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Abstract

Argumentation frameworks (AFs) are a key formalism in AI research. Their semantics
have been investigated in terms of principles, which define characteristic properties in
order to deliver guidance for analyzing established and developing new semantics. Because
of the simple structure of AFs, many desired properties hold almost trivially, at the same
time hiding interesting concepts behind syntactic notions. We extend the principle-based
approach to argumentation frameworks with collective attacks (SETAFs) and provide a
comprehensive overview of common principles for their semantics. Our analysis shows
that investigating principles based on decomposing the given SETAF (e.g. directionality or
SCC-recursiveness) poses additional challenges in comparison to usual AFs. We introduce
the notion of the reduct as well as the modularization principle for SETAFs which will
prove beneficial for this kind of investigation. We then demonstrate how our findings can
be utilized for incremental computation of extensions and show how we can use graph
properties of the frameworks to speed up these algorithms.

1. Introduction

In the field of knowledge representation & reasoning there is a variety of formalisms to cap-
ture argumentation processes and discussions. Many of these notions are based on abstract
argumentation frameworks (AFs) as proposed by Dung (1995), where arguments are inter-
preted as abstract entities. Consequently, the focus is solely on the relationship between
the arguments, i.e. which arguments are in conflict with each other. To classify and distin-
guish the various semantics which are used to define consistent sets of arguments (so called
extensions) the principle-based analysis is an established method in formal argumentation
research. Principle-based investigations have recently been performed e.g. for AFs (van der
Torre & Vesic, 2017), ranking semantics (Bonzon, Delobelle, Konieczny, & Maudet, 2017),
preference-based argumentation frameworks (Kaci, van der Torre, & Villata, 2018), quanti-
tative bipolar argumentation frameworks (Baroni, Rago, & Toni, 2019), and abstract agent
argumentation frameworks (Yu, Chen, Qiao, Shen, & van der Torre, 2021).

In the present paper we consider argumentation frameworks with collective attacks
(SETAFs), introduced by Nielsen and Parsons (2006). SETAFs generalize Dung-style AFs in
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Dvořák, König, Ulbricht, & Woltran

the sense that some arguments can only be effectively defeated by a collection of attack-
ers, yielding a natural representation as a directed hypergraph. Many key semantic prop-
erties of AFs have been shown to carry over to SETAFs, see e.g. (Nielsen & Parsons,
2006; Flouris & Bikakis, 2019). Moreover, work has been done on expressiveness (Dvořák,
Fandinno, & Woltran, 2019), and translations from SETAFs to AFs (Polberg, 2017; Flouris
& Bikakis, 2019). The hypergraph structure of SETAFs has recently been subject of inves-
tigation (Dvořák, König, & Woltran, 2021b, 2022a, 2022b). Recent applications of SETAFs
include instantiations of inconsistent knowledge bases and similar formalisms (Yun, Vesic, &
Croitoru, 2020; König, Rapberger, & Ulbricht, 2022). However, a thorough principle-based
analysis of SETAF semantics is still unavailable. In this paper, we will close this gap by
investigating the common SETAF semantics w.r.t. a comprehensive selection of principles.

Although we will see that in many cases the behavior generalizes from AFs to the setting
with collective attacks, our study also reveals situations where caution is required and thus
emphasizes properties we deem natural for AFs. In fact, many AF principles like SCC-
recursiveness (Baroni, Giacomin, & Guida, 2005) or the recently introduced modularization
property (Baumann, Brewka, & Ulbricht, 2020a) are concerned with partial evaluation of
the given graph and step-wise computation of extensions. We will pay special attention
to these kind of principles since (a) they require to establish novel technical foundations
when generalizing the underlying structure from simple graphs to hypergraphs and (b) have
immediate implications for the design of solvers. Along the way, we will also introduce a
SETAF version for the reduct of an AF (Baumann, Brewka, & Ulbricht, 2020b) which has
proven to be a handy tool when investigating argumentation semantics.

Finally, we will define and characterize graph classes for SETAFs and utilize these find-
ings in conjunction with the formerly established principles to provide a framework for
efficient computation. Again, as a starting point we use the existing literature on graph
properties for AFs, and generalize the relevant notions to SETAFs. Along the way we point
out the exact requirements for tractability in these classes and provide reasonable alterna-
tives that do not allow for efficient reasoning in the case of collective attacks. Finally, we
will apply these results in the context of SCC-recursiveness to establish the computational
speedup, providing novel algorithms for the evaluation of frameworks along the way.

The main contribution of this paper is to show that our natural extensions of the AF
principles are well-behaving for SETAFs and can be utilized for efficient computation. We
show that basic properties are preserved, as well as their implications in terms of the
structure of extensions. More specifically, this paper is structured as follows.

� First we provide the necessary preliminaries in Section 2. We then generalize and
analyze basic principles of abstract argumentation for SETAFs in Section 3. Moreover
we introduce novel principles that are trivial for standard AFs, but provide additional
insights in the case of SETAFs.

� We propose the E-reduct SFE for a SETAF SF and a set E of arguments and investi-
gate its core properties, including the modularization property (Section 4). Moreover,
we use the reduct to provide alternative characterizations of SETAFs semantics.

� We introduce uninfluenced sets of arguments in SETAFs as the counterpart of unattacked
sets in AFs. We then propose and investigate a SETAF version of the directionality
and non-interference principles (Section 5) and SCC-recursiveness (Section 6).
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� We discuss the computational implications of modularization, directionality and SCC-
recursiveness in Section 7. In particular we illustrate the potential for incremental al-
gorithms. We then refine these results in order to be applicable in even more cases. We
introduce and analyze graph classes for SETAFs and exemplify their use for efficient
computation using the SCC-recursive scheme, generalizing known (parameterized)
tractability results from the literature.

� Finally, we conclude in Section 8.

Some technical proofs are moved to the appendix in order to enhance readability of the
paper. Sections 3-6 of this article evolved from the paper (Dvořák, König, Ulbricht, &
Woltran, 2022) presented at the KR 2022 conference, and from the paper (Dvořák, König,
Ulbricht, & Woltran, 2021) presented at the NMR 2021 workshop. Section 7 continues
the investigations of (Dvořák, König, & Woltran, 2021a) presented at the JELIA 2021
conference.

2. Background

We briefly recall the definitions of SETAFs and its semantics (see, e.g., (Bikakis, Cohen,
Dvořák, Flouris, & Parsons, 2021)). Throughout the paper, we assume a countably infinite
domain A of possible arguments.

Definition 2.1. A SETAF is a pair SF = (A,R) where A ⊆ A is a finite set of arguments,
and R ⊆ (2A \ {∅})× A is the attack relation. For an attack (T, h) ∈ R we call T the tail
and h the head of the attack.

If the tail T of an attack (T, h) is a single argument, we usually write (t, h) to denote
the set-attack ({t}, h). The class of SETAFs where all attacks are of this form amounts to
(standard Dung) AFs. Given a SETAF (A,R) and S, S′ ⊆ A, we write S 7→R a if there is
a set T ⊆ S with (T, a) ∈ R. Furthermore, we write S′ 7→R S if S′ 7→R a for some a ∈ S.
For S ⊆ A, we use S+

R to denote the set {a ∈ A | S 7→R a} and define the range of S (w.r.t.
R), denoted S⊕

R , as the set S ∪ S+
R . Moreover, we use A(SF ) and R(SF ) to identify its

arguments A and its attack relation R, respectively.

Example 2.2. Consider the SETAF SF = (A,R) with arguments A = {a, b, c, d, e, f, g, h}
and attack relation

R = {(a, b), ({b, d}, c), (b, d), (d, b), (d, e), (e, d),
({d, f}, h), (f, g), (g, f), (g, h), (h, g)};

the collective attacks ({b, d}, c), ({d, f}, h) are highlighted.

aSF :

b

c

d

e

f

h

g
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For example, the arguments {b, d} are only effectively attacking c (through the blue attack)
if both b and d are accepted. Consequently, it suffices to defeat either b or d to defend c.

The well-known notions of conflict and defense from classical Dung-style AFs naturally
generalize to SETAFs.

Definition 2.3. Given a SETAF SF = (A,R), a set S ⊆ A is conflicting in SF if S 7→R a
for some a ∈ S. A set S ⊆ A is conflict-free in SF , if S is not conflicting in SF , i.e. if
T ∪ {h} ̸⊆ S for each (T, h) ∈ R. cf (SF ) denotes the set of all conflict-free sets in SF .

Definition 2.4. Given a SETAF SF = (A,R), an argument a∈A is defended (in SF ) by
a set S ⊆ A if for each B ⊆ A, such that B 7→R a, also S 7→R B. A set T ⊆ A is defended
(in SF ) by S if each a ∈ T is defended by S (in SF ).

Moreover, we make use of the characteristic function ΓSF of a SETAF SF = (A,R),
defined as ΓSF (S) = {a ∈ A | S defends a in SF} for S ⊆ A.

Remark 2.5. We briefly highlight the difference between the nature of collective attacks
in SETAFs and the concept of accrual of arguments which is, intuitively speaking, the
combination of arguments that have (or attack) the same statement (see e.g., (Bikakis et al.,
2021; Rossit, Mailly, Dimopoulos, & Moraitis, 2021)). Notice that collective attacks in
SETAFs do not consider any kind of argument strength or preferences between arguments.
Moreover, each argument in the tail of a collective attack is essential for the attack to
be effective. In contrast the line of research on accrual of arguments allows for different
strengths of arguments and considers how the strengths of arguments attacking the same
statement are combined and when an attack is effective. That is, adding an additional
argument to an accrual, i.e., a set of arguments attacking the same statement, increases the
strength of the attack.

The semantics we study in this work are grounded, admissible, complete, preferred,
stable, naive, stage, semi-stable, ideal, and eager semantics, which we will abbreviate by
grd, adm, com, pref, stb, naive, stage, sem, ideal, and eager respectively (see e.g. (Bikakis
et al., 2021)). We denote the set of semantics under our consideration by Σ.

Definition 2.6. Given a SETAF SF = (A,R) and a conflict-free set S ∈ cf (SF ). Then,

� S ∈ adm(SF ), if S defends itself in SF ,

� S ∈ com(SF ), if S ∈ adm(SF ) and a ∈ S for all a ∈ A defended by S,

� S ∈ grd(SF ), if S =
⋂

T∈com(SF ) T ,

� S ∈ pref(SF ), if S ∈ adm(SF ) and ∄T ∈ adm(SF ) s.t. T ⊃ S,

� S ∈ stb(SF ), if S 7→R a for all a ∈ A \ S,

� S ∈ naive(SF ), if ∄T ∈ cf (SF ) with T ⊃ S,

� S ∈ stage(SF ), if ∄T ∈ cf (SF ) with T⊕
R ⊃ S⊕

R ,

� S ∈ sem(SF ), if S ∈ adm(SF ) and ∄T ∈ adm(SF ) s.t. T⊕
R ⊃ S⊕

R ,
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� S ∈ ideal(SF ), if S ∈ com(SF ), S ⊆
⋂

E∈pref(SF )E and ∄T ∈ com(SF ) s.t. T ⊆⋂
E∈pref(SF )E and T ⊃ S, and

� S ∈ eager(SF ), if S ∈ com(SF ), S ⊆
⋂

E∈sem(SF )E and ∄T ∈ com(SF ) s.t. T ⊆⋂
E∈sem(SF )E and T ⊃ S.

The relationship between the semantics has been clarified in (Dvořák, Greßler, &Woltran,
2018; Flouris & Bikakis, 2019; Nielsen & Parsons, 2006) and matches with the relations be-
tween the semantics for Dung AFs, i.e. for any SETAF SF :

stb(SF ) ⊆ sem(SF ) ⊆ pref(SF ) ⊆ com(SF ) ⊆ adm(SF )

stb(SF ) ⊆ stage(SF ) ⊆ naive(SF ) ⊆ cf (SF )

Finally, we introduce the notion of the projection, which we will revisit and redefine in
Sections 5 and 6.

Definition 2.7 (Projection). Let SF = (A,R) be a SETAF and S ⊆ A. We define the
projection SF↓S of SF on S as (S, {(T ′, h) | (T, h) ∈ R, h ∈ S, T ′ = T ∩ S, T ′ ̸= ∅}).

We illustrate the semantics and the concept of projection in the following example.

Example 2.8. Consider again the SETAF SF from Example 2.2 (left) and its extensions
w.r.t. some semantics σ ∈ Σ (right).

aSF :

b

c

d

e

f

h

g

com(SF ) = {{a, c}, {a, c, e}, {a, c, d}, {a, c, g},
{a, c, e, g}, {a, c, d, g}, {a, c, f},
{a, c, d, f}, {a, c, e, f, h}}

pref(SF ) = {{a, c, e, g}, {a, c, d, g}, {a, c, d, f},
{a, c, e, f, h}}

grd(SF ) = {{a, c}}

Intuitively, the projection “hides” parts of the SETAF while we only concentrate on some
remaining arguments. Note however, that the extensions do not in general carry over from
the “full” SETAF to its part. We project SF to the arguments {b, c, d, h} (left) and see that
the extensions are incomparable to the original framework.

b

c

d

h

SF↓{b,c,d,h} :
com(SF ) = {∅, {b, c, h}, {c, d}}
pref(SF ) = {{b, c, h}, {c, d}}
grd(SF ) = {∅}

After the projection, the argument b becomes acceptable, and c is no longer in every complete
extension. Among others, these issues are formally captured and ultimately fixed in different
ways in the next sections.
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cf grd adm com stb pref naive sem stage ideal eager

Conflict-freeness ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Defense ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Admissibility ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

CF-reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Weak reinstatement ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Naivety ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

I-maximality ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Tightness ∗✗∗ ✓ ✗ ✗ ∗✗∗ ✗ ∗✗∗ ✗ ∗✗∗ ✓ ✓

Allowing abstention ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Crash resistance ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Modularization ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Directionality ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Weak-directionality ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗

Semi-directionality ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Non-interference ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

SCC-recursiveness ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Allowing partial conflicts I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Allowing partial conflicts II ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Allowing partial conflicts III ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Tail strengthening ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Attack weakening ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: An overview of our results regarding SETAF principles. Differences from the respective
results for AFs are highlighted (∗✗∗). Note that the SETAF-specific principles Allowing Partial
Conflicts I-III, Tail Strengthening, and Attack Weakening are not applicable to AFs.

3. Basic Principles

We start our principle-based analysis of SETAF semantics by generalizing basic principles
from AFs. Satisfaction (or non-satisfaction) of principles allows us to distinguish semantics
with respect to fundamental properties that are crucial in certain applications.

The principles we consider have natural counterparts for Dung-style AFs, simply by
applying them to SETAFs where |T | = 1 for each tail. Hence, if the AF counterpart of a
principle is violated by a semantics, this carries over to the SETAF principle. We therefore
formalize the following observation:

Observation 3.1. Let P be a SETAF-principle that properly generalizes an AF-principle
PAF in the sense that for SETAFs SF with |T | = 1 for each (T, h) ∈ R(SF ), every
semantics σ satisfies P iff it satisfies PAF . In this case, if a semantics σ does not satisfy
PAF , then σ does not satisfy P .
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As all of our principles properly generalize the respective AF-principles, whenever a
principle is not satisfied for AFs, this translates to the corresponding SETAF principle as
well.

3.1 Basic Properties

Now we follow (van der Torre & Vesic, 2017) and introduce analogous principles for SETAFs.
Our first set of principles is concerned with basic properties of semantics.

Principle 3.2 (Conflict-freeness (Dung, 1995; Nielsen & Parsons, 2006)). A semantics σ
satisfies conflict-freeness if and only if for all SETAFs SF , every E ∈ σ(SF ) is conflict-free.

As conflict-freeness is a basic principle that underlies most semantics by definition, it is
not surprising that all semantics under our consideration satisfy this principle.

Proposition 3.3. Each σ ∈ Σ satisfies conflict-freeness.

The concept of defense is central to most classical semantics of abstract argumentation.
This central notion is the core of Dung’s framework (Dung, 1995) and has been adapted by
Nielsen and Parsons (Nielsen & Parsons, 2006) for SETAFs to take collective attacks into
account.

Principle 3.4 (Defense (Dung, 1995; Nielsen & Parsons, 2006)). A semantics σ satisfies
defense if and only if for all SETAFs SF , we have that E ∈ σ(SF ) implies E ⊆ ΓSF (E).

Most semantics that satisfy defense are refinements of adm. Thus satisfaction of defense
is encoded explicitly within their definition. For stable semantics we recall the well-known
relation stb(SF ) ⊆ pref(SF ) for any SETAF SF . The semantics based on conflict-freeness
do not satisfy admissibility (as it is the case in AFs), as can be easily seen in the following
Example 3.5.

Example 3.5. Consider the following SETAF SF . We have {a, c} ∈ cf (SF ), as well a
{a, c} ∈ naive(SF ), and {a, c} ∈ stage(SF ), but a is not defended by {a, c}, which means
that {a, c} is not an extension in any of the admissibility-based semantics.

a

b c

Proposition 3.6. The principle defense is satisfied by grd, adm, com, stb, pref, sem, ideal,
and eager, and violated by cf , naive, and stage.

The admissibility principle combines the former two, defense and conflict-freeness.

Principle 3.7 (Admissibility (Dung, 1995; Nielsen & Parsons, 2006)). A semantics σ
satisfies admissibility if and only if for all SETAFs SF , every E ∈ σ(SF ) is admissible.

Since our semantics σ ∈ Σ all satisfy conflict-freeness by Proposition 3.3, we have that
these semantics satisfy the admissibility principle if and only if they satisfy defense. Hence,
the results from Proposition 3.6 carry over.
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Proposition 3.8. The principle admissibility is satisfied by grd, adm, com, stb, pref, sem,
ideal, and eager, and violated by cf , naive, and stage.

In the following, we generalize different versions of reinstatement. This principle is
concerned the question whether or not all defended arguments are indeed included in a
given σ-extension E. The principle is thus inspired by the definition of completeness which
requires a ∈ E whenever E defends a. Speaking in terms of the characteristic function,
admissible sets satisfy E ⊆ ΓSF (E) whereas complete extensions refine this to E = ΓSF (E).
The reinstatement principle formalizes the “⊇”-direction.

Principle 3.9 (Reinstatement (Baroni & Giacomin, 2007)). A semantics σ satisfies rein-
statement if and only if for all SETAFs SF , we have that E ∈ σ(SF ) implies E ⊇ ΓSF (E).

Example 3.10. Recall the SETAF SF from Example 2.2. It is easy to check that {a} is
admissible in SF . Since {a} defends c, we have ΓSF ({a}) = {a, c} ⊈ {a}, which means
that admissible semantics violates reinstatement.

aSF :

b

c

d

e

f

h

g

Complete semantics satisfies reinstatement by definition, the other results follow from
the known relations stb(SF ) ⊆ sem(SF ) ⊆ pref(SF ) ⊆ com(SF ), as well as ideal(SF ) ⊆
com(SF ), and eager(SF ) ⊆ com(SF ).

Proposition 3.11. The principle reinstatement is satisfied by grd, com, stb, pref, sem,
ideal, and eager, and violated by cf , adm, naive, and stage.

For admissibility-based semantics, the fundamental lemma (originally due to (Dung,
1995), for SETAFs in (Nielsen & Parsons, 2006)) ensures conflict-freeness for additional
defended arguments. Formally, if E ∈ adm(SF ) and a ∈ ΓSF (E), then E ∪ {a} ∈ cf (SF ).
For semantics based on conflict-freeness such as naive or stage, it might happen that some
extension E is in conflict with some argument a, although a ∈ ΓSF (E). However, if E∪{a} /∈
cf (SF ) is the case, then we do not expect it to be a σ-extension anymore (if σ is cf-based).
Therefore, the following refinement of reinstatement has been proposed, which explicitly
requires E ∪ {a} to be conflict-free.

Principle 3.12 (CF-Reinstatement (Baroni & Giacomin, 2007)). A semantics σ satisfies
CF-reinstatement if and only if for all SETAFs SF , we have that E ∈ σ(SF ), a ∈ ΓSF (E),
and E ∪ {a} ∈ cf (SF ) imply a ∈ E.

Due to the fundamental lemma, for admissibility-based semantics this notion simply
coincides with reinstatement. However, also naive and stage satisfy CF-reinstatement, which
can be inferred from their respective maximality requirements: assume for a /∈ E it holds
E ∪ {a} ∈ cf (SF ), then E cannot be a naive extension as E ∪ {a} ⊃ E. Finally, recall that
stage(SF ) ⊆ naive(SF ) for every SETAF SF .
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Proposition 3.13. The principle CF-reinstatement is satisfied by grd, com, stb, pref, naive,
sem, stage, ideal, and eager, and violated by cf , and adm.

Another possible way to refine reinstatement is by restricting our attention to so-called
strongly defended arguments. Strong defense was initially defined as the underlying defense
notion for strong admissibility (Baroni & Giacomin, 2007; Caminada, 2014). So instead of
imposing E ∪ {a} ∈ cf (SF ) as a premise, we take fewer candidates a into consideration.
Strong defense for SETAFs is defined as follows1.

Definition 3.14. Given a SETAF SF = (A,R), an argument a ∈ A is strongly defended
(in SF ) by a set S ⊆ A if for each (B, a) ∈ R there is an argument b ∈ B and a set S′ ⊆ S
such that (S′, b) ∈ R, and each s ∈ S′ is strongly defended by S \ {a}.

Naturally, the induced weakening of reinstatement is given as follows.

Principle 3.15 (Weak reinstatement (Baroni & Giacomin, 2007)). A semantics σ satisfies
weak reinstatement if and only if for all SETAFs SF , if E ∈ σ(SF ) and E strongly defends
a ∈ A, then a ∈ E.

As in the AF case, if a set strongly defends an argument, then it also (classically) defends
said argument. Hence, if a semantics satisfies reinstatement, also weak reinstatement is
satisfied. The positive results in Table 1 are due to this property. The negative cases follow
from Observation 3.1 and the respective counter-examples from AFs.

Proposition 3.16. The principle weak reinstatement is satisfied by grd, com, stb, pref,
sem, ideal, and eager, and violated by cf , adm, naive and stage.

The final two principles we consider in this subsection are concerned with the structure
of the σ-extensions. First, naivety checks whether each E ∈ σ(SF ) is maximal conflict-free.

Principle 3.17 (Naivety (van der Torre & Vesic, 2017)). A semantics σ satisfies naivety
if and only if for all SETAFs SF , E ∈ σ(SF ) implies that E is ⊆-maximal in cf (SF ).

Again, the negative results are due to Observation 3.1; the positive ones follow from the
relation stb(SF ) ⊆ stage(SF ) ⊆ naive(SF ).

Proposition 3.18. The principle naivety is satisfied by stb, naive , and stage and violated
by cf , grd, adm, com, pref, sem, ideal, and eager.

Second, I-maximality is satisfied iff σ(F ) forms an anti-chain, i.e. no two extensions
are in proper subset relation to each other. Here, I-maximality is due to Baroni and Gia-
comin (2007).

Principle 3.19 (I-maximality (Baroni & Giacomin, 2007)). A semantics σ satisfies I-
maximality if and only if for all SETAFs SF , if E,E′ ∈ σ(SF ) and E ⊆ E′, then E = E′.

1. Strong admissibility has been generalized to Abstract Dialectical Frameworks (ADFs) (Keshavarzi Za-
farghandi, Verbrugge, & Verheij, 2022) and SETAFs can be interpreted as special kind of ADF (Polberg,
2016; Linsbichler, Pührer, & Strass, 2016). In fact, our definition of strong defense is compatible with
the respective notions on ADFs.
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Oftentimes, I-maximality is directly implemented in the definition of the σ-extensions
(most famously grd and pref). Further results for SETAFs have been shown in (Dvořák
et al., 2019).

Proposition 3.20. The principle I-maximality is satisfied by grd, stb, pref, naive, sem,
stage, ideal, and eager, and violated by cf , adm, and com.

3.2 Advanced Principles

The next principle we discuss is called allowing abstention (Baroni, Caminada, & Giacomin,
2011). As the name suggests, it allows the underlying semantics to be indecisive in certain
scenarios. Formally, suppose we have some target argument a and two extensions E ∈
σ(SF ) as well as E′ ∈ σ(SF ) where a ∈ E, but a ∈ (E′)+; that is, E accepts a, but E′

rejects it. In this case, since the status of a is not determined, one might argue that σ should
also admit an extension where a is neither accepted nor rejected. This idea is formalized
by the allowing abstention principle.

Principle 3.21 (Allowing abstention (Baroni et al., 2011)). A semantics σ satisfies al-
lowing abstention if and only if for all SETAFs SF = (A,R), for all a ∈ A, if there exist
E,E′ ∈ σ(SF ) with a ∈ E and a ∈ (E′)+, then there also exists some E′′ ∈ σ(SF ) such
that a ̸∈ (E′′)⊕.

As grd, ideal, and eager always admit a single extension, the principle is trivially satis-
fied by these semantics. Moreover, allowing abstention is satisfied by complete semantics,
since—as in AFs—if there exist E,E′ ∈ com(SF ) with a ∈ E and a ∈ E′+, this means
a /∈G⊕ where G∈grd(SF ). For σ ∈ {cf , adm}, this follows from ∅∈σ(SF ) for all SETAFs
SF .

Proposition 3.22. The principle allowing abstention is satisfied by cf , grd, adm, com,
ideal, and eager, and violated by stb, pref, naive, sem, and stage.

The next principle we discuss is called crash resistance (Caminada, Carnielli, & Dunne,
2012). It formalizes that it should not be possible to render certain parts of an argumenta-
tion framework completely meaningless by adding a particular set of (disjoint) arguments.
This idea is formalized in the definition of a contaminating SETAF.

Definition 3.23. We call a SETAF SF ′ = (A′, R′) contaminating for a semantics σ if for
every SETAF SF = (A,R) with A ∩ A′ = ∅, it holds that σ(SF ∪ SF ′) = σ(SF ′), where
SF ∪ SF ′ is the SETAF (A ∪A′, R ∪R′).

That is, the semantics of the given SETAF SF = (A,R) are entirely overwritten due to
the presence of SF ′. Observe that SF ′ has this influence on every conceivable SETAF SF .
The crash resistance principle forbids the existence of such a contaminating SETAF.

Principle 3.24 (Crash resistance). A semantics σ satisfies crash resistance if there is no
contaminating SETAF for σ.

As in the case for AFs, stb is the only semantics considered in this paper which is not
crash-resistant. The reason is that one can choose SF ′ to be an isolated odd cycle, yielding
stb(SF ∪SF ′) = ∅ for any SETAF SF . The other semantics are more robust in this regard
and yield σ(SF ∪ SF ′) = {E ∪ E′ | E ∈ σ(SF ), E′ ∈ σ(SF ′)} whenever A ∩A′ = ∅.
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Proposition 3.25. The principle crash resistance is satisfied by cf , grd, adm, com, pref,
naive, sem, stage, ideal, and eager, and violated by stb.

The last principle we consider in this subsection is inspired by research on expressive-
ness in abstract argumentation (Dunne, Dvořák, Linsbichler, & Woltran, 2015; Dvořák,
Rapberger, & Woltran, 2020). In this context, the notion of tightness has been introduced.
It formalizes that if E is a σ-extension and a /∈ E, then some b ∈ E must be the culprit for
a not being acceptable. Towards formalizing this, we need the notion of pairs, i.e. jointly
acceptable arguments.

Definition 3.26. Let SF be a SETAF and σ some semantics. We define the set of pairs
as Pairsσ(SF ) = {(a, b) | ∃E ∈ σ(SF ) s.t. {a, b} ⊆ E}.

A semantics σ satisfies the tightness principle if for an argument a that does not belong
to an extension E ∈ σ(SF ) there is some b ∈ E such that {a, b} is not part of any σ-
extension, i.e. there is a single argument b in E which can be considered responsible for
excluding a.

Principle 3.27 (Tightness). A semantics σ is tight if for all SETAFs SF = (A,R), for
all E ∈ σ(SF ) and all credulously accepted a ∈ A, the following implication holds: if
E ∪ {a} /∈ σ(SF ), then there is some b ∈ E such that (a, b) /∈ Pairsσ(SF ).

Clearly, any unique status semantics σ, i.e. |σ(SF )| = 1 for each SF , is tight. However,
while Dunne et al. showed that on AFs tightness holds also for conflict-freeness, naive,
stable, and stage semantics, this is not the case for SETAFs, as the following example
illustrates (see also (Dvořák et al., 2019)).

Example 3.28. Consider the following SETAF SF .

a

b c

We have naive(SF ) = stb(SF ) = stage(SF ) = {{a, b}, {b, c}, {a, c}}. Consider for exam-
ple c /∈ {a, b}. Tightness would require (a, c) /∈ Pairsσ(SF ) or (b, c) /∈ Pairsσ(SF ), but
both {a, c} and {b, c} are σ-extensions. Likewise, the same counter-example illustrates that
conflict-free sets are not tight.

Thus, we end up with only the unique status semantics grd, ideal, and eager being tight.

Proposition 3.29. The principle tightness is satisfied by grd, ideal, and eager, and violated
by cf , adm, com,pref, naive, sem, stage, and stb.

3.3 SETAF-Specific Principles

The principles we discussed up until this points where inspired by known AF principles
and have been suitably adjusted to SETAFs. In this section we want to introduce gen-
uine SETAF principles, i.e., we discuss properties which are not applicable or trivialize for
standard Dung-AFs.
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Towards our first SETAF principle, observe that a conflict within some set E of argu-
ments requires the whole tail of a corresponding attack to be contained in E; that is, there
has to be some (T, a) ∈ R with a ∈ E and T ⊆ E. The underlying intuition is that attacks
are only “active” if the whole tail is accepted. Semantics which adhere to this intuition
should be able to distinguish between attacks that are fully active, i.e., T ⊆ E and attacks
which are only partially active, i.e., T ∩ E ̸= ∅, but T ⊈ E. We therefore consider the
following notion of a partial conflict.

Definition 3.30. Let SF = (A,R) be a SETAF and E ⊆ A. We say E contains a partial
conflict whenever there is some (T, a) ∈ R with a ∈ E and T ∩ E ̸= ∅ as well as T ⊈ E.

The way SETAF semantics are designed, semantics should usually allow partial conflicts
(APC).

Principle 3.31 (Allowing partial conflicts I). A semantics σ satisfies the principle allowing
partial conflicts I if there is some SETAF SF and some extension E ∈ σ(SF ) s.t. E contains
some partial conflict.

Observe that for Dung-AFs partial conflicts never exist, since the conditions T ∩E ̸= ∅
as well as T ⊈ E can never be met simultaneously for a singleton T . Hence this principle is
trivially violated for AFs. For SETAFs, it is also easy to see that all semantics under our
consideration satisfy APC I.

Proposition 3.32. Each σ ∈ Σ satisfies allowing partial conflicts I.

We can strengthen this requirement as follows. Intuitively, we say for a given extension E
we can add a new attack (T, h) and still have E as an extension in the remaining framework
if at least one argument in T is already attacked by E.

Principle 3.33 (Allowing partial conflicts II). A semantics σ satisfies the principle allowing
partial conflicts II if for every SETAF SF = (A,R) and every E ∈ σ(SF ) it holds for all
h ∈ E, T1 ⊆ E, ∅ ⊊ T2 ⊆ E+ also E ∈ σ(SF ′) where SF ′ = (A,R ∪ {(T1 ∪ T2, h)}).

Since in admissibility-based semantics this added attack has no effect (as the tail is
attacked), these semantics satisfy the principle. The exception to this rule is semi-stable
semantics, as the introduction of the new attack might lead to a different preferred extension
with a larger range. Finally, since no conflict is introduced, also cf and naive satisfy APC
II. The counterexamples for sem, stage, and eager are illustrated in Example 3.36.

Proposition 3.34. The principle allowing partial conflicts II is satisfied by cf , grd, adm,
com, stb, pref, naive, and ideal, and violated by sem, stage, and eager.

In APC II we require that for the introduced attack (T1 ∪ T2, h) there is at least one
argument in T2, i.e., there is at least one argument in T1∪T2 that is attacked by E. However,
if we only require an argument that is not in E (instead of attacked by E), we end up with
a stronger requirement, captured in the following principle.

Principle 3.35 (Allowing partial conflicts III). A semantics σ satisfies the principle al-
lowing partial conflicts III if for every SETAF SF = (A,R) and every E ∈ σ(SF ) it holds
for all h ∈ E, T1 ⊆ E, ∅ ⊊ T2 ⊆ A \E also E ∈ σ(SF ′) where SF ′ = (A,R∪{(T1 ∪T2, h)}).
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First note that for stable APC II and APC III coincide, as for any E ∈ stb(SF ) it holds
E+ = A \ E by definition. Similarly, for the conflict-freeness based semantics cf and naive
it plays no role whether an argument is attacked or not, hence, APC III is still satisfied
for these semantics. Most admissibility-based semantics under our consideration violate
APC III, as the introduction of an attack (T, h) might lead to a situation where h is not
defended, as Example 3.36 illustrates. Clearly, we have that if σ satisfies ACP III then σ
satisfies APC II, and if σ satisfies APC II then σ satisfies APC I. The reverse does not hold,
as the results in Table 1 illustrate.

Example 3.36. Consider the SETAF (a) SFa (first without the attack ({a, b}, c)). It is
easy to check that {a, c, f} is a semi-stable, stage, and eager extension. However, if we add
the attack ({a, b}, c) the set {a, b, d} becomes a stable extension, and is in fact the only stable
extension of the resulting SETAF. Hence, {a, b, d} is also the only semi-stable,stage, and
eager extension, i.e., {a, c, f} is no longer an extension. This violates APC II (and, hence,
APC III) for sem, stage, and eager. In SETAF (b) SFb (first without the attack ({a, b}, c))
the set {a, c} is grounded, admissible, complete, preferred, and ideal. If we again add the
attack ({a, b}, c) the only extension w.r.t. these semantics is {a}, violating APC III.

(a) SFa

a b

c d e

f (b) SFb

a b

c

Combining these considerations, we get the following results for APC III.

Proposition 3.37. The principle allowing partial conflicts III is satisfied by cf ,stb, and
naive, and violated by grd, adm, com, pref,sem, stage, ideal, and eager.

The underlying idea of a collective attack (T, a) is that all arguments in T are required
in order to defeat a. Hence, an attack (T ′, a) is in a certain sense stronger than (T, a) if
T ′ ⊆ T . In the same spirit, if T ⊆ E for some extension E ∈ σ(F ), then we make E stronger
if (T, a) is replaced by some stronger attack.

Principle 3.38 (Tail Strengthening). A semantics σ satisfies tail strengthening if for all
SETAFs SF = (A,R) and for all E ∈ σ(SF ) the following implication holds: if (T, a) ∈ R
with T ⊆ E, then we also have E ∈ σ(SF ′) where SF ′ = (A,R′) with R′ = (R \ {(T, a)}) ∪
{(T ′, a)} for some T ′ ⊆ T .

Vice versa, suppose we have an argument a ∈ E and some in-coming attack (T, a) ∈ R.
If we make this attack weaker, we expect E still to be represent a jointly acceptable point
of view. Formally:

Principle 3.39 (Attack Weakening). A semantics σ satisfies attack weakening if for all
SETAFs SF = (A,R) and for all E ∈ σ(SF ) the following implication holds: if (T, a) ∈ R
with a ∈ E, then we also have E ∈ σ(SF ′) where SF ′ = (A,R′) with R′ = (R \ {(T, a)}) ∪
{(T ′, a)} for some T ⊆ T ′.
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For the semantics considered in this paper, it follows by definition that both properties
are satisfied.

Proposition 3.40. Each σ ∈ Σ satisfies tail strengthening and attack weakening.

4. Reduct and Modularization

In the remainder of this paper, our analysis will put strong emphasis on computational
aspects and the partial evaluation of SETAFs. In this section, we will provide the first steps
into this direction. First we will introduce the so-called SETAF reduct which corresponds
to the resulting SETAF after the status of a certain subset of the arguments is decided.
Based on this, we will generalize the modularization property (Baumann et al., 2020a),
which formalizes how to compute extensions step-wise by means of the reduct. As an aside,
the modularization property yields concise alternative characterizations for the classical
semantics.

4.1 The SETAF Reduct

For many of our subsequent results, the reduct of a SETAF w.r.t. a given set E of arguments
will play a central role. Intuitively, the reduct w.r.t. E represents the SETAF that result
from “accepting” E and rejecting what is defeated by E, while not deciding on the remaining
arguments. To illustrate the idea, consider the following example:

Example 4.1. Recall the SETAF SF from Example 2.2. Consider the singleton {a}. If
we view a as accepted, then b is rejected. This means that the attack from b to d can be
disregarded. However, we also observe that c cannot be attacked anymore since attacking
it requires both b and d, but b is rejected. Now consider {f}. Interpreting f as accepted
renders g rejected. In order to attack h, only d is still required. Thus, if we let E = {a, f},
then we expect the SETAF reduct SFE –with the intuitive meaning that a and f are set to
true– to look as follows.

aSFE :

b

c

d

e

f

h

g

That is, in the reduct SFE , we only need to consider arguments that are still undecided,
i.e. all arguments neither in E nor attacked by E. In contrast to the AF-reduct (Baumann
et al., 2020a), it might happen that some attacks are preserved that involve deleted ar-
guments, i.e. the attack is only partially evaluated. In particular, if the arguments in the
tail of an attack are “accepted” (i.e. in E), the attack can still play a role in attacking or
defending. If the tail of an attack (T, h) is already attacked by E, we can disregard (T, h).
By this, we get the following formal definition of the SETAF reduct.

Definition 4.2. Given a SETAF SF = (A,R) and E ⊆ A, the E-reduct of SF is the
SETAF SFE = (A′, R′), with

A′ = A \ E⊕
R

R′ = {(T \ E, h) | (T, h) ∈ R, T ∩ E+
R = ∅, T ̸⊆ E, h ∈ A′}
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Thereby, the condition T ∩ E+
R = ∅ captures cases like the attack ({b, d}, c) from our

example: b is attacked by E, and thus, the whole attack gets removed. The reason why we
take (T \E, h) as our novel attacks is the partial evaluation as in the attack ({d, f}, h) after
setting f to true: when additionally accepting d, we “activate” the attack against h.

Example 4.3. Given the SETAF SF from Example 4.1 as well as E = {a, f} as before,
the reduct SFE is the SETAF depicted above, i.e. SFE = {A′, R′} with A′ = {c, d, e, h} and
R′ = {(d, e), (e, d), (d, h)}.

We start our formal investigation of the reduct with a technical lemma to settle some
basic properties.

Lemma 4.4. Given a SETAF SF = (A,R) and two disjoint sets E,E′ ⊆ A. Let SFE =
(A′, R′).

1. If there is no S ⊆ A s.t. S 7→R E′, then the same is true in SFE.

2. Assume E does not attack E′ ∈ cf (SF ). Then, E defends E′ in SF iff there is no
S′ ⊆ A′ s.t. S′ 7→R′ E′.

3. Let E ∈ cf (SF ). If E∪E′ does not attack E in SF and E′ ⊆ A′, with E′ ∈ cf
(
SFE

)
then E ∪ E′ ∈ cf (SF ).

4. Let E ∪ E′ ∈ cf (SF ). If E′ 7→R′ a, then E ∪ E′ 7→R a.

5. If E ∪ E′ ∈ cf (SF ), then SFE∪E′
=

(
SFE

)E′
.

4.2 The Modularization Property

Having established the basic properties of the SETAF reduct, we are now ready to introduce
the modularization property (Baumann et al., 2020a).

Principle 4.5 (Modularization). A semantics σ satisfies modularization if for all SETAFs
SF , for every E ∈ σ(SF ) and E′ ∈ σ(SFE), we have E ∪ E′ ∈ σ(SF ).

Modularization allows us to build extensions iteratively. After finding such a set E ⊆ A
we can efficiently compute its reduct SFE and pause before computing an extension E′ for
the reduct in order to obtain a larger extension E ∪E′ for SF . Hence, this first step can be
seen as an intermediate result that enables us to reduce the computational effort of finding
extensions in SF , as the arguments whose status is already determined by accepting E do
not have to be considered again. Instead, we can reason on the reduct SFE (see Section 7).
In the following, we establish the modularization property for admissible and complete
semantics.

Theorem 4.6. Let SF be a SETAF, σ ∈ {adm, com} and E ∈ σ(SF ).

1. If E′ ∈ σ(SFE), then E ∪ E′ ∈ σ(SF ).

2. If E ∩ E′ = ∅ and E ∪ E′ ∈ σ(SF ), then E′ ∈ σ(SFE).
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Proof. (for σ = adm) Let SFE = (A′, R′).
1) Since E is admissible and E′ ⊆ A′, E′ does not attack E. By Lemma 4.4, item 3,

E ∪ E′ ∈ cf (SF ). Now assume S 7→R E ∪ E′. If S 7→R E, then E 7→R S by admissibility
of E. If S 7→R E′, there is T ⊆ S s.t. (T, e′) ∈ R for some e′ ∈ E′. In case E 7→R T , we
are done. Otherwise, (T \E, e′) ∈ R′ and by admissibility of E′ in SFE , E′ 7→R′ T \E. By
Lemma 4.4, item 4, E ∪ E′ 7→R T \ E.

2) Now assume E∪E′ ∈ adm (SF ). We see E′ ∈ cf
(
SFE

)
as follows: If (T ′, e′) ∈ R′ for

T ′ ⊆ E′ and e′ ∈ E′, then there is some (T, e′) ∈ R with T ′ = T \E. Hence E ∪E′ 7→R E′,
contradiction. Now assume E′ is not admissible in SFE , i.e. there is (T ′, e′) ∈ R′ with
e′ ∈ E′ and E′ does not counterattack T ′ in SFE . Then there is some (T, e′) ∈ R with
T ′ = T \ E and T ∩ E+

R = ∅. By admissibility of E ∪ E′, E ∪ E′ 7→R T , say (T ∗, t) ∈ R,
T ∗ ⊆ E∪E′ and t ∈ T . Since E∪E′ is conflict-free, T ∗∩E+

R = ∅ and thus we either have a)
T ∗ ⊆ E, contradicting T ∩E+

R = ∅, or b) (T ∗ \E, t) ∈ R′ and t ∈ T ′, i.e. E′ counterattacks
T ′ in SFE contradicting the above assumption.

For com semantics we utilize the results for adm:
1) We have E∪E′ ∈ adm(SF ). Moreover, E′ is complete, i.e. (SFE)E

′
does not contain

unattacked arguments in the reduct SFE (see Proposition 4.7). Lemma 4.4, item 5, implies
that SFE∪E′

does not contain unattacked arguments, either. Hence E ∪ E′ ∈ com(SF ).
2) Given E ∪ E′ ∈ com(SF ) we have E′ ∈ adm

(
SFE

)
, as established. Regarding

completeness, we again use the fact that SFE∪E′
= (SFE)E

′
does not contain unattacked

arguments.

Note that the modularization property also holds for stb, pref, and sem semantics. How-
ever, the only admissible set in the reduct w.r.t. a stable/preferred/semi-stable extension
is the empty set, rendering the property trivial. The exact relation is captured by the
following alternative characterizations of the semantics under our consideration.

Proposition 4.7. Let SF = (A,R) be a SETAF, E ∈ cf (SF ) and SFE = (A′, R′).

1. E∈stb(SF ) iff SFE = (∅, ∅),

2. E∈adm(SF ) iff S 7→R E implies S \ E ̸⊆ A′,

3. E∈pref(SF ) iff E ∈ adm(SF ) and adm(SFE) = {∅},

4. E∈com(SF ) iff E ∈ adm(SF ) and grd(SFE) = {∅},

5. E∈sem(SF ) iff E ∈ pref(SF ) and there is no E′ ∈ pref(SF ) s.t. A(SFE′
) ⊊ A(SFE).

From the characterization of complete semantics provided in Proposition 4.7 we infer
that for any SETAF SF the complete extensions E ∈ com(SF ) satisfy grd(SFE) = {∅} im-
plying modularization for grd. Moreover, as the grounded extension G is the least complete
extension, we can utilize modularization of adm and obtain G by the following procedure:
(1) add the set of unattacked arguments U into G, (2) repeat step (1) on SFU until there
are no unattacked arguments.

We have two cases left to discuss, namely eager and ideal semantics. Both satisfy the
modularization property, because they only admit the empty set as admissible extension
in their corresponding reduct SFE (as in the case of e.g. sem semantics). Since this is
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however not as easy to see, we will give the necessary proofs in detail here. We follow the
proof technique of the AF case (Friese & Ulbricht, 2021). First we show that the property
formalized in Theorem 4.6 also holds for semi-stable semantics. This will be useful later
since eager semantics build upon semi-stable extensions.

Proposition 4.8. Let SF be a SETAF and let E ∈ sem(SF ). Suppose E = E′ ∪ E′′ with
E′ ∩ E′′ = ∅ for some E′ ∈ adm(SF ). Then E′′ ∈ sem(SFE′

).

Proof. We already know E′′ ∈ adm(SFE′
) since sem(SF ) ⊆ adm(SF ). Now assume E′′ is

not semi-stable in FE′
. Then there is some admissible S ∈ adm

(
SFE′

)
with (E′′)⊕ ⊊ S⊕.

Since E′′ and S occur in SFE′
, this immediately yields E⊕ = (E′∪E′′)⊕ ⊊ (E′∪S)⊕. Since

by modularization we have E′ ∪ S ∈ adm(SF ), we infer E /∈ sem(SF ), a contradiction.

Next we show that the reduct w.r.t. some eager extension admits only ∅ as admissible set.

Proposition 4.9. If E ∈ eager(SF ), then eager
(
SFE

)
= {∅}.

Proof. Let SF = (A,R) be a SETAF and let E ∈ eager(SF ). Consider the reduct SFE

and assume E′ ∈ eager(SFE) is not empty. Let S be a semi-stable extension of SF . By
definition of eager, we have that E ⊆ S. Our goal is to show E′ ⊆ S as well, yielding a
contradiction since E ∪ E′ ∈ com(SF ) by modularization of com; since S is arbitrary, the
eager extension of SF must then contain E ∪ E′. To this end note that S = E ∪ S′ for
E ∈ adm(SF ) and some set S′ of arguments. By the above Proposition 4.8, S′ ∈ sem

(
SFE

)
and hence E′ ⊆ S′ ⊆ S and we are done.

Since ∅ is thus the only candidate extension in the reduct SFE , we immediately get
satisfaction of the modularization property.

Corollary 4.10. The eager semantics satisfies modularization.

In order to lift the above proof technique to ideal as well it suffices to note the following
adjustment to Proposition 4.8.

Proposition 4.11. Let SF be a SETAF and let E ∈ pref(SF ). Suppose E = E′ ∪E′′ with
E′ ∩ E′′ = ∅ for some E′ ∈ adm(SF ). Then E′′ ∈ pref(SFE′

).

Proof. According to Proposition 4.7, we have that E ∈ pref(SF ) if and only if E ∈ adm(SF )
and SFE does not possess any admissible argument. We already know admissibility of E′′

in SFE′
. Moreover, SFE = (SFE′

)E
′′
does not contain admissible arguments; thus we are

done.

This yields the same behavior for ideal as well. First, we again infer that the reduct
does not tolerate any non-empty extension.

Proposition 4.12. If E ∈ ideal(F ), then ideal
(
FE

)
= {∅}.

Proof. We reason as in the proof of Proposition 4.9 with S ∈ pref(SF ) instead of S ∈
sem(SF ).

Corollary 4.13. The ideal semantics satisfies modularization.
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5. Directionality and Non-Interference

In this section we discuss the principles directionality and non-interference. Intuitively,
these principles give information about the behavior of separate parts of a framework.
Beside being informative regarding the behavior of semantics, this principles also have
computational implications. In order to formalize this separation-property, we start of with
the notion of unattacked sets of arguments2. For directionality (Baroni & Giacomin, 2007)
we have to carefully consider this notion in order to obtain a natural generalization of the
AF case preserving the intended meaning. A naive definition of unattacked sets will lead
to nonsensical results: assume a set S is unattacked in a SETAF SF = (A,R) whenever it
is not attacked from “outside”, i.e. if the condition A \ S ̸7→R S holds.

Example 5.1. Consider now the following SETAF (a) and its projections (b), (c) w.r.t.
the “unattacked” set S = {a, c}.

c

ba

(a) (b) (c)

c

ba

c

ba

Note that {a, c} is stable in (a). If we now consider the projection SF↓S—see (b)—we find
that {a, c} is not stable, falsifying directionality. However, one might argue that this is due
to the credulous nature of our projection-notion. We could easily consider a different proper
generalization of the projection, namely SF↓∗S = (S, {(T, h) | (T, h) ∈ R, T ∪ {h} ⊆ S}). In
this more skeptical version we delete attacks if any of the arguments in the tail are not in
the projected set—see (c). However, we still cannot obtain the desired results: in (a) we find
{a} to be the unique grounded extension, while in (c) {a, c} is grounded, again falsifying
directionality. As for the directionality principle we do not want to add additional arguments
or attacks and we exhausted all possible reasonable projection notions for this small example,
we conclude that the underlying definition of unattacked sets was improper. We therefore
suggest a different definition—and at the same time suggest to think of these sets rather as
“uninfluenced” than “unattacked”. In AFs, clearly both notions coincide. However, we still
argue that the concept of “influence” captures the true nature of directionality in a more
intuitive and precise manner. Moreover, note that in the case of uninfluenced sets both
notions of projection coincide, as well as the notion of restriction (see Definition 6.6) for
arbitrary sets D ⊆ A \ S.

Towards the formal definition of influence, we utilize the notion of the primal graph of a
SETAF (Dvořák et al., 2021a). We will use this extension of our graph-related terminology
to the directed hypergraph structure of SETAFs several times in the remaining part of this
paper as a starting point for structural properties. Intuitively, collective attacks are “split
up” in order to obtain a directed graph with a similar structure as the original SETAF.

Definition 5.2 (Primal Graph). Let SF = (A,R) be a SETAF. Its primal graph is defined
as primal(SF ) = (A,R′) with R′ = {(t, h) | (T, h) ∈ R, t ∈ T}.
2. While in the previous section we used “unattacked arguments”, i.e. arguments that are not the head of

any attack, unattacked sets of arguments allow for attacks within the set.
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Example 5.3. Recall the SETAF SF . Its primal graph primal(SF ) looks as follows.

a

b

cSF :

d

e

f

h

g a

b

cprimal(SF ) :

d

e

f

h

g

Definition 5.4 (Influence). Let SF = (A,R) be a SETAF. An argument a ∈ A influences
b ∈ A if there is a directed path from a to b in primal(SF ). A set U ⊆ A is uninfluenced
in SF if no a ∈ A \ U influences any b ∈ U . We denote the set of uninfluenced sets by
US (SF ).

Utilizing this notion, we can properly generalize directionality (Baroni & Giacomin,
2007).

Principle 5.5 (Directionality). A semantics σ satisfies directionality if for all SETAFs
SF and every U ∈ US (SF ) it holds σ(SF↓U ) = {E ∩ U | E ∈ σ(SF )}.

Moreover, weaker versions of directionality have been proposed which require only a
subset relation (van der Torre & Vesic, 2017):

Principle 5.6 (Semi Directionality). A semantics σ satisfies semi directionality if for all
SETAFs SF and every U ∈ US (SF ) it holds σ(SF↓U ) ⊆ {E ∩ U | E ∈ σ(SF )}.

Principle 5.7 (Weak Directionality). A semantics σ satisfies weak directionality if for all
SETAFs SF and every U ∈ US (SF ) it holds σ(SF↓U ) ⊇ {E ∩ U | E ∈ σ(SF )}.

We will revisit directionality at the end of the next section, as we can utilize SCC-
recursiveness to show that grd, com, and pref satisfy directionality. In contrast, this is not
possible for eager and ideal semantics, so we investigate these two cases directly.

Let us start with eager semantics. As the following examples show, eager satisfies neither
semi directionality nor weak directionality.

Example 5.8. Let F = (A,R) be the following AF (van der Torre & Vesic, 2017, Figure 3):

a

b c

de

Let U = {a, b}. We have sem(F ) = {{a, c}} and thus eager(F ) = {{a, c}} as well. Thus
{E ∩ U | E ∈ eager(F )} = {{a}}. On the other hand, sem(SF↓U ) = {{a}, {b}} and thus,
eager(SF↓U ) = {∅}, i.e. weak directionality is violated.

Example 5.9. Now let Let F = (A,R) be the following AF (van der Torre & Vesic, 2017,
Figure 8):

a

d

b

e

c

f
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Let U = {d, e, f}. We have sem(F ) = {{a, e}, {d, b}} and thus eager(F ) = {∅}. On the
other hand, sem(SF↓U ) = {{e}} and thus, eager(SF↓U ) = {{e}}. Hence semi directionality
is violated.

Now let us turn to ideal semantics. We show that directionality is satisfied. Our proof
follows the technique from the AF case (Baroni & Giacomin, 2007). The required structural
properties also hold for SETAFs. Therefore, we only require minor adjustments to reason
analogously in our setting.

Lemma 5.10. Let SF = (A,R) be a SETAF. The the unique ideal extension S satisfies

S =
⋃

E∈adm(SF ):∀P∈pref(SF ):E⊆P

E

This auxiliary lemma is a convenient characterization of ideal in order to infer direction-
ality as follows.

Proposition 5.11. The semantics ideal satisfies directionality.

Proof. Let SF = (A,R) be a SETAF and suppose U ∈ US (SF ). We have to show
ideal(SF↓U ) = {E ∩ U | E ∈ ideal(SF )}. Due to Lemma 5.10 it suffices to show⋃

E∈adm(SF ):∀P∈pref(SF ):E⊆P

E ∩ U =
⋃

E∈adm(SF↓U ):∀P∈pref(SF↓U ):E⊆P

E

(⊆) Let E be an arbitrary set in adm(SF ). We show the claim for this particular set
and thus, the same holds for the union over all extensions in adm(SF ) as well. Due to
directionality of adm semantics, E ∈ adm(SF ) implies E ∩U ∈ adm(SF↓U ). Therefore, we
have to show that E ∩ U is a subset of each preferred extension in SF↓U and thus, E ∩ U
is part of the union of the right-hand side.

Now, for each P ∈ pref(SF ) we have E ∩ U ⊆ P ∩ U , i.e.

∀P ∈ pref(SF ) : E ∩ U ⊆ P ∩ U. (1)

By directionality of pref semantics, {P ∩ U | P ∈ pref(SF )} = pref(SF↓U ). This turns (1)
into

∀P ∈ pref(SF↓U ) : E ∩ U ⊆ P.

which we had to show.
(⊇) Now let E ∈ adm(SF↓U ). By definition of admissibility, it is clear that E ∈

adm(SF ) follows. For each P ∈ pref(SF↓U ) it follows that E ⊆ P , i.e.

∀P ∈ pref(SF↓U ) : E ⊆ P. (2)

Again by directionality, we turn (2) into

∀P ∈ pref(SF ) : E ⊆ P ∩ U ⊆ P.

which proves the claim.
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Similarly, we generalize non-interference (Caminada et al., 2012), which has an even
stronger requirement. U ⊆ A is isolated in SF = (A,R), if U is uninfluenced and A \ U is
uninfluenced, i.e. there are no edges in primal(SF ) between U and A \ U .

Principle 5.12 (Non-interference). A semantics σ satisfies non-interference iff for all
SETAFs SF and all isolated S ⊆ A(SF ), it holds σ(SF↓U ) = {E ∩ U | E ∈ σ(SF )}.

Clearly, directionality implies non-interference. It is easy to see from the respective defi-
nitions that also naive, semi-stable, ideal, eager, and stage semantics satisfy non-interference.

6. SCC-Recursiveness

In graph theory, the notion of a strongly connected component (SCC) is a widely known
concept. An SCC consists of a set S of nodes s.t. for any a, b ∈ S there is a directed
path from a to b within the given graph. SCC-recursiveness (Baroni et al., 2005) formalizes
the intuition that the acceptance status of an argument depends only on its ancestors—
i.e., the arguments that feature a directed path to the argument in question. If some
semantics satisfies SCC-recursiveness, one can construct all SCCs of a given graph and
then compute resp. verify extensions step-wise, by working along the SCCs. This provides
theoretical insights as it formalizes the independence of arguments of their child SCCs, but
also provides us with computational advantages as we will see in Section 7.

In Section 5 we considered the concept of influence. In a nutshell, an argument a “influ-
ences” an argument b in a SETAF SF if there is a directed path from a to b in primal(SF ).
It is therefore reasonable to investigate SCCs with this idea in mind. In particular, our
definition of SCCs captures the equivalence classes w.r.t. the influence relation.

Definition 6.1 (SCCs). Let SF be a SETAF. By SCCs(SF ) we denote the set of strongly
connected components of SF , which we define as the sets of arguments contained in the
strongly connected components of primal(SF ).

Example 6.2. Recall our SETAF from before.

a

b

c

d

e

f

h

g

In this SETAF, we have the four SCCs {a}, {b, d, e}, {c}, and {f, g, h}, as depicted in dashed
lines.

Analogously to (Baroni et al., 2005), we partition the arguments in defeated, provision-
ally defeated and undefeated ones. Intuitively, accepting a defeated argument would lead
to a conflict, the provisionally defeated cannot be defended and will therefore be rejected
(while not being irrelevant for defense of other arguments), and the undefeated form the
candidates for extensions. We obtain the following formal definition of the sets we just
described.
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Definition 6.3. Let SF = (A,R) be a SETAF. Moreover, let E ⊆ A be a set of arguments
and S ∈ SCCs(SF ) be an SCC. We define the set of defeated arguments DSF (S,E), pro-
visionally defeated arguments PSF (S,E), and undefeated arguments USF (S,E) w.r.t. S,E
as

DSF (S,E) = {a ∈ S | E \ S 7→R a},
PSF (S,E) = {a ∈ S | A \ (S ∪ E+) 7→R a}\DSF (S,E),

USF (S,E) = S \ (DSF (S,E) ∪ PSF (S,E)).

Moreover, we set UPSF (S,E) = USF (S,E) ∪ PSF (S,E).

It is important to note that all these sets are calculated w.r.t. a given set candidate E,
i.e. the purpose is to verify whether E is some σ-extension.

Example 6.4. Recall the SETAF from above. Let S = {b,d,e} be the SCC under consid-
eration.

Take the admissible extension E = {a, e}. We have that DSF (S,E) = {b} since the
argument a from the parent SCC {a} defeats b; observe that d /∈ DSF (S,E) since d is
only defeated by e which is part of the given SCC S. Moreover, PSF (S,E) = ∅ and hence
USF (S,E) = {d, e}.

Consider now E′ = {d}. Then DSF (S,E
′) = ∅ because no argument within S is defeated

from an argument in E′ occurring in a parent SCC. However, PSF (S,E
′) = {b} reflecting

that b cannot be defended (for this we would have to defeat a, but from within the given
SCC S this is impossible). Therefore, USF (S,E

′) = {b, d, e} = S.

In order to formalize SCC-recursiveness, we need the notion of the restriction. It will
be convenient in order to evaluate our given extension SCC-wise, since in each step we can
remove the defeated arguments DSF (S,E) and thus restrict our attention to USF (S,E).
For classical Dung-AFs, the restriction coincides with the projection from Definition 2.7.
However, in the following we will argue that the projection does not capture the intricacies
of this process. Ultimately, we will see that for a reasonable restriction we need semantic
tools that are similar to the reduct SFE . For that, we revisit Example 5.1.

Example 6.5. Consider the following SETAFs SF and SF ′.

c

baSF :

c

dbSF ′ :

a e

Assume we accept the argument a in SF . Now for the remaining SCC {b, c} the projection
SF↓{b,c} contains the attacks (b, c) and (c, b), as one might expect.

Regarding SF ′, assume we accept a and therefore reject b. The projection SF ′↓{c,d,e}
yields an odd cycle where none of the remaining arguments c, d, e can be accepted. However,
as b is defeated, the attack ({b, d}, c) is counter-attacked and thus, c is defended. Hence we
would expect c to be acceptable in the restriction w.r.t. a.
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One might argue that this notion of projection is therefore too credulous, i.e., attacks
survive that should be discarded. Recall Example 5.1 where we defined the alternative pro-
jection

SF↓∗S = (S, {(T, h) | (T, h) ∈ R, T ∪ {h} ⊆ S}).

Now, one can check that we get the expected results in SF ′. However, SF↓∗{b,c} only features
the attack (c, b), which incorrectly suggests that we cannot accept b.

We solve this problem by adapting the notion of a restriction such that both cases are
handled appropriately. We keep track of a set of rejected arguments and discard attacks once
an argument in its tail is discarded—these attacks are irrelevant to the further evaluation
of the SETAF. This leads to the following notion,

Definition 6.6 (Restriction). Let SF = (A,R) be a SETAF and let S,D ⊆ A. We define
the restriction of SF w.r.t. S and D as the SETAF SF⇓D

S = (S′, R′) where

S′ = (A ∩ S) \D
R′ = {(T ∩ S′, h) | (T, h) ∈ R, h ∈ S′, T ∩D = ∅, T ∩ S′ ̸= ∅}.

Let us work through the conditions:

� D will be DSF (S,E) later on, i.e. the set of defeated arguments; thus S =′ A ∩ S \D
is the set of non-defeated arguments in the current SCC S.

� The set R′ of attacks reduces the tail T of a given attack to the set S′ of consideration,
i.e. (T, h) is reduced to (T ∩ S′, h), but only if:

– the attacked argument h belongs to S′,

– none of the arguments in the tail are defeated, T ∩D = ∅, and

– at least one argument in the tail belongs to the current set S′, T ∩ S′ ̸= ∅.

Example 6.7. The restriction handles both cases of Example 6.5 according to our intuition.

� The SETAF SF⇓{a}
{b,c} contains b and c, and as we accepted a, i.e. the part tail of

({a, b}, c) outside {b, c}, the attack (b, c) is kept.

� The restriction SF ′⇓{b}
{c,d,e} contains the attacks (c, e), (e, d), and (e, e); as b ∈ D = {b}

the tail of ({b, d}, c) is already defeated and we therefore do not include (d, c).

We want to emphasize that this example illustrates how the notion of projection is akin
to the SETAF-reduct: indeed, constructing SF⇓D

S consists in projecting to a certain set of
arguments and then i) removing attacks where defeated arguments are involved as well as
ii) partially evaluating the remaining tails. Formally, the connection is as follows.

Lemma 6.8. Let SF =(A,R) be a SETAF and let E,S⊆A. Then SF⇓(E\S)+
S = SF (E\S)↓S.
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Let us now formally introduce SCC-recursiveness (Baroni et al., 2005) as a SETAF
principle. Extensions satisfying this property can be recursively characterized as follows: if
the SETAF SF consists of a single SCC, the base function BF of the semantics yields the
extensions. For SETAFs that consist of more SCCs, we apply the generic selection function
GF , where SF is evaluated separately on each SCC by means of our restriction, taking into
account arguments that are defeated by previous SCCs.

Principle 6.9 (SCC-recursiveness). A semantics σ satisfies SCC-recursiveness if for all
SETAFs SF = (A,R), it holds that σ(SF ) = GF(SF ), where GF(SF ) ⊆ 2A is defined as
follows: E ⊆ A ∈ GF(SF ) if and only if

� if |SCCs(SF )| = 1, then E ∈ BF(SF );

� otherwise, ∀S ∈ SCCs(SF ) it holds that E ∩ S ∈ GF
(
SF⇓(E\S)+

UPSF (S,E)

)
,

where BF is a function that maps a SETAF SF = (A,R) with |SCCs(SF )| = 1 to a subset
of 2A.

In the following subsections we will investigate and refine SCC-recursiveness for the
different semantics under our consideration. For the proofs we loosely follow the structure
of (Baroni et al., 2005), incorporating our SETAF-specific notions.

6.1 Stable Semantics

We start with stable semantics, as this is the easiest case.

Example 6.10. Recall Example 6.2.

a

b

c

d

e

f

h

g

We use the base function
BF(SF ) = stb(SF ).

Consider the stable extension E = {a, c, d, f} of SF . Let S = {b, d, e}. The projected

SETAF SF⇓(E\S)+
S is given as

SF⇓(E\S)+
S = SF⇓{b}

S = ({d, e}, {(d, e), (e, d)}).

This projected SETAF consists of one SCC only, and we apply the base case of GF , i.e.

GF
(
SF⇓(E\S)+

UPSF (S,E)

)
= BF

(
SF⇓(E\S)+

UPSF (S,E)

)
= stb

(
SF⇓(E\S)+

UPSF (S,E)

)
.

Since E ∩ S = {d} is indeed a stable extension of SF⇓(E\S)+
UPSF (S,E), the required condition

w.r.t. the SCC S is met.
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In this section we will show that this is no coincidence, i.e. stb satisfies SCC-recursiveness
(with the base function stb). For the investigation of SCC-recursiveness in stable semantics
we use the fact that there are no undecided arguments. Thus, in each step we do not have to
keep track of as much information from previous SCCs. Formally, we obtain the following
auxiliary lemma.

Lemma 6.11. Let SF be a SETAF and E ∈ stb(SF ), then for all S ∈SCCs(SF ) it holds
PSF (S,E)=∅.

We continue with the main technical underpinning for the SCC-recursive characteriza-
tion of stable semantics. Intuitively, Proposition 6.12 states that an extension E is “globally”

stable in SF if and only if for each of its SCCs S it is “locally” stable in SF⇓(E\S)+
UPSF (S,E).

Proposition 6.12. Let SF = (A,R) be a SETAF and let E ⊆ A, then E ∈ stb(SF ) if and

only if ∀S ∈ SCCs(SF ) it holds (E ∩ S) ∈ stb
(
SF⇓(E\S)+

UPSF (S,E)

)
.

This leads us to the characterization of stable extensions. As the base function is
stb(SF ), the base case is immediate. The composite case follows from Proposition 6.12.

Theorem 6.13. Stable semantics is SCC-recursive.

6.2 Admissible Sets

As already mentioned, when investigating stable semantics we can use the observation that
each argument is either in E or defeated by E, i.e. stable extensions correspond to two-
valued models of the AF. For admissibility-based semantics, we might also have “undecided”
arguments, i.e. arguments which are not in the range E⊕ of the given extension. These
arguments make handling the SCC-recursive procedure more involved.

To this end we add a second component to GF which intuitively collects all arguments C
that can still be defended within the current SCC S. On the other hand, arguments which

occur in the restriction SF⇓(E\S)+
UPSF (S,E) but not in C cannot be accepted anymore; however,

we have to defend our extension against them. We account for this in Definition 6.22 by
maintaining a set of candidate arguments C.

While this is all similar in spirit to the AF case, there is however another crucial ob-
servation we make. That is, the particular case of SETAFs gives rise to a novel scenario,
where certain attacks are present in an SCC, but not applicable.

Example 6.14. Recall our SETAF from before.

a

b

c

d

e

f

h

g
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This time, consider S = {f, g, h} with given extension E = ∅. Then

DSF (S,E) = ∅ SF⇓(E\S)+
UPSF (S,E) = SF⇓∅

S = (A′, R′)

PSF (S,E) = ∅ A′ = {f, g, h}
USF (S,E) = {f, g, h} R′ = {(f, h), (g, h), (h, g), (f, g), (g, f)}

We now observe that although there is an attack from f to h in SF⇓∅
S, the argument h can

actually not be defeated by f , because this would require d to be present in our extension.
Note however that we cannot delete the attack (f, h), as this would mean we could accept
h—without defending h against the attack from {d, f}.

Consequently, we will keep track of these attacks that have to be considered for defense,
but cannot themselves be used to defeat an argument. We will call these attacks mitigated.

Definition 6.15 (Mitigated Attacks). Let SF = (A,R) be a SETAF. Moreover, let E ⊆ A
and S ∈ SCCs(SF ). The set MSF (S,E) of mitigated attacks is given as

MSF (S,E) = {(T, h) ∈ R
(
SF⇓(E\S)+

UPSF (S,E)

)
| ∀(T ′, h) ∈ R : T ′ ⊇ T ⇒ (T ′ \ T ) ̸⊆ E}.

One can check that with this definition, for Example 6.14 indeed the attack towards h
is identified in the SCC S = {f, g, h}, and the resulting attack (f, h) in SF⇓∅

S is mitigated
(in particular, we have MSF (S, ∅) = {(f, h)}). The intuition behind the condition

∀(T ′, h) ∈ R : T ′ ⊇ T ⇒ (T ′ \ T ) ̸⊆ E

is that (T, h) might stem from some modified attack (T ′, h) in the SETAF with T ⊆ T ′: the

attack (T ′, h) is suitably modified when computing the restriction SF⇓(E\S)+
UPSF (S,E) and yields

(T, h). Then, T ′ \ T ̸⊆ E ensures that the attack is not active in E, independent of the
choice of arguments within the SCC S. Intuitively, this accounts for a scenario where an
attack (T, h) that appears in a sub-framework generated from projecting to an SCC has two
or more possible origins: at least one attack (T ′, h) ∈ R with T ′ ⊇ T where some argument
t ∈ T ′ \ T is not in E⊕ (i.e., causing the resulting (T, h) to be mitigated), and at least one
attack (T ′′, h) ∈ R with T ′′ ⊇ T where T ′′ \ T ⊆ E (i.e., causing the resulting (T, h) to
be non-mitigated). In this case the non-mitigated interpretation “overrides” the mitigated
interpretation, as this attack can clearly be used to defend other arguments.

To account for the novel scenarios arising from the context of mitigated attacks we adapt
the notion of acceptance. We have to assure that the “counter-attacks” used for defense
are not mitigated. Recall that in addition our generic selection function also stores some
set C of acceptable arguments, with the consequences mentioned above. Putting all of this
together yields the following notions:

� If M is the set of mitigated attacks, then some extension E defends a ∈ A if for each
arbitrary attacker (T, a) ∈ R there is some non-mitigated counter-attack (X, t) ∈
R \ M with X ⊆ E and t ∈ T , i.e. E counters the attack without relying on any
mitigated attack;

� Each extension E must be a subset of the set C of acceptable arguments.
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Formally, we obtain the following semantics considering C, M .

Definition 6.16 (Semantics Considering C, M). Let SF = (A,R) be a SETAF, and let
E,C ⊆ A and M ⊆ R. We say that

� E is conflict-free in C considering M , denoted by E ∈ cf (SF,C,M), if E ⊆ C and
there is no (T, h) ∈ R \M s.t. T ∪ {h} ⊆ E;

� an argument a ∈ A\C is acceptable considering M w.r.t. E if for all (T, a) ∈ R there
is (X, t)∈R \M s.t. X⊆E and t ∈ T ;

� E is admissible in C considering M , denoted by E ∈ adm(SF,C,M), if E ⊆ C,
E ∈ cf (SF,C,M), and each a ∈ E is acceptable considering M w.r.t. E;

� E is complete in C considering M , denoted by E ∈ com(SF,C,M), if it holds E ∈
adm(SF,C,M) and E contains all a ∈ C acceptable considering M w.r.t. E;

� E is preferred in C considering M , denoted by E ∈ pref(SF,C,M), if it holds E ∈
adm(SF,C,M) and there is no E′ ∈ adm(SF,C,M) with E ⊊ E′.

The characteristic function FM
SF,C of SF in C considering M is the mapping FM

SF,C :2C→2C

where FM
SF,C(E) = {a∈C | a is acceptable considering M w.r.t. E}.

� E is grounded in C considering M , denoted by E ∈ grd(SF,C,M), if E is the least
fixed point of FM

SF,C .

Setting C = A and M = ∅ recovers the original semantics, in these cases we will omit
writing the respective parameter. Let us discuss some properties of the semantics in C
considering M . First, if we deal with admissibility-based semantics, we can actually restrict
our attention to the usual notion of conflict-freeness.

Proposition 6.17. Let SF = (A,R) be a SETAF, and let E,C ⊆ A and M ⊆ R. Let
E ⊆ C be a set of arguments s.t. each a ∈ E is acceptable considering M w.r.t. E. Then
E ∈ cf (SF,C,M) if and only if E ∈ cf (SF ).

Since we restrict our attention to admissibility-based semantics, we will for ease of
notation in the following assume that E ∈ cf (SF ) instead of E ∈ cf (SF,C,M). Next
we establish that important basic properties of the characteristic function also hold in this
generalized setting.

Theorem 6.18. Let SF be a SETAF, and let C ⊆ A and M ⊆ R. Then,

1. FM
SF,C is monotonic,

2. the fundamental lemma holds, i.e. if E ∈ adm(SF,C,M) and a ∈ A∩C is acceptable
w.r.t. E considering M , then E ∪ {a} ∈ adm(SF,C,M),

3. E ∈ grd(SF,C,M) is the least set in com(SF,C,M) w.r.t. ⊆, and

4. E ∈ pref(SF,C,M) are the maximal sets in com(SF,C,M) w.r.t. ⊆.
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To adequately characterize the defeated, provisionally defeated, and undefeated argu-
ments in this setting we now also have to consider mitigated attacks. We illustrate this
using the following example.

Example 6.19. Consider the following SETAF SF (the dashed lines indicate the SCCs).

SF :

a

b

c

d e

fg

SF⇓{f}
{a,b,c,e}:

a

b

c

e

The set {a, e, g} is not admissible, and should therefore not be characterized by our (yet to be
formally defined) notion of SCC-recursiveness. Intuitively, the singleton SCCs {g}, {f}, {d}
are unsurprisingly evaluated w.r.t. {a, e, g} in the sense that g is accepted, f is defeated,
and d is undecided. To characterize the remaining SCC {a, b, c, e} we have to take the

defeated arguments into account (namely, f), resulting in SF⇓{f}
{a,b,c,e}. As f is defeated, we

delete the attack towards e and as a result “split” the SCC into two SCCs {a, b, c}, {e}. It is
important to see that the remaining attack (e, c) is mitigated, but in contrast to the situation
illustrated in Example 6.14 the mitigated attack did not origin in the current recursion step—
because we split the original SCC, we will invoke the general function of the SCC-recursive

scheme on the sub-framework SF⇓{f}
{a,b,c,e}. Consequently, the attack (e, c) is not indicated

as mitigated by the set MSF (E,S); to still have this relevant information we generalize this
set to also take the mitigated attacks from earlier recursion steps into account. Otherwise,
the attack (e, c) is not marked as mitigated. Moreover, for the same reason we have to take
the mitigated attacks into account when we calculate the set of defeated arguments: e is not
sufficient to defeat c—if we would not account for this “inherited” mitigated attack (e, c),
we would conclude that c is defeated and therefore a is acceptable, mistakenly characterizing
{a, e, g} as admissible.

Formally, we capture this in the following slightly adapted version of Definition 6.3. Note
that the only difference to the former definition is that arguments that are only attacked
by E via mitigated attacks do not count as defeated, but provisionally defeated.

Definition 6.20. Let SF = (A,R) be a SETAF. Moreover, let E ⊆ A be a set of arguments,
M ⊆ R a set of attacks, and S ∈ SCCs(SF ) be an SCC. We define the set of defeated
arguments DSF (S,E,M), provisionally defeated arguments PSF (S,E,M), and undefeated
arguments USF (S,E,M) w.r.t. S,E,M as

DSF (S,E,M) = {a ∈ S | ∃(T, a) ∈ R \M s.t. T ⊆ E \ S},
PSF (S,E,M) = {a ∈ S | A \ (S ∪ E+) 7→R a}\DSF (S,E,M),

USF (S,E,M) = S \ (DSF (S,E,M) ∪ PSF (S,E,M)).

Moreover, we set UPSF (S,E,M) = USF (S,E,M) ∪ PSF (S,E,M).
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We have to make similar adjustments to the notion of mitigated attacks. Due to Defini-
tion 6.15, for the computation of mitigated attacks only the ancestor SCCs are relevant. In
particular, the set (T ′ \ T ) is contained in ancestor SCCs of S for each attack (T ′, h) ∈ R.
However, when we apply the concept of mitigated attacks to characterize SCC-recursiveness
in admissibility-based semantics, we will face situations where we already know for the orig-
inal SETAF that some attacks are mitigated. To account for this set of given mitigated at-
tacks M , we slightly modify the condition for mitigated attacks, s.t. only the non-mitigated
attacks (T ′, h) ∈ R can “override” the status of a mitigated attack as non-mitigated.

Definition 6.21 (Mitigated Attacks, refined). Let SF = (A,R) be a SETAF. Moreover,
let E ⊆ A and S ∈ SCCs(SF ). The set MSF (S,E,M) of mitigated attacks is given as

MSF (S,E,M) = {(T, h)∈R
(
SF⇓(E\S)+

UPSF (S,E,M)

)
| ∀(T ′, h)∈R\M : T ′ ⊇ T ⇒ (T ′\T ) ̸⊆ E}.

Indeed, for Example 6.19 we get that the attack (e, c) is mitigated in SF⇓{f}
{a,b,c,e}. Next

we redefine Definition 6.9 in order to capture the admissibility-based semantics. For this,
we need to take into account that in each recursive call of the generic selection function GF
we will also have to pass the current set M of mitigated attacks.

Principle 6.22 (SCC-recursiveness, refined). A semantics σ satisfies SCC-recursiveness3 if
and only if for all SETAFs SF = (A,R) it holds σ(SF ) = GF(SF,A, ∅), where the generic
selection function GF(SF,C,M) ⊆ 2A is defined as: E ⊆ A ∈ GF(SF,C,M) if and only if

� if |SCCs(SF )| = 1, then E ∈ BF(SF,C,M),

� otherwise, ∀S ∈ SCCs(SF ) it holds that

E ∩ S ∈ GF
(
SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)
)
,

where BF maps SF =(A,R) with |SCCs(SF )|=1 and sets C⊆A, M⊆R to a subset of 2A.

Towards an SCC-recursive characterization of admissible sets we discuss the following
auxiliary results. Lemma 6.23 shows that global acceptability implies local acceptability,
Lemma 6.24 shows the converse direction.

Lemma 6.23. Let SF = (A,R) be a SETAF, let M ⊆ R, C ⊆ A, and let E ∈ adm(SF,C,M)
be an admissible set of arguments and let a ∈ A ∩ C be acceptable w.r.t. E considering M
in SF , where a ∈ S for some SCC S. Then

1. we have a ∈ USF (S,E,M) and a is acceptable w.r.t. (E ∩ S) in SF⇓(E\S)+
UPSF (S,E,M)

considering MSF (S,E,M);

2. it holds that (E ∩ S) is conflict-free in SF⇓(E\S)+
UPSF (S,E,M).

3. Note that in the conference version of this work (Dvořák et al., 2022) we erroneously do not account for the
mitigated attacks that are already passed down from previous recursion steps. To fix this issue we intro-
duced the respective third parameters in DSF (S,E,M), USF (S,E,M), PSF (S,E,M), UPSF (S,E,M),
MSF (S,E,M) keeping track of exactly these attacks. As a consequence, we adapted Definition 6.21 and
Definition 6.20 to account for the same issue. The situation is illustrated in Example 6.19.
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Lemma 6.24. Let SF = (A,R) be a SETAF, let M ⊆ R, let E ⊆ A such that

(E ∩ S) ∈ adm
(
SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M),MSF (S,E,M)
)

for all S ∈ SCCs(SF ). Moreover, let S′∈SCCs(SF ) and let a∈USF (S
′, E,M) be acceptable

w.r.t. (E ∩S′) in SF⇓(E\S′)+

UPSF (S′,E,M) considering MSF (S
′, E,M). Then a is acceptable w.r.t.

E in SF considering M .

Combining these two results we obtain the SCC-recursive characterization of admissible
sets.

Proposition 6.25. Let SF = (A,R) be a SETAF and let E ⊆ A be a set of arguments.
Then for each C ⊆ A and M ⊆ R it holds E ∈ adm(SF,C,M) if and only if ∀S ∈
SCCs(SF ) it holds (E ∩ S) ∈ adm(SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

The base function for admissible sets is adm(SF,C,M). We will utilize this result to
obtain the characterizations of the other (admissibility-based) semantics.

Theorem 6.26. Admissible semantics is SCC-recursive.

Proof. The base function BF(SF ) is adm(SF,C,M). The case for |SCCs(SF )| = 1 is
immediate, the composite case follows from Proposition 6.25.

Example 6.27. Recall our example with the (not admissible) set E = {a, e, g}.

SF :

a

b

c

d e

fg

SF⇓{f}
{a,b,c,e}:

a

b

c

e

Indeed, in SF⇓{f}
{a,b,c,e} we have that (e, c) is a mitigated attack. Therefore, in the next

recursive step, in the SCC {a, b, c} the argument c is detected as provisionally defeated.
Hence a is not admissible in the corresponding sub-framework and thus, E is rightfully
detected as non-admissible.

Let us now consider SF ′ the same SETAF as SF , but without the self-attacker d.

SF ′:

a

b

c

e

fg

SF ′⇓{f}
{a,b,c,e}:

a

b

c

e

Let E be as above. Then, the attack (e, c) is not mitigated in SF ′⇓{f}
{a,b,c,e} and hence, c is

detected as defeated. Hence in order to evaluate {a, b, c} we require another recursive step
and find acceptance of {a} in an sub-SCC consisting only of the single undefeated argument
a. Therefore, it is rightfully detected that E ∈ adm(SF ′).
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6.3 Complete Semantics

We already have the tools to characterize complete extensions: Proposition 6.25 proves the
desired properties for admissible sets, in addition we can apply Lemma 6.23 and Lemma 6.24
to show that complete extensions contain all arguments they defend (i.e., for an SCC S′, an
extension E, and a set of mitigated attacks M , exactly those arguments from USF (S

′, E,M)

that are acceptable w.r.t. (E ∩ S′) in SF⇓(E\S′)+

UPSF (S′,E,M) considering MSF (S
′, E,M)).

Proposition 6.28. Let SF = (A,R) be a SETAF, let M ⊆ R, and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ com(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ com(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

From this we get the desired result regarding complete extensions. The base function is
com(SF,C,M).

Theorem 6.29. Complete semantics is SCC-recursive.

6.4 Preferred Semantics

The next lemma illustrates that if we already found a globally admissible set E and find
a (larger) locally admissible set E′ ⊋ E ∩ S in an SCC S, then we can find a globally
admissible set incorporating this set E′. This idea underlies the incremental computation
of extensions (see Section 7).

Lemma 6.30. Let SF = (A,R), let M ⊆ R, and let E ∈ adm(SF,A,M), let S ∈
SCCs(SF ) be an SCC. Moreover, let E′ ⊆ A be a set of arguments such that (E ∩ S) ⊆
E′ ⊆ USF (S,E,M), and E′ ∈ adm(SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M),MSF (S,E,M)). Then

E ∪ E′ is admissible in SF considering M .

Given this lemma, we are ready to show SCC-recursiveness for preferred semantics.

Proposition 6.31. Let SF = (A,R) be a SETAF, let M ⊆ R and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ pref(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ pref(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

From this we get the desired result regarding preferred extensions. The base function is
pref(SF,C,M).

Theorem 6.32. Preferred semantics is SCC-recursive.

6.5 Grounded Semantics

For the characterization of grounded semantics we exploit the fact that also in our setting
the grounded is the unique minimal complete extension (see Theorem 6.18). Hence, we
can apply Proposition 6.28 and utilize the fact that that for the unique grounded extension
minimality has to hold for each SCC to prove minimality of the whole extension.

Proposition 6.33. Let SF = (A,R) be a SETAF, M ⊆ R, and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ grd(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ grd(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Theorem 6.34. Grounded semantics is SCC-recursive.
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6.6 Connection to Directionality

As it is the case in AFs, we can obtain results regarding directionality using SCC-recursiveness
if the base function always admits at least one extension (Baroni & Giacomin, 2007). First
note that for an uninfluenced set U any SCC S with S ∩ U ̸= ∅ has to be contained in U ,
as well as all ancestor SCCs of S. Then, by the SCC-recursive characterization we get the
following general result, subsuming the semantics under our consideration.

Proposition 6.35. Let σ be a semantics such that for all SETAFs SF and all C ⊆ A(SF ),
M ⊆ R(SF ) it holds BF(SF,C,M) ̸= ∅. If σ satisfies SCC-recursiveness then it satisfies
directionality.

Proof. We use the fact that for an uninfluenced set U any SCC S with S ∩ U ̸= ∅ has to
be contained in U , as well as all ancestor SCCs of S. Let S be the set of SCCs S with
S ⊆ U . Considering the SCC-recursive characterization, this yields σ(SF⇓∅

U ) = {E ⊆ U |
∀S ∈ S : (E ∩ S) ∈ GF(SF⇓∅

UPSF (S,E,M),USF (S,E,M),MSF (S,E,M))}. We have to show

that σ(SF⇓∅
U ) = {E ∩ U | E ∈ σ(SF )}.

We get the “⊆” direction from the fact that USF (S,E,M) = USF (S,E ∩ U,M) and
PSF (S,E,M) = PSF (S,E ∩ U,M) for all S ∈ S. The “⊇” direction is immediate: as we
assume that BF(SF,C,M) always yields at least one extension, we can extend any set
(E ∩ U) according to the SCC-recursive scheme (see Section 7 for details).

7. Incremental Computation & Computational Graph Fragments

In this section we discuss the computational implications of a semantics satisfying direc-
tionality, modularization, or SCC-recursiveness, and how we can improve the asymptotic
runtime of the resulting algorithms by utilizing structures in the graph of the SETAFs. To
this end, we first briefly recall the basic notions of complexity analysis in the context of
abstract argumentation (Section 7.1). We then establish the basic idea of our algorithms
exploiting structural properties (Section 7.2) and define and analyze graph classes to fur-
ther refine the relevant structures (Sections 7.3-7.6), Finally, we show how the presence of
these properties leads to computational ease (Section 7.7) and generalize this result to be
applicable in the general case in the context of SCCs (Section 7.8).

7.1 Complexity of Reasoning in Abstract Argumentation

We assume the reader to have basic knowledge in computational complexity theory4, in
particular we make use of the complexity classes L (logarithmic space), P (polynomial time),
NP (non-deterministic polynomial time), coNP, DP (L1 ∩ L2 for L1 ∈ NP, L2 ∈ coNP), ΘP

2

(PNP[log(n)]), ΣP
2 (NPNP), and ΠP

2 (coNPNP). We have the following relationships between
these classes (an arrow from class C to C′ means C ⊆ C′, we omit some arrows that are
immediate due to transitivity):

4. For a gentle introduction to complexity theory in the context of formal argumentation, see (Dvořák &
Dunne, 2017).
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L P

NP

coNP

DP ΘP
2

ΣP
2

ΠP
2

For a given SETAF SF = (A,R) and an argument a ∈ A, we consider the decision problems
(under semantics σ) in formal argumentation:

� Credulous acceptance Credσ: Given SF = (A,R) and a ∈ A, is it true that a ∈ E for
some E ∈ σ(SF )?

� Skeptical acceptance Skeptσ: Given SF = (A,R) and a ∈ A, is it true that a ∈ E for
each E ∈ σ(SF )?

� Verification Verσ: Given SF = (A,R) and E ⊆ A, is it true that E ∈ σ(SF )?

The complexity landscape of SETAFs coincides with that of Dung AFs and is depicted
in Table 2 (“General”). As SETAFs generalize Dung AFs the hardness results for Dung
AFs (Coste-Marquis, Devred, & Marquis, 2005; Dimopoulos & Torres, 1996; Dunne &
Bench-Capon, 2002; Dvořák, 2012; Dvořák & Woltran, 2010, 2011; Dunne, 2009; Caminada
et al., 2012) (for a survey see (Dvořák & Dunne, 2017)) carry over to SETAFs. Also the
same upper bounds hold for SETAFs (Dvořák et al., 2018).

Many of the above mentioned hardness-results are based on (variations of) the so-called
standard reduction, see e.g. (Dvořák & Dunne, 2017, Reduction 3.6). The idea is to express
the complexity of the boolean satisfiability problem in an AF. As we will base some of our
complexity results for SETAFs on the standard reduction, we briefly recall the construction
and some known results.

Reduction 7.1 (Standard Reduction). Let φ be a formula in CNF (conjunctive normal
form) with clauses C over atoms Y . We construct the AF Fφ as follows:

A ={φ} ∪ C ∪ Y ∪ Ȳ ,

R ={(c, φ), | c ∈ C} ∪ {(y, ȳ), (ȳ, y) | y ∈ Y } ∪
{(y, c) | y ∈ c, c ∈ C} ∪ {(ȳ, c) | ȳ ∈ c, c ∈ C}

An example of the standard reduction can be found in Figure 1.

Some of the main results from the literature regarding the semantics under our consid-
eration can be summarized as follows.

Theorem 7.2. Let φ be a propositional formula in CNF and Fφ the corresponding AF from
the standard reduction. The following statements are equivalent:

1. the formula φ is satisfiable,

2. the argument φ is credulously accepted in Fφ w.r.t. σ∈{adm, com, stb, pref, sem, stage},
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φ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

φ̄

Figure 1: The standard reduction applied to φ with atoms Y = {y1, y2, y3, y4}, and clauses C =
{{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

cf grd adm com stb pref naive sem stage ideal eager

General
Credσ in P P-c NP-c NP-c NP-c NP-c in P ΣP

2 -c ΣP
2 -c in ΘP

2 ΠP
2 -c

Verσ in P P-c in L in L in L coNP-c in P coNP-c coNP-c in ΘP
2 DP-c

Skeptσ in P P-c triv. P-c coNP-c ΠP
2 -c in P ΠP

2 -c ΠP
2 -c in ΘP

2 ΠP
2 -c

Acyclicity
Credσ in P P-c P-c P-c P-c P-c in P P-c P-c in P in P
Verσ in P in P in L in L in L in L in P in L in L in P in P
Skeptσ in P P-c triv. P-c P-c P-c in P P-c P-c in P in P

Even-cycle-

freeness

Credσ in P P-c P-c P-c P-c P-c in P P-c ΣP
2 -c in P in P

Verσ in P in P in L in P in P in P in P in P in coNP in P in P
Skeptσ in P P-c triv. P-c P-c P-c in P P-c ΠP

2 -c in P in P

Odd-cycle-

freeness

Credσ triv. P-c NP-c NP-c NP-c NP-c in P NP-c NP-c coNP-c coNP-c
Verσ in P in P in L in P in P in P in P in P in P coNP-c coNP-c
Skeptσ in P P-c triv. P-c coNP-c coNP-c in P coNP-c coNP-c coNP-c coNP-c

Self-attack-

free full-

symmetry

Credσ triv. in L triv. triv. triv. triv. triv. triv. triv. in P in P
Verσ in P in P in L in L in P in P in P in P in P in P in P
Skeptσ in P in L triv. in L in L in L in L in L in L in P in P

Primal-

bipartiteness

Credσ triv. P-c P-c P-c P-c P-c in P P-c P-c in ΘP
2 in ΠP

2

Verσ in P in P in L in L in L in L in P in L in L in ΘP
2 in DP

Skeptσ in P P-c triv. P-c P-c P-c in P P-c P-c in ΘP
2 in ΠP

2

Table 2: Graph fragments in SETAFs. C-c denotes completeness for class C; “triv.” denotes a trivial
problem (either all instances are positive or all instances are negative).

3. the argument φ̄ is not skeptically accepted in Fφ w.r.t. σ∈{stb, pref, sem, stage},

4. the set {φ̄} is not the unique ideal/eager extension, and

5. the argument φ̄ is not in the unique ideal/eager extension.

Note that some of the results reported in Table 2 stem from (Dvořák et al., 2021a).
However, we added the analysis of the verification problem as well as several semantics. For
the remainder of the paper we will omit proof details and rather give general ideas on how
the respective complexity results can be obtained. Proof details for the theorems that are
not immediate from these explanations can be found in Appendix D.
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7.2 Basic Computational Speedup

First, for a semantics σ satisfying directionality an argument a is in some extension (in all
extensions) if and only if it is in some extension (in all extensions) of the framework that
is restricted to the arguments that influence a. That is, when deciding credulous or skep-
tical acceptance of an argument, in a preprocessing step, we can shrink the framework to
the relevant part. The property of modularization is closely related to CEGAR style algo-
rithms for preferred semantics that can be implemented via iterative SAT-solving (Dvořák,
Järvisalo, Wallner, & Woltran, 2014). In order to compute a preferred extension we can
iteratively compute a non-empty admissible set of the current framework, build the reduct
w.r.t. this admissible set, and repeat this procedure on the reduct until the empty set is the
only admissible set. The preferred extension is then given by the union of the admissible
sets.

Finally, for SCC-recursive semantics we can iteratively compute extensions along the
SCCs of a given framework (see (Baumann, 2011; Liao, Jin, & Koons, 2011; Baroni, Gia-
comin, & Liao, 2014; Cerutti, Giacomin, Vallati, & Zanella, 2014) for such approaches for
AFs). It is well known that the SCCs of any directed graph form a partial order w.r.t.
reachability: in Example 7.3 (b) the SCC S1 is an initial SCC and precedes S2 and S3, and
S2 precedes S3. In (one of) the initial SCCs we simply compute the extensions and then for
each of these extensions we proceed on the preceding SCCs. We then iteratively continue
this process on SCCs in their order. To evaluate an SCC that is attacked by other ones we
have to take the attacks from earlier SCCs into account and, as we have already fixed our
extension there, we can simply follow the SCC-recursive schema. We next illustrate this for
stable semantics.

Example 7.3. Consider (a) the SETAF SF and (b) the order of its SCCs.

S1

S2

S3a

b d

e

f

h

(a) (b)
S1

S2
S3

We can iteratively compute the stable extensions of SF as follows: in the first SCC S1 = {a}
we simple compute all the stable extensions, i.e., stb(SF⇓∅

S1
) = {{a}}. We then proceed

with {a} as extension E for the part of the SETAF considered so far. Next we consider S2

and adapt it to take E into account. As (E\S2)
+ = {b} we only have to delete the argument

b from S2 before evaluating the SCC and thus we obtain SF⇓{b}
S2

= ({d, e}, {(d, e), (e, d)}).
Combining these with E we obtain two stable extensions E1 = {a, d}, E2 = {a, e} for
SF⇓∅

S1∪S2
. We proceed with S3 and first consider E1. As (E1 \ S3)

+ = {b, e} we do not
remove arguments from S3. However, as d ∈ E1 we cannot delete the attack ({d, f}, h) but
have to replace it by the attack (f, h). We then have stb(SF⇓{b,e}

S3
) = {{f}} and thus obtain

the first stable extensions of SF {a, d, f}. Now consider E2. We have that E2 attacks h,
i.e., (E2 \ S3)

+ = {b, d, h}, and thus we have to remove h before evaluating S3 and thus

obtain SF⇓{b,d,h}
S3

=({f}, ∅). We end up with {a, e, f} as the second stable extension of SF .
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The computational advantage of the incremental computation is that certain computa-
tions are performed over single SCCs instead of the whole framework. This is in particular
significant for preferred semantics where the ⊆-maximality check can be done within the
SCCs. Notice that verifying a preferred extension is in general coNP-complete (Dimopoulos
& Torres, 1996; Dvořák et al., 2018). However, given our results regarding the SCC-recursive
scheme, the following parameterized tractability result is easy to obtain: it is well known
that computing the SCCs of a directed graph can be done efficiently. It then suffices to
verify a given extension along the SCCs of the framework, whereby we only need to consider
one SCC at the time.

Theorem 7.4. Let SF be a SETAF where |S| ≤ k for all S ∈ SCCs(SF ). Then we can
verify a given preferred extensions in O

(
2k · poly(|SF |)

)
for some polynomial poly.

Next, we will define and analyze graph classes for SETAFs and illustrate how we can
exploit them to reason more efficiently. To this end we generalize situations that are known
to yield computationally easy fragments in the special case of AFs, and provide positive
as well as negative results to illustrate the border cases of tractability. Moreover we will
show how we can utilize these findings in the context of SCC-recursiveness to achieve a
computational speedup even if the framework is heterogeneous, i.e., does not as a whole
belong to one of these tractable fragments. Instead, in the spirit of Theorem 7.4 we follow the
SCC-recursive scheme and pose the respective restrictions only on the strongly connected
components, resulting in a more flexible setting.

7.3 Towards Graph Classes for SETAFs

The directed hypergraph-structure of SETAFs is rather specific and to the best of our
knowledge the hypergraph literature does not provide generalizations of common graph
classes to this kind of directed hypergraphs. Thus we first identify suitable generalizations
for SETAFs for the graph classes of interest. Then, we show the tractability of acyclicity
and even-cycle-freeness (the latter does not hold for stage semantics) in SETAFs, and that
odd-cycle-freeness lowers the complexity to the first level of the polynomial hierarchy as for
AFs. Next, we adapt the notion of symmetry in different natural ways, only one of which
will turn out to lower the complexity of reasoning as with symmetric AFs. Finally, we will
adapt and analyze the notions of bipartiteness and 2-colorability. Again we will see a drop
in complexity only for a particular definition of this property on hypergraphs.

All of the classes generalize classical properties of directed graphs in a way for SETAFs
such that in the special case of AFs (i.e. for SETAFs where for each attack (T, h) the
tail T consists of exactly one argument) they coincide with said classical notions, respec-
tively. Finally, we will argue that these classes are not only efficient to reason on, but are
also efficiently recognizable. Hence, we can call them tractable fragments of argumentation
frameworks with collective attacks.

7.4 Acyclicity, Even- and Odd-Cycle-Freeness

Akin to cycles in AFs, we define cycles on SETAFs as a sequence of arguments such that
there is an attack between each consecutive argument. Cycles in SETAFs in the context of
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restricted length and their effect on the computational complexity have been investigated
in (Dvořák et al., 2021b).

Definition 7.5. A cycle C of length |C| = n is a sequence of pairwise distinct arguments
C = (a1, a2, . . . , an, a1) such that for each ai there is an attack (Ai, ai+1) with ai ∈ Ai, and
there is an attack (An, a1) with an ∈ An. A SETAF is called acyclic if it contains no cycle
(otherwise it is called cyclic), even-cycle-free if it contains no cycles of even length, and
odd-cycle-free if it contains no cycles of odd length.

Note that a SETAF SF is acyclic if and only if its primal graph primal(SF ) is acyclic. It
can easily be seen that acyclic SETAFs are well founded (Nielsen & Parsons, 2006), i.e. there
is no infinite sequence of sets B1, B2, . . . , such that for all i, the argument Bi is the tail of
an attack towards an argument in Bi−1. As shown in (Nielsen & Parsons, 2006), this means
grounded, complete, preferred, and stable semantics coincide. Moreover, as therefore there
always is at least one stable extension, stable, semi-stable and stage semantics coincide as
well, and the lower complexity of Credgrd and Skeptgrd carries over to the other semantics.
Finally, this means that the grounded extension also coincides with the ideal and eager
extension in this case. Together with the hardness from AFs, we immediately obtain our
first result from Table 2.

Theorem 7.6. For acyclic SETAFs the problems Credσ and Skeptσ for σ ∈ {grd, com, pref,
stb, stage, sem, ideal, eager} are P-complete. Moreover Credadm is P-complete. Finally, Verσ
is in P for all semantics σ under our consideration.

For AFs we have that the class of all no-even graphs forms a tractable fragment for all se-
mantics under our consideration but stage. The key lemma is that every AF with more than
one complete extension has to have a cycle of even length (Dvořák, 2012, Proposition 15).
This property also holds for SETAFs, which in turn means even-cycle-free SETAFs admit
the grounded extension as their unique complete set, which is then also the only preferred
and semi-stable extension (and, hence, ideal and eager). Our proof of this property follows
along the lines of the respective known proof for AFs (see Appendix D).

Proposition 7.7. Let SF = (A,R) be a SETAF. If |com(SF )| ≥ 2 then SF contains an
even-cycle.

Moreover, the grounded extension is the only candidate for a stable extension, and thus
for reasoning with stable semantics it suffices to check whether the grounded extension is
stable. Finally, note that the hardness of Credstage and Skeptstage carries over from AFs
(cf. (Dvořák & Dunne, 2017)) to SETAFs. This yields the next line of results in Table 2.

Theorem 7.8. For even-cycle-free SETAFs the problems Credσ and Skeptσ for σ ∈ {com,
pref, stb, sem, ideal, eager} are P-complete. Moreover the problem Credadm is P-complete, the
problem Credstage is ΣP

2 -complete, and the problem Skeptstage is ΠP
2 -complete. Finally, the

problems Verσ for σ ∈ {com, pref, stb, sem, ideal, eager} are in P.

For odd-cycle free SETAFs the situation is just like with odd-cycle-free AFs (Dunne &
Bench-Capon, 2002). If there is a sequence of arguments (a1, a2, . . . ), we say a1 indirectly
attacks the arguments a2i−1 and indirectly defends the arguments a2i for i ≥ 1 (cf. (Nielsen
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& Parsons, 2006)). As odd-cycle-free SETAFs are limited controversial (Nielsen & Parsons,
2006), i.e. there is no infinite sequence of arguments such that each argument indirectly
attacks and defends the next, they are coherent, i.e., stable and preferred semantics coincide,
and therefore we experience a drop of the complexity to the first level of the polynomial
hierarchy. As a consequence, ideal and eager semantics coincide—for both semantics the
reasoning and verification problems drop to coNP: hardness can be shown with the standard
reduction (already in the special case of AFs, see Theorem 7.2); membership is clear, as for
the complementary problem it suffices to guess a preferred extension that attacks a given
argument—because all preferred extensions are stable, we can verify such an extension in
polynomial time.

Theorem 7.9. For odd-cycle-free SETAFs the problems Credσ for σ ∈ {adm, stb, pref, com,
stage, sem} are NP-complete, problems Skeptσ for σ ∈ {stb, pref, stage, sem} are coNP-
complete, and the problems Credgrd, Skeptgrd, and Skeptcom are P-complete. Moreover,
the problems Credσ,Skeptσ,Verσ for σ ∈ {ideal, eager} are coNP-complete.

7.5 Symmetry

In the following we provide two natural generalizations of the notion of symmetry5 for
SETAFs. The first definition by means of the primal graph is inspired by the notion of
counter-attacks: an AF F = (A,R) is symmetric if for every attack (a, b) ∈ R there is a
counter-attack (b, a) ∈ R. As we will show, the corresponding definition for SETAFs is
not sufficiently restrictive to lower the complexity of the reasoning problems in questions,
except for a fast way to decide whether an argument is in the grounded extension or not.
For an illustration of the following definitions see Example 7.12.

Definition 7.10. A SETAF SF = (A,R) is primal-symmetric iff for every attack (T, h) ∈
R and t ∈ T there is an attack (H, t) ∈ R with h ∈ H.

As expected, a SETAF is primal-symmetric iff its primal graph is symmetric. Notice
that the notion of primal-symmetry coincides with the definition of symmetry of Abstract
Dialectical Frameworks in (Diller, Keshavarzi Zafarghandi, Linsbichler, & Woltran, 2020).
The next notion intuitively captures the “omnidirectionality” of symmetric attacks: for
every attack all involved arguments have to attack each other. In the definition of full
symmetry we distinguish between self-attacks and attacks which are not self-attacks.

Definition 7.11. A SETAF SF = (A,R) is fully-symmetric iff for every attack (T, h) ∈ R
we either have

� if h ∈ T , then ∀x ∈ T it holds (T, x) ∈ R, or

� if h ̸∈ T , then ∀x ∈ S it holds (S \ {x}, x) ∈ R with S = T ∪ {h}.

We illustrate the two symmetry notions with the following example.

Example 7.12. Consider the following SETAFs. The framework in (a) is primal-symmetric
(but not fully-symmetric), the framework in (b) is fully-symmetric. It is easy to see from
the respective definitions that every fully-symmetric SETAF is primal symmetric.

5. Further symmetry-notions for SETAFs have been investigated in (König, 2020).
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a b

c d

(a)

a

cb

(b)

For usual AFs, symmetry is a rather strong notion: Every argument defends itself
against all incoming attacks and hence, admissible sets coincide with conflict-free sets,
and it becomes computationally easy to reason with admissible, complete, and preferred
extensions. However, this is not the case for our notions of symmetry for SETAFs. Consider
the fully-symmetric (and thus also primal-symmetric) SETAF from Example 7.12(b): we
have that for example the singleton set {a} is conflict-free, but {a} cannot defend itself
against the attacks towards a. That is, the argument for tractability from AFs does not
transfer to SETAFs. This corresponds to the the fact that we will obtain full hardness for the
admissibility-based semantics under our consideration, when making no further restrictions
on the graph structure.

For both notions of symmetry we have that an argument is in the grounded extension
if and only if it is not in the head of any attack, which be can easily checked in logarithmic
space. This is by the characterization of the grounded extension as least fixed point of
the characteristic function (Nielsen & Parsons, 2006), i.e. the grounded extension can be
computed by starting from the empty set and iteratively adding all defended arguments
(cf. our characterization via the reduct in Section 4.2). For primal-symmetric SETAFs with
and without self-attacks, as well as fully-symmetric SETAFs (allowing self-attacks) this is
the only computational speedup we can get, the remaining semantics maintain their full
complexity.

In order to show the hardness of reasoning in primal-symmetric SETAFs we provide a
translation that transforms each SETAF SF = (A,R) in a primal-symmetric SETAF SF ′:
we construct SF ′ from SF by adding, for each attack r = (T, h) and t ∈ T , mutually
attacking arguments a1r,t, a

2
r,t, the (ineffective) counter-attack ({a1r,t, a2r,t, h}, t), and attacks

(t, a1r,t), (t, a
2
r,t), as illustrated in the following example.

Example 7.13. Consider the attack from t1, t2 to h (illustrated in violet color). We in-
troduce the four additional arguments and the attacks as discussed. Observe that the cyan
attacks are never efficient, as it is impossible to accept the tail in a conflict-free semantics.
Hence, it is easy to see that this operation does not change the stable, preferred, semi-stable,
and stage extensions.

t1 t2

h

It can be verified that the resulting SETAF SF ′ is primal-symmetric, does not intro-
duce self-attacks and preserves the acceptance status of the original arguments (shown in
Appendix D).
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φ

c1 c2 c3

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 2: Reduction 7.15 applied to φ with atoms Y = {y1, y2, y3, y4}, and clauses C =
{{y1, y2, y3}, {ȳ1, ȳ2, ȳ4)}, {ȳ2, ȳ3, y4}}.

Theorem 7.14. For primal-symmetric SETAFs (with or without self-attacks) the problems
Credgrd, Skeptgrd and Skeptcom are in L, the complexity of the other problems under our
consideration coincides with the complexity for the general problems (see Table 2).

We will see the same hardness results for fully-symmetric SETAFs, but here the hardness
relies on the use of self-attacks. Stable, stage, and semi-stable semantics have already
their full complexity in symmetric AFs allowing self-attacks (Dvořák & Dunne, 2017). For
reasoning with admissible, complete and preferred semantics, hardness can be shown with
adjustments to the standard reductions (cf. Reduction 7.1). That is, we substitute some of
the occurring directed attacks (a, b) by classical symmetric attacks (a, b), (b, a), and others
by symmetric self-attacks ({a, b}, a), ({a, b}, b).

Reduction 7.15. Let φ be a CNF-formula with clauses C over atoms Y , we define the
fully-symmetric SETAF SFφ = (A,R) as follows:

A ={φ} ∪ C ∪ Y ∪ Ȳ ,

R ={({c, φ}, φ), ({c, φ}, c) | c ∈ C} ∪ {(y, ȳ), (ȳ, y) | y ∈ Y } ∪
{(c, y), (y, c) | y ∈ c, c ∈ C} ∪ {(ȳ, c), (c, ȳ) | ȳ ∈ c, c ∈ C}

An example of this construction can be found in Figure 2.

Proposition 7.16. For fully-symmetric SETAFs the problems Credσ for σ ∈ {adm, stb, pref,
com} are NP-complete.

It is no coincidence that our reduction features self-attacks, as we will find out that
fully-symmetric SETAFs without self-attacks indeed allow us to reason in polynomial time.
We utilize the fact that an attack ({a, b}, b) cannot be used to defeat argument b.

Note that we can extend Reduction 7.15 to show that verifying preferred extensions re-
mains hard in this context by simply adding (a) a self-attacking argument φ̄, (b) symmetric
attacks (φ̄, φ), (φ, φ̄), and (c) symmetric attacks ({x, φ̄}, x), ({x, φ̄}, φ̄) for each x ∈ Y ∪ Ȳ .
The argument φ̄ has to be defeated by any non-empty admissible set, and the only way
to do so is to accept φ. The empty set ∅ is preferred if and only if the original formula φ
is unsatisfiable. As all semi-stable extensions are preferred, coNP-hardness carries over to
semi-stable semantics.
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If instead of the attacks ({x, φ̄}, x), ({x, φ̄}, φ̄) we add “classical” symmetric attacks
(φ̄, x), (φ̄, x) for each x ∈ Y ∪ Ȳ , it is easy to see that the set {φ̄} is admissible. Moreover,
by the same reasoning as before, {φ̄} is the only preferred extension if and only if φ is
unsatisfiable. If φ is satisfiable, then there are other preferred (semi-stable) extensions
containing the argument φ. Hence, {φ̄} is ideal/eager if and only if φ is unsatisfiable,
proving coNP-hardness in these cases.

We can summarize the complexity of reasoning and verification in fully-symmetric
SETAFs as follows (see also Table 2). Note that intractability for symmetric AFs allowing
self-attacks has already been observed in (Dvořák, 2012).

Theorem 7.17. For fully-symmetric SETAFs (allowing self-attacks) the problems Credgrd,
Skeptgrd, Vergrd, and Skeptcom are in L, the complexity of Credσ and Skeptσ for σ ∈
{adm, com, stb, pref,naive, sem, stage} coincides with the complexity for the general prob-
lems. The problem Verσ for σ ∈ {pref, sem} is coNP-complete. Moreover, Verσ for σ ∈
{ideal, eager} is coNP-hard.

Investigations on symmetric AFs often distinguish between frameworks with and without
self-attacks (Dvořák & Dunne, 2017). As in self-attack-free symmetric AFs, for self-attack-
free fully-symmetric SETAFs we have that all naive extensions are stable, hence, one can
construct a stable extension containing an arbitrary argument a by starting with the conflict-
free set {a} and expanding it to a maximal conflict-free set. As stable extensions are
admissible, complete, preferred, stage, and semi-stable, an argument is trivially credulously
accepted w.r.t. these semantics. Similarly, it is easy to decide whether an argument is in all
extensions: if we assume the SETAF is redundancy-free, i.e., for all attacks (T, h) it holds
there is no stronger attack (T ′, h) with T ′ ⊂ T , then for self-attack free fully-symmetric
SETAFs it holds that every tail T of any attack (T, h) is conflict-free. Hence in this case an
argument is skeptically accepted if and only if it is not attacked. If we loosen this restriction
and allow for redundant attacks, the following algorithm decides whether an argument a is
skeptically accepted: let (T1, a), . . . , (Tn, a) be all attacks towards a. Then a is skeptically
accepted if and only if no set Ti is conflict-free: if some set Tk is conflict-free we can extend
it to a naive extension that attacks a. If not, there is no way to attack a, and hence, a has
to be in every stable extension.

Finally, the grounded extension coincides with the ideal and eager extension.

Theorem 7.18. For self-attack-free fully-symmetric SETAFs the problems Credσ are triv-
ially true for σ ∈ {adm, com, pref, stb, stage, sem}. The problems Skeptσ are in L for σ ∈
{grd, com, pref, stb, stage, sem, ideal, eager}. Moreover, Verσ and Credσ for σ ∈ {grd, ideal,
eager} is in L.

7.6 Bipartiteness

In the following we will provide two generalizations of bipartiteness; the first - primal-
bipartiteness - extends the idea of partitioning for directed hypergraphs, the second is a gen-
eralization of the notion of 2-colorability. In directed graphs bipartiteness and 2-colorability
coincide. However, this is not the case in SETAFs with their directed hypergraph-structure.
As it will turn out, 2-colorability is not a sufficient condition for tractable reasoning, whereas
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Algorithm 1: Compute the set of credulously accepted arguments w.r.t. pref
semantics
Input : A primal-bipartite SETAF SF = (A,R) with a partitioning (Y,Z)
Output: The admissible set Yi of credulously accepted arguments in Y

1 i := 0
2 Y0 := Y
3 R0 := R
4 repeat
5 i := i+ 1
6 Yi := Yi−1 \ {y | y ∈ Yi−1, there is some (Z ′, y) ∈ Ri−1 with Z ′ ⊆ Z such that

∀z ∈ Z ′ |{(Y ′, z) | (Y ′, z) ∈ Ri−1}| = 0}
7 Ri := Ri−1 \ {(Y ′, z) | Y ′ ⊆ Y, z ∈ Z, Y ′ ̸⊆ Yi}
8 until Yi = Yi−1;

primal-bipartiteness makes credulous and skeptical reasoning P-easy. For an illustration of
the respective definitions see Example 7.23.

Definition 7.19. Let SF = (A,R) be a SETAF. Then SF is primal-bipartite iff its primal
graph primal(SF ) is bipartite, i.e. iff there is a partitioning of A into two sets (Y,Z), s.t.

� Y ∪ Z = A, Y ∩ Z = ∅, and

� for every (T, h) ∈ R either h ∈ Y and T ⊆ Z, or h ∈ Z and T ⊆ Y .

For bipartite AFs, Dunne provided an algorithm to enumerate the arguments that ap-
pear in admissible sets (Dunne, 2007); this algorithm can be adapted for SETAFs (see
Algorithm 1). Intuitively, the algorithm considers the two sets of the partition separately.
For each partition it iteratively removes arguments that cannot be defended, and eventually
ends up with an admissible set. The union of the two admissible sets then forms a super-
set of every admissible set in the SETAF. As primal-bipartite SETAFs are odd-cycle-free,
they are coherent (Nielsen & Parsons, 2006), which means preferred and stable extensions
coincide. This necessarily implies the existence of stable extensions, which means they also
coincide with stage and semi-stable extensions.

Lemma 7.20. Let SF = (A,R) be a primal-bipartite SETAF with a partitioning (Y,Z),
then an argument a ∈ Y is credulously accepted w.r.t. pref semantics iff it is in the set
returned by Algorithm 1. Moreover, the set returned by Algorithm 1 is admissible in SF .

Note that primal-bipartite SETAFs are odd-cycle-free and therefore coherent. These
results suffice to pin down the complexity of credulous and skeptical reasoning for the
semantics under our consideration.

Theorem 7.21. For primal-bipartite SETAFs the problems Credσ and Skeptσ for σ ∈
{com, pref, stb, stage, sem} are P-complete. Moreover the problems Credadm and Verpref are
P-complete.

It is noteworthy that the complexity of deciding whether a set S of arguments is jointly
credulously accepted w.r.t. preferred semantics in primal-bipartite SETAFs was already
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shown to be NP-complete for bipartite AFs (and, hence, for SETAFs) in (Dunne, 2007);
however, this only holds if the arguments in question distribute over both partitions - for
arguments that are all within one partition this problem is in P, which directly follows from
the fact that Algorithm 1 returns the set Yi of credulously accepted arguments - which is
itself an admissible set.

It is natural to ask whether the more general notion of 2-colorability also yields a com-
putational speedup. We capture this property for SETAFs by the following definition:

Definition 7.22. Let SF = (A,R) be a SETAF. Then SF is 2-colorable iff there is a
partitioning of A into two sets (Y,Z), such that

� Y ∪ Z = A, Y ∩ Z = ∅, and

� for every attack (T, h) ∈ R we have (T ∪ {h}) ∩ Y ̸= ∅ and (T ∪ {h}) ∩ Z ̸= ∅.

Note that both primal-bipartiteness and 2-colorability do not allow self-loops, i.e. (a, a)
with a single argument in the tail, but 2-colorable SETAFs may contain self-attacks (T, h)
with |T | ≥ 2, h ∈ T .

Example 7.23. Consider the following SETAFs (a) SF1 and (b) SF2. SF1 is primal-
bipartite with partition illustrations of (a) primal-bipartiteness (the primal graph is bipartite
with partition ({y1, y2}, {z1, z2}), and, hence, also 2-colorable. SF2 is also 2-colorable (as-
sign different colors to y and z, the only edge ({y, z}, z) is not monochromatic). However,
SF2 is not primal-bipartite, as z has an edge to itself in the primal graph.

y1 y2

z1 z2

(a) SF1

y

z

(b) SF2

For admissibility-based semantics that preserve the grounded extension (such as grd, com,
pref, stb, sem) it is easy to see that the problems remain hard in 2-colorable SETAFs: in-
tuitively, one can add two fresh arguments to any SETAF and add them to the tail T of
every attack (T, h) - they will be in each extension of the semantics in question, and other
than that the extensions will coincide with the original SETAF (as this is an instance of the
attack-weakening principle, see Principle 3.39). To establish hardness for stage semantics we
can adapt the existing reductions by replacing self-attacking arguments by a construction
with additional arguments such that 2-colorability is ensured, and replace certain classical
AF-attacks by collective attacks (see Appendix D for details).

Theorem 7.24. For 2-colorable SETAFs the complexity of Credσ and Skeptσ for σ ∈ {grd,
adm, com, stb, pref,naive, sem, stage} coincides with the complexity of the general problem.

7.7 Tractable Fragments

The (relatively speaking) low complexity of reasoning in SETAFs with the above described
features on its own is convenient, but to be able to fully exploit this fact we also show that
these classes are easily recognizable. As mentioned in (Dvořák, Ordyniak, & Szeider, 2012),

111
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the respective AF-classes can be efficiently decided by graph algorithms. As for acyclicity,
even-cycle-freeness, and primal-bipartiteness it suffices to analyze the primal graph, these
results carry over to SETAFs. Moreover, for primal-bipartite SETAFs we can efficiently
compute a partitioning, which is needed as input for Algorithm 1. Finally, we can test for
full-symmetry efficiently as well: one (naive) approach is to just loop over all attacks and
check whether there are corresponding attacks towards each involved argument. Likewise,
a test for self-attack-freeness can be performed efficiently. Summarizing the results of this
work, we get the following theorem.

Theorem 7.25. Acyclicity, even-cycle-freeness, self-attack-free full-symmetry, and primal-
bipartiteness are tractable fragments for SETAFs.

In particular, for credulous and skeptical reasoning in the semantics under our consid-
eration the complexity landscape including tractable fragments in SETAFs is depicted in
Table 2.

7.8 Utilizing Tractable Fragments for Efficient Computation Along SCCs

In this section we will show which of our tractable fragments we can exploit in the context
of SCC-recursiveness to speed up computation. In particular, we exemplify the speedup
with the Verpref problem. We will show for acyclicity, even-cycle-freeness, and primal-
bipartiteness, that we obtain a speedup when every SCC of a SETAF belongs to one of
these tractable fragments.

On the other hand, we show that for full-symmetry this is not the case. Deleting (parts
of) attacks from a fully-symmetric SETAF might lead to a situation where the remaining
framework is no longer fully symmetric. We will show that therefore this fragment does
not allow a speedup in the SCC-recursive scheme. The key idea is that prior SCCs can
“disable” arbitrary attacks in a given SCC. In the reduction from the general verification
problem we use to prove this (illustrated in Example 7.27) we have at least 3 SCCs: the
one containing x, the one containing y, and the ones containing our original framework
(if the original framework is not connected, we obtain more than one). Each SCC is fully
symmetric, but the symmetric counter-attacks in the SCCs corresponding to the original
framework are irrelevant, as the argument y in the tail is always defeated.

Proposition 7.26. The problem Verpref remains coNP-complete even for self-attack-free
SETAFs SF where all SCCs S ∈ SCCs(SF ) are fully-symmetric, i.e., SF↓S is fully sym-
metric.

Example 7.27. Consider the SETAF in (a) with preferred extensions {{a, c}, {b}}. By
adding the arguments x, y we make every SCC primal-symmetric, while preserving the pre-
ferred extensions under projection (i.e., the added arguments and attacks have no practical
effect, in particular, if we construct the reduct w.r.t. {x} we recover the original framework):
(b) has preferred extensions {{x, a, c}, {x, b}}.
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a b

c d

(a)

a b

c d

x y

(b)

In contrast to this negative result, it is indeed possible to verify preferred extensions
efficiently in primal-bipartite SCCs. To establish this result, we generalize our notion of the
reduct and modularization to the semantics considering a candidate set C ⊆ A and a set of
mitigated attacks M ⊆ R (see SCC-recursiveness, Definition 6.22).

Definition 7.28. Given a SETAF SF = (A,R), M ⊆ R, and E ⊆ A, the E-reduct of SF
considering M is the SETAF SFE

M = (A′, R′), with

A′ = A \ E⊕
R\M

R′ = {(T \ E, h) | (T, h) ∈ R, T ∩ E+
R\M = ∅, T ̸⊆ E, h ∈ A′}

Note the parallels to the definition of the restricted frameworks in the SCC-recursive
scheme. We now show that the modularization property also holds in this context. The
idea is similar to the special case of C = A,M = ∅ that we discussed in Theorem 4.6. What
we have left to consider is that an admissible set E could attack an argument x in its reduct
via mitigated attacks. As in the SCC-recursive scheme, we cannot accept x in the reduct.
Hence, we add such arguments to the set C.

Proposition 7.29. Let SF = (A,R) be a SETAF and C ⊆ A, M ⊆ R, and E ∈
adm(SF,C,M). Let SF ′ = SFE

M = (A′, R′).

1. If E′ ∈ adm(SF ′, C ′,M ′) with

C ′ = C ∩ {a ∈ A | ∄(T, a) ∈ R ∩M : (T ⊆ E)}
M ′ = {(T, h) ∈ R′ | ∀(T ′, h) ∈ R \M : T ′ ⊇ T ⇒ (T ′ \ T ) ̸⊆ E}

then E ∪ E′ ∈ adm(SF,C,M).

2. If E ∩ E′ ̸= ∅ and E ∪ E′ ∈ adm(SF,C,M), then E′ ∈ adm(SF ′, C ′,M ′).

Proof. 1. Since E is admissible in SF consideringM , E′ does not attack E via non-mitigated
attacks in SF . By construction of SF ′, E does not attack E′ via non-mitigated attacks
either. Since E′ ⊆ C ′ we know E also does not attack E′ via mitigated attacks. Towards
contradiction assume E′ attacks E via a mitigated attack. By admissibility, then E attacks
E′ in SF which is not the case (as just established). Hence, E ∪ E′ ∈ cf (SF ).

Now assume S 7→R E ∪ E′. If S 7→R E, then S 7→R\M by admissibility. If S 7→R E′,
then there is T ⊆ S s.t. (T, e′) ∈ R with e′ ∈ E′. If now E 7→R\M T we are done. Otherwise,
there is (T \ E, e′) ∈ R′, and E′ 7→R′\M ′ T \ E. This means there is (X ′, t) ∈ R′ \M ′ with
t ∈ T and X ′ ⊆ E′, and consequently (X, t) ∈ R \M with X \ E = X ′. Since X 7→R\M S
and E ∪ E′ ⊇ X, it also holds E ∪ E′ 7→R\M S, i.e., E ∪ E′ defends itself against S in SF
considering M . Hence, we have E ∪ E′ ∈ adm(SF,C,M).
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Algorithm 2: Compute the set of credulously accepted arguments w.r.t. pref
semantics
Input : A primal-bipartite SETAF SF = (A,R) with a partitioning (Y,Z), sets

C ⊆ A, M ⊆ R
Output: The admissible set Yi (considering M) of credulously accepted arguments

in Y ∩ C
1 i := 0
2 Y0 := Y ∩ C
3 R0 := R
4 repeat
5 i := i+ 1
6 Yi := Yi−1 \ {y | y ∈ Yi−1, there is some (Z ′, y) ∈ Ri−1 with Z ′ ⊆ Z such that

∀z ∈ Z ′ |{(Y ′, z) | (Y ′, z) ∈ Ri−1 \M}| = 0}
7 Ri := Ri−1 \ {(Y ′, z) | Y ′ ⊆ Y, z ∈ Z, Y ′ ̸⊆ Yi}
8 until Yi = Yi−1;

2. Assume E ∪ E′ ∈ adm(SF,C,M). We see E′ ∈ cf (SF ′) as follows: if (T ′, e′) ∈ R′

with T ′ ⊆ E′, e′ ∈ E′, then there is some (T, e′) ∈ R with T ′ = T \E. Hence, E∪E′ 7→R E′,
a contradiction.

Now assume E′ /∈ adm(SF ′, C ′,M ′). This means there is (T ′, e′) ∈ R′ with e′ ∈ E′,
but there is no non-mitigated counter-attack from E′ towards T ′. Then there is (T, e′) ∈ R
with T ′ = T \ E and T ∩ E+

R\M = ∅. By admissibility we know E ∪ E′ 7→R\M T , say

(T ∗, t) ∈ R \M with T ∗ ⊆ E ∪E′, t ∈ T . Since E ∪E′ is conflict-free in SF , T ∗ ∩E+
R = ∅,

and thus we either have a) T ∗ ⊆ E, contradicting T ∩E+
R\M = ∅, or b) (T ∗ \E, t) ∈ R′ \M ′,

contradicting the assumption that there is no counter-attack. Finally, note that E′ ⊆ C ′,
as otherwise there is (T, e′) ∈ R ∩M with T ⊆ E, e′ ∈ E′, contradicting conflict-freeness.
In summary, we conclude E′ ∈ adm(SF ′, C ′,M ′).

It remains to show that we can find non-empty admissible sets in this context in poly-
nomial time. To this end, we slightly adapt Algorithm 1 to also account for a candidate
set C and mitigated attacks M , see Algorithm 2. The only differences to the original algo-
rithm are in step 2, where we consider C, and in step 6, where for possible counter-attacks
from our constructed admissible set to attackers we only take non-admissible attacks into
account. The proof of the correctness and completeness is analogous to Lemma 7.20.

Proposition 7.30. Let SF = (A,R) be a primal-bipartite SETAF and C,E ⊆ A, M ⊆ R.
We can decide whether E ∈ pref(SF,C,M) in polynomial time.

Finally, we can see that this result generalizes to odd-cycle-freeness if we restrict our-
selves to the case where we only have a single SCC.

Proposition 7.31. Let SF = (A,R) be an odd-cycle-free SETAF with |SCCs(SF )| = 1.
Then SF is primal-bipartite.

Clearly, this implies that if |SCCs(SF )| = 1 in an odd-cycle-free SETAF we can also
verify preferred extensions in polynomial time. Note also that by removing (parts of) attacks
from SF we cannot introduce an odd-cycle.
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In the following we argue that we can efficiently compute the (unique) preferred exten-
sion if the SETAF in question is even-cycle-free. We utilize the fact that an even-cycle-free
SETAF has only one preferred extension, namely the grounded—this also holds true con-
sidering the candidate set C and mitigated attack M .

Proposition 7.32 (cf. (Dvořák, 2012)). Let SF = (A,R) be an even-cycle-free SETAF
and C,E ⊆ A, M ⊆ R. We can decide whether E ∈ pref(SF,C,M) in polynomial time.

Taking these results together, we obtain the following characterization. This generalizes
the FPT-result from Theorem 7.4 and illustrates that we can utilize various different graph
properties of SCCs at once.

Theorem 7.33. Let SF be a SETAF where for all SCCs S ∈ SCCs(SF ) it holds either

� S is acyclic,

� S is even-cycle-free,

� S is primal-bipartite,

� S odd-cycle-free, or

� the size of S is bounded by a parameter k, i.e., |S| ≤ k.

Then we can verify a given preferred extensions in O
(
2k · poly(|SF |)

)
for some polynomial

function poly.

8. Conclusion

In this work, we systematically analyzed semantics for SETAFs using a principle-based
approach (see Table 1 for an overview of the investigated properties). Moreover, we intro-
duced and investigated novel principles that are trivial on AFs, but desirable non-trivial
properties of SETAF semantics. We pointed out interesting concepts that help us to un-
derstand the principles more deeply: edge cases that for AFs are hidden behind simple
syntactic notions have to be considered explicitly for SETAFs, revealing semantic peculiari-
ties that are already there in the special case. To this end, we highlight the usefulness of the
reduct in this context—many seemingly unrelated notions from various concepts boil down
to formalizations closely related to the reduct. We particularly focused on computational
properties like modularization and SCC-recursiveness. The emphasis on the computation
of argumentation tasks lead us to our investigations of graph properties in the context of
SCCs, during which we introduced and analyzed the computational complexity of reasoning
tasks for these restricted cases. Finally, we applied these findings in the context of SCC-
recursiveness, which allowed us to push the boundaries of tractability for argumentation
tasks even further.

The latter concept has recently been investigated for Abstract Dialectical Frameworks
(ADFs) in a different context by Gaggl, Rudolph, and Straß (2021). In that work, the
acceptance conditions of the statements in an ADFs (that encode the attacks in case the
ADF recasts a SETAF) are modified. Note that SETAFs can be seen as a special case of
ADFs, where each acceptance condition is a formula in conjunctive normal form with only
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negative literals. The modification of this formula in the approach of Gaggl et al. is indeed
closely related to our idea of the SETAF-reduct: attacks (T, h) where in a prior SCC we
learn that one argument t ∈ T is attacked (defeated) in an extension effectively become
redundant and are removed. In case an argument t ∈ T is in an extension, the acceptance
condition is modified, in SETAF terms this would correspond to an attack (T \ {t}, h).
However, while we treat the undecided state of an argument that is neither in nor attacked
by an extension via mitigated attacks, in the approach of Gaggl et al. self-attacks are
introduced to model the resulting effects (akin to the idea of splitting (Baumann, 2011;
Linsbichler, 2014)). While both approaches effectively yield the same results, we expect
the introduction of new (self-)attacks to be computationally disadvantageous compared to
our approach of labeling an attack as mitigated, as additional computational effort is to be
expected.

Our findings regarding computational speedups utilizing SCC-structures are in line
with similar recent considerations for SETAFs such as backdoors, treewidth, and cycle
length (Dvořák et al., 2022b, 2022a, 2021b). The first two—backdoors and treewidth—
were recently considered in combination to further improve the runtime (Dvořák, Hecher,
König, Schidler, Szeider, & Woltran, 2022); in the future it will be interesting to investigate
whether these results generalize to SETAFs. Moreover, the reduct for SETAFs and the
generalization of the recursive scheme for SETAFs allow for generalizations of several ab-
stract argumentation semantics that have not yet been studied in the context of collective
attacks (Baumann et al., 2020b). An interesting direction for future works is investigating
semantics cf2 (Baroni et al., 2005) and stage2 (Dvořák & Gaggl, 2016), as well as the fam-
ily of semantics based on weak admissibility (Baumann et al., 2020b). Moreover, checking
whether the results carry over to other decision problems is also an interesting direction for
future research. In particular our results in Section 7 show potential computational bene-
fits from the notions we establish for SETAFs. A natural task for future work would be to
utilize these findings in an implementation and compare the performance to state-of-the-art
solvers.
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Appendix A. Proof Details of Section 4

Lemma 4.4. Given a SETAF SF = (A,R) and two disjoint sets E,E′ ⊆ A. Let SFE =
(A′, R′).

1. If there is no S ⊆ A s.t. S 7→R E′, then the same is true in SFE.
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2. Assume E does not attack E′ ∈ cf (SF ). Then, E defends E′ in SF iff there is no
S′ ⊆ A′ s.t. S′ 7→R′ E′.

3. Let E ∈ cf (SF ). If E∪E′ does not attack E in SF and E′ ⊆ A′, with E′ ∈ cf
(
SFE

)
then E ∪ E′ ∈ cf (SF ).

4. Let E ∪ E′ ∈ cf (SF ). If E′ 7→R′ a, then E ∪ E′ 7→R a.

5. If E ∪ E′ ∈ cf (SF ), then SFE∪E′
=

(
SFE

)E′
.

Proof.

1. This is clear since SFE contains (strictly) less attacks than SF .

2. (⇒) Assume E defends E′ in SF . Now suppose there is some attacker in the reduct,
i.e. S′ 7→R′ e′. By definition, there is some T ′ ⊆ A \ E⊕ with (T ′, e′) ∈ R′. By the
definition of SFE , T ′ = T ∩ A′ for some (T, e′) ∈ R. Now consider an arbitrary
(T, e′) ∈ R. Since E defends E′, E 7→R T . Again by definition of SFE , (T, e′) is
removed since T ∩ E+

R ̸= ∅. Hence in R′ there is no attack of the form (T ′, e′) with
T ′ ⊆ T , contradiction.

(⇐) Now suppose E does not defend E′. There is thus some (T, e′) ∈ R and E does
not attack T , i.e. T ∩ E+

R = ∅. Suppose T \ E = ∅. Then T ⊆ E contradicting that
E does not attack E′. Thus, T \ E ̸= ∅. Since E does not attack E′ and E ∩ E′ = ∅,
we have e′ ∈ A′ for each e′ ∈ E′. Therefore, in R′ we find the attack (T ′, e′) with
T ′ = T ∩A′ ̸= ∅, e′ ∈ A′, and T ∩ E+

R = ∅.

3. We have to show that E ∪ E′ does not attack E′. Suppose the contrary, i.e. let
T ⊆ E ∪ E′ with (T, e′) ∈ R for some e′ ∈ E′. Since E does not attack E or E′,
T ∩ E+

R = ∅. The case T ⊆ E is impossible. Thus, (T, e′) induces some attack
(T \ E, e′) in SFE . We infer T \ E ⊆ E′ implying E′ /∈ cf

(
SFE

)
, contradiction.

4. If E′ 7→R′ a, then (T ′, a) ∈ R′ for some T ′ ⊆ E′. Hence (T, a) ∈ R for some T with
T \ E = T ′. The claim follows due to T ⊆ T ′ ∪ E ⊆ E′ ∪ E.

5. (⊆) Let a ∈ SFE∪E′
. Then a /∈ E ∪ E′ and E ∪ E′ does not attack a. We infer

a ∈ A
(
SFE

)
. Now if E′ 7→R′ a, then E ∪E′ 7→R a by item 4. Thus a ∈ A

(
(SFE)E

′)
.

(⊇) Let a ∈ A
(
(SFE)E

′)
. Hence a /∈ E∪E′ and E′ does not attack a in SFE . Assume

(T, a) ∈ R with T ⊆ E ∪ E′. Since E′ does not attack a in SFE , there cannot be an
attack of the form (T \ E, a) ∈ R′ satisfying T \ E ̸= ∅ and T ∩ E+

R = ∅. However,
T satisfies T ∩ E+

R = ∅ since E ∪ E′ ∈ cf (SF ). We thus infer T \ E = ∅. This yields
E 7→R a contradicting a ∈ A

(
(SFE)E

′)
.

Proposition 4.7. Let SF = (A,R) be a SETAF, E ∈ cf (SF ) and SFE = (A′, R′).

1. E∈stb(SF ) iff SFE = (∅, ∅),

2. E∈adm(SF ) iff S 7→R E implies S \ E ̸⊆ A′,

3. E∈pref(SF ) iff E ∈ adm(SF ) and adm(SFE) = {∅},
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4. E∈com(SF ) iff E ∈ adm(SF ) and grd(SFE) = {∅},

5. E∈sem(SF ) iff E ∈ pref(SF ) and there is no E′ ∈ pref(SF ) s.t. A(SFE′
) ⊊ A(SFE).

Proof. The characterizations for stb and adm are straightforward and pref is due to the
modularization property of adm. For com(SF ) we apply Lemma 4.4, item 2, to each
singleton E′ occurring in SFE : assume towards contradiction E is complete in SF and
there is some a ∈ A′ such that a is unattacked in SF ′ (and, hence, a is in the grounded
extension of SFE). As a ∈ A′ we know E ̸7→R {a}. But then we can apply Lemma 4.4,
item 2, and get that E defends {a} in SF , contradicting E ∈ com(SF ). For sem recall that
range-maximal preferred extensions are semi-stable.

Appendix B. Proof Details of Section 5

Lemma 5.10. Let SF = (A,R) be a SETAF. The the unique ideal extension S satisfies

S =
⋃

E∈adm(SF ):∀P∈pref(SF ):E⊆P

E

Proof. We let

adm⊆pref(SF ) = {E ∈ adm(SF ) | ∀P ∈ pref(SF ) : E ⊆ P}.

We need to show that (a) S is conflict-free in SF , (b) every argument a ∈ S is acceptable
w.r.t. S, and (c) there is no larger set S′ ⊃ S that satisfies (a) and (b) and is a subset
of every preferred extensions of SF . (a) is clear, because if there was a conflict caused by
an attack (T, h) ∈ R with T ∪ {h} ⊆ S, this would mean two sets E,E′ ∈ adm⊆pref(SF )
attacked each other, which would mean a preferred extension is conflicting, a contradiction.
(b) follows from the fact that for all a ∈ S there is an E ⊆ S with a ∈ E,E ∈ adm(SF ). (c)
is clear since (a) and (b) characterize admissibility—if there was such a larger admissible set
S′ ⊃ S with S′ ∈ adm⊆pref(SF ) by definition we would have S′ ⊆ S, a contradiction.

Appendix C. Proof Details of Section 6

Lemma 6.8. Let SF =(A,R) be a SETAF and let E,S⊆A. Then SF⇓(E\S)+
S = SF (E\S)↓S.

Proof. We have A(SF⇓(E\S)+
S ) = A(SF (E\S)↓S) because

(A ∩ S) \ (E \ S)+ = (A \ (E \ S)+) ∩ S

= (A \ ((E \ S)+ ∪ (E \ S))) ∩ S

= (A \ (E \ S)⊕) ∩ S.

Then it holds that R(SF⇓(E\S)+
S ) = R(SF (E\S)↓S), as for some (T, h) ∈ R(SF⇓(E\S)+

S )
with h ∈ A′ and T ∩ (E \S)+ = ∅ we have T ∩A′ = ∅ if and only if T ̸⊆ (E \S). The claim
follows then from (T ∩A′, h) = (T \ (E \ S), h).

Lemma 6.11. Let SF be a SETAF and E ∈ stb(SF ), then for all S ∈SCCs(SF ) it holds
PSF (S,E)=∅.
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Proof. Assume towards contradiction that for some SCC S there is an argument a ∈
PSF (S,E). Then, by definition there is an attack (T, a) ∈ R(SF ) such that T ⊆ A(SF ) \S
and T ∩ E+ = ∅. Moreover, a /∈ DSF (S,E) by definition, i.e. T ̸⊆ E. But then there is
some t ∈ T such that neither t ∈ E+ nor t ∈ E, which is a contradiction to the assumption
that E is stable.

Proposition 6.12. Let SF = (A,R) be a SETAF and let E ⊆ A, then E ∈ stb(SF ) if and

only if ∀S ∈ SCCs(SF ) it holds (E ∩ S) ∈ stb
(
SF⇓(E\S)+

UPSF (S,E)

)
.

Proof. Let SF ′ = SF⇓(E\S)+
UPSF (S,E) for an arbitrary SCC S. We start by assuming E ∈

stb(SF ). We need to show that (E ∩ S) ∈ stb(SF ′), i.e.:

1. (E ∩ S) ⊆ UPSF (S,E),

2. (E ∩ S) is conflict-free in SF ′, and

3. ∀a ∈ UPSF (S,E) if a /∈ (E ∩ S) then (E ∩ S) attacks a in SF ′.

For condition 1. note that (E ∩ X) ∩ DSF (X,E) = ∅ holds for any X ⊆ A, as otherwise
E would not be conflict-free in SF . For condition 2., assume towards contradiction that
there is some (T, h) ∈ R(SF ′) such that T ∪ {h} ⊆ (E ∩ S). This means there is some
(T ′, h) ∈ R with T ′ ⊇ T . But by construction we would have T ′ \ T ⊆ E, and therefore
T ′ ∪ {h} ⊆ E, a contradiction to conflict-freeness of E. For condition 3. we consider an
arbitrary argument a ∈ UPSF (S,E) \ (E ∩ S). Since a /∈ E and E is stable, there is an
attack (T, a) ∈ R with T ⊆ E. Moreover, as a ∈ UPSF (S,E), it holds a /∈ DSF (S,E), i.e.
in particular T ̸⊆ (E \ S), or in other words T ∩ S ̸= ∅. This means by the definition of the
restriction and since T ∩E+

R = ∅ (otherwise E would not be conflict-free in SF ) there is an
attack (T ∩ S, a) ∈ R(SF ′) with (T ∩ S) ⊆ E.

Now assume ∀S ∈ SCCs(SF ) it holds (E ∩ S) ∈ stb(SF⇓(E\S)+
UPSF (S,E)). We need to show

E ∈ stb(SF ), i.e.

1. E is conflict-free in SF , and

2. E attacks all a ∈ A \ E in SF .

For 1. assume towards contradiction there is some (T, a) ∈ R such that T ∪{a} ⊆ E. Let S
be the SCC containing a. Clearly T ∪{a} ̸⊆ S, as this violates our assumed conflict-freeness
in UPSF (S,E). Moreover, we do not have T ⊆ (A \S), as this would mean a ∈ DSF (S,E).

Hence, there is an attack (T ∩ S, a) ∈ R
(
SF⇓(E\S)+

UPSF (S,E)

)
such that (T ∩ S)∪ {a} ⊆ E ∩ S,

a contradiction. For condition 2. let us consider an arbitrary argument a ∈ A \E and let S
be the SCC containing a. Then either (i) a ∈ DSF (S,E) or (ii) a ∈ UPSF (S,E). In case (i)
we immediately get E attacks a. For case (ii), we have a /∈ (E ∩ S), and by assumption a

is attacked in S, i.e. there is an attack (T, a) ∈ R
(
SF⇓(E\S)+

UPSF (S,E)

)
. By construction of the

restriction, this means there is an attack (T ′, a) ∈ R s.t. T ′ ⊇ T and T ′ \ T ⊆ E. Hence,
T ⊆ E, i.e. E attacks a in SF .
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Proposition 6.17. Let SF = (A,R) be a SETAF, and let E,C ⊆ A and M ⊆ R. Let
E ⊆ C be a set of arguments s.t. each a ∈ E is acceptable considering M w.r.t. E. Then
E ∈ cf (SF,C,M) if and only if E ∈ cf (SF ).

Proof. The (⇐) direction is clear since E ∈ cf (SF ) is a stricter notion. For (⇒) suppose
E ∈ cf (SF,C,M). We have to show that even for mitigated attacks (T, h) ∈ M it holds that
T ∪ {h} ⊈ E. Striving for a contradicting suppose otherwise. Then we have in particular
that h ∈ E. Since h is acceptable w.r.t. E by assumption, there is some non-mitigated
attack (X, t) ∈ R \M with X ⊆ E and t ∈ T . Since T ⊆ E, it follows t ∈ E. Hence, the
attack (X, t) causes a conflict (not making use of mitigated attacks), contradiction.

Theorem 6.18. Let SF be a SETAF, and let C ⊆ A and M ⊆ R. Then,

1. FM
SF,C is monotonic,

2. the fundamental lemma holds, i.e. if E ∈ adm(SF,C,M) and a ∈ A∩C is acceptable
w.r.t. E considering M , then E ∪ {a} ∈ adm(SF,C,M),

3. E ∈ grd(SF,C,M) is the least set in com(SF,C,M) w.r.t. ⊆, and

4. E ∈ pref(SF,C,M) are the maximal sets in com(SF,C,M) w.r.t. ⊆.

Proof.

1. Monotonicity of the mapping

FM
SF,C(E) = {a ∈ C | a is acceptable considering M w.r.t. E}

holds by definition of defense.

2. Let a ∈ A \ C be acceptable w.r.t. E ∈ adm(SF,C,M) considering M . By mono-
tonicity of defense, each argument in E ∪ {a} is acceptable w.r.t. E ∪ {a} consider-
ing M . As our notion of defense w.r.t. M implies the usual defense, we can apply
the standard fundamental lemma for SETAFs (Nielsen & Parsons, 2006) and obtain
E ∪ {a} ∈ cf (SF ). Therefore, the conditions for applying Proposition 6.17 are met
and we deduce E ∪ {a} ∈ cf (SF,C,M). Hence E ∪ {a} ∈ adm(SF,C,M) follows.

3. Setting G =
⋃

i≥1(F
M
SF,C)

i(∅) we claim that G is the least set in com(SF,C,M). Due
to the fundamental lemma (see 2.) admissibility of ∅ implies inductively

∀n ∈ N :
⋃

1≤i≤n

(
FM
SF,C

)i
(∅) ∈ adm(SF,C,M).

Since SF is finite and by monotonicity, there is some n s.t.⋃
1≤i≤n

(
FM
SF,C

)i
(∅) =

⋃
1≤i

(
FM
SF,C

)i
(∅) = G

Thus, G is complete. Now let E ∈ com(SF,C,M). By monotonicity of FM
SF,C we get

FM
SF,C(∅) ⊆ FM

SF,C(E). By induction, (FM
SF,C)

i(∅) ⊆ (FM
SF,C)

i(E) therefore also holds
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for any integer i ≥ 1. Since E is complete, E = (FM
SF,C)

i(E) holds for each integer i,
i.e. the right-hand side is actually constant. We conclude for each n

G =
⋃
1≤i

(
FM
SF,C

)i
(∅) =

⋃
1≤i≤n

(
FM
SF,C

)i
(∅) ⊆

⋃
1≤i≤n

(
FM
SF,C

)i
(E) = E,

thus it follows that G ⊆ E.

4. By definition E ∈ pref(SF,C,M) is maximal in adm(SF,C,M). So we show E is
maximal in adm(SF,C,M) iff E is maximal in com(SF,C,M).

(⇒) Suppose E ∈ pref(SF,C,M) is not maximal in com(SF,C,M). Then there is
a proper complete superset E′ of E; since E′ is in particular admissible, E is not
maximal in adm(SF,C,M).

(⇐) Now suppose E is not maximal in adm(SF,C,M). Take E′ ∈ adm(SF,C,M)
with E ⊊ E′. By the fundamental lemma and monotonicity of FM

SF,C , we find that⋃
1≤i(F

M
SF,C)

i(E′) is a complete proper superset of E (analogous to (ii)). Hence E is
not maximal in com(SF,C,M).

Lemma 6.23. Let SF = (A,R) be a SETAF, let M ⊆ R, C ⊆ A, and let E ∈ adm(SF,C,M)
be an admissible set of arguments and let a ∈ A ∩ C be acceptable w.r.t. E considering M
in SF , where a ∈ S for some SCC S. Then

1. we have a ∈ USF (S,E,M) and a is acceptable w.r.t. (E ∩ S) in SF⇓(E\S)+
UPSF (S,E,M)

considering MSF (S,E,M);

2. it holds that (E ∩ S) is conflict-free in SF⇓(E\S)+
UPSF (S,E,M).

Proof. Set SF⇓(E\S)+
UPSF (S,E,M) = SF ′ = (A′, R′).

1. By Theorem 6.18, item 2, we get that E∪{a} ∈ adm(SF,C,M), i.e. a /∈ DSF (S,E,M)
by conflict-freeness of E and a /∈ PSF (S,E,M) by defense. Consequently, we infer
a∈USF (S,E,M). Likewise, we get (E∩S)⊆USF (S,E,M), and therefore (E∩S)⊆A′.

To show that a is acceptable in this context we have to consider attacks towards a, i.e.
(T, a) ∈ R′, and establish T ̸⊆ E (conflict-freeness) and (E ∩A′) attacks T in SF ′ via
non-mitigated attacks (defense). As E is admissible in SF , there is a (non-mitigated)
counter-attack (X, t) ∈ R \M with t ∈ T and X ⊆ E. In particular, this means that
t /∈ E, as (X, t) would otherwise contradict the conflict-freeness of E. Hence, T ̸⊆ E.
Moreover, because (T, a) ∈ R′, it must be that X ∩ S ̸= ∅, as otherwise the attack
(T, a) would be deleted when we construct the appropriate restriction to the SCC S.
Let X ′ = X ∩ S, i.e. there is an attack (X ′, t) ∈ R′. In other words, E ∩ S defends a
in SF ′. Finally, X ⊆ E and (X, t) /∈ M implies (X ′, t) /∈ MSF (S,E,M).

2. Towards contradiction assume there is an attack (T, h) ∈ R′ with T ∪ {h} ⊆ (E ∩ S).
This means there is an attack (T ′, h) ∈ R with T ⊆ T ′. As E is admissible in SF
there is a counter-attack (X, t) ∈ R \M with X ⊆ E for some t ∈ T ′. If t /∈ S then
(T, h) /∈ R′, a contradiction. Therefore t ∈ S and by assumption t ∈ E. However, this
means X ∪ {t} ⊆ E, a contradiction to the conflict-freeness of E in SF .
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Dvořák, König, Ulbricht, & Woltran

Lemma 6.24. Let SF = (A,R) be a SETAF, let M ⊆ R, let E ⊆ A such that

(E ∩ S) ∈ adm
(
SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M),MSF (S,E,M)
)

for all S ∈ SCCs(SF ). Moreover, let S′∈SCCs(SF ) and let a∈USF (S
′, E,M) be acceptable

w.r.t. (E ∩S′) in SF⇓(E\S′)+

UPSF (S′,E,M) considering MSF (S
′, E,M). Then a is acceptable w.r.t.

E in SF considering M .

Proof. We have to show for each (T, a) ∈ R that E attacks T in SF with non-mitigated

attacks. As before we set SF⇓(E\S′)+

UPSF (S′,E,M) = SF ′ = (A′, R′). We distinguish the following
three cases:

1. (T ⊆ S′) If T ∩DSF (S
′, E,M) ̸= ∅ we are done, because this means by Definition 6.20

there is an attack in R \M with T ⊆ E. Otherwise, all t ∈ T are in UPSF (S
′, E,M).

Then, (T, a) ∈ R′ and there must be a (not mitigated) counter-attack (X, t) with
t ∈ T and X ⊆ E ∩ S′ within SF ′, as we assumed a is acceptable w.r.t. E ∩ S′ in
SF ′ considering MSF (S

′, E,M). This means there is an attack (X ′, t) ∈ R \M with
X ⊆ X ′, and as (X, t) is not mitigated in SF ′ we know X ′ ⊆ E. In summary, a is
acceptable w.r.t. E in SF considering M .

2. (T ⊆ A \ S′) Then T ∩ E+ ̸= ∅ by a ∈ USF (S
′, E,M) (otherwise, if E would not

attack T in SF , if (T, a) ∈ M then a ∈ PSF (S
′, E,M), and if (T, a) /∈ M then

a ∈ DSF (S
′, E,M)).

3. (T ∩ S′ ̸= ∅ and T ∩ (A \ S′) ̸= ∅) Assume towards contradiction there is no non-
mitigated attack from E to T in SF . Then there is an attack (T ′, a) ∈ R′ with T ′ ⊆ T
and (T ′, a) /∈ MSF (S

′, E,M). Now the reasoning proceeds as in case (1).

As we established that there are counter-attacks in all cases (1)-(3), the desired property
holds.

Proposition 6.25. Let SF = (A,R) be a SETAF and let E ⊆ A be a set of arguments.
Then for each C ⊆ A and M ⊆ R it holds E ∈ adm(SF,C,M) if and only if ∀S ∈
SCCs(SF ) it holds (E ∩ S) ∈ adm(SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Proof. Let SF ′ = SF⇓(E\S)+
UPSF (S,E,M).

(⇒) Since E ⊆ C and all a ∈ E are acceptable w.r.t. E in SF considering M , we can
apply Lemma 6.23 and get that every a ∈ (E∩S) are in USF (S,E,M)∩C for any given SCC
S. Moreover, we get that a is acceptable w.r.t. (E ∩ S) in SF ′ considering MSF (S,E,M)
and that (E ∩ S) is conflict-free in SF ′. Hence, (E ∩ S) is admissible in SF ′ considering
MSF (E,S,M).

(⇐) As for all SCCs S we assume (E ∩ S) ⊆ (S ∩ C) we know E ⊆ C, i.e. we only
need to show admissibility in SF considering M . Towards contradiction assume E is not
conflict-free in SF , i.e. there is an attack (T, h) ∈ R with T ∪ {h} ⊆ E. Let S′ be the SCC
containing h.
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1. We cannot have (1) T ⊆ S′, as this would contradict the assumption that E ∩ S′ is

conflict-free in SF⇓(E\S′)+

UPSF (S′,E) (note that in this case the attack (T, h) is also neces-

sarily in SF ′).

2. Moreover, it cannot be that (2) T ⊆ A \ S′, because then h ∈ DSF (S
′, E,M) (or

h ∈ PSF (S
′, E,M) if (T, h) ∈ M) while we assumed h ∈ USF (S

′, E,M).

3. Finally, consider the case (3) where T ∩ S′ ̸= ∅ and T ∩ (A \ S′) ̸= ∅. Then there is
a non-mitigated attack from (E \ S′) to T , as otherwise there would be (T ∩ S′, h) ∈
SF⇓(E\S′)+

UPSF (S′,E,M), contradicting our assumption of local conflict-freeness. Call this

attack (X, t) ∈ R \M with X ⊆ (E \ S′) and t ∈ T \ S′. Let S′′ be the SCC t is in.
As before, we cannot have (1) X ⊆ S′′ or (2) X ⊆ A \ S′′. The only remaining case
is again (3) X ∩ S′′ ̸= ∅ and X ∩ (A \ S′′) ̸= ∅—as this step (3) always takes us to a
prior SCC and we assume SF finite, eventually this recursion will stop in case (1) or
(2). Now, by induction we get a contradiction for the initial case.

It remains to show that every a ∈ E is acceptable w.r.t. E in SF considering M . Let

S∗ be the SCC a is in and let SF ∗ = SF⇓(E\S∗)+

UPSF (S∗,E,M). By assumption, (E ∩ S∗) ∈
adm(SF ∗,USF (S

∗, E,M),MSF (S
∗, E,M)), i.e. a is acceptable w.r.t. E ∩ S in SF ∗ consid-

ering MSF (S
∗, E,M). Since we also have a ∈ USF (S

∗, E,M), we can apply Lemma 6.24
and get that a is acceptable w.r.t. E in SF considering M .

Proposition 6.28. Let SF = (A,R) be a SETAF, let M ⊆ R, and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ com(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ com(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Proof. (⇒) If E ∈ com(SF,C,M), then in particular E ∈ adm(SF,C,M). Hence by
Proposition 6.25 we get

∀S ∈ SCCs(SF ) : (E ∩ S) ∈ adm(SF⇓(E\S)+
UPSF (S,E,M),UPSF (S,E,M) ∩ C,MSF (S,E,M)).

For an arbitrary SCC S′ ∈ SCCs(SF ), let a ∈ USF (S
′, E,M) be an argument accept-

able w.r.t. (E ∩ S′) in SF⇓(E\S′)+

UPSF (S′,E,M) considering MSF (S
′, E,M). By Lemma 6.24, a is

acceptable w.r.t. E in SF considering M , and, hence, a ∈ E and a ∈ E∩S′ by completeness.
(⇐) We get E ∈ adm(SF,C,M) by Proposition 6.25. For an arbitrary a ∈ C, let S′

be the SCC a is in. If a is acceptable w.r.t. E in SF considering M , by Lemma 6.23 we

get that a is acceptable w.r.t. (E ∩ S′) in SF⇓(E\S′)+

UPSF (S′,E,M) considering MSF (S
′, E,M). As

(E ∩ S′) is locally complete, we get a ∈ E.

Lemma 6.30. Let SF = (A,R), let M ⊆ R, and let E ∈ adm(SF,A,M), let S ∈
SCCs(SF ) be an SCC. Moreover, let E′ ⊆ A be a set of arguments such that (E ∩ S) ⊆
E′ ⊆ USF (S,E,M), and E′ ∈ adm(SF⇓(E\S)+

UPSF (S,E,M),USF (S,E,M),MSF (S,E,M)). Then

E ∪ E′ is admissible in SF considering M .

Proof. We first show that (E∪E′) is conflict-free in SF . Again, let SF ′ = SF⇓(E\S)+
UPSF (S,E,M).

Assume towards contradiction there is (T, h) ∈ R with T ∪ {h} ⊆ (E ∪ E′). Then we have
either (1) h ∈ E or (2) h ∈ E′ \ E.
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(1) Since E ∈ adm(SF,A,M) in (1) we have E 7→R T via a non-mitigated attack. We
have E ∈ cf (SF ), this means E 7→R T ′ where T ′ = T \ E = T ∩ E′ ̸= ∅. But this
means E′ ∩DSF (S,E,M) ̸= ∅, contradicting our assumption E′ ⊆ USF (S,E,M).

(2) Regarding (2), if T ⊆ E, then if (T, h) /∈ M we have h ∈ DSF (S,E,M) (or h ∈
PSF (S,E,M) if (T, h) ∈ M), a contradiction. Hence, T ∩ (E′ \ E) ̸= ∅. It follows
there is (T ′, h) ∈ R(SF ′) with T ′ ⊆ T . However, since we assume E′ is conflict-free
in SF ′ it holds T ′ ∪ {h} ̸⊆ E′, a contradiction because E ∩ S ⊆ E′.

As both possibilities lead to contradictions, we conclude (E ∪ E′) ∈ cf (SF ).
It remains to show defense in SF considering M , i.e. for all (T, h) ∈ R with h ∈

E ∪ E′ we show E ∪ E′ 7→R T via non-mitigated attacks. If h ∈ E, this follows from
E ∈ adm(SF,A,M). For h ∈ E′ \ E, we distinguish 4 cases:

(1) E attacks T via non-mitigated attacks, then we are done.

(2) T ⊆ A \ S. But then either E 7→R T via non-mitigated attacks—see (1)—or all
attacks from E to T are mitigated, or E ̸7→R T , and therefore h ∈ PSF (S,E,M), a
contradiction to h ∈ E′ ⊆ USF (S,E,M).

(3) T ⊆ A(SF ′). But this means (T, h) ∈ R(SF ′) and therefore since E′ is admissible
in this context there is a non-mitigated counter-attack (X, t) ∈ R(SF ′) with X ⊆ E′

and t ∈ T . As (X, t) is not mitigated, there is a non-mitigated “original” attack
(X ′, t) ∈ R with X ′ ⊇ X and X ′ \X ⊆ E, i.e. X ′ ⊆ (E∪E′), contradicting the earlier
established conflict-freeness.

(4) T ∩ A(SF ′) ̸= ∅ and T ∩ (A \ A(SF ′)) ̸= ∅. If we assume we are not in case (1) then
there is an attack (T ′, h) ∈ R(SF ′), and we proceed as in (3). In any case, there is a
defense against the attack (T, h), therefore, (E ∪ E′) ∈ adm(SF,A,M).

Proposition 6.31. Let SF = (A,R) be a SETAF, let M ⊆ R and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ pref(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ pref(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Proof. (⇒) We assume E ∈ pref(SF,C,M), and can apply Proposition 6.25 and obtain
that

∀S ∈ SCCs(SF ) : (E ∩ S) ∈ adm(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Assume towards contradiction that for some S′ ∈ SCCs(SF ) there is a set

E′ ∈ adm(SF⇓(E\S′)+

UPSF (S′,E,M),USF (S
′, E,M) ∩ C,MSF (S

′, E,M))

with E ∩S′ ⊊ E′. However, by Lemma 6.30 this means the set E ∪E′ is in adm(SF,C,M),
but since E ⊊ E ∪ E′ this contradicts our assumption E ∈ pref(SF,C,M).

(⇐) From Proposition 6.25 we get E ∈ adm(SF,C,M). Towards contradiction as-
sume there is an E′ ∈ adm(SF,C;M) with E′ ⊋ E. This means there is some SCC
S ∈ SCCs(SF ) such that (E ∩ S) ⊊ (E′ ∩ S). W.l.o.g. we choose S such that no an-
cestor SCC of S has this property. This means that USF (S,E,M) = USF (S,E

′,M)
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and PSF (S,E,M) = PSF (S,E
′,M) for S and all of its ancestor SCCs. Consequently,

(E′ ∩ S) ⊆ USF (S,E,M) = USF (S,E
′,M), and by another application of Proposition 6.25

we get E′ ∈ adm(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)). However, this con-

tradicts our assumption E ∈ pref(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Proposition 6.33. Let SF = (A,R) be a SETAF, M ⊆ R, and let E ⊆ A be a set of
arguments. Then ∀C ⊆ A it holds E ∈ grd(SF,C,M) if and only if ∀S ∈ SCCs(SF ) it

holds (E ∩ S) ∈ grd(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Proof. (⇒) We assume E ∈ grd(SF,C), and can apply Proposition 6.28 and obtain that

∀S ∈ SCCs(SF ) : (E ∩ S) ∈ com(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

Assume towards contradiction that for some SCC S′ the set (E ∩S′) is not minimal among
the locally complete extensions. W.l.o.g. we choose S′ such that no ancestor SCC of

S′ has this property. Let E′ ∈ grd(SF⇓(E\S)+
UPSF (S,E,M),USF (S,E,M) ∩ C,MSF (S,E,M)).

We can construct E′′ such that for the ancestor SCCs of S′ the new set E′′ coincides
with E, for S′ it coincides with E′, and for the remaining SCCs S is determined by

grd(SF⇓(E′\S)+
USF (S,E′,M),UPSF (S,E

′,M) ∩ C,MSF (S,E
′,M)) (see Section 7 for details). But

then E′′ ∈ com(SF,C,M) by Proposition 6.28 and E ̸⊆ E′′, a contradiction to our assump-
tion E ∈ grd(SF,C,M).

(⇐) We get E ∈ com(SF,C,M) by Proposition 6.28. Towards contradiction assume
there is some E′ ⊊ E with E′ ∈ grd(SF,C,M). This means there is an SCC S where
(E′∩S) ⊊ (E∩S). W.l.o.g., we choose S such that no ancestor SCC of S has this property.
This means that USF (S,E,M) = USF (S,E

′,M) and PSF (S,E,M) = PSF (S,E
′,M) for S

and its ancestor SCCs. Consequently,

(E′ ∩ S) ∈ com(SF⇓(E\S)+
UPSF (S,E,M),UPSF (S,E,M) ∩ C,MSF (S,E,M)).

However, this contradicts our assumption

E ∈ grd(SF⇓(E\S)+
UPSF (S,E,M),UPSF (S,E,M) ∩ C,MSF (S,E,M)),

since (E′ ∩ S) ⊊ (E ∩ S).

Appendix D. Proof Details of Section 7

Proposition 7.7. Let SF = (A,R) be a SETAF. If |com(SF )| ≥ 2 then SF contains an
even-cycle.

Proof. (cf. (Dvořák, 2012; König, 2020)) Let G be the grounded extension of SF and E
a complete extension such that E ̸= G. We thus have E ⊃ G. This means there is some
x0 ∈ E \ G with (Y0, x0) ∈ R such that G ̸7→ Y0. Since E is conflict-free and we have
x0 ∈ E, we also have Y0 ̸⊆ E, i.e. there is an argument y ∈ Y0 such that y ̸∈ E. In order
to defend x0 in E there is some set X1 ⊆ E such that (X1, y0) ∈ R for some y0 ∈ Y0 \ E.
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Now the same reasoning holds for some x1 ∈ X1 \ G, and inductively we get an infinite
sequence x0, y0, x1, y1, . . . such that xi ∈ E \ G and (Yi, xi), (Xi+1, yi) ∈ R with yi ∈ Yi
and xi ∈ Xi for i ≥ 1. Since E \ G is finite we get that xi = xj for some i ̸= j, then
(xj , (Xj , yj−1), yj−1, (Yj−1, xj−1), xj−1, . . . , (Yi, xi), xi) is an even-cycle.

Proof of the correctness of the translation illustrated in Example 7.13:
Translation 1 (Tr1) Let SF = (A,R) be a SETAF. The SETAF-translation Tr1 is defined
as Tr1(SF ) = (A′, R′) with

A′ = A ∪ {a1r,t, a2r,t | r = (T, h) ∈ R, t ∈ T},
R′ = R ∪ {(a1r,t, a2r,t), (a2r,t, a1r,t), ({a1r,t, a2r,t, h}, t), (t, a1r,t), (t, a2r,t) | r = (T, h) ∈ R, t ∈ T}

Lemma D.1. Let SF = (A,R) be a SETAF and let SF ′ = (A′, R′) = Tr1(SF ). Then for
every E′ ∈ cf (SF ′) we have for E = E′ ∩A that E⊕

R = E′⊕
R′ ∩A.

Proof. “⊆”: Immediate by the fact that Tr1 is embedding and the monotonicity of (.)⊕.
“⊇”: Note that the set of active attacks towards arguments in A in SF ′ is the set of active
attacks in SF . The only active attacks towards arguments in A in SF ′ are from within
A. The fact that in the construction of SF ′ no further attacks between arguments in A is
added concludes the proof.

Theorem D.2 ((König, 2020)). Let σ ∈ {cf , adm, stb, pref, stage, sem}. Then Tr1 is an
acceptance-preserving6 translation for σ ⇒ σ such that for every self-attack-free SETAF
SF its translation SF ′ = Tr1(SF ) = (A′, R′) is δ-symmetric.

Proof. We will show two statements for each semantics σ: firstly we will show constructively
that for any extension E ∈ σ(SF ) there exists an extension E′ ∈ σ(SF ′) such that E′∩A =
E (“⇒”). Secondly we will show that for each extension E′ ∈ σ(SF ′) the corresponding
extension E = E′ ∩A is an extension E ∈ σ(SF ) (“⇐”).

1. For σ = cf :
“⇒”: Let E ∈ cf (SF ). Then also E ∈ cf (SF ′), as there are no attacks between
elements of A that are added in the construction.
“⇐”: Let E′ ∈ cf (SF ) and let E = E′ ∩ A. Then E ∈ cf (SF ), as there can be no
attack between arguments in A.

2. For σ = adm:
“⇒”: Let E ∈ adm(SF ) and let E′ = E ∪ {a1r,t | r = (T, h), t ∈ T,E 7→R t}. By
construction we have E′ ∈ cf (SF ′). Assume towards contradiction some a ∈ E′ is not
defended by E′, i.e. there is an attack (T, a) ∈ R′ such that E′ ̸7→R′ T . This means
either a ∈ A′ \ A or a ∈ A. In the first case we have a = a1r,t for some r = (T, h) ∈ R
with t ∈ T . We have that a defends itself against the attack from a2r,t, the only
remaining attack towards a is from t. But since a ∈ E′, by construction we have
E 7→R t, which also means E′ 7→R′ t, so a is defended by E′, which is a contradiction.
In the second case we have a ∈ A. Since a ∈ E and E ∈ adm(SF ) we know that a is

6. Let σ, σ′ be semantics, then a (SETAF-)translation Tr is called acceptance-preserving for σ ⇒ σ′ if for
every SETAF SF = (A,R) we have σ(SF ) = {E ∩A | E ∈ σ′(Tr(SF ))} (König, 2020).
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defended against all attacks in R, i.e. all attacks from within A. But since the only
active attacks towards a are from within A, we have that a is defended, which is a
contradiction.
“⇐”: Let E′ ∈ adm(SF ′) and let E = E′ ∩ A. We know E ∈ cf (SF ). Let a ∈ E
and let (T, a) ∈ R be an attack towards a. Since E′ is admissible in SF ′ we have
E′ 7→R′ T , i.e. there is an attack (T ′, t) ∈ R′ such that t ∈ T and T ′ ⊆ E′. Since the
only active attacks towards t are from within A, we also have that E 7→R t, which
means a is defended by E in SF .

3. For σ = stb:
“⇒”: Let E ∈ stb(SF ) and let E′ = {a1r,t | r = (T, h), t ∈ T, t ̸∈ E}. We have
E ∈ cf (SF ′) by construction. Moreover, since E ∈ stb(SF ), by Lemma D.1 we have
A ⊆ E′⊕

R′ , and by construction we have A′ \A ⊆ E′⊕
R′ .

“⇐”: Let E′ ∈ stb(SF ′) and let E = E′ ∩ A. We know E ∈ cf (SF ), and, since
E′ ∈ stb(SF ′), by Lemma D.1 we have A ⊆ E⊕

R .

4. For σ = pref:
“⇒”: Let E ∈ pref(SF ) and let E′ = {a1r,t | r = (T, h), t ∈ T,E 7→R t}. We already
know E′ ∈ adm(SF ′). Assume towards contradiction there is a set S′ ∈ adm(SF ′)
such that S′ ⊃ E′, i.e. there is an argument a ∈ A′ such that a ∈ S′ \E′. This means
either a ∈ A or a ∈ A′ \ A. Let S = S′ ∩ A, we know S ∈ adm(SF ). In the first case
we would have S ⊃ E, which is a contradiction to the assumption that E ∈ pref(SF ).
In the second case we have a ∈ A′ \ A, i.e. a = a1r,t (or a = a2r,t, in which case the
proof continues analogously) for some r = (T, h) ∈ R and t ∈ T . Since a is attacked
by t, in order to defend it we have S′ 7→R′ t. Since the only active attacks towards t
are from within A, there must be an attack (T ′, t) ∈ R such that T ′ ⊆ S′. We know
E′ ̸7→R′ t by construction, so there is an argument b ∈ A such that b ∈ S′ \ E′, but
since S ∈ adm(SF ) and S ⊃ E again we have a contradiction to the assumption that
E ∈ pref(SF ).
“⇐”: Let E′ ∈ pref(SF ′) and let E = E′ ∩ A. We know E ∈ adm(SF ). Assume
towards contradiction there is a set S ∈ adm(SF ) such that S ⊃ E. Let S′ =
S ∪ (E′ \ E). By construction we have S′ ⊃ E′. Moreover we have S′ ∈ adm(SF ′):
assume towards contradiction there is an argument a ∈ S′ that is not defended by
S′, i.e. there is an attack (T, a) ∈ R′ such that S′ ̸7→R′ T . We either have a ∈ A or
a ∈ A′ \ A. In the first case a defends itself against attacks from A′ \ A, and it is
defended against attacks from A, since a ∈ S and S ∈ adm(SF ). In the second case
we have a = a1r,t (or a = a2r,t, in which case the proof continues analogously) for some
r = (T, h) ∈ R and t ∈ T . We have that a defends itself against the attack from
a2r,t. It is also attacked from t, but we have S′ 7→R′ t: since a ∈ S′ and a ∈ A′ \ A
by construction of S′ we have a ∈ E′, but since E′ ∈ adm(SF ′) we have E′ 7→R′ t.
The argument t can only be actively attacked from within A (since there are no other
active attacks towards t in R′) and, hence, S′ 7→R′ t. This shows S′ ∈ adm(SF ′), and
since S′ ⊃ E′ we have a contradiction to the assumption E′ ∈ pref(SF ′).

5. For σ = stage:
“⇒”: Let E ∈ stage(SF ) and let E′ = {a1r,t | r = (T, h), t ∈ T, t ̸∈ E}. We have E′ ∈
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cf (SF ′) by construction. Assume towards contradiction there is a set S′ ∈ cf (SF ′)
such that S′⊕

R′ ⊃ E′⊕
R′ . Let S = S′ ∩ A. We know S ∈ cf (SF ). Moreover we have

S⊕
R ⊇ E⊕

R by Lemma D.1. S′⊕
R′ ⊃ E′⊕

R′ means there is an argument a ∈ S′⊕
R′ \E′⊕

R′ . This
means either a ∈ A or a ∈ A′ \ A. Since we have A′ \ A ⊆ S′⊕

R′ by construction, the
second option is impossible. So there is an argument a ∈ A such that a ∈ S′⊕

R′ \ E′⊕
R′ ,

but then a ∈ S⊕
R \ E⊕

R , so S⊕ ⊃ E⊕, which is a contradiction to our assumption
E ∈ stage(SF ).
“⇐”: Let E′ ∈ stage(SF ′) and let E = E′ ∩ A. We know E ∈ cf (SF ). Assume
towards contradiction there is a set S ∈ cf (SF ) such that S⊕

R ⊃ E⊕
R . Let S

′ = {a1r,t |
r = (T, h), t ∈ T, t ̸∈ S}. We have S′ ∈ cf (SF ′) by construction. As before we have
A′ \ A ⊆ S′⊕

R′ . Moreover, by Lemma D.1 we have S′⊕
R′ ∩ A ⊃ E′⊕

R′ ∩ A, so we have
S′⊕
R′ ⊃ E′⊕

R′ , which is a contradiction to the assumption E′ ∈ stage(SF ′).

6. For σ = sem:
“⇒”: Let E ∈ sem(SF ) and let E′ = {a1r,t | r = (T, h), t ∈ T,E 7→R t}. We already
know E′ ∈ adm(SF ′). Assume towards contradiction there is a set S′ ∈ adm(SF ′)
such that S′⊕

R′ ⊃ E′⊕
R′ . Let S = S′ ∩ A. We know S ∈ adm(SF ). Moreover by

Lemma D.1 we have S⊕
R ⊇ E⊕

R . From S′⊕
R′ ⊃ E′⊕

R′ we know there is an argument
a ∈ A′ such that a ∈ S′⊕

R′ but a ̸∈ E′⊕
R′ . This means either a ∈ A or a ∈ A′ \A. In the

first case by Lemma D.1 we get S⊕
R ⊃ E⊕

R , which is a contradiction to our assumption
E ∈ sem(SF ). In the second case we have a = a1r,t (or a = a2r,t, in which case the proof
continues analogously) for some r = (T, h) ∈ R and t ∈ T . We have S′ 7→R′ t in order
to defend a. But by construction of E′ we have E′ ̸7→R′ t, hence, E ̸7→R t, but since
S 7→R t we have S⊕

R ⊃ E⊕
R , which is a contradiction to our assumption E ∈ sem(SF ).

“⇐”: Let E′ ∈ sem(SF ′) and let E = E′ ∩ A. We know E ∈ adm(SF ). Assume
towards contradiction there is a set S ∈ adm(SF ) such that S⊕

R ⊃ E⊕
R . Let S′ =

{a1r,t | r = (T, h), t ∈ T, S 7→R t}. By construction we have S′ ∈ adm(SF ′). By

Lemma D.1 we have S′⊕
R′ ∩A ⊇ E′⊕

R′ ∩A. Moreover we have S′⊕
R′ ∩A′ \A ⊇ E′⊕

R′ ∩A′ \A:
Assume otherwise, i.e. there is an argument a ∈ A′ \ A such that a ∈ E′⊕

R′ \ S′⊕
R′ . We

have a = a1r,t (or a = a2r,t, in which case the proof continues analogously) for some
r = (T, h) ∈ R and t ∈ T . We either have a ∈ E′ or t ∈ E′. In the first case in
order to defend a we would have E′ 7→R′ t. The argument t can only be attacked from
within A, so we would also have S 7→R t and, hence, S′ 7→R′ t, which means a ∈ S′⊕

R′ ,
which is a contradiction. In the second case we have t ∈ E′, which means t ∈ E⊕

R , so
by assumption t ∈ S⊕

R , and then again by construction a ∈ S′⊕
R′ (either because t ∈ S′

or because S 7→R t).

Proposition 7.16. For fully-symmetric SETAFs the problems Credσ for σ ∈ {adm, stb, pref,
com} are NP-complete.

Proof. Let φ be a CNF-formula with clauses C over atoms Y . We construct SFφ according
to Reduction 7.15.

Note that no argument c ∈ C can be in an admissible set, as the argument φ cannot
be defeated. As with the standard reduction, φ is acceptable if and only if the assignment
corresponding to the arguments X ∪ X̄ satisfies the original formula, thus concluding the
reduction from the boolean satisfiability problem.
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Lemma 7.20. Let SF = (A,R) be a primal-bipartite SETAF with a partitioning (Y,Z),
then an argument a ∈ Y is credulously accepted w.r.t. pref semantics iff it is in the set
returned by Algorithm 1. Moreover, the set returned by Algorithm 1 is admissible in SF .

Proof. “⇒”: We will show inductively that for every iteration of the algorithm the argu-
ments that are removed in step 6 cannot be defended and the attacks that are removed
in step 7 cannot be part of a defending attack. For the first iteration this is the case, as
we construct Y1 by only removing those arguments y ∈ Y from Y that are attacked by an
attack (Z ′, y) on which no counter-attack exists. Moreover we remove all attacks (Y ′, z)
towards arguments z ∈ Z such that for one of the arguments y′ ∈ Y ′ we already showed
it is not defensible, as they cannot defend any argument in an admissible set. Likewise,
assuming this property holds for the i− 1-th iteration, in the i-th iteration we only remove
arguments that are not defensible and attacks that cannot play a role in admissible sets.

Assume towards contradiction an argument y ∈ Y is credulously accepted, but not in
the set S that is returned by the algorithm. This means at some iteration i the argument
y is removed, but, as established, this means it is not defensible, which is a contradiction
to the assumption is it credulously accepted.

“⇐”: Let S be the set that is returned by the algorithm. Assume we have x ∈ S for
some argument x ∈ Y . As we have S ⊆ Y , we know S is conflict-free in SF . Moreover
we know that S defends x: towards contradiction assume otherwise, i.e. there is an attack
(Z ′, x) towards x such that S does not attack Z ′. But then x would be removed in step 6,
which is a contradiction to the assumption that x ∈ S.

Proof for stage semantics of Theorem 7.24 (König, 2020):

Reduction D.3. Let Φ = ∀Y ∃ZC be a QBF 2
∀ -formula with at least 2 clauses where in each

clause at least one positive and at least one negative literal occurs, consisting of a set of
clauses C over sets of propositional atoms Y and Z. We define the SETAF SFΦ

3 = (A,R),
where

A = {φ, φ̄′, φ̄, φ′, φ′′, φ′′′} ∪ C ∪ Y ∪ Ȳ ∪ Z ∪ Z̄ ∪ {y′, y′′, y′′′, ȳ′, ȳ′′, ȳ′′′ | y ∈ Y },
R = {(x, x̄), (x̄, x) | x ∈ Y ∪ Z} ∪ {({x | x̄ ∈ c} ∪ {x̄ | x ∈ c}, c) | c ∈ C} ∪

{({c | c ∈ C}, φ̄′), (φ̄′, φ), (φ̄, φ), (φ, φ̄)} ∪
{({φ,φ′}, φ′′), ({φ,φ′}, φ′′′), ({φ′′, φ′′′}, φ′′), ({φ′′, φ′′′}, φ′′′)} ∪
{({y, y′}, y′′), ({y, y′}, y′′′), ({y′′, y′′′}, y′′), ({y′′, y′′′}, y′′′) | y ∈ Y } ∪
{({ȳ, ȳ′}, ȳ′′), ({ȳ, ȳ′}, ȳ′′′), ({ȳ′′, ȳ′′′}, ȳ′′), ({ȳ′′, ȳ′′′}, ȳ′′′) | ȳ ∈ Ȳ }

We have (as we will show in Lemma D.5) that arguments y′ and ȳ′ are in every stage
extension, and the arguments y′′ and y′′′ (or ȳ′′ and ȳ′′′ respectively) cannot be in a conflict-
free set together, so the only way to have both in the range of a stage extension is to have
y (or ȳ respectively) in this extension. This way every combination of arguments from Y
and Ȳ (that correspond to a partial interpretation over variables Y ) is in an incomparable
stage extension.
It is not immediate why SFΦ

3 is always 2-colorable; for this we need to have for each clause
c ∈ C to have at least one positive and at least one negative literal, as otherwise this
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φ̄′

c1 c2 c3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

φφ̄

y′1

y′′1

y′′′1
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φ′ φ′′ φ′′′

Figure 3: Illustration of SFΦ
3 for Φ = ∀Y ∃Zφ(Y,Z) with Y = {y1, y2}, Z = {z1, z2}, and φ =

{{y1, ȳ2, z̄1}, {ȳ1, y2, z2)}, {y2, z1, z̄2}}. The coloring of the arguments corresponds to a possible
partitioning that shows the 2-colorability of SFΦ

3 , i.e. we have that no attack is monochromatic.

partitioning could produce a monochromatic edge (i.e. an edge such that all involved ar-
guments are in just one of Y or Z). Moreover we assume there are at least two clauses;
these two constraints do not affect the hardness of the QBF 2

∀ problem. Consider a par-
titioning (A,B) where A = ({cx, φ̄, φ̄′, φ′, φ′′} ∪ {ȳ, y′, y′′, ȳ′′ | y ∈ Y } ∪ {z̄ | z ∈ Z}) and
B = ({c | c ∈ C \ {cx}} ∪ {φ,φ′′′} ∪ {y, ȳ′, ȳ′′, y′′ | y ∈ Y } ∪ {z | z ∈ Z} ∪ {φ′′′}), where cx
is an arbitrary clause. Then one can check that (A,B) is a partitioning such that SFΦ

3 is
2-colorable (the coloring in Figure 3 corresponds to such a partitioning).
The following proof follows the structure of (Dvořák, 2012, p. 52-55).

Lemma D.4. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then for every extension
E ∈ stage(SFΦ

3 ) we have {φ′′, φ′′′} ̸⊆ E, {y′′, y′′′} ̸⊆ E, and {ȳ′′, ȳ′′′} ̸⊆ E for each y ∈ Y .
Moreover we have x ∈ E iff x̄ ̸∈ E for each x ∈ Y ∪ Z ∪ {φ}.

Proof. The first statement immediately follows from the fact that E is conflict-free. More-
over we have that at at least one of x and x̄ is in E: towards contradiction assume otherwise,
i.e. {x, x̄}∩E = ∅. If x = φ, then E′ = E∪{φ̄} is conflict-free with E′⊕

R ⊃ E⊕
R . If x ∈ Y ∪Z,

then E′ = (E \ {c | c ∈ C, there is some (T, c) ∈ R such that T ⊆ E ∪{x}}∪{x} is conflict-
free with E′⊕

R ⊃ E⊕
R . By conflict-freeness we also have that at most one of x and x̄ is in

E.

Lemma D.5. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then {x′ | x ∈ Y ∪ Ȳ ∪
{φ}} ⊆ E for every E ∈ stage(SFΦ

3 ).
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Proof. Towards contradiction assume E ∈ stage(SFΦ
3 ) and x′ ̸∈ E for some x ∈ Y ∪Ȳ ∪{φ},

then we have E′ = (E∪{x′})\{x′′, x′′′} ∈ cf (SFΦ
3 ) with E′⊕

R ⊃ E⊕
R , which is a contradiction

to the assumption E ∈ stage(SFΦ
3 ).

Lemma D.6. Let Φ be a QBF 2
∀ formula and let SFΦ

3 = (A,R), then φ is in every stage
extension iff Φ is true.

Proof. “⇒”: Assume Φ is false, we show that then there is an extension E ∈ stage(SFΦ
3 )

such that φ ̸∈ E. As Φ is false, there is a partial interpretation IY such that for each partial
interpretation IZ we have that at least one clause is not true, i.e. in the corresponding set
of arguments at least one argument c ∈ C is attacked. As by Lemma D.4 and since φ̄′ is
not attacked, the only way to have {y′′, y′′′ | y ∈ IY } ∪ {φ̄′} ⊆ E⊕

R is if we also have φ̄′ ∈ E,
we know that such a stage extension E with φ̄′ ∈ E exists, but this extension can only have
φ ̸∈ E.
“⇐”: Assume Φ is true, and let, towards contradiction, E ∈ stage(SFΦ

3 ) with φ ̸∈ E.
We know that for each partial interpretation IY there is a partial interpretation IZ such
that IY ∪ IZ makes φ true. Let IY = E ∩ Y and let IZ be such a partial interpretation
such that IY ∪ IZ makes φ true. Moreover let E′ = IY ∪ IZ ∪ {x̄ | x ∈ (Y ∪ Z) \ (IY ∪
IZ)} ∪ C ∪ (E ∩ (Y ′ ∪ Y ′′ ∪ Y ′′′ ∪ Ȳ ′ ∪ Ȳ ′′ ∪ Ȳ ′′′)) ∪ {φ,φ′}. One can check that E′ is
conflict-free in SFΦ

3 , also we have E′⊕
R ⊃ E⊕

R : by construction the ranges of E′ and E
coincide on all arguments but arguments c ∈ C and on the arguments φ′′ and φ′′′, where
we have C ⊆ E′⊕

R and {φ′′, φ′′′} ⊆ E′⊕
R , but {φ′′, φ′′′} ̸⊆ E⊕

R . This is a contradiction to the
assumption E ∈ stage(SFΦ

3 ).

From this the desired result immediately follows.

Proposition D.7. For 2-colorable SETAFs the complexity of Credstage and Skeptstage co-
incides with the complexity of the general problem.

Proposition 7.26. The problem Verpref remains coNP-complete even for self-attack-free
SETAFs SF where all SCCs S ∈ SCCs(SF ) are fully-symmetric, i.e., SF↓S is fully sym-
metric.

Proof. Let SF = (A,R) be an arbitrary SETAF and let x, y /∈ A be new arguments. We
define SF ′ = (A ∪ {x, y}, R′), with

R′ = R ∪ {({y, z}, t) | (t, z) ∈ primal(SF ), (z, t) /∈ primal(SF )}.

In the resulting framework SF ′ clearly all SCCs are primal-symmetric (note that {a}, {b} are
SCCs of SF ′, as well as all loosely connected components of SF ). Clearly x ∈ G and y ∈ G+

for G ∈ grd(SF ′), and hence, x ∈ E and y ∈ E+ for all E ∈ pref(SF ′). By construction
we can apply the reduct on {x} and obtain SF ′{x} = SF , and by modularization we hence
get pref(SF ′) = {E ∪ {x} | E ∈ pref(SF )}, which means E ∈ pref(SF ) if and only if
E ∪ {x} ∈ pref(SF ′).

Proposition 7.30. Let SF = (A,R) be a primal-bipartite SETAF and C,E ⊆ A, M ⊆ R.
We can decide whether E ∈ pref(SF,C,M) in polynomial time.
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Proof. We can check in polynomial time whether E ∈ adm(SF,C,M), and compute SFE
M .

By Proposition 7.29 it suffices to check whether there is a non-empty set E′ ∈ adm(SF ′, C ′,M ′),
which we can find out by running Algorithm 2 for both both partitions.

Proposition 7.31. Let SF = (A,R) be an odd-cycle-free SETAF with |SCCs(SF )| = 1.
Then SF is primal-bipartite.

Proof. Let x be an arbitrary argument from SF , we say x reaches argument y ∈ A in n steps
if there are attacks (X1, x2), (X2, x3), . . . , (Xn, y) ∈ R with x ∈ X1, xi ∈ Xi for 1 ≤ i ≤ n.
Let S = {a ∈ A | a can be reached from x in an even number of steps }. Then (S,A \ S)
is a partitioning for SF : Clearly, A \ S is the set of arguments that can be reached from
x in an odd number of steps, and because SF is strongly connected at the same time the
set of argument from which x can be reached in a odd number of steps. Assume towards
contradiction there are two arguments a, b ∈ (A\S) s.t. a reaches b in 1 step. However, this
introduces an odd-length primal-cycle, as x reaches a in an odd number of steps, a reaches
b in 1 step, and b reaches x in an odd number of steps, a contradiction. Likewise, there can
be no pair a, b of arguments in S where a reaches b in 1 step.

Theorem 7.33. Let SF be a SETAF where for all SCCs S ∈ SCCs(SF ) it holds either

� S is acyclic,

� S is even-cycle-free,

� S is primal-bipartite,

� S odd-cycle-free, or

� the size of S is bounded by a parameter k, i.e., |S| ≤ k.

Then we can verify a given preferred extensions in O
(
2k · poly(|SF |)

)
for some polynomial

function poly.

Proof. Follows from Proposition 7.30, Proposition 7.31, and Proposition 7.32 and the fact
that acyclic SETAFs are also even- and odd-cycle-free.
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Dvořák, W., & Gaggl, S. A. (2016). Stage semantics and the SCC-recursive schema for
argumentation semantics. J. Log. Comput., 26 (4), 1149–1202.
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