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Abstract

In recent years deep learning methods, based on reconstruction errors, have facilitated
huge improvements in unsupervised anomaly detection. These methods make the limiting
assumption that the greater the distance between an observation and a prediction the lower
the likelihood of that observation. In this paper we propose conDENSE, a novel anomaly
detection algorithm, which does not use reconstruction errors but rather uses conditional
density estimation in masked autoregressive flows. By directly estimating the likelihood
of data, our model moves beyond approximating expected behaviour with a single point
estimate, as is the case in reconstruction error models. We show how conditioning on a dense
representation of the current trajectory, extracted from a variational autoencoder with a
gated recurrent unit (GRU VAE), produces a model that is suitable for periodic datasets,
while also improving performance on non-periodic datasets. Experiments on 31 time-series,
including real-world anomaly detection benchmark datasets and synthetically generated
data, show that the model can outperform state-of-the-art deep learning methods.

1. Introduction

Anomaly detection, or outlier detection, is the identification of data points that have devi-
ated from a learnt concept of normality (Ruff, et al., 2021). It is an increasingly active area
of machine learning research with applications in a wide range of fields, including: health
and medical risk, financial surveillance, risk management, and security (Pang, et al., 2020).

Anomalies can be categorized into three broad categories. Point anomalies are individual
data points that are standalone outliers with respect to the rest of the data. Collective
anomalies occur when groups of data points appear anomalous with respect to the rest of
the dataset. Finally, context anomalies, also known as conditional anomalies, are data points
that are only considered anomalous if they occur in particular contexts (Chandola, et al.,
2009). Context anomalies are commonly found in seasonal or periodic data (Chalapathy
& Chawla, 2019). Considering how widespread periodic phenomena are in biological or
behavioural systems (Ushakova, et al., 2021; Ahdesmäki, et al., 2005), catching context
anomalies is an important requirement for anomaly detection algorithms.
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There are a number of techniques that can be applied to anomaly detection, from
distance-based methods (such as K-means) to tree-based methods (such as isolation forests),
systematic comparisons have found K-means to be particular effective (Schmidl, et al.,
2022). In recent years there has been a focus on applying deep learning architectures to
outlier detection, with many reporting state of the art performance (Pang et al., 2020; Cha-
lapathy & Chawla, 2019; Tuor, et al., 2017; Alqurashi, et al., 2021; Deng & Hooi, 2021).
Among them, graph neural networks and transformer based architectures have been found
to be some of the most powerful. (Deng & Hooi, 2021; Tuli, et al., 2022). However, there
is some evidence that deep learning approaches may not justify their increase complexity,
with recent work suggesting that traditional anomaly-detection methods perform better
(Schmidl et al., 2022; Rewicki, et al., 2023).

The vast majority of unsupervised deep learning methods use reconstruction errors.
These methods make predictions about the current state of a time-series and use the dif-
ference between their prediction and the observed value, the reconstruction error, as an
anomaly score. If the aim is to classify anomalous data points, extreme value analysis is
typically used to define a threshold on this anomaly score (Deng & Hooi, 2021; Benecki,
et al., 2021; Su, et al., 2019; Tuli et al., 2022; Audibert, et al., 2020; Boniol, et al., 2021;
Kingsbury & Alvaro, 2020; Li, et al., 2019; Zhang, et al., 2019; Zhao, et al., 2020).

The reconstruction error approach to anomaly detection is based on a limiting assump-
tion that the greater the distance between an observation and a prediction the lower the
likelihood of that observation. Consider the example of a continuous random variable with
a bimodal probability density function (PDF) with two distinct peaks, the distance between
both peaks will always be greater than the distance between each peak and the local min-
imum separating them. Accordingly, if a model predicted a value that fell on one peak of
the PDF then an observation found at the local minimum would always produce a smaller
reconstruction error, and (incorrectly) be judged to have a higher associated likelihood,
than an observation found on the other peak. This example highlights the problems with
assuming likelihood is proportionate to distance from a prediction. By relying on a point
estimate of expected behaviour, reconstruction error models can overlook complexity in the
underlying data generating process.

Density estimation algorithms learn the PDF describing the expected range of values a
variable can take (Papamakarios, et al., 2018). Historically, they were a popular choice for
anomaly detection (Wang, et al., 2019; Breunig, et al., 2000) and a number of light-weight
density estimation algorithms are still widely used, such as LODA (Pevný, 2016) and CO-
POD (Li, et al., 2020). They assume outliers are more likely to be found in areas with lower
density, this is a far more flexible assumption than the idea underpinning reconstruction
errors. Surprisingly, there have been few studies leveraging the increased power of deep
learning by density estimation anomaly detection algorithms (Zong, et al., 2022). Recent
work shows that when compared to reconstruction error models deep density estimation
models, such as deep autoencoding Gaussian mixture models, tend to perform worse (Tuli
et al., 2022).

Our proposed model, conDENSE, does not rely on a reconstruction error but rather uses
normalising flows for density estimation. Normalising flows are a class of deep generative
models that are highly efficient density estimators (Papamakarios et al., 2018). Their abil-
ity to quantify the likelihood of observing unseen data makes them ideal outlier detectors
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(Schmidt & Simic, 2019). conDENSE learns a PDF, describing the data generating process,
and then uses it to calculate the likelihood of observations. In keeping with previous work,
we use extreme value analysis to find a likelihood threshold if required for anomaly clas-
sification. conDENSE uses normalising flows for density estimation in anomaly detection.
Our primary contribution is conditioning the normalising flows on dense representations of
the current trajectory, this generally improves performance and allows the model to handle
periodic datasets.

Unlike recent applications of normalising flows to time series, which have focused on
estimating the likelihood of a window of observations (Schmidt & Simic, 2019), conDENSE
calculates likelihood estimates for single observations, without ignoring short term dynam-
ics.

In this paper we demonstrate that conditional density estimation in normalising flows
is well suited to anomaly detection. We highlight how conditioning on a dense represen-
tations of the current trajectory allows them to achieve state-of-the-art performance on
both periodic and non-periodic datasets. We also visualise the PDFs learnt by our models,
illustrating how density estimation can increase the interpretability of anomaly detection
algorithms.

2. Related Work

In this section we review the theoretical concepts that underpin our model, namely: nor-
malising flows, and variational autoencoders (VAEs).

2.1 Normalising Flows

Normalising flows are generative models that can be used for sampling and density estima-
tion (Shchur, et al., 2019; Kumar, et al., 2019). When using normalising flows to estimate
the probability density function of a random variable X, you can assume X = fθ(Z) where
fθ : χ → Z, is a bijective or invertible function and Z is another random variable with a
tractable density function pz. The change of variables formula can then be used to obtain
the PDF of X:

px(x) = pz(g(x))
∣∣∣ det (∂g

∂x

)∣∣∣ (1)

where g = f−1
θ and ∂g/∂x is the Jacobian matrix of this inverse function.

Masked autoregressive flows (MAFs) are a type of normalising flow; they use the au-
toregressive property to ensure a triangular Jacobian, calculating the determinant of a
triangular matrix is trivial (Papamakarios et al., 2018). As can be seen in Equation 1,
calculating the determinant of the Jacobian matrix is essential to density estimation, con-
sequently MAFs are highly efficient density estimators. MAFs use masking in Masked
Autoencoder for Distribution Estimation (MADE) networks to approximate autoregressive
functions in a single pass, avoiding the recursion typically associated with autoregressive
models (Germain, et al., 2015). Stacking a series of MADE blocks facilitates the learning
of more expressive probability densities (Papamakarios et al., 2018).

The inputs to each MADE block can be augmented to include a conditioning variable
(Papamakarios et al., 2018). This will extend an unconditional MAF and allow it to estimate
conditional densities p(x|y).
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2.2 Variational Autoencoders

VAEs are a class of generative model that can be used for dimensionality reduction (Sun,
et al., 2018) and anomaly detection (Chatterjee, et al., 2021). Similar to other autoencoder
models, VAEs pass data through an encoder, which produces a dense latent representation.
A decoder then attempts to accurately recreate the original input from this smaller latent
representation (Baldi, 2012). VAEs extend on traditional autoencoders by using a varia-
tional Bayesian approach to transform a point estimate in latent space to a distribution in
latent space (Kingma & Welling, 2013). VAEs can be trained by maximizing the evidence
lower bound (ELBO) on the marginal log-likelihood:

log(p(x)) >= ELBO = Eq(z|x)
[
log

p(x, z)

q(z|x)

]
(2)

Recurrent architectures, such as long short-term memory networks (LSTMs) or gated re-
current units (GRUs), are often combined with VAEs to improve their performance on
sequential data (Lin, et al., 2020). VAEs can be used directly for anomaly detection by
considering the reconstruction error (Chatterjee et al., 2021; Lin et al., 2020). The latent
representations can also be used as a dense representation of the data (Sun et al., 2018).

3. Methods

In this section, we outline conDENSE’s model architecture, paying close attention to key
sub-components. We also give details on the experiments we ran comparing conDENSE to
benchmark anomaly detection algorithms.

3.1 Problem Definition

If we consider the following time series of length N: T = {X1, X2, ..., XN}. Xt are the
observations at time point t, with Xt ∈ Rd where d is determined by the number of sensors
recording at each time point, d = 1 for univariate time series. If T̃ is an unseen time
series of length Ñ derived from the same system as T , our aim is to predict Y , with
Y = {y1, y2, ..., yN} where yt ∈ {0, 1} is a binary variable indicating if the observation at
time t in T̃ is anomalous.

3.2 Model Architecture

A summary of the conDENSE model architecture can be seen in Figure 1. There are three
core components to conDENSE: a MAF which predicts the conditional likelihood of an
observation Xt given the current trajectory of the time series, a GRU VAE that produces a
dense representation of that current trajectory (this representation is parameterised by two
vectors µ and σ, which are fed into the MAF as conditional variables), and finally a peak
over threshold algorithm which is used to set a likelihood threshold (any future observations
that fall below this threshold will be considered anomalies). Subsequent subsections will
discuss some of these components in more details.

In order to train conDENSE in an end to end fashion we defined the following custom
cost function:

L = − log(p(Xt|µ, σ)) + λl + βr
(∑n

i=1(Zi − Ẑi)
2

n

)
(3)

804



conDENSE: Conditional Density Estimation

Figure 1: conDENSE model architecture

where − log(p(xt|µ, σ)) is the negative log likelihood of the training data, λl is a regular-
ization term that penalizes the model if the latent representations do not resemble the unit
Gaussian, and the final term is the reconstruction error obtained by comparing the input
to the GRU VAE with its decoded output, this can be used to approximate the maximizing
of the evidence lower bound in Equation 2. The reconstruction term is multiplied by a
constant discount parameter βr ∈ {0, 1}, this discount term ensures that the loss at each
epoch is primarily determined by the output of the likelihood calculation produced by the
MAF (βr = 0.1 was selected during hyperparameter optimisation).

3.3 GRU VAE

The GRU VAE is an essential component of the conDENSE model. It receives a window
of observations, ending with the current observation, as its input and it outputs a dense
representation of that window. This dense representation is used as a conditioning variable
in the MAF. The GRU VAE performs dimensionality reduction across time and, in the case
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of multivariate inputs, space. The tractable representation will describe how the system has
been behaving over this window. This can capture a number of crucial pieces of information,
such as: the relative position in a cycle of periodic data, the smoothness of the time series
over the window, and whether or not different components in multivariate systems are
interacting as expected.

Our VAE includes three components: a GRU to capture temporal interactions between
inputs, an encoder that produces a dense representation of the input, and a decoder that
attempts to reconstruct the original input. This reconstructed input is only used during
training, to calculate a reconstruction error, which is included in the global cost function
Equation 3. In order to prevent this reconstruction error term from biasing the output of
the network too strongly, it is multiplied by a constant discount factor.

The choice of a GRU over other sequential models was primarily motivated by parsimony.
Initial experiments found no significant performance difference when using an LSTM or a
GRU, so we selected the recurrent architecture with fewer parameters. Our use of relatively
short trajectory windows also mitigates the risk of vanishing gradients and reduces the
added value of larger architectures, such as transformers, that are better suited to detecting
long-term dependencies.

As detailed above, VAEs produce distributions in latent space rather than point es-
timates. In conDENSE each unit in the latent representation is a Gaussian distribution,
implemented in a TensorFlow probabilistic layer, regularization during training ensures that
these resemble the unit Gaussian. The mean and standard deviation from each unit in the
latent representation are passed as conditional variables to the MAF in a conDENSE model.
The number of units in the latent representation is a key hyperparameter for the model.
The other key hyperparameters are: the size of the window of previous observations fed
into the GRU VAE, the number of units in the GRU, the number of hidden layers in the
encoder and decoder, and the dimensionality of each of these layers.

3.4 Peaks Over Thresholds

In keeping with previous work we use the series peak over threshold algorithm to set the
threshold for anomaly detection (Deng & Hooi, 2021; Benecki et al., 2021; Su et al., 2019;
Tuli et al., 2022; Audibert et al., 2020; Boniol et al., 2021; Kingsbury & Alvaro, 2020; Li
et al., 2019; Zhang et al., 2019; Zhao et al., 2020). The method uses extreme value theory
over the anomaly scores from the training set to determine the threshold (Siffer, et al.,
2017). This method allows us to set an anomaly threshold without labelled anomalies in
the training set.

3.5 Data Preprocessing

In order to improve accuracy and increase stability, each feature is normalised independently
using min-max scaling:

Xd
t ←

(Xd
t −min(Xd

train))

(max(Xd
train)−min(Xd

train))
(4)
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where Xd
t is the value of a given feature at a particular time and Xd

train is the full vector
of values used in the training set for a given feature. To avoid information leakage, data in
the test set is processed using the min and max values obtained from the training set.

Windows of previous observations are created for the GRU VAE component of con-
DENSE: W = [Xt, Xt−1, ..., Xt−w] where w is the window size. For observations found in
the first w steps of a time series a constant value is used for padding. Observations that
are included in W are also scaled according to Equation 4

3.6 Datasets

The performance of our model was evaluated using a combination of real-world and synthetic
data. Assessment on commonly used anomaly detection benchmark datasets allows us to
see how well our model generalises when applied to real-world time-series, with unknown
data generating processes. It also facilitates direct comparisons with similar work. On the
other hand, assessment on synthetic datasets with known properties allows us to make more
concrete claims about the types of anomalies our model can handle. In total we used 11
real world time-series and 20 synthetic time-series.

3.6.1 Real-World Datasets

Dataset Train Size Test Size Dimensions Periodic Number of Time-Series Anomaly Frequency (%)

UCR 2025 5475 1 True 4 1.06%
SMD 26959 26959 38 True 3 4.31%
SWaT 8250 1441 51 False 1 6.11%
MSL 2110 6248 25 or 55 False 3 8.59%

Table 1: Real-world dataset statistics

The characteristics of the 4 real-world datasets (11 time-series) used to evaluate the perfor-
mance of our model are summarised in Table 1. Our goal was to evaluate our model in a
range of contexts, as a result we have considered both periodic and non-periodic datasets
as well as univariate and multivariate datasets.

• Hexagon-ML (UCR): we consider four sequences of an internal bleeding dataset (Dau,
et al., 2019). Each sequence is univariate. Since the regular beating of the heart drives
the recorded values this dataset displays high periodicity. The UCR dataset is also of
interest as all of its test set anomalies are context anomalies.

• Server Machine Dataset (SMD): a 5-week-long dataset collected from a large internet
company, the dataset monitors resource utilisation from 38 different machines (Su
et al., 2019). In keeping with (Tuli et al., 2022) we only consider the following non
trivial sequences: machine 1-1, machine 2-1, and machine 3-7 (machine 3-2 was ex-
cluded as there are no recorded anomalies in the test set). Since human traffic varies
over the course of the day this dataset is periodic.

• Secure Water Treatment (SWaT): provided by iTrust, this dataset is taken from a
scaled-down water treatment testbed (Goh, et al., 2016). We consider data collected
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in December 2015, with 6 days of normal activity being used as a training set. The
following day, when a number of cyber-attacks were initiated, was used as a test set.

• Mars Science Laboratory (MSL): this dataset contains sensor and actuator data from
the mars rover. As has been previously established in (Nakamura, et al., 2020; Tuli
et al., 2022), we only consider the non-trivial sequences A4, C2, and T1. The P1
sequence was withheld for hyperparameter optimisation.

3.6.2 Synthetic Datasets

In addition to the 11 real-world time-series, our evaluation was supplemented with 20 syn-
thetic time-series. These time-series were generated using GutenTag, an extensible tool for
the creation of anomalous time-series (Wenig, et al., 2022).

Synthetic data were grouped into 4 classes, each characterised by a different type of
anomaly, 5 time-series were generated per class. We used sine waves as the base oscillations
for each time-series with 20% of the dimensions in a given time-series being affected by each
anomaly. The underlying characteristics (time-series length, anomaly length, dimensional-
ity, base oscillation frequencies, and anomaly magnitude) of each time-series within a class
was randomly sampled without replacement from a range of possible values, full details
of the selected values can be seen in Appendices Table 5. More information on the four
synthetic anomaly classes is provided below.

• Point Anomalies: 5 extremum anomalies were injected into the test set at separate
time points. It should be noted that each extremum anomaly only lasts a single
time-step. These synthetic anomalies can be considered point anomalies.

• Variance Anomalies: A single extended anomaly, characterised by an increase in
the variance of 20% of the sine waves, is inserted into the test set. These synthetic
anomalies can be considered context anomalies.

• Frequency Anomalies: A single extended anomaly, characterised by an increase in the
frequency of 20% of the waves, is inserted into the test set. These synthetic anomalies
can be considered context anomalies.

• Mean-Shift Anomalies: A single extended anomaly, characterised by a shift in the
mean of 20% of the waves, is inserted into the test set. These synthetic anomalies can
be considered collective anomalies.

3.7 Evaluation Metrics

By only selecting time-series with labelled anomalies in their test sets, we are able to
compare models’ predictions to ground truth labels. Despite the interest in the field, there
is a lack of consensus on the most appropriate metrics for evaluating anomaly detection
algorithms (Sørbø & Ruocco, 2023). Most papers tend to report area under the receiver
operating curve (ROC AUC) and area under the precision recall curve (PR AUC) (Schmidl
et al., 2022; Tuli et al., 2022), even though there is evidence that ROC AUC is poorly suited
to imbalanced datasets (Sørbø & Ruocco, 2023). For the sake of comparison, we chose to
include both PR AUC and ROC AUC.
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We use Autorank, a statistical tool that facilitates the comparison between paired pop-
ulations (Herbold, 2020), to rank the performance of different models across a number of
time-series.

3.8 Benchmark Models

Model Method Deep Learning

TranAD Reconstruction True
GDN Reconstruction True

OmniAnomaly Reconstruction True
LSTM Reconstruction True

Isolation Forest Isolation Tree False
Kmeans Distance False
COPOD Density Estimation False
LODA Density Estimation False

Table 2: Benchmark models

Table 2 provides the full list of models used to benchmark conDENSE’s performance.
Due to its similarity with conDENSE’s GRU VAE component, we implemented the LSTM
VAE from scratch. We used publicly available code, provided by the original developers,
for TranAD and GDN1. All other benchmark models were implemented using TimeEval, an
open source evaluation tool for anomaly detection algorithms (Wenig et al., 2022). It should
be noted that model performance on a given dataset will differ from previously reported
values if different sequences are used for evaluation.

3.9 conDENSE Hyperparameters

Hyperparameter Value

MAF Bijectors 5
MAF Hidden Units [64, 64]

Window Size 10
GRU Hidden Units 5
Latent Dimensions 20
VAE Hidden Units [256, 128]

POT lm 0.993 or 0.97
βr (see Equation 3) 0.1

Table 3: conDENSE hyperparameters

1. TranAD implementation: https://github.com/imperial-qore/TranAD.
GDN implementation: https://github.com/d-ailin/GDN
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Our models were implemented using TensorFlow and optimised using the Adam al-
gorithm with a learning rate of 0.001, and a batch size of 128 (these were the suggested
default values). Models were trained for up to 50 epochs, although an early stopping rule
terminated training early if performance had not improved over three consecutive epochs.
In order to do this, 20% of training data was withheld for use as a validation set.

Model specific hyperparameters are shown in Table 3. conDENSE hyperparameters
were optimized using the MSL P1 time-series, with respect to ROC AUC, performance on
this dataset is not included in our results. With the exception of POT lm, all conDENSE
hyperparameters are shared across all datasets. We use a higher POT lm coefficient for the
univariate time-series dataset, in keeping with previous work (Tuli et al., 2022; Su et al.,
2019).

4. Results

Critical difference diagrams comparing the performances of conDENSE and the benchmark
models are presented in Figure 2 (Demšar, 2006). These diagrams visualise the relative
performance of each model across a group of time-series. Models are ordered along the top
axis, which reflects their mean rank for a given metric. Models that are connected by a
bold line below this axis were not found to be significantly different. Statistical significance
was established using: the non-parametric Friedman test, to determine if there are any
significant differences between the mean values of populations, followed by the post-hoc
Nemenyi test, to infer which differences are significant (Demšar, 2006). For detailed data
on the performance of each model on all of the 31 time-series see Appendices Table 6.

conDENSE ranks well compared to the benchmark models across all datasets. It has
the lowest mean rank for both PR AUC and ROC AUC, it is significantly better than all
models, with the exception of Kmeans and COPOD. Since ROC AUC and PR AUC scores
consider ranked prediction probabilities, rather than binary class labels, conDENSE’s strong
performance on these metrics demonstrates that it produces scores that are better ordered
than the benchmark models’.

conDENSE’s performance is also encouraging on real-world datasets, producing the best
PR AUC mean rank and the second best ROC AUC mean rank. It should be noted that for
both metrics these ranks were not found to be significantly different from most benchmark
models.

Results are strong across the synthetic anomaly datasets, with conDENSE producing
the best mean rank for both metrics in each case, although it was found to be statistically
similar to a number of the other benchmark models. It is harder to establish statistical
significance for each of the synthetic datasets as models are only being compared on 5
separate time series.

Overall, these results show that conDENSE can compete with state-of-the-art models
when detecting anomalies in a range of contexts.
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(a) All Datasets (b) Real-World Datasets

(c) Synthetic Point Anomalies (d) Synthetic Variance Anomalies

(e) Synthetic Frequency Anomalies (f) Synthetic Mean-shift Anomalies

Figure 2: Critical difference diagrams comparing the performance of conDENSE to bench-
mark models. PR AUC and ROC AUC are compared for different groups of time-series.
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4.1 Ablation

In order to assess the impact of our primary contribution, conditioning a MAF on a dense
representation of the current trajectory, we performed an ablation analysis. In this analysis
we compared the performance of conDENSE to an unconditional MAF.

Statistical analysis shows that conDENSE produces a significantly better PR AUC than
an unconditional MAF across all datasets (p = 0.001 < 0.05**, Wilcoxon’s signed rank
test). Similar tests found a significant performance uplift for conDENSE on synthetic fre-
quency anomalies (p = 0.003 < 0.05**, Wilcoxon’s signed rank test) and a marginal uplift
for synthetic variance anomalies (p = 0.054 < 0.1**, Wilcoxon’s signed rank test). Inter-
estingly, there was no significant difference between an unconditional MAF and conDENSE
for synthetic point anomalies (p = 0.358 > 0.05, Wilcoxon’s signed rank test) and synthetic
mean-shift anomalies (p = 0.203 > 0.05, Wilcoxon’s signed rank test).

Detailed performance breakdowns of an unconditional MAF for each time-series is in-
cluded in Appendices 6. The unconditional MAF compares favourably to a number of the
benchmark models on three of the real-world datasets: MSL, SWaT, and SMD. However,
unlike conDENSE, it is totally unable to catch any of the context anomalies in the highly
periodic UCR dataset.

These results suggest that the primary advantage of conDENSE over unconditional
MAFs is its ability to handle context anomalies.

4.2 Training Time

Figure 3: Critical difference diagram comparing the training times of conDENSE and the
benchmark models across all time-series.

Figure 3 is a critical difference diagram comparing the training times of conDENSE and
the benchmark models. There is no statistical difference between conDENSE and the other
deep learning algorithms, although it is found to be significantly slower than the traditional
models.

In (Tuli et al., 2022) the training time of TranAD is compared to a large range of other
deep learning approaches and it is found to be significantly faster. Table 4, which compares
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the training times of deep learning models, reinforces this finding. This table shows how,
despite not being the fastest, conDENSE avoids the long training times associated with
certain deep learning methods, such as GDN. See Appendices 6 for training times for each
individual time-series.

Training Time (s)
Mean (s) Median (s) Standard Deviation (s)

TranAD 7.02 3.65 11.06
LSTM 4.75 3.98 2.12
conDENSE 10.20 7.36 7.41
OmniAnomaly 47.18 35.86 43.18
GDN 83.29 45.89 113.10

Table 4: Table comparing the training time of deep learning algorithms.

4.3 Interpretability

Since conDENSE involves direct density estimation, unlike other reconstruction error based
approaches, it is possible to visualise the PDF of expected values at a given point in a time
series. This greatly increases interpretability. Figure 4a plots the evolution of expected
values over a single period, since the observed values remains in the centre of the distribution
of the expected values, no anomaly would be flagged for this period. The narrower ranges
of expected values in some sections of Figure 4a reflect increased certainty about how
conDENSE believes the system will behave. It is unsurprising that uncertainty increases at
key inflection points.

The ability of the GRU VAE to capture the relative position in a period is highlighted
in Figure 4b. The distribution of expected values for two different data points are plotted.
Despite having similar values, these two observations come from different phases of the
period. Around observation A the sensor values are rapidly increasing, on the other hand,
the sensor values are decreasing around observation B. The position of both PDFs relative
to their previous observations captures these dynamics. The PDF of expected values for A
shows conDENSE predicts the next observed value to be greater than the previous value.
The opposite is true for B, where conDENSE predicts that the next observation will be
smaller than the previous value. One can also infer, by calculating the distance between
the previous and the most likely value, that conDENSE expects the graph at point A to
increase more quickly than it is decreasing at point B.

Figure 4c plots the PDF of expected values over an anomalous period. Several ob-
servations fall outside of the expected range and are flagged as anomalies. The expected
distribution and observed value for one anomaly are shown in Figure 4d. An interesting
observation from 4c is that expected values are strongly impacted by recent instability in
the time series. This is particularly obvious for the cluster of anomalies near point Y, where
expected values jump around erratically. Contrasting this section of the time series with
the smooth evolution of expected values seen in Figure 4a further highlights the effect.
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(a) (b)

(c) (d)

Figure 4: Interpreting conDENSE predictions on the UCR dataset. 4a shows how the PDF
of expected values changes over the course of a single non-anomalous period. The solid line
plots the observed values at a given time and the heat map shows the PDF of expected
values at that time. All values that would be flagged as anomalies are clipped to the same
minimum value. 4b plots the distribution of expected values at the time points A and B,
marked in 4a. The vertical lines show the observed values at the previous time point for A
and B. 4c summarises the change of expected values over a single anomalous period. Any
point that would be flagged as anomalous is marked with a circle. 4d plots the distribution
of non-anomalous expected values at the point Y marked in 4c. The observed value at time
Y is marked with a blue cross.
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5. Discussion

In this paper we show that conDENSE can achieve state-of-the-art anomaly detection per-
formance on a range of periodic and non-periodic datasets. It produces results that are
statistically better than all bar one of the benchmark models across 31 time-series and
it is consistently ranked top for each anomaly group. The model can also handle high-
dimensional multivariate datasets. These findings, coupled with a relatively short training
time, suggest that this novel approach could be suitable for a large number of real-world
anomaly detection problems.

conDENSE achieves state-of-the-art performance by directly estimating the likelihood
of observations; it does not rely on a point estimate of expected behaviour but rather learns
a PDF of expected values. This is an important conceptual step, relative to reconstruction
error algorithms. Relying on a single prediction error is likely to cause problems when
detecting anomalies in complex multi-modal datasets or in systems experiencing unpre-
dictable level shifts. Direct density estimation can also improve interpretability, as is shown
in Section 4.3. Moreover, the probability densities produced by conDENSE could easily
be combined with other distributions in a Bayesian framework. This ability to go beyond
anomaly detection and make inferences would not be possible with a reconstruction error
model.

Our results also align with recent suggestions that deep learning anomaly detection
models do not always justify their increased computational footprint (Schmidl et al., 2022;
Rewicki et al., 2023). Although conDENSE compared favourably, other deep learning mod-
els often failed to outperform light-weight traditional benchmark models, with Kmeans
ranking consistently higher than the benchmark deep learning models.

In many cases, an unconditional MAF is a strong candidate model for anomaly detec-
tion tasks. Our ablation study shows that, in certain contexts, it can outperform other
state-of-the-art deep learning algorithms. It appears that it is well suited to detecting col-
lective and point anomalies, as shown by its strong performance on the synthetic point and
mean-shift time-series as well as the MSL, SMD, and SWaT real-world datasets. However,
our ablation study also shows that an unconditional MAF is totally unsuited to detecting
context anomalies. It performs poorly on the synthetic frequency and synthetic variance
anomalies and is unable to catch outliers in the UCR dataset. An unconditional MAF,
with no access to data on relative timings, is unable to detect outliers that fall within the
previously observed range of values.

Including the GRU VAE in conDENSE allows it to handle context anomalies, its ability
to locate when in a period an observation occurs is highlighted in Figure 4. Moreover,
conDENSE outperforms an unconditional MAF when applied to different anomaly types.
This implies that the GRU VAE is doing more than simply locating where in a period an
observation occurs. Figure 4c offers a potential explanation for this effect. In the figure
we can see how recent instability in the time series produces a more erratic distribution of
expected values at a particular time point. This points towards the GRU VAE capturing
other dynamics, such as smoothness, from the window preceding an observation, which may
play a crucial role in the detection of anomalies.

One of the main strengths of our model is it can naturally be extended to incorporate
other ideas from time-series analysis or deep learning. For example, when monitoring a
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stochastic process one may choose to condition on the first and second moments, instead
of using the GRU VAE’s dense representation. On the other hand, in some cases it may
be necessary to incorporate longer term trends or domain knowledge into the conditioning
variable. Ultimately, the most appropriate conditional variable will change dependent on
the dataset. With this in mind, conDENSE should be viewed as a flexible and generalisable
framework that can be tweaked to suit a particular context, rather than a fixed model
architecture.

It is important to note the majority of our analysis has focused on threshold-agnostic
metrics, namely ROC AUC and PR AUC. Although these metrics provide useful insight
when comparing models, real-world anomaly detection systems tend to operate with defined
anomaly thresholds. Where exactly this threshold should be drawn will vary in different
contexts, as the relative cost of false positives and false negatives is not fixed. Selecting
a threshold is a trade-off and it is typically difficult to find one that can simultaneously
maximise both precision and recall. Low PR AUC scores, which are found in much of the
literature (Schmidl et al., 2022), do not imply that a model cannot function as an effective
anomaly detector. In reality, the optimal anomaly threshold is determined by the intended
use of the anomaly detection system.

In this paper we have demonstrated that conDENSE (a conditional MAF) is well suited
for anomaly detection. We have shown that using a dense representation of the current
trajectory, produced by a GRU VAE, as the conditional variable can significantly improve
performance by capturing short-term dynamics. Importantly, as a density estimation algo-
rithm, conDENSE does not rely on the limiting assumptions made by reconstruction error
models.

6. Future Work

One shortcoming of our model is that it requires a separate labelled dataset for hyperpa-
rameter optimisation. Our goal was to find a general set of hyperparameters that would
be suitable for a wide range of datasets. It is likely that the optimal parameters will vary
significantly between different datasets and a more tailored approach that doesn’t require
labelled anomalies could improve performance. There are a number of potential solutions
to this: 1) a function that maps certain time series characteristics, such as dimensionality
and periodicity, to hyperparameter values might be viable, 2) hyperparameters could be
optimised with respect to an unsupervised cost function, minimizing the loss function in
Equation 3 on a withheld section of the training data is one option.

Another extension would be adapting conDENSE for unevenly sampled data. Our work
has assumed a fixed sampling rate, which could be limiting in many real world situations.
Recent work, has explored using a Wiener process as the base distribution for normalising
flows when modelling stochastic processes (Deng, et al., 2021). Incorporating these ideas
into conDENSE could enable anomaly detection on unevenly sampled data.
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7. Appendices

7.1 Synthetic Time-Series Stats

Name Dimensions Anomaly Length Series Length Anomaly Magnitude

point-0 1 5 4000 NA
point-1 3 5 6000 NA
point-2 5 5 10000 NA
point-3 10 5 8000 NA
point-4 20 5 2000 NA
variance-0 1 100 12000 0.154
variance-1 3 25 6000 0.2
variance-2 5 50 4000 0.151
variance-3 10 75 10000 0.161
variance-4 20 200 8000 0.217
frequency-0 1 100 4000 0.5
frequency-1 3 200 12000 0.1
frequency-2 5 25 8000 1.5
frequency-3 10 50 10000 0.01
frequency-4 20 75 6000 2.0
mean-0 1 100 2000 0.15
mean-1 3 25 4000 0.5
mean-2 5 200 8000 0.1
mean-3 10 75 6000 0.75
mean-4 20 50 10000 0.25

Table 5: Statistics for synthetic time-series. N.B. point anomalies are of fixed magnitude
and duration.
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7.2 Detailed Results

SWaT
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.666 0.736 0.732 0.819 0.613 0.410 0.747 0.629 0.661 0.800
PR AUC 0.402 0.331 0.347 0.502 0.275 0.294 0.443 0.297 0.180 0.571
Train Time (s) 161.136 52.208 14.952 11.079 0.046 0.065 4.527 0.496 7.749 7.786

MSL A-4
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.707 0.738 0.644 0.583 0.494 0.500 0.449 0.511 0.629 0.720
PR AUC 0.021 0.025 0.018 0.015 0.058 0.431 0.013 0.065 0.017 0.023
Train Time (s) 24.175 15.218 2.697 6.233 0.225 0.057 3.130 0.319 3.808 3.281

MSL C-2
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.513 0.510 0.569 0.624 0.630 0.499 0.634 0.525 0.473 0.612
PR AUC 0.063 0.062 0.161 0.132 0.303 0.491 0.204 0.404 0.057 0.156
Train Time (s) 21.704 4.439 1.432 5.606 0.004 0.053 2.595 0.212 3.197 2.765

MSL T-1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.738 0.414 0.617 0.491 0.502 0.721 0.223 0.493 0.725 0.258
PR AUC 0.380 0.155 0.205 0.175 0.226 0.559 0.111 0.205 0.307 0.127
Train Time (s) 29.408 16.250 2.937 6.535 0.006 0.058 3.178 0.404 3.317 2.936

SMD Machine 1-1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.581 0.856 0.909 0.938 0.668 0.205 0.915 0.799 0.596 0.950
PR AUC 0.328 0.419 0.473 0.568 0.392 0.103 0.543 0.585 0.323 0.635
Train Time (s) 459.685 168.595 39.585 35.330 0.138 0.099 5.617 0.547 6.479 16.421

SMD Machine 2-1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.395 0.916 0.933 0.913 0.765 0.321 0.982 0.687 0.517 0.920
PR AUC 0.045 0.201 0.225 0.198 0.378 0.280 0.551 0.293 0.079 0.153
Train Time (s) 389.656 139.663 34.952 33.114 0.120 0.085 4.860 0.506 8.477 16.965

SMD Machine 3-7
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.481 0.546 0.699 0.686 0.735 0.342 0.788 0.522 0.671 0.685
PR AUC 0.015 0.022 0.434 0.109 0.330 0.203 0.514 0.124 0.030 0.090
Train Time (s) 373.891 176.568 42.134 20.437 0.141 0.098 5.749 0.576 12.556 17.116

UCR 135
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.481 0.546 0.699 0.686 0.735 0.342 0.788 0.522 0.671 0.330
PR AUC 0.015 0.022 0.434 0.109 0.330 0.203 0.514 0.124 0.030 0.001
Train Time (s) 373.891 176.568 42.134 20.437 0.141 0.098 5.749 0.576 12.556 2.486

UCR 136
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.891 0.496 0.368 0.888 0.494 0.398 0.971 0.479 0.633 0.496
PR AUC 0.609 0.019 0.032 0.697 0.062 0.183 0.581 0.041 0.024 0.019
Train Time (s) 11.660 9.676 0.541 3.939 0.001 0.056 1.725 0.010 2.949 2.236

UCR 137
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.680 0.637 0.285 0.836 0.448 0.399 0.727 0.480 0.594 0.468
PR AUC 0.111 0.025 0.012 0.417 0.010 0.204 0.038 0.010 0.024 0.018
Train Time (s) 16.720 13.773 0.761 5.627 0.001 0.056 0.908 0.012 3.538 2.767
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UCR 138
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.894 0.675 0.233 0.966 0.449 0.247 0.987 0.452 0.785 0.688
PR AUC 0.399 0.004 0.001 0.841 0.001 0.001 0.194 0.001 0.005 0.004
Train Time (s) 21.752 17.802 1.014 5.799 0.001 0.057 0.526 0.015 3.904 2.953

Synthetic Point 0
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.756 0.918 0.661 1.000 0.850 0.319 0.997 0.500 0.700 0.840
PR AUC 0.004 0.708 0.004 1.000 0.405 0.001 0.355 0.501 0.064 0.800
Train Time (s) 30.034 22.921 1.139 4.425 0.001 0.058 0.973 0.019 2.688 1.893

Synthetic Point 1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.609 1.00 0.639 1.000 0.950 0.486 0.999 0.751 0.993 1.000
PR AUC 0.002 1.00 0.002 0.906 0.504 0.000 0.580 0.303 0.293 1.000
Train Time (s) 45.892 35.21 2.066 8.548 0.004 0.062 2.698 0.436 4.026 3.211

Synthetic Point 2
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.717 0.987 0.770 0.994 0.948 0.474 0.996 0.851 0.784 0.999
PR AUC 0.001 0.801 0.001 0.803 0.502 0.000 0.346 0.402 0.058 0.820
Train Time (s) 75.691 59.632 4.116 15.292 0.010 0.069 3.282 0.582 4.829 5.567

Synthetic Point 3
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.504 1.000 0.561 1.000 0.951 0.482 0.982 0.851 0.907 1.000
PR AUC 0.002 0.918 0.001 1.000 0.503 0.000 0.572 0.403 0.089 1.000
Train Time (s) 59.954 48.068 4.534 10.536 0.013 0.064 3.312 0.403 5.549 4.555

Synthetic Point 4
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.322 0.977 0.327 1.000 0.844 0.492 0.971 0.849 0.963 1.000
PR AUC 0.002 0.804 0.002 0.963 0.409 0.001 0.298 0.410 0.055 1.000
Train Time (s) 16.748 12.567 1.685 6.984 0.007 0.057 2.933 0.304 3.991 3.025

Synthetic Variance 0
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.503 0.490 0.497 0.804 0.536 0.492 0.998 0.489 0.597 0.511
PR AUC 0.070 0.070 0.069 0.313 0.096 0.032 0.948 0.032 0.118 0.097
Train Time (s) 87.208 72.027 3.716 5.184 0.003 0.070 2.881 0.516 3.708 2.290

Synthetic Variance 1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.454 0.422 0.409 0.706 0.569 0.499 0.497 0.530 0.510 0.679
PR AUC 0.004 0.004 0.004 0.192 0.126 0.002 0.004 0.085 0.015 0.019
Train Time (s) 43.666 35.857 2.457 7.095 0.005 0.061 3.094 0.320 5.011 3.142

Synthetic Variance 2
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.592 0.612 0.617 0.823 0.602 0.521 0.488 0.501 0.571 0.457
PR AUC 0.018 0.021 0.020 0.287 0.174 0.057 0.013 0.062 0.016 0.012
Train Time (s) 29.343 23.910 2.023 5.808 0.004 0.062 2.827 0.247 3.001 3.079

Synthetic Variance 3
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.562 0.544 0.582 0.781 0.555 0.503 0.667 0.496 0.538 0.713
PR AUC 0.009 0.009 0.009 0.129 0.117 0.022 0.014 0.054 0.008 0.125
Train Time (s) 74.488 59.698 6.407 11.567 0.016 0.070 3.314 0.413 5.030 5.944

Synthetic Variance 4
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.520 0.500 0.529 0.678 0.568 0.511 0.610 0.523 0.568 0.570
PR AUC 0.028 0.027 0.030 0.072 0.156 0.071 0.143 0.101 0.047 0.037
Train Time (s) 69.666 48.232 7.390 7.361 0.024 0.064 3.940 0.359 3.787 4.919
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Synthetic Frequency 0
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.378 0.467 0.470 0.976 0.501 0.495 0.998 0.495 0.464 0.509
PR AUC 0.021 0.024 0.034 0.763 0.074 0.083 0.820 0.053 0.244 0.033
Train Time (s) 28.873 23.822 1.266 4.507 0.002 0.059 2.277 0.020 2.608 1.845

Synthetic Frequency 1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.431 0.353 0.428 0.990 0.468 0.456 0.786 0.524 0.584 0.428
PR AUC 0.015 0.012 0.014 0.904 0.031 0.054 0.594 0.092 0.156 0.014
Train Time (s) 86.699 72.999 5.116 9.998 0.007 0.071 3.024 0.315 3.976 3.621

Synthetic Frequency 2
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.421 0.369 0.386 0.939 0.489 0.499 0.912 0.492 0.461 0.533
PR AUC 0.003 0.002 0.002 0.637 0.043 0.043 0.101 0.043 0.003 0.003
Train Time (s) 58.031 49.896 3.654 10.715 0.007 0.064 2.762 0.348 4.369 3.744

Synthetic Frequency 3
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.007 0.001 0.004 0.992 0.454 0.950 0.000 0.452 0.001 0.638
PR AUC 0.003 0.003 0.003 0.348 0.002 0.524 0.003 0.002 0.003 0.006
Train Time (s) 74.037 60.582 6.224 13.129 0.017 0.068 3.147 0.240 7.377 6.356

Synthetic Frequency 4
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.521 0.504 0.524 1.000 0.492 0.504 1.000 0.505 0.482 0.496
PR AUC 0.013 0.012 0.013 0.979 0.058 0.028 0.978 0.066 0.011 0.012
Train Time (s) 50.893 36.405 5.574 11.709 0.019 0.062 3.589 0.744 4.350 4.748

Synthetic Mean-Shift 0
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.501 0.534 0.493 0.880 0.552 0.499 0.970 0.490 0.535 0.516
PR AUC 0.047 0.049 0.045 0.535 0.170 0.154 0.901 0.067 0.062 0.148
Train Time (s) 14.498 12.225 0.582 6.036 0.002 0.056 2.419 0.012 3.181 2.303

Synthetic Mean-Shift 1
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.521 0.357 0.446 0.823 0.571 0.486 0.608 0.570 0.605 0.649
PR AUC 0.014 0.004 0.005 0.134 0.130 0.025 0.011 0.130 0.008 0.154
Train Time (s) 29.196 24.162 1.658 6.365 0.003 0.059 3.210 0.361 3.290 2.785

Synthetic Mean-Shift 2
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.489 0.427 0.477 0.860 0.571 0.497 0.488 0.530 0.476 0.641
PR AUC 0.024 0.020 0.022 0.281 0.159 0.068 0.030 0.108 0.036 0.089
Train Time (s) 58.073 47.524 3.670 9.051 0.007 0.064 3.123 0.408 3.757 3.430

Synthetic Mean-Shift 3
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.624 0.738 0.684 0.968 0.816 0.488 0.934 0.749 0.830 0.948
PR AUC 0.160 0.234 0.126 0.934 0.409 0.015 0.844 0.337 0.599 0.898
Train Time (s) 44.615 35.674 3.720 9.272 0.011 0.063 2.611 0.404 6.427 4.389

Synthetic Mean-Shift 4
GDN OmniAnomaly TranAD condense copod iso f kmeans loda lstm MAF

ROC AUC 0.533 0.545 0.533 0.937 0.709 0.492 0.751 0.499 0.690 0.962
PR AUC 0.006 0.006 0.005 0.813 0.274 0.002 0.194 0.055 0.015 0.821
Train Time (s) 86.028 59.750 9.111 13.882 0.033 0.070 4.035 0.417 6.802 6.420

Table 6: Detailed model performance for each time-series.
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Ahdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H., & Yli-Harja, O. (2005). Robust
detection of periodic time series measured from biological systems. BMC Bioinfor-
matics, 6 (1), 117. DOI: 10.1186/1471-2105-6-117.

Alqurashi, S., Shirazi, H., & Ray, I. (2021). On the Performance of Isolation Forest and Multi
Layer Perceptron for Anomaly Detection in Industrial Control Systems Networks. In
2021 8th International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), pp. 1–6. DOI: 10.1109/IOTSMS53705.2021.9704986.

Audibert, J., Guyard, F., Marti, S., & Zuluaga, M. (2020). USAD: UnSupervised Anomaly
Detection on Multivariate Time Series. DOI: 10.1145/3394486.3403392, Pages: 3404.

Baldi, P. (2012). Autoencoders, Unsupervised Learning, and Deep Architec-
tures. In Proceedings of ICML Workshop on Unsupervised and Trans-
fer Learning, pp. 37–49. JMLR Workshop and Conference Proceedings.
https://proceedings.mlr.press/v27/baldi12a.html, ISSN: 1938-7228.

Benecki, P., Piechaczek, S., Kostrzewa, D., & Nalepa, J. (2021). Detecting anomalies
in spacecraft telemetry using evolutionary thresholding and LSTMs. In Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’21, pp. 143–144, New York, NY, USA. Association for Computing Machinery.
DOI: 10.1145/3449726.3459411.

Boniol, P., Paparrizos, J., Palpanas, T., & Franklin, M. J. (2021). SAND: streaming subse-
quence anomaly detection. Proceedings of the VLDB Endowment, 14 (10), 1717–1729.
DOI: 10.14778/3467861.3467863.

Breunig, M., Kriegel, H.-P., Ng, R., & Sander, J. (2000). LOF: Identifying Density-Based
Local Outliers., Vol. 29. DOI: 10.1145/342009.335388, Journal Abbreviation: ACM
Sigmod Record Pages: 104 Publication Title: ACM Sigmod Record.

Chalapathy, R., & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey..
DOI: 10.48550/arXiv.1901.03407, arXiv:1901.03407 [cs, stat].

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. ACM
Comput. Surv., 41. DOI: 10.1145/1541880.1541882.
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