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Abstract

For many multi-robot problems, tasks are announced during execution, where task an-
nouncement times and locations are uncertain. To synthesise multi-robot behaviour that is
robust to early announcements and unexpected delays, multi-robot task allocation methods
must explicitly model the stochastic processes that govern task announcement. In this pa-
per, we model task announcement using continuous-time Markov chains which predict when
and where tasks will be announced. We then present a task allocation framework which
uses the continuous-time Markov chains to allocate tasks proactively, such that robots are
near or at the task location upon its announcement. Our method seeks to minimise the
expected total waiting duration for each task, i.e. the duration between task announcement
and a robot beginning to service the task. Our framework can be applied to any multi-robot
task allocation problem where robots complete spatiotemporal tasks which are announced
stochastically. We demonstrate the efficacy of our approach in simulation, where we out-
perform baselines which do not allocate tasks proactively, or do not fully exploit our task
announcement models.

1. Introduction

Many applications of multi-robot systems (MRSs) require explicit coordination between
robots to achieve a global goal. For example, autonomous taxis should coordinate to ensure
a vehicle always reaches a customer within a fixed time (Mariani et al., 2021). Multi-
robot task allocation (MRTA) techniques facilitate global coordination by assigning tasks to
robots (Korsah et al., 2013), and have been used for teams of mobile robots to efficiently fulfil
orders in warehouses (Xue et al., 2019), assist in healthcare facilities (Das et al., 2015), and
search for survivors in disaster zones (Su et al., 2016). Further, task allocation techniques
have been applied to teams of humans in applications such as fruit picking (Harman & Sklar,
2022), warehouse fulfilment (Ganbold et al., 2020), and taxi driver assignment (Glaschenko
et al., 2009). In this paper, we consider MRTA problems where mobile robots are assigned
spatiotemporal tasks across an environment. In these problems, robots service tasks by
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Figure 1: Robots operating alongside fruit pickers in a fruit field.

travelling to a location and executing the actions required by the task. We assume task
locations are unknown a priori, and become known once the task is announced during
execution. For these problems the announcement time and location for a task are often
stochastic, due to disturbances from the environment or agents not under our control, such
as order processing delays in a fulfilment centre. A typical example of this class of problems
are systems where a team of robots support humans performing logistics tasks.

Example 1. Consider Fig. 1, where robots operate alongside human pickers in a fruit
field (Das et al., 2018; Khan et al., 2020). Pickers fill up baskets with fruit as they traverse
the field, and request a robot once their basket is full. The robot collects the basket and
provides the picker with an empty one. The picker is unable to continue work until they
receive the new basket. This can be formulated as an MRTA problem, where each picker’s
request is a new task, and announcement occurs upon the picker making the request. Prior
to announcement, the time and location of the picker’s request is uncertain, due to factors
such as human work rate and the yield of fruit in the field. The time and location of the
request are also coupled, since a long announcement time suggests a picker has travelled
further before requesting a robot.

Existing MRTA solutions either assume that all task announcements are known a pri-
ori (Nunes et al., 2017a), which is often unrealistic, or reactively allocate tasks after they
are announced (Cordeau & Laporte, 2007; Choudhury et al., 2021). However, reactive allo-
cation can yield long waiting durations, i.e. large gaps between a task’s announcement and a
robot beginning to service the task. To reduce waiting durations, tasks should be allocated
proactively, such that robots can navigate towards potential task locations prior to announce-
ment. To achieve this, we must explicitly model the spatiotemporal processes that govern
task announcement, e.g. for Example 1 we must model the progress of the fruit pickers.

In this paper, we present an MRTA framework for tasks with stochastic announcements
that seeks to minimise the expected total waiting duration across all tasks. We assume
that all tasks are known, and that every task is eventually announced. This assumption
holds in Example 1, where at any time there is at most one basket collection task per
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picker, and each picker’s basket eventually fills up, which triggers task announcement. We
model task announcement using continuous-time Markov chains (CTMCs), and apply model
checking techniques (Kwiatkowska et al., 2007) to reason over the time and location tasks are
announced at. CTMCs are particularly well-suited to model task announcements for several
reasons. First, they can be fitted from empirical data. Furthermore, given enough data,
they can approximate any announcement distribution arbitrarily well (Thummler et al.,
2006). Finally, they allow for seamless coupling of the processes governing announcement
time and announcement location, by assuming a CTMC state represents a location and
using the transition rates to represent the passage of time.

We construct a CTMC for each task, and present a framework which extends sequen-
tial single-item (SSI) auctioning (Koenig et al., 2006) for proactive task allocation. In our
framework, each potential task location is considered as an item to be auctioned separately.
To handle the uncertainty over where tasks will be announced, robots wait at intermediate
waiting points (IWPs) which are near the potential task locations they have been assigned
to. IWPs are computed such that the expected waiting duration for task servicing is min-
imised. This is done using the task announcement location distributions obtained from the
CTMCs. In addition, we re-auction tasks online, synthesising solutions that can efficiently
react to task updates and redistribute the robots to complete the tasks quickly. This online
approach also enables us to effectively manage unexpected delays and early announcements.

Our approach assumes access to the announcement distribution for each task. We can
accurately approximate the announcement models from empirical data, as robot tasks are
often repetitive, and MRTA is repeated periodically. For example, fruit pickers in Example 1
complete multiple picking tasks a day, and work over multiple days. In warehouses, orders
arrive frequently (De Koster et al., 2007), and order picking occurs every day. With this, we
can collect data with or without our method, and then construct accurate announcement
models which support proactive decision-making.

To the best of our knowledge, ours is the first proactive MRTA method which uses
structured spatiotemporal models of task announcement. By exploiting these models during
task allocation, we significantly reduce task waiting durations compared to reactive methods
which do not model task announcement. Similar to existing work, we allocate tasks online,
however we do this proactively using updates from our task models. Though we focus on
SSI, our framework can be adapted to use other MRTA algorithms in a straightforward
way. The primary contributions of this work are:

• A CTMC model for stochastic task announcement in continuous time.

• A framework that extends SSI auctioning for proactive task allocation.

• An empirical evaluation that demonstrates the efficacy of our approach in simulation.

Specifically, our experiments empirically show that our framework decreases waiting
durations by 74.6% on average compared to a non-proactive method.

2. Related Work

In this section, we discuss existing techniques for auctioning, solving MRTA problems under
uncertainty, and modelling stochastic processes with Markov chains.
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2.1 Auctioning Solutions for MRTA

Auctions are a distributed MRTA method where robots bid the cost they can offer for
each task to an auctioneer who determines the allocation (Gerkey & Mataric, 2002). Auc-
tioning can be adapted to different objectives without adjusting the auction structure, as
bid computation and winner determination are modular. Auctioning techniques trade off
between optimality and scalability. For example, in combinatorial auctions, robots bid on
task bundles representing possible schedules (Blumrosen & Nisan, 2007), and the auctioneer
assigns the bundles with minimum combined cost. Combinatorial auctions are optimal but
intractable, as the number of bundles increases exponentially with the number of tasks. In
parallel auctions (Koenig et al., 2006), robots compute a bid for each task, which is assigned
to the robot with the lowest bid. This is highly scalable but synthesises poor solutions, as
spatial dependencies between tasks are ignored, i.e. parallel auctions ignore that two nearby
tasks may be efficiently completed by the same robot. SSI auctions (Koenig et al., 2006) im-
prove on this by running a multi-round auction, where one task is allocated per round, and
the winning robot in each round recomputes its bids for the remaining tasks. Recomputing
bids allows the bid to capture cost changes after a robot has been allocated a task, which
may represent spatial dependencies. SSI is a scalable suboptimal MRTA solution method
that has been widely used. For the sum of costs objective, the suboptimality has been
shown to be at most a factor of two from the optimal (Koenig et al., 2006). We describe
SSI further in Section 3.3.

SSI has been extended in many ways. To adapt SSI for online deployments, new tasks
are inserted into a robot’s existing schedule (Schoenig & Pagnucco, 2010). To improve
allocations, Zheng et al. (2006) evaluate the future impact of assigning a task by increasing
the SSI lookahead, at the cost of additional complexity. Further, Koenig et al. (2007)
auction fixed size bundles, which brings SSI closer to combinatorial auctions. SSI with regret
clearing assigns the task with maximal regret, i.e. the task with the largest gap between
the two smallest bids, which improves performance (Zheng et al., 2008). These techniques
could be applied to the SSI framework we present in this paper to improve performance.
Further, Nunes and Gini (2015) model robot schedules as simple temporal networks to
ensure tasks are completed within a time window. This has been extended for precedence
constraints, where tasks with longer precedence chains have higher priority (Nunes et al.,
2017b). SSI has also been applied to human-aware navigation problems, where robot bids
are penalised for navigating through congested areas (Surma et al., 2021). In this paper,
we extend SSI for proactive task allocation.

2.2 MRTA Under Uncertainty

To synthesise efficient allocations, MRTA methods must reason over uncertain robot dy-
namics and task announcements. Tasks can be reallocated to react to stochastic dynamics
online. For example, Lippi and Marino (2021) reallocate tasks upon human behaviour
changes, which allows for improved allocations using updated information. However, such
methods ignore stochasticity, generating inefficient allocations as expectations of task exe-
cution diverge from what is observed during execution. Choudhury et al. (2021) improve
on this by explicitly capturing the probability of robot failure during schedule evaluation
in order to synthesise allocations which optimise the expected number of completed tasks.
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However, robot failure is only one possible source of uncertainty. Markov decision pro-
cesses (MDPs) model systems with non-deterministic action choice and uncertain action
outcomes, and have been used for MRTA by Faruq et al. (2018) and Schillinger et al. (2018)
to allocate temporal logic tasks. Faruq et al. (2018) build a team model, where robots
select tasks and plan sequentially. Schillinger et al. (2018) decompose a global temporal
logic specification into single-robot tasks which are allocated through an auction, where the
synthesised allocation satisfies the global specification. Moreover, Schillinger et al. (2018)
consider uncertain action durations during bidding. This is similar to our framework, where
navigation action durations are continuous and stochastic. Capitan et al. (2013) represent
each task as a partially observable MDP, which each robot solves to compute bids for a
decentralised auction. To reduce the effects of duration uncertainty on task completion
times, Prorok (2019) and Malencia et al. (2021) assign redundant robots to tasks, which
increases the chance of a robot arriving quickly. However, in many MRTA problems, tasks
outnumber robots, and so there is no redundancy to exploit.

Stochastic task announcement can be handled by allocating tasks as they are an-
nounced (Cordeau & Laporte, 2007; Choudhury et al., 2021). However, this poorly utilises
the MRS, as robots are idle until tasks are announced. Pavone et al. (2009) and Bopardikar
et al. (2014) assume tasks are announced uniformly across the environment according to
a Poisson distribution. However, tasks are only allocated once they are announced. To
reduce the waiting duration between announcement and a task being serviced, tasks should
be allocated proactively, i.e. prior to announcement. Burns et al. (2012) and Claes et al.
(2015) allow robots to anticipate new tasks during planning using task announcement dis-
tributions. Burns et al. (2012) sample a number of future task announcements from a
known distribution and plan for each. The robot then selects the action with the highest
expected performance over the possible futures. However, this approach only applies to a
single robot. Claes et al. (2015) allow each robot to select tasks independently by predicting
the tasks selected by other robots using approximations of their behaviour, where task loca-
tions are uniformly distributed. Burns et al. (2012) and Claes et al. (2015) both assume the
announcement location is independent of the discrete time a task is announced. Tsao et al.
(2018) address MRTA problems where the announcement probability at a given location
changes over time. Announcement distributions are learned from historical data, and future
announcements are sampled to support MRTA, similar to Burns et al. (2012). Though real-
location occurs as new tasks arrive, the discrete-time announcement distributions are never
updated. This fails to capture problems such as Example 1, where the location distribution
changes as the picker moves. In this paper, we construct structured models of stochastic,
continuous-time task announcement which capture the joint spatiotemporal announcement
process. We then use these models to proactively allocate tasks, reducing waiting durations.
Further, we reallocate tasks online as we receive updates to our task models.

2.3 Modelling Stochastic Processes with Markov Chains

Markov chains are established models for stochastic processes. Discrete-time Markov chains
have been used to model environmental hazards (Tihanyi et al., 2021), resource con-
straints (de Nijs et al., 2018), disease spread (Gómez et al., 2010), and human task per-
formance (Costen et al., 2022). However, many real world processes operate in continuous
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time. We can represent such processes as CTMCs, which can model any nonnegative con-
tinuous stochastic process to an arbitrary precision (Thummler et al., 2006). CTMCs have
been used to model networks (Khayari et al., 2003; Meng et al., 2016), traffic (Jalel et al.,
2020), chemical reaction networks (Anderson & Kurtz, 2011), hospital stays (Faddy & Mc-
Clean, 1999), and robot policy execution under congestion (Street et al., 2020, 2022b). We
use CTMCs to model task announcement, for example fruit pickers requesting robots, or
orders arriving in a fulfilment centre.

3. Preliminaries

For a set X, let Dist(X) denote the set of distributions over X, and X∗ denote the set of
sequences with elements of type X. For distribution P , E[P ] denotes the expected value of
P . A glossary of acronyms and symbols is provided at the end of the paper for easy lookup.

3.1 Topological Maps

In this paper, we represent the environment as a topological map. Topological maps simplify
the environment by considering the relevant locations for tasks and navigation decisions,
which robots navigate between.

Definition 3.1. A topological map is a tuple T = ⟨V,E, ρ⟩, where V is a finite set of nodes
representing locations in the environment; E ⊆ V × V is a set of directed edges which
robots can travel on; and ρ : E → Dist(R≥0) maps each edge to a duration distribution for
navigating on that edge.

3.2 Continuous-Time Markov Chains (CTMCs)

A CTMC describes the continuous-time evolution of a system as a sequence of exponential
distributions. In this paper, we use CTMCs to model continuous-time task announcement.

Definition 3.2. A CTMC (Kwiatkowska et al., 2007) is a tuple Q = ⟨S, init,∆⟩, where
S is a finite set of states, and init : S → [0, 1] gives the probability of a state being the
initial state. ∆ : S ×S → R>0 is an exponential transition function, i.e. ∆(s, s′) is the rate
between states s and s′.

The exponential transition between states s and s′ is associated with a value ∆(s, s′),
which is the rate parameter of an exponential distribution associated with its duration. The
probability that we transition to s′ from s within time t is 1−e−∆(s,s′)·t. The exit rate is the
sum of the outgoing rates from s, i.e. E(s) =

∑
s′ ∆(s, s′). The probability of a transition

firing from state s within time t is 1− e−E(s)·t, and the probability of branching to state s′

from state s is ∆(s, s′)/E(s). The exit rate E(s), transition rates ∆(s, s′), and branching
probabilities at a state s are independent of the sojourn time spent in s. This is due to the
memoryless property of the exponential distribution, which states that the expected time
until a transition fires is independent of the time that has already passed.

3.3 Sequential Single-Item (SSI) Auctioning

MRTA solutions assign a set of tasks T = {τ1, ..., τm} to a set of robots R = {r1, ..., rn} to
minimise cost.
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Definition 3.3. A task τ ∈ T is announced at a topological node v ∈ V . To complete
a task, a robot must navigate to the task location and service it, i.e. execute the task’s
required actions. Tasks cannot be serviced before announcement.

SSI auctions (Koenig et al., 2006) allocate a task per round for efficient allocation while
considering dependencies between tasks. SSI is traditionally run after the set of tasks is
announced. The auctioneer begins by offering the tasks to all robots, and then conducts a
multi-round auction, where each round allocates a single task. In each round, the auctioneer
waits for robots to submit bids, which represent the increase in cost if that robot were
allocated the task. Upon receiving the bids, the auctioneer determines the winner, i.e. the
robot with the minimum bid across all tasks, and notifies the robots. For standard SSI,
only the winner needs to recompute their bids in the next round, as the bid values remain
the same for all other robots.

During SSI, each robot maintains a schedule, which is commonly an ordered sequence
of allocated tasks. In each auction round, robots compute a bid for each unallocated task
τ ∈ T . To do this, robot ri inserts τ into a cost-minimising position in its schedule, which
can be found by solving a travelling salesperson problem, or using the cheapest insertion
heuristic (Koenig et al., 2006). The cost of adding task τ into robot ri’s schedule is then
evaluated by computing the cost of the schedule before and after τ is added. Each robot
only submits its lowest bid to the auctioneer. This reduces the number of bids the auctioneer
must minimise over without affecting solution quality. If a robot wins a task, it is added to
its schedule for the next round of bidding.

Despite its handling of task dependencies, SSI is greedy and suboptimal. In each round,
SSI allocates the task with the lowest bid, without considering how this affects the other
unallocated tasks. However, SSI is sufficient for many applications, and is efficient enough
to support online reauctioning for solution improvement.

4. Problem Formulation

In this section, we propose CTMCs as models for stochastic task announcement on a topo-
logical map, and define the problem of MRTA under spatiotemporal uncertainty.

4.1 Task Announcement Model

Task announcement may be uncertain in both space and time. We write PA
τ ∈ Dist(R≥0)

to denote the continuous distribution over the duration until announcement for task τ , and
PL
τ ∈ Dist(V ) to denote the discrete location distribution for task τ . For a task τ , we refer to

the nodes v ∈ V where PL
τ (v) > 0 as potential task locations (PTLs) for τ . In this subsection,

we present task CTMCs as a model of stochastic task announcement in continuous time
which allow us to evaluate the announcement time and location distributions. Task CTMCs
model the joint spatiotemporal announcement process, allowing for dependencies between
the announcement time and location. For example, in Example 1, a longer announcement
time often corresponds to the picker travelling longer distances.

Definition 4.1. A task CTMC for a task τ is a tuple Qτ = ⟨Sτ , initτ ,∆τ , S
f
τ , Labτ ⟩, where

Sτ , initτ , and ∆τ form a CTMC; and Sf
τ ⊆ Sτ is a non-empty set of absorbing states, i.e.

E(s) = 0, ∀s ∈ Sf
τ , where reaching s ∈ Sf

τ represents τ being announced. Labτ : Sf
τ → V
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is a labelling function for absorbing states, where Labτ (s) is the physical announcement

location for absorbing state s ∈ Sf
τ .

Task CTMCs must have at least one absorbing state, and an absorbing state must
eventually be reached with probability 1, i.e. the task must eventually be announced.
Task CTMCs can model any nonnegative distribution to an arbitrary precision. Specifi-
cally, task CTMCs are phase-type distributions (PTDs) with a labelling function (Buchholz
et al., 2014). PTDs model the time to reach an absorbing state in a CTMC, and we can fit
task CTMCs from empirical data using techniques for PTDs (Thummler et al., 2006). For
example, assume we have time and location data for multiple runs of a picker in Example 1.
From the location data, we can build a discrete-time Markov chain (DTMC) which captures
the picker’s path, and the probability they request a robot at different locations. From the
time data, we can build PTDs which represent the navigation duration for each topological
edge the picker travels on. The PTDs can then be composed with the DTMC using tech-
niques presented by Street et al. (2022b) to construct the final task CTMC. If limited data
is available, the resulting task CTMCs may be inaccurate. However, if the MRTA problem
is repeated periodically, such as in Example 1, the task CTMCs can be updated as new
data is collected online.

For a task τ ∈ T represented as a task CTMC Qτ , we can compute the announcement
time and location distributions using standard model checking techniques (Kwiatkowska
et al., 2007, 2011). The announcement time distribution PA

τ can be computed through
transient analysis (Baier et al., 2000). However, the worst-case time complexity of transient
analysis is cubic in the number of CTMC states (Kwiatkowska et al., 2007; Pulungan &
Hermanns, 2018), and transient analysis would be required at each point in continuous
time. Therefore, we only consider the expected announcement time E[PA

τ ], which can
be computed as the expected time to reach an absorbing state. This can be achieved
in linear time by propagating expected durations backwards from the absorbing states,
similar to Bellman backups in acyclic MDPs (Mausam & Kolobov, 2012). To compute
the discrete location distribution PL

τ at a topological node v ∈ V , we use the branching
probabilities in Qτ to compute the probability of reaching each absorbing state s, denoted
Pτ (reach(s)) (Kwiatkowska et al., 2007). We then sum the reachability probabilities based
on their labelling, i.e. their topological location. Formally:

PL
τ (v) =

∑
s∈{s′∈Sf

τ |Labτ (s′)=v}

Pτ (reach(s)). (1)

The task CTMC branching probabilities are independent of the time spent in a CTMC state
due to the memoryless property of the exponential distribution. With this, the location
distribution PL

τ is independent of the time since the task announcement process modelled
by Qτ began. During execution, the current state of each task CTMC is updated when
observations of the process modelled by the CTMC are received. These task CTMC state
updates affect the task announcement time and location. We assume task CTMC states
are fully observable. Observability is satisfied in many multi-robot problems, such as in
Example 1, where human pickers carry global navigation satellite system trackers for robots
to locate them (Khan et al., 2020).
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(a) When the current state is s0. (b) When the current state is s3.

Figure 2: A task CTMC Qτ and the corresponding location distribution PL
τ when at dif-

ferent states in the model. Concentric circles represent absorbing states, λ values are expo-
nential rates, and the value above each absorbing state is the corresponding PTL, defined
by the labelling function.

Figure 3: A task CTMC Qτ with a star topology, where concentric circles are absorbing
states, λ values are exponential rates, and above each absorbing state is the corresponding
PTL, as defined by the labelling function.

Example 2. Consider the task CTMC Qτ in Fig. 2, which models a fruit picker as per
Example 1. The picker starts at s0 (Fig. 2a) and will finish filling up their basket at location
v2, v3, or v4. If the picker reaches state s3 (Fig. 2b), the announcement distributions PA

τ

and PL
τ reflect that the duration before the picker requests a robot is reduced, and that v2

can no longer be the task location.

Task CTMCs support proactive decision-making, as robots can navigate towards PTLs
using predictions of when and where tasks will be announced. However, the structure of
a task CTMC affects the extent to which robots can exploit these predictions. We now
introduce three example task CTMC structures, which we use in Section 6 to assess the
proactive MRTA framework we present in Section 5.

• Contiguous sequence CTMCs are structured as in Fig. 2. Here, the PTLs are con-
tiguous on the topological map, i.e. there is a single edge connecting the first and
second PTLs, as well as the second and third. This structure captures the behaviour
of the fruit pickers in Example 1. The state of a contiguous sequence CTMC is up-
dated multiple times prior to announcement. State updates refine the announcement
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distributions as announcement gets nearer. This allows robots acting proactively to
adjust their behaviour, which improves the chance of a robot being near the true
task location upon announcement. Moreover, as the PTLs are contiguous, robots can
navigate towards all PTLs simultaneously, which simplifies decision-making.

• Discontiguous sequence CTMCs are structured as in Fig. 2, where the PTLs are
spread across the environment. Similar to contiguous sequence CTMCs, robots can
use discontiguous sequence CTMC state updates to modify their behaviour as task an-
nouncement draws nearer. However, as the PTLs are discontiguous, decision-making
becomes more difficult, as proactively navigating towards one PTL may move a robot
further away from another.

• Discontiguous star CTMCs are structured as in Fig. 3, where the PTLs are spread
across the environment, similar to discontiguous sequence CTMCs. Discontiguous
star CTMCs do not receive intermediate state updates, transitioning from the initial
state directly to an absorbing state. With this, robots must make a single proac-
tive decision using the initial announcement distributions, with no new information
available until announcement.

4.2 MRTA Under Spatiotemporal Uncertainty

We now formulate the MRTA problem tackled in this paper. Traditional SSI auctions
allocate tasks as a whole, where robot schedules are ordered sequences of tasks (Koenig
et al., 2006). For MRTA under spatiotemporal uncertainty, the PTLs for task τ may be far
apart, where different robots are closer to different PTLs. Therefore, we allocate each PTL
individually, which allows different robots to be responsible for completing a task dependent
on the announcement location, i.e. the robot who is allocated the PTL corresponding to
the announcement location completes the task.

Definition 4.2. For a set of tasks T , the items we allocate correspond to the set of PTL-task
pairs, written as:

I = {(v, τ) ∈ V × T | PL
τ (v) > 0}, (2)

where (v, τ) is announced at location v with probability PL
τ (v) at a time distributed by

PA
τ . We associate the full announcement time distribution PA

τ with each PTL-task pair as
robots must wait for a task to be announced before deciding to service it at a PTL they
have been allocated.

In Section 5, we allow multiple PTLs for a task to be allocated to the same robot. Since
at most one of these PTLs can be the announcement location, we group them together in
the robot’s schedule, where each element of the schedule is a set of PTLs alongside the
corresponding task.

Definition 4.3. The schedule for robot ri is a (possibly empty) sequence ϕi = ϕ1
iϕ

2
i ...ϕ

ki
i ∈

(2V × T )∗, where ϕj
i = (V j

i , τ), and V j
i ⊆ V is the set of PTLs robot ri has been allocated

for its jth task τ .

We denote the length of schedule ϕi as |ϕi| = ki. Throughout this paper, we use subscript i
to denote robot ri, and superscript j to denote the jth task τ in robot ri’s schedule. Robot
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ri is responsible for completing the jth task in its schedule τ if it is announced at one of
the PTLs in V j

i . For each ϕj
i = (V j

i , τ) and v ∈ V j
i , P

L
τ (v) > 0, i.e. all nodes in V j

i are
PTLs for task τ . Further, since PTLs are grouped together each task may appear in at
most one position j in schedule ϕi. Next, we define the set of valid allocations over the task
set, which specify the PTLs allocated to each robot, and the order each robot services the
tasks they have been allocated PTLs for.

Definition 4.4. Let R = {r1, .., rn} be a set of robots, T = {τ1, ..., τm} be a set of tasks, and
I be the set of PTL-task pairs. An allocation is a mapping from robots to schedules Φ : R →
(2V × T )∗ such that every PTL is allocated, i.e.

⋃
i,j{(v, τ) | v ∈ V j

i and (V j
i , τ) = ϕj

i} = I.

In this paper, we aim to minimise task waiting durations, i.e. the duration between a
task being announced and a robot beginning to service it at the task location. We refer to
the time a robot begins servicing a task as the service time. For simplicity of presentation,
we assume that tasks are serviced instantaneously upon a robot arriving to the task loca-
tion. However, extending our method to durative tasks is straightforward (see Section 5.2).
Waiting durations are stochastic, due to uncertain task announcement and robot action
durations.

Definition 4.5. Let WΦ
τ be the waiting duration distribution for task τ ∈ T under alloca-

tion Φ. The expected waiting duration, E[WΦ
τ ], is given by:

E[WΦ
τ ] = E[BΦ

τ − PA
τ ] = E[BΦ

τ ]− E[PA
τ ], (3)

where BΦ
τ is the service time distribution for task τ under allocation Φ, and PA

τ is the
announcement time distribution for task τ .

We describe how to evaluate the service time distributions BΦ
τ required to compute Eq. 3

in Section 5. Finally, we define the problem of MRTA under spatiotemporal uncertainty.

Problem 1. Given a team of n robots R = {r1, ..., rn}, and task set T = {τ1, ..., τm},
synthesise an allocation Φ∗ that minimises the total expected waiting duration, i.e.:

Φ∗ = argmin
Φ

∑
τ∈T

E[WΦ
τ ]. (4)

For simplicity, Problem 1 considers a fixed set of tasks whose announcement model is
available prior to execution. However, the methods we present in Section 5 can be adapted
to problems where new tasks appear online (see Section 5.2). This occurs in Example 1,
where fruit pickers begin to fill a new basket after their last one has been collected.

5. Proactive SSI Auctioning Under Spatiotemporal Uncertainty

In this section, we present an auctioning framework that solves Problem 1 by extending SSI
for proactive task allocation using task CTMCs.

5.1 Auctioning Framework

In Fig. 4, we present our proactive task allocation framework. The input to our framework
is a set of task CTMCs Qτ for τ ∈ T = {τ1, . . . , τm}, and the set of PTL-task pairs I as
defined in Def. 4.2. We proceed by describing the centralised components of our framework
(see Section 5.1.1) and the behaviour of each robot (see Section 5.1.2).
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Figure 4: A framework that extends SSI for proactive task allocation. The steps for the
auctioneer are as in SSI (Koenig et al., 2006). For the robots, each step which deviates
from standard SSI is annotated with the subsection where that step is discussed.

5.1.1 Proactive Auctioning

For proactive auctioning, we use a task manager, which listens for task CTMC state up-
dates and calls SSI auctions (Koenig et al., 2006) for sets of PTL-task pairs. Auctions are
performed online and occur when:

• Execution starts: The task manager sends the full set of PTL-task pairs I to the
auctioneer at the start of execution to synthesise an initial allocation.

• A CTMC state updates: When a state update is received from a task CTMC
during execution, we re-auction the updated PTL-task pairs for the corresponding
task. No other tasks are re-auctioned at this time. Task CTMC state updates may
change a PTL’s probability. If this probability drops to 0, the PTL is not re-auctioned,
and is removed from the schedule of the robot who was previously allocated it. This
prevents the robot from navigating to that location.

• A task is announced: When task τ ∈ T is announced, it becomes deterministic, i.e.
the announcement distributions are updated such that PL

τ (v) = 1 for the announce-
ment location v, and PA

τ = 0; (v, τ) is then re-auctioned for a final time, with the
winning robot being allocated with the actual servicing of τ .
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Online re-auctioning provides robustness to delays in robot navigation and task announce-
ment. For example, if a task at the end of a robot’s schedule is announced early, re-
auctioning allows that robot, or another, to navigate to the task location immediately.

5.1.2 Proactive Robot Execution

We now discuss our framework from the perspective of a single robot ri, who begins by
computing bids for each PTL-task pair in the initial auction. The bid for PTL-task pair
(v, τ) corresponds to the increase in ri’s schedule cost SC when inserting (v, τ) into schedule
ϕi. To support proactive task allocation, SC is defined as the total expected waiting
duration for the tasks in robot ri’s schedule. For this, we require the announcement time
and location distributions, and knowledge of how ri proactively executes tasks. We describe
how to compute SC in Section 5.2. The announcement time affects where robot ri inserts
a task into its schedule. If task τ is likely to be announced far in the future, then τ can be
placed late in ri’s schedule, as the waiting duration is zero until announcement. However, if τ
is already announced it should appear near the start of ri’s schedule, as the waiting duration
is already increasing. After the initial auction, robot ri executes its schedule as follows:

1. Get task: Robot ri removes the first task τ from its schedule ϕi alongside the PTLs
it has been allocated for τ . Note that robot ri executes only one task at a time.

2. Navigate to waiting point (WP): To execute task τ proactively, ri first navigates
to a waiting point (WP). WPs may be chosen in different ways. For example, ri
could navigate to the most likely PTL, or wait at its initial location. In Section 5.3,
we introduce intermediate waiting points (IWPs), which are WPs that bring robots
closer to the PTLs they have been allocated. IWPs minimise the expected waiting
duration, and prevent costly backtracking manoeuvres which occur when a robot
navigates to the wrong location. We compare different WPs in Section 6, and use
WPs in Section 5.2 to compute the cost of robot schedules.

3. Wait for announcement: Robot ri waits at the WP until τ is announced.

4. Navigate to task location: When task τ is announced, robot ri observes the task
location v ∈ V . If ri was allocated v, it navigates there and services the task, before
returning to step 1. Otherwise, the robot immediately returns to step 1 and begins
execution for its next task.

Upon a task CTMC state update, robot ri receives the updated PTL-task pairs for that
task from the auctioneer and bids on them. If ri loses the auction for a PTL-task pair it
was assigned previously, the PTL is removed from ri’s schedule. If all PTLs for ri’s current
task are removed, ri moves onto its next task, whereas if at least one PTL is retained, ri
recomputes its current WP using the updated announcement distributions. Finally, if ri is
allocated a PTL-task pair for a task it has not previously been allocated any PTLs for, the
PTL-task pair is inserted into ri’s schedule, as described in Section 5.2.

By auctioning each PTL-task pair separately, we allow multiple robots to be responsible
for a single task, dependent on the announcement location. This allows for more flexible
allocations, as if a task’s PTLs are far apart, they can be allocated to different robots,
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reducing the waiting duration. Note that, upon announcement, tasks are serviced by a
single robot.

We proceed in Section 5.2 by outlining how robots compute bids in proactive auctions,
which brings two challenges. First, we require a method for inserting PTL-task pairs into
a robot’s schedule, where each element is a task alongside the PTLs the robot has been
allocated for that task. Second, we must evaluate the total expected waiting duration for
the tasks in a robot’s schedule. This is challenging as task locations are uncertain prior to
announcement, and the service time is different for each PTL. To capture this, we compute
the expected waiting duration for each PTL and weight it by its probability. Schedule eval-
uation also requires the robot WPs, and in Section 5.3 we describe how to compute IWPs,
which are WPs that minimise the expected waiting duration.

5.2 Computing Bids

In this subsection, we describe how robots compute bids that consider expected waiting
durations. To compute a bid for a PTL-task pair (v, τ), robot ri performs the following (see
Fig. 4):

1. Insert into schedule: Insert (v, τ) into the best position in schedule ϕi (see Sec-
tion 5.2.1).

2. Compute WPs: Compute the WPs for each task in its updated schedule. In Sec-
tion 5.3, we describe how to compute WPs which minimise waiting duration.

3. Compute waiting duration increase: Compute the increase in total expected
waiting duration after inserting PTL-task pair (v, τ) into schedule ϕi. This is cap-
tured by computing the schedule cost SC(ϕi) before and after (v, τ) is added. The
schedule cost SC is defined as the total expected waiting duration for schedule ϕi (see
Section 5.2.2).

5.2.1 Schedule Insertion

Robots group the PTLs they have been allocated for the jth task in their schedule τ into
a set V j

i ⊆ V , where robot ri only services task τ if it is announced at a location in V j
i , as

discussed in Section 4.2. To insert PTL-task pair (v, τ) into its schedule ϕi, robot ri must
do the following:

1. Find task in schedule: Find the pair (V j
i , τ) associated with task τ in its schedule

ϕi, and remove it from ϕi. If there are no PTL-task pairs associated with τ in ϕi,
then V j

i = ∅.

2. Add new PTL-task pair: Add v to V j
i , i.e. V

j
i = V j

i ∪ {v}.

3. Find best position in schedule: Find the best insertion position for the updated
(V j

i , τ) in schedule ϕi. In Section 6, we use the cheapest insertion heuristic, which tests

(V j
i , τ) in each schedule position, and selects the position with the lowest cost (Koenig

et al., 2006). The cost at each position is the total expected waiting duration of the
updated schedule (see Section 5.2.2). The cheapest insertion heuristic is suboptimal,
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as the schedule is fixed aside for the task being inserted. However, it scales well with
schedule length, in contrast with finding the optimal insertion position which requires
solving a travelling salesperson problem.

5.2.2 Evaluating the Expected Waiting Duration

Robots use the cost of their schedule to compute bids (see Fig. 4). Here, the schedule cost
SC for robot ri is the total expected waiting duration for the tasks in its schedule ϕi. This
is similar to the total expected waiting duration for a full allocation Φ, as defined in Eq. 5,
but considering only the PTLs present in ϕi.

Definition 5.1. Let W ϕi
τ and Bϕi

τ be the waiting duration and service time distributions
for the PTLs robot ri has been allocated for task τ . The schedule cost SC(ϕi) for robot ri
is defined as:

SC(ϕi) =
∑

(V j
i ,τ)∈ϕi

E[W ϕi
τ ] =

∑
(V j

i ,τ)∈ϕi

E[Bϕi
τ ]−

∑
(V j

i ,τ)∈ϕi

E[PA
τ ]. (5)

The expected sum of announcement times in Eq. 5 is computed by summing the expected
times for each task CTMC to reach an absorbing state (see Section 4.1). Thus, for the
remainder of this subsection we describe how to compute the expected sum of service times∑

(V j
i ,τ)∈ϕi

E[Bϕi
τ ]. Recall that to execute tasks proactively, robots navigate to a WP and

wait for task announcement. If the task is announced at a PTL the robot has been allocated,
it navigates to the task location from the WP and services it, otherwise it navigates from
the WP to its next task. To compute the expected sum of service times, we first define the
duration distribution for following the shortest path between any two topological nodes.

Definition 5.2. Let ρ(e) be the duration distribution for navigating on topological edge
e ∈ E. For topological nodes v, v′ ∈ V , ρ+(v, v′) is the duration distribution for navigating
along the shortest path between v and v′, i.e. the sum of distributions ρ(e) for all edges e
along the shortest path. Here, the shortest path is computed using the expected navigation
durations E[ρ(e)].

Next, we define the expected service time for a task τ given the start time and location for
the robot servicing τ , its WP, and the true task location.

Definition 5.3. Let task τ be announced at node v′, where τ is serviced by a robot who
starts navigating towards WP vw from node v at time t. The service time for task τ is
given by Bτ (v, t, vw, v

′), where:

Bτ (v, t, vw, v
′) = E[max(t+ ρ+(v, vw), P

A
τ )] + E[ρ+(vw, v′)]. (6)

We visualise Eq. 6 in Fig. 5. The first term in Eq. 6 represents the robot navigating
to the WP and waiting for the task to be announced, and the second captures navigation
from the WP to the task location. By setting v′ = vw, Eq. 6 captures the time a robot
stops waiting at the WP, as E[ρ+(vw, v′)] becomes zero. If task τ is announced at a PTL
the robot has not been allocated, this corresponds to the time the robot leaves the WP
for its next task. In Eq. 6, PA

τ is the announcement time distribution for the current task
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Figure 5: An example demonstrating how robots proactively execute tasks. Starting from
node v at time 0, robot r1 navigates to WP vw and waits for task τ to be announced. PTLs
for τ are v1, v2, and v3. Upon announcement, r1 navigates to the task location and services
τ . Arrows between different nodes represent multiple topological edges. The coloured values
show the terms in Eq. 6 and the lower bound we use in practice.

CTMC state. We do not consider the duration since the last task CTMC state update, as
due to the memoryless property of exponential distributions, E[PA

τ ] remains constant until
the next state update. In practice, the expectation over the maximum in Eq. 6 is expensive
to compute. For example, if the duration distribution ρ+(v, vw) and announcement time
distribution PA

τ are represented as CTMCs, the maximum is defined over the joint CTMC,
which is impractical to model check exactly due to its size. Therefore, we use the lower
bound max(E[t+ ρ+(v, vw)],E[PA

τ ]) (see Fig. 5).
By assuming a known task location, the service time Bτ for task τ ignores location

uncertainty, as distributed by PL
τ . To compute the expected sum of service times, we must

account for this uncertainty. Recall that we assume tasks are serviced instantaneously at
the task location. Therefore, from the perspective of robot ri the task is finished at the
announcement location if it is a PTL they were allocated, and the WP otherwise.

Definition 5.4. Let vjw,i ∈ V be the WP for the jth task in ri’s schedule, and PL
τ be the

announcement location distribution for task τ . The location ri finishes its jth task is given
by the modified task location distribution PL,j

i . In PL,j
i , the probability mass for the PTLs

ri has not been allocated, i.e. the PTLs not in V j
i , is assigned to the WP. Formally:

PL,j
i (v) =


PL
τ (v) if v ∈ V j

i and ϕj
i = (V j

i , τ)

1−
∑

v∈V j
i
PL
τ (v) if v = vjw,i and ϕj

i = (V j
i , τ)

0 otherwise.

(7)

Eq. 7 assumes that a task is never announced before ri reaches the WP, which may
occur during execution. We handle this by reallocating tasks upon announcement, which
either removes the task from ri’s schedule, or sends ri directly to the task location. We
now use the location distribution in Eq. 7 to compute the expected sum of service times for
ri. The individual service times Bϕi

τ in Eq. 5 cannot be computed independently. This is
because the service time for task τ ′ depends on the time and location ri finishes its previous
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task τ and begins proactive execution for τ ′ (see Eq. 6). Therefore, we introduce a recursive
operator Ωj

i for computing the sum of service times.

Definition 5.5. Assume robot ri begins at node v at time t and executes the tasks in
schedule ϕi, starting from the jth task τ , i.e. ϕj

i = (V j
i , τ). Further, let v

j
w,i be the WP for

the jth task τ . The expected sum of service times can be computed using Ωj
i (v, t), which is

defined as:

Ωj
i (v, t) =

{∑
v′ P

L,j
i (v′) · (Bτ (v, t, v

j
w,i, v

′) + Ωj+1
i (v′, Bτ (v, t, v

j
w,i, v

′))) if j ≤ |ϕi|
0 if j > |ϕi|.

(8)

In Eq. 8, we compute the expected service time for the jth task, and add it to the sum
of expected service times from the j+1th task. Robot ri finishes its jth task τ at one of the
PTLs it has been allocated or the WP, as defined by the modified task location distribution
PL,j
i , where each location has a different navigation duration from the WP vjw,i. Therefore,

we compute the expected sum of service times for each node v′ ∈ V robot ri may finish its
jth task τ at, and weight it by PL,j

i (v′). If ri starts at node v at time 0, Ω1
i (v, 0) corresponds

to the expected sum of service times for schedule ϕi. Thus, we rewrite the schedule cost
SC(ϕi) in Eq. 5, replacing

∑
(V j

i ,τ)∈ϕi
E[Bϕi

τ ] with Ω1
i (v, 0):

SC(ϕi) = Ω1
i (v, 0)−

∑
(V j

i ,τ)∈ϕi

E[PA
τ ]. (9)

If a tie occurs during bidding, we select the robot who reaches the WP for the task
they are bidding on first. We can extend our framework to problems with durative tasks
by modifying the recursive call in Eq. 8 to use the time and location the durative task is
completed. Moreover, we can adapt our framework to problems where new tasks appear
online. Assuming these tasks have a corresponding task CTMC, we can auction them
proactively as soon as the task manager becomes aware of them.

5.3 Intermediate Waiting Points (IWPs)

In this subsection, we introduce IWPs, which are WPs that minimise the expected waiting
duration for a task τ .

Definition 5.6. Let ϕj
i = (V j

i , τ) be the jth item in robot ri’s schedule. IWPs are defined

according to IWP
j
i : V ×R≥0 → V , where IWPji (v, t) denotes the IWP for the PTLs V j

i that
have been allocated to ri for task τ , given ri starts at node v at time t:

IWP
j
i (v, t) = argmin

vw∈V

∑
v′∈V j

i ∪{vw}

PL,j
i (v′) ·Bτ (v, t, vw, v

′). (10)

The IWP is a WP that minimises the expected service time Bτ for task τ given the
PTLs that have been allocated to ri. Minimising the expected service time minimises the
expected waiting duration, as the expected announcement time (see Eq. 3) is independent
of the WP. IWPs also handle scenarios where ri does not need to complete its jth task τ , as
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Figure 6: An example topological map, where edge weights are the expected duration of
navigating that edge. Robot r1 is initially located at node v0.

when v′ = vw in Eq. 10, PL,j
i (v′) becomes the probability of τ being announced at a PTL

that has not been allocated to ri, and the service time Bτ (v, t, vw, v
′) becomes the time ri

leaves vw for its next task. If a tie occurs in Eq. 10, we select the WP vw that minimises the
expected duration from the WP to the task locations, i.e.

∑
v′ P

L,j
i (v′)·E[ρ+(vw, v′)]. Eq. 10

is dependent on the time a robot starts a task, and so the IWP may change between bidding
and execution, due to uncertain navigation durations and task announcement. Therefore,
robots recompute IWPs just before starting a task to improve online performance. The IWP
is also recomputed upon task CTMC state updates. Frequent updates which significantly
affect the announcement distributions may cause a robot to travel long distances to reach
the latest IWP. Though this reduces waiting durations, the robot will expend more energy,
and require more frequent charging. This may limit multi-robot performance over longer
horizons, which we will investigate in future work.

Example 3. Consider Fig. 6, where robot r1 is at v0 at time 0, and has been allocated all
PTLs for its jth task τ , where the location distribution PL

τ = {v1 : 0.4, v2 : 0.3, v4 : 0.3},
and the expected announcement time E[PA

τ ] = 7. The IWP is IWPj1(v0, 0) = v3, where the
weighted sum of Bτ for v3 in Eq. 10 is max(6.1, 7) + 1.1 = 8.1, compared to v1, which
evaluates to 0.4 · (max(5, 7) + 0) + 0.6 · (max(5, 7) + 2) = 8.2.

In Eq. 10, we minimise over every possible WP in the set of topological nodes V , which
is expensive for large environments. To reduce complexity, we consider minimising over a
smaller set of candidate nodes. Candidates are computed using a greedy heuristic which
removes nodes unlikely to be the IWP for robot ri’s jth task τ . Starting from ri’s initial
location, we perform a breadth-first traversal of the topological map. During the traversal,
we maintain the candidate set and a list of nodes to be expanded, where we iteratively
expand each node in the list. To expand topological node v, we do the following:

1. If v has already been expanded, we move to the next node in the list.

2. Next, we find the topological neighbours of v, Nv = {v′ ∈ V | (v, v′) ∈ E}.

3. We then compute the expected duration from node v and each v′ ∈ Nv to each of the
PTLs for task τ .

4. We add node v′ ∈ Nv to the list of nodes to be expanded if its expected duration to
at least one PTL is less than the expected duration from v.
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5. We add node v to the candidate set if there are no neighbours v′ ∈ Nv whose expected
duration to all PTLs is less than from v. If such a neighbour v′ exists, v is not added
to the candidate set, as navigating to v′ allows for more progress to the PTLs prior
to announcement.

This heuristic is suboptimal, and in some cases may remove the minimal WP from the
candidate set, as neighbours are greedily expanded towards the task locations.

Example 4. Consider Fig. 6, where robot r1 starts at v0, and the PTLs are {v1, v2, v4}.
For v0, the expected navigation durations are E[ρ+(v0, v1)] = 5, E[ρ+(v0, v2)] = 7, and
E[ρ+(v0, v4)] = 7. The only neighbour of v0 is v1, where E[ρ+(v1, v1)] = 0, E[ρ+(v1, v2)] = 2,
and E[ρ+(v1, v4)] = 2. The expected duration to all PTLs is lower from v1, and so v0 is not
included in the candidate set. From v1, v2 and v4 are closer to themselves, and v3 is closer
to v2 and v4. With this, node v1 is included in the candidate set. Nodes v2, v3, and v4 are
then expanded, and added to the candidate set. From v4, v5 moves away from all PTLs.
Therefore, the final candidate set is {v1, v2, v3, v4}.

5.4 Complexity Analysis

In this subsection, we outline the time complexity of the algorithms run on the auctioneer
and robots under our framework. We assume that the announcement time and announce-
ment location distributions are precomputed, and ignore online updates, i.e. we just consider
the initial auction.

5.4.1 Proactive Task Allocation (Auctioneer)

In each auction round, the auctioneer allocates a single PTL-task pair by determining the
minimum bid. The auctioneer receives n bids per round, as each robot only submits its
smallest bid to the auctioneer (Koenig et al., 2006). There are |I| auction rounds, one
for each PTL-task pair. Minimisation is linear in the number of bids, and so the time
complexity for the auctioneer to run the initial auction corresponds to the total number of
bids, given by |I| · n, which is linear in the number of robots and PTL-task pairs.

5.4.2 IWP Computation

During auctions, robots compute IWPs using Eq. 10, which finds the WP that minimises
the waiting duration from a set of at most |V | candidate nodes. We compute the expected
service time for each candidate as a weighted sum over the PTLs. The time complexity
for Eq. 10 is given by O(|V | · |PL

max|), where |PL
max| is the maximum number of PTLs for a

single task.

5.4.3 Computing the Schedule Cost

Next, we consider the time complexity of calculating the schedule cost SC in Eq. 5, which
corresponds to the complexity of the sum of service times in Eq. 8. Eq. 8 computes the IWP
for the current task, given its start time and location, and makes multiple recursive calls for
the next task, one for each of the current task’s PTLs. The current task’s announcement
location affects the IWP for the next task. Therefore, we compute one IWP for the first
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task, |PL
max| for the second, |PL

max|2 for the third, and so on. Generally, for the jth task
τ in schedule ϕi, i.e. ϕj

i = (V j
i , τ), we compute |PL

max|j−1 IWPs. In total, we compute∑|ϕi|−1
j=0 |PL

max|j IWPs, and so the time complexity is O
( |PL

max||ϕi|−1
|PL

max|−1
· |V | · |PL

max|
)
, i.e. the

schedule cost function SC scales exponentially in the length of the schedule. In practice,
we cache IWPs across multiple SC calls to improve scalability. We validate the scalability
of our method for calculating SC empirically in Section 6.

5.4.4 Proactive Task Allocation (per Robot)

Finally, we consider the time complexity for a robot ri to participate in a proactive auction,
assuming ri uses the cheapest insertion heuristic to find the best schedule insertion posi-
tion (Koenig et al., 2006). Robot ri initially computes bids for each of the |I| PTL-task pairs,
and recomputes bids upon being allocated a PTL-task pair. In the worst case, ri always
wins, and recomputes |I| − (

∑
j |V

j
i |) bids for each of the |I| rounds, where a new PTL-

task pair is added to schedule ϕi each round. Each bid requires at most |ϕi|+1 calls to the
schedule cost function SC, one for each schedule insertion position. Over the auction, robot

ri makes
∑|I|

k=1(|I|+1−k) ·k calls to SC. The time complexity of SC is dependent on |ϕi|,
which after k auction rounds is upper bounded by min(k, |T |), i.e. the number of PTL-task
pairs that have been allocated, or the number of tasks, whichever is smaller. Therefore, the

worst case time complexity is O
(∑|I|

k=1(|I|+1−k) ·k ·( |P
L
max|min(k,|T |)−1

|PL
max|−1

· |V | · |PL
max|)

)
, where

the exponential term |PL
max|min(k,|T |) from SC dominates, demonstrating that computing

the schedule cost is a bottleneck in our framework.

6. Experiments

In this section, we demonstrate the efficacy of our framework across multiple problems in
simulation by comparing against a number of baselines. We simulate robot behaviour using
the context-aware multi-agent simulator (CAMAS), which captures the task-level behaviour
of an MRS acting on a topological map (Street et al., 2022a). CAMAS samples through a
multi-robot Markov automaton that uses continuous distributions over the duration of topo-
logical edges, and explicitly captures the effects of physical robot interactions such as conges-
tion. All experiments are run on Ubuntu 18.04, with an Intel Core i9-10900K CPU@3.7GHz
and 32GB of RAM. All software is written in Python, except for PRISM (Kwiatkowska et al.,
2011), which we use for task CTMC analysis, which is written in Java/C++.

6.1 Experimental Setup

In this subsection, we describe our experimental environments, the methods we compare,
and the experimental problems for each method.

6.1.1 Experimental Environments

We consider two environments: a supermarket (Fig. 7a) and a 4-connected 10 × 10 grid
world (Fig. 7b). The supermarket topological map was created by hand. Nodes are evenly
spaced within each aisle, and additional rows at the top and bottom connect the aisles. The
topological nodes in the grid world are evenly spaced. Unlike the grid world, the aisles of the
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(a) Supermarket. (b) 10× 10 grid world.

Figure 7: The two experimental environments with topological maps overlaid.

supermarket constrain movement, making it harder to find effective IWPs. To construct
a CAMAS simulation, we require navigation duration distributions for each topological
edge (Street et al., 2022a). Duration distributions for the grid world are synthetic, and fitted
using moment matching techniques (Marie, 1980). For the supermarket, we use a Gazebo
simulation (Koenig & Howard, 2004) of the environment, and use edge partitioning to collect
navigation duration data, as presented by Street et al. (2022a). To do so, we simulate five
Clearpath Jackals navigating with Move Base Flex (Pütz et al., 2018) for 24 hours. Distribu-
tions are then fitted from this data using an algorithm presented by Thummler et al. (2006).

6.1.2 Experimental Methods/Baselines

The core components of our framework are: proactive allocation; IWPs; and auctioning
each PTL-task pair separately. We compare five methods, which use some or all of these
components:

• Stay Still (SS): A non-proactive MRTA technique, where each task is auctioned in-
dividually upon its announcement. As robots are not allocated tasks until they are
announced, they wait at their initial location. This is representative of the state-
of-the-art approaches which adapt SSI for online task announcement (Koenig et al.,
2006; Schoenig & Pagnucco, 2010; Nunes & Gini, 2015; Schneider et al., 2015).

• Most Likely Location (MLL): During proactive execution, robots choose the most
likely PTL as their WP for a task, instead of the IWP. During bidding, robots assume
the MLL occurs with probability 1. Tasks are auctioned as a whole, i.e. all PTLs
for task τ ∈ T are assigned to a single robot who is responsible for servicing the task
irrespective of its announcement location.

• MLL+PTL: The MLL method, but each PTL is auctioned separately. For each task,
a robot’s WP is the most likely PTL they have been allocated.
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(a) Supermarket, contiguous sequence.
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(b) 10× 10 Grid, contiguous sequence.
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(c) Supermarket, discontiguous sequence.
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(d) 10× 10 Grid, discontiguous sequence.
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(e) Supermarket, discontiguous star.
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(f) 10× 10 Grid, discontiguous star.

Figure 8: The performance of each method as we increase the team size.

• IWP : Robots wait for announcement at the IWP for each task (see Section 5.3), but
tasks are auctioned as a whole, as with the MLL method.

• IWP+PTL: Our complete framework, where robots wait at IWPs for task announce-
ment, and each PTL is auctioned separately.

6.1.3 Experimental Problem Setup

In all problems, a team of robots must service a set of tasks whose announcement is mod-
elled with task CTMCs. The initial robot locations are spread as evenly as possible across
the environment, and tasks are serviced instantaneously upon a robot reaching the task
location. Robots navigate using a shortest path planner. During bidding, robots use the
cheapest insertion heuristic for schedule insertion (Koenig et al., 2006). We consider prob-
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Table 1: The mean waiting durations for the results in Fig. 8. The problem column is
written <environment>-<CTMC structure>-<number of robots>, where Sup denotes the
supermarket, and Grid denotes the 10 × 10 grid world. Bold values have the lowest mean
for that problem. Highlighted cells are not statistically significantly lower than the method
with lowest mean, according to a one-sided Mann-Whitney U test with p = 0.05.

Problem SS MLL MLL+PTL IWP IWP+PTL

Sup-contiguous sequence-10 492.10 91.61 87.31 83.40 157.37

Sup-contiguous sequence-15 376.12 65.20 65.37 64.32 84.02

Sup-contiguous sequence-20 282.13 52.53 60.91 60.77 37.55

Sup-contiguous sequence-25 230.00 50.88 42.47 54.68 26.43

Sup-discontiguous sequence-10 522.58 179.21 163.17 172.97 152.59

Sup-discontiguous sequence-15 379.45 123.29 100.56 113.85 71.06

Sup-discontiguous sequence-20 286.28 76.58 62.27 92.09 37.39

Sup-discontiguous sequence-25 252.59 61.64 43.03 72.50 22.56

Sup-discontiguous star-10 532.91 296.74 311.00 310.03 305.23

Sup-discontiguous star-15 388.00 211.94 193.77 221.02 190.41

Sup-discontiguous star-20 295.21 148.08 133.36 157.77 132.85

Sup-discontiguous star-25 254.63 124.24 97.42 114.22 104.80

Grid-contiguous sequence-10 190.59 36.43 34.73 34.29 48.60

Grid-contiguous sequence-15 126.99 27.35 24.11 28.48 19.54

Grid-contiguous sequence-20 109.99 23.18 21.37 24.70 8.35

Grid-contiguous sequence-25 98.48 20.96 17.62 20.36 6.83

Grid-discontiguous sequence-10 191.16 52.20 49.06 55.48 43.17

Grid-discontiguous sequence-15 132.86 28.08 27.42 37.29 13.93

Grid-discontiguous sequence-20 111.57 26.51 22.68 28.38 10.51

Grid-discontiguous sequence-25 99.68 22.33 14.08 25.04 5.15

Grid-discontiguous star-10 199.34 119.40 110.30 113.95 105.60

Grid-discontiguous star-15 134.35 64.15 63.21 79.20 68.47

Grid-discontiguous star-20 118.84 49.14 44.62 62.75 45.37

Grid-discontiguous star-25 102.51 47.98 35.59 55.09 32.34

lems which use the task CTMC structures in Section 4.1, where CTMC transitions are
sampled during execution, and all task CTMCs begin in their initial states at the start of
execution. For each task CTMC type, we construct problems with 5-20 tasks in increments
of 5, where the 10 task problem is the 5 task problem with 5 additional tasks etc. Contigu-
ous and discontiguous sequence CTMCs have three PTLs, as in Fig. 2, and discontiguous
star CTMCs have four PTLs, as in Fig. 3. For a given number of tasks, we construct a
different problem for each repeat. The expected announcement times, PTLs, and announce-
ment location distributions for each problem are randomised, but kept consistent between
methods. PTLs for contiguous sequence CTMCs are constrained to be contiguous across
the topological map.
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6.2 Measuring Performance as Robots Increase

First, we analyse performance as we increase the team size. In each environment, we
consider the 20 task problem for each task CTMC type, and run 40 repeats to measure the
total waiting duration for 10-25 robot teams, in increments of 5. In Fig. 8 we present the
observed waiting durations, and in Table 1 we show the mean waiting durations alongside
the results of a one-sided Mann-Whitney U statistical significance test, where p = 0.05.

Overview of results. In 10/24 of the tested problem configurations, IWP+PTL produces
significantly lower waiting durations than all other methods. In 12 problems, IWP+PTL ties
with other methods, i.e. no method is significantly better than IWP+PTL, but some are
statistically similar. In the smallest contiguous sequence problems in both environments,
the MLL, MLL+PTL, and IWP waiting durations are significantly less than IWP+PTL,
which we discuss below.

SS performance. The SS approach is representative of state-of-the-art techniques for
online SSI. However, in all problems, the SS waiting durations are significantly higher than
every other method. As tasks are not allocated until announcement in SS, robots remain
idle at their initial location, which poorly utilises the MRS.

Trends as the number of robots increase. For larger teams, there is more likely to be
a robot near the PTLs, decreasing the waiting duration. Further, the gap between methods
which auction PTLs separately and those that don’t increases with the team size, as PTLs
are split between robots to reduce the waiting duration. Auctioning PTLs separately utilises
robot redundancy, such as when we have more robots than tasks. Moreover, it extends the
notion of spatial dependencies in SSI (Koenig et al., 2006), as if PTLs for different tasks
are close to each other, they are likely to be allocated to the same robot.

Comparing IWP against MLL. IWP+PTL decreases waiting durations by reasoning
over the full task location distribution, and splitting PTLs between robots. However, in
many problems the related IWP method has a higher mean waiting duration than the
simpler MLL-based methods. Under IWP, robots wait between the PTLs, as unlike the
MLL method it reasons over the full location distribution at the current task CTMC state.
In the contiguous and discontiguous sequence problems, task CTMC updates allow robots
to adjust their WP during execution. For example, assume the first PTL is the most likely.
We discover if this PTL is the announcement location upon the second state update. When
this update occurs, robots using MLL will either incur a waiting duration of zero, or have
time to move to one of the remaining PTLs. For IWP, the robots will likely have to move
regardless of the announcement location, increasing the waiting duration. This problem
occurs as we only consider the announcement distributions at the current task CTMC state
when computing IWPs. Task CTMC state updates modify the announcement distributions,
where some PTLs are announced earlier in the CTMC. By ignoring these updates, robots
assume that the announcement time for each PTL is the same, which can cause robots to
wait at suboptimal WPs. To mitigate this, we could compute IWPs by model checking
a joint CTMC that captures the task CTMC and the robot’s route, however this would
inhibit the scalability of our framework.

Comparing IWP against IWP+PTL. IWP+PTL statistically significantly outperforms
IWP on 18/24 problems. However, as the team size decreases, IWP+PTL assigns more
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(a) Supermarket, contiguous sequence.
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(b) 10× 10 Grid, contiguous sequence.
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(c) Supermarket, discontiguous sequence.
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(d) 10× 10 Grid, discontiguous sequence.
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(e) Supermarket, discontiguous star.

5 10 15 20
Number of Tasks

0

50

100

150

200

250

300

To
ta

l W
ai

tin
g 

Du
ra

tio
n 

(s
) SS

MLL
MLL + PTL
IWP
IWP + PTL

(f) 10× 10 Grid, discontiguous star.

Figure 9: The performance of each method as we increase the number of tasks.

PTLs to a single-robot, bringing performance closer to the IWP method. In fact, for the
10 robot contiguous sequence problems, IWP outperforms IWP+PTL. Under IWP+PTL,
multiple robots may be assigned different PTLs for the same task. With this, at least one
robot will wait at a WP to then not service the task. This unnecessary wait may place
the robot further from its next task, increasing the waiting duration. Under IWP, a robot
waiting for a task will service it unless it is reallocated online. This problem is reduced as
we add more robots, as on average robots will have to travel less between tasks, reducing
the impact of unnecessary waiting.

Performance of the MLL-based methods. The MLL-based methods perform compet-
itively in many problems, and are less computationally intensive, as we assume the MLL
is the announcement location. However, robots risk backtracking if the MLL is not the
announcement location, which increases the waiting duration. In the contiguous sequence
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Table 2: The mean waiting durations for the results in Fig. 9. The table is structured as in
Table 1, except for the number in the problem column, which refers to the number of tasks.

Problem SS MLL MLL+PTL IWP IWP+PTL

Sup-contiguous sequence-5 124.78 16.56 16.64 16.23 8.33

Sup-contiguous sequence-10 242.45 37.18 29.35 40.96 34.26

Sup-contiguous sequence-15 373.84 57.73 45.53 64.51 107.27

Sup-contiguous sequence-20 484.10 87.30 84.70 90.89 159.08

Sup-discontiguous sequence-5 121.30 40.14 36.96 38.39 8.59

Sup-discontiguous sequence-10 251.18 87.79 61.18 77.77 33.29

Sup-discontiguous sequence-15 393.72 113.51 105.25 127.55 84.52

Sup-discontiguous sequence-20 509.11 178.26 143.80 167.04 167.91

Sup-discontiguous star-5 118.80 55.50 44.10 57.47 32.05

Sup-discontiguous star-10 250.17 127.77 108.28 138.49 114.16

Sup-discontiguous star-15 388.79 211.16 199.19 212.87 199.56

Sup-discontiguous star-20 513.09 286.47 276.51 306.26 325.05

Grid-contiguous sequence-5 55.14 6.55 8.60 7.09 1.79

Grid-contiguous sequence-10 104.72 12.02 15.05 14.06 11.79

Grid-contiguous sequence-15 153.31 23.75 21.03 27.90 28.39

Grid-contiguous sequence-20 198.89 33.42 33.97 34.28 46.34

Grid-discontiguous sequence-5 52.91 7.75 8.74 16.58 1.96

Grid-discontiguous sequence-10 103.80 24.18 21.65 26.63 9.41

Grid-discontiguous sequence-15 146.13 32.92 24.85 35.81 22.11

Grid-discontiguous sequence-20 189.62 52.31 47.19 55.13 38.68

Grid-discontiguous star-5 55.78 21.80 22.02 26.97 8.44

Grid-discontiguous star-10 105.44 45.91 46.22 46.54 36.29

Grid-discontiguous star-15 149.20 75.45 71.32 83.42 69.19

Grid-discontiguous star-20 205.88 104.25 106.74 113.76 110.91

problems, the effects of backtracking are significantly reduced as the PTLs are contiguous,
and so MLL and MLL+PTL perform well. The MLL+PTL method often performs worse
than IWP+PTL. If a robot using MLL+PTL has been assigned the MLL, all other PTLs
for that task can be added to the schedule with zero cost, as robots assume the MLL is the
announcement location. Therefore, the MLL+PTL robot will be assigned all PTLs for a
task, causing behaviour similar to MLL. IWP+PTL avoids this by reasoning over the full
location distribution.

Performance on discontiguous star problems. In the discontiguous star problems, the
proactive methods perform similarly, i.e. there is always a tie for the best method. This is
likely due to a lack of structure in the task CTMCs. In the contiguous sequence problems,
task locations are contiguous, and the location distribution is updated over time, which al-
lows for allocations to be improved online. Though the discontiguous sequence problems lose
the spatial structure, the location distribution still receives updates, which we can exploit.
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Figure 10: The scalability of the schedule cost function SC.

Conversely, the discontiguous star problems are one-shot problems, i.e. there are no updates,
and no relationship between the task locations, which makes proactive reasoning less suitable.

6.3 Measuring Performance as Tasks Increase

Next, we consider how the number of tasks affects performance. For a 10 robot team, we
consider the 5-20 task problems for each task CTMC type, and run 40 repeats to measure the
total waiting duration. The observed waiting durations are shown in Fig. 9, and the mean
waiting durations with statistical significance results are presented in Table 2, as in Table 1.

IWP+PTL produces significantly lower waiting durations in 10/24 problems, ties in
10/24, and is beaten in 4/24. Generally, the trends observed when increasing the tasks
corroborate what we saw in the previous experiment. IWP+PTL performance decreases as
the tasks increase, as there is less redundancy in the MRS, and less opportunity to distribute
PTLs across the robots. Moreover, the MLL-based methods outperform the IWP-based
methods on some problems, as the online state updates allow MLL-based methods time to
react if the MLL is not the task location, and to serve tasks with zero waiting duration if it is.

6.4 Schedule Cost Scalability

In Fig. 10, we demonstrate the exponential scalability of computing the schedule cost SC,
as discussed in Section 5.4. Computing the cost of robot schedules is a bottleneck in our
framework. We run 40 repeats of SC for schedule lengths ranging from 1-15, and for
tasks with 1-3 PTLs, where schedules contain all PTLs for a task. These results also act
as a proxy for comparing the scalability of IWP and MLL-based methods, where the core
difference is in the schedule cost function. IWP-based methods vary in scalability dependent
on the PTLs per task, whereas MLL-based methods consider only one PTL, the MLL. This

163



Street, Lacerda, Mühlig, & Hawes

significantly improves scalability, but at the cost of higher waiting durations, as discussed
earlier in this section.

7. Discussion

Proactive vs non-proactive MRTA. In the previous section, we demonstrated that
proactive task allocation decreases waiting durations. We compared against a non-proactive
baseline which adapts SSI auctioning to online settings. SSI is suboptimal, and is at most
a factor of two from the optimal for sum of cost objectives (Koenig et al., 2006). The
performance of this baseline could be improved by using an optimal MRTA method such
as combinatorial auctions (Blumrosen & Nisan, 2007). However, this is still unlikely to
outperform proactive methods. For example, the SS waiting durations in Section 6 are
often more than two times higher than the best proactive method. Moreover, our proactive
framework can be adapted to use less suboptimal MRTA methods in a straightforward
way. To effectively allocate tasks proactively we require accurate announcement models,
which can be constructed from empirical data. If announcement data is not available,
non-proactive methods may be a suitable alternative.

Improving scalability. Across both experiments in Section 6, IWP+PTL is significantly
better in 41.7% of problems, and is unbeaten in 87.5%. However, the IWP-based methods
are less scalable, as they reason over the full task location distribution during bidding (see
Section 6.4). The MLL-based methods approximate the IWP-based methods by treating the
MLL as the only PTL during bidding. As a result, the MLL-based methods are much faster,
as schedule evaluation scales linearly in the number of tasks rather than exponentially. In
58.3% of the problems we evaluated, at least one of the MLL baselines is statistically similar
to the method with lowest waiting durations, and in 12.5% of problems, at least one of the
MLL baselines statistically significantly outperforms the IWP+PTL method. Therefore, if
there are many tasks, or if computation time is limited, MLL-based methods can be used
to effectively allocate tasks proactively. MLL-based methods also perform well when the
PTLs are close together, as navigating towards the MLL brings the robot nearer to all
PTLs, reducing waiting durations. The MLL- and IWP-based methods can be viewed as
two ends of a spectrum of proactive MRTA methods which consider one and all of the PTLs
for a task respectively. With this, the trade-off between performance and scalability can
be controlled more precisely by selecting the number of PTLs to consider during bidding,
e.g. the two most likely PTLs. An alternative approach to improve scalability would be to
impose a maximum schedule length, or limit how many tasks are allocated in a given time
frame. For example, if a task is due to be announced in an hour, it is unlikely that proactive
allocation needs to occur straight away. This would not avoid the exponential scalability of
schedule evaluation, but would provide a practical mitigation.

The impact of task CTMC structure on performance. The performance of our
framework is sensitive to the structure embedded in the task CTMCs, which we exploit dur-
ing allocation. In Section 6, we considered contiguous sequence CTMCs, which have spatial
and temporal structure; discontiguous sequence CTMCs, which have temporal structure;
and discontiguous star CTMCs, which are unstructured. If there is spatial structure, e.g.
the PTLs are close together, then it is easier to find effective IWPs. If there is temporal
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structure, i.e. if there are multiple task CTMC state updates before announcement, then
we can improve our allocations online. This structure exists in many real-world problems.
For example, in the agricultural problem in Example 1, there is a task CTMC state update
each time the picker reaches a new node, which rules out the previous node as a PTL.
Alternatively, for order picking tasks in a warehouse, commonly ordered items are often
placed near packing stations, i.e. the most likely PTLs are often clustered within a small
area (De Koster et al., 2007). To maximise performance, this structure should be cap-
tured while constructing the task CTMCs. Note that for more realistic problems, the task
CTMCs may combine the CTMC types discussed above. For example, a small group of
PTLs may be close together, while the rest are spread out. The performance gap between
the proactive methods in Section 6 decreases with the structure in the task announcement
process. If there is little or no structure, alternative criteria should be used to select the
most appropriate method, such as scalability.

The suboptimality of our framework. Our proactive MRTA framework is suboptimal
due to the use of multiple heuristics, such as the cheapest insertion heuristic for schedule
insertion (Koenig et al., 2006) and the greedy heuristic used during IWP computation (see
Section 5.3). These heuristics make it difficult to provide suboptimality bounds for our
approach. Despite this, the results in Section 6 demonstrate the efficacy of our framework.
Proactive MRTA could be solved optimally using a centralised approach which reasons over
the product of the task CTMCs with CTMCs describing robot navigation. However, the
size of the resulting CTMCs would render this approach intractable, limiting its practicality.

The effects of robot interactions. Our framework ignores physical robot interactions
during bidding. This may limit performance, as the robot behaviour expected during bid-
ding diverges from what is observed during execution. For example, if multiple robots
appear in the same area simultaneously they may experience congestion, which slows them
down and increases waiting durations. In the worst case, robot interactions may cause
a robot to become blocked and unable to complete its task. To mitigate this, we could
explicitly reason over the effects of robot interactions during bidding (Street et al., 2022a,
2022b). However, these interactions often occur stochastically, which would further increase
the complexity of schedule evaluation. An alternative approach would be to use existing
multi-robot navigation planners to handle interactions during execution. This would reduce
robot navigation durations, and decrease the modelling inaccuracies during bidding. For
example, hierarchical cooperative A* (HCA*) search could be used to solve discrete multi-
agent path finding online for collision-free navigation (Silver, 2005). Under HCA* robots
plan sequentially, avoiding all robots that planned previously. These techniques have been
extended to continuous-time settings, where robots reason over the effects of congestion on
navigation (Street et al., 2020, 2022b). This is more suitable for the problems in this paper,
where robot navigation durations are continuous and stochastic. In either case, a robot
could plan each time it begins a new task given the paths of all currently navigating robots.

8. Conclusion

In this paper, we presented a framework that extends SSI for proactive task allocation,
where we use task CTMCs to model stochastic task announcement in continuous time.
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Each PTL is auctioned separately, and robots wait at IWPs to handle uncertain locations.
Our framework can solve any MRTA problem where task announcement is stochastic, pro-
vided that all tasks are known and eventually announced. Further, we outperform methods
which do not allocate tasks proactively, as is commonly seen in the literature, as well as
methods which do not use IWPs or do not auction PTLs separately. To the best of our
knowledge, this is the first proactive MRTA method for continuous-time task announce-
ment under spatiotemporal uncertainty. In future work, we will investigate how to allocate
tasks proactively while satisfying global constraints on multi-robot behaviour, and consider
proactively allocating tasks specified in temporal logic.

Nomenclature

Acronyms

CTMC Continuous-time Markov chain

IWP Intermediate waiting point

MLL Most likely location

MRS Multi-robot system

MRTA Multi-robot task allocation

PTL Potential task location

SS Stay still

SSI Sequential single-item

WP Waiting point

Symbols

Φ An allocation which maps robots to schedules

Q A CTMC

ρ A function which maps each topological edge to a duration distribution for traversing
that edge

ρ+ A function which returns the duration distribution for navigating along the shortest
path between two topological nodes

E The set of topological edges

IWP
j
i A function which computes the IWP for the jth task in robot ri’s schedule

V The set of topological nodes

V j
i The PTLs robot ri has been allocated for the jth task in its schedule
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I The set of PTL-task pairs we allocate

ϕi The schedule for robot ri

SC The schedule cost function

Ωj
i A function which computes the expected sum of task service times starting from the

jth task in robot ri’s schedule

τ A task

PA
τ A distribution over the time until announcement for task τ ∈ T

PL
τ A distribution over the announcement location for task τ ∈ T

PL,j
i A distribution over the location robot ri finishes the jth task in its schedule

BΦ
τ The service time distribution for task τ ∈ T under allocation Φ

T A finite set of tasks

T A topological map

vjw,i The WP for the jth task in robot ri’s schedule

WΦ
τ The waiting duration distribution for task τ ∈ T under allocation Φ

R The set of robots

ri The ith robot
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Pütz, S., Simón, J. S., & Hertzberg, J. (2018). Move base flex: A highly flexible navi-
gation framework for mobile robots. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3416–3421.

Schillinger, P., Bürger, M., & Dimarogonas, D. V. (2018). Improving multi-robot behavior
using learning-based receding horizon task allocation. In Proceedings of Robotics:
Science and Systems (RSS).
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