
Journal of Artificial Intelligence Research 78 (2023) 579-617 Submitted 5/2023; published 11/2023

Scalable Neural-Probabilistic Answer Set Programming

Arseny Skryagin arseny.skryagin@cs.tu-darmstadt.de
Daniel Ochs daniel.ochs@cs.tu-darmstadt.de
Devendra Singh Dhami devendra.dhami@cs.tu-darmstadt.de
Computer Science Department, TU Darmstadt
Darmstadt, Germany

Kristian Kersting kersting@cs.tu-darmstadt.de

Computer Science Department, TU Darmstadt

German Research Center for Artificial Intelligence (DFKI)

Darmstadt, Germany

Abstract

The goal of combining the robustness of neural networks and the expressiveness of symbolic
methods has rekindled the interest in Neuro-Symbolic AI. Deep Probabilistic Programming
Languages (DPPLs) have been developed for probabilistic logic programming to be carried
out via the probability estimations of deep neural networks (DNNs). However, recent
SOTA DPPL approaches allow only for limited conditional probabilistic queries and do
not offer the power of true joint probability estimation. In our work, we propose an easy
integration of tractable probabilistic inference within a DPPL. To this end, we introduce
SLASH, a novel DPPL that consists of Neural-Probabilistic Predicates (NPPs) and a logic
program, united via answer set programming (ASP). NPPs are a novel design principle
allowing for combining all deep model types and combinations thereof to be represented
as a single probabilistic predicate. In this context, we introduce a novel +/− notation
for answering various types of probabilistic queries by adjusting the atom notations of a
predicate. To scale well, we show how to prune the stochastically insignificant parts of the
(ground) program, speeding up reasoning without sacrificing the predictive performance.
We evaluate SLASH on various tasks, including the benchmark task of MNIST addition
and Visual Question Answering (VQA).

1. Introduction

Neuro-symbolic AI approaches to learning (Hudson & Manning, 2019; d’Avila Garcez et al.,
2019; Jiang & Ahn, 2020; d’Avila Garcez & Lamb, 2023) are on the rise. They integrate low-
level perception with high-level reasoning by combining data-driven neural modules with
logic-based symbolic modules. This combination of sub-symbolic and symbolic systems has
shown many advantages for various tasks such as visual question answering (VQA) and
reasoning (Yi et al., 2018), concept learning (Mao et al., 2019) and improved properties for
explainable and revisable models (Ciravegna et al., 2020; Stammer et al., 2021).

Rather than designing specifically tailored neuro-symbolic architectures, where the neu-
ral and symbolic modules are often disjoint and trained independently (Yi et al., 2018;
Mao et al., 2019; Stammer et al., 2021), deep probabilistic programming languages (DP-
PLs) provide an exciting alternative (Bingham et al., 2019; Tran et al., 2017; Manhaeve
et al., 2018; Yang et al., 2020; Huang et al., 2021). Specifically, DPPLs integrate neural and
symbolic modules via a unifying programming framework with probability estimates acting

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Skryagin, Ochs, Dhami & Kersting

Programmatic queriesNatural language question

o2

o3

o1

di
ffi

cu
lty

mammal

herbivore

animal

hay

goat

rocks

white

clouds

barn

alpaca

"Identify the goat" target(O):-name(O, goat).

"Identify the white mammal" target(O):-name(O, mammal), attr(O, white).

"Identify the mammal on the rocks, that
usually appears where hay appears"

target(O):- name(O, mammal), name(O2, rocks),
relation(on, O, O2), oa_rel("usually appears in", O, P),
oa_rel("usually appears in", hay, P).

Answer

target(o2)

Scene Graph Knowledge Graph
SLASH Program

% knowledge graph
oa_rel("usually appears in", goat, barn).
oa_rel("usually appears in", hay, barn).
is_a(goat, mammal).
is_a(goat, animal).
is_a(goat, herbivore).
is_a(alpaca, herbivore).
is_a(mammal, animal).
name(N1, Oid) :-
name(N2, Oid), is_a(N2, N1).

% facts obtained from NPP's
name(o1, goat).
name(o2, rocks).
attr(o1, white).
attr(o2, gray).
relation(o1, o2, on).

attr

name

is a

is a

is ais a

is a

name

name
on

attr

appears in appears in

Figure 1: The VQA task: Proposed by Huang et al. (2021), given the features and
bounding boxes of objects in an image, the goal is to answer a question requiring multi-hop
reasoning. A model is learned that predicts a scene graph consisting of names, attributes,
and relations. Additionally, a fixed knowledge graph is given, extending the scene graph
with commonsense knowledge. Questions are provided as queries in programmatic form
and can vary in complexity with the clause length of the query. Together, the knowledge
and scene graph are used to infer the correct answer for the query.

as the “glue” between separate modules, thus allowing for reasoning over noisy, uncertain
data and, importantly, for joint training of the modules. Additionally, prior knowledge and
biases in the form of logic rules can easily and explicitly be added to the learning process
with DPPLs. This stands in contrast to specifically tailored, implicit architectural biases
of, e.g., purely subsymbolic deep learning approaches. Ultimately, DPPLs thereby allow
the easy integration of neural networks (NNs) into downstream logical reasoning tasks.

Recent state-of-the-art DPPLs, such as DeepProbLog (Manhaeve et al., 2018), NeurASP
(Yang et al., 2020) and Scallop (Huang et al., 2021) allow for conditional class probability
estimates as all three works base their probability estimates on neural predicates. We argue
that it is necessary to integrate joint probability estimates into DPPLs, to allow for solving
a broader range of tasks. The world is uncertain, and it is necessary to reason in settings
in which variables of an observation might be missing or even manipulated. Furthermore,
scalability is a central problem for DPPLs. In many applications such as VQA, the solution
spaces necessarily grow exponentially with the size of the search spaces, rendering inference
computationally infeasible.

Hence, we make the following contributions in this work, addressing limitations in ex-
pressing the full range of probabilistic inference types and scalability of DPPLs. First, we
propose a novel form of predicates termed Neural Probabilistic Predicates (NPPs, cf. Fig. 2),
that allow for task-specific probability queries. NPPs consist of neural and/or probabilistic
circuit (PC) modules and act as a unifying term, encompassing the neural predicates of

580

Scalable Neural-Probabilistic ASP

pretrained

...

Neural-Probabilistic Predicates (NPPs)

% knowledge graph
oa_rel("usually appears in", goat, barn).
oa_rel("usually appears in", hay, barn).
is_a(goat, mammal). is_a(goat, animal).
is_a(goat, herbivore). is_a(alpaca, herbivore).
is_a(mammal, animal).
name(N1, Oid) :- name(N2, Oid), is_a(N2, N1).
...
% NPPs with objects
obj(o1). obj(o2). obj(o3).
npp(name(O,[goat, rock, ..., clouds])):-obj(O).
npp(attr(O,[white,black, shiny])):-obj(O).
...

SLASH Program

Query Q
target(O):-name(+O, -goat), attr(+O, -white).

ASPSLASH

...

Names

Attributes

YOLO

object
features

0.900.93

0.02

name(O, goat) attr(O, white) P(Q)
Obj. 1

Obj. 2
Obj. 3

0.04
0.97

0.01

0.95 0.03

0

...
...

MLP

MLP

Figure 2: VQA task with SLASH: NPPs consist of neural and/or probabilistic circuit
modules and can produce task-specific probability estimates. A YOLO Network and MLPs
form the Neural-Probabilistic Predicates for the VQA task. In our novel DPPL, SLASH,
NPPs are integrated with a logic program via an ASP module to answer logical queries
about data samples. Each MLP computes the conditional distribution for classes ci given
the YOLO feature encodings zi shared across all NPPs, such as names or attributes. The
relation’s NPP is omitted for simplicity. One gets task-related probabilities by sending
queries to the NPPs, e.g., conditional probabilities for visual reasoning tasks.

DeepProbLog, NeurASP and Scallop, as well as purely probabilistic predicates. Further,
we introduce a much more powerful “flavor” of NPPs that consists jointly of neural and PC
modules, taking advantage of the power of neural computations together with true density
estimation of PCs via tractable probabilistic inference.

Second, having introduced NPPs, we construct SLASH1, a novel DPPL, which efficiently
combines NPPs with logic programming. Similar to the punctuation symbol, this can be
used to efficiently combine several paradigms into one. Specifically, SLASH represents
for the first time an efficient programming language that seamlessly integrates probabilistic
logic programming with neural representations and tractable probabilistic estimations. This
allows for the integration of all forms of probability estimations, not just class conditionals,
thus extending the important works of Manhaeve et al. (2018), Yang et al. (2020) and
Huang et al. (2021).

Third, as NPPs become more complex, navigating the solution space becomes more
time-consuming. To speed up inference, Scallop (Huang et al., 2021) used top-k to prune
unlikely paths in their proof tree using output probabilities of deep neural networks (DNNs).
With PCs (as NPP) it is, however, difficult to select the correct k and instead, we go for top-
k%. It is based on the observation that for each query there are many possible solutions, but
only few of them are plausible. And during the training from these few only one Solution
thAt MatchEs the data (SAME). That is, SAME keeps k% of SLASH’s solutions to compute
(probabilistic) answers. This greatly speeds up inference, as illustrated in Fig. 3.

1. Code is available at https://github.com/ml-research/SLASH

581

https://github.com/ml-research/SLASH

Skryagin, Ochs, Dhami & Kersting

Figure 3: SAME helps SLASH to reduce training time: E.g., on the MNIST T3 task
per batch, SAME prunes unlikely outcomes, which reduces the training time of SLASH.
The more batches we have seen during the training, the more we learn which outcomes are
unlikely and can be pruned.

Moreover, SAME allows SLASH to scale to VQA, as implemented in SLASH in Fig. 2.
Here, every NPP gets object-detection outputs, in this case from the YOLO network (Red-
mon et al., 2016), as inputs and produces class conditionals for names, attributes, and
relations. A user defines a set of statements and rules in the form of a logic program.
Finally, given the query as in Fig. 2, SLASH gives the expected answer.

The present paper is a significant extension of a previously published conference pa-
per (Skryagin et al., 2022) and presents SAME and how to use it to scale SLASH to the
VQA. Further, we extend this previous work with a detailed ablation study: Empirical
results of the set prediction task carried out on the CLEVR dataset (Johnson et al., 2017),
the benchmark task of MNIST-Addition (Manhaeve et al., 2018), and Sudoku (Yang et al.,
2020) present the advantages coming with SAME.

In summary, we make the following contributions:

• introduce neural-probabilistic predicates,

• efficiently integrate answer set programming (ASP) with probabilistic inference via
NPPs within our novel DPPL, SLASH,

• introduce SAME to dynamically prune unlikely NPP outcomes, thus allowing a re-
duction in the complexity of computing potential solutions,

• effectively train neural, probabilistic and logic modules within SLASH for complex
data structures end-to-end via a simple, single loss term,

• show that the integration of NPPs in SLASH provides various advantages across
various tasks and data sets compared to state-of-the-art DPPLs and neural models.

These contributions demonstrate the advantage of probabilistic density estimation via NPPs
and the benefits of a “one system – two approaches” (Bengio, 2019) framework that can
successfully be used for performing various tasks and on many data types.

We proceed as follows. First, we introduce NPPs and how they can be queried via the
+/− notation. Next, SLASH programs are presented with the corresponding semantics and
parameter learning. Afterward, we discover SAME using top-k%. Before concluding, we
support our findings with experimental evaluation.

582

Scalable Neural-Probabilistic ASP

Neural-Probabilistic Predicates (NPPs)

NN PC NN σ(.)

Neural Pred.

PC

Prob. Pred.

Heterogeneous Data

Age Cap.gain Occupation Gender...

...

53
26

47

200000
40000

10000

F
F

M

Exec-manag.
Prof-specialty

Prof-specialty

Figure 4: NPPs come in various flavors: Depending on the data set and underlying
task, SLASH requires a suitable Neural-Probabilistic Predicate (NPP) to compute query-
dependent probability estimates. NPPs can be composed of neural and probabilistic mod-
ules, or (depicted via the slash symbol) only one of these two.

2. SLASH through NPPs and Vice Versa

We begin this section by first introducing the novel neural probabilistic predicates (NPPs)
framework. After this, we introduce our DPPL, SLASH, which easily integrates NPPs via
ASP with logic programming and end this section with the learning procedure in SLASH,
allowing us to train all modules via a joint loss term.

2.1 Neural-Probabilistic Predicates and Rules

Previous DPPLs, DeepProbLog (Manhaeve et al., 2018) and NeurASP (Yang et al., 2020),
introduced the Neural Predicate as an annotated-disjunction or as a propositional atom,
respectively, in order to obtain conditional class probabilities, P (C|X), from the softmax
function at the output of an arbitrary NN. As mentioned in the introduction, this approach
only allows for P (C|X) to be computed, but not P (X|C), P (C) or P (C,X). To overcome
this limitation, we introduce Neural-Probabilisitic Predicates (NPPs).

Formally, we denote with

npp (h(x), [v1, . . . , vn]) (1)

a Neural-Probabilistic Predicate h. Where (i) npp is a reserved word to label a NPP, and
(ii) h a symbolic name of either a PC, NN or a joint of a PC and NN. Fig. 4 (right) depicts
all three variants. Fig. 2 (right, ‘SLASH Program’-block) uses name for h. Additionally,
(iii) x denotes a “term” and (iv) v1, . . . , vn are the n possible outcomes of h. Following the
example of Fig. 2, the outcomes for name are (goat, rocks, . . . , clouds). A NPP abbreviates
a rule of the form c = v with c ∈ {h(x)} and v ∈ {v1, . . . , vn}. Furthermore, we denote
with Πnpp a set of NPPs of the form stated in (Eq. (1)) and rnpp the set of all rules c = v
of one NPP, which denotes the possible outcomes, obtained from a NPP in Πnpp, e.g.,
rname = {c = Goat, c = Rocks, . . . , c = Clouds} for the example depicted in Fig. 2. Rules
in the following form

npp (h(x), [v1, . . . , vn])← Body (2)

are used as an abbreviation for application to multiple entities, e.g., multiple object features
plus bounding boxes for the VQA task (cf. Fig. 2). Here, the Body of the rule is identified
by ⊤ (tautology, true) or ⊥ (contradiction, false) during grounding. Rules of the form Head
← Body with rnpp appearing in Head are prohibited for Πnpp.

583

Skryagin, Ochs, Dhami & Kersting

In this work, we use NPPs that contain PCs, which allow for tractable density estimation
and modelling of joint probabilities. The term PC (Choi et al., 2020) represents a unifying
framework encompassing all computational graphs that encode probability distributions and
guarantee tractable probabilistic modelling. These include Sum-Product Networks (SPN)
(Poon & Domingos, 2011), which are deep mixture models represented via a rooted directed
acyclic graph with a recursively defined structure. In this way, with PCs it is possible to
answer a much richer set of probabilistic queries, e.g. P (X,C), P (X|C), P (C|X) and P (C).

In addition to NPPs based purely on PCs, we introduce the arguably more interesting
type of NPP that combines a neural module with a PC. Here, the neural module learns
to map the raw input data into an optimal latent representation. The PC, in turn, learns
to model the joint distribution of these latent variables and produces the final probability
estimates. This type of NPP nicely combines the representational power of neural net-
works with the advantages of PCs in probability estimation and query flexibility. These
combined NPPs can be partially pretrained or trained end-to-end. In the VQA example,
we utilize a pretrained YOLO network with an MLP predicting class conditional probabil-
ities. In object-centric learning, we train a slot-attention module and PCs over the latent
representations end-to-end (see Sec. 4.4).

To make the different probabilistic queries distinguishable in a SLASH program, we
follow the mode declarations used in inductive logic programming (ILP), and denote the
input variable with + and the output variable with −. E.g., within the example of VQA
(cf. Fig. 2, ‘Query Q’ (right)), with the query name(+X,−C) one is asking for P (C|X)
with C being the class and X the object features. If we chose a PC as the underlying
network (c.f. Sec. 4.4 and 4.2) we can model the joint distribution P (X,C). Similarly, with
name(−X,+C) one is asking for P (X|C) and, finally, with name(+X,+C) for P (X,C).
In the case where no data is available, i.e, name(−X,−C), we are querying for the prior
P (C).

To summarize, a NPP consists of neural and/or probabilistic modules and produces
query-dependent probability estimates. Due to the flexibility of its definition, the term
NPP contains the predicates of previous works (Manhaeve et al., 2018; Yang et al., 2020),
but also the more interesting predicates discussed above. The specific flavor of a NPP
should be chosen depending on what type of probability estimation is required (cf. Fig 4).

2.2 SLASH: a Novel DPPL for Integrating NPPs

Now we have everything together to introduce SLASH, a novel DPPL which efficiently
integrates NPPs with logic programming.

2.2.1 SLASH Language and Semantics

We continue in the pipeline, Fig. 2, with the question of how the probability estimates of
NPPs may be used for answering logical queries, and begin by formally defining a SLASH
program.

A SLASH program Π is the union of Πasp, Πnpp. Where, Πasp is the set of propositional
rules (standard rules from ASP-Core-2 (Calimeri et al., 2020)), and Πnpp is a set of Neural-
Probabilistic Predicates of the form stated in Eq. (1).

584

Scalable Neural-Probabilistic ASP

Similar to NeurASP, SLASH requires ASP and, as such, adopts its syntax for the
most part, which includes neural probabilistic rules as defined in Eq. (2). Compared to
Prolog, ASP rarely goes into an infinite loop during solving and is therefore preferable as
a backbone. For example, the program p(X):-q(X). q(X):-p(X). query(p(a)). would not
terminate in Prolog, due to the solver trying to unroll endlessly, whereas ASP would result
in unsatisfiability. To illustrate, let us revisit the example of VQA as in Fig. 1. A YOLO
network detected three objects o1, o2 and o3 in the image. The task is to name each of the
objects as either goat, rock, . . . or clouds. The overall target here is to find an object goat:

obj(o1). obj(o2). obj(o3).

npp(name(O, [goat, rock, . . . , clouds]))← obj(O).

target(O)← name(+O, -goat).

Fig. 1 presents one further SLASH program for the task of VQA, exemplifying a set of
propositional rules and neural predicates.

Now, let us define the semantics of SLASH. To this end, we show how to integrate
NPPs into an ASP-compatible form to obtain the success probability for a query given
all potential solutions, i.e., stable models. A query is an ASP constraint of the form
← Body, i.e., it is a headless rule. To translate the program Π, the rules (Eq. (2)) will be
rewritten as follows:

1{h(x) = v1; . . . ;h(x) = vn}1. (3)

The ASP-solver should understand this as “Pick exactly one rule from the set”. After the
translation is done, we can ask an ASP-solver for the solutions for Π.

Next, let us assume that we have a query Q for which we want to compute the proba-
bility; keep in mind that NPPs introduce random choices. Since all the potential solutions
I |= Q (Q is true in I) for the query Q are mutually exclusive, there are possible worlds,
the probability PΠ(Q) of Q is the sum of probabilities PΠ(I) of each single solution, i.e.,
stable model of Q:

PΠ(Q) :=
∑
I|=Q

PΠ(I) . (4)

So, we are left with computing the probability PΠ(I) of a single solution I. Here, only
the NPPs are contributing to the probability; all other atoms are simply true and have the
probability 1. The (ground) NPPs, however, are also independent of each other. Conse-
quently, for each object c and random choice v, we can multiply together the probabilities
of c = v and normalize by the number of objects c:

PΠ(I) =

{∏
c=v∈I|rnpp

PΠ(c=v)

|I|rnpp |
, if I is pot. sol. of Π,

0, otherwise.
(5)

where I|rnpp is the subset of ground NPP, rnpp in the solution I, rnpp ⊆ I.
With the success probability PΠ(Q) of a single query at hand, the success probability

of a set of queries Q can naturally be written as

PΠ (Q) :=

l∏
i=1

PΠ(Qi) =

l∏
i=1

∑
I|=Qi

PΠ(I) , (6)

585

Skryagin, Ochs, Dhami & Kersting

since they are independent of each other. With the semantics specified, we are ready to
learn the parameters of SLASH programs.

2.2.2 Parameter Learning in SLASH

To estimate the parameters θ of a SLASH program Π(θ), we are following the learning
from entailment setting, as also used for DeepProbLog (Manhaeve et al., 2018). That is,
we estimate θ from a set Q of positive examples only, i.e., each training example is a
logical query that is known to be true in the SLASH program Π(θ). Thereby, Π(θ) =
Πasp(θ)∪Πnpp(θ) holds. Since Πasp(θ) has no weighted rules, i.e., PΠasp(θ) = 1, we want

to find optimal parameters θ for rnpp, i.e., the optimal NPP parameters. The reader will
recall that learning symbolic modules is ambiguous. E.g, in inductive logic programming
(ILP), see Cropper et al. (2022), the term stands for finding the rules best describing the
query. Hereafter, we are using the term in the sense of finding potential solutions satisfying
the given query (cf. previous subsection).

To achieve parameter learning in SLASH, we employ an additive loss function. The first
part is the entailment loss, i.e., the NPPs are fixed, and we maximize the success probability
of the query set Q. The second part concerns the NPPs (neural networks/ probabilistic
circuits) only. So, we want to maximize the probability given the data while the “logical”
part is fixed. Thus, the loss function takes the following form

LSLASH = LENT + LNPP , (7)

and we seek to minimize the loss, e.g., by running coordinate descent. Let us begin with
the NPP loss.

NPP loss – The aim of this loss function is to maximize the joint probability of

P
(XQ,C)
θ (xQ). To omit possibly vanishing values, we apply log(·) instead and define

LNPP := − log
(
P

(XQ,C)
θ (xQ)

)
= −

l∑
i=1

log(P
(XQ,C)
θ (xQi)) , (8)

where

• XQ are the random variables modeling the training set X associated with the set of
the queries Q,

• xQ are realizations of XQ associated with Q,

• P (XQ,C)(xQ) is the probability of the realizations xQ estimated by the NPP modelling
the joint distribution over the set XQ and C – the set of classes (the domain of the
NPP cf. Eq. (1)),

• and θ is the parameter set associated with the NPP.

Additionally, we derive the derivative of the NPP loss function, which will be called upon
during training with coordinate descent. Formally, we write

∂

∂θ
LNPP = −

l∑
i=1

1

P
(XQ,C)
θ (xQi)

· ∂
∂θ

(
P

(XQ,C)
θ (xQi)

)
. (9)

586

Scalable Neural-Probabilistic ASP

Now, we proceed with the entailment loss.
Entailment loss – We begin with Eq. (6). Dealing with probabilities, we might end

up with vanishingly small values due to the product. To resolve this, we apply log(·) to
both sides of the equation and obtain

log(PΠ(θ)(Q) =
l∑

i=1

log

∑
I|=Qi

PΠ(θ)(I)

 . (10)

Since our goal is to give feedback from the success log-probability Eq. (10) to our NPPs,
we multiply it with the log-probabilities of the NPPs, so that the result lands in the same
space

log(PΠ(θ)(Q)) · log
(
P (XQ,C)(xQ)

)
, (11)

which will turn out to be mathematically convenient later on in the proof of Thm. 2. More
precisely, we want Eq. (11) to resonate with every class encoded as a possible outcome vj
as defined in Eq. (1) and with every query Qi from Q

l∑
i=1

n∑
j=1

log(PΠ(θ)(Qi)) · log
(
P (Q,Cj)(xQi)

)
=

logLH
(
log(PΠ(θ)(Q)), P (XQ,C)(xQ)

)
=: LENT . (12)

In the above, we used the definition of the cross-entropy loss to compound every single
query i and outcome j to the single term of the entailment loss. We remark that this
definition of the loss function is valid regardless of the NPP’s form (NN with Softmax, PC
or PC jointly with NN). The only difference will be the second term, e.g., P (C|XQ)(xQ) or
P (XQ|C)(xQ)) depending on the NPP and task. This loss function aims at maximizing the
estimated success probability for a set of Queries. However, for NPPs to notice the feedback
Eq. (11) we must make Eq. (10) compatible with the log-probabilities of NPPs.

Gradients of the entailment loss – We denote the vector log
(
P (XQ,C)(xQ)

)
as

p and consider the derivative
∂ log(PΠ(θ)(Q))

∂p . As we will later on, this will serve as the
communication bridge between log(PΠ(θ)(Q)) and p. So, we write,

l∑
i=1

∂ log
(
PΠ(θ)(Qi)

)
∂p

× ∂p

∂θ
=

l∑
i=1

∂ log
(
PΠ(θ)(Qi)

)
∂θ

, (13)

reminding ourselves that ∂p
∂θ can be computed as usual via backward propagation through

the NPPs. If within the SLASH program, Π(θ), the NPP passes the data tensor through
a NN first, i.e., the NPP models a joint over the NN’s output variables by a PC, then we
rewrite Eq. (13) to

l∑
i=1

∂ log
(
PΠ(θ)(Qi)

)
∂p

× ∂p

∂θ
× ∂θ

∂κ
=

l∑
i=1

∂ log
(
PΠ(θ)(Qi)

)
∂θ

. (14)

Where κ is the set of the NN’s parameters and, again, we compute ∂θ
∂κ via backward

propagation.

587

Skryagin, Ochs, Dhami & Kersting

Algorithm 1 Gradient computation

Input: PΠ(c = vj), j = 1, . . . , n, set of I |= Q
1: PΠ(I)← compute pot sol prob(I) # cf. Eq. (5)
2: PΠ(Q)← compute query prob(PΠ(I)) # (:= κ) Normalization, cf. Eq (4)
3: grads← ∅
4: for every c = vj do # cf. Eq. (3)
5: grad← 0
6: for every pot. sol. I do
7: if I |= c = v then
8: grad← grad + (PΠ(I)/PΠ(c = v)) # (:= α) Reward
9: else

10: grad← grad− (PΠ(I)/PΠ(c = v′)) # (:= β) Penalty
11: end if
12: end for
13: grads← append(grads, grad/PΠ(Q))
14: end for
15: return grads

Now,
∂ log(PΠ(θ)(Q))

∂p is left to be determined. Thus, following the definition from NeurASP
(Yang et al., 2020), we write

∂ log
(
PΠ(θ)(Q)

)
∂p

:=

:=α︷ ︸︸ ︷∑

I:I|=Q,
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c = v)
−

:=β︷ ︸︸ ︷∑
I,v′:I|=Q,

I|=c=v′,v ̸=v′

PΠ(θ)(I)

PΠ(θ)(c = v′)

 ·
:=γ︷ ︸︸ ︷
1

PΠ(Q)
. (15)

Reading the right-hand side of this definition we recognize the three terms: Inside the
parentheses, from the reward α is the penalty β subtracted, and the result is normalized
with the probability of the query γ, cf. Eq. (4). As can be seen from the definition, running
inference is sufficient. And so, having defined the gradients in Eq. (15), we will examine
them. The following theorem shows the limit of the gradient vector.

Theorem 1 (Gradients’ Limit). Let Π(θ) be a fixed program with a given query Q.

Further, m denotes a training iteration, then the following holds for
∂ log(PΠ(θ)(Q))

∂p as defined
in (15): (

∂ log
(
PΠ(θ)(Q)

)
∂p

)
m

m→∞−−−−→

−1, . . . ,−1, 1︸︷︷︸
j

,−1, . . . ,−1

 .

Thereby, the index j corresponds to c = v and any other to c = v′, v ̸= v′.

Proof. W.l.o.g, we assume the program Π(θ) to entail a single NPP, and it can be called
upon more than once in a single rule rnpp. Besides, a NPP can converge “perfectly”, i.e.,
PΠ(θ)(c = v) = 1 and PΠ(θ)(c = v′) = 0 for v ̸= v′. To answer the question of how such

588

Scalable Neural-Probabilistic ASP

limit values are possible in the first place, we make the observation on the right-hand side
of (15), ∑

I:I|=Q
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v) · PΠ(θ)(c = v) +
∑

I,v′:I|=Q
I|=c=v′,v ̸=v′

PΠ(θ)(I)

PΠ(θ)(c=v′) · PΠ(θ)(c = v′) =

∑
I:I|=Q
I|=c=v

PΠ(θ)(I) +
∑

I,v′:I|=Q
I|=c=v′,v ̸=v′

PΠ(θ)(I) =
∑

I:I|=Q

PΠ(θ)(I) = PΠ(Q).

As reward, penalty, and normalization constant are defined before the theorem:

α :=
∑

I:I|=Q
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v) , β :=
∑

I,v′:I|=Q
I|=c=v′,v ̸=v′

PΠ(θ)(I)

PΠ(θ)(c=v′) , γ :=
∑

I:I|=Q

PΠ(θ)(I),

we conclude that
γ ≥ α− β and α+ β ≥ γ. (*)

Now, we consider the following case discrimination based on the training iteration k:

(i) For m = 0: At the start of the training, the probabilities of n outcomes are either
uniformly distributed (the probability of each outcome PΠ(θ)(c = vj), j ∈ 1, . . . , n
is the same) or there are small numerical differences. Here, we consider the first
possibility and the latter is identical to (ii). Since the probability for each outcome is
the same value, we conclude due to (*) that α = β and α−β

γ = 0 for the index j. In
case that the same NPP being called upon multiple times, an ASP solver will derive
potential solutions without consideration of symmetries. Consequently, we have to
swap the numerical values obtained in the previous case for α and β. Nonetheless,
we obtain the same gradient value for such a case, i.e., 0. For the rest of the indices,
α = 0 and all values being pulled to β. Hence, we obtain the negative gradient value
of −2β

γ for the rest of the indices.

(ii) For any 1 ≤ m <∞: At the index j - since 0 < γ ≤ 1 holds, and due to (*) we get

α− β ≤ γ | : γ ⇐⇒ α− β

γ
≤ 1. (**)

In case that the same NPP is called upon multiple times, we multiply (**) with −1
and obtain

−1 ≤ β − α

γ
.

For all other indices, we have −β
γ . If |β| > γ, then −β

γ < −1 occurs as well.

(iii) For m = ∞, if the NPP fully converged, then we have two cases to distinguish: The
index j and all other entries of the gradient’s vector. We know from Eq. (4) and (5)
that γ is equal to 1. Thus, we can focus entirely on α − β. We therefore conclude
that the entries of the gradient’s vector are 1− 0 = 1 for the index j and 0− 1 = −1
otherwise.

589

Skryagin, Ochs, Dhami & Kersting

Following the theorem, the training is done by the principle winner takes all if there
are more than two NPP’s outcomes, and zero-sum game otherwise. Hence, we are left with
the sign function of the gradient vector, and the convergence in itself, can be thought of
as a gradient clipping. The results presented by Yang et al. (2020) show that this works
on some problems with little or no loss of accuracy, cf. Seide et al. (2014). Extrapolating
from the gradient’s vector limit, we see only one outcome to be rewarded, and so only one
of the set of all potential solutions matching the data per NPP’s call. This observation is
the heart of the next section and will be discussed in detail.

Now, it is of great interest to derive the gradients of the entailment loss LENT (12) so

that the expression
∂ log(PΠ(θ)(Qi))

∂p × ∂p
∂θ from the left-hand side of Eq. (13) becomes amenable

to back-propagation. For this purpose, we formulate the

Theorem 2 (Gradient with respect to entailment loss). The average derivative of
the logical entailment loss function LENT defined in Eq. (12) can be estimated as follows

1

l

∂

∂p
LENT ≥

1

l

l∑
i=1

∂ log(PΠ(θ)(Qi))

∂p
· log(P (XQ,C)(xQi)).

Proof. We begin with the definition of the cross-entropy for two vectors yi and ŷi:

−H(yi, ŷi) := −
n∑

j=1

yij · log
(

1

ŷij

)
= −

n∑
j=1

yij · log(1)︸ ︷︷ ︸
=0

−yij · log(ŷij)

 =
n∑

j=1

yij · log(ŷij).

Hereafter, we substitute

yi = log(PΠ(θ)(Qi)) and ŷi = P (XQ,C)(xQi),

and thus obtain −H(yi, ŷi) =

−H
(
log(PΠ(θ)(Qi)), P

(XQ,C)(xQi)
)
=

n∑
j=1

log(PΠ(θ)(Qi)) · log
(
P (XQ,Cj)(xQi)

)
. (16)

We remark that n represent the number of classes defined in the domain of an NPP. Now, we
differentiate the equation (16) with the respect to p depicted as in Eq. (15) to be the label
of the probability of an atom c = vj in rnpp, denoting PΠ(θ)(c = vj). Since differentiation
is a linear operation, the product rule is applicable directly:

− ∂

∂p
H (yi, ŷi) =

n∑
j=1

[
∂ log(PΠ(θ)(Qi))

∂p
· log

(
P (XQ,Cj)(xQi)

)
+

log(PΠ(θ)(Qi)) ·
∂ log

(
P (XQ,Cj)(xQi)

)
∂p

]
. (17)

We want to avoid considering the latter term of log(PΠ(θ)(Qi)) ·
∂ log

(
P

(XQ,Cj)(xQi
)
)

∂p because
it represents the rescaling (log(PΠ(θ)(Qi)) · 1) and to keep the first since SLASH procure

590

Scalable Neural-Probabilistic ASP

∂ log(PΠ(θ)(Qi))

∂p following Eq. (15). To achieve this, we derive the following lower bound of
the equation from above:

− ∂

∂p
H (yi, ŷi) ≥

n∑
j=1

∂ log(PΠ(θ)(Qi))

∂p
· log

(
P (XQ,Cj)(xQi)

)
. (18)

Furthermore, under i.i.d assumption we obtain from the definition of likelihood

LH(y, ŷ) =
l∏

i=1

LH(yi, ŷi),

and from this negative likelihood coupled with the knowledge that the log-likelihood of yi
is the log of a particular entry of ŷi

LENT = logLH(y, ŷ) =

l∑
i=1

logLH(yi, ŷi) =

l∑
i=1

n∑
j=1

yij · log(ŷij)

=
l∑

i=1

 n∑
j=1

yij · log(ŷij)

 = −
l∑

i=1

H(yi, ŷi).

Finally, applying inequality (18), we obtain the following estimate

1

l

∂

∂p
LENT = −1

l

l∑
i=1

∂

∂p
H(yi, ŷi) ≥

1

l

l∑
i=1

∂ log(PΠ(θ)(Qi))

∂p
· log

(
P (XQ,C)(xQi)

)
.

Also, we note that the mathematical transformations listed above hold for any type of
NPP and task dependent queries (NN with Softmax, PC or PC jointly with NN). The only
difference will be the second term, i.e., log(P (C|XQ)(xQi)) or log(P (XQ|C)(xQi)) depending
on the NPP and task. An NPP in the form of a single PC modeling the joint distribution
over XQ and C was depicted in the example.

In summary, we have covered the parameter learning within SLASH since the gradients
for both LNPP and LENT have been derived, and thus, know the gradients of LSLASH .
Importantly, with the learning schema described above, it is now possible, with SLASH, to
simply incorporate specific task and data requirements into the logic program. And we do
not require a novel loss function for each individual task and data set. The training loss,
however, remains the same.

3. Scaling SLASH with SAME

In the following, we focus on the potential solutions I |= Q. Already, according to Eq. (4),
we know that the probability of a query is the sum of the probabilities of all potential
solutions. However, the question of how many of them match the data x belonging to the
query Q remains. Discussing Thm. 1 (Gradients’ Limit), we saw that gradients converge to
reward only one outcome vj .

591

Skryagin, Ochs, Dhami & Kersting

We examine this observation on the digit addition task as it was originally proposed by
Manhaeve et al. (2018). The goal is to train an NPP to recognize digits given the sum of
the two. For example, consider the query sum2(, ,10). The potential solutions for this
query are:

sum2(1, 9, 10), sum2(2, 8, 10), sum2(3, 7, 10), sum2(4, 6, 10), sum2(5, 5, 10),

sum2(6, 4, 10), sum2(7, 3, 10), sum2(8, 2, 10), sum2(9, 1, 10).

From the above, only sum2(3,7,10) corresponds to the given data. This means we always
generate all potential solutions for the given query, although only one corresponds to the
data assigned to the query. In the following, we formulate SAME (Solution thAt MatchEs
the data), a technique to focus only on such potential solutions over time and dynamically
reduces the computation time spent deriving all potential solutions. In the following, we
abbreviate with SAME the usage of SAME within SLASH.

For every query Q SLASH answers, it produces a set of all potential solutions I. With
the growing size of NPP’s domain n, I grows exponentially. Having multiple NPPs with
considerable domain size, we might end-up with a computationally infeasible set I to obtain.

During training, we observe that the probability distribution PΠ(c = vi) as defined below
Eq. (1) becomes skewed independent of the chosen inference type through +/− notation for
every data entry x assigned to the query Q. I.e., with the progressing training’s iteration,
fewer and fewer NPP’s outcomes vi contain the vast majority of the critical mass, or more
formally ∑

j

PΠ(c = vj) ≤ t. (19)

Thereby, t represents some preset threshold of, e.g., 99%. Furthermore, we know that at
the beginning of training PΠ(c = vj) =

1
n applies for all vi, 1 ≤ j ≤ n. Thus, the disjunction

in Eq. (3) consists of n elements and I0 = I. Repeatedly applying Eq. (19), we expect the
aforementioned disjunction to entail fewer elements with every further training iteration.
I.e., there exists an order such that∑

e

PΠ(c = ve) <
∑
j

PΠ(c = vj) with j ̸= e, 1 ≤ j, e ≤ n (20)

We refer to the Algorithm 2 of SAME in pseudocode form as a summary of the con-
siderations made. It depicts how SAME is used when computing all potential solutions.
Consequently,

I0 ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Im (21)

is a formal description of our expectations, and |Im| = 1 for m → ∞. I.e., among all
potential solutions, there exists only one potential solution aligning the data with the query.
Together with Eq. (7) and (19) we formulate the following theorem.

Theorem 3 (Convergence of SAME). Eq. (21) holds.

Proof. We follow the principal of contraposition. W.l.o.g., there exists m ∈ N such that
Im ⊆ Im+1 holds and not in contrary Im ⊇ Im+1. I.e., the set of the potential solutions in an
m+1 iteration entails more elements than the set in the previous iteration, or more formally

592

Scalable Neural-Probabilistic ASP

Algorithm 2 Potential Solutions with SAME

Input: PΠ(c = vj), j = 1, . . . , n, t, Πasp

1: Πnpp ← ∅ # initialize the set of NPP, cf. Eq. (3)
2: for every c = vj do
3: probsort ← sort(PΠ(c = vj))
4: # add indices of outcomes vj until

∑
j PΠ(c = vj) ≤ t with SAME

5: idx← get idx(probsort, t)
6: # then truncate disjunction 1{h(x) = v1; . . . ;h(x) = vn}1. accordingly
7: Πnpp ← extend(Πnpp, get disj(idx))
8: end for
9: Π = Πnpp ∪Πasp

10: I ← asp solver(Π)
11: return I

|Im+1| ≥ |Im|. Furthermore, if this tendency remains to be true for every subsequent
iteration, we obtain

Im ⊆ Im+1 ⊆ Im+2 ⊆ . . . ⊆ Im+s with s ∈ N.

Since any Im+s cannot entail more entries than the set of all potential solutions, we conclude

Im+s → I = I0 for s→∞. (22)

We have shown that SAME would add more and more potentials solutions until it reaches
the upper bound of all potential solutions which coincide with the query Q. All of the above
is true for any arbitrary m ∈ N, thereby completing the proof.

Following Thm. 3 (Convergence of SAME), we should choose the threshold t (cf. Eq. 19)
to be as high as possible, to guarantee |Im| = 1 for m → ∞ to hold. Thus, setting t to
99% is a good heuristic, as smaller values for t might be insufficient for having the optimal
performance. In the next section, we provide empirical evidence for this phenomenon and
for the advantages SAME’s utilization brings.

4. Experimental Evaluations

Previously (Skryagin et al., 2022), we showed that the main advantage of SLASH lies in the
efficient integration of any combination of neural, probabilistic and symbolic computations.
This work extends these findings with new experimental evaluations for SLASH with SAME.
In particular, we show how SAME is essential for using SLASH for VQA. Afterward, we
conduct an ablation study to evaluate the advantages coming from this combination. For
this, we revisit the MNIST addition as conducted by Huang et al. (2021), Sudoku by
Yang et al. (2020), and the set prediction task as proposed by Locatello et al. (2020). For
different experiments, we had to choose different values for the threshold t. In particularly,
for Sudoku, we choose 99.9999% to achieve the best possible performance. For the other
experiments, 99% was already sufficient for optimal solving.

593

Skryagin, Ochs, Dhami & Kersting

target(O0) :- name(+O0, -N0),
oa rel(is used for, N0,

controlling flows of traffic).

(a) Traffic lights example from VQAR C2

target(O2) :- relation(+O2, +O1, -of),
name(+O1, -animal), name(O1, object),

relation(+O0, +O1, -of).

(b) Flock of sheep example from VQAR C5

Figure 5: VQAR example images and programmatic queries: Bounding boxes are
produced by a YOLO network and answer objects are marked with green. On the right, the
name(O1, object) predicate is not annotated with the +/− notation and has to be derived
via the knowledge graph.

In the ablation study experiments, we present the average over five runs with different
random seeds for parameter initialization. For VQA experiments, we used the same single
seed to initialize the NPP’s parameters following the setting of Huang et al. (2021). We
refer to App. A for each experiment’s SLASH program, including queries, and App. C for
a detailed description of hyperparameters and further experimental details.

4.1 Visual Question Answering

In VQA, a model should produce answers to questions about visual scenes. These questions
require a range of capabilities to infer the correct answer. For example, to answer the
question “How many red objects are in the scene?” a model has to be able to detect and
count red objects. In this experiment, we show how SLASH can be applied to VQA to
answer questions that require reasoning.

As of now, few works approach VQA using logic-based DPPLs (Eiter et al., 2022; Huang
et al., 2021). Both of these works open up the question of how ASP can be used in an end-
to-end trainable setting; for example, questions about scenes from real-world images, such
as in the VQAR dataset proposed by Huang et al. (2021). We will now investigate how to
apply SLASH to the VQAR dataset.

Task Description – The VQAR dataset consists of 80.178 real-world images. Fig. 1
gives an overview of the task. Each image was fed through a pretrained YOLO Network to
obtain bounding boxes and feature maps for recognized objects. Each image has a scene
graph (SG), which can have 500 object names, 609 attributes and 229 object relations
among the objects. All images share a knowledge graph (KG) encoding 3.387 entries as
tuples and triplets, and six rules to traverse. Both graphs are represented in the form of
a logic program. There are 4M programmatic queries and answer pairs encoding object

594

Scalable Neural-Probabilistic ASP

(a) Data efficiency of SLASH with SAME
and Scallop on different dataset sizes.

Train → 10k C2 50k Call

Test ↓ Scallop SAME Scallop SAME

1k C2 76.50 77.76 84.34 79.26
1k C3 76.48 73.75 81.97 72.95
1k C4 77.00 67.41 80.90 69.50
1k C5 79.30 68.87 83.76 69.33
1k C6 76.98 64.86 82.61 63.18
5k Call 77.25 70.52 82.72 70.90

(b) Performance of SLASH with SAME and Scallop
on different clauses lengths.

Figure 6: Performance of SLASH on VQAR: results on the data efficiency test (a) and
generalization test for different clause lengths (b) trained on C2 (left) and Call (right).

identification questions. The queries’ difficulty varies, ranging from two to six occurring
clauses (C2 to C6), and for each image, ten query answer pairs exist for each clause length.
Fig. 5 depicts two examples of VQAR from C2 and C5. In Fig. 1, next to the programmatic
queries are their corresponding natural language questions to be found. Similarly to Huang
et al. (2021), we argue that this work focuses on enabling reasoning for VQA, and as such,
we use the programmatic form as input. Some works, such as Yi et al. (2018), translate
from natural language to programmatic queries. We leave this for future work.

Approach by SAME – The task is formulated as a multi-label classification task.
The feature maps, bounding boxes, the entire knowledge graph and the programmatic query
serve as input to predict the objects that answer the programmatic query. Fig. 2 shows
the SLASH pipeline for VQA. In our setup, three MLP classifiers are used as NPPs to
predict names, attributes, and relations and are trained end-to-end. All three are of the
same architecture (cf. App. C.4) as defined by Huang et al. (2021). The NPPs outcomes
form the scene graph and build the SLASH program with the KG and the query. The VQA
task, in itself, exposes the limits of DPPLs without approximate reasoning. The complexity
of the real world is so high that the complete enumeration of all proofs/models is beyond
reach. We use a combination of SAME, CLINGO’s show statements and iterative solving
to deal with the complexity of the task. We refer the interested reader to the App. B, where
we look in-depth into our program encoding. In the following, we compare SLASH using
SAME with Scallop.

Results – Fig. 6a presents insights on data efficiency: The recall@5 of test queries
after training with 10, 100, 1k and 10k training samples on C2. We see that SAME achieves
greater data efficiency than Scallop due to the flexible number of potential solutions.

In Tab. 6b, the recall values are displayed for varying clause lengths to demonstrate our
approach’s generalizability and overall performance. The left side shows results for training
on 10k samples on C2 and the right side on Call. SAME performs similarly to Scallop
(Huang et al., 2021) on C2 for both settings. As the solution space grows exponentially
with the complexity of the questions, we observe that the performance of SAME decreases
compared with C2 on more complex tasks. Comparing Scallop’s results with SAME, i.e.,

595

Skryagin, Ochs, Dhami & Kersting

Neural Task SLASH top-k SAME
Model k=1 k=3 k=5 k=10

DNN T1 98.80 98.68 98.81 98.60 98.69 98.56
T2 98.85 98.81 98.76 98.68 98.68 98.82
T3 98.75 98.77 98.77 98.74 98.77 98.71

PC T1 95.29 74.89 70.25 79.89 87.59 95.19
T2 95.26 70.12 64.23 64.42 71.11 94.99
T3 95.11 30.55 41.03 31.79 32.96 94.94

Table 1: Regardless of how complex the task is, it is harder to choose the cor-
rect k in top-k than for top-k% for PCs: Accuracy Comparison between top-k and
SLASH with and without SAME. We compare the method on three different Tasks, T1-T3:
sum2(, , 10) sum3(, , ,15) sum4(, , , ,17).

top-99%, Huang et al. (2021) use top-10 for each programmatic query; Scallop features
directly weighted rules, while SLASH would have to emulate such rules. SLASH uses
CLINGO as the underlying solver to produce potential solutions, which are then used to
compute a query’s success probability. Since we assume the underlying solver to be given,
we modify the program to be forwarded to the solver rather than modifying the solver itself.
Consequently, we treat the solver as an “off-the-shelf” tool. On the other hand, weighted
rules would allow us to navigate the solution spaces more efficiently and solve more complex
queries, such as C6.

In summary, the experimental results show that SLASH scales with SAME to VQA.
Next, we study the scalability achieved by SAME as an ablation study.

4.2 Scalability of SLASH

Inspired by Huang et al. (2021), we explore how using different subsets of all potential
solutions affects the performance and scalability of SLASH on the MNIST addition task.

In the task of MNIST-addition (Manhaeve et al., 2018), the goal is to predict the sum of
two images from the MNIST dataset (LeCun et al., 1998b), presented only as raw images.
During test time, however, a model should classify the images directly. Thus, the model
does not receive explicit information about the depicted digits and must learn to identify
digits via indirect feedback on the sum prediction. Using more than two images makes the
task significantly harder, as an exponentially growing number of digit combinations has to
be considered. Similar to the setup of Scallop (Huang et al., 2021), we test on three different
difficulty levels to evaluate the model’s scaling capabilities. The difficulty ranges from task
T1 with two images sum2(, ,10), to task T3 with four images sum4(, , , ,17). We
use a PC and a DNN as NPP for the same settings.

The DNN used is the LeNet5 model (LeCun et al., 1998a). When using the PC as NPP,
we have extracted conditional class probabilities P (C|X) by marginalizing the class variables
C to acquire the normalization constant P (X) from the joint P (X,C), and calculating
P (X|C). The models using the NN architecture converge after one or two epochs and only
get minor improvements in accuracy thereafter. For the PC architecture, the convergence

596

Scalable Neural-Probabilistic ASP

Accuracy after last Epoch Average Time per Epoch
Method T1 T2 T3∗ T1 T2 T3∗

Scallop top-10 98.95 99.12 97.47 54m:10s 5h:39m:53s 21h:10m:0s
DeepProbLog 98.50 98.75 98.23 8m:3s 15m:36s 34m:54s
DeepStochLog 96.96 97.49 97.54 1m:23s 5m:49s 44m:27s
NeurASP 98.05 98.42 98.03 3m:13s 32m:26s 15h:28m:51s

SLASH-DNN 98.80 98.85 98.75 24s 1m:42s 51m:49s
SLASH-PC 95.29 95.26 95.11 1m:9s 2m:27s 52m:22s
SLASH-DNN top-10 98.69 98.68 98.77 25s 1m:3s 25m:2s
SLASH-PC top-10 87.59 71.11 32.96 1m:8s 1m:47s 26m:52s

SAME-DNN 98.56 98.82 98.71 17s 17s 1m:35s
SAME-PC 95.19 94.99 94.94 1m:3s 1m:23s 16m:40s

Table 2: SAME scales well with growing task complexity: Test accuracy in % and
runtime comparison. The runtime is averaged over ten epochs for all methods. Light green
indicates high accuracy or low time, while blue stands for the opposite. (∗) Please note,
that since training Scallop and NeurASP would have taken too long, they were stopped
after one epoch and therefore did not converge as the other DPPLs.

takes more epochs and increases with the task difficulty. We report test accuracies after 10
and 20 epochs for the DNN and PC architecture, respectively. Tab. 3 in App. C.1 shows
the convergence of SLASH with PC as NPP on different tasks.

Performance using subsets of all potential solutions – First, let us look at
what happens if we prune away some potential solutions given our NPP probabilities. We
compute the potential solutions in three ways: SLASH with all potential solutions, SLASH
with a top-k variant (SLASH-top-k) and SLASH with SAME. For top-k, we use CLINGO’s
minimization constraints to put the NPP output probabilities in the logic program, cf.
App. A. The solver then gives us the potential solutions sorted by their probability PΠ(θ)(I),
from which we keep the k most probable solutions. For an example program for SLASH
top-k, see App. A.

Tab. 1 lists the results for the test on partial solutions. SLASH and SAME achieve
almost identical or slightly worse performance on all tasks and different NPPs. With neural
networks as our NPP, SLASH-top-k achieves similar performance for all k’s compared to
SLASH. Using PCs as NPP, we get a worse performance. With increasing task difficulty, we
lose most of the predictive performance of our model. With a high k on T1, most potential
solutions are still covered, resulting in only a small drop in accuracy. For example, on T1
there are nine ways to add two digits to ten, which is the query with the most potential
solutions. With increasing task difficulty, though, many more potential solutions are not
covered when selecting k=10 as in Scallop Huang et al. (2021), since there are 73 for T2 and
633 for T3. At the beginning of training, our model gives us uniform predictions over all
digits, as it has not learned anything yet. Therefore, the randomness of model initialization
influences which solution falls into the top-k range. If we prune the true solution, our
model cannot learn to detect the correct class with that query, and it has to rely on other
queries that might have the true solution in the top-k range. Empirically, we see that with

597

Skryagin, Ochs, Dhami & Kersting

Model Epochs T1 T2 T3

SAME-DNN 1 21s 39s 13m:37s
1-10 17s 17s 1m:35s
2-10 17s 15s 14s

SAME-PC 1 1m:14s 2m:32s 53m:26s
1-20 1m:3s 1m:23s 16m:40s
2-20 1m:2s 1m:15s 12m:35s

Table 3: Due to pruning, SAME gets faster in later iterations: The average time
per epoch is shown for different epochs.

DNNs, we can still learn to detect digits, while with PCs, we cannot. We argue that the
DNN architecture is more robust to these incorrect inputs and, over time, accumulates an
increasing proportion of the correct digits in the top-k selection because it is better suited
for object detection equipped with the visual inductive biases of convolutional layers. PCs,
on the other hand, learn false classes at the beginning and reinforce the false prediction by
repeatedly predicting them as most likely.

In contrast, SAME works on both PCs and DNNs as it only prunes certainly unlikely
options. At first, we do not prune anything, and over time, after learning, we can safely
regard the unlikely solutions, which explains why SAME is the better choice for both NNs
and PCs.

SAME reduces training time by pruning unlikely outcomes – After seeing
that SLASH with SAME achieves on-par performance, we now want to look at the time
savings we get by using it. Tab. 2 shows the average training time per epoch and the test
accuracy. We provide results for other state-of-the-art DPPLs: Scallop (Huang et al., 2021),
DeepProbLog (Manhaeve et al., 2018), its cousin DeepStochLog (Winters et al., 2022), and
NeurASP (Yang et al., 2020). These DPPLs again use the LeNet5 architecture (LeCun
et al., 1998a). For Scallop and NeurASP, we report the accuracy after one epoch on T3,
as the training time for ten epochs would take almost a week. NeurASP and SLASH both
use CLINGO as their ASP solver. On T1, the difference in speed can mainly be explained
by batch-wise computations employed in SLASH, while NeurASP processes one query at
a time. On the harder tasks where the solution space grows exponentially, we see that
SAME helps to accelerate the solving process, while NeurASP still has to evaluate the
whole solution space by enumerating all stable models.

SLASH with and without SAME achieves state-of-the-art accuracy similar to the other
models on all task difficulties using the same DNN architecture. We further observe that
the test accuracy of SLASH with a PC NPP is slightly below the other DPPLs. However,
this may be because a PC, compared to a DNN, is learning a true mixture density rather
than just conditional probabilities. Moreover, it is a question of engineering, and optimal
architecture search for PCs, e.g., for computer vision, is an open research question.

Regarding training time, we see that top-k yields small improvements. With SAME, we
improve the training time by a huge fraction when considering numerous potential solutions.
For example, on T3 with NNs, we only need 3% of SLASH’s original training time over 10

598

Scalable Neural-Probabilistic ASP

(i) Accidentify of (ii) Accidentify of (iii) Accidentify of

Midentify Midentify + ΠSudoku\r Midentify + ΠSudoku

train samples NeurASP SAME NeurASP SAME NeurASP SAME avg. outcomes

15 15 38 49 59 71 68 99.43
17 31 84 62 93 80 96 87.05
19 72 96 90 99 95 99 85.36
21 85 97 95 99 98 100 84.57
23 93 100 99 100 100 100 83.05

Table 4: End-to-end training with SLASH improves data efficiency on Sudoku:
Shown are accuracies in % of (i) the perception module without any corrections, (ii) cor-
rected by the three Sudoku constraints (unique values per column, row, and block) and (iii)
fulfilled Sudoku constraints plus the corrected grid has a solution. Yang et al. (2020) showed
that ASP improves the pretrained perception module with constraints. Additionally, end-
to-end training of the module with SLASH yields bigger improvements in data efficiency.
Furthermore, with SAME, we consider exclusively the solutions aligning with perception
and the average number of outcomes grows even smaller the more data is accessible for
training.

epochs (see Fig. 3). Tab. 3 gives a more detailed overview of SLASH training times with
SAME. Interestingly, after one epoch of training, the average runtime per epoch for epochs
2-10 is the same for all three difficulties for the DNN, as the model converges for the most
part after the first epoch. It is even a bit faster on T3 because the number of queries is less
on the T3 dataset (60k samples/number of images per query).

These evaluations, in summary, show that SAME is an efficient extension of SLASH
which saves a lot of computing resources at the cost of tiny to no differences in performance.

4.3 Correcting Sudoku boards with SAME

In this section, we consider solving a Sudoku puzzle, where the board configuration must
first be extracted from an input image as proposed by Yang et al. (2020). Within the
pipeline, a neural network first predicts the initial configuration of a 9×9 Sudoku grid,
which is then corrected and solved by ASP.

Using SAME, we use the program for Sudoku (ΠSudoku) originally proposed by Yang
et al. (2020) (see Fig. 11). First, we train the perception module, which we call Midentify,
end-to-end within SLASH using SAME. During test time, we use SAME as well to reduce
the considered outcomes. Please note that using SAME during training is not necessary,
since we supervise each cell’s outcome. To this end, we employ constraints encoding the
expected value for each grid cell and set the training time window for 3k epochs. Second,
the proposed three constraints (unique numbers per row, column, and block) are used to
correct the outputs of the perception module for testing upon training completion. We
measure the accuracy of the perception module (denoted with Accidentify of Midentify)
for the whole Sudoku board represented within the image at once, i.e., a prediction is
counted as one if and only if every cell’s prediction is correct. Next, we are interested in
the accuracy derived by correcting the perception with ASP through the three constraints

599

Skryagin, Ochs, Dhami & Kersting

(unique numbers per row, column, and block), but not checking if the predicted board offers
a correct solution (Accidentify of Midentify + ΠSudoku\r). If, for example, in the first row,
digit 2 appears twice, the solver will check which is the second most likely solution, and if
it fulfills all constraints, choose this as the correct number. The rule r corresponds to line
6 of the program (ΠSudoku) enlisted in Fig. 11. The line ensures a number of fills to each
empty cell. Lastly, we include r to test additionally if the predicted board fulfills all three
constraints and offers a unique solution (Accidentify of Midentify + ΠSudoku).

Tab. 4 shows the results of our approach compared with NeurASP. In the experimental
setup, Yang et al. (2020) pretrain the perception module using different amounts of images
representing the initial Sudoku configuration. They employ minimization constraints to
correct the perception module to find the most probable stable model that aligns with the
Sudoku constraints.

The results indicate that training end-to-end in SLASH with SAME greatly improves
data efficiency. Using 17 images for training allows us to achieve 53% improvement in the
predictive performance of the perception module. Further, correcting the perception model
improves the predictive performance, as shown by Yang et al. (2020). The corrections made
by NeurASP and SAME are similar. Nonetheless, SAME needs to consider only a fraction
of the possible outcomes. In NeurASP, every possible outcome (810 in total) is annotated
with a minimization weight from the probability provided by the perception module. Given
all outcomes and their weights, the ASP solver must decide which is the likeliest model. In
contrast, SAME simplifies this process by considering only the most likely outcomes given
the perception module. For example, when using the model training with 17 samples, the
ASP solver predicts a high probability for most of the 81 cells. In the last column, the value
of 87.05 indicates SAME considers on average around (87.0581 ≈)1.07 outcomes instead of 10
per cell as possible corrections by ASP. Furthermore, having more training samples, SAME
improves the predictive performance while reducing the average number of outcomes for
consideration. Thus, SAME works as intended, as it only considers outcomes that align
with the perception from DNN.

4.4 Object-centric learning

Now, we turn to a very different task of object-centric set prediction. We presume that
recent advancements in object-centric learning (Greff et al., 2019; Lin et al., 2020; Locatello
et al., 2020) can be further improved by integrating such neural components into DPPLs
and adding logical constraints about objects and their properties. Similarly, we want to
find out how much SAME speeds up SLASH possibly without loss of performance.

For set prediction, a model is trained to predict the discrete attributes of a set of objects
in an image (cf. Fig. 2 in the top-left corner for an example CLEVR image). The difficulty
therein is that the model must match an unordered set of corresponding attributes of various
objects with its internal representations of the image.

The slot attention module introduced by Locatello et al. (2020) allows for an attractive
object-centric approach to this task. Specifically, this module represents a pluggable, dif-
ferentiable module that can be easily added to any architecture. Through a competitive
softmax-based attention mechanism, the model can enforce the binding of specific parts of
a latent representation into permutation-invariant, task-specific vectors called slots.

600

Scalable Neural-Probabilistic ASP

Figure 7: SLASH can converge faster: Average Precision on ShapeWorld4 (left) and
CLEVR (right). SLASH converges faster on ShapeWorld4 compared to the Baseline. During
training, we observe temporary crashes in AP, which get smaller over time (see zoomed
windows). Furthermore, the standard deviation is much smaller for SLASH than for the
baseline. On CLEVR, all three models converge similarly after roughly 200 epochs. SLASH
performs slightly better than SAME, which, in turn, performs a little better than the
Baseline.

We train SLASH with and without SAME based on NPPs consisting of a shared slot
encoder and separate PCs, each modelling the mixture of latent slot variables and the
attributes of one category, e.g., color. For each dataset, ShapeWorld4 and CLEVR, we
have four NPPs in total. Finally, the model is trained via queries exemplified in Fig. 14 in
App A. We refer to this configuration as SLASH Attention.

We compare SLASH Attention to a baseline of slot attention encoder using single mul-
ticategorical MLP and Hungarian loss to predict object properties from the slot encodings
as in (Locatello et al., 2020). The key difference between these two models lies in the
employed logical constraints in SLASH Attention. In their work, Locatello et al. (2020)
utilize a single MLP trained via Hungarian loss, i.e., they assume shared parameters for
all attributes. In comparison, in SLASH attention, we make an independence assumption
about the parameters for the object attributes and encode this via logical constraints. We
refer to App. A for the program.

One limitation is that matching objects to slots has n! possible assignments. To overcome
this, we adopt a similar strategy to external functions in CLINGO. We use Hungarian
matching (Kuhn, 1955) and make the resulting assignments a part of the logic program.
The Hungarian matching algorithm scales polynomial with time complexity of O(n3). This
enables SLASH for training on CLEVR, which can contain up to ten objects per image.
For images containing an order of magnitude more objects, the matching might become a
bottleneck again, and we leave it for future work. The results of these experiments can be
found in Tab. 5.

On ShapeWorld4, we observe that the average precision after convergence on the held-
out test set with SLASH Attention is greatly improved to that of the baseline model.
More interesting, SAME provides the best results in this setting while having the smallest
deviation, cf. Fig. 7 (left). ShapeWorld4 has significantly fewer data entries than CLEVR,

601

Skryagin, Ochs, Dhami & Kersting

Accuracy Time
Method ShapeWorld4 CLEVR ShapeWorld4 CLEVR

Slot Att. 85.25 90.21 2h:36m 1d:2h:26m
SLASH 94.98 93.47 1d:3h:53m 6d:16h:49m
SAME 95.21 92.50 15h:29m 5d:6h:24m

Table 5: SLASH improves upon Slot Attention: Test average precision and training
times for the Slot Attention baseline and SLASH with and without SAME.

which may account for the huge improvement in performance with SLASH Attention. This
is evidence that we are moving closer to knowledge-rich AI. Additionally, we observe that
SLASH Attention reaches the average precision value of the baseline model in much fewer
epochs. On CLEVR, this tendency also holds, but the difference in performance is smaller,
but we still get around 2-3% more average precision with SLASH and SAME.

Regarding the training times, we observed that in the case of ShapeWorld4, using SAME
allows truncating the training window by 44.47%, compared to the results of SLASH
without SAME. For CLEVR, we obtained a solution and are getting it 21.4% faster thanks
to SAME.

These observations suggest that SAME applies to any form of NPPs and is a good
step towards unraveling the solving bottleneck to lift the symbolic overhead. Nonetheless,
there is a difference in the number of learnable parameters between the neural baseline and
SLASH attention. Namely, SLASH attention consists of four PCs, for which the time spent
on forward- and backward-pass is higher compared to the single multicategorical DNN used
in the slot attention module. We refer to App. C.5 for in-depth discussion. Finally, we
draw attention to the fact that the symbolic overhead is a direct result of all DPPLs under
consideration using the CPU for high-level reasoning, while low-level perception is based on
the GPU. To further reduce the symbolic overhead, tight integration of solving with neural
processing may be a promising research direction.

Summary of Empirical Results. All empirical results together demonstrate that the
expressiveness and flexibility of SLASH are highly beneficial and improve upon the state-
of-the-art: One can freely combine what is required to solve the underlying task — (deep)
neural networks, PCs, and logic. The experiments demonstrate SAME to be the natural
extension of SLASH. Further, the results indicate that utilization of SAME comes with a
tiny, if any, performance loss in comparison to the analytical weighted model counting.

5. Related Work

Neuro-Symbolic AI can be divided into two lines of research, depending on the starting
point, though both have the same final goal: To combine low-level perception with logical
constraints and reasoning. A key motivation of Neuro-Symbolic AI (d’Avila Garcez et al.,
2009; Mao et al., 2019; Hudson & Manning, 2019; d’Avila Garcez et al., 2019; Jiang &
Ahn, 2020; d’Avila Garcez & Lamb, 2023) is to combine the advantages of symbolic and
neural representations into a joint system. This is often done in a hybrid approach where
a neural network acts as a perception module that interfaces with a symbolic reasoning

602

Scalable Neural-Probabilistic ASP

system, e.g., Mao et al. (2019), Yi et al. (2018). The goal of such an approach is to mitigate
the issues of one by the other, e.g., using the power of symbolic reasoning systems to
handle the generalizability issues of neural networks and handle the difficulty of noisy data
for symbolic systems via neural networks. Recent work has also shown the advantage of
approaches for explaining and revising incorrect decisions (Ciravegna et al., 2020; Stammer
et al., 2021). However, many of these previous works train the sub-symbolic and symbolic
modules separately.

Deep Probabilistic Programming Languages (DPPLs) are programming lan-
guages that combine deep neural networks with probabilistic models and allow a user to
express a probabilistic model via a logic program. Similar to neuro-symbolic architectures,
DPPLs thereby unite the advantages of different paradigms. DPPLs are related to earlier
works such as Markov Logic Networks (MLNs) (Richardson & Domingos, 2006). Thereby,
the binding link is the Weighted Model Counting (WMC) introduced in LPMLN (Lee &
Wang, 2016). Several DPPLs have been proposed by now, among which are Pyro (Bing-
ham et al., 2019), Edward (Tran et al., 2017), DeepProbLog (Manhaeve et al., 2018),
DeepStochLog (Winters et al., 2022), NeurASP (Yang et al., 2020), and Scallop (Huang
et al., 2021).

To resolve the scalability issues of DeepProbLog, which uses Sentential Decision Di-
agrams (SDDs) (Darwiche, 2011) as the underlying data structure to evaluate queries,
NeurASP (Yang et al., 2020), offers a solution by utilizing ASP (Dimopoulos et al., 1997;
Soininen & Niemelä, 1999; Marek & Truszczynski, 1999; Calimeri et al., 2020). In contrast
to query evaluation in Prolog (Colmerauer & Roussel, 1993; Clocksin & Mellish, 1981),
which may lead to an infinite loop, many modern answer set solvers use Conflict-Driven-
Clause-Learning (CDPL), which, in principle, always terminates. In this way, NeurASP
changes the paradigm from query evaluation to model generation, i.e., instead of construct-
ing an SDD or a similar knowledge representation system, NeurASP generates a set of all
potential solutions (one model per solution) and estimates the probability for the truth value
of each of these solutions. Of those DPPLs that handle learning in a relational, probabilistic
setting and end-to-end fashion are limited to estimating only conditional class probabili-
ties. Particularly, the inference is limited to P (C|X) obtained from a neural network using
Softmax.

Another research branch focuses on approximate inference for DPPLs to allow scaling
to harder problems. The goal is to incorporate probabilities into the solving process to
obtain only a subset of all proofs. Manhaeve et al. (2021) propose an A*-like search for
proofs, and Huang et al. (2021) introduce a top-k mechanism based on Datalog to only
keep likely proofs. In ASP, a program is first grounded and then solved, sometimes making
the grounding itself a bottleneck. Existing work, therefore, aims at grounding on demand.
The two main candidates are Lazy Grounding (Palù et al., 2009) and Magic Sets for ASP
(Alviano & Faber, 2011). To the best of our knowledge, both techniques have not been
applied in a probabilistic setting with ASP yet.

Visual Question Answering has seen a lot of attention from the computer vision
and natural language processing community. We refer to Manmadhan and Kovoor (2020)
and Kodali and Berleant (2022) for a detailed review. Recently, more neuro-symbolic ap-
proaches to VQA have been proposed. Yi et al. (2018) proposed a model which creates
a structural scene representation of the image, parses a natural language question into a

603

Skryagin, Ochs, Dhami & Kersting

program, and then executes the program to obtain an answer. A few works utilize logic
programming: Scallop’s (Huang et al., 2021) top-k approach allows for answering complex
reasoning questions on real-world images. Eiter et al. (2022) showed how ASP could be used
on top of the outputs of a pretrained YOLO network to answer CLEVR questions (Johnson
et al., 2017).

6. Conclusions

We introduce SLASH, a novel DPPL that integrates neural computations with tractable
probability estimates and logical statements. The key ingredient of SLASH to achieve this
is Neural-Probabilistic Predicates (NPPs) that can be flexibly constructed out of neural
and/or probabilistic circuit modules based on the data and underlying task. With these
NPPs, one can produce task-specific probability estimates. The details and additional prior
knowledge of a task are neatly encompassed within a SLASH program with only a few lines
of code. Finally, via ASP and Weighted Model Counting, the logic program and probability
estimates from the NPPs are combined within SLASH to estimate the truth value of a
task-specific query. Additionally, the SAME technique addresses the question of scalability.
Proven to converge to only one solution, SAME is the natural extension of SLASH and
generally applicable to any problem.

Our experiments on the VQAR dataset show the power, efficiency, and scalability of
SLASH, paving the way to handle extremely difficult real-world applications. As one of
many consequences, we found the following shortcomings, which we leave to be resolved
in future work. First, VQAR shows bigger parts of a program are optional to answer the
programmatic query and, thus, should be ignored during grounding. SAME can be seen
as a form of stochastic lazy grounding, and thus helps to reduce the computation costs for
NPPs. It remains to be seen if and how similar technique(s) can be used for grounding the
rest of the program after applying SAME.

Second, should there be an exponential number of potential solutions, as in some VQAR
queries, we would no longer able to answer the query. Weighted rules and facts might be
insightful in finding ways to navigate solution spaces more efficiently. Finally, for WMC to
be computed most efficiently regardless of the number of potential solutions and the queries,
it must take place simultaneously with solving, i.e., becoming an inseparable part of it.

Apart from that, our ablation study provided a detailed evaluation of the computation
speed of SAME, improving upon previous DPPLs in the benchmark MNIST-Addition tasks
yet retaining the performance. On Sudoku, we showed that SAME works as designed,
reducing the number of outcomes per grid’s cell to the smallest possible. Additionally,
invoking Python routines allowed for the seamless invocation of the Hungarian matching
algorithm into SLASH Attention. Together with SAME, we solved the task of object-centric
set prediction for the CLEVR dataset, which none of the previous DPPLs has tried to solve
yet, and reduced the training time of SLASH.

With SLASH on the set prediction task, we effectively use elements of functional pro-
gramming within SLASH. Similarly, the used ASP-solver CLINGO can invoke Python rou-
tines at the grounding time via external functions. These pave the way for merging func-
tional programming with SLASH. Neural Logic Machines (Dong et al., 2019) serve as an
example of a similar combination. Going in this direction will allow us to treat logically

604

Scalable Neural-Probabilistic ASP

constrained regression problems, which would benefit fundamental sciences such as particle
physics. Yu et al. (2021) show how PCs can be used for multi-output regression tasks, and
it appears to be the natural next step to integrate them in SLASH.

Acknowledgments

This work was partly supported by the Federal Minister of Education and Research (BMBF)
and the Hessian Ministry of Science and the Arts (HMWK) within the National Research
Center for Applied Cybersecurity ATHENE, as well as via the DEPTH group CAUSE of the
Hessian Center for AI (hessian.ai), the ICT-48 Network of AI Research Excellence Center
“TAILOR” (EU Horizon 2020, GA No 952215, and the Collaboration Lab with Nexplore
“AI in Construction” (AICO). It also benefited from the BMBF AI lighthouse project, the
Hessian research priority programme LOEWE within the project WhiteBox, the HMWK
cluster projects “The Third Wave of AI” and “The Adaptive Mind”, the German Center
for Artificial Intelligence (DFKI) project “SAINT”.

Appendix A. SLASH Programs

Here, the interested reader will find the SLASH programs which we compiled for our abla-
tion studies on MNIST addition and Object-centric learning. Where, Fig. 13 and Fig. 14
are for the set prediction task with slot attention encoder.

MNIST addition Fig. 10 shows the weak constraints for SLASH top-k. In the brackets,

1 # Define images

2 img(i1). img(i2).

3 # Define Neural -Probabilistic Predicate

4 npp(digit(X), [0,1,2,3,4,5,6,7,8,9]) :- img(X).

5 # Define the addition of digits given two images and the resulting sum

6 addition(A, B, N) :- digit (+A, -N1), digit (+B, -N2), N = N1 + N2.

Figure 8: SLASH Program for MNIST addition with two images.

1 # Is 7 the sum of the digits in img1 and img2?

2 :- addition(i1 , i2 , 7)

Figure 9: Example SLASH Query for MNIST addition.

the first value is the probability of the corresponding ground atom in log space. The second
and third values together make up a unique identifier for the belonging atom, which is used
by CLINGO.

605

Skryagin, Ochs, Dhami & Kersting

1 # weak constraints for image 1

2 :~ digit(1,i1 ,0). [1866, 0, 0]

3 :~ digit(1,i1 ,1). [2901, 0, 1]

4 ...

5 :~ digit(1,i1 ,9). [2468, 0, 9]

6 # weak constraints for image 2

7 :~ digit(1,i2 ,0). [1761, 1, 0]

8 :~ digit(1,i2 ,1). [2922, 1, 1]

9 ...

10 :~ digit(1,i2 ,9). [2517, 1, 9]

Figure 10: Weak constraints for SLASH top-k

Sudoku

1 # NPP for identifying empty cells and filled in cells (1-9)

2 npp(identify (81, img), [empty ,1,2,3,4,5,6,7,8,9]).

3 # we assign one number at each position (R,C)

4 a(R,C,N) :- identify(Pos , +img , -N), R=Pos/9, C=Pos\9, N!= empty.

5 {a(R,C,N): N=1..9}=1 :- identify(Pos , +img , -empty), R=Pos/9, C=Pos\9.

6 # it’s a mistake if the same number shows 2 times in a row

7 :- a(R,C1 ,N), a(R,C2 ,N), C1!=C2.

8 # it’s a mistake if the same number shows 2 times in a column

9 :- a(R1 ,C,N), a(R2 ,C,N), R1!=R2.

10 # it’s a mistake if the same number shows 2 times in a 3*3 grid

11 :- a(R,C,N), a(R1 ,C1 ,N), R!=R1 , C!=C1 , ((R/3)*3 + C/3) = ((R1/3)*3 + C1/3).

Figure 11: SLASH Program for Sudoku

1 # Assign cell 42 the number 7

2 :- identify (41, +img , -7).

3 ...

4 # Assign cell 81 the value empty

5 :- identify (80, +img , empty).

Figure 12: Example SLASH Query for Sudoku experiments.

606

Scalable Neural-Probabilistic ASP

Object-centric learning

1 # Define slots

2 slot(s1). slot(s2). slot(s3). slot(s4).

3 # Define identifiers for the objects in the image

4 # (there are up to four objects in one image).

5 obj(o1). obj(o2). obj(o3). obj(o4).

6 # Assign each slot to an object identifier

7 {assign_one_slot_to_one_object(X, O): slot(X)}=1 :- obj(O).

8 # Make sure the matching is one -to -one between slots

9 # and objects identifiers.

10 :- assign_one_slot_to_one_object(X1 , O1),

11 assign_one_slot_to_one_object(X2 , O2),

12 X1==X2, O1!=O2.

13 # Define all Neural -Probabilistic Predicates

14 npp(color_attr(X), [red , blue , green , grey , brown ,

15 magenta , cyan , yellow , bg]) :- slot(X).

16 npp(shape_attr(X), [circle , triangle , square , bg]) :- slot(X).

17 npp(shade_attr(X), [bright , dark , bg]) :- slot(X).

18 npp(size_attr(X), [big ,small ,bg]) :- slot(X).

19 # Object O has the attributes C and S and H and Z if ...

20 has_attributes(O, C, S, H, Z) :- slot(X), obj(O),

21 assign_one_slot_to_one_object(X, O), color(+X, -C),

22 shape(+X, -S), shade(+X, -H), size(+X, -Z).

Figure 13: SLASH Program for ShapeWorld4.

1 # Does object o1 have the attributes red , circle , bright , small?

2 :- has_attributes(o1 , red , circle , bright , small)

Figure 14: Example SLASH Query for ShapeWorld4 experiments. In other words, this
query corresponds to asking SLASH: “Is object 1 a small, bright red circle?”.

607

Skryagin, Ochs, Dhami & Kersting

Appendix B. VQA Program Encoding and dealing with complexity

In this section, we will explain how the SLASH program for the VQA task is constructed
and how we deal with the complexity of the task and thus avoid producing an infeasible
number of potential solutions for difficult questions. As depicted in Fig. 1, the VQA task
comprises multiple parts in the SLASH program. One thing to highlight here is the length
of the program, which usually has more than 3k lines.

The KG makes 1424 “is-a” tuples and 1963 “object-attribute-relation” triplets, as well
as six rules for the fixed part of every program. For n objects, the SG includes n attributes,
n names, and n ∗ (n− 1) obj-to-obj relations, excluding relations of objects to themselves.
Each object can have multiple attributes at once, so each attribute is modelled as a NPP
with two outcomes: Having or not having the attribute.

Fig. 5 shows two images, object bounding boxes, and a target rule specifying what
targets should entail. E.g., the provided target query from C2 in Fig. 5a is depicted.

1 :- not target (0); not target (1).

2 :- target (2).:- target (3).:- target (4).:- target (5).:- target (6).

It restricts objects 0 and 1 to be targets, while others are not. Combined with the stated
target rule, the name NPP outcomes of objects 0 and 1 are restricted to inferring a name that
can be substituted for variable N0 in the oa rel(is used for, N0, controlling flows of traffic)
predicate. From the knowledge graph, we can infer for N0 to be replaced by “traffic lights”.
In this case, all other names for the non-target objects are restricted to not being traffic
lights. They can take on all other 499 outcomes of the name NPP. Attributes and relations
are not restricted as well by the query. CLINGO’s show statements are used to show
exclusively the predicates of the programmatic query in any potential solution. For the
example under consideration, the show rule is depicted below.

1 #show.

2 #show name(O0 , X) : target(O0), name(O0 ,X), name(O0 ,N0), oa_rel(is_used_for ,

N0 ,controlling_flows_of_traffic).

These lines tell CLINGO to itemize name predicates of objects which satisfy all target
predicates. Upon solving, we obtain the following potential solutions.

{target(0), name(0,traffic lights)}
{target(1), name(1,traffic lights)}

Moving on to the more complex example of C5 in Fig. 5b. Here, our target rule consists of
five predicates. Two name predicates restrict the target to be animals and objects. Addi-
tionally, two relation predicates specify the relation of the target object O2 to other objects.
For such a query, computing all potential solutions can be infeasible. Particularly, we have
16 objects which form 16*(16-1)=240 relation NPPs. Substituting them into the target
relations at once can quickly lead to millions of potential solutions, should a programmatic
query contains multiple relation predicates. Instead, we employ iterative solving. At each
iteration, the next five relations with the highest probability are added until we have 100
potential solutions or a specified timeout of 30 seconds is reached.

In the last step, SAME helps out by pruning unlikely NPP outcomes. The target rule
of this example stipulates only one name predicate should be an object. From the KG,

608

Scalable Neural-Probabilistic ASP

we see the ontological concept telling us about what falls under the category of objects,
such as furniture, vehicles, or animals. Asking for these broader categories restricts the
NPP outcomes only partially. In the case of objects, most Name NPP’s outcomes are
part of this category. Here again, for some queries, this can make computing all potential
solutions infeasible. Our solution – combining top-k pruning with SAME: To keep the k
most probable outcomes for each Name NPP and to prune more with SAME. Precisely,
SAME will point to the Name outcome, that is, the actual one belonging to the object
category and will prune any remaining ones.

609

Skryagin, Ochs, Dhami & Kersting

Appendix C. Experimental Details

C.1 PC Convergence

Fig. 15 shows the convergence of SAME with PCs on the T1, T2 and T3. The accuracy
converges to the almost same value, and we see that the harder the task is, the more epochs
it takes to converge.

Figure 15: Convergence with SAME-PC on MNIST Addition.

C.2 ShapeWorld4 Generation

The ShapeWorld4 dataset was generated using the original scripts of Kuhnle and Copestake
(2017)2. The exact scripts will be added together with the SLASH source code.

C.3 Average Precision computation

For the baseline slot encoder experiments on the Object-centric learning tasks, we measured
the average precision score as by Locatello et al. (2020). In comparison to the baseline slot
encoder, when applying SLASH Attention, however, we handled the case of a slot not
containing an object, e.g., only background variables, differently. Whereas Locatello et al.
(2020) add another binary identifier to the multi-label ground truth vectors, we have added
a background (bg) attribute to each category (cf. Fig. 13). A slot is thus considered empty
(i.e., not containing an object) if each NPP returns a high conditional probability for the
bg attribute.

C.4 Model Details

For those experiments using NPPs with PC, we have used Einsum Networks (EiNets) for
implementing the PC. EiNets are a novel implementation design for SPNs introduced by
Peharz et al. (2020) that minimize the issue of computational costs that initial SPNs had
suffered. This is accomplished by combining several arithmetic operations via a single
monolithic einsum-operation.

For all experiments, the ADAM optimizer (Kingma & Ba, 2015) with β1 = 0.9 and
β2 = 0.999, ϵ = 1e− 8 and no weight decay was used.

2. https://github.com/AlexKuhnle/ShapeWorld

610

Scalable Neural-Probabilistic ASP

VQA Experiments The architecture for the VQA experiments is the same as in Huang
et al. (2021) and is shown in Tab. 6. The name, relation, and attribute classifier share the
same architecture. A YOLO network produces object features of size 2048 which are fed
into the classifiers. The relation classifier takes as input the features and bounding boxes
of two objects, resulting in an input dimension of 4104 = (2048 + 4) ∗ 2. For the name
and relation classifier, a Softmax is used. The attribute classifier has a Sigmoid activation,
encoding multiple attributes over each output neuron.

Type Size/Channels Activation Comment

MLP input dim, 1024 ReLU -
BatchNorm + Dropout 1024 - dropout-rate 0.3/0.5

MLP* 1024, 1024 ReLU
BatchNorm + Dropout* 1024 - dropout-rate 0.3

MLP 1014, num classes Softmax/Sigmoid -

Table 6: VQA Neural Model. Layers marked with * are only used in the attribute and
name classifier.

MNIST-Addition Experiments For the MNIST-Addition experiments, we ran all
baseline programs with their original configurations, as stated in Huang et al. (2021), Man-
haeve et al. (2018), Winters et al. (2022), Yang et al. (2020), respectively. For the MNIST
Addition experiments, we have used the same neural module as in the baselines when train-
ing SLASH and SAME with the neural NPP represented in Tab. 8. When using a PC
NPP, we have used an EiNet with the Poon-Domingos (PD) structure (Poon & Domingos,
2011) and normal distribution for the leaves. The formal hyperparameters for the EiNet
are depicted in Tab. 9. The learning rate and batch size for SLASH and the baselines are
shown in Tab. 7.

Model learning rate batch size

Scallop 0.001 64
DeepProbLog 0.0001 2
DeepStochLog 0.001 100

NeurASP 0.001 -

SLASH-DNN 0.005 100
SLASH-PC 0.01 100

Table 7: Learning rate and batch size for the baselines and SLASH.

ShapeWorld4 Experiments For the baseline slot attention experiments with the
ShapeWorld4 data set, we have used the architecture presented in Tab. 10. For further
details on this, we refer to the original work of Locatello et al. (2020). The slot encoder
had a number of 4 slots and 3 attention iterations over all experiments.

For the SLASH Attention experiments with ShapeWorld4, we have used the same slot
encoder as in Tab. 10, however, we replaced the final MLPs with 4 individual EiNets with

611

Skryagin, Ochs, Dhami & Kersting

Type Size/Channels Activation Comment

Encoder - - -
Conv 5 x 5 1x28x28 - stride 1
MaxPool2d 6x24x24 ReLU kernel size 2, stride 2
Conv 5 x 5 6x12x12 - stride 1
MaxPool2d 16x8x8 ReLU kernel size 2, stride 2
Classifier - - -
MLP 16x4x4,120 ReLU -
MLP 120,84 ReLU -
MLP 84,10 - Softmax

Table 8: Neural module – LeNet5 for MNIST-Addition experiments.

Variables Width Height Number of Pieces Class count
784 28 28 [4,7,28] 10

Table 9: Probabilistic Circuit module – EiNet for MNIST-Addition experiments.

Type Size/Channels Activation Comment

Conv 5 x 5 32 ReLU stride 1

Conv 5 x 5 32 ReLU stride 1

Conv 5 x 5 32 ReLU stride 1

Conv 5 x 5 32 ReLU stride 1

Position Embedding - - -

Flatten axis: [0, 1, 2 x 3] - flatten x, y pos.

Layer Norm - - -

MLP (per location) 32 ReLU -

MLP (per location) 32 - -

Slot Attention Module 32 ReLU -

MLP 32 ReLU -

MLP 16 Sigmoid -

Table 10: Baseline slot encoder for ShapeWorld4 experiments.

Poon-Domingos structure (Poon & Domingos, 2011). Their hyperparameters are repre-
sented in Tab. 11.

On CLEVR, we also used the “bigger” slot encoder architecture for the CLEVR images
as in Locatello et al. (2020) which have higher resolution than the Shapeworld4 images.
The PC architecture used is the same for CLEVR, but the number of slots is increased to
10.

The learning rate for the baseline slot encoder was 0.0004 and 512. The learning rate
and batch size for SLASH Attention were 0.01 and 512 for ShapeWorld4 and CLEVR for
the PCs, and 0.0004 for the slot encoder.

612

Scalable Neural-Probabilistic ASP

EiNet Variables Width Height Number of Pieces Class count

Color 32 8 4 [4] 9

Shape 32 8 4 [4] 4

Shade 32 8 4 [4] 3

Size 32 8 4 [4] 3

Table 11: Probabilistic Circuit module – EiNet for ShapeWorld4 experiments.

C.5 Training times for SLASH Attention

ShapeWorld4 CLEVR
Baseline SLASH SAME Baseline SLASH SAME

Forward pass - 1.7 1.7 - 85.7 78.1
Potential Solutions - 50.1 8.8 - 140.5 61.7
Gradients - 12.2 11.9 - 71.3 64.2
Backward pass - 32.9 31.4 - 273.1 243.2

Σ for training 9.4 96.9 53.8 95.2 570.6 447.3

Table 12: Average training times per epoch in seconds. The four training stages as well as
the total training time per epoch are listed.

Figure 16: Training time of the four training steps of the SLASH pipeline with SAME. Over
time, SAME reduces the time spent on computing Potential Solutions, while all other steps
stay constant in time.

In Sec. 4.4 we saw that there is still some gap between SLASH and its baseline. Here we
want to have a closer look at where the overhead is coming from. The training of SLASH can
be seen as four steps: The forward pass, computing potential solutions with ASP, computing
gradients and lastly the backward pass. Tab. 12 gives an overview of the average time spent
on each of these steps per epoch. The first observation we make is that the forward and
backward pass in sum takes longer than the total training of the baseline. This is because
we are using Einsum Network’s as the NPPs and that we are using a NPP for each object
concept instead of using a single MLP for all concepts and objects at once. As a result, a lot

613

Skryagin, Ochs, Dhami & Kersting

more parameters are used in total, which increases the time spent on neural computations.
The biggest bottleneck though is computing the potential solutions, which makes up more
than 50% of the training time. Fig. 16 shows how SAME helps to mitigate this overhead
and reduces the average time to compute Potential Solutions from 49 seconds to 8.8 seconds,
making it not longer the training bottleneck. Computing the gradients stays constant over
time and is responsible for 20% of the total training time for SAME. In general, DPPLs
as of now utilize a GPU for neural computations, while solving and computing gradients
happens on the CPU. As argued before, this suggests that an interesting research direction
would be to find a closer integration of the neural and symbolic components of the pipelines
for parallel and faster training.

References

Alviano, M., & Faber, W. (2011). Dynamic magic sets and super-coherent answer set
programs. AI Communications, 24, 125–145.

Bengio, Y. (2019). From System 1 Deep Learning to System 2 Deep Learning. Invited talk
NeurIPS.

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T.,
Singh, R., Szerlip, P. A., Horsfall, P., & Goodman, N. D. (2019). Pyro: Deep universal
probabilistic programming. Journal of Machine Learning Research, 20, 28:1–28:6.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone,
N., Maratea, M., Ricca, F., & Schaub, T. (2020). Asp-core-2 input language format.
Theory and Practice of Logic Programming, 20, 294–309.

Choi, Y., Vergari, A., & Van den Broeck, G. (2020). Probabilistic circuits: A unifying
framework for tractable probabilistic models. Tech. rep., UCLA.

Ciravegna, G., Giannini, F., Gori, M., Maggini, M., & Melacci, S. (2020). Human-driven
FOL explanations of deep learning. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, pp. 2234–2240.

Clocksin, W. F., & Mellish, C. (1981). Programming in Prolog. Springer.

Colmerauer, A., & Roussel, P. (1993). The birth of prolog. In Proceedings of History of
Programming Languages Conference (HOPL-II), pp. 37–52.

Cropper, A., Dumancic, S., Evans, R., & Muggleton, S. H. (2022). Inductive logic program-
ming at 30. Machine Learning, 111, 147–172.

Darwiche, A. (2011). SDD: A new canonical representation of propositional knowledge bases.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
pp. 819–826.

d’Avila Garcez, A., & Lamb, L. C. (2023). Neurosymbolic ai: The 3rd wave. Artificial
Intelligence Review.

d’Avila Garcez, A. S., Gori, M., Lamb, L. C., Serafini, L., Spranger, M., & Tran, S. N. (2019).
Neural-symbolic computing: An effective methodology for principled integration of
machine learning and reasoning. Journal of Applied Logics, 611–632.

614

Scalable Neural-Probabilistic ASP

d’Avila Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2009). Neural-Symbolic Cognitive
Reasoning. Springer.

Dimopoulos, Y., Nebel, B., & Koehler, J. (1997). Encoding planning problems in nonmono-
tonic logic programs. In Proceedings of Recent Advances in AI Planning, 4th European
Conference on Planning, Vol. 1348, pp. 169–181.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural logic machines. In
Proceedings of the 7th International Conference on Learning Representations.

Eiter, T., Higuera, N., Oetsch, J., & Pritz, M. (2022). A neuro-symbolic ASP pipeline for
visual question answering. Theory and Practice of Logic Programming, 22, 739–754.

Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey, L.,
Botvinick, M. M., & Lerchner, A. (2019). Multi-object representation learning with
iterative variational inference. In Proceedings of the 36th International Conference on
Machine Learning, Vol. 97, pp. 2424–2433.

Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song, L., & Si, X. (2021). Scallop: From
probabilistic deductive databases to scalable differentiable reasoning. In Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems, pp. 25134–25145.

Hudson, D. A., & Manning, C. D. (2019). Learning by abstraction: The neural state ma-
chine. In Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems, pp. 5901–5914.

Jiang, J., & Ahn, S. (2020). Generative neurosymbolic machines. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., & Girshick, R. B.
(2017). CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the Conference on Computer Vision and Pattern
Recognition, pp. 1988–1997.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations.

Kodali, V., & Berleant, D. (2022). Recent, rapid advancement in visual question answer-
ing: a review. In Proceedings of the International Conference on Electro Information
Technology, pp. 139–146.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research
logistics quarterly, 2, 83–97.

Kuhnle, A., & Copestake, A. A. (2017). Shapeworld - A new test methodology for multi-
modal language understanding. CoRR.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998a). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86, 2278–2324.

LeCun, Y., Cortes, C., & J.C. Burges, C. (1998b). MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/.

615

Skryagin, Ochs, Dhami & Kersting

Lee, J., & Wang, Y. (2016). Weighted rules under the stable model semantics. In Proceedings
of the 19th International Conference on Principles of Knowledge Representation and
Reasoning, pp. 145–154.

Lin, Z., Wu, Y., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang, J., & Ahn, S. (2020).
SPACE: unsupervised object-oriented scene representation via spatial attention and
decomposition. In Proceedings of the 8th International Conference on Learning Rep-
resentations.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J.,
Dosovitskiy, A., & Kipf, T. (2020). Object-centric learning with slot attention. In
Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., & Raedt, L. D. (2018). Deep-
ProbLog: Neural probabilistic logic programming. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems,
pp. 3753–3763.

Manhaeve, R., Marra, G., & Raedt, L. D. (2021). Approximate inference for neural prob-
abilistic logic programming. In Proceedings of the 18th International Conference on
Principles of Knowledge Representation and Reasoning, pp. 475–486.

Manmadhan, S., & Kovoor, B. C. (2020). Visual question answering: a state-of-the-art
review. Artificial Intelligence Review, 53, 5705–5745.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic
concept learner: Interpreting scenes, words, and sentences from natural supervision.
In Proceedings of the 7th International Conference on Learning Representations.

Marek, V. W., & Truszczynski, M. (1999). Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm - A 25-Year Perspective, pp.
375–398. Springer.

Palù, A. D., Dovier, A., Pontelli, E., & Rossi, G. (2009). GASP: Answer Set Programming
with Lazy Grounding. Fundamenta Informaticae, 96, 297–322.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A., Trapp, M., den Broeck, G. V.,
Kersting, K., & Ghahramani, Z. (2020). Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In Proceedings of the 37th International Conference
on Machine Learning, Vol. 119, pp. 7563–7574.

Poon, H., & Domingos, P. M. (2011). Sum-product networks: A new deep architecture.
In Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pp.
337–346.

Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, pp. 779–788.

Richardson, M., & Domingos, P. M. (2006). Markov logic networks. Machine Learning, 62,
107–136.

616

Scalable Neural-Probabilistic ASP

Seide, F., Fu, H., Droppo, J., Li, G., & Yu, D. (2014). 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Proceedings of
the 15th Annual Conference of the International Speech Communication Association,
pp. 1058–1062.

Skryagin, A., Stammer, W., Ochs, D., Dhami, D. S., & Kersting, K. (2022). Neural-
probabilistic answer set programming. In Proceedings of the 19th International Con-
ference on Principles of Knowledge Representation and Reasoning.

Soininen, T., & Niemelä, I. (1999). Developing a declarative rule language for applications
in product configuration. In Proceedings of First International Workshop on Practical
Aspects of Declarative Languages, Vol. 1551, pp. 305–319.

Stammer, W., Schramowski, P., & Kersting, K. (2021). Right for the right concept: Revising
neuro-symbolic concepts by interacting with their explanations. In Proceedings of the
Conference on Computer Vision and Pattern Recognition, pp. 3619–3629.

Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., & Blei, D. M. (2017).
Deep probabilistic programming. In Proceedings of the 5th International Conference
on Learning Representations.

Winters, T., Marra, G., Manhaeve, R., & De Raedt, L. (2022). Deepstochlog: Neural stochas-
tic logic programming. In Proceedings of the Thirty-Sixth AAAI Conference on Arti-
ficial Intelligence, pp. 10090–10100.

Yang, Z., Ishay, A., & Lee, J. (2020). NeurASP: Embracing neural networks into answer
set programming. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, pp. 1755–1762.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., & Tenenbaum, J. (2018). Neural-symbolic
VQA: disentangling reasoning from vision and language understanding. In Advances
in Neural Information Processing Systems: Annual Conference on Neural Information
Processing Systems, pp. 1039–1050.

Yu, Z., Zhu, M., Trapp, M., Skryagin, A., & Kersting, K. (2021). Leveraging probabilistic cir-
cuits for nonparametric multi-output regression. In Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, Vol. 161, pp. 2008–2018.

617

	Introduction
	SLASH through NPPs and Vice Versa
	Neural-Probabilistic Predicates and Rules
	SLASH: a Novel DPPL for Integrating NPPs
	SLASH Language and Semantics
	Parameter Learning in SLASH

	Scaling SLASH with SAME
	Experimental Evaluations
	Visual Question Answering
	Scalability of SLASH
	Correcting Sudoku boards with SAME
	Object-centric learning

	Related Work
	Conclusions
	Appendix
	SLASH Programs
	VQA Program Encoding and dealing with complexity
	Experimental Details
	PC Convergence
	ShapeWorld4 Generation
	Average Precision computation
	Model Details
	Training times for SLASH Attention

	References
	References

