
Journal of Artificial Intelligence Research 78 (2023) 1069-1109 Submitted 06/2023; published 12/2023

Improving Resource Allocations by Sharing in Pairs

Robert Bredereck robert.bredereck@tu-clausthal.de
Institut für Informatik, Algorithm Engineering,
Humboldt-Universität zu Berlin, Berlin, Germany;
Institut für Informatik,
TU Clausthal, Clausthal-Zellerfeld, Germany

Andrzej Kaczmarczyk andrzej.kaczmarczyk@agh.edu.pl
AGH University of Krakow, Kraków, Poland;
Faculty IV, Algorithmics and Computational Complexity,
Technische Universität Berlin, Berlin, Germany

Junjie Luo jjluo1@bjtu.edu.cn
School of Mathematics and Statistics,
Beijing Jiaotong University, Beijing, China

Rolf Niedermeier rolf.niedermeier@tu-berlin.de

Florian Sachse sachse.florian@gmail.com

Faculty IV, Algorithmics and Computational Complexity,

Technische Universität Berlin, Berlin, Germany

Abstract

Given an initial resource allocation, where some agents may envy others or where a dif-
ferent distribution of resources might lead to a higher social welfare, our goal is to improve
the allocation without reassigning resources. We consider a sharing concept allowing re-
sources being shared with social network neighbors of the resource owners. More precisely,
our model allows agents to form pairs which then may share a limited number of resources.
Sharing a resource can come at some costs or loss in utility. To this end, we introduce
a formal model that allows a central authority to compute an optimal sharing between
neighbors based on an initial allocation. Advocating this point of view, we focus on the
most basic scenario where each agent can participate in a bounded number of sharings. We
present algorithms for optimizing utilitarian and egalitarian social welfare of allocations and
for reducing the number of envious agents. In particular, we examine the computational
complexity with respect to several natural parameters. Furthermore, we study cases with
restricted social network structures and, among others, devise polynomial-time algorithms
in path- and tree-like (hierarchical) social networks.

1. Introduction

The fair allocation of resources undoubtedly is a key challenge for modern societies and
economies. Applications can be found in such diverse fields as cloud computing, food banks,
or managing carbon loads in the context of global warming. Naturally, this topic received
high attention in the scientific literature. This also holds true for the special case of indivis-
ible resources (Bouveret et al., 2016), which we concentrate on here. Moreover, we take into
account the role of social networks built by agents, a growing line of research (Abebe et al.,
2017; Bei et al., 2017; Bouveret et al., 2017; Bredereck et al., 2022b; Chevaleyre et al., 2017;
Beynier et al., 2019; Lange & Rothe, 2019; Huang & Xiao, 2020). We bring one further new

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

aspect into this scenario, reflecting the increasing relevance of “sharing economies” (Belk
et al., 2019; Schor & Cansoy, 2019), where agents share resources in a peer-to-peer fashion.
Resources to share may be almost everything, for instance, knowledge, machines, time, or
natural resources.

Our sharing scenario takes into account the constraints of sharing resources between
agents expressed by a network. Given an agent network, two adjacent agents may share
the very same resource, thus increasing the utility of the resource allocation for at least one
of them (assuming positive utility for each resource). We assume the sharing process to be
organized and decided by a central authority (for example, a team leader, an executive offi-
cer, or a public institution). To get started with this new setting, we focus on a very basic
scenario. That is, in our model only two neighbors may share and, reflecting the (very hu-
man) principle of protection of acquired possession, no agent shall lose its already allocated
resources. This conservative principle naturally makes sharing easier to implement, keeping
“restructuring costs” lower, and it may even help to “keep peace” among agents. More-
over, it sometimes comes very naturally as depicted in the subsequent knowledge sharing
example.

Importantly, we also take account of the social relationships between agents. Consider
an executive officer and an employee of a company. It is conceivable that the executive officer
compares herself (in any way) to the employee, but the opposite is not true as the employee
does not even know the executive officer. In our scenario, we use directed social networks,
to capture this kind of asymmetric social relations and model various social structures of
the agents.

We apply our sharing concept to improve egalitarian or utilitarian welfare. Besides,
we also focus on a fundamental fairness criterion, envy-freeness. Albeit appealing and
highly desirable, guaranteeing envy-freeness for every agent is not always possible to achieve
(consider one indivisible resource and three agents desiring it). We exert our model to tackle
this problem. Respecting the social relationships of the agents, we aim at improving a given
allocation by decreasing the number of envious agents through feasible resource sharing.

Knowledge Sharing Before becoming more specific about our model, let us first intro-
duce an example related to knowledge sharing. Assume that agents are employees of a
company, each having a bundle of qualifications. An agent may “envy” another agent be-
cause the other agent has overall qualification of higher value. The central authority wants
to improve the situation by building teams of two agents where, due to a daily extensive
cooperation, one teaches the other the missing qualification. For instance, a realization
of this is the concept of pair programming that also has other benefits besides knowledge
sharing (Williams, Kessler, Cunningham, & Jeffries, 2000).

1.1 Model of Sharing Allocation

Roughly speaking, our model is as follows (see Section 3 for formal definitions). The input
is a set of agents and a set of indivisible resources initially assigned to the agents. Typically,
every agent may be assigned several resources. Each agent has an individual utility value
for each resource. The general goals are to decrease the overall degree of envy, to increase
the sum of “utility scores” of all agents, or to increase the minimal “utility score” among

1070

Improving Resource Allocations by Sharing in Pairs

all agents. Importantly, the only way an agent can improve its individual “utility score” is
by participating in a sharing with another agent.

The model variant on which we mostly focus assumes that the utility value of a re-
source does not decrease when it is shared. This approach is justified when the burden
of sharing is neutralized by its advantages. Indeed, in our knowledge sharing example a
hassle of cooperation is often compensated by a better working experience or higher quality
outcomes (as shown by Williams et al., 2000). Note that such complicated mutual de-
pendencies that would be extremely hard to describe formally form a natural field for our
approach. Further application examples include irregularly used resources (like printers or
computing servers in universities). Here, the coordination with another person is uncritical
and splitting the maintenance costs neutralizes the inconvenience of cooperation.

We enrich our model by using two graphs, an undirected sharing graph and a directed
attention graph, to model social relations between agents and to govern the following two
constraints of our model. The sharing graph models the possibility for two agents to share
resources. We assume that only neighbors in the sharing graph can share a resource (a
missing qualification in our knowledge sharing example). In practice, the sharing graph
might for example reflect whether agents are close enough to each other to be able to share
a resource or whether there is no conflict between the time they use resources. With respect
to lowering the degree of envy, we assume that agents may only envy their outneighbors
in the directed attention graph. This graph-based envy concept has recently been studied
by several works in the fair allocation domain (Bredereck et al., 2022b; Aziz et al., 2018;
Beynier et al., 2019).

Agents may naturally be conservative in the sense of keeping control and not sharing
too much. Furthermore, as in our knowledge sharing example, it might simply be too
ineffective to share a qualification among more than two employees simultaneously (due
to, e.g., increased communication overhead or additional resources needed). We address
this in the most basic way and assume that each resource can be shared to at most one
neighbor of its owner and an agent can participate in a bounded number of sharings. This
strong restriction already leads to tricky algorithmic challenges and fundamental insights.
In particular, the model also naturally extends on well-known matching scenarios in a non-
trivial way.

There are numerous options to further extend and generalize our basic model, as dis-
cussed in Section 6 and in the concluding Section 7. However, keeping our primary model
simple, we aim at spotting its fundamental properties influencing the complexity of related
computational problems.

1.2 Related Work

To the best of our knowledge, so far the model we consider has not been studied. Since
obtaining envy-free allocations is not always possible, there has been work on relaxing the
concept of envy. In particular, in the literature bounded-maximum envy (Lipton et al.,
2004), envy-freeness up to one good (Budish, 2011), envy-freeness up to the least-valued
good (Caragiannis et al., 2019), epistemic envy-freeness (Aziz et al., 2018), maximin share
guarantee (Budish, 2011), and information withholding (Hosseini et al., 2020) have been
studied. However, these concepts combat nonexistence of allocations that are envy-free by

1071

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

considering approximate versions of it. By way of contrast, our approach tries to find a way
to lessen envy not by relaxing the concept of envy, but rather by enabling a small deviation
in the model of indivisible, non-shareable resources. To this end, we make resources share-
able (in our basic model by two agents). This approach is in line with a series of recent
works which try to reduce envy (i) by introducing small amounts of money (Brustle et al.,
2020; Halpern & Shah, 2019; Caragiannis & Ioannidis, 2022), (ii) by donating a small set
of resources to charity (Caragiannis et al., 2019; Chaudhury et al., 2021), or (iii) by allow-
ing dividing a small number of indivisible resources (Sandomirskiy & Segal-Halevi, 2022;
Segal-Halevi, 2019). In particular, the papers mentioned in point (iii) consider a model of
indivisible resources that could be shared by an arbitrary group of agents and where, unlike
in our study, each agent only gets a portion of the utility of the shared resources. Contrary
to our setting, this model assumes no initial allocation. As a result, an envy-free allocation
always exists and the goal is to seek one with a minimum number of shared resources. In
contrast, our goal is to improve an initial allocation through sharing resources between
pairs of agents. Another line of research considers the improvement of allocations by ex-
changing resources (Chevaleyre, Endriss, & Maudet, 2007; Gourvès, Lesca, & Wilczynski,
2017; Huang & Xiao, 2020). There has been quite some work on bringing together resource
allocation and social networks (Abebe et al., 2017; Bei et al., 2017; Bouveret et al., 2017;
Bredereck et al., 2022b; Chevaleyre et al., 2017; Beynier et al., 2019; Huang & Xiao, 2020).
In particular, the concept of only local envy relations to neighbors in a graph gained quite
some attention (Aziz et al., 2018; Beynier et al., 2019; Bredereck et al., 2022b; Eiben, Ga-
nian, Hamm, & Ordyniak, 2023). Modifying existing allocations to maintain fairness has
also been studied for divisible resources (Segal-Halevi, 2022) and in online settings with
changing agents (Friedman et al., 2015, 2017; Vardi et al., 2022) or resources arriving over
time (He et al., 2019).

1.3 Our Contributions

Introducing a new model for (indivisible) resource allocation with agents linked by social
networks, we provide a view on improving existing allocations for several measures without,
conceivably impossible, reallocations.

We analyze the (parameterized) computational complexity of applying our model to
decrease the number of envious agents (Definition 7) as well as to improve the classical social
welfare measures (Definition 6): the utilitarian one, following the philosophical foundation
by Bentham (1823) and the egalitarian one implementing the social equality desideratum
by Rawls (1971). We show that a central authority can (mostly) find a sharing that improves
social welfare (measured in both the egalitarian and utilitarian ways) in polynomial time,
while decreasing the number of envious agents is NP-hard even if the sharing graph is a
clique and the attention graph is a bidirectional clique.

To overcome NP-hardness, we also study the influence of different natural parameters
(such as agent utility function values, structural parameters concerning the agent social
networks, the number of agents, and the number of resources); Table 1 surveys our results
in more detail. We show that the problem is polynomial-time solvable if the underlying
undirected graph of the attention graph is the same as the sharing graph and has a constant
treewidth (intuitively, the sharing graph is “close to” a tree). We also identify an interesting

1072

Improving Resource Allocations by Sharing in Pairs

Envy-Reducing Sharing Allocation (ERSA)

Gs ≡ Gt unanimous utility functions few agents few resources

clique
tree- or

pathwidth
Gt = clique Gs = clique n k = 0,∆k = 1 m

#shared
resources

bundle
size

NP-h XP, W[1]-h P NP-h⋆ FPT p-NP-h XP, W[1]-h⋆ p-NP-h
Thm. 3 Thm. 6 Thm. 7 Thm. 8 Thm. 4 Thm. 5 Obs. 1, Thm. 8 Thm. 8

Table 1: Results overview for ERSA, where Gs ≡ Gt means that the sharing graph (Gs) is
the same as the underlying graph of the attention graph (Gt), n is the number of
agents, k is the number of envious agents after sharing, ∆k is a drop in the number
of envious agents, and m is the number of resources. Remarkably, in all hardness
results the number of different utility values used by the utility functions is between
2 and 4. The result marked with ⋆ holds also for the case of indistinguishable
resources.

contrast between the roles of the two graphs: When agents have the same utility function,
the problem is solvable in polynomial time if the attention graph is a bidirectional clique,
while the problem is NP-hard even if the sharing graph is a clique. Finally, we show that
the problem is fixed-parameter tractable (FPT) for the parameter number of agents (giving
hope for efficient solutions in case of a small number of agents) and polynomial-time solvable
(in XP) for a constant number of resources. However, the problem is NP-hard even if the
goal is to reduce the number of envious agents from one to zero. We remark that all
our hardness results are shown for cases in which the number of different values of utility
functions is a small constant (at most 4).

Altogether, our main technical contributions are with respect to exploring the potential
to “overcome” the NP-hardness of decreasing the number of envious agents by exploiting
several problem-specific parameters.

2. Preliminaries

We mostly only cover the background necessary to understand our proofs and results.
However, when appropriate, we refer the reader to recent textbooks for detailed information
on the subject.

2.1 Parameterized Complexity

A computational problem is fixed-parameter tractable for some parameter x then it can be
solved in time f(x)·|I|O(1), where f is an arbitrary computable function and |I| is the size of
the instance—we refer to algorithms guaranteeing such a running time as FPT algorithms. If
a problem is W[1]-hard, then it is (presumably) not fixed-parameter tractable. Yet, if there
is an algorithm running in polynomial-time assuming a constant value of parameter x, then
we say that the problem is in XP. See recent textbooks for details about the parameterized
algorithms approach (Downey & Fellows, 2013; Cygan et al., 2015).

1073

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

2.2 Graphs

A directed graph G consists of a set V of vertices and a set E ⊆ V × V of arcs connecting
the vertices; we only consider directed graphs without self-loops, that is, there are no arcs of
form (v, v) for any vertex v ∈ V . A (simple) undirected graph G = (V,E) consists of a set V
of vertices and a set E of (distinct) size-2 subsets of vertices called edges. The underlying
undirected graph of a directed graph G is the graph obtained by replacing all (directed) arcs
with (undirected) edges. By our definition of (simple) undirected graphs, even if a directed
graph G contains two opposite arcs (u, v) and (v, u), then its underlying undirected graph
has a single edge {u, v}.

We say an undirected graph G = (V,E) is a clique if E =
(
V
2

)
and a directed graph G =

(V,E) is a bidirectional clique if E = (V × V) \ {(v, v) | v ∈ V }. For some vertex v ∈ V
of graph G = (V,E), the set I(v) ⊆ E of incident arcs (edges) is the set of all arcs (edges)
with an endpoint in v.

Associating the edges (or arcs) of a graph G = (V,E) with some weight function w : E →
Q, we obtain a weighted graph.

2.3 Tree Decompositions and Treewidth

Intuitively, a tree decomposition is a tree-representation of a given graph. Tree decompo-
sitions enable designing dynamic programming algorithms that efficiently solve hard prob-
lems. Informally speaking, these algorithms extend the techniques for trees to graphs that
are similar to trees, encapsulating the exponential blow-up of the running times in a func-
tion that depends solely on ”how similar” the original graph is to a tree. This similarity
is measured by treewidth, an integral measure of a graph, which is 1 when the original
graph itself is a tree. We employ this approach (in later sections) and thus obtain FPT
algorithms with respect to treewidth. Hence, we put on formal definitions illustrated on
Figure 1, which also informally explains the way the dynamic programming approach takes
advantage of tree decompositions.

Definition 1. Given a graph G = (V,E), a tree decomposition T consists of a rooted
tree T = (V ′, E′) and a labeling that assigns each node v′i ∈ V ′ its bag Xi ⊆ V such that:

1. For each edge {u, v} ∈ E, there is a bag Xj such that {u, v} ⊆ Xj;

2. For each vertex v ∈ V and the corresponding maximal set V ∗ = {v′ℓ1 , v
′
ℓ2
, . . . , v′ℓt} ⊆ V ′

of nodes of T such that, for each i ∈ {ℓ1, . . . , ℓt}, v ∈ Xi, it holds that nodes in V ∗

form a connected subtree in T .

The width of T is the size of the largest bag decreased by one, and the treewidth of G is
the minimum width over all possible tree decompositions of G.

A very specific type of tree decompositions—a nice tree decomposition—is particularly
convenient to design dynamic-programming-based algorithms.

Definition 2. A tree decomposition T with a rooted tree T = (V ′, E′) and the corresponding
bags X1, X2, . . ., X|V ′| is a nice tree decomposition if each node ti ∈ V ′ is of one of the
following types:

1074

Improving Resource Allocations by Sharing in Pairs

A

B C E F

D

(a) An example graph. Note that ver-
tices {B,C} (marked grey) separate ver-
tex D from vertices {A,E,F}.

A

A A

AB AE

ABC AEF

BC EF

BCD F

CD ∅
D

∅

(b) A nice tree decomposition of the graph. Nodes are la-
beled with the corresponding bags. The leaf nodes, introduce
nodes, forget nodes, and join node are, respectively, dotted, solid,
dashed, and in bold. The top node is the root. The grey node
corresponds to the separator of vertex D and the rest of the
graph.

Figure 1: A graph and its nice tree decomposition. Note that exercising dynamic program-
ming on such a decomposition (applying the bottom-up processing) allows us
finding optimal solutions for certain subgraphs of the original graph. For exam-
ple, as we reach bag {B,C} (marked grey) of the decomposition, vertex D does
not appear later at any step of the computation. Indeed, as B and C are sepa-
rating D from the rest of the graph, the latter cannot influence the situation for
the remaining part of the graph.

1. Leaf node, where ti is a leaf in T and |Xi| = 1;

2. Introduce node, where ti has a single child ti′ ∈ V ′ in T and Xi = Xi′ ∪ {v} for
some vertex v ∈ V \Xi′;

3. Forget node, where ti has a single child ti′ ∈ V ′ in T and Xi = Xi′ \ {v} for some
vertex v ∈ V ∩Xi′; or

4. Join node, where ti has exactly two (distinct) children ti′ ∈ V ′ and ti′′ ∈ V ′ in T
and it holds that Xi = Xi′ = Xi′′.

Importantly, for every graph G a nice decomposition can be computed in time f(tw) ·n,
where tw is the treewidth of G (Cygan et al., 2015) and n is the number of vertices in G. We
refer to the book by Kloks (1994) for more details on tree decompositions and treewidth.

2.4 Matchings and Matching Problems

Given an undirected graph G = (V,E), a subset M of the edges is a matching in G if no pair
of edges in M share a vertex. A matching whose cardinality (size) is not smaller than the
size of any other matching in G is a maximum matching. Analogously, considering a weight
of a matching in an undirected weighted graph as the sum of the weights of the matching’s

1075

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

edges, we define maximum weight and minimum weight matchings. Computational prob-
lems related to finding various kinds of matchings are ubiquitous. Polynomial algorithms
solving them have been extensively studied for several decades, and are constantly being im-
proved and specialized. Hence, wherever we analyze the running time of our algorithms that
depend on these fundamental problems, we express it using the running time of a matching
algorithm as a variable. In particular, we will use ρ for the running time of finding a maxi-
mum matching and ρw for the running time of finding a maximum weighted matching. For
quite a recent listing of the quickest algorithms solving matching-related problems under
different constraints, we refer to the preliminaries of the works of Duan and Pettie (2014)
and Duan et al. (2018).

3. Modeling

For a set A = {a1, a2, . . . , an} of agents and a set R = {r1, r2, . . . , rm} of indivisible re-
sources, a (simple) allocation π : A → 2R is a function assigning to each agent a collection
of resources—a bundle—such that the assigned bundles are pairwise disjoint. An allocation
is complete if every resource belongs to some bundle.

3.1 Sharing

We fix an initial allocation π of resources in R to agents in A. A sharing graph is an
undirected graph Gs=(A,Es) with vertices being the agents; it models possible sharings
between the agents. The following definition of sharing says that two agents can only share
resources held by one of them.

Definition 3. Function δπ : Es → 2R is a sharing for some allocation π if for every two
agents ai and aj, with {ai, aj} ∈ Es, it holds that δπ({ai, aj}) ⊆ π(ai) ∪ π(aj).

An initial allocation π and a corresponding sharing δπ form a sharing allocation.

Definition 4. A sharing allocation induced by allocation π and sharing δπ is a func-
tion Πδπ

π : A → 2R where Πδπ
π (a) := π(a) ∪

⋃
e∈I(a) δπ(e).

Since the initial allocation π is fixed, for brevity, we use δ and Πδ, omitting π whenever
it is not ambiguous. For simplicity, for every agent a ∈ A, we also refer to Πδ(a) as a bundle
of a whenever it does not lead to confusion.

Naturally, each allocation is also a sharing allocation with a trivial “empty sharing.”
Observe a subtle difference in the intuitive meaning of a bundle of an agent between sharing
allocations and (simple) allocations. For sharing allocations, a bundle of an agent represents
the resources the agent has access to and can utilize, not only those that the agent possesses
(as for simple allocations).

3.2 2-sharing

Definition 3 is very general and only requires that two agents share resources that one of
them already has. In particular, Definition 3 allows one agent to share the same resource
with many other agents; and does not constrain the number of sharings an agent could
participate in. In this paper, we assume that each resource can only be shared by two

1076

Improving Resource Allocations by Sharing in Pairs

agents and each agent can participate in at most a bounded number of sharings. We
formally express this requirement in Definition 5.

Definition 5. A 2-sharing δ is a sharing where, for each triple of distinct agents ai, aj,
and ak, it holds true that

Πδ(ai) ∩Πδ(aj) ∩Πδ(ak) = ∅.

A b-bounded 2-sharing δ is a 2-sharing in which, for each agent a, it holds true that∣∣∣⋃e∈I(a) δ(e)
∣∣∣ ≤ b. A simple 2-sharing δ is a 1-bounded 2-sharing, i.e., for each agent a,

it holds true that
∣∣∣⋃e∈I(a) δ(e)

∣∣∣ ≤ 1.

Herein, we count the number of sharings an agent participate in by the number of
resources shared with other agents (either shared to other agents or received from other
agents). Notably, in a simple 2-sharing, each agent can either share or receive a single
resource. Thus, every simple 2-sharing can be interpreted as a matching in which each edge
is labeled with a shared resource.

3.3 Utility, Welfare Measures, and Fairness Concepts

We assume agents have cardinal, monotonic, and additive utility functions. For an agent a
with utility function u : R → N0 and a bundle R ⊆ R, let u(R) :=

∑
r∈R u(r) be the value

of R as perceived by a. For agents A = {a1, a2, . . . , an} with corresponding utility func-
tions u1, u2, . . . , un, we say that their utility functions are unanimous if the utility functions
of all agents are exactly the same, that is, for each pair ai, aj ∈ A and for each r ∈ R it
holds that ui(r) = uj(r). The resources are indistinguishable if the utility functions are
unanimous and the unanimous function gives the same utility for every resource.1

Let us fix a sharing allocation Πδ of resources R to agents A = {a1, a2, . . . , an} with
corresponding utility functions u1, u2, . . . , un. The utilitarian social welfare of Πδ is

usw(Πδ) :=
∑
i∈[n]

ui(Π
δ(ai)).

The egalitarian social welfare of Πδ is

esw(π) := min
i∈[n]

ui(Π
δ(ai)).

Notice that, for now, we assume each agent ai gets the full utility for all resources in Πδ(ai).
We will discuss a generalization of this assumption in Section 6.

A directed graph Gt = (A, Et) with vertices being the agents is an attention graph; it
models social relations between the agents. We say that an agent ai looks at another agent aj
if (ai, aj) ∈ Et. An agent is envious on Gt under Πδ if it prefers, compared to its own bundle,
a bundle of another agent it looks at; formally, ai envies aj if ui(Π

δ(ai)) < ui(Π
δ(aj))

1. The property of being indistinguishable might be also considered without assuming unanimity. In such
a case, however, one can speak only about the resources being indistinguishable from a perspective of
a single agent. It then can happen that two (or more) agents perceive the resources as indistiguishable
but every agent gives the resources a different utility value. We do not take this approach as we do not
make use of it in our paper.

1077

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

and (ai, aj) ∈ Et. We denote the set of envious agents in Πδ as Env(Πδ). For a given
(directed) attention graph Gt over the agents, a sharing allocation is Gt-envy-free if no
agent envies its out-neighbors.

4. Improving Social Welfare by Sharing

In this section, we study the problem of improving utilitarian (and egalitarian) welfare
through sharing, defined as follows. Recall that considering welfare does not require the
attention graph, so this graph does not appear in the input of the following problems.

Definition 6. Given an initial complete allocation π of m resources R to n agents A,
a sharing graph Gs, and a non-negative integer k, b-Bounded Utilitarian Welfare Sharing
Allocation (b-UWSA) asks if there is a b-bounded 2-sharing δ such that usw(Πδ) ≥ k; b-
Bounded Egalitarian Welfare Sharing Allocation (b-EWSA) asks if there is a b-bounded
2-sharing δ such that esw(Πδ) ≥ k.

We first consider b-UWSA. When b = 1, since every simple 2-sharing corresponds to
a matching, we can easily reduce 1-UWSA to Maximum Weighted Matching. Thus,
1-UWSA is solvable in polynomial time. When b > 1, however, the problem is not just
finding a couple of matchings such that the total weight is maximized. Notice that in 2-
sharing each resource can only be shared once. Nevertheless, we show that we can still
reduce b-UWSA to Maximum Weighted Matching via a more involved reduction.

Theorem 1. For n agents and m resources, b-UWSA is solvable in O((m + bn)2) + ρw
time for any b ≥ 1, where ρw is the time needed to find a maximum weight matching in
a (weighted undirected) graph with at most 2(m + bn) vertices, 4(m + bn)2 edges, and the
maximum weight equal to the biggest utility that an agent gives to a resource.

Proof. Given an instance of b-UWSA, we transform it into an instance I = (G = (V,E), w)
of Maximum Weighted Matching. For simplicity, we assume that each agent ai ∈ A has
at least b resources in the initial allocation π; otherwise we ensure this by adding enough
resources that are valued as 0 by all agents. We build instance I with G = (V,E), starting
from empty sets V and E, as follows. For each agent ai ∈ A and each resource rj ∈ R
such that rj ∈ π(ai), we add a vertex vji to V . In addition, for each agent ai ∈ A, we
add to V exactly ni := |π(ai)| − b dummy vertices {v1i , v2i , . . . , v

ni
i }. Consider a pair of

distinct agents ax, ay ∈ A with {ax, ay} ∈ Es and a pair of (distinct) resources rp, rq ∈ R
such that rp ∈ π(ax) and rq ∈ π(ay). We add to E an edge of weight max{ux(rq), uy(rp)}
between vertices vpx and vqy from V 2. We repeat this step for all possible, distinct collections
of pairs like the abovementioned one. Finally, for each agent ai ∈ A, we connect every
vertex vji ∈ V , such that rj ∈ R∩π(ai), with every dummy vertex vki , k ∈ [ni], related to ai
by a dummy edge with weight W := maxax∈A,rp∈R ux(rp). This finishes the construction
of I. Note that the constructed graph G has at most 2(m + bn) vertices and 4(m + bn)2

edges.

2. Associating the added edge directly with the interpretation that we either share rq or rp along the edge
between agents ax and ay in the sharing graph is tempting but incorrect. The meaning of the added
edge is slightly more involved, as we show in the proof of the forward direction.

1078

Improving Resource Allocations by Sharing in Pairs

Notice that for G = (V,E) there always exists a maximum weighted matching that, for
each agent ai ∈ A, contains ni dummy edges. Let P := W

∑
ai∈A ni be the weight of those

edges. In the following, we show that there is a b-bounded 2-sharing δ such that usw(Πδ) ≥ k
if and only if graph G admits a matching M with weight

∑
e∈M w(e) ≥ k − usw(π) + P ,

where usw(π) :=
∑

ai∈A ui(π(ai)) is the utilitarian welfare of the initial allocation π.

⇒: Assume there is a b-bounded 2-sharing δ such that usw(Πδ) ≥ k. Based on δ, we can
build a matching M with the claimed weight. Intuitively, we do so by including the edges
corresponding to each e ∈ Es with δ(e) ̸= ∅ together with edges between the remaining
non-dummy vertices and all dummy vertices.

Formally, first, we consider each edge {ax, ay} ∈ Es such that δ({ax, ay}) ̸= ∅ and each
resource rp ∈ δ({ax, ay}). Without loss of generality, suppose rp ∈ π(ax). Let rq ∈ π(ay)
be an arbitrary resource of ay that is not shared under δ. Since ay participates in at most
b sharings and ay has at least b resources in the initial allocation π, for each resource that ay
gets as a result of δ, there is a resource in π(ay) that is not shared under δ. We add edge
{vpx, vqy} to M . Note that if there are two resources rp, rp′ ∈ δ({ax, ay}) such that rp ∈ π(ax)

and rp′ ∈ π(ay), then we, by definition of M , do not add the edge {vpx, vp
′

y } to M (because
both rpand rp′ are shared under δ). Notice that w({vpx, vqy}) := max{ux(rq), uy(rp)} ≥
uy(rp). So, the weight of all edges added to M in this step is at least usw(Πδ) − usw(π),
which represents the utility gained as a result of sharing δ. Let us consider the vertices
related to each agent ai ∈ A after performing the first step. It holds that there are at least
ni unmatched non-dummy vertices (as δ is b-bounded) and exactly ni unmatched dummy
vertices (no dummy vertex was matched in the first step). Hence, we can add ni dummy
edges (all of weight W) to M because each such edge contains one normal vertex and one
dummy vertex.

Since usw(Πδ) ≥ k, we have that
∑

e∈M w(e) ≥ usw(Πδ)−usw(π)+P ≥ k−usw(π)+P ,
which finishes the argument for this direction.
⇐: Assume there is a matching M in graph G with the claimed weight. Without loss

of generality, we assume that M contains ni dummy edges for every agent ai. This holds
because the weight of the dummy edges is at least that of the non-dummy edges. Then,
for each agent ai ∈ A, M contains at most b non-dummy edges incident to the vertices
related to ai, that is, {vji | rj ∈ π(ai)}. Using these non-dummy edges in M , we construct
the corresponding b-bounded 2-sharing δ such that usw(Πδ) ≥ k as follows. For each non-
dummy edge {vpx, vqy} ∈ M , we add rp into δ(ax, ay) if uy(rp) ≥ ux(rq) and add rq into
δ(ax, ay) otherwise. Since w({vpx, vqy}) := max{ux(rq), uy(rp)}, this increases the utilitarian
welfare by exactly w({vpx, vqy}) for each non-dummy edge {vpx, vqy} ∈M . So we have that

usw(Πδ) = usw(π) +
∑
e∈M

w(e)− P ≥ k.

Moreover, since M contains at most b non-dummy edges incident to the vertices related to
each ai ∈ A, every ai participates in at most b sharings in δ. The above finishes the proof
of the second direction.

Next we consider b-EWSA. When b = 1, we show in Proposition 1 that we can reduce
the problem to Maximum Matching. The idea is to partition all agents into two subgroups
according to the target k and build a bipartite graph characterizing whether one agent from

1079

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

one group can improve the utility of one agent from the other group to k by sharing. Then
the problem is just to find a maximum matching in the bipartite graph.

Proposition 1. For n agents and m resources, 1-EWSA is solvable in O(n2) + ρ time,
where ρ is the time needed to find a maximum matching in a bipartite graph with at most
n vertices and n2 edges.

Proof. Depending on the target k, we partition the set A of agents into two sets A+
k and A−

k

containing, respectively, the agents with their bundle value under π at least k and smaller
than k. Now, we construct a bipartite, undirected graph Gk = (A+

k ,A
−
k , Ek). Consider two

agents ai ∈ A+
k and aj ∈ A−

k that are neighbors in the sharing graph Gs. An edge e = {ai, aj}
belongs to Ek if ai can share a resource with aj to raise the utility of the latter to at least k;
formally, there exists a resource r ∈ π(ai) such that uj(π(aj)) + uj(r) ≥ k.

We claim that there is a simple 2-sharing δ with esw(Πδ) ≥ k if and only if there is
matching M in graph Gk with |M | ≥ |A−

k |. The backward direction is clear according to
the construction of Gk. For the forward direction, assume that there is a simple 2-sharing δ
with esw(Πδ) ≥ k. Then, we can build a matching M in graph Gk by adding an edge
e = {ai, aj} to M if δ({ai, aj}) ̸= ∅ and either ai or aj belongs to A−

k . Notice that since
esw(Πδ) ≥ k, the edge e = {ai, aj}must be in Ek. As δ is a simple 2-sharing, the constructed
M is indeed a matching. Since esw(Πδ) ≥ k, according to the construction of Gk and M ,
we have that for each aj ∈ A−

k , there exists an agent ai ∈ A+
k such that {ai, aj} ∈ M ,

and hence |M | ≥ |A−
k |. Thus, we just need to check whether the maximum matching in

graph Gk has size at least |A−
k |.

In constrast to b-UWSA, it turns out that b-EWSA is NP-hard already when b ≥ 2.
Notice that there is a relatively straightforward reduction from 3-Partition to b-EWSA
if b ≥ 3. To show the result for any b ≥ 2, we use a different problem, Numerical
Three-dimensional Matching (N3DM) (Garey & Johnson, 1979).

Theorem 2. b-EWSA is NP-hard for any constant b ≥ 2 even if the sharing graph is a
clique.

Proof. We present a polynomial-time many-one reduction from the strongly NP-hard Nu-
merical Three-dimensional Matching (N3DM) problem (Garey & Johnson, 1979).
Therein, given 3 multisets of positive integers X,Y, Z, each containing m elements, and a
bound T , the task is to decide whether there is a partition S1, S2, . . . , Sm of X ∪Y ∪Z such
that each Si contains exactly one element from each of X,Y, Z and the sum of numbers in
each Si is equal to T .

Given an instance (X,Y, Z) of N3DM, we construct an instance of b-EWSA as follows.
Without loss of generality, assume all elements from X ∪ Y ∪Z are smaller than T and the
sum of them is equal to B := mT . We set the goal k := (B2 +B + 1)T . We create 3 groups
of agents corresponding to the 3 multisets X,Y, Z. For each xi ∈ X, we create an agent
a1i in group 1 who holds a large resource that is valued as k by agent a1i and B2T + xi by
all other agents. For each yi ∈ Y , we create an agent a2i in group 2 who holds a middle
resource that is valued as k by agent a2i and BT + yi by all other agents. For each zi ∈ Z,
we create an agent a3i in group 3 who holds a small resource that is valued as zi by agent a3i
and 0 by all other agents. We let the input sharing graph Gs be a clique over the agents.

1080

Improving Resource Allocations by Sharing in Pairs

In the initial allocation, all 2m agents in groups 1 and 2 have utility exactly k and all m
agents from group 3 have utility smaller than k.

⇒: If (X,Y, Z) is a “yes”-instance of N3DM, then using partition S1, S2, . . . , Sm with
the claimed properties, we can find a sharing δ such that each agent participates in at most
two sharings and has utility at least k under Πδ as follows. For each Si = {xi1 , yi2 , zi3}
with xi1 + yi2 + zi3 = T , we let agent a1i1 share its big resource with a3i3 and let agent a2i2
share its middle resource with a3i3 so that agent a3i3 has utility B2T +xi1 +BT + yi2 + zi3 =
(B2 + B + 1)T = k. Since each Si contains exactly one element from each of X,Y, Z, we
have that each agent in group 3 has value exactly k under Πδ. Thus all agents have value
at least k under Πδ. Moreover, every agent in groups 1 and 2 participates in exactly one
sharing and every agent in group 3 participates in exactly two sharings.

⇐: If the instance of b-EWSA is a “yes”-instance, then there is a sharing δ such that
every agent has utility at least k under Πδ. For each agent a3i in group 3, let S′

i = Πδ(a3i)
be the set of resources to which a3i has access under Πδ. Since each agent a3i in group
3 values all small resources held by other agents as 0, without loss of generality, we can
assume S′

i contains no small resources except for the one initially held by a3i itself. Notice
that from the viewpoints of agents in group 3, the sum of value of all middle resources is
smaller than that of one big resource. Since agent a3i has utility at least k under Πδ, S′

i

contains at least one big resource. It follows that each S′
i contains exactly one big resource

as each big resource can be shared by at most one agent from group 3 and there are m
agents in group 3 and m big resources. Next, to guarantee that each agent a3i has utility
at least k, each S′

i should contain at least one middle resource. Again, since each middle
resource can be shared by at most one agent and there are m agents in group 3 and m
middle resources, each S′

i contains exactly one middle resource. Thus, each S′
i contains

exactly one big resource, one middle resource, and one small resource; and each resource is
contained in exactly one S′

i. According to the construction, based on S′
1, S

′
2, . . . , S

′
m, we can

find a partition S1, S2, . . . , Sm of X ∪ Y ∪Z such that each Si contains exactly one element
from each of X,Y, Z and the sum of the numbers in each Si is at least k−B2T −BT = T .
Since the sum of all elements from X ∪ Y ∪ Z is mT , the sum of the numbers in each Si is
exactly T . Therefore, (X,Y, Z) is a “yes”-instance of N3DM.

5. Reducing Envy by Sharing

In this section, we study the problem of reducing envy through sharing. This scenario
comes in constrast to the scenarios regarding the social welfare concepts from the previous
section. The social welfare concepts are global measures that do not employ comparisons
between agents. However, the concept of envy is based on agent-to-agent comparisons. As
a result, considering reducing envy, in addition to the sharing graph, we use the attention
graph describing the possible comparisons.

Definition 7. Given an initial complete allocation π of m resources R to n agents A,
a sharing graph Gs, an attention graph Gt, and a non-negative integer k, Envy Reducing
Sharing Allocation (ERSA) asks if there is a simple 2-sharing δ such that the number of
envious agents |Env(Πδ)| ≤ k.

1081

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

u raj r̊aj rpj rs

ai [{vi, vj} ∈ E] 0 3 3
pi 1 1 3 3
s 0 0 0 3

Table 2: Utility functions in the proof of Theorem 3. We use the Iverson bracket notation:
for some logical expression X, [X] is one if X is true and zero otherwise.

In the above definition we restrict that the sharing is a simple 2-sharing, that is, 1-
bounded 2-sharing. Indeed, this quite restricted problem variant for reducing envy in this
setting already turns out to be NP-hard. In fact, this holds even in a special case when the
attention graph and the sharing graph are (bidirectional) cliques and the goal is to decrease
the number of envious agents by one, as shown in Theorem 3.

Theorem 3. ERSA is NP-hard even if the attention graph and the sharing graph are
(bidirectional) cliques, the goal is to reduce the number of envious agents by at least one,
and there are three different utility values.

Proof. We present a polynomial-time many-one reduction from the NP-hard Independent
Set problem. In this problem, for an undirected graph G = (V,E) and an integer ℓ, we ask
whether G contains a subset of at least ℓ vertices that are pairwise non-adjacent.

Let I = (G, ℓ) be an instance of Independent Set with G = (V,E) and V =
{v1, v2, . . . , vn}. We construct an instance of ERSA as follows. For each vertex vi ∈ V ,
we create an agent ai who initially has two resources rai and r̊ai . Moreover, we add ℓ more
agents: providers p1, p2, . . . , pℓ−1 and a special provider s. Initially, we allocate a re-
source rpi to each provider pi and a resource rs to the special provider. Next, we specify
utility functions (see also Table 2). Each agent ai has value 1 for each resource raj for
which {vi, vj} ∈ E, j ∈ [n], and value 0 for the remaining resources raj (in particular,
agent ai gives value 0 to its own resource). Furthermore, each agent ai has value 0 for
all r̊aj , j ∈ [n], and value 3 for the remaining resources. Regarding the provider pi, it gives
value 1 to resources in {ra1, ra2, . . . , ran} ∪ {̊ra1, r̊a2, . . . , r̊an} and value 3 to all other resources.
The special provider s has value 3 for its own resource rs and value 0 for all others. The
attention graph is a (bidirectional) clique and the sharing graph is also a clique, so every two
agents can share their resources. By the construction, initially there are n envious agents:
{a1, a2, . . . , an}. Thus, we conclude the construction by setting the target number k := n−1,
so we aim at decreasing the number of envious agents by at least 1.

In what follows, we show that there is an independent set of size at least ℓ in G if and
only if there is a simple 2-sharing δ such that |Env(Πδ)| ≤ k, that is, the number of envious
agents is at least by one smaller than before the sharing. Before we start proving this claim,
we emphasize that in every simple 2-sharing the special provider s is not envious.
⇒: Suppose that there is an independent set S of size ℓ in G. We denote by S′ ⊆

{a1, a2, . . . , an} the set of ℓ agents corresponding to the vertices in S. Then, each agent
in S′ can share with a different provider (including the special provider) and increase its
own value to 3. After this sharing, denoted by δ, agents in S′ do not envy any provider

1082

Improving Resource Allocations by Sharing in Pairs

since from their point of view each provider has a bundle of value 3. In addition, since
vertices in S are pairwise non-adjacent, agents in S′ do not envy each other as they see
each other having a bundle of value 3 + 0 + 0 = 3. Finally, agents in S′ do not envy agents
in {a1, a2, . . . , an} \ S′, whose bundles have a value of at most 1. Hence, as required by the
claim, we have |Env(Πδ)| ≤ (ℓ + n)− ℓ− 1 = k envious agents.

⇐: Suppose that there is a simple 2-sharing δ such that |Env(Πδ)| ≤ k. Let N be the
set of non-envious agents after the sharing; for the reasons of the argument’s clarity, we
exclude the special provider s from N . Since overall there are n + ℓ agents and at most k
of them are envious, we have |N | ≥ (n + ℓ)− k − 1 = ℓ. Denote Na = N ∩ {a1, a2, . . . , an}
and Np = N ∩ {p1, p2, . . . , pℓ−1}. Then |Na| + |Np| = |N | ≥ ℓ. Since |Np| ≤ ℓ − 1, we
have Na ̸= ∅. We show that actually Np = ∅. Suppose towards a contradiction that Np ̸= ∅
and consider some agents a∗ ∈ Na and p∗ ∈ Np. Initially, ua∗(π(a∗)) = 0 and ua∗(π(p∗)) = 3.
Since a∗ is not envious after sharing δ, a∗ must get one resource as an effect of sharing with
some provider. Consequently, up∗(Πδ(a∗)) = 1 + 1 + 3 = 5. Since initially up∗(π(p∗)) = 3
and p∗ is not envious after sharing δ, p∗ needs a resource from another provider, as p∗

requires a resource of value at least 2 to overcome this envy. However, this would again
leave a∗ envious because a∗ cannot participate in more than one sharing. Thus, Np = ∅,
and hence N = Na ⊆ {a1, a2, . . . , an}.

Since agents in N are non-envious, it requires that all of them share with a unique
provider. For every two distinct agents ai, aj ∈ N , let rpi′ and rpj′ be the resources shared
respectively to ai and aj . Due to the fact that ai is not envious towards aj , we have
that uai(Π

δ(ai)) ≥ uai(Π
δ(aj)), where Πδ(ai) = {rai , r̊ai , r

p
i′} and Πδ(aj) = {raj , r̊aj , r

p
j′}.

Since uai(r
a
i) = uai (̊r

a
i) = uai (̊r

a
j) = 0 and uai(r

p
i′) = uai(r

p
j′) = 3, we get uai(r

a
j) = 0,

which means that {vi, vj} ̸∈ E. Thus the corresponding vertices for agents in N form an
independent set of size at least ℓ in G.

Theorem 3 in fact constitutes a strong intractability result and it calls for further studies
on other specific features of the input. We counteract the intractability result of ERSA
(Theorem 3) by considering cases with few agents, tree-like graphs, identical utility func-
tions, or few resources.

5.1 Reducing Envy for Few Agents

We start by considering the case with few agents, where our main result is that ERSA is
fixed parameter tractable with respect to the number of agents. Before presenting the FPT
algorithm, we observe that there exist straightforward brute-force algorithms that can solve
ERSA in polynomial time if the number of agents or the number of resources is constant.

Observation 1. There is an algorithm solving the ERSA problem with n agents and

m resources in O
(

(m + 1)n+1 · n
)

time and another one that solves the same problem

in O
(
nm+1 ·m

)
time.

Proof. We enumerate all possible sharings and compute for each sharing the number of
envious agents. When the number n of agents is constant, for each agent a we guess a
resource r ∈ R ∪ {⋄} with which it might be involved in the sharing, where ⋄ is a dummy
resource used to model the case that the agent is not involved in a sharing. Then for each

1083

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

case we check whether the guess induces a valid simple 2-sharing: If some agent a owns
the resource r we guessed for a and we have guessed the same resource for exactly one
neighbor a′ of a, then this means agent a shares r with a′. For each valid simple 2-sharing,
we compute the number of envious agents. Since there are (m+ 1)n cases and for each case
we can check the validity and compute the number of envious agents in O(nm) time, the

whole algorithm runs in O
(

(m + 1)n+1 · n
)

time.

Consider another case, in which the number of resources m is constant. Then, for
each resource r and its respective agent a such that r ∈ π(a), we guess one agent a′ who
participates in sharing r by a. If a = a′, then we assume that r is not shared. Next, we
check whether the guess induces a valid simple 2-sharing, that is, whether each agent is
involved in at most one sharing. For each valid simple 2-sharing, we compute the number
of envious agents. Since there are nm cases and for each case we can check the validity
and compute the number of envious agents in O(nm) time, the whole algorithm works in
O
(
nm+1 ·m

)
time.

From the negative pespective, factor m (resp. n) appears in the base of the exponent
in the running-time formula from Observation 1. Hence, the running times of such an
algorithm skyrockets with large m (resp. n), even for small, fixed values of n (resp. m).
We improve this in Theorem 4 by showing that ERSA is fixed-parameter tractable with
respect to the number of agents n. In contrast, we will show in Theorem 8 that this is not
the case for the number of resources m even in a very restricted case.

Theorem 4. There is an algorithm solving the ERSA problem with n agents and m re-
sources in O

(
(2n)n ·m2

)
time.

The high-level idea behind Theorem 4 is as follows. In order to find a desired sharing,
our algorithm guesses target agents—a set of at least n− k agents that do not envy in the
desired sharing—and a sharing configuration—a set of ordered pairs of agents that share
some resource in the desired sharing. Then, for such a guessed pair, the algorithm tests
whether the desired sharing indeed exists. If it is true for at least one guessed pair, then
the algorithm returns “yes”; otherwise, it returns “no.” The main difficulty in checking the
existence of the desired sharing is that we need to maintain the envy-freeness within target
agents while increasing their utilities.

Before stating the algorithm more formally, we give some notation and definitions. Let C
be a fixed set of target agents.

Definition 8. A sharing configuration M for a set C of target agents is a set of arcs such
that

1. M is a set of vertex-disjoint arcs and

2. if (i, j) ∈M , then {i, j} ∈ Es and j ∈ C.

A simple 2-sharing δ is called a realization of M if δ only specifies the shared resource for
each arc in M ; formally, for each (i, j) ∈M , we have that

(
δ({i, j}) ̸= ∅

)
∧
(
δ({i, j}) ∈ π(i)

)
,

and for each {i, j} with δ({i, j}) ̸= ∅, we have that
(
(i, j) ∈M ∧ δ({i, j}) ∈ π(i)

)
∨
(
(j, i) ∈

M ∧ δ({i, j}) ∈ π(j)
)
. A realization δ is feasible if C ∩ Env(Πδ) = ∅. i.e., no agent in C

will be envious under δ.

1084

Improving Resource Allocations by Sharing in Pairs

Note that a sharing configuration does not only describe shares of a proper simple 2-
sharing but also ensures that the shared resources are indeed shared “to” the target agents;
we justify this restriction later in Lemma 2.

Let us fix a sharing configuration M for C. For each target agent ai, we define a set P 0
i of

initially possible resources that ai might get in some realization of M . For convenience, we
augment each P 0

i with a dummy resource di that has utility zero for every agent. Formally,
we have

P 0
i :=

{
π(j) ∪ {di} if ∃j such that (j, i) ∈M ,

{di} otherwise.
(1)

Note that for each agent ai, there is at most one j such that (j, i) ∈ M since the edges in
M are vertex-disjoint by definition.

For each target agent ai ∈ C, we define a utility threshold ti—the smallest utility agent ai
must have such that ai will not envy agents outside C. Formally, if there is at least one
agent aj ̸∈ C such that (ai, aj) ∈ Gt, then

ti := max
aj ̸∈C,(ai,aj)∈Gt

ui(π(j)), (2)

otherwise, ti := 0. If some target agent cannot achieve its utility threshold by obtaining at
most one of its initially possible resources, then there is no realization of M such that the
agent does not envy. We express it more formally in Observation 2.

Observation 2. There is no feasible realization of M in which some agent ai ∈ C gets a
resource r ∈ P 0

i such that ui(π(i) ∪ {r}) < ti.

For each target agent ai ∈ C and a family of sets of possible resources for the target
agents during the execution of our algorithm, we define a set of forbidden resources.

Definition 9. Let C = {a1, a2, . . . , aq} and let P = {P1, P2, . . . , Pq} be a family of sets of
possible resources for the target agents. Then resource r ∈ Pi is a forbidden resource for
some target agent ai if there is some target agent aj with (aj , ai) ∈ Gt such that

max{uj(π(j) ∪ {r′}) | r′ ∈ Pj} < uj(π(i) ∪ {r}),

that is, if agent ai gets resource r, then agent aj will envy ai even if aj gets its most valuable
resource from Pj. We denote the set of all forbidden resources for ai as Fi(P).

Observe that in every feasible realization no target agent gets one of its forbidden re-
sources since otherwise there is another target agent that envies.

Observation 3. Let P be a family of possible resources for the target agents. In every
feasible realization no target agent ai gets a resource from Fi(P).

Based on the above observations, Algorithm 1 tests whether for a pair of a set C of
target agents and a sharing configuration M there is a feasible realization. The algorithm
keeps track of the possible resources Pi for each target agent ai. Starting with each Pi

equal to the corresponding set of initially possible resources, it utilizes Observation 2 and
removes the “low-utility” resources. Then, utilizing Observation 3, the algorithm finds all

1085

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

DoesFeasibleRealizationExist(Gt, π, {ui}i∈C , C,M)
for each agent ai ∈ C do

Pi ← P 0
i \ {r ∈ Pi | ui(π(i) ∪ {r}) < ti};

end
repeat

B ←
⋃

ai∈C Fi({P1, P2, . . . , P|C|});
Pi ← Pi \B for each agent ai ∈ C;

until B = ∅;
if ∃i with Pi = ∅ then return “no” else return “yes”;

Algorithm 1: Testing existence of a feasible realization of sharing configuration M for
set C of target agents.

forbidden resources for a particular collection of the possible resources for the target agents
and eliminates the forbidden resources. This procedure is repeated exhaustively. Finally, if
at least one of the possible resource sets is empty, the algorithm outputs “no.” Otherwise,
the algorithm returns “yes” since at least one resource remained in the set of possible
resources for every target agent.

After applying Observation 2 and 3 to Algorithm 1 and proving its correctness (Lemma 1
and Lemma 2), we finish the proof of Theorem 4.

Lemma 1. In Algorithm 1, if some Pi is empty after the repeat-loop, then there is no
feasible realization for M for C.

Proof. Suppose towards a contradiction that Pi is empty after the repeat-loop and there
is a feasible realization δ for M such that C ∩ Env(Πδ) = ∅. Let r∗ ∈ Πδ(i) \ π(i) be the
resource shared to agent i. For any agent j ∈ C with (j, i) ∈ Et, let rj ∈ Πδ(j) \ π(j) be
the resource shared to agent j. We remark that here resources r∗ and rj could be dummy
resources. Since j ∈ C and C ∩ Env(Πδ) = ∅, we have j ̸∈ Env(Πδ), and hence j does
not envy i after δ. Thus uj(π(j)) + uj(rj) ≥ uj(π(i)) + uj(r

∗). Since this holds for any
agent j ∈ C with (j, i) ∈ Et, resource r∗ ∈ Si is not a forbidden resource, which contradicts
that Si becomes empty after deleting blocking resources.

Lemma 2. If there is a simple 2-sharing σ such that C ∩ Env(Πσ) = ∅, then there is a
sharing configuration M for C that has a feasible realization and Algorithm 1 outputs “yes”;
otherwise, the algorithm outputs “no”.

Proof. We first show that if there is a simple 2-sharing σ such that C ∩Env(Πσ) = ∅, then
there is a sharing configuration M for C that has a feasible realization δ. Recall that all
sharing configurations have the restriction that the shared resources are indeed shared “to”
the target agents. We now justify this restriction. Let E = {{i, j} ∈ Es | σ({i, j}) ̸= ∅} be
the set of edges where there is a sharing in σ. Let E1 ⊆ E be the set of edges that could be
used in a sharing configuration for C, i.e.,

E1 ={{i, j} ∈ E |
(
σ({i, j}) ∈ π(i) ∧ j ∈ C

)
∨
(
σ({i, j}) ∈ π(j) ∧ i ∈ C

)
}.

1086

Improving Resource Allocations by Sharing in Pairs

We construct a new simple 2-sharing δ by restricting δ on E1:

δ({i, j}) =

{
σ({i, j}) if {i, j} ∈ E1,

∅ otherwise.

Then we define the sharing configuration as

M = {(i, j) | δ({i, j}) ̸= ∅ ∧ δ({i, j}) ∈ π(i)}.

Now it is clear that M is a sharing configuration for C and δ is a realization of M . Moreover,
since all sharings through edges in E \E1 only increase the bundles of agents in A \ C, we
have that {

ui(Π
δ) = ui(Π

σ) ∀i ∈ C,

ui(Π
δ) ≤ ui(Π

σ) otherwise.

Since C∩Env(Πσ) = ∅, we have that C∩Env(Πδ) = ∅. Therefore, δ is a feasible realization.

Next, we show that there is a sharing configuration M for C that has a feasible realization
if and only if Algorithm 1 outputs “yes”. According to Lemma 1, if the algorithm outputs
“no”, then there is no feasible realization for M for C. On the other hand, if the algorithm
outputs “yes”, then at the end of the algorithm we get Pi ̸= ∅ for each agent ai ∈ C. We can
build a simple 2-sharing δ by choosing the most valuable resource from Pi for each agent
ai ∈ C. Notice that Pi are disjoint, so there is no possibility that two agents would receive
the same resource. If Pi = {di}, then no resource is shared to agent ai. It is clear that δ is a
realization for M for C. Moreover, for any agent ai ∈ C, ai does not envy agents outside C
(as resources that do not have high enough utility for ai such that ai does not envy agents
outside C are removed from Pi and Pi ̸= ∅ at the end) and ai does not envy agents in C
(as B = ∅). Therefore, δ is a feasible realization for M for C.

Eventually, we are set to present the proof of Theorem 4.

Proof of Theorem 4. According to Lemma 2, to solve an instance of ERSA, it is enough
to test whether there is a pair of a target subset and a sharing configuration that has a
feasible realization. Since, checking a feasible realization, due to Lemma 2, can be done by
Algorithm 1, we check all such possible pairs and return “yes” if there is (at least) one that
has a feasible realization.

There are O(2n) possible target sets and at most nn possible sharing configurations per
target set, which gives O ((2n)n) cases. For each case, we apply Algorithm 1. Therein,
the for-loop takes O(nm) time. Concerning the repeat-loop that runs at most m times,
computing the set B takes O(nm) time; thus, the repeat-loop takes O(nm2) time. Finally,
Algorithm 1 runs in O(nm2) time and ERSA can be solved in O

(
(2n)n ·m2

)
time.

Next, we show that restricting the parameter “number k of envious agents” does not
help to make ERSA solvable in polynomial time. Indeed, already with k = 1, our problem
remains computationally hard.

Theorem 5. ERSA is NP-hard even if the goal is to reduce the number of envious agents
from one to zero and the unanimous utility functions take four different values.

1087

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

aL(ϕ)
(2)

aF(ϕ)
(0)

(a) The leader gad-
get for formula ϕ.

d(x, 1)
(3)

d(x, 2)
(1, 2)

a(x)
(0)

ā(x)
(0)

(b) The variable gadget for
variable x.

d̊(ℓ1i)
(1, 1)

d̊(ℓ2i)
(1, 1)

d̊(ℓ3i)
(1, 1)

−→
d (ℓ1i)

(1) −→
d (ℓ2i)

(1) −→
d (ℓ3i)

(1)

a(Ci)(2)

(c) The clause gadget for clause Ci = (ℓ1i ∨ ℓ2i ∨ ℓ3i).

Figure 2: The gadgets in the construction in the proof of Theorem 5. The utility function
is unanimous. The envious agents are framed. Numbers in brackets indicate an
initial allocation (e.g., (0) denotes an empty bundle; (1, 2) means a bundle of a
value-one and a value-two resource).

Proof. We provide a polynomial-time many-one reduction from the NP-hard 3-CNF-Sat
problem that asks whether a given Boolean expression in conjunctive normal form with each
clause of size at most three is satisfiable. From now on we stick to the following notation.
Let ϕ =

∧
i∈[m̄]Ci be a 3-CNF formula over a set X = {x1, x2, . . . , xn̄} of variables where a

clause Ci, i ∈ [m̄], is of the form (ℓ1i ∨ ℓ2i ∨ ℓ3i). We use a standard naming scheme and call
each ℓ·i a literal.

We first describe the leader gadget, the clause gadget, and the variable gadget (see Fig-
ure 2 for an overview of the construction). Then, we show how to connect our gadgets to
achieve a desired instance of ERSA. Eventually, we prove the reduction’s correctness pre-
ceding it by a discussion on the structure of the built instance. Notably, in our construction
we use a unanimous utility function, that is, each agent we introduce has the same utility
function over all introduced resources.

Construction The leader gadget consists of two agents: the leader aL(ϕ) and the fol-
lower aF(ϕ). The follower is not assigned any resource, while the leader has a resource
of value two. There is a directed arc from the follower to the leader. Thus, initially, the
follower envies the leader.

The variable gadget for a variable x ∈ X consists of two value agents a(x) and ā(x), and
two dummy agents d(x, 1) and d(x, 2). The two value agents represent, respectively, assign-
ing true and false to x. Both dummy agents are paying attention to both value agents
(but not vice versa). Initially, three resources are allocated. The resource of value three is
allocated to d(x, 1) and two resources, one of value one and one of value two, are allocated
to d(x, 2). As a result, initially, no agent building the gadget envies.

To describe the clause gadget, let us fix a clause Ci = (ℓ1i ∧ ℓ2i ∧ ℓ3i). For each literal ℓ in

the clause we add two agents: the donor
−→
d (ℓ) and the recipient d̊(ℓ). The donor initially

has a single one-valued resource, while the recipient initially gets two one-valued resources.

As for the attention relation, for each literal ℓ, there is an arc (d̊(ℓ),
−→
d (ℓ)), that is, the arc

points from the recipient to the donor. Eventually, the gadget contains the root agent a(Ci)
that gets a single resource of value two. The root agent pays attention to recipients d̊(ℓ1i),
d̊(ℓ2i), and d̊(ℓ3i). Observe that, initially, no agent within this gadget envies.

1088

Improving Resource Allocations by Sharing in Pairs

d(x, 1)
(3)

d(x, 2)
(1, 2)

a(x)(0)

ā(x)(0)
aL(ϕ)

(2)

aF(ϕ)
(0)

d̊(ℓ1i)

(1, 1)

−→
d (ℓ1i)

(1)

a(Ci)
(2)

Figure 3: Connections of gadgets for literal ℓ1i (over variable x) of some clause Ci. Envious
agents are framed. Other possible literals of Ci are omitted for clarity.

We obtain the full construction by interconnecting the gadgets (see Figure 3). Consider
a single copy of the leader gadget, one variable gadget per variable, and one clause gadget
per clause. First, we connect every value agent with an arc directed from the value agent
to the follower. Note that we do not introduce any envy because the follower has no
resources initially. Finally, for each literal ℓji , j ∈ {1, 2, 3}, i ∈ [m̄], we add an arc from a

respective recipient d̊(ℓji) to the value agent of the corresponding variable agent; for example,

for ℓji = ¬xy, y ∈ [n̄], we would add an arc (d̊(ℓji), ā(xy)). The sharing graph is just the
same as the underlying undirected graph of the attention graph.

The constructed attention graph, the sharing graph, the introduced agents, the resources
allocated by the initial allocation, and their utilities together with the desired number k := 0
of envious agents form an instance of ERSA, which is clearly computable in polynomial
time.

Correctness We show that ϕ is satisfiable if and only if there exists a simple 2-sharing
for the above instance such that no agent is envious.

⇒: Suppose there exists a satisfiable truth assignment x of ϕ. We first make the leader
share with the follower, making the follower non-envious. Next, in each variable gadget, for
every variable x set to true, we let agent a(x) get the two-value resource and ā(x) get the
three-value resource through sharing with the corresponding dummy agents; otherwise, we
let agent a(x) get the three-value resource and ā(x) get the two-value resource. Finally, for
each clause C, since x is a satisfiable truth assignment, there must be a literal ℓ ∈ C that is
assigned true, which means that the corresponding value agent gets a two-value resource.
Hence in the clause gadget of C, recipient d̊(ℓ) shares one of its one-value resource with the
root agent a(C). Thus, agent a(C)’s utility is effectively three so two other two recipients
share with their donors to also obtain the utility of three. It is easy to verify that no agent
is envious under this simple 2-sharing.

⇐: Suppose there exists a simple 2-sharing for the above instance such that no agent
envies. Since none of the value agents has any resource, the only way to make the follower
non-envious is to share the leader’s resource. This makes all value agents envious because
they look at the follower that has obtained a resource of value two. Hence, to decrease the
number of envious agents to zero, one has to provide each value agent with a resource of
value at least two. Since respective recipients that are connected to the value agents have
only one-valued resources, value agents have to share the resources of the dummy agents.

1089

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

Among these only two suitable resources exist, two- and three-valued ones. Thus, in each
variable gadget, one of the value agents needs to get a resource of value two and the other
a resource of value three.

We construct a truth assignment by setting a variable x to true if and only if agent a(x) gets
a two-value resource. Next we show that this truth assignment satisfies every clause of ϕ.
Towards a contradiction, suppose there exists an unsatisfied clause C in the constructed
truth assignment. Then by construction, all the three recipient agents for this clause look
at a value agent with a three-valued resource. Since no agent envies, each of these three
recipient agents has to share with one neighbor to increase its utility to three. They cannot
share with the root agent as otherwise the root agent will be envious. Clearly, this envy
cannot be avoided since the root agent cannot participate in any further sharing. As a result,
the three recipient agents share with the three donor agents. This, however, also makes the
root agent envious. Again, one cannot avoid this envy by sharing because there is no other
agent that the root agent could share with. Hence, we arrive at the contradiction.

5.2 Reducing Envy for Tree-like Graphs

We proceed by studying how the tree-like structure of the sharing graph and the attention
graph influences the computational complexity of ERSA. Studying tree-likeness, we hope
for tractability for quasi-hierarchical social networks, where agents at the same level of the
hierarchy influence each other but they rather do not do so in a cross-hierarchical manner.

Theorem 3 shows that when both graphs are (bidirectional) cliques ERSA is NP-hard.
We continue to focus on the case when the underlying graph of the attention graph is the
same as the sharing graph. Note that this restriction appears naturally when assuming that
one may envy everybody one knows and one may share only with known people. On the
one hand, Theorem 6 shows that if the sharing graph is a path, a tree or being very close to
a tree (corresponding to a “hierarchical network”), then we can solve ERSA in polynomial
time. On the other hand, Theorem 6 establishes that for sharing graphs being “far from
a path,” presumably there is no algorithm whose exponential growth in the running time
depends only on the “distance from path.”

Theorem 6. When the underlying graph of the attention graph is the same as the sharing
graph, ERSA can be solved in O

(
tw · n · (8m)tw+2

)
time if the sharing graph has a constant3

treewidth tw, and ERSA is W[1]-hard with respect to the pathwidth of the sharing graph
even if there are four different utility functions.

Proof of the first part. We give a polynomial-time algorithm based on dynamic program-
ming based on a (nice) tree decomposition. Let us fix some instance of ERSA with agentsA,
resources R, and a sharing graph Gs. Let G with treewidth tw be the underlying graph
of Gs. By T = (T, {X1, X2, . . . , X|V (T)|}) we denote a nice tree decomposition of G; here T
is a tree, V (T) is the set of vertices of T called nodes, and Xi are the decomposition bags.
Since we assume constant treewidth, we can precompute T in polynomial time (Cygan
et al., 2015). Without loss of generality, we assume that T is given. Before presenting the
algorithm, we first define further concepts and notation.

3. We make this assumption so that we can assume that a nice tree decomposition is given as input since
it can be computed in f(tw) · n time, as mentioned in Section 2.3.

1090

Improving Resource Allocations by Sharing in Pairs

A bundle configuration b : Xt → 2R for bag Xt is a function which maps every agent in Xt

to a bundle of resources. We say a sharing δ realizes bundle configuration b if Πδ(a) = b(a)
for each a ∈ Xt. Bundle configuration b is feasible if there exists a simple 2-sharing δ
which realizes b. Note that π is a trivial bundle configuration that can be realized by an
empty sharing. Let us fix a node t ∈ T . By Bt we denote the set of all feasible bundle
configurations for bag Xt, and by Vt we denote the union of all the bags in the subtree
of T rooted in t (including Xt itself). Furthermore, we write Env[Vt](δ) for the set of all
envious agents in the subinstance induced by the agents in Vt under some sharing δ. Note
that Env[Vt](δ) does not contain an agent a if a only envies agents outside of Vt under δ.
For some bundle configuration b for bag Xt and a bag Xt′ ⊆ Xt, we denote by b[Xt′] the
bundle configuration described by b restricted to Xt′ .

Consider a bag Xt of the tree decomposition, a feasible bundle configuration b ∈ Bt, and
a subset S ⊆ Xt of the agents of bag Xt. We define a function f [t, b, S] which yields the
minimum number of envious agents in the subinstance induced by Vt under a sharing δ such
that δ realizes b and Env[Vt](δ) ∩Xt = S. Formally, for every bundle configuration b ∈ Bt

and every subset S ⊆ Xt, the definition of f reads as follows:

f [t, b, S] := min{Env[Vt](δ) | (δ realizes b) ∧ (Env[Vt](δ) ∩Xt = S)}.

For convenience, we assume f [t, b, S] = +∞, if no sharing δ exists for a given collection
of f ’s parameters. Taking r ∈ V (T) as the root node of T , it is easy to see that our goal
is to compute f [r, π, ∅]. Notice that since T is a nice tree decomposition, the root node Xt

and all leaf nodes are empty sets.
Starting from the leaves of T , we compute the values of f bottom-up according to

the following formulae regarding each of the four possible types of nice tree decomposition
nodes: leaf node, introduce node, forget node, and join node.

Leaf node. Suppose t is a leaf node of T . Since (by definition of nice tree decomposi-
tions) Xt = ∅, then we have only one value f [t, π, ∅] = 0.

Introduce node. Suppose t is an introduce node with a child t′ such that Xt = Xt′∪{v}
for some v ̸∈ Xt′ . For each bundle configuration b ∈ Bt and S ⊆ Xt, we first check
whether b and S are compatible, that is, whether there is a sharing δ realizing b such
that Env[Vt](δ) ∩ Xt = S. To this end, we compute a set E ⊆ Xt of agents who envy the
agents in Xt assuming the bundles imposed by b. Observe that for each δ realizing b, it
holds that E ⊆ Env[Vt](δ) ∩Xt. Thus, if E \ S ̸= ∅, then b and S are incompatible, and we
set f [t, b, S] = +∞. By the property of tree decompositions, all neighbors of v that are in Vt

are also in Xt. So if v ̸∈ E, then v will not be envious in the subinstance induced by Vt under
any sharing which realizes b. Thus, if v ∈ S \ E, then b and S are also incompatible, and
we set f [t, b, S] = +∞. Now for each b ∈ Bt and S ⊆ Xt with E ⊆ S and v ∈ E ⇔ v ∈ S,
we have that:

f [t, b, S] = min{|S \ S∗|+ f [t′, b[Xt′], S
∗] | S \ E ⊆ S∗ ⊆ S ∩Xt′}.

Intuitively, the above formula says which choice of S∗ is optimal for the given S and b with
respect to the total number of envious agents. Since b guarantees that among the agents
in Xt only agents in E ⊆ S ⊆ Xt are envious, at least agents in S \ E must have been
already guaranteed being non-envious by sharings for the values of f for node t′. Thus we
require that S \ E ⊆ S∗.

1091

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

Forget node. Suppose t is a forget node with a child t′ such that Xt = Xt′ \ {w} for
some w ∈ Xt′ . Then, for every b ∈ Bt and S ⊆ Xt, we have that:

f [t, b, S] = min{f [t′, b∗, S∗] | (b∗[Xt] = b) ∧ (S ⊆ S∗ ⊆ S ∪ {w})}.

The intuition behind the above is as follows. Since we “forget” agent w and thus we will
never consider it again, we want to find the optimal sharing among these ones that either
make w envious or not. Hence, in the formula we seek the minimum over all possible values
of f for t′ that guarantee the same situation as the one described by b and S for all agents
in Xt′ except for agent w, which we forgot in node t′.

Join node. Suppose t is a join node with children t1 and t2 such that Xt = Xt1 = Xt2 .
Then, for each b ∈ Bt and S ⊆ Xt, we have that:

f [t, b, S] = min{f [t1, b, S1] + f [t2, b, S2]− |S1 ∩ S2| | S1 ∪ S2 = S}.

To see the correctness of the above formula it is crucial to recall that by the definition of tree
decompositions it holds that Vt1 ∩ Vt2 = Xt. Hence, we can simply add up the respective
values of f for the children followed by subtracting |S1∩S2| as the envious agents in |S1∩S2|
have been counted in both f [t1, b, S1] and f [t2, b, S2].

Finally, we proceed with the running time analysis of the algorithm. For each node t,
we have |Bt| ≤ mtw+1 since in every bundle configuration for Xt, each agent in Xt can get
at most one additional resource compared to its initial bundle. Naturally, for each node t,
we have at most 2tw+1 subsets St. Since the nice tree decomposition has at most O(tw · n)
nodes (Cygan et al., 2015), it follows that we have at most O(tw · n · (2m)tw+1) values of
function f to compute. Values of an introduce node and a forget node can be computed,
respectively, in O(2tw+1) (counting all possible subsets of Xt′ for S∗) and in O(m) (there are
at most this many bundle configurations b∗t) time. Values of a join node can be computed
by brute-forcing all possible pairs of S1 and S2 in O(22tw+2) time. So the worst-case running
time is O

(
tw · n · (8m)tw+2

)
.

Proof of the second part. We provide a parameterized reduction from the W[1]-hard Mul-
ticolored Clique problem (Downey & Fellows, 2013). Here, for an integer ℓ and an
undirected graph G = (V,E) in which each vertex is colored with one of ℓ colors, the goal is
to find a set of ℓ pairwise adjacent, differently colored vertices. Without loss of generality,
we assume that V can be partitioned into ℓ size-n sets Vi = {vi1, vi2, . . . , vin}, i ∈ [ℓ], where
each Vi represents vertices of color i. Similarly, we assume that there are no edges between
vertices of the same color. Subsequently, we describe how to construct an instance of ERSA
given an instance (G, ℓ) of Multicolored Clique. Figure 4 illustrates the crucial gadgets
of the reduction.

Before we present the construction of the instance of ERSA, we introduce some handy
notation. Let us fix a pair of distinct colors i and j. We refer to the set of edges connecting
the vertices of these colors as Ei,j = {{v, v′} ∈ E | v ∈ Vi, v

′ ∈ Vj}. Complementarily,
let Ei,j = (Vi×Vj)\Ei,j and E =

⋃
i ̸=j∈[ℓ]Ei,j . We say that an edge e is forbidden if e ∈ E.

Indeed, since forbidden edges are not part of G, they cannot appear between vertices of any
clique in G.

1092

Improving Resource Allocations by Sharing in Pairs

Construction Our construction consists of the vertex selection gadget and the certifica-
tion gadget. We describe them in the given order specifying how they relate to each other
in the description of the certification gadget. For better understanding, we refer to Figure 4
showing the construction and Table 3 showing the utility functions.

For each color i, we build the vertex selection gadget consisting of three agents: a
selector si, a provider pi, and a dummy di. As for the attention relation, the provider
attends the selector, that, in turn, attends the dummy. For each vertex v ∈ Vi we create
a vertex resource r(v) and give all of them to the provider. The selector initially gets two
resources r(si, 1) and r(si, 2). The same applies to the dummy that gets r(di, 1) and r(di, 2).
The desired goal of the vertex selection gadget is that the provider shares with the selector
exactly one vertex resource. We get this by making the selector initially envious of the
dummy and ensuring that the dummy cannot share with the selector to remove the envy.
To implement such a behavior, we set the utility function of the dummy and the provider to
be 0 for all resources. The selector, however, gives utility 1 to both r(di, 1) and r(di, 2) and
utility 2 to all vertex resources; the selector gives utility 0 to every other resource. Thus,
under the initial allocation, the selector has utility 0 and envies the dummy, whose bundle
has utility 2 for the selector.

For each forbidden edge, we build the certification gadget. Our goal is to represent a
clique by the vertex resources that are shared with the selectors. Hence, the purpose of
the certification gadget is to forbid selectors to obtain via a sharing the vertex resources
representing the vertices that are not adjacent in G. To demonstrate the gadget, let us
fix a pair {i, j} of distinct colors such that i < j and a forbidden edge e = {v, v′} ∈
Ei,j . The certification gadget consists of two certification agents cie and cje, each having a

resource—r(cie) and r(cje), respectively. Agent cje attends cie. We connect the certification
gadget with the respective vertex selection gadgets by letting both certification agents attend
the selectors of the respective colors, that is cie attends si and cje attends sj . We make
two certification agents being envious of the respective selectors according to the initial
allocation. Further, we ensure that we can make one of the certification agents non-envious
if and only if the respective selectors get vertex resources that do not represent forbidden
edge e. Additionally, we make sure that sharing a resource from a selector to a certification
agent cannot make the latter non-envious. To this end, cie gives utility 1 to both resources
initially given to si. Further, cie gives utility 2 for vertex resource r(v) and utility 1 for all
other vertex resources of color i. We set analogously the utility function of cje for the initial
resources of sj and the vertex resources of color j. Finally, both certification agents give
each other’s resource utility 3 and utility 0 for every other resource (including the ones they
initially hold).

Finally we set k :=
(
ℓ
2

)
n2−|E|, which is the number of all forbidden edges. This finishes

our construction of the instance of ERSA. Concerning the pathwidth, denote the set of
all selectors, all providers and all dummies as B. There is a path decomposition P =
(X1, X2, . . . , Xm), where m = |E| is the number of forbidden edges, and each bag Xi

contains all vertices in B and two certification agents for some forbidden edge. Therefore,
the pathwidth of the underlying graph of the attention graph Gt is at most |B|+ 2 = 3ℓ+ 2,
which is clearly a function of ℓ.

1093

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

cie cje

si sj

di dj

pi pj

(r(cie)) (r(cie))

(r(si, 1), r(si, 2)) (r(sj , 1), r(sj , 2))

(r(vi1), r(v
i
2), . . . , r(v

i
n)) (r(vj1), r(v

j
2), . . . , r(v

j
n))

(r(di, 1), r(di, 2)) (r(dj , 1), r(dj , 2))

Figure 4: The vertex selection gadget for colors i and j and the certification gadget for a
forbidden edge e with endpoints of colors i and j in the constructed instance.

u r(v) r(dh, t) r(sh, t) r(che′)

di 0 0 0 0
pi 0 0 0 0
si 2 1 0 0

cie

{
2 v ∈ e ∩ Vi

1 o.w.
0 1

{
3 e = e′ ∧ i ̸= h

0 o.w.

Table 3: Table of utility functions, where t ∈ {1, 2}, e and e′ are forbidden edges, and i, h ∈
[ℓ].

Correctness We show that the instance of Multicolored Clique is a “yes”-instance
if and only if the constructed instance of ERSA is a “yes”-instance. Note that under the
initial allocation, every selector si envies the corresponding dummy di since usi(π(si)) =
0 < usi(π(di)) = 2. For each forbidden edge e, both certification agents cie and cje are
envious because ucie(π(cie)) = u

cje
(π(cje)) = 0 < ucie(π(si)) = u

cje
(π(sj)) = 2.

⇒: Suppose there is a clique C of size ℓ in G such that C contains one vertex from each
color. Based on C, we construct a sharing δ such that after this sharing all selectors become
non-envious and for each forbidden edge e exactly one agent from {cie, c

j
e} becomes envious.

The remaining agents stay non-envious after applying δ.

For each color i, without loss of generality, let vi1 ∈ C. Then we let provider pi share
resource r(vi1) to selector si in δ . Hence, each selector si receives a resource of utility 2 and
they become non-envious. If the input graph G is complete (as a multi-partite graph), then
δ is a solution to the constructed instance and the argument for this case is over. Indeed, in
such a case there is no forbidden edge for G so that there is no copy of the certificate gadget
in the ERSA instance. This in turn implies that applying δ results in all agents being
non-envious. To complete the argument, we assume that there is at least one forbidden
edge e = {vix, v

j
y} for G. Since C is a clique, we have that at least one of vix and vjy is not

1094

Improving Resource Allocations by Sharing in Pairs

in C. Thus, as per δ constructed so far, the following two events could not happen at the
same time:

1. resource r(vix) is shared to selector si;

2. resource r(vjy) is shared to selector sj .

Without loss of generality, assume that resource r(vix) is shared to selector si and re-
source r(vjy′), instead of r(vjy), is shared to selector sj . Then, we let agent cie share re-

source r(cie) to agent cje in δ. This makes agent cje non-envious, since u
cje

(π(cje)∪ {r(cie)}) =

3 = u
cje

(π(sj)∪{r(vjy′)}). Applying the just-described way of updating δ for each forbidden
edge for G, completes constructing δ. Eventually, exactly one certification agent for each
forbidden edge is envious and no other agent is envious, thus there are

(
ℓ
2

)
n2 − |E| = k

envious agents after applying sharing δ.

⇐: Suppose there is a sharing δ such that only k agents are envious after this sharing.
First, for each forbidden edge e = {vix, v

j
y} ̸∈ G, the only way to make agent cie not envious is

to share resource r(cje) from cje to cie. Analogously, the only way to make agent cje not envious
is to share resource r(cie) from cie to cje. Since there could be at most one sharing between cie
and cje, at least one agent of cie and cje will always be envious. Since k =

(
s
2

)
n2 − |E| is

exactly the number of all forbidden edges, it must be that after sharing δ no selector is
envious and for each forbidden edge e, exactly one agent from {cie, c

j
e} is envious. Based on

this fact, we show in the following that there is a clique C of size ℓ containing one vertex
from each color.

To make selector si not envious, si has to receive a resource from the provider pi.
Without loss of generality, for each i ∈ [ℓ], let r(vi1) be the resource shared to si. We claim
that C = {v11, v21, . . . , vℓ1} is the desired clique. Suppose C is not a clique, then there are two
vertices vi1 and vj1 such that {vi1, v

j
1} ̸∈ E, which means that edge e = {vi1, v

j
1} is forbidden.

Since every selector si shares with provider pi, agents cie and cje can only share with each
other, which leads to increasing their utility to at most 3. However, after such a sharing
ucie(Π

δ(si)) = ucie(π(si)∪{rixi
}) = 4 and u

cje
(Πδ(sj)) = u

cje
(π(sj)∪{rjxj}) = 4 so that both cie

and cje are envious. This, however, contradicts the fact that at most one of cie and cje is
envious in δ. Therefore, C is a clique of size ℓ containing one vertex from each color.

5.3 Reducing Envy for Identical Agents

We proceed by studying the natural special case where all agents are “identical.” That
means agents have unanimous utility functions (all agents have the same utility function)
and may even have the same social neighborhoods (so everyone may envy everyone else and
everyone may share with everyone else). Already in this constrained setting of homogeneous
agents allocation problems frequently become hard (Bouveret & Lang, 2008). This is why
this scenario also attracts quite some attention in the fair allocation literature (Nguyen
et al., 2013; Biswas & Barman, 2018; Barman et al., 2018; Bouveret & Lang, 2008). Here,
we focus on cliques that naturally model small, dense communities and allow for convenient
comparison with the classical setting of indivisible, non-shareable resources (where the
attention graph is implicitly assumed to be a bidirectional clique).

1095

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

Theorem 3 already shows that restricting the attention graph and the sharing graph to
be cliques is not enough to make ERSA solvable in polynomial time. However, assuming
unanimous utility functions, Theorem 7 shows that restricting the attention graph to be a
bidirectional clique alone yields polynomial-time solvability. The idea behind the proof of
Theorem 7 is that non-envious agents are exactly those with the highest utility, so we can
guess the highest utility and then reduce the problem to a bounded number of Maximum
Matching.

Theorem 7. For n agents, m resources, unanimous utility functions, and the attention
graph being a bidirectional clique, ERSA is solvable in O(nmρ) time, where ρ is the time
needed to find a maximum matching in a graph with at most n vertices and at most n2 edges.

Proof. Let u be the utility function for all agents and let N be the set of all non-envious
agents after a sharing δ. For every two agents ai, aj ∈ N , since the attention graph is a
clique, we have that u(Πδ(ai)) ≥ u(Πδ(aj)) and u(Πδ(aj)) ≥ u(Πδ(ai)); hence u(Πδ(ai)) =
u(Πδ(aj)). Denote the utility of all agents in N by u∗. Clearly, u(Πδ(ax)) < u∗ for every
agent ax ̸∈ N . Thus, after applying any sharing allocation, the set of non-envious agents is
exactly the set of agents who have the highest utility. Based on this observation, it suffices
to sweep through all possible values u∗ of the target utility and compute the largest number
of agents with utility u∗ after some sharing.

We first show that the number of different values u∗ of the target utility is O(nm).
Each agent can get at most one resource through a simple 2-sharing and there are overall m
different resources, so each agent could end up with at most m different utility values for
its bundle. Since we have n agents, we get the desired upper bound O(nm). Let S be the
set of all these utilities, that is, S = {u∗ | u∗ = u(π(ai)) + u(r), ai ∈ A, r ∈ R \ π(ai)}.
Let u0 = maxi∈A u(π(ai)) be the largest utility of some agent before a sharing. We only
need to consider utility values in S′ = {u∗ ∈ S | u∗ ≥ u0} as each target utility u∗ should
be at least u0.

We now show that computing the largest number of agents that can have utility u∗ after
a sharing δ can be reduced to Maximum Matching. Let us fix some value of u∗ ≥ u0.
We first find the set N0 of agents who already have utility u∗ before sharing, that is,
N0 = {ai ∈ A | u(π(ai)) = u∗}. Observe that N0 = ∅ if u∗ > u0. Then we construct a
graph G = (A, E) over the agents such that an edge e = {ai, aj} belongs to E if one of
agents ai and aj can increase its utility to exactly u∗ as a result of a sharing between ai
and aj . Formally, e = {ai, aj} ∈ E if {ai, aj} ∈ Es, ai ̸∈ N0, and there exists a resource r ∈
π(aj) such that u(π(ai)) + u(r) = u∗. By computing a maximum matching in G, we can
find the largest number of agents in A \ N0 who can increase their utilities to u∗ through
a sharing. Eventually, we have O(nm) runs of Maximum Matching, which yields the
claimed running time O(nmρ).

We complement Theorem 7 by showing in Theorem 8 that identical utility functions
having only two values, identical utility values for all resources, and the sharing graph
being a clique are not sufficient to make ERSA solvable in polynomial time when the
attention graph can be arbitrary. So, Theorem 7 and Theorem 8 show an interesting and
very stark contrast between the influence of the completeness of the attention graph and
the sharing graph on the problem’s computational complexity.

1096

Improving Resource Allocations by Sharing in Pairs

Theorem 8. ERSA is NP-hard even if the sharing graph is a clique, the agents have a
unanimous utility function taking only two values, all resources have the same utility for
all agents, and the maximum initial bundle size is one. For the same constraints, ERSA
is W[1]-hard with respect to the parameter “number of resources.”

Proof. We give a polynomial-time many-one reduction from Clique, where we are given an
undirected graph together with an integer ℓ and the question is whether there is a set of ℓ
mutually connected vertices. Clique is known to be NP-hard, and W[1]-hard with respect
to the number of vertices in a sought clique (Downey & Fellows, 2013). To this end, we fix
an instance I = (G, ℓ) of Clique, where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. For
brevity, let ℓ̃ :=

(
ℓ
2

)
be the number of edges in a clique of size ℓ. Without loss of generality,

we assume that 4 ≤ ℓ < n and ℓ̃ ≤ m. We build an instance I∗ of ERSA corresponding
to I as follows.

For each vertex vi ∈ V we create a vertex agent a(vi) and for each edge ei ∈ E we
create an edge agent a(ei). We also add 2m dummy agents {d1, d2, . . . , d2m} and ℓ̃ happy
agents {h1, h2, . . . , hℓ̃}. We introduce ℓ̃ resources r1, r2, . . . , rℓ̃. In the initial allocation π,
the resources are given to the happy agents such that each happy agent gets one resource.
The resources are indistinguishable for the agents, that is, each agent gives all of them the
same utility value; for convenience, we fix this utility to be one. The sharing graph is a
clique. In the attention graph Gt, all edge agents have outgoing arcs to all happy agents, each
vertex agent a(v), v ∈ V , has an outgoing arc to every edge agent corresponding to an edge
incident to v, and all dummy agents have outgoing arcs to all vertex agents, The described
ingredients, together with the desired maximum number of envious agents k := m− ℓ̃ + ℓ,
build an instance I∗ of ERSA corresponding to Clique instance I. The whole construction
can be done in polynomial time, and we use exactly ℓ̃ =

(
ℓ
2

)
resources.

Observe that all edge agents are envious under π. Since vertex agents and dummy agents
do not pay attention to happy agents, no more agents are envious. Thus, there are exactly
m > k envious agents under π. We now show that instance I of Clique is a “yes”-instance
if and only if instance I∗ of ERSA is a “yes”-instance.

⇒: Assume that there exists a clique of size ℓ in G. Let us call each agent corresponding
to an edge in the clique a clique agent ; by definition, there are exactly ℓ̃ of them. We
construct a desired sharing for I∗ by giving every clique agent a resource. Indeed, it is
achievable since we have exactly ℓ̃ resources, which can be shared by the happy agents with
exactly ℓ̃ distinct clique agents. After such a sharing, all clique agents do not envy any
more. Observe that the sharing made ℓ agents corresponding to the vertices of the clique
envious. Thus, the total number of envious agents is decreased by ℓ̃− ℓ. This gives exactly
the desired number k, resulting in I∗ being a “yes”-instance.

⇐: Let δ be a sharing such that there are at most k envious agents under the sharing
allocation Πδ. Since the sharing graph is a clique, happy agents could share resources with
any one of the remaining agents. However, if a happy agent shares with a vertex agent,
then all 2m dummy agents will envy this vertex agent. Since there are only ℓ̃ resources, at
least 2m − ℓ̃ ≥ m > k dummy agents will be envious at the end. Hence, we can assume
that no vertex agent is involved in δ. Consequently, no dummy agent will envy as they only
look at vertex agents. Hence, without loss of generality, we can additionally assume that

1097

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

no dummy agent is involved in δ. Then all sharings in δ are restricted to edge agents and
happy agents.

Now, we show that δ actually encodes a clique of size ℓ in G. When an edge agent gets
a resource through sharing, it stops being envious, however, all vertex agents that looks at
this edge agent become envious. So, an ultimate goal for an optimal sharing is to share
resources to the highest possible number of edge agents that are connected with an arc with
as few vertex agents as possible. Formally, let S be the set of edge agents who get shared
resources in δ and T the set of the corresponding vertex agents who become envious as a
result of the sharing. Denote s = |S| and t = |T |. Naturally, 1 ≤ s ≤ ℓ̃ and t ≥ 2. Moreover,
by definition we have s ≤

(
t
2

)
. Then, the number of envious agents after the sharing in the

solution is at least m− s + t and this number should be at most k = m− ℓ̃ + ℓ, that is,

m− s + t ≤ m− ℓ̃ + ℓ⇒ s− t ≥ ℓ̃− ℓ.

Since ℓ̃ =
(
ℓ
2

)
and s ≤

(
t
2

)
, if ℓ > t ≥ 2, then

s− t ≤
(
t

2

)
− t <

(
ℓ

2

)
− ℓ = ℓ̃− ℓ,

which contradicts that s−t ≥ ℓ̃−ℓ. Hence t ≥ ℓ. Since s ≤ ℓ̃, the only way to satisfy s−t ≥
ℓ̃− ℓ is that s = ℓ̃ and t = ℓ. Thus, the corresponding vertices of T form a clique of size ℓ
in G.

6. Extensions

We introduce two natural extensions of our model, both of which describe costs which can
be incurred by sharing—either for the central authority or agents. For each extension, we
discuss which results can easily be adapted to cover it. Finally, we formally present how to
modify the proofs of the relevant results.

6.1 Extension 1: Loss by Sharing

So far, we have assumed that agents get the full utility of the shared resources. This
does not hold for situations in which sharing causes more inconvenience than owning a
resource alone. Nonetheless, most of our algorithms can be easily adapted to deal with
(computational) issues that arise in such situations. Consider the case when agents get
only a fraction of the full utility from shared resources. Then our algorithms for improving
utilitarian welfare (Theorem 1) and egalitarian welfare (Proposition 1) still work with minor
changes. Regarding reducing envy, it might be that after sharing agents lose some utility and
thus become envious. Again, our algorithms for tree-like graphs (Theorem 6) or identical
agents (Theorem 7) still work with minor changes. The only exception is the FPT algorithm
for few agents (Theorem 4): Whether this FPT algorithm can be adapted for Extension 1
is still an open question.

Formally, we introduce two parameters α, β ∈ [0, 1] to quantify the effect that agents
do not get the full utility of the shared resources. For every resource r initially assigned to
agent ai in π and shared to aj under δ, the utility of resource r for ai is α · ui(r) and for aj
is β ·uj(r). Recall that we refer to Πδ(a) as a bundle of a. Now we refer to Πδ

+(a) as the set

1098

Improving Resource Allocations by Sharing in Pairs

of resources shared to a by other agents, Πδ
−(a) the set of resources shared to other agents

by a, and Πδ
0(a) the set of remaining (not shared) resources. Then the utility of agent a

under Πδ is

ui(Π
δ(ai)) =

∑
r∈Πδ

0(a)

ui(r) +
∑

r∈Πδ
−(a)

αui(r) +
∑

r∈Πδ
+(a)

βui(r).

Later, in Section 6.4, we show how to incorporate this extension to all of our algorithmic
results (Theorem 1, Proposition 1, Theorem 6, Theorem 4, and Theorem 7). Notice that
the original setting corresponds to the case with α = β = 1.

6.2 Extension 2: Cost of Sharing

It is also natural to assume that the central authority needs to pay some cost for each
sharing to incentivize agents to share resources. In this case, there is a limited budget that
the central authority can spend and the goal is to improve the allocation through sharings
whose total cost does not exceed the budget. So far, our model was not capable of modeling
the described scenario. However, except for Theorem 1, all our algorithms still work for
this generalized setting with minor changes.

More precisely, for a simple 2-sharing δ, we introduce a sharing cost cg : Es → N and a
budget B ∈ N for the central authority to incentivize sharing. Notice that the sharing cost
is defined for each pair of agents. The cost of a sharing δ for the central authority is

c(δ) =
∑

δ({ai,aj})̸=∅

cg({ai, aj}).

Now the goal of the central authority is to find a sharing δ with c(δ) ≤ B to improve the
allocation.

Later, in Section 6.4, we show how to take care of this extension in the proofs of Proposi-
tion 1, Theorem 4, Theorem 6, and Theorem 7. Notice that the original setting corresponds
to the case with B =

∑
{ai,aj}∈Es cg({ai, aj}), that is, c(δ) ≤ B holds for any sharing δ.

6.3 Useful Matching-Related Computational Problems

We define two variants of finding a maximum weight matching and show that they are
solvable in polynomial time; to the best our knowledge, these variants are not present in
the literature. We use one of them to show polynomial-time solvability of the other one,
which we then use as a subroutine in one of the subsequent algorithms.

Given an undirected weighted graph G with a weight function w : E → N and two inte-
gers k1, k2 ∈ N, Size-Bounded Maximum Weight Matching (SBMWM) asks whether
there is a matching M in G such that |M | ≤ k1 and w(M) ≥ k2. For the same input,
Weight-Bounded Maximum Matching (WBMM) asks whether there is a matching M
in G such that w(M) ≤ k1 and |M | ≥ k2.

Lemma 3. SBMWM and WBMM are solvable in O(|V |3) time.

Proof. The SBMWM problem is a specialization of the Constrained Matching Prob-
lem (CMP) defined by Plesńık (1999) [Theorem 1] who also showed it to be solvable

1099

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

in O(|V |3) time. In CMP, given a weighted graph G, two integers ℓ (the lower bound)
and u (the upper bound), and a set of required vertices R, the task is to find a maximum
weight matching of cardinality at least ℓ and at most u such that each vertex v ∈ R is
adjacent to at least one edge in the matching. It is easy to see, that to solve an instance
(G,w, k1, k2) of SBMWM, one can solve an instance of CMP with the same graph, lower
bound ℓ := 0, upper bound u := k1, and R := ∅ and compare the weight of the output
matching of the latter with k2. Hence, SBMWM is solvable in O(|V |3) time.

To show the claim for WBMM4 let us consider its instance (G,w, k1, k2) with G =
(V,E). Let W := maxe∈E w(e) and let w′ : E → N be a new weight function such
that w′(e) := W − w(e) for each e ∈ E. Note that w(e) ≥ 0 and w′(e) ≥ 0 for each e ∈ E.
Since w(e) ≥ 0, G admits a matching M∗ with w(M∗) ≤ k1 and |M∗| ≥ k2 if and only if
there is a matching M ⊆ M∗ in G such that w(M) ≤ k1 and |M | = k2. When |M | = k2,
then w(M) = Wk2−w′(M), and hence w(M) ≤ k1 if and only if w′(M) ≥Wk2−k1. Thus,
eventually, the problem is to decide whether, using the new weight function w′, graph G
has such a matching M with |M | = k2 and w′(M) ≥ Wk2 − k1. Since w′(e) ≥ 0, this is
equivalent to decide whether there is a matching M with |M | ≤ k2 and w′(M) ≥Wk2−k1,
which exactly yields an instance of SBMWM which is solvable in O(|V |3) time, as we have
shown in the previous paragraph.

6.4 Respective Proofs’ Modifications

In the ensuing paragraphs, we list the necessary modifications of our results to make them
work correctly for the aforementioned extensions.

Proof of Theorem 1 for Extension 1 We adapt the proof of Theorem 1 given earlier
to work for Extension 1. To this end, we only need to change the weights of edges in the
constructed graph as follows. The weight of the edge between vj1i1 and vj2i2 is now defined as

max{βui1(rj2)− (1− α)ui2(rj2), βui2(rj1)− (1− α)ui1(rj1)}

instead of max{ui1(rj2), ui2(rj1)}, i.e., the weight is the increased utilitarian social welfare in

the new setting. Accordingly, in the “⇐:” part, for each non-dummy edge (vj1i1 , v
j2
i2

) ∈M , we
set δ(ai1 , ai2) = rj1 if the increased utilitarian social welfare by sharing rj1 to agent ai2 is no
smaller than that of sharing rj2 to agent ai1 , and δ(ai1 , ai2) = rj2 otherwise. Then, using the
same arguments, we can show that there is a b-bounded 2-sharing δ such that usw(Πδ) ≥ k
if and only if there is matching M in graph G with weight

∑
e∈M w(e) ≥ k − usw(π) + P ,

and thus, the problem can be reduced to Maximum Weighted Matching.

1-UWSA with Extension 2 is weakly NP-hard Theorem 1 is the only algorithmic
result which cannot be extended for Extension 2. We reduce from the weakly NP-complete
Partition problem (Garey & Johnson, 1979, SP12). Given a multiset of positive integers
S = {u1, . . . , ut}, Partition asks whether there is a subset S′ ⊆ S such that

∑
ui∈S′ ui =∑

ui∈S\S′ ui.

4. To the best of our knowledge, there is no explicit algorithm for solving WBMM in the matching literature
yet. We, however, note that Plesńık (1999) [Theorem 6] showed polynomial-time solvability for a very
similar problem of finding minimum cost edge-covers of a graph. Yet, this variant does not require that
the edges of the edge cover should form a matching (that is, that they should be non-adjacent).

1100

Improving Resource Allocations by Sharing in Pairs

Given an instance S = {u1, . . . , ut} of Partition, for each integer ui ∈ S, we create
an input instance with one pair of agents ai, a

′
i, one resource ri owned by ai, and one

edge {ai, a′i} in the sharing graph. We assign utility ui to resource ri for agent a′i and
sharing costs ui for agent ai sharing ri with a′i.

Now, it is easy to verify that asking whether there is a way to increase the welfare by
at least B = 1/2 ·

∑
ui∈S ui at a total cost of at most B, is equivalent to ask whether there

is a subset S′ ⊆ S such that
∑

ui∈S′ ui =
∑

ui∈S\S′ ui.

Proof of Proposition 1 for Extensions 1 and 2 We adapt the original proof of
Proposition 1 to work for the case with both Extension 1 and Extension 2. Similarly as
before, we partition the set A of agents into two sets A+

k and A−
k containing, respectively,

the agents with their bundle value under π at least k and smaller than k. When constructing
the graph Gk = (A+

k ,A
−
k , Ek), for two agents ai ∈ A+

k and aj ∈ A−
k that are neighbors in

the sharing graph Gs, we add an edge e = {ai, aj} to Ek if ai can share a resource with aj
to raise the utility of the latter to at least k given that after this sharing the utility of ai is
at least k. This holds true, if there is a resource r ∈ π(ai) such that uj(π(aj)) + βuj(r) ≥
k and ui(π(ai)) − (1 − α)ui(r) ≥ k. In addition, for each edge e = {ai, aj} ∈ Ek we
assign it weight cg({ai, aj}). With similar arguments, we have that there is a simple 2-
sharing δ with c(δ) ≤ B and esw(Πδ) ≥ k if and only if there is matching M in graph Gk

with
∑

e∈M cg(e) ≤ B and |M | ≥ |A−
k |. Thus, we just need to check whether there is

matching M in graph Gk with
∑

e∈M cg(e) ≤ B and |M | ≥ |A−
k |, which is an instance of

WBMM and is solvable in polynomial time according to Lemma 3.

Proof of Theorem 4 for Extension 2 When there is a cost of sharing, notice that
the cost of every realization δ of a configuration M in Algorithm 1 is fixed: c(δ) = c(M).
Therefore, it suffices to check first whether the cost of the guessed configuration M is at
most B.

Open: Is ERSA with Extension 1 FPT with respect to n? We briefly explain why
the proof of Theorem 4 does not work for Extension 1. In the original proof, when checking
the existence of a desired matching for each guessed pair (C,M), we first keep deleting
resources whose values are either too low for the receiver or too high for agents watching
the receiver (Step 1), and afterward we can simply select for each receiver the most valuable
remaining resource (Step 2). This idea works because after deleting unsuitable resources,
Step 2 ensures that no agent in the target set C would become envious. However, in
Extension 1, donors lose utility after sharing, and it’s possible for these donors to be part of
the target set C. This complicates the problem as the final utilities of these donors depend
on the final sharing we choose, whereas in the original setting, their utilities are fixed. As
a result, it is challenging to determine which resources to delete in Step 1. Specifically, it
is difficult to identify resources whose values are too high for donors whose utilities are not
fixed.

Proof of Theorem 6 for Extensions 1 and 2 We adapt the original proof of Theorem 6
to work for the case with both Extension 1 and Extension 2. The adaption for Extension 1 is
trivial: The only change is that when computing the set of envious agents under a sharing,
we need to compute the utility of agents according to the definition in Extension 1.

1101

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

For Extension 2, considering an upper bound for the sharing cost, we define a new
function F extending the original function f . Recall that the original function f is defined
as:

f [t, b, S] := min{Env[Vt](δ) | (δ realizes b) ∧ (Env[Vt](δ) ∩Xt = S)}.

Extending f , we define F by adding a new input variable to control the number of envious
agents and taking the sharing cost as the minimization objective. So, for every node Xt,
every bundle configuration b ∈ Bt, every subset S ⊆ Xt, and every e ∈ [0, k], the definition
of F reads as follows:

F [t, b, S, e] := min{c(δ) | (δ realizes b) ∧ (Env[Vt](δ) ∩Xt = S) ∧ (|Env[Vt](δ)| = e)}.

In words, F [t, b, S, e] is the minimum cost of a sharing δ such that δ realizes the bundle
configuration b on Xt and such that in the subinstance induced by the agents in Vt under
sharing δ the set of envious agents from Xt is S and the number of envious agents in Vt is e.
Note that if under b there is some agent v ∈ Xt who receives a resource from some other
agent v′ /∈ Vt, then the cost for this sharing pair will be included in each sharing realizing b.
Taking r ∈ V (T) as the root node of T , now our goal is to compute min{F [r, π, ∅, e] |
e ∈ [0, k]}. Next we discuss the changes for computing the four possible types of nice tree
decomposition nodes: leaf node, introduce node, forget node, and join node.

Leaf node. Suppose t is a leaf node of T , then Vt = Xt = ∅ and Bt = ∅. We get:

f [t, π, ∅, e] =

{
0 if e = 0,

+∞ if e > 0.

Introduce node. Suppose t is an introduce node with a child t′ such that Xt = Xt′∪{v}
for some v ̸∈ Xt′ . Recall that our old function f for an introduce node is computed as:

f [t, b, S] = min{|S \ S∗|+ f [t′, b[Xt′], S
∗] | S \ E ⊆ S∗ ⊆ S ∩Xt′}.

Now, we have

F [t, b, S, e] = min{c(b[v])

+ F [t′, b[Xt′], S
∗, e∗] | (S \ E ⊆ S∗ ⊆ S ∩Xt′) ∧ (e = e∗ + |S \ S∗|)},

where c(b[v]) is the sharing cost required to ensure that agent v has bundle b(v). That
is, depending on the initial allocation π, c(b[v]) = 0 if b(v) = π(v) and otherwise c(b[v]) =
cg({v, v′}) where v′ is the agent who shares one resource with v to ensure b(v). So compared
with the old computation, we introduce two major changes. First, we alter the increase of
the objective by substituting the increase of the number |S \ S∗| of envious agents by the
increase c(b[v]) of the cost. Then, we add the requirement related to the number e =
e∗ + |S \S∗| of envious agents to the condition restricting considered (previous) values of F .

Forget node. Suppose t is a forget node with a child t′ such that Xt = Xt′ \ {w} for
some w ∈ Xt′ . Recall that our old function f for a forget node is computed as:

f [t, b, S] = min{f [t′, b∗, S∗] | (b∗[Xt] = b) ∧ (S ⊆ S∗ ⊆ S ∪ {w})}.

1102

Improving Resource Allocations by Sharing in Pairs

Now, for every b ∈ Bt, S ⊆ Xt and e ∈ [0, k], we have that:

F [t, b, S, e] = min{F [t′, b∗, S∗, e] | (b∗[Xt] = b) ∧ (S ⊆ S∗ ⊆ S ∪ {w})}.

Join node. Suppose t is a join node with children t1 and t2 such that Xt = Xt1 = Xt2 .
Recall that our old function f for a join node is computed as:

f [t, b, S] = min{f [t1, b, S1] + f [t2, b, S2]− |S1 ∩ S2| | S1 ∪ S2 = S}.

Now, for each b ∈ Bt, S ⊆ Xt and e ∈ [0, k], we have that:

F [t, b, S, e] = min{F [t1, b, S1, e1]

+ F [t2, b, S2, e2]− c(b[Xt]) | (S1 ∪ S2 = S) ∧ (e = e1 + e2 − |S1 ∩ S2|)}.

where c(b[Xt]) is the sharing cost to ensure the bundle configuration b for agents in Xt. We
subtract c(b[Xt]) because it is included in both F [t1, b, S1, e1] and F [t2, b, S2, e2].

Proof of Theorem 7 for Extension 1 We adapt the earlier version of the proof to
work for the case with Extension 1, where agents only get a fraction of utility for shared
resources.

If α = 1, then no agent will lose utility after sharing, and we just need to change
the edge set E as follows. Recall that N0 is defined as the set of agents who already have
utility u∗ before sharing. For each pair of distinct agents ai and aj , we add e = {ai, aj} to E
if {ai, aj} ∈ Es and (1) ai ̸∈ N0 and there is a resource r ∈ π(aj) such that u(π(ai))+βu(r) =
u∗. Naturally, in case we add two edges between the same pair of agents, we only keep one
copy of the edge.

If α < 1, the problem becomes more complex as in this case the target utility u∗ could
be smaller than u0 = maxi∈A u(π(ai)), the largest utility of some agent before a sharing.
Nevertheless, one can easily verify that the number of different values for u∗ is still bounded
by O(nm). Next we show how to solve the case with u∗ < u0. If β = 0, then no agent
can increase its utility by sharing and we need to check whether we can find a sharing
such that all agents who originally have utility higher than u∗ can decrease their utility
to be at most u∗, and meanwhile maximizing the number of them with utility exactly u∗

after sharing. To this end, we build a bipartite graph G = (V1 ∪ V2, E) with one side V1

representing agents who have utility higher than u∗ and the other side V2 representing the
remaining agents. For each pair of agents {ai, aj} with ai ∈ V1 and aj ∈ V2, if {ai, aj} ∈ Es
and there exists a resource r ∈ π(ai) such that u(π(ai)) − (1 − α)u(r) ≤ u∗, we add e =
{ai, aj} to E. In addition, we assign the edge e a weight Q+1 if u(π(ai))− (1−α)u(r) = u∗

and Q if u(π(ai))− (1−α)u(r) < u∗, where Q > |A|2 is a large number. Then we compute
a maximum weighted matching in G; suppose it has weight W . If W < Q|V1|, then it is
impossible to make the highest utility to be u∗ after any sharing. Otherwise, the maximum
weighted matching indicates a sharing such that after the sharing all agents will have utility
at most u∗. Moreover, the number of agents with utility exactly u∗ is |N0| + W − Q|V1|,
where N0 is the set of agents who had utility u∗ before sharing.

Finally, we solve the case with α < 1 and β > 0. We partition all agents into three
groups N+, N0, N− according to their utilities before sharing, where N+ = {ai ∈ A |
u(π(ai)) > u∗}, N0 = {ai ∈ A | u(π(ai)) = u∗}, and N− = {ai ∈ A | u(π(ai)) < u∗}. Notice

1103

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

that there is no benefit to make an agent in N0 participate in a sharing. Such a sharing can
make its utility either higher than u∗ or smaller than u∗. The former is unwanted as we
aim at u∗ being the maximum utility. Regarding the latter, as a result of sharing at most
one other agent may get utility exactly u∗, so it does not help to increase the total number
of non-envious agents. Hence, we build an edge-weighted graph G = (N+ ∪ N−, E). For
each pair {ai, aj} of agents with ai ∈ N+ and aj ∈ N−, if {ai, aj} ∈ Es and they can share a
resource such that both of them have utility at most u∗ after sharing, then we add an edge
e = {ai, aj} with weight Q+i to E, where Q > |A|2 is a large number and i ∈ {0, 1, 2} is the
number of agents from {ai, aj} who have utility exactly u∗ after the sharing. In addition,
for each pair of agents both from N−, if they can share a resource such that one of them has
utility exactly u∗ after a sharing, then there is an edge with weight 1 between them. Then
we compute a maximum weighted matching in G; suppose it has weight W . If W < Q|N+|,
then it is impossible to make the highest utility to be u∗ after any sharing. Otherwise, the
maximum weighted matching indicates a sharing such that after the sharing all agents have
utility at most u∗ and the number of agents with utility exactly u∗ is |N0|+W −Q|N+|.

Proof of Theorem 7 for Extension 2 For Extension 2 where there is a cost for sharing,
we convert the graph G = (A, E) in the original proof of Theorem 7 into a weighted graph
by assigning each edge e ∈ E weight cg(e). Then, we compute a maximum-size matching
with weight at most B in G, that is, we solve Weight-Bounded Maximum Matching,
which can be done in polynomial time according to Lemma 3. The matching size is then
the largest number of agents in A \ N0 who can increase their utilities to u∗ through a
sharing.

Open: Is ERSA with Extensions 1 and 2 polynomial-time solvable for unan-
imous utility functions and the attention graph being a bidirectional clique?
Notice that to solve the problem with Extension 1, we need to find a maximum weighted
matching in an edge-weighed graph, while Extension 2 brings another edge weight function
for which we need to minimize when searching for the matching. Thus the problem with
both Extension 1 and 2 has two different weight-like constraints similar to the Knapsack
Problem, which makes it difficult to design polynomial-time algorithms. On the other
hand, the weight related to Extension 1 uses only 4 values, which makes it difficult to show
NP-hardness.

7. Conclusion and Discussion

We brought together two important topics—fair allocation of resources and resource sharing.
We have introduced a basic model, in which we assumed agents are initially endowed with
resources, which can then be shared by neighbors in a social network in a way that agent
participates in a bounded number of sharing.

Providing a new model, we contributed to a recent line of research aiming at achieving
fairness taking an approach that does not relax the concept of envy but utilizes social aspects
to improve collective wellness. Importantly, our model is suitable for scenarios for which a
standard approach—of computing a fair allocation from scratch—cannot be used because
modifying the initial endowment of agents is undesired or impossible (like our knowledge
sharing example).

1104

Improving Resource Allocations by Sharing in Pairs

Our model, albeit basic, has proven to lead to challenging computational problems.
We shed light at their fundamental computational complexity limitations (in the form of
computational hardness) and provided generalizable algorithmic techniques (as mentioned
in Section 6). The latter ones mark scenarios (like improving the utilitarian and egalitarian
social welfare; or decreasing the number of envious agents among groups of few agents) for
which our results indicate that improving resource allocations by sharing in pairs might be
applicable in practice.

Finally, there is rich potential for future research exploring our general model of sharing
allocations (in its full power described by Definition 3). In what follows, we briefly lay out
a few possible follow-up topics. We note that even though below we focus on theoretical
research, an empirical study of our algorithms and concepts could also be of interest.

Deepening Parametric Analysis We showed that ERSA is NP-hard even if both input
graphs are (bidirectional) cliques but it is polynomial-time solvable if two graphs are the
same and have constant treewidth. Based on this, analyzing various combinations of graph
classes of the two social networks might be valuable. Some of our reductions (Theorem 5,
Theorem 6, Theorem 8) rely on directed attention graphs. For these results, it is interesting
to consider the case with undirected attention graphs. For Theorem 5 and Theorem 8,
where we study few agents or resources, the case with both graphs being (bidirectional)
cliques is also compelling.

Additionally, investigating whether our positive results can be extended to so-called
high-multiplicity scenarios (Budish, 2011; Bredereck et al., 2019), where an unbounded
number of objects (agents or resources) come from a bounded set of types of objects, is
also a challenge from the perspective of computability limits of our model. Such analysis
sometimes lead to specialized algorithms that perform quite well in practice.

Beyond 2-Sharing We focused on sharing resources between neighbors in a social net-
work. Yet, there are many scenarios where sharing resources among a large group of agents
can be very natural and wanted. If every resource can be shared with everyone, then there
is a trivial envy-free allocation. Hence, it is interesting to further study the computational
limits of improving allocations under various sharing relaxations (concerning parameters
such as number of shared resources, number of agents sharing a resource, etc.).

In the same spirit of extending our model, it is intriguing to study our model dropping
the assumption that there is a complete initial allocation given, that is, allocating indivisible
but shareable resources to achieve welfare and/or fairness goal. While this model appears
simpler than our current one, our model’s simplicity lies in that we only need to determine
the sharing and the initial allocation constrains the sharing scope.

Strategic Concerns and Robustness We have assumed that all utility values are truth-
fully reported as well as correct and that the agents need not to be incentivized to share
resources. Neither of these assumptions might be justified in some cases—the agents might
misreport their utility, the utility values might be slightly incorrect, or a sharing can come
at a cost for agents (splitting utility from shared resources, as described in Section 6, is an
example of the latter). Tackling this kind of issues opens a variety of directions, which in-
cludes studying strategic misreporting of utilities, robustness of computed solutions against
small utility values perturbations, and finding allocations that incentivize sharing.

1105

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

Acknowledgments

We dedicate this paper to Rolf, who tragically passed away recently. We are deeply affected
by this loss of our co-author, colleague, and advisor. Rolf contributed tremendously to
computer science and, in particular, to multivariate algorithms, and should have continued
doing so for a long time. The computer science community will build on the foundations
he has laid.

A short version (Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse, 2022a) appeared
in The Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI ’22)

We are grateful to the anonymous AAAI’22 and Journal of Artificial Intelligence Re-
search (JAIR) reviewers for their insightful comments. This work was started when all
authors were with TU Berlin. Andrzej Kaczmarczyk was supported by the DFG project
“AFFA” (BR 5207/1 and NI 369/15) and by the European Research Council (ERC). Junjie
Luo was supported by the DFG project “AFFA” (BR 5207/1 and NI 369/15), the Singapore
Ministry of Education Tier 2 grant (MOE2019-T2-1-045) and the Talent Fund of Beijing
Jiaotong University (2023XKRC007).

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement
No 101002854).

References

Abebe, R., Kleinberg, J., & Parkes, D. C. (2017). Fair division via social comparison. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’17), pp. 281–289.

Aziz, H., Bouveret, S., Caragiannis, I., Giagkousi, I., & Lang, J. (2018). Knowledge, fairness,
and social constraints. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence (AAAI’18), pp. 4638–4645.

Barman, S., Krishnamurthy, S. K., & Vaish, R. (2018). Finding fair and efficient allocations.
In Proceedings of the 19th ACM Conference on Economics and Computation (EC’18),
pp. 557–574.

Bei, X., Qiao, Y., & Zhang, S. (2017). Networked fairness in cake cutting. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), pp.
3632–3638.

Belk, R., Eckhardt, G., & Bardhi, F. (2019). Handbook of the Sharing Economy. Edward
Elgar Pub.

Bentham, J. (1823). An Introduction to the Principles of Morals and Legislation. Clarendon
Press.

1106

Improving Resource Allocations by Sharing in Pairs

Beynier, A., Chevaleyre, Y., Gourvés, L., Harutyunyan, A., Lesca, J., Maudet, N., &
Wilczynski, A. (2019). Local envy-freeness in house allocation problems. Autonomous
Agents and Multi-Agent Systems, 33, 591–627.

Biswas, A., & Barman, S. (2018). Fair division under cardinality constraints. In Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI’18), pp.
91–97.

Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division
of a graph. In Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI’17), pp. 135–141.

Bouveret, S., Chevaleyre, Y., & Maudet, N. (2016). Fair allocation of indivisible goods. In
Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook
of Computational Social Choice, chap. 13, pp. 311–329. Cambridge University Press.

Bouveret, S., & Lang, J. (2008). Efficiency and envy-freeness in fair division of indivisi-
ble goods: Logical representation and complexity. Journal of Artificial Intelligence
Research, 32 (1), 525–564.

Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2019). High-multiplicity
fair allocation: Lenstra empowered by n-fold integer programming. In Proceedings of
the 2019 ACM Conference on Economics and Computation (EC’19), pp. 505–523.

Bredereck, R., Kaczmarczyk, A., Luo, J., Niedermeier, R., & Sachse, F. (2022a). On im-
proving resource allocations by sharing. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI ’22), pp. 4875–4883.

Bredereck, R., Kaczmarczyk, A., & Niedermeier, R. (2022b). Envy-free allocations respect-
ing social networks. Artificial Intelligence, 305, 103664.

Brustle, J., Dippel, J., Narayan, V. V., Suzuki, M., & Vetta, A. (2020). One dollar each
eliminates envy. In Proceedings of the 21st ACM Conference on Economics and Com-
putation (EC’20), pp. 23–39.

Budish, E. (2011). The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy, 119 (6), 1061–1103.

Caragiannis, I., Gravin, N., & Huang, X. (2019). Envy-freeness up to any item with high
Nash welfare: The virtue of donating items. In Proceedings of the 20th ACM Confer-
ence on Economics and Computation (EC’19), pp. 527–545.

Caragiannis, I., & Ioannidis, S. D. (2022). Computing envy-freeable allocations with limited
subsidies. In Proceedings of the 18th International Conference on Web and Internet
Economics (WINE ’22), pp. 522–539. Springer.

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang, J. (2019).
The unreasonable fairness of maximum Nash welfare. ACM Transactions on Eco-
nomics and Computation, 7 (3), 12:1–12:32.

Chaudhury, B. R., Kavitha, T., Mehlhorn, K., & Sgouritsa, A. (2021). A little charity
guarantees almost envy-freeness. SIAM Journal on Computing, 50 (4), 1336–1358.

Chevaleyre, Y., Endriss, U., & Maudet, N. (2017). Distributed fair allocation of indivisible
goods. Artificial Intelligence, 242, 1–22.

1107

Bredereck, Kaczmarczyk, Luo, Niedermeier, & Sachse

Chevaleyre, Y., Endriss, U., & Maudet, N. (2007). Allocating goods on a graph to elim-
inate envy. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI’07), pp. 700–705.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer.

Duan, R., & Pettie, S. (2014). Linear-time approximation for maximum weight matching.
Journal of the ACM, 61 (1), 1–23.

Duan, R., Pettie, S., & Su, H.-H. (2018). Scaling algorithms for weighted matching in
general graphs. ACM Transactions on Algorithms, 14 (1), 1–35.

Eiben, E., Ganian, R., Hamm, T., & Ordyniak, S. (2023). Parameterized complexity of
envy-free resource allocation in social networks. Artificial Intelligence, 315, 103826.

Friedman, E., Psomas, C.-A., & Vardi, S. (2015). Dynamic fair division with minimal dis-
ruptions. In Proceedings of the 16th ACM Conference on Economics and Computation
(EC’15), pp. 697–713.

Friedman, E., Psomas, C.-A., & Vardi, S. (2017). Controlled dynamic fair division. In
Proceedings of the 18th ACM Conference on Economics and Computation (EC’17),
pp. 461–478.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman.

Gourvès, L., Lesca, J., & Wilczynski, A. (2017). Object allocation via swaps along a social
network. In Sierra, C. (Ed.), Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI’17), pp. 213–219.

Halpern, D., & Shah, N. (2019). Fair division with subsidy. In Proceedings of the 12th
International Symposium on Algorithmic Game Theory (SAGT’19), pp. 374–389.

He, J., Procaccia, A. D., Psomas, A., & Zeng, D. (2019). Achieving a fairer future by
changing the past. In Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI’19), pp. 343–349.

Hosseini, H., Sikdar, S., Vaish, R., Wang, H., & Xia, L. (2020). Fair division through
information withholding. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI’20), pp. 2014–2021.

Huang, S., & Xiao, M. (2020). Object reachability via swaps under strict and weak prefer-
ences. Autonomous Agents Multi Agent Systems, 34 (2), 51.

Kloks, T. (1994). Treewidth, Computations and Approximations, Vol. 842 of Lecture Notes
in Computer Science. Springer.

Lange, P., & Rothe, J. (2019). Optimizing social welfare in social networks. In Proceedings
of the 6th International Conference on Algorithmic Decision Theory (ADT’19), pp.
81–96.

1108

Improving Resource Allocations by Sharing in Pairs

Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004). On approximately fair allo-
cations of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic
Commerce (EC’04), pp. 125–131.

Nguyen, T. T., Roos, M., & Rothe, J. (2013). A survey of approximability and inapproxima-
bility results for social welfare optimization in multiagent resource allocation. Annals
of Mathematics and Artificial Intelligence, 68 (1-3), 65–90.

Plesńık, J. (1999). Constrained weighted matchings and edge coverings in graphs. Discrete
Applied Mathematics, 92 (2), 229–241.

Rawls, J. (1971). A Theory of Justice. Harvard University Press.

Sandomirskiy, F., & Segal-Halevi, E. (2022). Efficient fair division with minimal sharing.
Operations Research, 70 (3), 1762–1782.

Schor, J. B., & Cansoy, M. (2019). The sharing economy. In Wherry, F. F., & Woodward,
I. (Eds.), The Oxford Handbook of Consumption, pp. 51–74. Oxford University Press.

Segal-Halevi, E. (2019). Fair division with bounded sharing. CoRR, abs/1912.00459.

Segal-Halevi, E. (2022). Redividing the cake. Autonomous Agents and Multi-Agent Systems,
36 (1), 14.

Vardi, S., Psomas, A., & Friedman, E. J. (2022). Dynamic fair resource division. Mathe-
matics of Operations Research, 47 (2), 945–968.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case
for pair programming. IEEE Software, 17 (4), 19–25.

1109

