The KAHM induced distance function, with a property as stated in Theorem 5, can be
leveraged to define a classifier. The significance of inequality (61) is that if a data point
y ∈ R

p is close to samples {y1, · · · , yN}, then the value ΓWY,n,L,S
(y) remains small. This

allows to define a classifier, as in Definition 7, via modeling each class’s region through a
separate wide conditionally deep KAHM and assigning to a point the label of the class with
the minimum distance function value.

Definition 7 (KAHM Based Classifier). Given a multi-class labelled dataset {
(

Yi, cl
i
)

|
Yi = [ y1,i · · · yNi,i ]

T
, y·,i ∈ R

p, cli ∈ {1, 2, · · · , C}, i ∈ {1, 2, · · · , C}}, a KAHM based
classifier C : Rp → {1, 2, · · · , C} is defined as

C(y;WY1,n,L,S1 , · · · ,WYC ,n,L,SC
) = arg min

c∈{1,2,··· ,C}
ΓWYc,n,L,Sc

(y), (62)

where WYc,n,L,Sc is the wide conditionally deep KAHM (Definition 5) modeling the c−th
class labelled data points and ΓWYc,n,L,Sc

(·) is the distance function (Definition 6) induced by
WYc,n,L,Sc. The classifier assigns to an arbitrary point y ∈ R

p the label of the class which has
the minimum distance between y and y’s image onto the affine hull of samples of that class.
Fig. 8 shows an example of a KAHM based classifier built with a 2-dimensional dataset with
3 classes.

The distance function can be further used to define a class-matching score as in Defini-
tion 8.

Definition 8 (Class-Matching Score). Given the set {WYc,n,L,Sc}Cc=1 (whereWYc,n,L,Sc is the
wide conditionally deep KAHM (Definition 5) modeling the c−th class labelled data points),
the matching-score of a point y ∈ R

p to c−th class is defined as

ms(y;WY1,n,L,S1, · · · ,WYC ,n,L,SC
) = exp

(

−
|ΓWYc,n,L,Sc

(y)|2
∑C

c=1 |ΓWYc,n,L,Sc
(y)|2

)

(63)

where ΓWYc,n,L,Sc
(·) is the distance function (Definition 6) induced by WYc,n,L,Sc.
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Figure 8: An example of KAHM based classifier built with a 2-dimensional dataset with 3
classes. The data samples have been displayed using ‘+’ marker and the distance
function ΓWY,n,L,S

(·) has been displayed as color plot.

4.3 Membership-Inference Score For KAHM Based Classifier

The KAHM based classifier (Definition 7) is built using the training dataset,

Dtrn = {yj,i | j ∈ {1, 2, · · · , Ni}, i ∈ {1, 2, · · · , C}}. (64)

As observed in (62), the classifier assigns a label to a vector y based on distance func-
tion values: {ΓWYc,·,·,·

(y)}Cc=1. It is obvious that a point either belonging to or lying

close to points represented by matrix Yc (i.e. {y1,c, · · · , yNc,c}) will have the value of dis-
tance function ΓWYc,·,·,·

smaller than the value corresponding to a point lying away from
points {y1,c, · · · , yNc,c}. So the distance function ΓWYc,·,·,·

carries an information about
the membership of a point to the set of points represented by Yc. Similarly, the value
minc∈{1,··· ,C} ΓWYc,·,·,·

(y) carries an information about the membership of y to the training
dataset Dtrn. To evaluate the potential of function minc∈{1,··· ,C} ΓWYc,·,·,·

in inferring the
membership of a data point to training dataset Dtrn, a score, referred to as “membership-
inference score”, is defined. For this we define, for a given small positive number o ∈ R≥0,
sets To,T

′
o ⊂ R≥0 as

To = {y ∈ R
p | min

y′∈Dtrn

‖y − y′‖ ≤ o}, o ∈ R≥0, (65)

T
′
o = {y ∈ R

p | min
y′∈Dtrn

‖y − y′‖ > o}, o ∈ R≥0. (66)

Further define two non-negative functions, ro : To → R≥0 and r
′
o : T

′
o → R≥0, as

ro(y) = min
c∈{1,2,··· ,C}

ΓWYc,n,L,Sc
(y), y ∈ To, (67)

r
′
o(y

′) = min
c∈{1,2,··· ,C}

ΓWYc,n,L,Sc
(y′), y′ ∈ T

′
o. (68)

Let fro and fr′o denote the densities of probability distributions on ro and r
′
o respec-

tively. It is obvious that fro characterizes the distribution of values taken by the func-
tion minc∈{1,2,··· ,C} ΓWYc,·,·,·

over data points lying within the distance of o from any data
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point included in the set Dtrn. Similarly, fr′o characterizes the distribution of values taken
by the function minc∈{1,2,··· ,C} ΓWYc,·,·,·

over data points lying away from the training
dataset. Thus, the difference between fro and fr′o is a measure of the potential of func-
tion minc∈{1,··· ,C} ΓWYc,·,·,·

in inferring the membership of a datapoint to training dataset
Dtrn. Hence, the membership-inference score is defined as the L2 distance between fro and
fr′o :

mis :=

∫

(fro(r)− fr′o(r))
2 dr. (69)

Taking o = 0, training dataset Dtrn can be used to generate samples from fr0 , i.e., {r0(y) |
y ∈ Dtrn} is the set of samples generated from fr0. Similarly, test dataset (which is typically
used to evaluate the classifier’s performance), Dtst, can be used to generate samples from f ′

r0
,

i.e., {r′0(y′) | y′ ∈ Dtst} is the set of samples generated from f ′
r0

. Now, the membership-
inference score can be computed by approximating the L2 distance between fr0 and fr′0
from the samples {r0(y) | y ∈ Dtrn} and {r′0(y′) | y′ ∈ Dtst} using a density-difference
estimation method (Sugiyama et al., 2013).

5. Privacy-Preserving Learning

Assuming that training dataset is private, KAHM based classification problem is considered
under differential privacy framework. For this, an optimal differentially private noise adding
mechanism is reviewed (in Section 5.1) and a novel differentially private data fabrication
method is developed for classification applications (in Section 5.2). The application of
KAHM to differentially private federated learning is considered (in Section 5.3).

5.1 An Optimal (ǫ, δ)−Differentially Private Noise Adding Mechanism

A given computational algorithm, operating on a data matrix Y ∈ R
N×p, can be represented

by a mapping, alg : RN×p → Range(alg). The privacy of data matrix Y can be preserved
via adding a suitable random noise to Y before the application of algorithm alg on the data
matrix. This will result in a private version of algorithm alg which is formally defined by
Definition 9.

Definition 9 (A Private Algorithm on a Data Matrix). Given a computational algorithm
alg : RN×p → Range(alg), a private version of alg, alg+ : RN×p → Range(alg+), is defined
as

alg+ (Y ) := alg
(

Y +
)

, (70)

Y + = Y +V, V ∈ R
N×p, (71)

where V is a random noise matrix with fvij
(v) being the probability density function of its

(i, j)−th element vij ; v
i
j and vi

′

j are independent from each other for i 6= i′; and alg : RN×p →
Range(alg) is a given mapping representing a computational algorithm. The range of alg+

is as

Range(alg+) =
{

alg (Y +V) | Y ∈ R
N×p,V ∈ R

N×p
}

. (72)
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We consider a threat scenario that an adversary seeks to gain an information about
the data matrix Y from an analysis of the change in output of algorithm alg as a result
of a change in data matrix. In particularly, we seek to attain differential privacy for algo-
rithm alg+ against the perturbation in an element of Y , say (i0, j0)−th element, such that
magnitude of the perturbation is upper bounded by a scalar d.

Definition 10 (d−Adjacency for Data Matrices). Two matrices Y, Y ′ ∈ R
N×p are d−adjacent

if for a given d ∈ R+, there exist i0 ∈ {1, 2, · · · , N} and j0 ∈ {1, 2, · · · , p} such that
∀i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , p},

∣

∣(Y )i,j − (Y ′)i,j
∣

∣ ≤
{

d, if i = i0, j = j0
0, otherwise

where (Y )i,j and (Y ′)i,j denote the (i, j)−th element of Y and Y ′ respectively. Thus, Y and
Y ′ differ by only one element and the magnitude of the difference is upper bounded by d.

Definition 11 ((ǫ, δ)−Differential Privacy for alg+ (Kumar et al., 2019)). The algorithm
alg+ (Y ) is (ǫ, δ)−differentially private if

Pr{alg+ (Y ) ∈ O} ≤ exp(ǫ)Pr{alg+
(

Y ′
)

) ∈ O}+ δ (73)

for any measurable set O ⊆ Range(alg+) and for d−adjacent matrices pair (Y, Y ′).

Definition 11 implies that changing the value of an element in the matrix Y by an amount
upper bounded by d can change the distribution of output of the algorithm alg+ only by a
factor of exp(ǫ) with probability at least 1 − δ. Thus, the lower value of ǫ and δ lead to a
higher amount of privacy.

Result 1 (An Optimal (ǫ, δ)−Differentially Private Noise (Kumar et al., 2019)). The prob-
ability density function of noise, that minimizes the expected noise magnitude together with
satisfying the sufficient conditions for (ǫ, δ)−differential privacy for alg+, is given as

f∗
vij
(v; ǫ, δ, d) =

{

δ Diracδ(v), v = 0
(1− δ) ǫ

2d exp(− ǫ
d |v|), v ∈ R \ {0} (74)

where Diracδ(v) is Dirac delta function satisfying
∫∞
−∞Diracδ(v) dv = 1.

Remark 3 (Generating Random Samples from f∗
vij

). The method of inverse transform sam-

pling can be used to generate random samples from cumulative distribution function. The
cumulative distribution function of f∗

vij
is given as

Fvi
j
(v; ǫ, δ, d) =







1−δ
2 exp( ǫ

d
v), v < 0

1+δ
2 , v = 0

1− 1−δ
2 exp(− ǫ

d
v), v > 0

(75)

The inverse cumulative distribution function is given as

F−1
vij

(tij ; ǫ, δ, d) =















d
ǫ
log(

2tij
1−δ

), tij <
1−δ
2

0, tij ∈ [1−δ
2 , 1+δ

2 ]

−d
ǫ
log(

2(1−tij )

1−δ
), tij >

1+δ
2

, tij ∈ (0, 1). (76)

Thus, via generating random samples from the uniform distribution on (0, 1) and using (76),
the noise additive mechanism can be implemented.
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Algorithm 1 Differentially private approximation of a data matrix (Kumar, 2023)

Require: Data matrix Y ∈ R
N×p; differential privacy parameters: d ∈ R+, ǫ ∈ R+,

δ ∈ (0, 1).
1: Compute ∀ i ∈ {1, 2, · · · , N}, j ∈ {1, 2, · · · , p},

(Y +
ǫ )i,j = (Y )i,j + F−1

vij
(tij ; ǫ, δ, d), t

i
j ∈ (0, 1), (77)

where tij is chosen from the uniform distribution on (0, 1) and F−1
vij

is given by (76).

2: return Y +
ǫ (where the subscript ǫ indicates the given privacy-loss bound ǫ).

For a given value of (ǫ, δ, d), Algorithm 1 is stated for the differentially private approxi-
mation of a data matrix.

5.2 Differentially Private Data Fabrication and Classification

A computational algorithm can be made to ensure differential privacy (i.e. inequality (73))
via applying the algorithm on the data matrix returned by Algorithm 1. Hence, a KAHM
based differentially private classifier can be built as in Definition 12.

Definition 12 (A KAHM Based Differentially Private Classifier). Given a multi-class la-
belled differentially private dataset {(Y +

ǫ,i, cl
i) | Y +

ǫ,i ∈ R
Ni×p, cli ∈ {1, 2, · · · , C}}, a KAHM

based differentially private classifier C : Rp → {1, 2, · · · , C} is defined as

C(y;W
Y +
ǫ,1,n,L,S1

, · · · ,W
Y +
ǫ,C

,n,L,SC
) = arg min

c∈{1,2,··· ,C}
ΓW

Y
+
ǫ,c,n,L,Sc

(y), (78)

where W
Y +
ǫ,c,·,·,·

is the wide conditionally deep KAHM (Definition 5) modeling the c−th

class labelled data points and ΓW
Y
+
ǫ,c,·,·,·

(·) is the distance function (Definition 6) induced

by WY +
ǫ,c,·,·,·

, and Y +
ǫ,c is differentially private data matrix obtained by Algorithm 1. The

classifier assigns to an arbitrary point y ∈ R
p the label of the class which has the minimum

distance between y and y’s image onto the affine hull of differentially private samples of that
class.

Since a differentially private algorithm operates on noise added data, the algorithm’s
performance is adversely affected. An obvious effect of adding noise to data matrix is an
increase in the modeling error of data samples by a KAHM. Typically, we have

N
∑

i=1

‖y+i
ǫ −AY +

ǫ ,n

(

y+i
ǫ

)

‖ >
N
∑

i=1

‖yi −AY,n

(

yi
)

‖, (79)

where y+i
ǫ = ((Y +

ǫ )i,:)
T . Thus, an approach to alleviate the effect of added noise on the

performance of a KAHM based algorithm is of processing the noise added data matrix
through a data smoother such that the smoothed data matrix leads to a KAHM with
modeling error not larger than the modeling error on original data samples. One such
smoother is defined as in Definition 13.
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Definition 13 (A Smoother for Differentially Private Data). Given a differentially private
matrix Y +

ǫ ∈ R
N×p, a subspace dimension n ≤ p, and a positive integer M ∈ Z+; Y +

ǫ is
transformed into ŶM−1 ∈ R

N×p through following recursions run from m = 0 to m = M−1:

ŷi,0 = ((Y +
ǫ )i,:)

T , ∀i ∈ {1, 2, · · · , N}, (80)

ŷi,m+1 =





N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷi,m)



×A
Ŷm,n

(

ŷi,m
)

, (81)

Ŷm = [ ŷ1,m · · · ŷN,m ]
T
, (82)

where

• Pm is defined by setting the i−th row of Pm as equal to transpose of eigenvector
corresponding to i−th largest eigenvalue of sample covariance matrix of the dataset
{ŷ1,m, · · · , ŷN,m}.

• θm is sample covariance matrix of dataset {Pmŷ1,m, · · · , PmŷN,m}, i.e.,

θm =
1

N − 1m
Pm

(

Ŷm − 1N

∑N
i=1(ŷ

i,m)T

N

)T (

Ŷm − 1N

∑N
i=1(ŷ

i,m)T

N

)

P T
m. (83)

• λ∗
m ∈ R+ is given as

λ∗
m = êm +

2

pN
‖Ŷm‖2F , (84)

where êm is the unique fixed point of the function R
kθm ,ŶmPT

m,Ŷm
(which is defined as

in (42)).

• kθm(·, ·) and hi
kθm ,ŶmPT

m,λ∗
m

(·) are defined as in (35) and (38) respectively.

The transformation of Y +
ǫ into ŶM−1 is represented as

ŶM−1 = Tn,M(Y +
ǫ ). (85)

The transformation of Y +
ǫ into ŶM−1 has been defined in a particular way to ensure a

property related to the error in KAHM modeling of data samples. This property is sated in
Theorem 6.

Theorem 6. The error in KAHM modeling of smoothed data matrix ŶM−1 = Tn,M(Y +
ǫ )

converges asymptotically with an increasing value of M to zero, i.e.,

lim
M→∞

N
∑

i=1

‖ŷi,M−1 −A
ŶM−1,n

(ŷi,M−1)‖ = 0. (86)

where ŶM−1 = [ ŷ1,M−1 · · · ŷN,M−1 ]
T

is computed using recursions (80-82) from m = 0 to
m = M − 1.
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Proof. The proof is provided in Appendix F.

It follows from Theorem 6 that the KAHM modeling error of smoothed data samples
can be reduced to an arbitrary low value by choosing a sufficiently large value of M . Thus,
it is possible to find the smallest number, say M̃ ∈ Z+, ensuring that

N
∑

i=1

‖ŷi,M̃−1 −A
Ŷ
M̃−1,n

(ŷi,M̃−1)‖ ≤ r, (87)

where r is the error in KAHM modeling of original data matrix Y defined as

r =

N
∑

i=1

‖yi −AY,n(y
i)‖. (88)

That is, error in KAHM modeling of smoothed data matrix ŶM̃−1 is lower than the error in
KAHM modeling of original data matrix Y , which suggests that applying a KAHM based
computational algorithm on ŶM̃−1 (instead of Y +

ǫ ) may alleviate the effect of added noise
on the performance of a KAHM based computational algorithm. This motivates to use the
KAHM associated to ŶM̃−1, i.e. A

Ŷ
M̃−1,n

, for fabricating data samples meant for building

KAHM based models.

Definition 14 (Differentially Private Fabricated Data). Given a differentially private matrix
Y +
ǫ ∈ R

N×p ensuring the privacy-loss bound ǫ ∈ R+, a subspace dimension n ≤ p, and error
in KAHM modeling of original data matrix Y evaluated as r =

∑N
i=1 ‖yi − AY,n(y

i)‖; a
differentially private fabricated data matrix Ỹ ∈ R

N×p is defined as

Ỹ =
[

A
Ŷ
M̃−1,n

(ŷ1,M̃−1) · · · A
Ŷ
M̃−1,n

(ŷN,M̃−1)
]T

, (89)

ŷi,M̃−1 = ((ŶM̃−1)i,:)
T , (90)

ŶM̃−1 = Tn,M̃(Y +
ǫ ), (91)

where smoother Tn,M̃ (Definition 13) computes ŶM̃−1 through recursions (80-82) from m = 0

to m = M̃ − 1, and M̃ is defined as

M̃ = min

{

m ∈ Z+ |
N
∑

i=1

‖ŷi,m−1 −A
Ŷm−1,n

(ŷi,m−1)‖ ≤ r

}

. (92)

The computing of Ỹ is represented as

Ỹ = Fn(Y
+
ǫ ; r). (93)

The fabricated data matrix Ỹ is computed from Y +
ǫ (which is a differentially private ap-

proximation of Y ) and not from original data matrix Y , and thus Ỹ remains differentially
private.

Fig. 9 displays a few examples of fabricated data samples corresponding to different
choices for privacy-loss bound ǫ and subspace dimension n. As expected and also observed
in Fig. 9, more and more features of original data samples get masked in the fabricated data
with a decrease in ǫ and/or n.

538



Kernel Affine Hull Machine

y
1

y
2

y
3

y
4

y
5

y
6

y
7

y
8

y
9

y
10

=1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3 =1, n=3

=1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20 =1, n=20

=3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10 =3, n=10

=8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5 =8, n=5

=16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3 =16, n=3

Figure 9: A dataset Y consisting of 1000 randomly chosen samples of digit 8 from MNIST
dataset was considered. For 10 randomly selected samples from Y (displayed at
top row of the figure), the corresponding samples from differentially private fabri-
cated data Ỹ = Fn(Y

+
ǫ ;
∑1000

i=1 ‖yi −AY,n(y
i)‖) have been displayed for different

values of privacy-loss bound ǫ and subspace dimension n.

Remark 4 (Big Data Fabrication). For the big datasets with large N , the data can be divided
into subsets via e.g. k-means clustering and fabricated data matrix is computed from each
subset independently. That is, Ỹ is fabricated as follows:

Ỹ =
[

(

Fn(Y
+
1 ; r1)

)T · · ·
(

Fn(Y
+
S ; rS)

)T
]T

, (94)

Y +
s ← Algorithm 1(Ys, d, ǫ, δ), (95)

rs =

Ns
∑

i=1

‖yi,s −AYs,n(y
i,s)‖, (96)

Ys = [ y1,1 · · · yNs,s ]
T
, (97)

{

y1,s, · · · , yNs,s
}S

s=1
= clustering({y1, · · · , yN}, S), (98)

S = ⌈N/1000⌉, (99)

where clustering({y1, · · · , yN}, S) represents k−means clustering into S subsets

As the fabricated data remain differentially private, a KAHM based classifier can be
built using fabricated data to ensure differential privacy in the sense of inequality (73).

Definition 15 (A Differentially Private Classifier Based on Fabricated Data). Given a
multi-class labelled differentially private fabricated dataset {(Ỹi, cl

i) | Ỹi ∈ R
Ni×p, cli ∈

{1, 2, · · · , C}}, a classifier C : Rp → {1, 2, · · · , C} is defined as

C(y;WỸ1,n,L,S1
, · · · ,WỸC ,n,L,SC

) = arg min
c∈{1,2,··· ,C}

ΓW
Ỹc,n,L,Sc

(y), (100)
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(a) images of three different KAHMs built
independently using three different datasets
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(b) image of the global KAHM combining
together independently built KAHMs

Figure 10: An example of combining together local KAHMs to build a global KAHM.

where WỸc,·,·,·
is the wide conditionally deep KAHM (Definition 5) modeling the c−th class

labelled data points and ΓW
Ỹc,·,·,·

(·) is the distance function (Definition 6) induced byWỸc,·,·,·
,

and Ỹc is differentially private fabricated data matrix (Definition 14). The classifier assigns
to an arbitrary point y ∈ R

p the label of the class which has the minimum distance between
y and y’s image onto the affine hull of differentially private fabricated samples of that class.

5.3 Application to Differentially Private Federated Learning

The multi-class classification problem is considered under the scenario of data being dis-
tributed amongst different parties. For the case of data being privately owned by local par-
ties, our federated learning approach is of combining together the local privacy-preserving
KAHM based classifiers using the distance functions induced by local KAHMs. For this, a
combination of different KAHMs is considered using the distance measure. Given Q differ-
ent wide conditionally deep KAHMs WY 1,n,L,S1, · · · ,WY Q,n,L,SQ built independently using
datasets Y 1, · · · , Y Q respectively, a possible way to combine together the KAHMs is as
follows:

GW(y; {WY q ,n,L,Sq}Qq=1) =WY q̂(y),n,L,Sq̂(y)(y), (101)

q̂(y) = arg min
q∈{1,2,··· ,Q}

ΓWY q,n,L,Sq (y), (102)

where GW is the global KAHM (that combines together the individual KAHMs) and
ΓWY q,n,L,Sq is the distance function (Definition 6) induced by WY q ,n,L,Sq . For an input
y ∈ R

p, the global KAHM output is equal to the output of q̂−th KAHM (which is the
KAHM resulting in minimum Euclidean distance between input vector y and its image onto
the affine hull of data samples). A 2-dimensional data example where three different KAHMs
are combined to build a global KAHM is provided in Fig. 10. Fig. 10 shows the images of
individual KAHMs (in Fig. 10(a)) and the image of global KAHM (in Fig. 10(b)).

The local KAHMs modeling a specific class can be combined together to build a global
KAHM (that models the region (in data space) of that class) and a global classifier can be
built from all class-specific global KAHMs. Mathematically, the global classifier, GC : Rp →
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{Ỹ 1

1
, · · · , Ỹ 1
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Figure 11: The structural representation of the KAHM based federated learning scheme.
The limitation of passing users’ inputs to the parties can be addressed as sug-
gested in Remark 6.

541



Kumar, Moser, & Fischer

{1, 2, · · · , C}, is defined as

GC(y) = arg min
c∈{1,2,··· ,C}

‖y − GW(y; {WỸ
q
c ,n,L,S

q
c
}Qq=1)‖, (103)

where Ỹ q
c represents the c−th class labelled differentially private data samples fabricated

locally by the q−th party and GW is the global KAHM (101). The global classifier (103)
assigns to an arbitrary point y ∈ R

p the label of the class which has the minimum distance
between y and y’s image onto the affine hull of differentially private fabricated samples of
that class. (103) can be alternatively expressed as

GC(y) = arg min
c∈{1,2,··· ,C}

(

min
q∈{1,2,··· ,Q}

ΓW
Ỹ
q
c ,n,L,S

q
c
(y)

)

. (104)

An important feature of the global classifier evaluation using (104) is that the evaluation
doesn’t require individual KAHMs (that are owned by different parties) but only the distance
measures. This allows to design a KAHM based differentially private federated learning
scheme as illustrated in Fig. 11.

Remark 5 (Local Training Data with Missing Classes). If the q−th party has zero c−th
labelled data samples, the global classifier (104) is evaluated taking ΓW

Ỹ
q
c ,n,L,S

q
c
(y) =∞.

Remark 6 (Addressing the Limitation of Passing Users’ Inputs to the Clients). A limitation
of the federated learning scheme, as sketched in Fig. 11, is that a user’s input query is passed
to all of the parties, causing an increased communication cost and concerns regarding the
privacy of user’s input. This limitation can be easily addressed by transferring all of the local
models {{WỸ

q
c ,n,L,S

q
c
}Cc=1}

Q
q=1 to the cloud.

6. Experiments

The aim of the experiments is to 1) investigate the performance of KAHM based classifier
(in Section 6.1); 2) evaluate the proposed privacy-preserving learning method in-terms of
both accuracy and risk of membership inference attack (in Section 6.2); 3) investigate the
performance of the proposed differentially private federated learning scheme (in Section 6.3);
and 4) study the computational time of KAHM in relation to increasing data dimension,
subspace dimension, and data sample size (in Section 6.4).

6.1 KAHM Based Classification of High-Dimensional Feature Vectors

The “Freiburg Groceries Dataset” (Jund et al., 2016) is considered to evaluate the perfor-
mance of KAHM based classifier (Definition 7). This dataset has around 5000 labeled images
of grocery products commonly sold in Germany. The images have been divided into 25 differ-
ent categories of grocery products. Following the previous studies (Kumar & Freudenthaler,
2020; Kumar et al., 2021a) on this dataset, image features were extracted from “AlexNet”
and “VGG-16” networks (which are pre-trained Convolutional Neural Networks). The acti-
vations of the fully connected layer “fc6” in AlexNet constitute a 4096−dimensional feature
vector. Also, the activations of the fully connected layer “fc6” in VGG-16 constitute another
4096−dimensional feature vector. The features extracted by both networks were joined
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Table 3: Experiments on 5 different train-test splits of Freiburg groceries data: I

methods
accuracy (in %) on test images

1 2 3 4 5 mean

KAHM Classifier (Definition 7) 89.29 87.16 87.00 86.73 87.09 87.46

membership-mappings

(Kumar et al., 2021a)
87.82 87.06 85.88 85.63 86.19 86.52

nonparametric fuzzy

image mapping

(Kumar & Freudenthaler, 2020)

88.21 86.64 85.36 85.13 85.79 86.23

Gaussian fuzzy-mapping

(Kumar et al., 2021)
83.50 81.52 79.73 79.60 80.48 80.97

SVM (Kumar et al., 2021a) 77.90 79.54 77.17 76.98 76.98 77.71

1-NN (Kumar et al., 2021a) 78.00 77.97 77.38 76.58 76.28 77.24

Back-propagation

training of a deep network

(Kumar et al., 2021a)

75.25 77.24 72.67 73.37 71.57 74.02

2-NN (Kumar et al., 2021a) 73.48 73.38 70.11 70.05 70.57 71.52

4-NN (Kumar et al., 2021a) 72.50 73.39 68.89 71.16 70.87 71.36

Random Forest

(Kumar et al., 2021a)
63.17 62.63 59.47 59.50 59.76 60.90

Naive Bayes

(Kumar et al., 2021a)
56.78 56.78 53.74 55.08 56.26 55.73

Ensemble Learning

(Kumar et al., 2021a)
38.31 39.35 38.89 37.69 38.34 38.51

Decision Tree

(Kumar et al., 2021a)
31.34 30.59 32.14 31.06 30.73 31.17

together to form a 8192−dimensional vector. The feature vectors were scaled along each
dimension to take values between -1 and 1.

The authors of (Jund et al., 2016) provide five different train-test splits of images to
evaluate the classification performance. For each of the five train-test data splits, training
feature vectors of each class are modeled through a separate wide conditionally deep KAHM
taking subspace dimension n = 20, number of layers L = 5, and number of branches S
as given in (59). The performance of the proposed KAHM based classifier is compared in
Table 3 with previous studies on this dataset. A related application is of detecting the
presence of an individual grocery category in an image based on the value of KAHM based
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Table 4: Experiments on 5 different train-test splits of Freiburg groceries data: II

methods
area under ROC curve (averaged per class)

1 2 3 4 5

KAHM (Definition 8) 0.9901 0.9925 0.9970 0.9969 0.9945

nonparametric fuzzy

image mapping

(Kumar & Freudenthaler, 2020)

0.9818 0.9775 0.9754 0.9767 0.9761

deep fuzzy nonparametric

model (Zhang et al., 2022)
0.9612 0.9574 0.9601 0.9582 0.9531

SVM

(Kumar & Freudenthaler, 2020)
0.9806 0.9766 0.9711 0.9777 0.9760

Random Forest

(Kumar & Freudenthaler, 2020)
0.9489 0.9510 0.9372 0.9437 0.9466

4-NN

(Kumar & Freudenthaler, 2020)
0.9425 0.9336 0.9325 0.9378 0.9280

2-NN

(Kumar & Freudenthaler, 2020)
0.9219 0.9125 0.9118 0.9117 0.9048

Naive Bayes

(Kumar & Freudenthaler, 2020)
0.8999 0.9100 0.8866 0.9013 0.8908

1-NN

(Kumar & Freudenthaler, 2020)
0.8881 0.8802 0.8803 0.8837 0.8752

Ensemble Learning

(Kumar & Freudenthaler, 2020)
0.8856 0.8896 0.8813 0.8818 0.8776

Decision Tree

(Kumar & Freudenthaler, 2020)
0.6591 0.6473 0.6528 0.6539 0.6443

class-matching score (i.e. Definition 8). To study the application potential of proposed
class-matching score, the receiver operating characteristic (ROC) curves are plotted for test
images taking a particular image category as positive class. Table 4 reports the performances
of different methods evaluated in-term of area under ROC curve. The best performance of
the KAHM based classifier on each of the five train-test data splits is observed in Table 3
and Table 4. The proposed KAHM based classifier is more competitive than the previously
studied methods on this dataset.
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6.2 KAHM Based Differentially Private Classification with Fabricated Data

The proposed KAHM based approach to privacy-preserving classification is studied on dif-
ferent datasets where the performance of the classifier is evaluated in-terms of both accuracy
on test data and the value of membership-inference score. The membership-inference score,
mis (69), is computed using a density-difference estimation method (Sugiyama et al., 2013).

6.2.1 MNIST Dataset

A handwritten digits recognition problem is considered with the widely used MNIST dataset.
The dataset contains 28 × 28 sized images divided into training set of 60000 images and
testing set of 10000 images. The images’ pixel values are divided by 255 to normalize the
values in the range from 0 to 1. The 28 × 28 normalized values of each image are flattened
to an equivalent 784−dimensional data point.

Table 5: Results of privacy-preserving learning experiments on MNIST dataset

(ǫ, n)

accuracy by

classifier

(Def. 15)

accuracy by

classifier

(Def. 12)

mis by

classifier

(Def. 15)

mis by

classifier

(Def. 12)

(1, 20) 0.9491 0.9453 0.00000 0.00017

(1.5, 20) 0.9644 0.9645 0.00025 0.00035

(2, 20) 0.9711 0.9709 0.00074 0.00076

(3, 20) 0.9779 0.9776 0.00299 0.00589

(4, 20) 0.9802 0.9796 0.00687 0.01605

(5, 20) 0.9820 0.9805 0.01275 0.03361

(8, 20) 0.9833 0.9845 0.02968 0.11685

(16, 20) 0.9854 0.9858 0.05459 0.30601

(32, 20) 0.9851 0.9858 0.06171 0.35388

(32, 5) 0.9680 0.9676 0.00503 0.01225

(32, 10) 0.9799 0.9810 0.01794 0.08117

(32, 15) 0.9851 0.9861 0.03501 0.20903

(32, 20) 0.9851 0.9854 0.06145 0.35451

(32, 25) 0.9845 0.9854 0.09111 0.49186

0.9772 (mean) 0.9771 (mean) 0.02715 (mean) 0.14160 (mean)

The performances of both differentially private classifier (Definition 12) and differentially
private classifier based on fabricated data (Definition 15) are evaluated for different values
of privacy-loss bound ǫ and subspace dimension n while keeping the number of layers L = 5
and number of branches S as given in (59). Table 5 reports the obtained results. For a
visualization of the results, Fig. 12 compares the accuracy and mis values obtained by the
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Figure 12: The effect of using fabricated data in classification for MNIST.

(a) histograms of distances of training and test
data points from the affine hull of training sam-
ples

(b) histograms of distances of training and test
data points from the affine hull of fabricated sam-
ples

Figure 13: Illustration of the reduction in mis value through data fabrication for MNIST.

two methods. It is observed in Fig. 12 that while both classifiers (with and without using
fabricated data) achieve nearly the same level of accuracy (as observed in Fig. 12(a)), the
membership-inference score is considerably lower in the case of fabricated data (as observed
in Fig. 12(b)). The use of fabricated data reduces greatly the averaged mis from 0.14160
to 0.02715 with the marginal change in averaged accuracy from 0.9771 to 0.9772. As an
example, Fig. 13 shows the histograms of distances of training and test points from the
affine hull of training samples (in Fig. 13(a)) and from the affine hull of fabricated samples
(in Fig. 13(b)). The use of fabricated data in this example reduces the mis from 0.35919 to
0.05377 with loss of accuracy from 0.9858 to 0.9849.
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6.2.2 Freiburg Groceries Dataset

The Freiburg groceries dataset is revisited to study the KAHM based differentially private
classifiers. The 8192−dimensional feature vectors, extracted as stated in Section 6.1, are
considered to study both differentially private classifier (Definition 12) and differentially
private classifier based on fabricated data (Definition 15) for different values of privacy-loss
bound ǫ and subspace dimension n while keeping the number of layers L = 5 and number
of branches S as given in (59).

Table 6: Results of privacy-preserving learning experiments on Freiburg groceries dataset

(ǫ, n)

accuracy by

classifier

(Def. 15)

accuracy by

classifier

(Def. 12)

mis by

classifier

(Def. 15)

mis by

classifier

(Def. 12)

(5, 20) 0.8016 0.8153 0.02600 0.04207

(8, 20) 0.8556 0.8733 0.12512 0.20650

(16, 20) 0.8792 0.8919 0.27377 0.51909

(32, 20) 0.8811 0.8919 0.25753 0.40348

(32, 5) 0.7996 0.8212 0.04019 0.08048

(32, 10) 0.8595 0.8694 0.12220 0.24263

(32, 15) 0.8752 0.8841 0.19986 0.34380

(32, 20) 0.8811 0.8919 0.25753 0.40348

(32, 25) 0.8782 0.8929 0.29724 0.45099

0.8568 (mean) 0.8702 (mean) 0.17772 (mean) 0.29917 (mean)

The experimental results are reported in Table 6. The averaged msi decreases from
0.29917 to 0.17772 together with the loss of averaged accuracy from 0.8702 to 0.8568.
Fig. 14(a) illustrates the results via plotting the % reduction in both accuracy and mis
values due to the use of fabricated data. It is observed from Fig. 14(a) that the use of
fabricated data leads to a considerable reduction in mis value with relatively much smaller
loss of accuracy. This is demonstrated through an example in Fig. 15 where the histograms
of distances of training and test points from the affine hull of training samples (in Fig. 15(a))
and from the affine hull of fabricated samples (in Fig. 15(b)) are plotted. As the result of
using fabricated data in this example, the msi reduces from 0.51320 to 0.12286 together
with relatively smaller loss of accuracy from 0.8880 to 0.8615.

6.2.3 A Real Biomedical Dataset

A dataset related to the mental stress detection problem (Kumar et al., 2021, 2023) is
considered to evaluate the proposed differentially private classifier based on fabricated data.
This dataset consists of heart rate interval measurements of different subjects together with
a stress-score on a scale from 0 to 100. The aim is to detect stress on an individual based
on the analysis of recorded sequence of R-R intervals, {RRi}i. The R-R data vector at

547



Kumar, Moser, & Fischer

1 2 3 4 5 6 7 8 9

experiment number

0

10

20

30

40

50

60

%

reduction in accuracy

reduction in membership-inference score

(a) Freiburg groceries dataset

1 2 3 4 5 6 7 8 9 10

experiment number

0

10

20

30

40

50

60

70

%

reduction in accuracy

reduction in membership-inference score

(b) heart rate variability dataset

Figure 14: The plots of % reduction in accuracy and mis values as a result of the use of
fabricated data.

(a) histograms of distances of training and test
data points from the affine hull of training sam-
ples

(b) histograms of distances of training and test
data points from the affine hull of fabricated sam-
ples

Figure 15: Illustration of the reduction in mis value through data fabrication on Freiburg
groceries dataset.
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i−th time-index, yi, is defined as yi = [RRi RRi−1 · · · RRi−d ]T . That is, the current
interval and history of previous d intervals constitute the data vector. Assuming an average
heartbeat of 72 beats per minute, d is chosen as equal to 72 × 3 = 216 so that R-R data
vector consists of on an average 3-minutes long R-R intervals sequence. Following (Kumar
et al., 2021, 2023), a dataset, say {yi}i, is built via 1) preprocessing the R-R interval sequence
{RRi}i with an impulse rejection filter for artifacts detection, and 2) excluding the R-R data
vectors containing artifacts from the dataset. A class-label of either “no-stress” or “under-
stress” is assigned to each data sample yi based on the stress-score. For each subject, 50%
of the data samples serve as training data while remaining as test data. Both differentially
private classifier (Definition 12) and differentially private classifier based on fabricated data
(Definition 15) are considered for the stress detection problem for different values of privacy-
loss bound ǫ and subspace dimension n while keeping the number of layers L = 5 and number
of branches S as given in (59).

Table 7: Results of privacy-preserving learning experiments on a biomedical dataset

(ǫ, n)

accuracy by

classifier

(Def. 15)

accuracy by

classifier

(Def. 12)

mis by

classifier

(Def. 15)

mis by

classifier

(Def. 12)

(8, 5) 0.8485 0.9074 0.02773 0.04903

(16, 5) 0.8817 0.9484 0.06739 0.15790

(24, 5) 0.8925 0.9557 0.07625 0.21036

(32, 5) 0.8964 0.9572 0.08310 0.23319

(32, 1) 0.8608 0.9058 0.00973 0.02259

(32, 3) 0.8777 0.9457 0.04045 0.12006

(32, 5) 0.8931 0.9568 0.07603 0.22235

(32, 7) 0.8960 0.9599 0.11834 0.33322

(32, 10) 0.8938 0.9566 0.17230 0.48887

(32, 15) 0.8795 0.9451 0.24173 0.68009

0.8820 (mean) 0.9439 (mean) 0.09131 (mean) 0.25177 (mean)

Table 7 reports the experimental results. The experimental results have been visualized
in Fig. 14(b) via plotting the % reduction in both accuracy and mis values due to the use
of fabricated data. It is observed from Fig. 14(b) that the use of fabricated data reduces
considerably the mis value with relatively much smaller loss of accuracy. As a result of
using fabricated data, the averaged mis decreases by 63.7328% (from 0.25177 to 0.09131 in
absolute terms) together with averaged accuracy loss of 6.5579% (from 0.9439 to 0.8820 in
absolute terms).
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Table 8: Results of federated learning experiments under Scenario 1 on MNIST dataset

privacy-loss

bound ǫ

accuracy by

classifier (104)

(distributed data)

accuracy by

classifier (100)

(centralized data)

change in accuracy

due to data

being distributed

1 0.9460 0.9478 -0.0018

1.5 0.9633 0.9629 0.0004

2 0.9710 0.9707 0.0003

3 0.9783 0.9779 0.0004

4 0.9790 0.9798 -0.0008

5 0.9813 0.9819 -0.0006

8 0.9829 0.9837 -0.0008

16 0.9847 0.9851 -0.0004

0.9733 (mean) 0.9737 (mean) -0.0004 (mean)

6.3 Federated Learning

MNIST dataset (containing the samples of 10 classes) is reconsidered under the following
federated learning scenarios: Scenario 1: The training data are distributed among 10 parties
such that all samples of a class are possessed by only a single party. That is, a party has all
the samples of a class. Scenario 2: The training data are distributed among 20 parties such
that samples of a class are shared equally between two parties. That is, a party has 50%
samples of a class. Scenario 3: The training data are distributed randomly independent of the
classes among Q number of parties where Q ∈ {2, 5, 10, 20, 50, 100}. For all of the considered
scenarios, the local classifiers are built for privacy-loss bound ǫ ∈ {1, 1, 5, 2, 3, 4, 5, 8, 16},
subspace dimension n = 20, number of layers L = 5, and number of branches S as given in
(59). The performance of the global classifier (104) is evaluated on test data. As a reference,
the performance in the case of non-federated learning (i.e. in the case of centralized data)
is also evaluated using classifier (100).

The obtained results are reported in Table 8 and Fig. 16(a) for Scenario 1, in Table 9
and Fig. 16(b) for Scenario 2, and in Table 10 and Fig. 16(c) for Scenario 3. Following
observations are made from the obtained results: 1) In Scenario 1 (when samples of a
class are not shared by parties), the federated learning performance is not different from
that of learning with centralized data. This is expected, as for each class there exists
only one local KAHM that serves as the global KAHM for that class as well. Since there
remains no difference between the class specific global and local KAHMs, the performance
in the federated setting remains unaffected. Thus, the change in accuracy due to data being
distributed, as reported in Table 8, remains less than 0.0018. 2) In Scenario 2 (when samples
of a class are shared by two parties), the performance under federated setting reduces slightly
across the whole range of privacy-loss bound. It is observed from Table 9 that the change in
accuracy due to data being distributed, averaged over the considered range of privacy-loss
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Table 9: Results of federated learning experiments under Scenario 2 on MNIST dataset

privacy-loss

bound ǫ

accuracy by

classifier (104)

(distributed data)

accuracy by

classifier (100)

(centralized data)

change in accuracy

due to data

being distributed

1 0.9384 0.9478 -0.0094

1.5 0.9603 0.9629 -0.0026

2 0.9670 0.9707 -0.0037

3 0.9733 0.9779 -0.0046

4 0.9758 0.9798 -0.0040

5 0.9778 0.9819 -0.0041

8 0.9803 0.9837 -0.0034

16 0.9813 0.9851 -0.0038

0.9693 (mean) 0.9737 (mean) -0.0044 (mean)

Table 10: Results of 10 independent federated learning experiments under Scenario 3 on
MNIST dataset for privacy-loss bound ǫ = 16

number of

parties Q

mean accuracy by

classifier (104)

(distributed data)

accuracy by

classifier (100)

(centralized data)

change in mean accuracy

due to data

being distributed

2 0.9817 0.9847 -0.0030

5 0.9770 0.9847 -0.0077

10 0.9752 0.9847 -0.0095

20 0.9734 0.9847 -0.0113

50 0.9728 0.9847 -0.0119

100 0.9717 0.9847 -0.0130

0.9753 (mean) 0.9847 (mean) -0.0094 (mean)
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Figure 16: The plots for the results of federated learning experiments on MNIST dataset.

bound, is equal to −0.0044. The accuracy loss of 0.0044 on an average due to distributed
data is marginal indicating a good performance. 3) In Scenario 3 (when samples of a class are
shared by up to 100 parties), it is observed from Table 10 that the decrease in performance
due to data being distributed is not significantly high. Specifically, the data distribution
among 100 parties did not cause a loss in accuracy of more than 0.013. This verifies the
application potential of the proposed federated learning scheme.

6.4 Computational Time

We study the effect of sample size N only up to 1000 on the computational time of KAHM,
as samples more than 1000 are divided into subsets and processed in parallel, as explained in
Remark 7. Further, the effects of data dimension p and subspace dimension n are studied on
the computational time of KAHM. For this, MATLAB R2017b simulations have been made
on a MacBook Pro machine with a 2.2 GHz Intel Core i7 processor and 16 GB of memory.
The simulations are made on the randomly generated data from the Gaussian distribution
with mean 0 and variance 1 with

p ∈ {10, 100, 500, 1000, 2500, 5000, 7500, 10000, 12500, 15000, 17500, 20000}, (105)

n ∈ {5, 10, 20, 50, 75, 100, 200, 300, 400, 500}, and (106)

N ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}. (107)

Fig. 17 plots the computational time of KAHM in relation to increasing data dimension
p, subspace dimension n, sample size N , and data size N × p. The results verify that
KAHM remains computationally practical for a wide range of these parameters. Since
the data dimension could be very high, simulations include the range of data dimension
up to 20000. The results verify that 1) a higher data dimension does not pose a major
computational challenge as it took around 1600 seconds to compute a KAHM from 1000
samples of 20000-dimensional data points, and 2) KAHM is computationally practical as
observed from Table 11 that it took around 133 seconds to process a dataset with 107 entries
(i.e. N × p = 107).

Remark 7 (Dealing with Large Data). To deal with the large data when the number of data
samples N is large (say N > 1000), the data points are suggested to be divided into S number
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Figure 17: The plots for the computational time of KAHM.

Table 11: Time required by KAHM to process data of varying sizes.

data size (N × p) processing time (in seconds)

10000 0.0193

100000 0.1077

300000 0.3232

1000000 1.9783

2500000 10.0412

3600000 18.1033

4900000 27.2175

5625000 37.9418

6400000 67.8467

7225000 80.1050

8100000 101.2839

9025000 126.7630

10000000 133.0497
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of subsets (where S is given as in (59)) and for each subset a separate conditionally deep
KAHM is built leading to a wide conditionally deep KAHM (Definition 5). Since each data
subset can be processed independently, a large number of data samples can be computationally
managed using parallel and distributed computing.

6.5 Summary of Experimental Results

Following inferences are drawn from the experiments:

1. KAHM based classifier improves the existing results on Freiburg groceries dataset
indicating a highly competitive performance in modeling and thus classifying 8192-
dimensional data points by means of KAHMs.

2. The proposed fabricated data based differentially private classification reduces con-
siderably the risk of membership inference attack with relatively much smaller loss
of accuracy. This is demonstrated through experiments on three different dataset:
MNIST dataset, Freiburg groceries dataset, and a real biomedical dataset.

3. The application potential of the KAHM based differentially private federated learn-
ing scheme is verified by the observation that the accuracy-loss due to data being
distributed is either marginal or not significantly high.

4. The computational issues arising from a large number of data samples are addressed
automatically by design via splitting the dataset into subsets and processing each
subset independently by a branch of the wide conditionally deep KAHM. Simulations
verify that KAHM remains computationally practical and a higher data dimension
does not pose a major computational challenge.

7. Conclusion

Having learned the representation of data samples in RKHS via solving a kernel regularized
least squares problem with a meaningful choice of regularization parameter, KAHM defines
a bounded geometric structure in the affine hull of data samples. KAHM and KAHM based
models (consisting of series and parallel compositions of KAHMs) induce a distance function
that measures the distance of an arbitrary data point from the data samples. Modeling the
region of each class in data space through a separate KAHM allows building a classifier. An
optimal differentially private noise adding mechanism is applied on training data samples
to build a differentially private classifier. The smoothing of noise added samples through
a carefully defined transformation (that ensures reducing the geometric modeling error of
smoothed samples below of that of original samples) mitigates the accuracy-loss issue of the
differentially private classifier.

The theoretical results obtained in this study are related to the determination of regular-
ization parameter for the kernel regularized least squares problem, boundedness of KAHM,
distance functions induced by KAHMs, and smoothing of data for reduction in KAHM mod-
eling error. KAHMs can be applied to a wide range of machine learning problems and this
study has considered the differentially private federated learning problem as an application
example. The practical significance of the theory is demonstrated through numerous exper-
iments performed to verify the application potential of the KAHMs. A significant feature
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of our approach is that mathematical analysis has been carried out in a pure deterministic
setting without making any statistical assumption.

Our future work will extend the KAHMs in several directions:

• A limitation of the current study is that the kernel function has been priori fixed
of Gaussian type in defining the KAHM. The effect of different kernel functions and
spectral properties of kernel matrix on the resulting geometric structures has not been
investigated, which is the part of our future work.

• An advantage offered by the proposed approach is that it leverages the post-processing
property of differential privacy and thus, unlike stochastic gradient descent based
learning algorithms, there is no need of keeping track of the privacy loss incurred by
successive iterations of an algorithm. However, in future we will also study the KAHM
based iterative differentially private algorithms.

• KAHM approach will be extended to include a feature extraction procedure for the
images, allowing for KAHMs to serve as a competitive alternative to the CNNs and a
testing on large-scaled image datasets for a comparison with the existing models.

• Finally, the potential of KAHMs as deep generative models will be investigated.

Acknowledgments

The research reported in this paper has been supported by the Austrian Research Pro- mo-
tion Agency (FFG) COMET-Modul S3AI (Security and Safety for Shared Artificial Intelli-
gence); FFG Grant SMiLe (Secure Machine Learning Applications with Homomorphically
Encrypted Data); FFG Grant PRIMAL (Privacy Preserving Machine Learning for Industrial
Applications); FFG Sub-Project PETAI (Privacy Secured Explainable and Transferable AI
for Healthcare Systems); and the Austrian Ministry for Transport, Innovation and Technol-
ogy, the Federal Ministry for Digital and Economic Affairs, and the State of Upper Austria
in the frame of the SCCH competence center INTEGRATE [(FFG grant no. 892418)] part
of the FFG COMET Competence Centers for Excellent Technologies Programme.

Appendix A. Proof of Theorem 1

The proof is split into four parts.

Part 1: Consider

(Y ):,j −KX (KX + (e+ τ)IN )−1 (Y ):,j = (IN +
1

(e+ τ)
KX)−1(Y ):,j (108)

and thus

Rk,X,Y (e, τ) =
1

pN

p
∑

j=1

((Y ):,j)
T (IN +

1

(e+ τ)
KX)−2(Y ):,j (109)
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Since KX is a positive definite matrix and (e+ τ) > 0,

µmin

(

IN +
1

(e+ τ)
KX

)

> 1 (110)

where “µmin(·)” denotes the minimum eigenvalue. Thus,

µmax

(

(

IN +
1

(e+ τ)
KX

)−2
)

< 1 (111)

where “µmax(·)” denotes the maximum eigenvalue. This results in

Rk,X,Y (e, τ) <
1

pN

p
∑

j=1

‖(Y ):,j‖2 (112)

=
1

pN
‖Y ‖2F . (113)

It is obvious that Rk,X,Y (e, τ) > 0, hence (22) follows.

Part 2: The derivative of Rk,X,Y w.r.t. e is given as

dRk,X,Y (e, τ)

de
=

2

pN

p
∑

j=1

{

(e+ τ)((Y ):,j)
T ((e+ τ)IN +KX)−2 (Y ):,j (114)

−(e+ τ)2((Y ):,j)
T ((e+ τ)IN +KX)−3 (Y ):,j

}

. (115)

Consider

(e+ τ)2((Y ):,j)
T ((e+ τ)IN +KX)−3 (Y ):,j (116)

≤ (e+ τ)2
∥

∥

∥((e+ τ)IN +KX)−1
∥

∥

∥

2
((Y ):,j)

T ((e+ τ)IN +KX)−2 (Y ):,j (117)

= (e+ τ)

∥

∥

∥

∥

∥

(

IN +
1

(e+ τ)
KX

)−1
∥

∥

∥

∥

∥

2

((Y ):,j)
T ((e+ τ)IN +KX)−2 (Y ):,j (118)

= (e+ τ)
1

σmin

(

IN + 1
(e+τ)KX

) ((Y ):,j)
T ((e+ τ)IN +KX)−2 (Y ):,j (119)

where “σmin(·)” denotes the minimum singular value. Observing that (e + τ) > 0 and KX

is a positive definite matrix, we have

σmin

(

IN +
1

(e+ τ)
KX

)

= 1 + σmin

(

1

(e+ τ)
KX

)

(120)

> 1. (121)

Thus,

(e+ τ)2((Y ):,j)
T ((e+ τ)IN +KX)−3 (Y ):,j

< (e+ τ)((Y ):,j)
T ((e+ τ)IN +KX)−2 (Y ):,j (122)
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resulting in

dRk,X,Y (e)

de
> 0. (123)

Since (e+ τ) > 0 and KX is a positive definite matrix,

(e+ τ)2((Y ):,j)
T ((e+ τ)IN +KX)−3 (Y ):,j > 0, (124)

and therefore

dRk,X,Y (e, τ)

de
<

2

pN
(e+ τ)

p
∑

j=1

((Y ):,j)
T ((e+ τ)IN +KX)−2 (Y ):,j (125)

=
2

(e+ τ)
Rk,X,Y (e) (126)

<
2

(e+ τ)

1

pN
‖Y ‖2F . (127)

Inequalities (123) and (127) lead to (23).

Part 3: For a given τ ∈ R+, introduce mτ (e) = Rk,X,Y (e, τ)−e, and observe that mτ (0) >
0 and mτ (

1
pN
‖Y ‖2F ) < 0. By the intermediate value theorem, there is a ê ∈ (0, 1

pN
‖Y ‖2F )

such that mτ (ê) = 0, i.e., ê = Rk,X,Y (ê, τ). Thus, ê is a fixed point of Rk,X,Y (e, τ).

Part 4: It follows from (24) and (23) that

dRk,X,Y (e, τ)

de
∈ (0, 1). (128)

That is, there exists a constant c such that

0 <
dRk,X,Y (e|it, τ)

de
≤ c < 1, ∀it ∈ {0, 1, 2, · · · }. (129)

Let ê be a fixed point of Rk,X,Y (e, τ). Now, consider

|e|it − ê| = |Rk,X,Y (e|it−1, τ)−Rk,X,Y (ê, τ)| ≤ c |e|it−1 − ê| (130)

≤ c2 |e|it−2 − ê| (131)
...

≤ cit |e|0 − ê| , (132)

that leads to

lim
it→∞

|e|it − ê| ≤ lim
it→∞

cit |e|0 − ê| = 0. (133)

Hence the iterations (25)-(26) converge to a fixed point of Rk,X,Y (e, τ). The uniqueness of
the fixed point can be seen via assuming by contradiction that there exists another fixed
point, say ẽ. Now consider

|ẽ− ê| = |Rk,X,Y (ẽ, τ)−Rk,X,Y (ê, τ)| ≤ c |ẽ− ê| < |ẽ− ê| . (134)

This implies that ẽ = ê. Hence, the result follows.
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Appendix B. Proof of Theorem 2

Define a diagonal matrix Dy as

Dy = diag
(

kθ(Py, Py1), · · · , kθ(Py, PyN )
)

, and (135)

ky = max
i∈{1,2,··· ,N}

kθ(Py, Pyi). (136)

Further define a vector Gy as

Gy =
[

kθ(Py, Py1) · · · kθ(Py, PyN )
]T

. (137)

It is obvious that D−1
y − (ky)

−1I is symmetric positive semi-definite, i.e.,

D−1
y − (ky)

−1IN � 0. (138)

Since KY PT is symmetric positive definite and λ∗ > 0,

(KY PT + λ∗IN )−1 ≻ 0. (139)

It follows from (138) and (139) that
(

D−1
y − (ky)

−1IN
)

(KY PT + λ∗IN )−1 � 0, i.e. (140)

D−1
y (KY PT + λ∗IN )−1 − (ky)

−1(KY PT + λ∗IN )−1 � 0, i.e. (141)

GT
y

(

D−1
y (KY PT + λ∗IN )−1 − (ky)

−1(KY PT + λ∗IN )−1
)

Gy ≥ 0. (142)

Thus,

GT
y D

−1
y (KY PT + λ∗IN )−1Gy ≥ (ky)

−1GT
y (KY PT + λ∗IN )−1Gy. (143)

Also,

N
∑

i=1

hikθ,Y PT ,λ∗(Py) = (1N )T (KY PT + λIN )−1Gy (144)

= GT
y D

−1
y (KY PT + λIN )−1 Gy (145)

≥ (ky)
−1GT

y (KY PT + λ∗IN )−1Gy (146)

≥ (ky)
−1µmin

(

(KY PT + λ∗IN )−1
)

‖Gy‖2. (147)

As (KY PT + λ∗IN )−1 is real symmetric positive definite,

N
∑

i=1

hikθ ,Y PT ,λ∗(Py) > 0. (148)

Consider
∥

∥

∥

∥

[

h1kθ ,Y PT ,λ∗(Py) · · · hNkθ,Y PT ,λ∗(Py)
]T
∥

∥

∥

∥

∣

∣

∣

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

∣

∣

∣

=

∥

∥

∥(KY PT + λ∗IN )−1 Gy

∥

∥

∥

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

(149)

≤ ky
‖Gy‖

∥

∥

∥(KY PT + λ∗IN )−1
∥

∥

∥

2

µmin

(

(KY PT + λ∗IN )−1
) . (150)
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Since (KY PT + λ∗IN )−1 is real symmetric positive definite,

ky
‖Gy‖

∥

∥

∥(KY PT + λ∗IN )−1
∥

∥

∥

2

µmin

(

(KY PT + λ∗IN )−1
) =

ky
‖Gy‖

µmax

(

(KY PT + λ∗IN )−1
)

µmin

(

(KY PT + λ∗IN )−1
) (151)

=
ky
‖Gy‖

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
(152)

=
maxi∈{1,2,··· ,N} kθ(Py, Pyi)
√

∑N
i=1 |kθ(Py, Pyi)|2

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
(153)

<
λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
. (154)

Thus
∥

∥

∥

∥

[

h1kθ,Y PT ,λ∗(Py) · · · hNkθ,Y PT ,λ∗(Py)
]T
∥

∥

∥

∥

∣

∣

∣

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

∣

∣

∣

<
λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
. (155)

Since KY PT is positive definite (i.e. µmin(KY PT ) > 0) and tr(KY PT ) = N (i.e. µmax(KY PT ) <
N), we have

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
<

λ∗ +N

λ∗
. (156)

Using (40) with the observation that ê > 0, we have

λ∗ >
2

pN
‖Y ‖2F , leading to (157)

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
< 1 +

pN2

2‖Y ‖2F
. (158)

It is observed from (33) that

AY,n(y) =
1

∑N
i=1 h

i
kθ ,Y PT ,λ∗(Py)

[ y1 · · · yN ]
[

h1kθ,Y PT ,λ∗(Py) · · · hNkθ,Y PT ,λ∗(Py)
]T

. (159)

Thus,

‖AY,n(y)‖ ≤ ‖[ y1 · · · yN ]‖2

∥

∥

∥

∥

[

h1
kθ ,Y PT ,λ∗(Py) · · · hN

kθ,Y PT ,λ∗(Py)
]T
∥

∥

∥

∥

∣

∣

∣

∑N
i=1 h

i
kθ ,Y PT ,λ∗(Py)

∣

∣

∣

. (160)

Using (155) and (158) in (160) leads to

‖AY,n(y)‖ < ‖Y ‖2
λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
< ‖Y ‖2

(

1 +
pN2

2‖Y ‖2F

)

. (161)

Hence, (46) follows.
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Appendix C. Proof of Theorem 3

It is observed from (33) that

y −AY,n(y)

=
1

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

[ y − y1 · · · y − yN ]
[

h1kθ,Y PT ,λ∗(Py) · · · hNkθ,Y PT ,λ∗(Py)
]T

. (162)

Thus,

‖y −AY,n(y)‖ ≤ ‖[ y − y1 · · · y − yN ]‖2

∥

∥

∥

∥

[

h1kθ ,Y PT ,λ∗(Py) · · · hNkθ ,Y PT ,λ∗(Py)
]T
∥

∥

∥

∥

∣

∣

∣

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

∣

∣

∣

. (163)

That is,

ΓAY,n
(y)

‖[ y − y1 · · · y − yN ]‖2
≤

∥

∥

∥

∥

[

h1kθ,Y PT ,λ∗(Py) · · · hNkθ,Y PT ,λ∗(Py)
]T
∥

∥

∥

∥

∣

∣

∣

∑N
i=1 h

i
kθ,Y PT ,λ∗(Py)

∣

∣

∣

. (164)

Using (155) and (158) leads to

ΓAY,n
(y)

‖[ y − y1 · · · y − yN ]‖2
<

λ∗ + µmax(KY PT )

λ∗ + µmin(KY PT )
< 1 +

pN2

2‖Y ‖2F
. (165)

Hence, (49) follows.

Appendix D. Proof of Theorem 4

It is observed from the definition of DY,n,L (i.e. (50-52)) that

ΓDY,n,L
(y) ≤ ΓAY,n

(y). (166)

Using (166) in (49) leads to (54).

Appendix E. Proof of Theorem 5

ΓWY,n,L,S
(y) = min

s∈{1,2,··· ,S}
ΓDYs,n,L

(y) (167)

≤ min
s∈{1,2,··· ,S}

ΓAYs,n
(y) (168)

< min
s∈{1,2,··· ,S}

{(

1 +
pN2

s

2‖Ys‖2F

)

‖[ y − y1,s · · · y − yNs,s ]‖2
}

(169)

≤ min
s∈{1,2,··· ,S}

{(

1 +
pN2

s

2‖Ys‖2F

)

‖[ y − y1,s · · · y − yNs,s ]‖
F

}

. (170)

Since {y1,s, · · · , yNs,s} ⊂ {y1, · · · , yN},

‖[ y − y1,s · · · y − yNs,s ]‖
F
< ‖[ y − y1 · · · y − yN ]‖

F
, (171)
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and thus

ΓWY,n,L,S
(y) < ‖[ y − y1 · · · y − yN ]‖

F
× min

s∈{1,2,··· ,S}

(

1 +
pN2

s

2‖Ys‖2F

)

(172)

leading to (61).

Appendix F. Proof of Theorem 6

Define a N ×N matrix Hm and a p×N matrix Om as

Hm =









h1
kθm ,ŶmPT

m,λ∗
m
(Pmŷ1,m) · · · h1

kθm ,ŶmPT
m,λ∗

m
(PmŷN,m)

...
...

hN
kθm ,ŶmPT

m,λ∗
m

(Pmŷ1,m) · · · hN
kθm ,ŶmPT

m,λ∗
m

(PmŷN,m)









, (173)

Om =



















N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷ1,m) · · ·
N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(PmŷN,m)

...
...

N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷ1,m) · · ·
N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(PmŷN,m)



















p×N

. (174)

It can be seen using (38) that

Hm = (K
ŶmPT

m
+ λ∗

mIN )−1K
ŶmPT

m
, i.e. (175)

IN −Hm = (IN +
1

λ∗
m

K
ŶmPT

m
)−1, i.e. (176)

‖IN −Hm‖2 =
1

σmin(IN + 1
λ∗
m
K

ŶmPT
m
)
. (177)

As λ∗
m > 0 and K

ŶmPT
m

is a positive definite matrix,

‖IN −Hm‖2 =
1

1 + σmin(
1
λ∗
m
K

ŶmPT
m
)
< 1. (178)

As the r.h.s. of (176) is a positive definite matrix, we have

µmin(IN −Hm) > 0, i.e. (179)

µmax(Hm) < 1. (180)

As Hm is a real symmetric matrix, it follows immediately from (180) that σmax(Hm) < 1,
and thus

‖Hm‖2 < 1, i.e. (181)

‖Hm‖1 <
√
N, i.e. (182)

max
i∈{1,2,··· ,N}

N
∑

j=1

|hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷi,m)| <
√
N, thus (183)

N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷi,m) <
√
N, ∀i ∈ {1, 2, · · · , N}. (184)

561



Kumar, Moser, & Fischer

In view of (148), we have

0 <

N
∑

j=1

hj
kθm ,ŶmPT

m,λ∗
m

(Pmŷi,m) <
√
N, ∀i ∈ {1, 2, · · · , N}. (185)

It follows from (33) that

Om ◦
[

A
Ŷm,n

(ŷ1,m) · · · A
Ŷm,n

(ŷN,m)
]

= [ ŷ1,m · · · ŷN,m ]Hm, i.e. (186)

Ŷ T
m+1 = Ŷ T

mHm, i.e. (187)

Ŷ T
m − Ŷ T

m+1 = Ŷ T
m (IN −Hm). (188)

Using (188) for m = M − 1, we have

Ŷ T
M−1 − Ŷ T

M = Ŷ T
M−1(IN −HM−1). (189)

Using (187) recursively from m = 0 to m = M − 2, we have

Ŷ T
M−1 = Ŷ T

0 H0H1 · · ·HM−2. (190)

Combining (189) and (190) leads to

Ŷ T
M−1 − Ŷ T

M = Ŷ T
0 H0H1 · · ·HM−2(IN −HM−1), i.e. (191)

ŶM−1 − ŶM = (IN −HM−1)HM−2 · · ·H1H0Ŷ0, i.e. (192)

‖ŶM−1 − ŶM‖F ≤ ‖(IN −HM−1)HM−2 · · ·H1H0‖2‖Ŷ0‖F , i.e. (193)

‖ŶM−1 − ŶM‖F ≤ ‖IN −HM−1‖2‖HM−2‖2 · · · ‖H1‖2‖H0‖2‖Ŷ0‖F . (194)

Define

β = max (‖IN −HM−1‖2, ‖HM−2‖2, · · · , ‖H1‖2, ‖H0‖2) . (195)

Since ‖Hm‖2 < 1 (i.e. (181)) and also ‖IN −Hm‖2 < 1 (i.e. (178)), we must have

0 < β < 1. (196)

It follows from (194) that

‖ŶM−1 − ŶM‖F ≤ (β)M‖Ŷ0‖F . (197)

Considering that Ŷ0 = Y +
ǫ and ŷi,m is the i−th column of Ŷ T

m , we have

‖ŷi,M−1 − ŷi,M‖ ≤ (β)M‖Y +
ǫ ‖F . (198)

Consider

ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

=





N
∑

j=1

hj
kθM−1

,ŶM−1P
T
M−1,λ

∗

M−1

(PM−1ŷ
i,M−1)− 1



A
ŶM−1,n

(

ŷi,M−1
)

, thus (199)
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‖ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

‖

=

∣

∣

∣

∣

∣

∣

N
∑

j=1

hj
kθM−1

,ŶM−1P
T
M−1,λ

∗

M−1

(PM−1ŷ
i,M−1)− 1

∣

∣

∣

∣

∣

∣

‖A
ŶM−1,n

(

ŷi,M−1
)

‖. (200)

Using (185) in (200), we have

‖ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

‖ < (
√
N − 1)‖A

ŶM−1,n

(

ŷi,M−1
)

‖. (201)

The inequality (46) leads to

‖ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

‖ < (
√
N − 1)‖ŶM−1‖2

λ∗
M−1 + µmax(KŶM−1P

T
M−1

)

λ∗
M−1 + µmin(KŶM−1P

T
M−1

)
(202)

< (
√
N − 1)‖ŶM−1‖F

λ∗
M−1 + µmax(KŶM−1P

T
M−1

)

λ∗
M−1 + µmin(KŶM−1P

T
M−1

)
. (203)

It follows from (190) that

‖ŶM−1‖F ≤ ‖HM−2‖2 · · · ‖H1‖2‖H0‖2‖Ŷ0‖F , i.e. (204)

‖ŶM−1‖F ≤ (β)M−1‖Y +
ǫ ‖F . (205)

Thus

‖ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

‖ < (
√
N − 1)(β)M−1

λ∗
M−1 + µmax(KŶM−1P

T
M−1

)

λ∗
M−1 + µmin(KŶM−1P

T
M−1

)
‖Y +

ǫ ‖F . (206)

Consider

‖ŷi,M−1 −A
ŶM−1,n

(ŷi,M−1)‖ ≤ ‖ŷi,M−1 − ŷi,M‖+ ‖ŷi,M −A
ŶM−1,n

(

ŷi,M−1
)

‖. (207)

Using (198) and (206) in (207), we finally obtain

‖ŷi,M−1 −A
ŶM−1,n

(ŷi,M−1)‖

< (β)M−1‖Y +‖F
(

β +
λ∗
M−1 + µmax(KŶM−1P

T
M−1

)

λ∗
M−1 + µmin(KŶM−1P

T
M−1

)
(
√
N − 1)

)

. (208)

Since µmin(KŶM−1P
T
M−1

) > 0, µmax(KŶM−1P
T
M−1

) < N , λ∗
M−1 > 0, and 0 < β < 1, we have

0 <

(

β +
λ∗
M−1 + µmax(KŶM−1P

T
M−1

)

λ∗
M−1 + µmin(KŶM−1P

T
M−1

)
(
√
N − 1)

)

< 1 +
λ∗
M−1 +N

λ∗
M−1

(
√
N − 1). (209)

Thus,

0 ≤
‖ŷi,M−1 −A

ŶM−1,n
(ŷi,M−1)‖

(β)M−1
< ‖Y +‖F

(

1 +
λ∗
M−1 +N

λ∗
M−1

(
√
N − 1)

)

<∞ (210)
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Further, it is observed from (196) that

lim
M→∞

(β)M−1 = 0, and thus (211)

lim
M→∞

‖ŷi,M−1 −A
ŶM−1,n

(ŷi,M−1)‖ = 0. (212)

Since (212) holds for all i ∈ {1, 2, · · · , N}, we must have

lim
M→∞

N
∑

i=1

‖ŷi,M−1 −A
ŶM−1,n

(ŷi,M−1)‖ = 0. (213)

Hence, the result is proved.
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