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Abstract

This paper proposes an iterative Maximum Satisfiability (MaxSAT) approach designed
to solve train scheduling optimization problems. The generation of railway timetables is
known to be intractable for a single track. We consider hundreds of trains on interconnected
multi-track railway networks with complex connections between trains. Furthermore, the
proposed algorithm is incremental to reduce the impact of time discretization.

The performance of our approach is evaluated with the real-world Swiss Federal Railway
(SBB) Crowd Sourcing Challenge benchmark and Periodic Event Scheduling Problems
benchmark (PESPLib). The execution time of the proposed approach is shown to be, on
average, twice as fast as the best existing solution for the SBB instances. In addition,
we achieve a significant improvement over SAT-based solutions for solving the PESPLib
instances.

We also analyzed real schedule data from Switzerland and the Netherlands to create a
disruption generator based on probability distributions. The novel incremental algorithm
allows solving the train scheduling problem under disruptions with better performance than
traditional algorithms.

1. Introduction

The transport sector is expected to continue to grow over the next three decades1. Moreover,
the reduction in CO2 emissions agreed to in the Paris Agreement is expected to promote
a shift toward the use of collective transport, notably railways. According to the UNIFE
World Rail Market Study (Berger, 2018), the railway market is estimated to show an average
growth of 2.7% worldwide for the 2021 to 2023 period. In particular, the European Union
will invest in energy-efficient railways and continue transforming the railway into a seamless
European network2. Hence, the size of the railways and the number of trains are expected
to grow significantly in the coming years. Now, more than ever, it is essential to optimize
the schedules of trains efficiently.

The 2019 Swiss Federal Railway (SBB - Schweizerische Bundesbahnen) challenge (Jordi
& Mohanty, 2018) defined new data sets and constraints for Train Scheduling Optimiza-

1. For more details, see the Transport Outlook published in 2019 by the International Transport Forum.
2. More information about the European Railway Traffic Management System project is available at

http://www.ertms.net/.
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Figure 1: Part of a railway network where one train has to go from A to C. The bold red
arrow represents a possible solution. Nodes and edges represent relevant points and sections
of railway tracks, respectively. A relevant point of the railway network may be a stopping
point in a station, a junction, or a point where the characteristics of the track change. The
minimum travel time, in minutes, in each section of the railway track is depicted above the
corresponding edge. The square represents a junction box, where a train can change tracks
(changing from v4 to v5 and vice-versa), and from which a train can depart to any available
track

.

tion Problems (TSOP) (Borndörfer et al., 2018). The TSOP problem can be informally
described as the combination of two complementary problems: (i) a routing problem and
(ii) a scheduling problem. The goal of the routing problem is to find the least cost route
for all trains passing through pre-defined stations. The goal of the scheduling problem is to
generate a timetable, i.e., to assign departure times for each train from each station while
minimizing the delay, subject to time and route constraints. To find an optimal solution,
one must solve these two problems together (scheduling and routing), considering that there
are two optimization criteria in TSOP: (i) minimize the delay and (ii) minimize the route
cost.

Example 1 Figure 1 shows a simplified railway network. There are two train routes from
B to C, and therefore, the railway supports two trains at the same time. Train station B can
receive two trains (from A and F). B and C are connection spots since the trains can depart
to multiple routes. Consider that one train has to go from A to C. A possible solution to
this routing problem is shown in red. Now, let us consider that the traveling time from v1 to
v3 is 9 minutes, and from v3 to v4 / v5 is 27 minutes. Assume that each vi corresponds to
stopping points at the corresponding station. Consider that the train cannot leave A before
9am. Also, consider that there is a connection with another train at C. The connection
requires the train to arrive at C before 9:42am to ensure the passengers can interchange
with the train moving to E. Therefore, a feasible solution to this scheduling problem instance
is the following timetable:

• The train departs from A at 9am;

• To make the connection at C, the train stops in B for only 5 minutes;

• The train leaves at 9:14am from B, thus arriving at the destination at 9:41am.
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Planning and scheduling problems have been successfully encoded into propositional
logic (Lemos et al., 2020; Schreiber, 2021) in the recent past, in particular, applied to the
train domain (Goerigk et al., 2013; Luteberget et al., 2018; Matos, 2018; Matos et al.,
2020). These approaches have the advantage of using propositional satisfiability (SAT)
solvers that are well-known for being quite efficient (Biere et al., 2009). However, none
of these approaches applies SAT to solve TSOP, which is a complex problem with many
constraints.

The contribution of this paper is two-fold: (i) a compact MaxSAT encoding for TSOP
and TSOP under disruption (TSOPuD); and (ii) a novel iterative MaxSAT algorithm to
solve TSOP and TSOPuD. The new encoding is shown to efficiently solve the large data
set from the SBB benchmarks (Abels et al., 2020b; Jordi et al., 2019). The proposed
iterative algorithm allows the reduction of the size of the problem as we only delay the
trains when needed. With the proposed approach, we are able to find an optimal solution
for all SBB instances within 260 seconds. Our implementation is publicly available at
https://github.com/ADDALemos/train-schedule-optimisation.

This paper is organized as follows. Section 2 provides the required background on train
scheduling and MaxSAT solving. Section 3 formally describes TSOP and the considered
disruptions (TSOPuD). Section 4 presents the proposed approach, detailing the MaxSAT
encoding and the proposed iterative algorithms for TSOP and TSOPuD. Section 5 analyses
the evaluation of the different iterative algorithms. Furthermore, we compare our approach
with the current state-of-the-art solutions. Finally, Section 6 concludes the paper and
discusses possible future directions.

2. Background

In this section, we present and discuss the relevant state-of-the-art in maximum satisfiability
(MaxSAT), the generation of railway timetables, and possible causes of disruptions that can
affect a train schedule.

2.1 MaxSAT

A propositional formula in conjunctive normal form (CNF) is defined as a conjunction of
clauses, where a clause is a disjunction of literals and a literal is either a Boolean variable
x or its complement ¬x. Given a CNF formula, the propositional satisfiability (SAT)
problem is to decide whether there is a truth assignment to the variables such that the
formula is satisfied. A formula is satisfied iff there is at least one assignment for which
all the clauses are satisfied. A clause is satisfied iff it contains at least one literal that is
satisfied. A literal x or ¬x is satisfied if it is assigned true or false, respectively. Nowadays,
most SAT solvers implement conflict-driven clause learning algorithms (Marques-Silva &
Sakallah, 1996; Bayardo Jr. & Schrag, 1997), which extend the well-known Davis-Putnam
algorithm (Davis & Putnam, 1960) with clause learning (see Biere et al. (2009) for more
details).

The MaxSAT problem is an optimization version of SAT, where the objective is to find
an assignment that maximizes the number of satisfied clauses. A partial MaxSAT formula
φ = φh ∪ φs consists of a set of hard clauses φh and a set of soft clauses φs. The objective
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in partial MaxSAT is to find an assignment such that all hard clauses in φh are satisfied,
while maximizing the number of satisfied soft clauses in φs.

In this paper, we consider the weighted variant of partial MaxSAT where there is a
function wφ : φs → N associating an integer weight to each soft clause. In this case, the
objective is to satisfy all the clauses in φh and maximize the total weight of the satisfied
clauses in φs.

In general, we assume that all formulas are encoded into CNF. Nevertheless, we will write
some constraints in pseudo-Boolean (PB) form for the sake of readability. PB constraints
are linear constraints over Boolean variables and can be written as follows:

∑
qixi op K,

where K and qi are integer constants, xi are Boolean variables, and op ∈ {<,≤,=,≥, >}.
PB constraints can be easily translated into CNF (Eén & Sörensson, 2006). To encode PB
constraints in CNF, in this work we use the adder encoding (Warners, 1998) and the ladder
encoding (Ansótegui & Manyà, 2004).

Example 2 Consider the following PB constraint:
∑2

i=0 xi ≤ 1. One possible CNF encod-
ing is as follows: (¬x0 ∨ ¬x1) ∧ (¬x0 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2).

2.2 Railway Timetabling

The generation of railway timetables is known to be intractable for a single track (Caprara
et al., 2002). Nonetheless, different methods have been proposed to solve this problem
effectively (Borndörfer et al., 2018; Caimi et al., 2017; Liebchen & Möhring, 2007; Sels et al.,
2016; Fischetti & Monaci, 2017). In the past, a few challenges have been organized (Artigues
et al., 2018; Jordi et al., 2019). In the 2014 ROADEF/EURO challenge for the shunting
yard operations, most participants submitted greedy algorithms (Artigues et al., 2018).
The winner of the challenge used a mix of Integer Linear Programming (ILP) and greedy
heuristics (Buljubašić et al., 2017).

Recently, the SBB challenge (Jordi et al., 2019) motivated the appearance of new ap-
proaches ranging from ILP and Answer Set Programming (ASP) (Abels et al., 2020b) to
a greedy algorithm. The proposed ILP solution decomposes the problem into two sub-
problems: routing and scheduling. This decomposition may result in suboptimal results
but drastically reduces the size of the problem at hand. The ASP solution uses a hybrid
ASP solver with difference constraints (e.g. u− v ≤ d where u, v, d ∈ Z). Furthermore, the
optimization problem is solved with an approximation cost function that allows reducing the
size of the problem. However, it may remove the optimal solution. The greedy algorithm,
the winner of the challenge, solves the most critical conflicts first. A conflict between two
trains occurs when both trains occupy the same resource simultaneously. The flexibility of
the time constraints and the density of resources are used to determine the criticality of a
conflict. The density of resources is defined by the number of trains that require the same
resource at the same time. Trains with more flexible time constraints are less critical.

Matos et al. (2018, 2020) proposed a binary search approach that uses a SAT solver
to find global minimum solutions concerning travel time and a procedure to compute a
better upper bound and speed up the search process. The resulting tool is able to solve
all the instances from the PESPlib benchmark (Goerigk et al., 2013) without exceeding the
memory limit (64 Gb). However, it does not ensure optimality. Nevertheless, the approach
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was able to improve the best currently known value in 7 out of the 20 of the PESPLib
benchmark instances.

2.3 Handling Disruptions in Train Scheduling

The generation of robust timetables (or how to recover timetables after a disruption) has
been widely studied for different scheduling problems (Fischetti & Monaci, 2017; Lusby
et al., 2018; Fang et al., 2015; Andersson, 2014; Bajestani & Beck, 2013; Geiger et al.,
2019; Adenso-Dı́az et al., 1999; Acuna-Agost et al., 2011). A disruption can have multiple
causes, from weather influences and accidents to staffing problems (Caprara et al., 1998).
Nevertheless, we can summarize all causes into three kinds of disruptions: blocking a train,
blocking a track, and changes in the travel speed of a train. Blocking a train is a disruption
that affects only a single train but not the track. Blocking a track is a disruption that only
affects part of the railway, and the trains are free to move around the rest of the network.
Finally, the changes in the travel speed of a train (slowdown) are disruptions that affect
part of the track and force a train to reduce its speed. Disruptions can occur before or after
a train departs from the station (Fischetti & Monaci, 2017). The disruptions that occur
after a train departs require the algorithm to be run in real-time since the train is currently
en route. Naturally, we have more flexibility if the train has not yet started its route. The
three types of disruptions can have different causes3. A summary of the related work is
shown in Table 1.

The different causes of block train disruptions are the following:

• Logistical problems: something unforeseen occurs in the planned routes. An example
of a logistical problem is a delay in train connections with other trains or other services
(e.g., buses).

• External influences: outside forces that impact the regular operation of the railway.
External influences are, for example, police investigations or fire alarms.

• Accidents: the different types of accidents related to trains (e.g., collision, derail,
run over). Accidents with trains arise during the travel of trains. Hence, the trains
involved in an accident are delayed. This type of disruption does not only block a part
of the railway but also the trains affected. Thus, no re-routing can reduce the delay.
In this type of disruption, both the trains and their passengers are blocked. The only
solution to mitigate this problem would require moving passengers to another train.

• Staffing problems: strikes and sickness of the crew members may compromise the safe
operation of a train. Therefore, staffing problems may cause a change in the crew’s
assignment to a train, leading to delays in that train. In this work, we do not solve the
crew’s assignment problem (Hoffmann et al., 2017; Demirović et al., 2017). However,
delays in trains due to strikes are considered. This cause is simulated by blocking a
train for a period of time corresponding to the strike. This type of disruption can be
mitigated by having redundant resources to assign in case of necessity.

3. The real-time update of the disruptions and their causes can be accessed in https://www.

rijdendetreinen.nl/en/statistics/cause.
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Table 1: Review of the different causes of disruptions of train scheduling problems considered
in this work and in related work (Reference)

.
Cause Disruption Occurrence Reference

Weather
Slowdown Before/During

(Adenso-Dı́az et al., 1999)
influences (Acuna-Agost et al., 2011)

Logistical
Block train During

(Schachtebeck & Schöbel, 2010)
problems (Acuna-Agost et al., 2011)

(Veelenturf, Kidd, Cacchiani, Kroon, & Toth, 2016)

External
Block train During

(Schachtebeck & Schöbel, 2010)
influences (Veelenturf et al., 2016)

Accidents Block track/train During

(Li, Shou, & Ralescu, 2014)
(Corman, D’Ariano, Pacciarelli, & Pranzo, 2012)

(Acuna-Agost et al., 2011)
(Binder, Maknoon, & Bierlaire, 2017)

(Adenso-Dı́az et al., 1999)
(Veelenturf et al., 2016)

(Sato, Tamura, & Tomii, 2013)
(Fischetti & Monaci, 2017)

Engineering
Block track During

(Aken, Bešinović, & Goverde, 2017)
(Veelenturf et al., 2016)

work (Fischetti & Monaci, 2017)

Infrastructure
Block track Before

(Higgins, Kozan, & Ferreira, 1996)
(Adenso-Dı́az et al., 1999)
(Acuna-Agost et al., 2011)

problems (Veelenturf et al., 2016)
(Fischetti & Monaci, 2017)

Staffing
Partially considered in this paper (Adenso-Dı́az et al., 1999)

problems

Rolling stock
Not considered in this paper

(Adenso-Dı́az et al., 1999)
(Binder et al., 2017; Sato et al., 2013)

problems (Sato et al., 2013)

The different causes of block track disruptions are the following:

• Accidents: the different types of accidents related to tracks (e.g., fallen trees). The
tracks become blocked and thus may cause a delay. We may solve this delay with the
re-routing of the trains.

• Engineering work : unexpected engineering works on the tracks. There is a need to
wait or re-route the trains to avoid the tracks affected by the engineering works.

• Infrastructure problems: the different railway infrastructure problems (e.g., signals,
overhead wires) cause the need for scheduled engineering work. We know beforehand
which tracks need work, and thus, we can plan ahead.

The only considered causes of slowdown disruptions are weather influences: different
weather patterns (e.g., rain, snow) can reduce visibility and cause slippery tracks. Hence,
the weather causes a reduction in train speed on the affected tracks.
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Table 2: Review of the different cost functions used.

Minimize

Delay (Molloy, 2020)

Weighted delay with the number of passengers (Molloy, 2020)

Cost of changing track (Li et al., 2014; Higgins et al., 1996; Binder et al., 2017)

Missed connections (Schachtebeck & Schöbel, 2010)

Cost of compensation (Zeng, Durach, & Fang, 2012; Tseng & Verhoef, 2008)

Hamming distance (Binder et al., 2017)

Canceled trains (Aken et al., 2017)

Additional connections for a passenger (Sato et al., 2013)

Maximize

Number of passengers transported (Adenso-Dı́az et al., 1999)

This paper

Delay + Cost of changing track + No missed connections + Cost of compensation

In this work, we do not consider the disruptions caused by rolling stock problems: a
train may need replacements during its travel. This problem can be mitigated by having
redundant resources in key places on the track. These resources are used to re-supply when
needed.

Different cost functions are used in the literature when recovering timetables after dis-
ruptions. A summary of the different cost functions is shown in Table 2. The most straight-
forward cost function is the Hamming distance (Binder et al., 2017), i.e., the number of
variables4 that change their assignment between the original solution and the new feasible
solution. However, the Hamming distance is domain-independent, thus not a realistic cost
function. The most common cost function is to minimize the delay (Molloy, 2020) or the
operational cost of the delay (Zeng et al., 2012; Tseng & Verhoef, 2008; Molloy, 2020).
The cost function can be even more detailed, considering the impact of a train changing
tracks (Li et al., 2014; Higgins et al., 1996; Binder et al., 2017). A change of track by a
train impacts the operational cost and train speed.

The cost function can also focus on the impact on the passengers (Adenso-Dı́az et al.,
1999). To reduce the impact of re-scheduling trains on the passengers, we can avoid the
cancellation of trains (Aken et al., 2017) and reduce the number of connections the pas-
sengers require to arrive at their destination (Sato et al., 2013). This type of cost function
requires a priori knowledge of the passenger routes.

3. Train Scheduling Optimization Problems

Next, we formalize TSOP based on the description provided by the SBB challenge (Jordi
et al., 2019). A railway network R is characterized by a graph (V, E) where V is the set
of nodes (representing stopping points in stations, or junctions5) and E is the set of edges
(representing sections of railway tracks with the same characteristics). Each node has a
label l associated. We denote L as the set of labels lv, v ∈ V , where lv is the label of node

4. The variables used to model the problem.
5. A junction node is a place where two railways join or split. The junction can also symbolize a change in

the quality of the track and, therefore, a change in the maximum speed of the train.
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v. The minimum travel time of any train in an edge e ∈ E is defined as tmin
e (an integer

value in seconds). The cost of traveling in an edge e ∈ E is given by pe.

Example 3 Recall the railway network shown in Figure 1. The set of nodes is V =
{v1, . . . , v6} and the set of edges is E = {(v1, v3), (v2, v3), (v3, v4), (v3, v5), (v3, v6)}. The
labels are lv1=A, lv2=F, lv3=B, lv4=lv5=C, and lv6=G.

Consider a set of train lines T . Each train line has its own train and a set of possible
routes that it may take. Furthermore, each train line must be scheduled on the global
railway R. A train line τ ∈ T is characterized by: a direct acyclic subgraph (Vτ , Eτ ),
Vτ ⊆ V , Eτ ⊆ E, with all possible routes the train can take; a set of labels Lτ representing
the stops the train must do; the earliest (latest) arrival time tearliestτ,v (tlatestτ,v ) at node v ∈ Vτ

(an integer value in seconds); the minimum stopping time of the train on node v ∈ Vτ is
tstopτ,v (an integer value in seconds); and the set of connections Cτ between the train in train
line τ and other trains in different train lines. We formally define the connections Cτ later
in this section. A route for a train in a train line τ is a sequence of connected nodes v ∈ Vτ

that the train must stop at, such that the set of all lv contains Lτ . Pτ is the set of all
the possible routes a train can take. Each route is denoted by P i

τ , with i ∈ [1 . . . |Pτ |] and
P i
τ ∈ Pτ .

Example 4 Recall Figure 1. Let us consider a train τ ∈ T with Vτ = V and Eτ = E. A
train must start in A and end in C. Hence, there are two possible routes the train can take:
{(v1, v3),(v3, v4)} or {(v1, v3),(v3, v5)} (red bold line).

In this work, we consider that the assignment of trains to train lines occurs before-
hand6. Hence, we consider that each train line has only one associated train, and each train
belongs to only one train line. For this reason, the concepts of trains and train lines are
interchangeable. From now on, we will only use the word train to improve readability.

Considering the earliest/latest arrival time, we can define, for each train τ and node v,
the entry time domain γτ,v = [tearliestτ,v , tlatestτ,v ]. Not all nodes have associated limits on entry
time. Furthermore, the entry time limits are only guidelines and not mandatory. In the
most relaxed version, γτ,v = [tearliestτ,vi , tlatestτ,vf

] where vi and vf are the first and last nodes of
the train route, respectively. However, considering the most relaxed version may lead to
memory problems since the encoding grows exponentially in size with all the necessary time
variables, and the space of possible solutions explodes.

Example 5 Recall Example 1 and Figure 1. Let us consider the train is already in node
v1, and thus no entry time domain for v1 exists. The train cannot leave v1 before 9am,
and cannot leave v3 after 9:14 in order to arrive at the destination before 9:42, considering
that the train takes 27 minutes from v3 to the destination. Considering that the train takes
9 minutes from v1 to v3, γτ,v3 = [9:09,9:14]. The domain for v4 and v5 is γτ,v4 = γτ,v5 =
[9:36,9:42]. The earliest arrival time requires the train to skip station B. If tstopτ,v3 ̸= 0 then
the train must stop at v3, and we can reduce the domain of γτ,v4 and γτ,v5 since it would no
longer be possible for the train to arrive at v4 or v5 at 9:36.

6. Solving the rolling stock problem (Budai, Maróti, Dekker, Huisman, & Kroon, 2010) is outside the scope
of this paper.
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A connection c ∈ Cτ can be of two types:

• virtual connection that represents the merge of trains7;

• true connections that represent the transfer of passengers/cargo between two trains
on different tracks.

Each connection is characterized by: two trains τ1 and τ2; two nodes v1 ∈ Vτ1 and

v2 ∈ Vτ2 where the transfer will occur; and the minimum connection time is ι
(v1,v2)
τ1,τ2 .

A railway network may contain junction boxes where a train can change to a different
node in the junction box (see station C in Figure 1). Such track change can be seen as a

connection and can have an associated connection time, ι
(v1,v2)
τ1,τ1 .

A solution to the TSOP has two components: (i) the assignment of all trains to the
route they take through the railway, ensuring that the train passes through a set of nodes
(routing problem); and (ii) an assignment of entry times to each train at each node on the
respective route (scheduling problem). In this work, we consider a complete discretization
of time in seconds.

Formally, a solution σ to a TSOP instance is characterized by: the scheduled entry time
tentryτ,v of each train τ in each node v, and the scheduled passage of each train τ by an edge e
represented by a Boolean variable xτ,e which takes value 1 iff train τ goes through edge e.

An optimal solution to a TSOP instance is a solution that (i) minimizes the delay of the
trains considering the entry time limits and (ii) minimizes the route cost. Further details
are presented in Section 4.

3.1 Train Scheduling Optimization Problem under Disruption

The Train Scheduling Optimization Problem under Disruption (TSOPuD) is the problem
of continuously solving the TSOP problem subject to a set of disruptions. TSOPuD is
characterized by:

• σ0, the original solution to a TSOP problem instance, i.e., the route of each train and
corresponding schedule;

• χ, a set of disruptions.

In this work, a disruption can be of three types: slowdown, block track, and block train
(see Section 2.3). Each disruption ϛ ∈ χ, independently of its type, has a set of common
characteristics. All disruptions occur at a specific time tϛ and have a duration dϛ. If
the disruption starts before the train begins its route, tϛ ≤ minv∈Vτ ,τ∈T (t

entry
τ,v ), then we

have the freedom to change the whole schedule (we call these types of disruptions before).
Otherwise, we can only change the schedule of trains for nodes with entry times after tϛ
(denoted during).

Example 6 Consider the railway shown in Figure 2. The traveling time of the train from
v1 to v3 is 9 minutes, and from v3 to v4 / v5 is 27 minutes. Assume the train cannot leave

7. In a virtual connection, two different trains may share a node. In this node, the two trains are merged
and create a new train.
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Figure 2: Schedule for a train on a railway network (original), and possible solutions after a
disruption occurs in the track (v5, v8), blocking it for 4 minutes (cases (i), (ii), and (iii)). The
bold red arrows represent the possible solutions. The dashed gray lines represent the time.
The size of the rectangles depends on the duration of the train stop at the corresponding
station. In case (i), the train waits for the disruption to end. In case (ii), the train switches
tracks at station C and proceeds to station D using the track (v4, v7). In case (iii), the train
switches tracks when departing from station B, using the track (v3, v4).

A before 9am and it has a connection with another train at C. This connection requires the
train to arrive at C before 9:42am to ensure the passengers can switch to another train.
Additionally, constraints require the train to stop for 5 minutes in C, and the minimal
traveling time from C to D is 14 minutes. The expected arrival time in D is 10am. A
possible schedule (the original solution) is represented at the top. Finally, a disruption
causes the edge (v5, v8) to be blocked for 4 minutes. There are three possible solutions to
recover from this disruption: (i) wait for the edge to be free; (ii) change the path from
(v5, v8) to (v4, v7); and (iii) change the path from (v3, v5), (v5, v8) to (v3, v4), (v4, v7). The
simplest solution is the first one (i), i.e. to wait for the disruption to end. However, such
solution causes a delay of 4 minutes. The second solution (ii) requires one change to the
train path. Assuming that changing tracks takes 2 minutes, this change reduces the delay to
2 minutes. In this case, the delay is caused by the track change at station C, switching from
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v5 to v4. The third solution (iii) causes no delay. However, it does require more changes to
the train path. Change (iii) can only occur if the disruption is discovered before the train
departs from station B.

Additionally, the slowdown disruptions are characterized by the coefficient of velocity
ωϛ,e for a set of edges e ∈ Eϛ affected by the disruption. This coefficient represents the
reduction of the train velocity in edge e.

Example 7 Consider a route (A,B) and (B,C). The train departs from A at 9am, and it
is expected to arrive at C at 3pm. The traveling time tmin

(A,B) = tmin
(B,C) = 3 hours. The train is

in station B when the weather conditions causes tmin
(B,C) to change to 6 hours (ωϛ,(B,C) = 2).

Therefore, the train will arrive 3 hours late.

The block track disruptions are additionally characterized by a set of edges e ∈ Eϛ where
no train can pass.

Example 8 Consider a route (A,B) and (B,C). Furthermore, consider that there are two
parallel edges between B and C referenced here as (B,C) and (B,C ′). The traveling time
of a train on the track tmin

(B,C) = 3 hours is shorter than on the track tmin
(B,C′) = 4 hours.

A fallen tree causes track (B,C) to be blocked for 3 hours. Re-routing the train to track
(B,C ′) will reduce the delay of the train.

The block train disruptions are additionally characterized by a set of trains τ ∈ Tϛ that
cannot travel.

Example 9 Consider a route (A,B) and (B,C). The train departs from A at 9am and it
is expected to arrive at C at 3pm. The traveling time tmin

(A,B) = tmin
(B,C) = 3 hours. A strike

causes the train to stop for 6 hours. We do not consider the rolling stock problem, and
thus we cannot assign a new train. We have neither the data for train capacity (number of
passengers) nor the number of trains available (stock) and their location while not working.
The only solution is to wait. Therefore, in this case, the train is delayed by 6 hours.

Finally, considering disruptions, each e ∈ E will have a cost taxie associated with it.
This cost represents the financial implication of subsidizing a taxi for passengers traveling
on edge e. This value is only considered when a threshold δ of delay is exceeded.

To determine an optimal solution for a TSOPuD instance, different cost functions can
be used (see Table 2). In this work, for TSOPuD, we consider a cost function that combines
the delay of the trains, the cost of changing tracks, and the compensation costs (taxi), where
the goal is to minimize its value. This cost function is described in more detail in Section
4.1.4.

4. Overall Approach

In this section, we describe the overall solution to TSOP and TSOPuD. The proposed
encodings for TSOP and TSOPuD, and the proposed algorithms are presented in detail in
the subsequent subsections.
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Figure 4: Overview of the solution to solve TSOPuD.

Figure 3 shows the proposed overall approach for solving TSOP. The process starts
with the conversion of the TSOP instance into the MaxSAT encoding described in the
following subsection. The proposed encoding defines that all trains must arrive on time,
according to the TSOP instance provided. However, forcing all the trains to arrive on time
may be infeasible. Therefore, a MaxSAT solver is used to determine if the instance has
feasible solutions under the current time delay constraints and compute an optimal solution
in terms of route penalization constraints, or determine that the instance is unsatisfiable
(UNSAT), i.e., there is no feasible solution. If the solver returns UNSAT, then we relax the
entry time constraints, allowing a train to not arrive on time, i.e., allowing delays. This
relaxation process can be implemented using different strategies. The strategy choice has a
direct influence on the execution time of the solver. In this work, we propose three different
strategies, further described at the end of this section.

The proposed approach for solving TSOPuD is similar. The overall process is described
in Figure 4. The main difference lies in the addition of disruptions that occur after the first
solution. Each time a new disruption occurs, the solver needs to be called again, and the
same approach for solving TSOP is followed. The input for each iteration can change. In
each iteration, we have as input: the previous solution σ, the new TSOP instance with the
disruptions χ, and optionally the current solver state. The usage of the previous solution
and the solver state depends on the option considered. The solver state basically consists of
the current search tree, variable order, lower/upper bounds, clauses learned, and variable
assignments. The different options for solving TSOPuD are compared in Section 5.
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4.1 MaxSAT Encoding

Our MaxSAT encoding to solve TSOP mainly uses two sets of Boolean variables:

• rτ,e : train τ passes through edge e as part of its chosen train route, with τ ∈ T and
e ∈ Eτ ;

• stτ,v represents the entry of train τ in the node v at time t, with τ ∈ T , v ∈ Vτ and
t ∈ γτ,v.

To simplify the writing of the encoding, we consider the integer variables 1 as True and
0 as False.

4.1.1 Routing Constraints

In this section, we describe the routing constraints of TSOP, establishing that each train
must pass through a set of nodes. To ensure that, we add the following exactly-one con-
straint: ∑

(vi,vj)∈Eτ ,lvj=m

rτ,(vi,vj) = 1 ∀τ∈T ,m∈Lτ (1)

The constraint above forces the train to travel through exactly one edge for which the
destination node is a station where the train must stop. Hence, we only need to backtrack
from the final destination to compute all the possible routes. Note that this is a recursive
definition of a route.

Example 10 Recall the railway network shown in Figure 1. Constraint (1) generates the
constraints rτ,(v1,v3) = 1, rτ,(v3,v4) + rτ,(v3,v5) = 1.

Furthermore, we add the following clauses:

rτ,(vi,vj) =⇒
∨

vk∈Vτ ,(vk,vi)∈Eτ

rτ,(vk,vi) ∀τ∈T , (vi,vj)∈Eτ ,( ,vi)∈Eτ
(2)

In other words, for a train to be able to depart from some node vi, we need to have
traveled through an edge, having that node vi as the destination, and so on, until we arrive
at the starting station of the train. We can do this since the starting and ending stations
of a train are fixed a priori.

Example 11 Recall the railway network shown in Figure 1. Constraint (2) generates the
constraints ¬rτ,(v3,v4) ∨ rτ,(v1,v3) ∨ rτ,(v2,v3), ¬rτ,(v3,v5) ∨ rτ,(v1,v3) ∨ rτ,(v2,v3) and ¬rτ,(v3,v6) ∨
rτ,(v1,v3) ∨ rτ,(v2,v3). These three clauses ensure that if the train τ departs from node v3 then
it must have arrived at node v3 coming from one of its possible entry routes.

The constraint above ensures that at least one route is used by the train. Therefore, we
still need to ensure that the train does not use more than one route. This is only achieved
when assigning the entry times to a node (see below).

The above constraints are considered hard constraints in the proposed encoding and
must be satisfied. However, we must consider that a route can have a penalization cost

1059



Lemos, Gouveia, Monteiro & Lynce

associated. Therefore, we define soft clauses representing the penalization of the chosen
route. For each τ ∈ T , (vi, vj) ∈ Eτ with p(vi,vj) ̸= 0, where p(vi,vj) is the penalization cost
of traveling in (vi, vj), we add the unit clause ¬rτ,(vi,vj) with weight equal to p(vi,vj). Note
that a weighted MaxSAT approach maximizes the sum of the weights of the satisfied soft
clauses. By introducing these negated variables as unit soft clauses, we are maximizing the
cost of the routes not chosen, thus minimizing the cost of the chosen routes.

4.1.2 Time Constraints

In this section, we describe the scheduling constraints of TSOP, establishing that each train
must have exactly one entry time associated with each node it passes through. To ensure
this, we need to define the set Oi as a set of concurrent nodes which thus cannot be visited
by the same train that departs from node vi (e.g., if (vi, vj), (vi, vk) ∈ Eτ then vj , vk ∈ Oi

since a train departing from vi cannot arrive at both vj and vk simultaneously). In this case,
we have a choice of routing the train by any of the nodes in Oi. Formally, for each node
vi ∈ Vτ , we define a set Oi as the set of nodes vj such that there is an edge (vi, vj) ∈ Eτ .
Consider O as a set of Os for the railway (Vτ , Eτ ). Ergo, we add:∑

vj∈Oi

∑
t∈γτ,vj

stτ,vj = 1 ∀τ∈T , Oi∈O (3)

Example 12 Recall the railway network shown in Figure 1. For simplicity, let us consider
that we schedule the train by the minute. Since v4 and v5 are concurrent nodes, constraint
(3) generates the following exactly-one constraint: s9:09τ,v3+s9:10τ,v3+s9:11τ,v3+s9:12τ,v3+s9:13τ,v3+s9:14τ,v3 = 1
and s9:36τ,v4+s9:37τ,v4+s9:38τ,v4+s9:39τ,v4+s9:40τ,v4+s9:41τ,v4+s9:42τ,v4+s9:36τ,v5+s9:37τ,v5+s9:38τ,v5+s9:39τ,v5+s9:40τ,v5+s9:41τ,v5+s9:42τ,v5 =
1. Note that node v3 does not have other concurrent nodes, and therefore, we consider that
there is a set O containing only v3.

Considering time constraints, in fact, we do not need to have the entry time for all nodes
a train passes through. We can reduce the number of variables by only considering the nodes
for which time constraints exist. This change does not remove any solution. Furthermore,
the value t can be restricted to a subset of γτv by checking the time constraints of the train.
We can propagate the time constraints and minimum traveling times to reduce the subset.

The relation between two consecutive entry times depends on the traveling time and,
thus, on the route taken by the train. So, we define an auxiliary variable q iτ that represents
the passage of train τ on the route P i

τ , where P i
τ ∈ Pτ is a possible route for train τ . The

relation of this variable to the decision variables is given by:

qyτ ↔
∧

(vi,vj)∈P y
τ

rτ,(vi,vj) ∀τ∈T ,y∈[1..|Pτ |] (4)

Note that we could define this constraint recursively. However, recursively defining the
path would unnecessarily generate a large number of clauses and require longer clauses.
Such clauses would allow the solver to choose paths. However, the large size of the clauses
would reduce the impact of unit propagation. The impact of computing the set of paths
beforehand is small since, in TSOP, most trains have three or fewer possible paths. For
different benchmarks, a different encoding could make sense.
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Example 13 Recall the network shown in Figure 1. There are six possible routes. For
readability, we only show the clauses generated by constraint (4) for the route starting in
node v1. q1τ ↔ rτ,(v1,v3) ∧ rτ,(v3,v4), q

2
τ ↔ rτ,(v1,v3) ∧ rτ,(v3,v5) and q3τ ↔ rτ,(v1,v3) ∧ rτ,(v3,v6).

Similar clauses are generated for node v2.

We still need to ensure that the entry time for two consecutive nodes is consistent. In
other words, we need to ensure that the entry time of the second node is equal to the entry
time of the first node plus the travel time on the edge between those nodes and plus the
minimum stopping time of the train at the first node. The discretization of time has a
significant impact on this constraint. As a result, the following constraint is added:

qyτ ∧ stτ,vi ⇒
∨

t′∈[t+tmin
(vi,vj)

+tstopτ,vi
; tlatestτ,vj

]

st
′
τ,vj ∀τ∈T , t∈γτ,vi , y∈[1...|Pτ |], (vi,vj)∈P y

τ
(5)

Example 14 Let us consider a train τ and the edge (v3, v4), with a minimum traveling
time tmin

(v3,v4)
= 27 minutes, belonging to the route P 1

τ . Furthermore, let us consider the

minimum stopping time at node v3 of tstopτ,v3 = 0 minutes. Lastly, let us consider that the
value of tlatestτ,v4 is 9:41, representing the latest arrival time at node v4. The constraint (5)
generates the clauses: q1τ ∧ s9:09τ,v3 ⇒ (s9:36τ,v4 ∨ . . . ∨ s9:41τ,v4), q1τ ∧ s9:10τ,v3 ⇒ (s9:37τ,v4 ∨ . . . ∨ s9:41τ,v4),
q1τ ∧ s9:11τ,v3 ⇒ (s9:38τ,v4 ∨ . . . ∨ s9:41τ,v4), q

1
τ ∧ s9:12τ,v3 ⇒ (s9:39τ,v4 ∨ . . . ∨ s9:41τ,v4), q

1
τ ∧ s9:13τ,v3 ⇒ (s9:40τ,v4 ∨ s9:41τ,v4),

q1τ ∧ s9:14τ,v3 ⇒ s9:41τ,v4 . This way, ensuring the entry time of the train τ in the next node has the
traveling time in consideration.

Let us consider two trains τ1, τ2 ∈ T that have the entry times tτ1 and tτ2 in nodes vi
and vj , respectively. Consider the following constraint that prevents train τ1 from being
in node vi at time tτ1 if train τ2 is in node v2 at time tτ2 , which we instantiate in a few
different cases:

¬stτ1τ1,vi ∨ ¬stτ2τ2,vj (6)

We need to add clause (6) to ensure that the two trains do not collide, considering that
vi = vj and times of staying are overlapping, i.e., both trains cannot be at the same time
at the same node. Hence, we add a pairwise constraint for each pair of entry time variables
of different trains in the same node that would cause the trains to collide if both variables
were assigned the value true. Formally, the clause (6) is added when τ1, τ2 ∈ T , vi = vj , vi ∈
Vτ1 ∩ Vτ2 , (vi, vn) ∈ Eτ1 , tτ1 ∈ γτ1,vi , t

′
τ1 ∈ γτ1,vn , tτ2 ∈ γτ2,vj , tτ1 < tτ2 < t′τ1 − tmin

(vi,vn)
8.

Considering virtual connections9, there is no need for additional constraints regarding
collisions. In this case, collision constraints (two trains in the same place at the same time)
are not added for trains with virtual connections on the nodes where the connection occurs.
However, transferring passengers/cargo between two trains requires the addition of clause
(6). In this case, we add a clause for every entry time for which the minimum connection
time is not guaranteed. Note that in this case, vi ̸= vj .

8. t′τ1 − tmin
(vi,vn) is the exit time of train τ1 at node vi. Note that we only define the entry times for each

train at each node; thus, we calculate the exit time of train τ1 at node vi, based on the entry time of
that train at the next node vn

9. Recall that this type of connection allows the split/merge of trains.
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The earliest/latest entry time constraints for a node are initially all considered hard
and are ensured by the previous constraints. When the need arises, these constraints are
relaxed, and we add the following unit clause: ¬stτ,v for all trains and nodes for which t
violates the earliest/latest entry constraints. The weight of this constraint is proportional
to the delay caused. The need to relax the time constraints is further discussed in detail in
the description of the proposed algorithms.

4.1.3 Encoding Disruptions

There are three types of disruptions considered in this work. Next, we describe how these
disruptions are encoded into CNF.

The train slowdown disruption ϛ is encoded adding constraint (5) with a modified min-
imum traveling time for an edge (ωϛ,e× tmin

e ), where ωϛ,e is the speed slowdown coefficient.

The block train disruption ϛ, starting at time tϛ with duration dϛ, is encoded adding a
clause :

¬stτ,v ∀τ∈Tϛ,t∈[tϛ;tϛ+dϛ],v∈Vϛ (7)

Finally, the block track disruption ϛ, starting at time tϛ with duration dϛ, affecting the
tracks in Eϛ, is encoded adding a clause:

¬stτ,v1 ∨ ¬rτ,(v1,v2) ∀τ∈Tϛ,t∈[tϛ;tϛ+dϛ],(v1,v2)∈Eϛ (8)

4.1.4 Cost Function for Disruptions

In this work, we aim to design a cost function that reduces the gap between the literature
and the real world of train scheduling (Ministry of Land & Tourism, 2019). Our cost
function can be seen as an aggregate of all cost functions described in the literature that
have an impact in the real world. Furthermore, we added weights based on data from a
real-world survey (Ministry of Land & Tourism, 2019).

For readability, we write the cost function using pseudo-Boolean constraints. These
constraints are easily encoded into SAT (Eén & Sörensson, 2006). The cost function is as
follows:

∑
τ∈T

[
α×

∑
v∈Vτ ,t∈γτ,v

[
(|t− tentryτ,v |)× stτ,v

]
(9)

+β ×
∑
e∈Eτ

[
|rτ,e − xτ,e|

]
+

∑
(vi,vj)∈Eτ

f(vi, vj)

]

f(vi, vj) =

{
0 if(|t− tentryτ,vj |) < δ

taxi(vi,vj) otherwise
(10)

Recall that tentryτ,v represents the scheduled entry time of train τ at node v in the previous
solution, and xτ,e is a Boolean variable representing the scheduled passage of train τ in track
e. Consider that f(vi, vj) is a cost function associated with the penalization of traveling
from vi to vj , that α, β are weights for the delay and changes of tracks, and δ is the threshold
for the delay from which the passenger is compensated for. We consider the values obtained

1062



Iterative Train Scheduling under Disruption with MaxSAT

from the Ministry of Land, Infrastructure, Transport and Tourism (Ministry of Land &
Tourism, 2019). This cost function penalizes the delay locally (by station) and not globally
since we know the schedule the train should take. Furthermore, we penalize the change of
track by a train and consider the compensation for the passenger for delays larger than δ.

4.1.5 Discussion

The usage of two types of decision variables can be seen as redundant. However, it causes
a reduction in the number and in size of the clauses. Particularly, they allow us to define
routes with fewer clauses. The penalization of routes using only stτ,v variables would require
an unnecessarily high number of soft constraints. Finally, not all routes need stτ,v variables
(discussed further on), but most of them need rτ,e variables to identify routes. All possible
routes are precomputed along with the constraints used to propagate the train schedule.

4.2 Iterative Algorithm

This section describes the novel iterative algorithms proposed to solve the TSOP and
TSOPuD: a simple iterative algorithm, a core-guided algorithm, and a core-guided and prop-
agation algorithm. The core guided, and the core-guided and propagation algorithms are
modified versions of the iterative algorithm. Therefore, we will start by describing the
iterative algorithm.

This work uses a MaxSAT solver to solve routing and scheduling problems together.
At first, the only soft constraints in the problem are the constraints corresponding to the
penalization of the routes (see Section 4.1.1). Note that the only possible causes for un-
satisfiability are the earliest/latest entry time constraints not being satisfied since, initially,
they are considered hard.

Given an instance of the problem, considering the encoding previously described, using
a MaxSAT solver, we obtain either a solution to the problem or the indication that the
problem is unsatisfiable. In case of unsatisfiability, the most straightforward approach is
to relax all time constraints, following the overview in Figures 3 and 4. In other words,
we expand the domain of all entry time variables in the instance, iteratively considering
increments of 30 seconds. In the worst case, we end up with the whole domain on all
entry time variables. A new formula is generated with the corresponding extension of the
time domain for the next iteration of our approach. During each iteration, we add 30 new
entry time variables (30 seconds) to each node, the time constraints clauses are adjusted
accordingly, and soft clauses representing the delay introduced with each new variable are
added. This approach requires a low number of iterations, but we may have to deal with a
large domain in each iteration since all entry time domains are increased. We denote this
approach by iterative.

We consider iteratively incrementing the domain of the entry time variables until a
solution is found, i.e., until the formula is no longer unsatisfiable. If a solution is found, it
is optimal (in terms of delay), but we may improve the quality of the solution, in terms of
overall cost, by further relaxing the time constraints. Recall that there are two optimization
criteria in TSOP: (i) delay and (ii) route cost. Since we are expanding the time domain at
each iteration as needed, naturally, the iterative procedure described guarantees optimality
on the delay criterion, i.e., the solution produced has the minimum delay possible. Note that
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Algorithm 1: core-guided Algorithm

Input: An unsat core
Output: A relaxed problem instance

1 for clause ∈ unsat do
2 update domain(clause) ▷ Algorithm 2;
3 end

the route cost is also being optimized, however, as we are limiting the possible delays due
to the domain of time variables, the route cost may not be the best (i.e., better route cost
may require higher delays). To ensure the overall global optimality criterion, we perform
additional iterations, further relaxing the time constraints in order to improve the route
penalty. This will allow searching for solutions with higher delays but lower route penalties.

There are two stopping criteria in all the algorithms proposed in this paper: (i) timeout
(no information about the optimality), and (ii) we found a global optimum. Note that we
can, sometimes, conclude that we have an optimal solution in terms of the delay, even if
the algorithm times out. Moreover, we can stop the algorithm if we reach a set of routes for
which it is mathematically impossible to compute a route with a lower penalty. This value
is computed beforehand without any time constraints (i.e., we solve the routing problem).
This computation is done when computing all the possible routes, where each route has its
cost. Furthermore, we can stop the algorithm sooner if the current solution has a delay cost
that cannot be compensated by the possible gains of reducing the route cost. Note that we
know that the next iteration will have a worse cost in terms of delay.

4.2.1 Core-guided Algorithm

The performance of the algorithm can be improved by only expanding the domain of the
variables that are the cause of unsatisfiability. This new approach is called core-guided.
Note that there is a trade-off between the number of iterations and the complexity of the
formulae in each iteration. Even though each iteration has an overhead caused by the
MaxSAT solver call, it is easier to solve smaller instances. That is the main difference
between the algorithms proposed.

Given an unsatisfiable formula, many SAT solvers can be configured to provide a subset
of still unsatisfiable clauses, named the unsatisfiable (unsat) core. The unsat core may be
used to implement a relaxing scheme to make the formula satisfiable. The different MaxSAT
solvers tested in this work use a SAT solver incrementally with assumptions (Biere et al.,
2009). For this reason, we can extract the unsat core from the underlying SAT solver.

Core-guided algorithms have been successfully applied in the past to scheduling prob-
lems (Matos, 2018; Matos et al., 2020; Schutt, 2011; Schutt et al., 2013). In the area of train
optimization, Matos et al. (2020) followed a similar approach to relax the constraints and
improve the lower bound estimation in binary search. Here, we relax a problem instance by
adding new variables (with an associated penalty) and constraints.

Algorithm 1 shows the pseudocode of the core-guided algorithm, where we start with
an unsat core. The result is a relaxed instance that is the base for the next iteration. For
each clause in the unsat core (line 1), we extract the entry time variables (st1τ1,v1) present
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Algorithm 2: update domain Function

Input: A clause
Output: A set of nodes that may be affected by the domain change (nodes).

1 for st1τ1,v1 ∈ clause do

2 ▷ t1 ∈ γτ1,v1 , γτ1,v1 := [tearliestτ1,v1 ; tlatestτ1,v1 ]

3 for st2τ2,v2 ∈ clause ∧ t2 ≤ t1 do

4 ▷ t2 ∈ γτ2,v2 , γτ2,v2 := [tearliestτ2,v2 ; tlatestτ2,v2 ]

5 if isConnectionConstraint(clause) then

6 tlatestτ2,v2 = {t1 + ι
(v1,v2)
τ1,τ2 } ▷ The trains are always different τ1 ̸= τ2;

7 else
8 if (v1, v2) ∈ Eτ1 then
9 tlatestτ2,v2 = {t1 + tmin

(v1,v2)
};

10 else
11 tlatestτ2,v2 = {t1 − tmin

(v2,v1)
};

12 end

13 end
14 nodes := nodes ∪ getConnectedNode(v2) ▷ Get all nodes such that

(v2, ) ∈ E;

15 end

16 end

in that clause. Each variable extracted from the unsat core corresponds to the entry time
of train τ1 in node v1 at time t1. Part of this algorithm is common to the core-guided and
propagation algorithm proposed in this paper and thus explained in Algorithm 2. This way,
we avoid duplicated code and showcase what is common to both approaches. Note that the
core-guided algorithm does not use the output information of Algorithm 2, which will only
be used by the core-guided and propagation algorithm.

For each two variables10 (lines 1-3 of Algorithm 2), we compute the number of new time
variables needed for each node. This computation depends on the type of clause: connection
(clause (6)) or propagation (clause (5)). If the clause relates to a connection, τ1 ̸= τ2 as
we are considering two different trains. Therefore, we update γ with the entry time of
the following node plus the minimum connection time. However, if the clause relates to
propagation, both variables relate to the same train (τ1 = τ2), and the nodes v1 and v2 are
connected via an edge. The update of γ depends on the direction of the edge. We update γ
with the entry time of the following (previous) node plus (minus) the minimum travel time
between them (lines 8-12 of Algorithm 2). In the end, the new domain of the entry time
variables in the affected nodes is enough to solve the cause of unsatisfiability. In addition,
soft clauses are added to penalize the delay of the corresponding train departure time.

10. In order to ensure we do not test redundant variables (e.g., st1τ1,v1 , s
t2
τ1,v1 and st2τ1,v1 , s

t1
τ1,v1) we ensure

order with the condition t2 ≤ t1.
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Recall that there are only two possible transitions between iterations (due to infeasibility
or optimality). In this case, if we find an optimal solution, then the algorithm falls back to
the default setting and increases the domain of the entry time variables by 30 seconds.

Example 15 Consider a train that must travel through two nodes that are connected by
one edge (v1, v2). The earliest possible entry for the train on v1 is 1pm. The latest entry
time on v2 is 3pm. The minimum traveling time in (v1, v2) is 1 hour. We only need two
entry time variables for each node since the possible values for v1 and v2 are 1pm/2pm and
2pm/3pm, respectively.

Consider that v1 is the spot for a connection and that the train must depart after 3pm
to ensure the minimum connection time. The problem becomes unsatisfiable. The unsat
core contains the clause for the connection. The first iteration extends the domain of the
entry time for v1 to accommodate 3pm as a possible time (line 4 of Algorithm 2). However,
performing this domain extension is insufficient, and the problem is still unsatisfiable. The
new unsat core, in the second iteration, contains the clauses for the time propagation
constraint of (v1, v2). Therefore, the domain of the entry time for node v2 will be expanded
(line 7 of Algorithm 2).

Proof of Algorithm 1 and 2 by Loop Invariant

Let us consider an array representing the unsat core, and an idx index representing the
position of each clause in the array.

Invariant: The subarray unsat[1 : idx] does not contain clauses with an entry time
variable st1τ1,v1 , such that t /∈ γτ2,v2 where t = t1 + c, and c is the minimum time between v1
and v2. Note that τ2, v2, and c depend on the type of constraint (connection or propagation).
For example, for propagation clauses τ1 = τ2 and v2 represents the next stopping point of
train τ1, and for connection clauses v1 = v2.

Initialization: The index idx starts at 0 and the considered subarray contains no
elements. Therefore the invariant holds trivially.

Maintenance: At each iteration of the main loop (line 1 of Algorithm 1), the index is
updated idx = idx+1, and Algorithm 2 is called with unsat[idx] clause. The if statements
on lines 5 and 8 of Algorithm 2 check the correct value of c to add to γτ2,v2 in order to
ensure t1 + c ∈ γτ2,v2 . At the end of each iteration, the Algorithm 2 corrected the domain
of entry time variables in clause unsat[idx], and the subarray unsat[1 : idx] satisfies the
invariant.

Termination: The main loop on line 1 of Algorithm 1 terminates when all clauses in
unsat have been processed, i.e., idx = ∥unsat∥. Since the subarray unsat[1 : ∥unsat∥] =
unsat, and the maintenance step ensures the invariant over unsat[1 : idx], the invariant
holds for the whole unsat array.

4.2.2 Core-guided and Propagation Algorithm

The core-guided algorithm presented requires more iterations than the iterative algorithm,
but each iteration implies fewer changes to the time domain. An alternative approach is to
predict and avoid the next unsat core by propagating delays caused by the changes to the
domain. This new approach is called core-guided and propagation.
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The goal is to reduce the number of iterations by propagating the delay through the
railway. This way, the algorithm mitigates the trade-off between the number of iterations
and the complexity of the formulae. This algorithm is similar to Algorithm 1 and is shown
in Algorithm 3. The expansion results in propagating the delay every time the domain of
γτ2,v2 (lines 5-13 of Algorithm 2) is changed. Recall that γ is the domain of the entry time
variables for a train in a node. To propagate the update of the entry time domain of a node
throughout the railway network, we added the cycle in lines 3-8 of Algorithm 3. Therefore,
the clauses containing variables for which the entry time domain (γ) changed are iterated in
this new cycle (lines 5-7). The number of clauses to iterate increases every time the domain
of a variable γ increases. Naturally, the clause that causes this propagation is not added.
The process ends when no more values need to be propagated.

Algorithm 3: core-guided and propagation Algorithm

Input: An unsat core
Output: A relaxed problem instance

1 for unsatClause ∈ unsat do
2 changed := update domain(unsatClause) ▷ Get the nodes to be propagated

from Algorithm 2;
3 for node ∈ changed do
4 clauses := getClausesOfNode(node) ▷ This obtains all clauses relating to

node node;
5 for c ∈ clauses do
6 changed := changed ∪ update domain(c) ▷ Add the new nodes;
7 end

8 end

9 end

In other words, for each new variable created, we need to check the impact on the train’s
possible routes and propagate the delay through the railway. Note that some nodes may
already support the delay caused by this procedure.

Example 16 Recall Example 15. The core-guided and propagation approach solves the
problem instance in just one iteration. The initial unsat core is the same. However, using
the core-guided and propagation algorithm, all delays are propagated in the first iteration.
For this reason, we add 4pm as the domain value of the entry time for v2 at the same time
as we add 3pm to the domain of v1. The solution has a delay of 1 hour since the train
enters v2 at 4pm.

5. Experimental Evaluation

In this section, we discuss the computational results. First, the experimental setup and eval-
uation considering the train scheduling problem (TSOP) are presented. Moreover, a com-
parison with related work is discussed. Next, the generation of disruptions and the exper-
imental evaluation considering the train scheduling problem under disruptions (TSOPuD)
are presented.
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Table 3: Data set characteristics. #T, #N, and #TN corresponds to the number of trains,
nodes, and nodes with time constraints, respectively.

SBB Benchmark without virtual connections

P1 P2 P3 P4 P5 P6 P7 P8 P9

# T 4 58 143 148 149 365 467 133 287

# N 318 4 357 8 631 9 323 9 327 38 742 51 807 22 169 34 917

# TN 49 368 932 963 965 2 887 3 700 1 061 2 009

SBB Benchmark with virtual connections

TS TSE TL1 TL1E TL1EI TL2 TL3 TL4 TL5

# T 131 132 447 448 448 448 448 448 448

# N 12 765 12 870 39 657 39 762 39 762 56 201 56 201 51 207 51 207

# TN 1 124 1 128 3 872 3 876 3 876 3 843 3 843 3 843 3 843

TL6 TL7 TL8 TL9 TL10
# T 448 448 448 448 451
# N 41 156 41 156 64 983 64 983 57 068
# TN 3 843 3 843 3 843 3 843 3 882

In order to evaluate the proposed approach to TSOP and TSOPuD, we considered the
SBB benchmark (Abels et al., 2020b; Jordi et al., 2019). The SBB contains 23 real-world
instances divided into two data sets: the data set from CrowdAI challenge (Jordi et al., 2019)
and the data set from Abels et al. (Abels et al., 2020b). The main difference between these
data sets is that the first data set does not contain virtual connections.The characteristics
of each instance of the SBB benchmark are shown in Table 3. The benchmark with the
virtual connections has more trains and a larger railway network. However, we can see that
in both data sets, the percentage of nodes with time constraints (TN) is small (around 9%).
Therefore, there is a clear advantage of only considering the entry time variables in those
nodes.

The evaluations were performed on a computer with Fedora 14, with a 2.6 GHz CPU
and 128 Gb of RAM. The proposed approach was executed considering a time limit of 900
seconds. The only time limitation imposed is for the whole execution of the algorithm. The
obtained results were verified by external programs provided by SBB (Abels et al., 2020a)
and PESPlib (Goerigk, 1989).

5.1 Train Scheduling

In this section, we present the results regarding TSOP. We start by comparing different
MaxSAT solvers in order to select the solver that will be used for the following experiments.
Then, we present comparison results of the different algorithms proposed in this work.
Furthermore, comparisons with related work are also presented.

5.1.1 Comparing MaxSAT solvers

All our iterative approaches rely on a MaxSAT solver. For this reason, the proposed solution
is implemented with the top 5 MaxSAT solvers of both complete and incomplete weighted
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Table 4: Comparison of the running time (in seconds) for different MaxSAT solvers for the
SBB benchmark without virtual connections. The instances are grouped by characteristics.

Instance P1-P3 P4 P5 P6 P7 P8 P9 SUM

TT-Open-WBO-Inc-20 (Nadel, 2020a) 1.54 10 28 42 70 32 190 373.54

Loandra (Berg, Demirović, & Stuckey, 2020, 2019) 1.98 11 28 43 78 34 205 400.98

Open-WBO-Inc-complete (Joshi, Kumar, Rao, & Martins, 2019a) 1.54 10 28 42 70 32 194 377.54

Open-WBO-Inc-satlike (Joshi, Kumar, Rao, & Martins, 2019b) 1.48 16 36 42 69 32 190 386.48

SATLike-cw (Zhendong Lei, 2020) 1.48 16 36 42 70 31 190 386.56

UWrMaxSat (Piotrow, 2020) 1.87 14 28 44 71 31 200 389.87

MaxHS (Hickey & Bacchus, 2019) 1.91 12 28 46 70 33 190 380.91

Maxino (Alviano, 2020) 1.71 15 30 45 79 31 200 401.71

Table 5: Comparison of the running time (in seconds) for different MaxSAT solvers for the
SBB benchmark with virtual connections. The instances are grouped by characteristics.

Instance TS* TL1* TL2-3 TL4-5 TL6-7 TL8-9 TL10 SUM

TT-Open-WBO-Inc-20 (Nadel, 2020a) 32.5 75.3 149.5 94.5 69.5 237 260 918.3

Loandra (Berg et al., 2020, 2019) 32.5 75 155 97 69.5 264.5 295 988.5

Open-WBO-Inc-complete (Joshi et al., 2019a) 33 75.3 150.5 96 69.5 239 262 925.3333

Open-WBO-Inc-satlike (Joshi et al., 2019b) 36 81 151.5 99 71.5 235.5 288 962.5

SATLike-cw (Zhendong Lei, 2020) 36 81 158.5 100.5 72 232 299 979

UWrMaxSat (Piotrow, 2020) 33 77 152.5 97.5 71.5 249 262 942.5

MaxHS (Hickey & Bacchus, 2019) 34.5 78 150.5 99.5 72.5 250 275 960

Maxino (Alviano, 2020) 34 80.6 156.5 103.5 73 250.5 268 966.1667

tracks of the 2020 competition (Bacchusand, Järvisalo, & Martins, 2020). As our data set
is weighted, we did not test our approach with solvers from unweighted tracks.

The results show that there are no significant differences between the performance of
these MaxSAT solvers with their default configurations. The difference between the worst
and the best solver is only 3% more time (except for the RC2 solver by Ignatiev, Morgado,
and Marques-Silva to be explained below).

Table 4 and 5 show a comparison of the running time for different MaxSAT solvers for the
SBB benchmark with and without virtual connections, respectively. These results consider
the core-guided and propagation algorithm presented in Section 4. To improve readability,
we grouped the data by instance characteristics. The detailed results are available on
our GitHub (https://github.com/ADDALemos/train-schedule-optimisation). Table 4
shows the results for the easiest instances, and thus the difference between solvers is less
pronounced.

Note that we do not show the results for the RC2 (Ignatiev et al., 2019) solver. RC2 is
implemented in Python, and thus we implemented a wrapper to use the solver within our
C++ implementation. This wrapper makes the comparison unfair as it adds unnecessary
overhead to convert the object from one language to the other. Nevertheless, if one compares
only the solver time in each iteration, RC2 is still slower than TT-Open-WBO-Inc-20 – it
would require some conversion to C++ that would influence the results.

SATLike-cw (Zhendong Lei, 2020) uses SATLikey (Lei & Cai, 2018) until it fails to
improve the current solution in a given time limit. After that, uses TT-Open-WBO-inc-20
solver to improve the solutions further. In most instances, the TT-Open-WBO-inc-20 solver
is called and thus takes longer than the TT-Open-WBO-inc-20 natively. The difference
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Figure 5: The percentage of nodes with time constraints for each instance in the SBB bench-
mark. The portion of the graph related to the percentage of nodes with time constraints of
5% to 85% is removed for better readability.

between solvers is particularly noticeable for the largest instances (or if we do not reduce
the domain size of entry time variables). We tried different values for the time limit for
the local search procedure to no avail. In the future, we could try parameter tuning using
dedicated tools with larger data sets (Eggensperger et al., 2019).

The best-performing solver shown in Table 4 and 5 is TT-Open-WBO-Inc-20 (Nadel,
2020a), which is also the winner of the incomplete weight track of the 2020 MaxSAT compe-
tition. TT-Open-WBO-Inc-20 (Nadel, 2020a) is based on Open-WBO-Inc-complete (Joshi
et al., 2019a; Joshi, Kumar, Rao, & Martins, 2020) and, actually, these are the two best
solvers for these benchmarks. Therefore, for the remaining experimental evaluation, we will
consider the use of the TT-Open-WBO-Inc-20 (Nadel, 2020a) as the MaxSAT solver. Note
that this solver is not complete, i.e., does not guarantee an optimal solution, and thus, our
approach will not guarantee an optimal solution when this solver is used. Nonetheless, even
considering this incomplete MaxSAT solver, our approach found an optimal solution for the
SBB instances.

5.1.2 Comparing Approaches

Considering the SBB instances, Figure 5 shows the percentage of the total number of nodes
with associated time constraints. We can see that, on average, only 9% of the total number
of nodes deal with time constraints. In the extreme case, concerning the smallest instance,
14% of the nodes have time constraints.

Hence, it is not surprising that the results are better when we only have entry time
variables for nodes with time constraints. If we consider the variables in all nodes, we can
only solve instance P1. Still, this is not enough if we do not restrict the domain of the
entry time variables. Without restricting the domain of the entry variables, there are still
15 timeouts out of the 23 instances. The timeouts are caused by the size of the instance.
Similar problems have already been reported in the past (Lemos et al., 2020).
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Table 6: The running time in seconds for the different iterative approaches for the instances
with optimal cost (in terms of delay) different from 0, considering a time limit of 900 seconds.
The number of iterations is shown in parentheses.

Iterative Core-guided Core-guided and Propagation

P5 116 (3) 56 (16) 28 (4)

TSE 56 (2) 42 (5) 36 (3)

TL1E 224 (3) 158 (17) 86 (5)

TL1EI 171 (2) 96 (6) 68 (2)

TL10 - (2) 380 (14) 260 (7)

Table 7: The results for the SBB benchmark without virtual connections, considering a
time limit of 900 seconds. T, M, and C represent the running time in seconds, memory in
gigabytes, and cost, respectively. ExactASP was adapted from Abels et al., 2020b to have
an exact cost function.

ExactASP ASP (Abels et al., 2020b) Greedy (Riser, 2018) MaxSAT MILP (Baldi, Butun, Kantor, Middelhauve, & Suciu, 2018)

T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C T(s) M(Gb) C

P1 1 0.2 0 1 0.06 0 1 0.1 0 0.14 0.06 0 0.7 0.06 0

P2 8 0.2 0 5 0.08 0 4 0.15 0 1.5 0.07 0 43 0.5 0

P3 18 0.7 0 8 0.3 0 8 0.72 0 3 0.2 0 94 2.2 0

P4 38 1 0.1 18 0.5 0.1 13 0.8 0.1 10 0.5 0.1 141 3 0.8

P5 64 1 33 32 0.5 33 501 1.75 37.3 28 0.5 33 671 5.1 237.6

P6 317 5.1 0 137 3.2 0 44 1.56 0 42 1.2 0 661 7.4 0

P7 580 14 0 290 6.31 0 91 1.8 0 70 1.5 0 899 9.24 0

P8 142 4.9 0 86 3.1 0 31 1.3 0 32 0.8 0 250 6.8 1.7

P9 - - - 400 7.6 0 360 2 0 190 2 0 - - -

Restricting the domain of the entry variables allows for solving all instances. However,
we need to iterate to solve instances that have an optimal cost in terms of delay different
from 0 (there are only 5 instances). Note that for instances with optimal cost in terms of
delay equal to 0, the problem can be solved within the first MaxSAT call, and no further
iterations are necessary.

Table 6 shows the results of the different iterative algorithms for the 5 instances with an
optimal cost in terms of delay different from 0. The iterative algorithm has fewer iterations
needed but expands the domain unnecessarily, which causes a time-out in TL10. With the
addition of a core-guided process, we can see clear progress in terms of running time. The
best algorithm is the core-guided and propagation algorithm. The main reason is the fact
that we avoid doing unnecessary iterations. Each call to the solver has an overhead, which
may not be necessary if one can predict the problem. On average, the first call is really
fast since it is easy to prove the unsatisfiability of the instance. However, the calls get
slower each time the domains are increased. Therefore, for the remaining experiments we
will consider the core-guided and propagation algorithm.

Table 7 compares the performance of the proposed solution with the related work on the
SBB Crowd Sourcing Challenge benchmark. As previously mentioned in Section 2, the ASP
solution uses an approximation of the cost function to deal with the size of the problem.
However, this process may remove the optimal solution. To make a fair comparison, we
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Figure 6: (a) Comparison of the running time (in seconds) and (b) comparison of the
memory consumption, between our best solution and the best ASP approach (Abels et al.,
2020b) for all SBB data sets. The same symbols/colors symbolize instances with the same
overall characteristics. The only exception is the red triangles that represent the P instances
(P1 to P9) and not characteristics.

changed the ASP solution (Abels et al., 2020b), to use an exact cost function. We refer to
this solution as ExactASP.

ExactASP is slower than the approximated version but can prove the optimal solution
for all instances but P9. The main difference relies on memory consumption. The approxi-
mated version can solve all instances and find the optimal solution for most of them. The
difference between the approximation and the optimum is only a few seconds of delay for
most instances. However, this approach cannot solve the 4 largest instances of the SBB
benchmark with virtual connections.

The greedy approach (Jordi et al., 2019; Riser, 2018) is one of the fastest (the winner of
the challenge) and is characterized by keeping the memory low and yet finding a solution
with a good cost. The shortcoming lies in the backtracking procedure. Instances P5 and
P9 are the only instances that require backtracking and, therefore, more time.

MILP (Jordi et al., 2019; Baldi et al., 2018) can prove optimality for all instances but
P9. However, the decomposition removes the actual optimal solution. The choice of routes
in the first stage reduces the search space, but it also removes the actual optimal solution.
Choosing the route has a direct impact on the overall cost of the solution.

Our approach can solve faster and with less memory than any other approach. The
main difference lies in the iterative approach with the smallest domain at the beginning.
Furthermore, it is the only approach that solves the exact problem.

Figure 6a compares the running time (in seconds) of our best solution and the best
ASP approach (Abels et al., 2020b) for the SBB benchmark. We can see that the MaxSAT
approach is faster than the ASP counterpart for all instances. The MaxSAT approach is,
on average, twice as fast as the ASP approach, even with the approximation.

Figure 6b compares the memory consumption between our best solution and the best
ASP approach (Abels et al., 2020b) for SBB data sets. We can see that the great advantage
obtained from the iterative nature of MaxSAT is memory handling. Notice that around
the 2Gb mark, we have plenty of instances with the same number of nodes, resources, and
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Table 8: #Nodes, #Edges, #Var, and #Const represent the number of nodes, edges,
variables, and constraints, respectively. The direct and compact encodings are versions of
the same model with and without the pre-processing step.

Instance Matos et al. (Matos, 2018)
This Paper

Direct Compact

Name # Nodes # Edges # Var (k) # Const. (k) # Var (k) # Const. (k) # Var (k) # Const. (k)

R1L1 3 664 6 386 508 17 268 366 12 700 356 11 557

R1L2 3 668 6 544 530 18 163 385 12 607 375 11 346

R1L3 4 184 7 032 539 18 202 387 13 618 377 12 256

R1L4 4 760 8 529 688 23 749 504 19 440 494 17 496

R2L1 4 156 7 362 585 20 203 429 15 825 419 14 242

R2L2 4 204 7 564 606 21 096 449 15 892 439 14 303

R2L3 5 048 8 287 615 20 795 444 16 987 436 15 288

R2L4 7 660 13 174 990 34 762 744 29 868 736 26 881

R3L1 4 516 9 146 785 28 410 605 24 032 494 21 629

R3L2 4 452 9 252 808 29 356 625 24 978 606 21 481

R3L3 5 724 11 170 933 33 646 717 29 267 697 23 999

R3L4 8 180 15 658 1 284 46 172 986 41 793 974 37 614

R4L1 4 932 10 263 888 32 663 696 28 284 655 22 627

R4L2 5 048 10 755 940 34 763 741 30 384 700 24 307

R4L3 6 368 13 239 1 135 42 079 898 37 700 858 30 160

R4L4 8 384 17 755 1 534 57 005 1 218 52 627 1 175 45 259

BL1 2 688 7 988 536 10 702 329 6 323 326 6 260

BL2 2 606 7 488 504 10 201 304 5 822 301 5 764

BL3 3 044 9 311 603 11 855 389 7 477 382 7 402

BL4 3 816 13 502 764 13 807 595 9 429 593 9 335

trains. The only difference lies in the domain size of the entry time variables. We conclude
that the iterative approach effectively reduces the memory footprint.

5.1.3 Periodic Event Scheduling

To further test our approach, we considered the PESPLib (Goerigk et al., 2013) benchmark.
Periodic Event Scheduling Problems (PESP) is a generic format to describe scheduling
problems. Thus to evaluate our approach with this benchmark, we converted the instances
to TSOP format (see Appendix A). The characteristics of each instance of the PESP
benchmark is shown in Table 8. Furthermore, we compare the number of variables and
constraints of our approach with and without the pre-processing step (explained below)
with Matos (2018). One can clearly see that our approach requires fewer variables and
constraints (discussed later on).

To the best of our knowledge, there is no state-of-the-art tool publicly available able
to solve PESP. Even though there are many SAT approaches in the literature, we choose
to compare Matos (2018) for the following reasons. First, the proposed approach is self-
contained. In other words, the approach does not require the implementation of customizing
heuristics and pre-processing methods. Second, the approach only uses SAT and does not
combine multiple tools. Third, the description of the SAT encoding is precise enough to be
replicated and implemented.

When converting the PESP instances to the TSOP format, we reduce the size of
the network by removing unnecessary nodes a priori. A similar approach was proposed
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Figure 7: Comparison of the cost found by both Maximum Satisfiability (MaxSAT) ap-
proaches and the current best-known values for each instance.

by Borndörfer, Lindner, and Roth (2019). The proposed approach is able to reduce, by
35% and 12%, the size of the networks of the R and the BL instances, respectively. This
pre-processing step improves the quality of the solution by 9% for the R instances.

Figure 7 compares the cost of the solution found by both MaxSAT approaches and the
current best-known values for each instance. None of these values are known to be optimal.
Note that we do not know the time and memory limits for which these values were found.
Furthermore, not all values were found by the same tool. The best solution thus far is
produced by a concurrent tool specifically designed to solve PESP (Borndörfer et al., 2019).
They reduce the problem with pre-processing. The solving process is split into three phases:
a SAT solver, ILP solver, and specific heuristics to guide the overall search. The SAT solver
is only used to warm-start the ILP solver. Our approach is not able to find the optimal
solution within the considered time limit of 900 seconds. However, due to our iterative
approach, we are able to find sub-optimal solutions. Our solutions matched the current
best-known cost for BL instances, which have specific characteristics. Regarding the rest of
the benchmark, we are within 30% of the best value currently known.

The best SAT-based approach was proposed by Matos et al. (2018, 2020). Figure 8
compares the running time required to find the best solution using our MaxSAT approach
with the approach of Matos (2018). The run time for our approach consists of the solving
time of the MaxSAT solver plus the conversion routine and the pre-processing step. The
conversion routine represents less than 1% of the whole execution time.

We are able to improve the quality of the solution by 22% and still reduce the running
time, on average, by 214 seconds. This can be explained by the smaller size of our encoding.
Matos (2018) encoding requires, on average, 1.4× more variables and 1.2× more constraints.
This is due to the way Matos (2018) encodes cycles and constraints. They use qx,i variables,
meaning that event x starts no later than the time i. On the other hand, we have a variable
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Figure 8: Comparison of the running time to find the best solution between our approach
and Matos (2018).

that says the event x starts at time i. The usage of qx,i as a decision variable requires
longer clauses. The size of the clauses is known to have a significant impact on a SAT
solver performance (Heras, Larrosa, & Oliveras, 2008). Furthermore, the choice of decision
variables impacts the complexity of the constraints. This choice causes the encoding to
have more exactly-one constraints (20% more for the RL instances and 10% more for the
BL instances).

Furthermore, Matos et al. (2020) used a binary search algorithm to optimize the solu-
tion of the SAT solver. However, their approach always considers the full time domain of
the variables. We do not consider starting with the full time domain, since we have the
incremental algorithm. The algorithm allows us to reduce the number of variables since
not all time slots are required to solve the instances. The conversion from PESP to TSOP
favors our approach since it breaks the cycles and creates room for incrementality on the
entry time domain of each node.

Finally, to improve the performance, Matos et al. (2020) proposed a heuristic to approx-
imate the lower bound. This heuristic does not ensure the optimality of the solution.

5.2 Train Scheduling under Disruptions

In this section, we present the results regarding TSOPuD. We start by describing the
generation of disruptions to evaluate our approach. Then, we present the results considering
recovering from disruptions.

5.2.1 Generating Disruptions

In the past, the impact of large disruptions on the overall public transportation network
has been studied (Anagnostopoulos & Moosavi, 2020; Marra & Corman, 2020; Burgholzer
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Figure 9: Percentage of disruptions per category during 2019 in Dutch railway network.
The data was obtained from rijdendetreinen.nl (accessed November 2020).

et al., 2013). Marra and Corman (2020) used machine learning to identify patterns that
impact the number and size of disruptions on the passenger’s path. The machine learning
method analyzed the real public transportation networks of Zurich. Anagnostopoulos and
Moosavi (2020) studied the systemic influence and fragility of all Swiss train stations to
disruptions. The goal was to restructure routes and stations in order to reduce the fragility
of the schedule. Anagnostopoulos and Moosavi (2020) showed that the most influential
stations (the ones used by more train routes) are less fragile than remote stations. In this
work, we focus on finding the most common disruptions, their characteristics, and their
causes, aiming to create a realistic benchmark to test our re-solving algorithm.

Figure 9 shows the percentage of disruptions per category during 2019 in the Dutch
railway network. The disruptions in the Dutch railway network (Büchel et al., 2019) have
a direct impact on all railways across Europe. We can see that our model is able to encode
68% of all disruptions that occur in railway networks (the sum of infrastructure, accidents,
external, engineering works, weather, and logistical disruptions).

Our data sets and disruption scenarios were obtained from the SBB open data11. Fig-
ure 10 shows the percentage of trains on-time (green), delayed (orange), and canceled (red)
for the SBB trains in Switzerland during one year. Furthermore, Figure 10 shows the av-
erage cumulative delay (in minutes), given that it is delayed. The most significant delay in
the network that occurred in 2019 was 153 minutes. The delay in each section is computed
based on the difference between the scheduled time and the actual arrival time. For this
reason, the values are cumulative, and the delay at each point may have occurred in a dif-
ferent section. Note that a delay in a section may cause delays in the subsequent sections of
the train route, hence the cumulative delays. Also, as shown in Figure 10, canceled trains
are rare and thus were not considered in our solution.

We analyzed the schedule of all trains in Switzerland during 2019 to find the cause of
the delay. Hence, we define the following Bayesian probabilities: Pstation is the probability
of a train getting delayed arriving at station station knowing that the train was on time

11. The data was extracted from https://data.sbb.ch/pages/home/. (accessed November 2020)
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Figure 10: The percentage of trains on time (green), delayed (orange), and canceled (red)
for the SBB railway in Switzerland during 2019. For each section, we show the average
cumulative delay (in minutes). This Figure was extracted from https://data.sbb.ch/

pages/home/
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Figure 11: The probability of a train getting delayed at each station, knowing that the train
was on time at the previous station. A total of 8 923 stations are considered.

at its previous station; and Ptime is the probability of a train getting delayed at time time
knowing that the train was on time at time− 1.

We analyzed the probability Pstation of a train getting delayed knowing that it was on
time at the previous station, considering 8 923 stations. Figure 11 shows the probability
Pstation for the 8 923 stations, where the median value is 2.72 × 10−5 with a variance of
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Figure 12: (a) The probability of a train getting delayed at each time of day, knowing
that the train was on time at the previous hour. Line corresponds to the multimodal
normal distribution that best fits the data sets. (b) Distribution of the duration of the
delay disruption at 3pm, knowing that the train is delayed. Line corresponds to the Poisson
distribution with the expected rate of occurrences of 1.4 that best fits the data sets of
fluctuations delays in minutes.

9.87 × 10−10. We use these values to generate the place where the disruption occurs.
Figure 12a show the values of Ptime for each time of the day. One can see that there
is a strong relationship between the time of the day and disruptions. Furthermore, we
can consider that there are three peaks corresponding to the rush hours of early morning,
lunchtime, and late evening. These are times when most trains get delayed. The closest
fit is a multimodal normal distribution, and the coefficient of determination is above 0.99.
We manually tried multiple types of distributions until we found the best fit. For each
distribution, we used the Microsoft Excel Solver (Fylstra et al., 1998) to estimate the
parameters. We use the multimodal distribution since the disruptions have three peaks and
each peak has its own distribution. The models and data used to create are available on
GitHub (https://github.com/ADDALemos/train-schedule-optimisation). This way,
anyone can reproduce the results and improve the model by adding more data. Note
that the data used is from a specific country and thus may have a specific bias from the
characteristics of that country. Furthermore, we considered a whole year to reduce a possible
relation to different seasons (bad weather tends to occur in the winter). Moreover, we only
had data for a single year, which may cause the model to overfit.

This information is not enough to generate the complete set of disruptions. We still
need to generate the duration of the disruptions. For this reason, we analyzed the duration
of the disruptions that occurred at a specific hour of the day. The closest fit is a Poisson
distribution for each time of day, and the coefficient of determination, on average, is above
0.99. Figure 12b shows the distribution of the duration of the delay disruption at 3pm,
knowing that the train is delayed. Similar fits can be obtained for other times of the day.

To summarize, we use the probabilities described above to generate 50 different disrupted
instances for each type of disruption. The disrupted instance is based on the instances from
the SBB data set (23 instances). Therefore, our benchmark with disruptions is composed of
two data sets depending on their type (before, during): the disruptions that occur before the
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train departure (2 300 instances) and the disruptions that occur after the train departure
(3 450 instances). Each data set is composed of block track disruptions (1 150 instances),
and slowdown disruptions (1 150 instances). Additionally, the data set corresponding to
disruptions that occur after the train departure has a set of instances with block train
disruptions (1 150 instances).

5.2.2 Recovering from Disruptions

In this section, we discuss the performance of our algorithm to recover from three different
types of disruptions. Our algorithms can solve all disrupted instances with an optimal
solution in less than 400 seconds. Recall that the disruption cannot lead to a solution with
a better cost than the original one.

Slowdown When considering the disruption (e.g. bad weather) that causes a train to
slow down, it is difficult to recover from the delay as the disruptions normally affect most
edges. The only way to recover is to route through a faster path after or before the affected
edges. However, this is rare since the original timetable is already fine-tuned and not robust.
Recall that most nodes had an interval where the delay was acceptable. The goal was to
reduce the entry time t ensuring t ∈ γτ,v (i.e., without arriving too early) for each train
τ at each node v. Recall that the maximum entry time at a node in normal conditions is
tlatestτ,v . We can recover from this disruption without exceeding the maximum delay (tlatestτ,v )
in 90% of all cases. When considering the during disruptions, we can recover by spending,
on average, only 16 seconds more to solve the original problem. When considering the
before disruptions, the algorithm takes an additional 120 seconds, on average. This can be
explained by the fact that there is no need to solve the whole problem when solving the
disruption while the train is traveling. On average, the number of variables is reduced by
30% considering during disruptions when compared to before disruptions.

Block track This is the only disruption that we can really improve by re-routing since
there are other options. Naturally, the capacity of re-routing depends on the number of
parallel routes. Figure 13 shows the execution time (in seconds) for the best algorithm to
solve original instances and to recover from disruptions of the block track type that occur
before and during the travel of the train. For the smaller instances, there is no difference
between solving the original instances or the disrupted instances. In general, we need
more iterations than in the original search to recover since there will always be a larger
delay. This is the main reason for the execution time of disrupted instances to worsen.
When considering the during disruptions, the number of iterations is compensated by the
reduction in the size of the instance. This can be explained by the fact that we significantly
reduce the size of the problem since we cannot change it anymore. Naturally, this depends
on the location of the train when the disruption occurs.

Block train This disruption can be used to partially model crew problems, as we can
block the train due to insufficient staff. This disruption causes a delay, which is quite
difficult to recover from. Similar to the train slowdown disruption, re-routing the train
does not improve the delay in most cases. This is the type of disruption that requires more
iterations of the core-guided and propagation algorithm to recover. For this reason, this is
also the disruption that takes longer to solve.
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Figure 14 shows the time spent to recover after different types of disruptions occur.
Block track is the fastest disruption to recover as fewer iterations are needed, and there is
more freedom to change the path of the train. This change allows for reducing the number
of iterations.

In the worst case, the recovery procedure takes more than 62% of the total execution
time. However, we can reduce this value by solving the problem incrementally.
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Incremental versus “from scratch” The recovery algorithm spends most of its time
solving the original problem again. For this reason, we can reduce this time with two tech-
niques: (i) setting the polarity of the variables; and (ii) solving the problem incrementally.

Setting the polarity (Nadel, 2020b) of the variables is similar to the warm-start technique
used in ILP. Its impact depends on the similarity of the original solution and the new optimal
solution. This technique has a larger impact when no re-routing is needed.

Solving the problem incrementally requires saving the state of the search and then
restarting the search when the disruption occurs. With this approach, we only add new
constraints, and therefore all the constraints previously learned are still valid. However,
we need to change the cost function and update all the lower and upper bounds used in
the search. Consequently, the algorithm may have explored a path in the search tree that
is no longer relevant. This per se is not a problem but may have a small impact on the
incremental search.

Figure 15 shows the number of instances solved with the respective execution time (in
seconds) for each method. We can see that setting the polarity of the variables has a
small impact. This impact is only effective for smaller instances with a shorter execution
time. Also, incremental solving has more impact than setting the polarity of the variables.
Nevertheless, the impact is negligible for instances that require more iterations in the core-
guided and propagation algorithm and more changes to the path. On average, the gain of
using incremental solving is 25%.

The performance improvements do not affect the quality of the found solution. The
solution found has exactly the same cost as before. The procedure stops only when the
optimal solution is found.
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5.2.3 Limitations

Considering the process of recovering from disruptions, we cannot create unplanned stops
outside the train path and miss connections. Hence, the disruption on a train is propagated
to all connected trains. While we allow the train to stop at any node/location along its
path for as long as necessary, adding stops outside the path would require knowledge of the
global railway network, which is not available in the SBB benchmark.

Additionally, this work does not address disruptions caused by rolling stock problems,
which may require train replacements during travel. To mitigate such issues, redundant
resources can be placed in key locations along the track.

6. Conclusions and Future Work

This paper proposes a novel iterative MaxSAT encoding to solve the train scheduling opti-
mization problem, that takes advantage of the relaxation of the problem.

The experiments show that the optimal solution is found for all SBB instances within
260 seconds, being, on average, twice as fast as the ASP counterpart, while avoiding the
exponential growth of memory usage.

All PESPLib instances are solved within 786 seconds. Although we are not able to find
an optimal solution within the considered time limit (900 seconds), our iterative approach
allows finding a sub-optimal solution within the time limit. The results are a considerable
improvement when compared with current MaxSAT solutions. The quality of the solution
is improved by 22% compared with the current MaxSAT solutions, and the running time
is reduced, on average, by 214 seconds. However, on average, the quality of the solution is
1.3× worse than the current best solution known for the instances.

Finally, we take advantage of the incremental nature of the algorithm to solve TSOPuD.
The incremental algorithm performs 25% faster than the traditional approaches.

In future work, we could relax the number of possible parallel routes and add them on
demand. In other words, in each iteration, we would consider longer routes. In addition,
we can explore more pre-processing techniques to improve the quality of results obtained in
the PESP benchmark. Finally, our approach only considers 68% of the possible disruptions.
Recall that we do not consider disruptions caused either by staffing or rolling stock problems.
We can extend the encoding and the algorithm in order to solve staffing (Demirović et al.,
2017) and rolling stock problems.

Furthermore, we can apply the same algorithms proposed in this paper with different
core solvers to see if the same performance can be achieved. The method to solve incremental
TSOPuD, considering an incremental expansion of the domain of time variables, is general
and thus can be applied to different dynamic problems. For this reason, we propose, as
future work, to test this method with problems of different domains. In particular, problems
that rely on time variables with large domains.
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Appendix A. Periodic Event Scheduling Problems

A.1 Periodic Event Scheduling Problems

PESP (Borndörfer et al., 2019; Serafini & Ukovich, 1989; van Heuven van Staereling, 2018)
can be formally defined as follows. Consider a directed graph G′ = (V ′, E′). Each v ∈
V ′ corresponds to a periodic event. All events occur with periodicity ω. Each e ∈ E′

corresponds to an order between events (e.g. the edge (a, b) tells us that event a starts before
event b) and is characterized by a feasibility interval [Le, Ue], where Le(Ue) corresponds to
the lower (upper) bound. The interval limits the starting time of the next event (e.g. (a, b)
with an interval [1, 2] says the event b cannot start before the time of a + 1 but cannot
start later than a + 2). Consider πv (v ∈ V ′) as the starting time of event v. The goal is
to find πvi , πvj ∈ [0, ω) for every e = (vi, vj) ∈ E′ such that (πvj − πvi)modulo ω ∈ [Le, Ue].
Furthermore, we want to minimize the cost given by

∑
(vi,vj)∈E′ [((πvj −πvi)modulo ω)−Le].

Example 17 Figure 16 shows an example of a graph for a PESP instance. An optimal
solution to this instance is: πv1 = 0, πv2 = 1, πv3 = 6 and πv4 = 5. This solution has a cost
of 0, given by (πv2 − πv1 − L(v1,v2)) + (πv4 − πv1 − L(v1,v4)) + (πv3 − πv4 − L(v4,v3)).

A.2 Converting PESP into TSOP

TSOP is richer and more complex than PESP. Note that PESP is not a domain-specific
problem and therefore can be used to model different problems. PESP has less domain
information than TSOP, and PESP instances are simpler. For example, PESP ignores the
routing problem, i.e., a train having only one possible path. However, PESP has a large
public benchmark, and thus we can use it to test the generality of our approach. PESP
formalism is less restrictive and thus leaves room for multiple interpretations. This is the
reason PESP can be used to model different problems. For this reason, there can exist many
possible approaches to encoding PESP as TSOP. In the literature, there are many possible
approaches to encode PESP as train scheduling problems in general (Serafini & Ukovich,
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1989). However, these train scheduling problems have their own characteristics, which are
different from the ones proposed by Jordi et al. (2019). For this reason, we propose an
approach to convert to TSOP, which is described as follows. Different from TSOP, PESP is
a cyclic problem. Ergo, we need to break the cycles when converting to TSOP. For example,
the edges {(a, b), (b, a)} from a PESP instance are split into two routes for different train
lines. Recall that the assignment of the train to routes is done beforehand. Two train
lines can imply two different trains. However, we need to force the usage of the same train,
considering the initial cyclic problem, and thus we add a virtual connection. The first train
route is a to b, and the second is b to a. The train on the second route must only depart
after the train on the first route arrives. Furthermore, the two trains can be simultaneously
in node b (representing the same train from the original problem).

The constraints of PESP can be divided into two types: (i) the traveling time of a train
between two nodes, and (ii) the connection time between two trains. Yet, a PESP instance
does not distinguish them (they are all represented as edges). Hence, we must separate
the edges in different train routes and connections. To keep all constraints of the original
problem, we must ensure that all nodes belong to a route. However, there are still multiple
possible routes. Hence, we define a route as the longest set of edges possible while ensuring
that all nodes belong to exactly one route. Note that each route must have more than one
node. After defining the routes such that all nodes belong to exactly one route, the edges
that connect two different routes correspond to connections between those routes.

Consider n trains in the PESP network. The route of a train τ is represented by E′
τ with

1 ≤ τ ≤ n. V ′
τ represents all the nodes in the route of the train τ . Furthermore, consider

E′con ⊂ E′ as the set of connections in the network. Let us convert a PESP network
(V ′, E′) into a TSOP network (V , E). Recall that each train τ in the TSOP network
has a corresponding sub-graph (Vτ , Eτ ). After the conversion, the nodes remain the same
(Vτ = V ′

τ ). The conversion of the edges takes into account the respective feasibility interval.
Therefore, for each edge e ∈ E′

τ we add e to Eτ for each value of t ∈ [Le, Ue]. The edges
are characterized by the minimal traveling time (tmin

e = t) and penalty (pe = t− Le).

Now, the only part missing in the TSOP network is the connections. For each edge
(vi, vj) ∈ E′con we add a new connection c to the set Cτ where vj ∈ Vτ . The connection c
is characterized by two trains τ and τ ′ such that vj ∈ Vτ and vi ∈ Vτ ′ . The lower bound

of the interval corresponds to the minimum connection time (ι
(vi,vj)
τ ′,τ ). The upper bound Ue

corresponds to the latest departure time (the arrival time in the next node) for the first
train to depart.

Example 18 Consider the PESP graph shown on the left of Figure 16. This graph rep-
resents two trains, τ1 and τ2, with a connection. Train τ1 departs from v1 and reaches v2
within the time interval [1,3]. Train τ2 departs from v4 and reaches v3 within the time
interval [1,2]. Hence, we can encode the travel time of the trains as two railway networks,
as shown in Figure 16. Each value of the time interval corresponds to a new edge with a
different minimum traveling time (tmin

e ). Finally, we must enforce that the departure of τ2
and the departure of τ1 are within the time interval [5,10]. We encode this constraint as

a connection between the train on the node v1 and the train on the node v4. The ι
(v1,v4)
τ1,τ2

is 5. This is the only acceptable conversion from PESP into TSOP, given that any other
definition of routes would either leave independent nodes or use the same node in different
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routes. The entry time intervals are γτ1,v1 = [0] (as it has no constraints), γτ1,v2 = [1, 3]
(due to the traveling time), γτ2,v4 = [5] (due to the connection), and γτ2,v3 = [6, 7] (due
to the traveling time and connection). These are the smallest entry time intervals one can
compute without solving the problem.
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Goerigk, M., Schachtebeck, M., & Schöbel, A. (2013). Evaluating line concepts using travel
times and robustness. Public Transport, 5 (3), 267–284.

Heras, F., Larrosa, J., & Oliveras, A. (2008). MiniMaxSAT: An efficient weighted Max-SAT
solver. Journal of Artificial Intelligence Research, 31, 1–32.

Hickey, R., & Bacchus, F. (2019). Speeding up assumption-based SAT. In Theory and
Applications of Satisfiability Testing - SAT 2019 - 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, Vol. 11628 of Lecture Notes
in Computer Science, pp. 164–182. Springer.

Higgins, A., Kozan, E., & Ferreira, L. (1996). Optimal scheduling of trains on a single line
track. Transportation Research Part B: Methodological, 30 (2), 147 – 161.

Hoffmann, K., Buscher, U., Neufeld, J. S., & Tamke, F. (2017). Solving practical railway
crew scheduling problems with attendance rates. Business & Information Systems
Engineering, 59 (3), 147–159.

1087



Lemos, Gouveia, Monteiro & Lynce

Ignatiev, A., Morgado, A., & Marques-Silva, J. (2019). RC2: an efficient maxsat solver. J.
Satisf. Boolean Model. Comput., 11 (1), 53–64.

Jordi, J., & Mohanty, S. (2018). Train Schedule Optimisation Challenge.
https://www.crowdai.org/challenges/train-schedule-optimisation-challenge (accessed
Apr 15, 2020).

Jordi, J., Toletti, A., Caimi, G., & Schupbach, K. (2019). Applied timetabling for railways:
Experiences with several solution approaches. In Proceedings of 8th International Con-
ference on Railway Operations Modelling and Analysis (ICROMA), RailNorrköping,
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