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Abstract 

   There has been a lot of activity in graph representation learning in recent years. Graph represen-

tation learning aims to produce graph representation vectors to represent the structure and charac-

teristics of huge graphs precisely. This is crucial since the effectiveness of the graph representation 

vectors will influence how well they perform in subsequent tasks like anomaly detection, connec-

tion prediction, and node classification. Recently, there has been an increase in the use of other 

deep-learning breakthroughs for data-based graph problems. Graph-based learning environments 

have a taxonomy of approaches, and this study reviews all their learning settings. The learning 

problem is theoretically and empirically explored. This study briefly introduces and summarizes 

the Graph Neural Architecture Search (G-NAS), outlines several Graph Neural Networks’ draw-

backs, and suggests some strategies to mitigate these challenges. Lastly, the study discusses several 

potential future study avenues yet to be explored. 

1. Introduction 

Envision a hypothetical realm in which interconnectivity flourishes and elaborate patterns emerge 

from complicated relationships that span extensive networks. In the contemporary era of digital 

advancements, where knowledge acquisition relies heavily on data, graphs are pivotal as underap-

preciated protagonists. They encapsulate the fundamental nature of interrelationships that mold our 

global landscape. Have you ever contemplated how we can unravel these complex networks, deci-

pher their concealed dynamics, and utilize their potential for profound insights? Within the dynamic 

and ever-changing realm of data science, a particular paradigm emerges as a noteworthy and valu-

able asset: deep graph representation learning.  Notably, graphs provide the potential to elucidate 

the complexities inherent in interrelated data, including many domains such as social networks and 

biological networks. Deep graph representation learning could improve our understanding of com-

plex relationships, find hidden patterns, and increase machine learning. This study carefully ex-

plores this intriguing area.  
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The discipline of graph representation learning has become a significant area of study within the 

broader science of machine learning. Its primary objective is to develop efficient methods for pro-

cessing and evaluating data that is represented in the form of graphs. Graphs are very effective 

structures that are utilized to represent and comprehend complex associations between different 

entities. As a result of their inherent capabilities, graphs are particularly suitable for a wide range 

of practical applications in the real world, including but not limited to social networks, recommen-

dation systems, bioinformatics, and numerous others. 

The initial advancements in graph representation learning were first observed in the field of graph 

kernels, as documented in historical records. The origins of graph kernel approaches can be traced 

back to the influential Weisfeiler-Lehman (WL) isomorphic testing (Weisfeiler & Leman, 1968), a 

fundamental notion that emerged earlier. This methodology, a fundamental pillar in the field, es-

tablished the foundation for graph kernels - kernel functions carefully crafted to measure the simi-

larity of graphs and their components. Within the domain of current scholarly investigations, the 

notion of graph kernels reverberates prominently  in educational endeavors Nikolentzos et al. 

(2021), serving as a testimonial to the ongoing significance of this transformative framework. 

The essential principle underlying graph kernels is the decomposition of complex graphs into 

distinct substructures. These substructures are then used to generate vector embeddings, which are 

carefully designed based on the features of these substructures. The origins of graph representation 

learning can be traced back to its commencement within the domain of matrix factorization tech-

niques. The initial stage of exploration was heavily influenced by traditional methods of dimen-

sionality reduction, reflecting the influential work of Belkin & Niyogi (2001) and their significant 

contributions to the area.  Several matrix factorization-based models have already been developed 

to effectively handle large-scale graphs with millions of interconnected nodes (Allab et al., 2016; 

Gong et al., 2014). Matrix factorization methods play a crucial role in this endeavor due to their 

intrinsic capability to reduce intricate proximity matrices into products of simpler matrices. The 

objective is to understand embeddings comprehensively, focusing on their ability to capture and 

represent the inherent proximity patterns effectively. Between the years 2014 and 2016, there was 

a notable development in the field, as two significant shallow models, namely DeepWalk (Perozzi 

et al., 2014) and Node2Vec (Grover & Leskovec, 2016), emerged in the environment. These meth-

odologies utilized shallow neural networks to generate node embeddings. One notable characteris-

tic of these models was their innovative utilization of the skip-gram framework, which was origi-

nally grounded in the field of natural language processing. The primary principle that governed 

these approaches was to enhance the information contained in node embeddings by effectively 

maximizing the likelihood of neighbouring nodes. The deployment of Stochastic Gradient Descent 

(SGD) across neural network layers can successfully mitigate computational subtleties, so elegantly 

harnessing and fine-tuning the strategic basis of this approach. This event was a significant turning 

point, driving the advancement of several models that were ready for further improvement. A mul-

titude of breakthroughs have arisen, encompassing improved sampling procedures and iterative 

training processes, jointly influencing the direction of progress in this dynamic subject. Research 

into graph representation learning has recently gained traction since graphs conveniently utilize 

and represent most real-world data. Multimedia domain-specific data includes but is not limited to, 

social systems (Tan et al., 2019), linguistic (word co-occurrence) networks (Agrawal et al., 2021), 

biological structures (G. Zhou & Xia, 2018), and sundry. Graph models efficiently store and re-

trieve relational knowledge of interacting entities (Besta et al., 2019). Graph data analysis can help 

with community discovery, behavior analysis, node classification, link prediction, and clustering 
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(Daud et al., 2020; Goyal & Ferrara, 2018; Inuwa-Dutse et al., 2021; J. Li et al., 2019; Zitouni et 

al., 2019). Graph embedding methods often transform unprocessed graph data into a high-dimen-

sional vector while retaining essential graph characteristics. This method is called graph represen-

tation learning. Researchers used conventional machine learning methods based on the derived 

features and the original data format. Pixel and word occurrence statistics are retrieved from photos 

and text, respectively. In the middle of the current surge of innovation, the objective of our research 

is to undertake an exploration of the fundamental aspects of graph representation learning. The 

central inquiry of this study is: How can we effectively navigate the intricate nature of graph data, 

enable machines to understand connections, and advance the area of deep graph representation 

learning to unexplored frontiers? 

Deep Learning (DL) systems have become popular over the past decades because they can solve 

learning problems, learn representations from raw data, and make predictions based on the taught 

representation. In recent times, the field of artificial intelligence has undergone a significant trans-

formation due to the emergence of deep learning techniques. These techniques have demonstrated 

exceptional achievements in various domains, such as image recognition, natural language pro-

cessing, and speech recognition. In a similar vein, the fusion of deep learning techniques with 

graph-based data has resulted in the emergence of deep graph representation learning approaches. 

The objective of these methodologies is to utilize the computational powers of deep neural net-

works to acquire meaningful representations from graph data, hence facilitating improved decision-

making and prediction skills. The present level of research in deep graph representation learning is 

characterized by its dynamic and swiftly progressing nature. Scholars and professionals are con-

sistently investigating new designs, methods of optimization, and algorithmic advancements to 

tackle the distinct obstacles presented by data that is structured as a graph. The utilization of Graph 

Neural Networks (GNNs), Graph Convolutional Networks (GCNs), and Graph Attention Networks 

(GATs) has demonstrated encouraging outcomes in several applications, with significant advance-

ments achieved in domains including node categorization, link prediction, and graph construction. 

Due to graphs’ irregular character, which may contain a changeable number of unordered nodes 

and a changing number of neighbours, several key operations, like convolutions, are simple to per-

form in the image domain but difficult in the graph sector. In addition, modern machine learning 

techniques presume, among other factors, that instances stand alone. References, relationships, and 

engagements relate to graph data; hence this premise no longer applies.  Despite advances in com-

puter vision, natural language processing, biological imaging, and bioinformatics, DL still lacks 

relational and scientific thinking, intellectual abstraction, and other cognitive capacities. Graph 

Neural Networks (GNNs) structure computations and representations in Deep Neural Networks 

(DNNs) as graphs to address these issues. GNNs are graph-domain deep learning algorithms. 

Graphs are difficult to visualize; thus, using deep learning algorithms to evaluate graph data has 

garnered attention in recent years. 

Graphs Having Irregular Structures: Unlike pictures, music, and text, which have a grid struc-

ture, graphs have uneven topologies, making some basic mathematical operations harder (Shuman 

et al., 2013). Graph data makes convolution and pooling difficult. 

Heterogeneity and Variety: Graphs with numerous shapes and properties can be complex. Heter-

ogeneous, homogeneous, weighted, and signed graphs are possible. Graph-related activities include 

node classification, link prediction, graph classification, and graph synthesis. Different model 

structures are needed to address different types, qualities, and tasks. 
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Interdisciplinarity: Biology, chemistry, and the social sciences often use graphs. Domain 

knowledge is essential to solving problems but can also slow model design. Gradient-based training 

approaches are difficult for molecular graphs due to non-differentiable objective functions and 

chemical restrictions. 

Embedding Dimension and Graph Features: Finding the optimal embedding dimension of rep-

resentation (Gou et al., 2020) is complex and involves additional challenges (Shen et al., 2020). 

Higher-dimensional illustrations retain more graph features as much as they need more storage and 

processing time.  Lower-dimensional depictions require more resources, and it could reduce graph 

noise too. However, the original graph may lose important data. Input graph and application domain 

affect dimension selection (H. Chen et al., 2018). If a graph has several properties, embedding one 

may be difficult. Node features, connection designs, meta-data, and more can show graph charac-

teristics. The application determines the most helpful information. Kernel functions (Nikolentzos 

et al., 2021), summary graph measures (such as degrees or grouping coefficients) (Daud et al., 

2020), and carefully chosen features to quantify local neighbourhood structures (J. Li et al., 2019) 

are frequently used by traditional machine learning algorithms to extract structural information 

from graphs. However, these systems cannot change during the learning process because of the 

rigidity of the hand-engineered characteristics. Moreover, it may be costly and time-consuming to 

implement these functionalities. 

Gaining a comprehensive comprehension of the importance of deep graph representation learn-

ing is vital within the contemporary context of a data-centric society. As the complexity of our 

interactions with interconnected data increases, it becomes increasingly important to possess the 

capability to identify concealed patterns, uncover latent linkages, and execute accurate predictions. 

Therefore, this extensive examination of deep graph representation learning is a current and essen-

tial source, offering a detailed investigation of state-of-the-art techniques, computational enhance-

ments, and probable directions for future scholarly inquiry. By furthering our understanding in this 

field, we create opportunities to revolutionize our approach to interpreting, analyzing, and deriving 

insights from intricate data structures, thus paving the way for enhanced, data-centric decision-

making processes. 

1.2 Scope. This study covers methods for representing nodes, edges, and subgraphs, which provide 

context, intelligence, and semantics to graphs for applications, and evaluates graph representation 

learning research. We unify several diverse lines of research that have attracted significant attention 

in recent years across various domains and venues while also focusing on cutting-edge techniques 

that are scalable to enormous graphs and inspired by deep learning. GNNs perform well on graph-

structured datasets in supervised, semi-supervised, self-supervised, and unsupervised learning con-

texts. Auto-encoders, contrastive learning, and random walk ideas underpin most graph-based un-

supervised learning approaches. The studies primary aim is to conduct a comprehensive investiga-

tion of the advanced techniques in the field of deep graph representation learning and to conduct 

an in-depth assessment of its advanced methodologies, carefully examining their respective ad-

vantages and constraints. Graph Neural Architecture Search (G-NAS) is introduced in this study, 

it incorporates and classifies G-NAS components. This classification, based on graph neural net-

works (GNNs)’ intrinsic problems in architectural design, fills a significant gap in the literature. It 

helps design GNN architectures with improved efficiency and efficacy by explaining the key com-

ponents of (G-NAS) and their implications. Furthermore, this study aims to explore the complex 
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restrictions inherent in GNN techniques, focusing on the issues associated with achieving interpret-

ability and scalability in graph-based models, amongst others. 

With the increasing number of graph representation learning models in recent years, various ap-

proaches have been utilized to find relevant research in this domain. By adopting a strategic ap-

proach, a search methodology was developed formulating specific keywords and carefully evalu-

ating reliable sources. The compilation of keywords includes concepts such as graph embedding, 

graph representation learning, graph neural networks, graph convolution, and graph attention. The 

search for pertinent research involved prominent and acclaimed conferences and journals, such as 

AAAI, IJCAI, SIGKDD, ICML, WSDM, Nature Machine Intelligence, and Pattern Recognition, 

as well as trustworthy internet sources. 

Overview of the Survey.  The subsequent section of this study is structured as follows: In the 

second section, a concise summary of relevant literature is presented, encompassing various sur-

veys and overviews within the area. Section 3 introduces the concept of Graph Representational 

Learning (GRL) and examines several graph tasks based on data with a graph structure. In Section 

4, the categorization of GNN-based techniques and learning situations is presented logically to fa-

cilitate complete comprehension. Section 5 provides an in-depth analysis of the sequential structure 

of Graph Neural Networks (GNNs), elucidating their internal mechanisms. In the subsequent sec-

tion, Section 6, the discourse shifts toward contemporary applications of Graph Neural Networks 

(GNNs), thereby highlighting their extensive and diverse practical utility. In the following section, 

an analysis is conducted on the inherent limitations of Graph Neural Networks (GNNs), and various 

strategies are proposed to overcome these constraints. Section 8 provides a concise overview of 

Graph Neural Architecture Search (G-NAS), emphasizing its notable importance within the do-

main. Section 9 elucidates unresolved aspects of graph solutions based on GNNs, opening the path 

for future research. The research finishes in the concluding part, presenting a comprehensive syn-

thesis of the knowledge acquired throughout the article. 

Contributions. The main contributions of this study are summarized as follows; 

1. Firstly, a thorough analysis of GNNs is provided. In contrast to the other studies focusing 

on only one type of learning environment, this study considers all of them. 

2. This study introduces and categorizes G-NAS constituents based on the building challenges; 

this is not provided in previous surveys. 

3. This study outlines GNN-based method limits and workarounds. Limitations include over-

smoothing, scalability, expressiveness, over-squashing, and destructive loss, to mention but 

a few. 

2. Related Work: Surveys in Graph Representational Learning 

The present literature inventory on Graph Neural Networks (GNNs) primarily consists of survey 

studies that either cover a wide range of topics or go into a specific learning environment (Ahmad 

et al., 2020; Chami et al., 2022; C. Chen et al., 2022; F. Chen et al., 2020; J. Zhou et al., 2020; Y.  

Zhou et al., 2022). In their paper, Abadal et al. (2021) conducted a comprehensive examination of 

Graph Neural Networks (GNNs), focusing on their computational aspects. Furthermore, the re-

search encompassed a thorough examination of the several software and hardware acceleration 

techniques already employed. The authors of this study were provided with a communication-fo-

cused, hardware-software hybrid that represents an appropriate solution for GNN accelerators. In 

their study, Zhou et al. (2020) provided a thorough design process for Graph Neural Networks 
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(GNNs) and discussed several GNN variations employed in each module. The authors comprehen-

sively analyzed the theoretical and empirical aspects of Graph Neural Networks (GNNs) in the 

study. The initial phase of the paper’s discourse involved categorizing GNN applications into two 

distinct groups: structural and non-structural scenarios. 

Furthermore, the article elucidated four outstanding matters concerning GNNs and deliberated 

on probable prospects. Conversely, it lacked a clearly defined taxonomy for individual learning 

scenarios. The study conducted by Z. Wu et al. (2020) introduced a novel categorization framework 

for Graph Neural Networks (GNNs). This framework categorizes GNNs into many subtypes: re-

current, convolutional, spatial-temporal, and graph autoencoder architectures. Nevertheless, the 

study could have thoroughly examined every learning environment. The majority of the current 

survey studies in the field of Graph Neural Networks (GNNs) primarily concentrate on either the 

individual learning scenario or on the broader scope of GNNs, as shown in Table 1. To bridge this 

knowledge gap and expand upon the existing body of literature, the current research undertakes a 

comparative examination of different graph-based deep learning architectures. Significantly, we 

explore G-NAS captivating domain. This innovative addition has been carefully designed to ad-

dress the distinct construction constraints associated with GNNs. Through a methodical approach 

in addressing these issues, the G-NAS presents a novel viewpoint and framework to enhance the 

domain of GNNs, thereby paving the way for groundbreaking progress. 

Papers Difference between this survey and existing ones 

Abadal et al. (2021) They thoroughly examined Graph Neural Networks (GNNs) from a perspective well-

grounded in the field of computing. It carried out the various methodologies used for software 

and hardware acceleration. This investigation led to the development of a novel vision empha-

sizing GNN accelerators’ significance. These accelerators are distinguished by their graph-

awareness, hardware-software integration, and communication-centric features. In contrast, 

our study deviates from this trajectory by pursuing a unique analysis path. Our attention is 

directed toward the many learning environments present in the domain of Graph Neural Net-

works (GNNs). We proficiently establish a delineated classification system for various learn-

ing environments by employing a systematic and thorough methodology. This endeavor re-

sults in a unified framework that enhances the comprehension of Graph Neural Networks 

(GNNs) within these heterogeneous settings. 

(Z. Zhang et al., 

2020) 

Predominantly delved into classical and representative Graph Neural Network (GNN) archi-

tectures, hence, by passing the exploration of deep graph representation learning from the 

vantage point of the latest advanced paradigms like graph self-supervised learning, our re-

search carves a distinctive path, as it stands as a beacon of comprehensive scrutiny. Signifi-

cantly, the study explores the complex domain of deep graph representation learning, reveal-

ing concealed insights and innovative approaches. In order to enhance the level of intellectual 

discussion, this study presents the innovative notion of Graph Neural Architectural Search 

(GNAS).  

(Z. Wu et al., 2020) They introduced a new categorization approach that divided well-known GNNs into four 

groups: recurrent, convolutional, spatial-temporal, and graph autoencoders. This theoretical 

paradigm fails to explain in depth the learning settings. Contrarily, our article seeks to enrich 

academic discourse, by introducing taxonomies tailored to GNN learning contexts. This stra-

tegic method helps our inquiry by disclosing the deep complexity and subtle details of each 

GNNs learning situation. 
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(J. Zhou et al., 

2020) 

This study presents a comprehensive overview of the design pipeline of GNNs and provides 

a detailed analysis of several module variants employed in GNNs. The article conducted a 

comprehensive analysis of GNNs from both a theoretical and empirical standpoint. The re-

search delineated the applications of GNNs by categorizing them into two distinct scenarios: 

structural and non-structural. The report additionally presented four unresolved issues pertain-

ing to GNNs and provided prospects for future research in this area. However, it is worth 

noting that the paper has not presented a distinct taxonomy for each of the many learning 

situations and this study takes advantage to research about various learnings of GNNs.  

(Khoshraftar & An, 

2022) 

Classifies works in graph representation learning, accurately differentiating between static and 

dynamic graphs. However, although these taxonomies effectively highlight the core principles 

of Graph Neural Networks (GNNs), their coverage of learning paradigms needs to be im-

proved. Our research is a comprehensive study examining various learning settings inherent 

to Graph Neural Networks (GNNs). 

(Y. Zhou et al., 

2022) 

Presents a comprehensive overview of Graph Neural Network (GNN) designs, briefly discuss-

ing their applications. Concurrently, our study follows a comparable path, investigating GNN 

designs and pushing the limits of exploration and presenting a novel aspect called Graph Neu-

ral Architectural Search (G-NAS) during our thorough investigation. The innovative addition 

discussed in this work serves as a valuable resource for scholars, providing guidance and in-

sight into the complex domain of Graph Neural Networks (GNNs). It sheds light on the inher-

ent obstacles in constructing GNNs, enhancing our understanding of this field. The G-NAS 

framework provides a comprehensive experience of the fundamental components of GNNs, 

offering researchers essential insights into this rapidly evolving and impactful domain. 

Table 1: Difference between this survey and existing ones. 

3. Graph Representation Learning (GRL) 

The Graph Representation Learning (GRL) techniques seek to develop vector representations for 

various graph elements to capture the structure and semantics of a graph-structured or networked 

rich dataset to achieve a good representation. Learning to represent graphs uses various methodol-

ogies derived from graph theory, manifold learning, topological data analysis, neural networks, and 

generative graph models. These methodologies all have their origins in conventional network re-

search. When applying machine learning to networks, the most challenging aspect is undoubtedly 

extracting information about interactions between nodes and combining it into a machine-learning 

model. Traditional machine learning methods utilize either summary statistics (such as degrees or 

clustering coefficients) or specifically built features to quantify local neighbourhood structures to 

extract relevant information from networks. Examples of these statistics and features include: (e.g., 

network motifs). Representation learning systems can automatically learn to encode network struc-

ture into low-dimensional representations by replacing g existing methods with deep learning and 

non-linear dimensionality reduction. The adaptability of learned embeddings enables them to be 

helpful in various modelling problems. In graph representational learning, there exists a collection 

of models that may be categorized into separate groups: Graph Kernels, Matrix Factorization, Shal-

low Models, and Deep Graph Models. These models demonstrate an elegant alignment within their 

respective categories. Each category represents distinct strategies that contribute to the overall 

graph representation, providing diverse approaches to analyze and comprehend the complicated 

relationships embedded inside large data structures. 
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Graph kernels and matrix factorization-based models are foundational concepts in graph repre-

sentation learning. Graph kernels are widely recognized for their utilization in graph embeddings. 

They utilize a definite mapping function, which allows for exploring the complexities associated 

with graph classification problems (Shervashidze et al., 2009; Togninalli et al., 2019). This domain 

has two separate classifications: graph kernels, which aim to reveal the subtle features of graph 

similarity, and node-based kernels on graphs, which are carefully crafted to uncover the everyday 

relationships between individual nodes in graph structures. Graph kernels examine graphs or their 

complex substructures, including nodes, subgraphs, and edges, to evaluate their similarity. At the 

core of this endeavor resides the fundamental task of assessing the resemblance between graphs in 

an unsupervised fashion. Numerous ways emerge to quantify the degree of similarity between pairs 

of graphs. The tactics employed comprise various techniques, including graphlet kernels, WL ker-

nels, random walks, and shortest paths (Shervashidze et al., 2009). Graphlet kernels stand out as a 

straightforward yet powerful approach within the vast array of kernel approaches. Graphlet kernels 

are a method that operates by quantifying subgraphs of limited size. This approach allows for ex-

ploring graph similarities, revealing concealed patterns contributing to a deeper comprehension of 

the subject(Kondor et al., 2009). In conclusion, graph kernels serve as effective models, offering a 

range of advantages that highlight their importance: 

• Graph kernels are widely recognized as valuable tools for quantifying the similarity between 

graph items by implementing various methodologies for graph kernel discovery. The state-

ment posits that the concept above can be perceived as an overarching representation of 

conventional statistical approaches (Kriege et al., 2020). 

• Numerous kernel techniques have been suggested in the literature to mitigate the computa-

tional burden associated with graph-based kernel methods (Urry & Sollich, 2013). The uti-

lization of kernel tricks has the potential to decrease the spatial dimensions and computing 

complexity associated with substructures, all while maintaining the effectiveness of kernels. 

Despite the several advantages of kernel approaches, their scalability could be improved by certain 

limitations.  

• The majority kernel models exhibit a limitation in their ability to learn node embedding for 

newly introduced nodes. In practical applications, graphs possess dynamic characteristics, 

allowing their constituent elements to undergo evolutionary changes. Hence, re-learning 

charts are necessary for graph kernels whenever a new node is introduced, resulting in a 

time-consuming and challenging application in practical scenarios. 

• Most graph kernel models do not consider the presence of weighted edges, resulting in 

the potential loss of structural information. This could decrease the likelihood of graph rep-

resentation within the latent space. 

• The computational complexity of graph kernels is classified as NP-hard (Borgwardt & 

Kriegel, 2005). While various kernel-based models have been developed to decrease com-

putational time by incorporating substructure distribution, this approach may inadvertently 

introduce greater complexity and hinder the model’s capacity to represent the overall struc-

ture accurately. 

Matrix factorization-based models aim to capture the fundamental characteristics of a graph by 

representing it as matrices. These models extract embeddings by decomposing the matrices through 

a complex procedure (Ou et al., 2016; Z. Zhang et al., 2018). The present scene is embellished with 

a diverse range of strategic options that dictate the course of factorization modeling. The 
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fundamental objective of these models is to effectively estimate nodes’ complex interconnected-

ness by utilizing high-order proximity. Matrix factorization is a technique that aims to reduce the 

size of high-dimensional matrices, such as the adjacency matrix or the Laplacian matrix, represent-

ing the graph structure. By transforming these matrices into a lower-dimensional space, matrix 

factorization simplifies the representation of complex graph relationships, making it more concise. 

Numerous decomposition techniques, such as Singular Value Decomposition (SVD) and Principal 

Component Analysis (PCA), are extensively utilized in graph representation learning and recom-

mendation systems. Various models have been developed to decrease computational complexity in 

matrix factorization by optimizing sampling procedures (Lian et al., 2022; R. Yang et al., 2019). 

The primary concept of the NRL-MF model (Lian et al., 2022) revolved around developing a hash-

ing function specifically designed for the computation of dot products. The hashing function effi-

ciently computes a binarized vector representation for each node using Exclusive (XOR) operators. 

The proposed model can acquire binary and quantized codes by utilizing matrix factorization tech-

niques while maintaining a high level of preservation for higher-order closeness. Matrix factoriza-

tion-based models offer numerous advantages. 

• The models have a low dependency on the quantity of data required for learning embed-

dings. Compared to alternative methodologies, such as neural network-based models, these 

models offer distinct advantages in scenarios with a limited amount of training data availa-

ble. 

• Including the Laplacian matrix or transition matrix in the presentation of the graphs allows 

the models to represent the proximity of the nodes within the charts effectively. The con-

nections between every pair of nodes are seen at least once in the matrix, enabling the mod-

els to effectively handle networks with sparse connectivity. 

Despite the widespread utilization of matrix factorization in graph embedding problems, it is es-

sential to acknowledge that this approach has drawbacks. 

• The computational complexity of matrix factorization poses challenges regarding time and 

memory when dealing with enormous graphs containing millions of nodes. One primary 

factor contributing to this phenomenon is the temporal duration required to decompose the 

matrix into a series of smaller matrices (S. Cao et al., 2015). 

• Models that rely on matrix factorization cannot effectively handle incomplete graphs that 

contain unseen and missing variables (Safavi & Koutra, 2020). When the available graph 

data is insufficient, matrix factorization-based models may encounter challenges in effec-

tively learning generalized vector embeddings. Hence, there is a requirement for neural net-

work models that can generalize graphs and enhance the accuracy of entity prediction within 

charts. 

The Shallow models have demonstrated considerable achievements over the previous decade, as 

evidenced by studies (Perozzi et al., 2014; Ribeiro et al., 2017). The primary objective of these 

models is to represent nodes, edges, and subgraphs as vectors with minimal dimen-

sions while maintaining the integrity of the graph structure and the proximity between entities. In 

general, the models initially employ a sampling strategy to capture the form of the graph and the 

proximity relation. Subsequently, they acquire embeddings using shallow neural network algo-

rithms. Various sampling procedures can be employed to collect local and global data in graphs (C. 

Wang et al., 2020). Specific approaches focus on maintaining the integrity of the graph’s structure 

by devising sampling methodologies capable of capturing the inherent structure within samples of 
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specified lengths. Various sample strategies have been developed to capture local and global graph 

structures. These techniques include random-walk sampling, role-based sampling, and edge recon-

struction. The model subsequently utilizes shallow neural network approaches to acquire vector 

embeddings within the latent space through unsupervised learning. Selecting an appropriate tech-

nique for capturing the graph structure is crucial in enabling external models to reach vector em-

beddings effectively. The graph structure can be sampled by examining the connections between 

nodes within the graphs or sub-structures. In the past ten years, several models have been suggested 

to effectively represent the graph structure and acquire embeddings (R. Liu et al., 2023; Perozzi et 

al., 2017). Random-walk-based tactics are among the most prevalent approaches for sampling 

graph structures, as evidenced by many models. The primary concept behind the random-walk 

technique is acquiring knowledge regarding the form of a network to generate pathways that can 

be interpreted as phrases within texts. Deep Walk (Perozzi et al., 2014) and Node2Vec (Grover & 

Leskovec, 2016) can be regarded as seminal models that have paved the way for exploring novel 

approaches in node embedding learning.  

Motivated by the limitations of matrix factorization-based models, the DeepWalk model employs 

random-walk sampling to maintain node neighbourhoods, enabling the collection of global infor-

mation in graphs. Furthermore, both DeepWalk and Node2Vec aim to maximize the likelihood of 

witnessing neighbouring nodes through the utilization of stochastic gradient descent on individual 

single-layer neural networks. Hence, these models effectively mitigate the duration of execution 

and decrease the level of computational intricacy. DeepWalk is a node embedding model that uses 

a random-walk sampling strategy to build node sequences, which are then treated as word sen-

tences. One of the drawbacks inherent to this model is its inability to effectively enhance the quality 

of the sampling graph structure by navigating random-walk sampling. To address the constraints 

of DeepWalk, Node2Vec was proposed, which incorporates a versatile random-walk sampling ap-

proach to facilitate the traversal of random walks at each time step. Several limitations are associ-

ated with shallow models. 

• In the context of graphs, the limited capacity of shallow models prevents them from acquir-

ing embeddings for newly introduced nodes. To develop embeddings for novel nodes, the 

models must incorporate new patterns. This can be achieved by random-walk sampling to 

generate fresh pathways for the new nodes. Subsequently, the models must undergo re-

training to learn the embeddings. The implementation of re-sampling and re-training tech-

niques may provide challenges in real applications. 

• Shallow models, such as DeepWalk and Node2Vec, are primarily effective in analyzing 

homogenous graphs, but they tend to overlook the properties or labels associated with indi-

vidual nodes. However, it is worth noting that in practical applications, numerous charts 

possess features and brands that can provide valuable information for graph representation 

learning. Limited research has been conducted on the characteristics and designations of 

nodes and edges. Nevertheless, the model’s inefficiency and heightened computing com-

plexity have been exacerbated by the constraints imposed by domain knowledge in the con-

text of diverse and dynamic graphs. 

• One limitation of shallow models is the absence of parameter sharing, which prevents the 

models from sharing parameters during the training phase. From a statistical standpoint, pa-

rameter sharing can decrease the computational time required and the number of weight up-

dates needed throughout the training process. To address these constraints, deep neural net-

work models are recommended to substitute shallow models. Deep neural network models 
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have shown improved generalization capabilities and the ability to capture more graph en-

tity interactions and structures.  

Recently, several graph embedding models’ efficacies has been tested by large-scale graphs' 

presence. Conventional approaches, such as shallow neural networks or statistical techniques, could 

improve their ability to effectively represent intricate graph topologies due to their simplistic ar-

chitectural design. In recent times, there has been a surge in research focusing on deep graph neural 

networks. These networks have gained significant attention due to their remarkable capability 

to handle intricate and extensive graph structures (Bojchevski & Günnemann, 2017; M. Liu et al., 

2020). In contrast to previous models, most deep neural network-based models utilize the graph 

structure and node attributes/features to get node embeddings. For example, individuals using the 

social network platform may own textual data, such as personal details featured in their profiles. 

When nodes lack attribute information, the attributes or features can be encoded using node degree 

or one-hot vectors (Kipf & Welling, 2016b). A notable category known as Graph Autoencoders has 

emerged in deep graph networks. These unsupervised learning algorithms specialize in encoding 

graph items into latent spaces and reconstructing these entities using the encoded information. The 

intricate process of encoding and reconstructing data is a defining characteristic of Graph Autoen-

coders, granting them a distinctive and influential position in deep graph representation learning.  

Graph Autoencoder models can be categorized into two major groups based on their architectural 

attributes: Multilayer Perceptron (MLP)-based models and Recurrent Graph Neural Networks 

(RGNNs). Early Graph Autoencoder models mostly used the Multilayer Perceptron (MLP) archi-

tecture during the first stages of their development. The design decision demonstrated its ability to 

effectively incorporate complex embeddings, as evidenced by the groundbreaking studies (S. Cao 

et al., 2016; Tu, Cui, Wang, Wang et al., 2018), which established the foundation of this lineage. 

Another model that can be considered is the RGNNs, which stands out as one of the pioneering 

approaches in utilizing deep neural networks for graph representation learning. RGNNs are built 

upon the foundation of GNNs. The primary concept underlying GNNs is the incorporation of mes-

sages passing between target nodes and their neighbouring nodes until a state of equilibrium is 

reached. Recurrent graph neural networks offer numerous advantages in comparison to shallow 

learning techniques. 

• RGNNs have demonstrated enhanced learning capabilities in processing scattered infor-

mation, particularly in multi-relational graphs with nodes with numerous connections. This 

capability is attained by modifying the states of every node within each concealed layer. 

• Parameter sharing is a technique employed by RGNNs to share parameters across several 

locations. This allows RGNNs to capture the inputs of sequence nodes effectively. This 

benefit could decrease computational complexity during training by utilizing fewer param-

eters, enhancing the models’ performance.  

Nevertheless, a drawback of RGNNs lies in their utilization of recurrent layers that possess identi-

cal weights throughout the weight update procedure. This phenomenon results in inefficiencies 

when specifying various relationship constraints between neighbouring and target nodes. In recent 

years, convolutional graph neural networks (CGNNs) have demonstrated significant efficacy in 

addressing the limitations of RGNNs by leveraging distinct weights in each hidden layer. Convo-

lution operators can be defined and applied to graph mining, as image data can be seen as a specific 

instance of graph data. Two distinct methodologies exist for implementing convolution operators 

in the graph domain. The initial approach relies on the principles of graph spectrum theory, wherein 
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graph entities are converted from the spatial domain to the spectral domain. Subsequently, convo-

lution filters are employed on the spectral domain. The alternative approach involves utilizing con-

volution operators within the spatial domain of the graph. Most spectral models acquire node em-

beddings by converting graph data into the signal domain and use convolutional filters, resulting in 

heightened computational complexity. Kipf & Welling (2016a) presented the concept of graph con-

volutional networks (GCNs), which were seen as connecting spectral and spatial methodologies. 

Despite the effectiveness of spectral CGNNs for performing convolution filters on the spectrum 

domain, they exhibit numerous drawbacks, which are outlined below: 

• The computational complexities associated with the decomposition of the Laplacian matrix, 

specifically in obtaining matrices rich in eigenvectors, have been well recognized as time-

consuming tasks. The temporal commitment is significantly increased by the repetitive dot 

product calculations that occur between eigenvectors and Laplacian matrices throughout the 

training process. 

• In the context of computational systems, a significant issue arises when confronted with 

extensive networks. There exists a clear association between the parameters that govern the 

kernels and the number of nodes contained inside the graphs. As a result, the domain of 

spectral models, which heavily depend on these parameters, may face constraints in situa-

tions involving large graph dimensions. The aforementioned subtle constraint highlights the 

pragmatic factor that spectral models may not be optimally suitable for graphs of substantial 

scale. 

• The task of addressing the challenges posed by dynamic graphs entails dealing with a dis-

tinct array of intricacies. The application of convolution filters and the training of the model 

need the conversion of graph data into the spectral domain, often accomplished by utilizing 

a Laplacian matrix. However, this particular transition presents a significant difficulty. The 

model’s effectiveness is compromised in situations typified by dynamic graphs, where the 

data within the graph is fundamentally fluid and liable to change. The current framework, 

which is highly attuned to the spectral domain, faces difficulties in accurately representing 

the constantly changing intricacies of dynamic graphs. As a result, it presents a notable dif-

ficulty in capturing and accommodating these fluctuations. 

Spatial models have emerged as a promising option for addressing the limitations inherent in 

spectral domain-based CGNNs. Spatial models introduce a fresh approach by utilizing convolution 

operators within the graph domain, enabling the efficient acquisition of node embeddings more 

powerfully.  

The field’s current state displays various spatial CGNNs, each with its unique methodology. 

These networks have garnered significant recognition for their ability to efficiently navigate com-

plex graph structures, often surpassing the performance of spectral equivalents (Chiang et al., 

2019). However, a shortcoming of CGNNs becomes apparent at the hidden layer. In this context, 

the model effectively coordinates updating the state of surrounding nodes. However, this dynamism 

might unintentionally result in slow training and updating protocols, particularly when inactive 

nodes are present. 

To overcome this obstacle, researchers have strengthened CGNNs by strategically enhancing the 

sampling approach (J. Chen et al., 2018; Z. Huang et al., 2021). (J. Chen et al., 2018) proposed the 

FastGCN model, which aims to enhance both training efficiency and overall model performance, 

surpassing traditional CGNNs. Amidst a multitude of technological breakthroughs, the issue of 
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scalability emerges as a significant worry. Current GNN models face challenges in dealing with 

the rapid growth of neighbourhoods, which leads to an increase in computational complexity. The 

urgency of this matter highlights the need for novel approaches that not only explore the extent to 

which scalability may be achieved but also establish a balanced relationship between performance 

and computing requirements. 

By transcending traditional paradigms, the proposed model seamlessly incorporates neighbour-

hood sampling into each convolutional layer, employing a strategic approach focusing on crucial 

surrounding nodes. The intelligent methodology enables the model to adaptively acquire 

knowledge about the essential neighbouring nodes unique to each batch, effectively focusing on 

the most critical aspects. One notable example in this field is the Graph Attention Networks (GATs) 

model, which was proposed by (Velickovic et al., 2017). This innovative model is at the forefront 

of utilizing the attention mechanism in the complex domain of graph representation learning. The 

fundamental nature of the attention mechanism is in its capacity to coordinate a deliberate message 

for every adjacent node throughout the iterative process of message-passing inherent to Graph Neu-

ral Networks (GNNs). The significance of each neighbouring node to the target node can be quan-

tified by calculating an attention score carefully and deliberately. After performing the necessary 

calculations, the score is subjected to a normalization process, efficiently aided by the SoftMax 

function. The normalization process successfully ensures that the scores can be compared across 

all neighbouring nodes of the target node. Following the harmonization procedure, a node’s em-

beddings are generated by skillfully combining the states of its nearby nodes. The orchestration 

presented in this context demonstrates a dynamic interplay, effectively capturing the fundamental 

nature of graph relationships in a coherent and influential manner. 

Furthermore, the GAT model utilized the effectiveness of multi-head attention, a strategic tech-

nique that increased the model’s capabilities and introduced improved learning stability. However, 

throughout this pioneering endeavor, a subtle constraint emerges. The GAT model, which relies on 

attention coefficients to govern its mechanism, unconditionally prioritizes attention. Consequently, 

this limited framework needs to improve its ability to encompass the intricate details of the global 

graph structure fully. Recently, there has been a notable increase in the development of novel mod-

els, all stemming from the fundamental principle of GAT. The main focus of these models is to 

enhance the intrinsic capacity of the self-attention mechanism, therefore fostering a more profound 

connection with the extensive network of global graph structures (Ma et al., 2021). 

In this quest, researchers actively explore techniques that effectively explore and comprehend 

the complex harmonies within the more fantastic graph world. Deep neural network models offer 

several notable advantages: 

• One notable advantage of deep neural network models is the deliberate utilization of param-

eter sharing, wherein weights are shared strategically throughout the training process. This 

innovative methodology results in three advantageous outcomes: a decrease in the duration 

of the training, a limitation in the number of training parameters, and a simultaneous en-

hancement in the model’s performance. Furthermore, the fundamental principle of parame-

ter sharing expands its scope to enable models to incorporate multi-task learning, highlight-

ing this approach’s inherent versatility and efficiency. 

• Another notable advantage that sets deep models apart from shallow models is their ability 

to engage in inductive learning. This crucial characteristic endows deep-learning models 

with the unique capability to surpass the limitations of their training material and extend 

their knowledge to include unknown instances. The particular skill of these models allows 
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them to effectively navigate unfamiliar areas, which gives them practical value and signifi-

cance in real-world situations. 

Nevertheless, some limitations are: 

• CGNNs rely primarily on an aggregation process for mapping the complex paths of graph 

structure and entity interactions. The method above diligently collects data from adjacent 

nodes to enhance the comprehension of target nodes. When many graph convolutional lay-

ers are stacked in CGNNs to capture higher-order graph structures, a significant problem 

arises. The decision to increase the depth of the convolutional layer may unintentionally 

lead to a problem of excessive smoothing. This occurrence might hamper the model’s ca-

pacity to accurately detect and analyze small fluctuations and subtleties in the data (T. Chen 

et al., 2022; L. Zhao & Akoglu, 2019). 

• Limitations in Disassortative Graphs: The discourse diverges when considering disassorta-

tive graphs, which are characterized by nodes with various labels that tend to connect. The 

inherent aggregation mechanism included in GNNs emerges as a constraint and obstacle. 

Despite the varied tags assigned to nodes, the aggregation process uniformly selects attrib-

utes from surrounding nodes, concealing the subtle disparities that are the basis of disassort-

ative graphs. This constraint becomes especially significant in classification tasks, as GNNs 

struggle to effectively integrate their aggregation approach with the complexities of disas-

sortative graph structures. 

3.1 Notation and Fundamentals of Graph Representation Learning 

Mathematically, a graph is represented as 𝐺 = (𝑉; 𝐸)  where 𝑉 = {𝑣1; ∶: : ;  𝑣𝑁} is a set of  𝑁 =

|𝑉 | nodes and 𝐸 ⊆  𝑉 ×  𝑉 is a set of 𝑀 = |𝐸| edges between nodes. We use 𝑨 ∈ ℝ𝑁×𝑁 to denote 

the adjacency matrix, whose 𝑖𝑡ℎ row, 𝑗𝑡ℎcolumn, and an element are denoted as 𝐴(𝑖, ∶

); 𝐴(: , 𝑗); 𝐴(𝑖, 𝑗), respectively. A node 𝑣 and an edge 𝑒𝑢𝑣   can store characteristics or qualities rep-

resented by vectors 𝒙𝑣 and 𝒙𝑢𝑣
𝑒 , respectively. The node characteristics of a graph are expressed by 

a matrix  𝑿 ∈ ℝ𝒏×𝒅, where 𝑑 represents a node feature size. A matrix represents the edge features 

of a graph  𝑿𝑒 ∈ ℝ𝒎×𝒄, where 𝑚 and 𝑐 depict the number of edges and an edge feature size, re-

spectively.  𝑿𝑇 denotes the transposition of a matrix, and the element-wise multiplication is written 

as 𝑿1⨀𝑿2. In this study, matrices are represented by uppercase bold characters and vectors by 

lowercase bold characters unless otherwise noted. Table 2 contains all the symbols and abbrevia-

tions used throughout the study. 

3.2 Classification of Tasks Via Graph-based Data Hierarchies 

As seen in Figure 1, the data represented by graphs have the potential to have information integrated 

at various levels of the structure. At the node level, the different node-based task has their defini-

tions. In addition, edge-level tasks are also definable. The tasks that need to be completed at the 

graph level can be tailored to the requirements of the various applications. 

Representing Node Tasks: The goal of representing node tasks is to learn representations of var-

ious network elements, including nodes. Node-level taxonomy is the focus of node classification, 

node clustering, and node regression, among other related techniques. Node classification, unlike 

regression, classifies nodes rather than predicting their values. It is important that representations  
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Figure 1: Types of Graph Tasks. 

Notations Descriptions 

𝐺 =  (𝑉; 𝐸) A graph 

𝑛 The number of nodes,𝑛 = |𝑉| 

𝑚 The number of edges,𝑚 = |𝐸| 

𝑉 = {𝑣1; ∶: : ;  𝑣𝑁} The set of nodes 

𝑿 ∈ ℝ𝒏×𝒅 Graph feature matrix 

𝒙𝑣  ∈ ℝ𝒏 Node 𝑣 feature vector 

𝑿𝑒 ∈ ℝ𝒎×𝒄 Feature matrix for a graph edge 

𝒙𝑢𝑣
𝑒 ∈ ℝ𝒄 The feature vector of the edge 

A The adjacency matrix 

⨀ Element-wise product. 

|. | The length of a set. 

𝑋𝑇 The transposition of the matrix X 

𝑫(𝑖 , 𝑖)  = ∑ 𝑨(𝑖, 𝑗)
𝑗

 
The degree matrix of A 

𝑳 =  𝑫 −  𝑨 The Laplacian matrix 

𝑸⋀𝑸𝑻  =  𝑳 The eigen decomposition of 𝑳 

𝑯 ∈ ℝ𝑛×𝑏 Node hidden feature matrix 

𝑾, 𝜔, 𝜃 Learnable model parameters 

S A search space 

Table 2: Notations. 

optimally embed the input graph so that algebraic operations on the embedded graph accurately 

reflect the graph’s topology. Finally, representations can be used as inputs in models to predict the 

property of graph elements, such as the role of proteins in an interactome network (i.e., node clas-

sification task). 
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Representing Edge Tasks: Among the edge-level tasks are linked prediction and edge categori-

zation. Link prediction and edge classification entail the model predicting whether two nodes have 

an edge and classifying the edges. Recommendation systems are an excellent illustration of an edge 

problem, such as the prediction of whether or not a medicine will bind to a specific target protein 

(recommend the items users might like). It is indispensable to model the representation of a network 

to find solutions to problems involving classification, regression, and matching. At the graphs’ 

level, gaining insights can be accomplished by classification. Examples of small molecular graphs 

include antibiotics and other medications. Drug discovery and toxicity profiling are two of the most 

prevalent graph-level operations (i.e., graph classification tasks). In this metaphor, the atoms func-

tion as the “nodes,” and the chemical bonds that connect them act as the “edges.”  A simulation of 

physical occurrences, where the particles themselves serve as the vertices, inter-particle interactions 

serve as the edges, and so on. It is possible to break tasks at the graph level down into those at the 

subgraph level.  

4. Learning Methods for Complex Graphical Representations 

Graph learning parameters depend on data accessibility and real-world needs, like classical ma-

chine learning. According to the literature, graph-based learning tasks can be supervised, semi-

supervised, unsupervised, or self-supervised.  

4.1 Supervised Learning on Graphs  

The intent is to use labeled data for model training (e.g., labeled nodes). In contrast to supervised 

learning, which relies on predetermined labels, the currently dominant strategies for generating 

graphs are unsupervised. Labeled instances are used before to improve the graph for downstream 

study tasks. Dhillon et al. (2010) examine node pair similarities using labeled points. If the manifold 

sampling rate is high enough, the optimum solution for a neighbourhood graph can be considered 

a KNN graph subgraph, as Rohban & Rabiee (2012) shows. Berton & Lopes (2014) propose Graph-

based labeled instance informativeness (GBILI), which builds on the work of (Ozaki et al., 2011) 

by using the label information differently: they utilize a graph to determine which instances are 

most informative. 

 Berton et al. (2017) improved the Robust Graph that Considers the Labeled Instances (RGCLI) 

technique, based on GBILI (Berton & Lopes, 2014), to build more sturdy graphs by resolving an 

optimization difficulty. L. Zhuang et al. (2017) presented low-rank semi-supervised representation 

as a unique way to integrate labeled data in the low depiction for enhanced accuracy (LRR). The 

added supervised information from the created similarity graph greatly improves the subsequent 

label inference process. 

Complex algorithms and models have been presented over the past few decades, with the major-

ity falling into two broad approaches: regularized graph Laplacian-based approaches and graph 

embedding-based methods (Kipf & Welling, 2016a). Label propagation using Gaussian fields and 

harmonic functions (X. Zhu et al., 2003), Manifold propagation (Belkin et al., 2006), and deep 

embeddings (Weston et al., 2008) are all examples of the first category. Examples of works from 

the latter category are DeepWalk  (Perozzi et al., 2014), LINE (Tang, Qu, Wang, et al., 2015), and 

node2vec (Grover & Leskovec, 2016). These procedures take their cue from the skip-gram model 

presented by (Mikolov et al., 2013), employing a wide range of different random-walk and search-

based techniques. Supervised graph representation learning provides explicit labelled model opti-

misation. This advantage produces high-performance findings with abundant tagged data. Models 

understand labelled data. They improve forecasts and categorization. Professionals who can 
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accurately and subtly predict or categorise, especially with machine learning, excel. Human anno-

tators can offer accurate labels for high-quality training data. Performance evaluation objectivity is 

improved by comparing supervised methods to ground truth labels. Depending on labelled data is 

supervised learning’s main drawback as it requires expenditure of time and funds, and obtaining 

enough labelled samples tends to be tedious. Supervised approaches rely on labelled data patterns, 

which may limit their applicability to unknown or non-conforming data distributions. When la-

belled data is abundant and rich in information, supervised learning approaches can produce excel-

lent results. Prediction and classification tasks support this claim. However, label noise, bias, or an 

unequal data distribution in the training set may hinder supervised techniques. Supervised learning 

has these issues. Scalability depends on graph data and learning model complexity. Complex mod-

els with wider parameter spaces may require more computational time and resources. 

4.2 Semi-Supervised Learning on Graphs  

When only a small amount of tagged data is available, a semi-supervised study trains models using 

both input types. Due to the graph’s spatial connectedness trait, semi-supervised graph learning 

techniques can effectively use unlabeled data. According to the manifold assumption, low-dimen-

sional manifold nodes that are physically closer together are more comparable and hence should be 

given the same label. Semi-supervised learning has evolved to make use of a wide variety of tech-

niques. Since the graph structure is compatible with numerous assumptions in semi-supervised 

learning, this burgeoning topic is a strong fit. Nodes reflect data instances, and edges represent 

similarity in graph-based semi-supervised learning. The manifold premise states that high-edge-

weight nodes are comparable and have the same label category. Graph structures are simple and 

expressive, successfully making manifold-based graph semi-supervised learning approaches. Sev-

eral semi-supervised survey studies focus on traditional methods of dealing with semi-supervised 

circumstances (Prakash & Nithya, 2014). Some recent efforts, including (Van Engelen & Hoos, 

2020), investigate semi-supervised learning by examining graph creation and regularization. Mul-

tistep approaches cannot construct an end-to-end optimization and learning framework. Still, the 

methods mentioned above (supervised learning) do this by first learning the graph’s embeddings, 

then optimizing the object functions. 

Fortunately, new developments in deep learning can bridge the gaps between graph embedding 

and explicit learning problems in both node level and graph level learning. Since graph classifica-

tion and regression aim to train a classifier or regression model to anticipate the unobserved labels 

or targets, these activities can be branded under (semi)-supervised learning.  This section discusses 

recent developments in graph embeddings, an important part of Graph semi-supervised learning. 

Current methods for Graph semi-supervised learning are summarized in Table 3. 

4.2.1 GRAPH EMBEDDING 

Two distinct kinds of embeddings are distinguishable in semi-supervised learning approaches that 

use graphs. While one describes the entire Graph, the other represents a particular node (W. L. 

Hamilton et al., 2017). Both embeddings aim to accomplish the same aim: to represent the item in 

a space with limited dimensions. Graph-based semi-supervised learning challenges rely on embed-

ding nodes. It represents a vertex in a low-dimensional space with a local structure.  The node 

embedding on graph 𝐺 =  (𝑉, 𝐸) is a mapping ℎ𝑧 ∶  𝑝 → 𝒛𝑝  ∈  ℝ𝑑 , ∀𝑝 ∈  𝑉 where 𝑑 is smaller 

than  |𝑉|.  ℎ𝑧 maintains graph G’s node closeness metric. The function of loss used by graph em-

bedding techniques is described in the plenary Equation 1. 
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ℂ(𝑓) = ∑ ℂ𝑠(ℎ((𝑥𝑖,𝑦𝑖)𝜖𝔻𝑖
ℎ𝑧(𝑥𝑖)), 𝑦𝑖) + 𝜇 ∑ ℂ𝑟(ℎ(𝑥𝑖 𝜖 𝔻𝑖+𝔻𝑢

ℎ𝑧(𝑥𝑖)))        (1) 

 

Table 3: GNN-Based Semi-Supervised Learning Methods. 

 

Paper Embed-

ding Ar-

chitec-

ture 

Embedding 

Techniques 

Loss Function Decoder (Dec) Comparison 

Formula 

(S. Cao et 

al., 2015) 

Shallow Factorization ||𝐷𝑒𝑐(𝑧𝑝, 𝑧𝑞) − 𝑆[𝑝, 𝑞]||2
2 𝑧𝑝

𝑇𝑧𝑞  𝐴𝑝𝑞  

(Ou et al., 

2016) 

Shallow Factorization ||𝐷𝑒𝑐(𝑧𝑝, 𝑧𝑞) − 𝑆[𝑝, 𝑞]||2
2 𝑧𝑝

𝑇𝑧𝑞  Similarity 

matrix S 

(Roweis 

& Saul, 

2000) 

Shallow Factorization ∑ ||𝑧𝑝 − ∑ 𝐴𝑝𝑞𝑧𝑞||𝑞
2

𝑝   𝑧𝑝 − ∑ 𝐴𝑝𝑞𝑧𝑞
𝑞

 𝐴𝑝𝑞  

(Belkin & 

Niyogi, 

2003) 

Shallow Factorization 𝐷𝑒𝑐(𝑧𝑝, 𝑧𝑞). 𝑆[𝑝, 𝑞] (𝑧𝑝 − 𝑧𝑞)||2
2 𝐴𝑝𝑞  

(Tang, 

Qu, 

Wang, et 

al., 2015) 

Shallow Random 

Walk 
∑ −log (𝜎(𝑧𝑝

𝑇𝑧𝑞𝑛)) −(𝑝,𝑞)∈𝒟

𝛾Ε𝑝𝑛 ~ 𝑃𝑛(𝑉)[log (−𝜎(𝑧𝑝
𝑇𝑧𝑞𝑛))]  

1

1 − 𝑒−𝑧𝑝𝑇𝑧𝑘
 

𝒫𝒢(𝑝|𝑞) 

(Grover & 

Leskovec, 

2016) 

Shallow Random 

Walk 
∑ −log (𝜎(𝑧𝑝

𝑇𝑧𝑞𝑛)) −(𝑝,𝑞)∈𝒟

𝛾Ε𝑝𝑛 ~ 𝑃𝑛(𝑉)[log (−𝜎(𝑧𝑝
𝑇𝑧𝑞𝑛))]  

𝑒𝑧𝑝𝑇𝑧𝑝

∑ 𝑒𝑧𝑝𝑇𝑧𝑘𝑘∈𝑉
 

𝒫𝒢(𝑝|𝑞) 

(Tang, 

Qu, & 

Mei, 

2015) 

Shallow Random 

Walk 
−𝑺[𝑝, 𝑞]𝑙𝑜𝑔(𝒫𝒢(𝑝|𝑞)) 1

1 − 𝑒−𝑧𝑝𝑇𝑧𝑘
 

𝒫𝒢(𝑝|𝑞) 

(Z. Yang 

et al., 

2016) 

Shallow Random 

Walk 
𝐸𝑝𝑛~ 𝑃𝑛(𝑉)[log (−𝜎(𝑧𝑝

𝑇𝑧𝑞𝑛))] 𝑒𝑧𝑝𝑇𝑧𝑝

∑ 𝑒𝑧𝑝𝑇𝑧𝑘𝑘∈𝑉
 

𝒫𝒢(𝑝|𝑞) 

(Perozzi 

et al., 

2014) 

Shallow Random 

Walk 

−𝑺[𝑝, 𝑞]𝑙𝑜𝑔(𝐷𝑒𝑐(𝑧𝑝, 𝑧𝑞)) 𝑒𝑧𝑝𝑇𝑧𝑝

∑ 𝑒𝑧𝑝𝑇𝑧𝑘𝑘∈𝑉
 

𝒫𝒢(𝑝|𝑞) 

(Pan et al., 

2019) 

Deep Auto-en-

coder 
𝑚𝑖𝑛𝒢𝑚𝑎𝑥𝒟𝐸𝑧~𝑢𝑧

[𝑙𝑜𝑔𝒟(𝑍)] +

𝐸𝑥~𝑢(𝑥)[log (1 − 𝒟(𝒢(𝑋, 𝐴)))]  

𝑧𝑝
𝑇𝑧𝑞  𝐴𝑝𝑞  

(Taheri et 

al., 2019) 

Deep Auto-en-

coder 

∑ ||𝐷𝑒𝑐(𝑧𝑝)𝑝𝜖𝑉 − 𝑆𝑝||2
2  LSTM 𝑠𝑝 

(Kipf & 

Welling, 

2016b) 

Deep Auto-en-

coder 
𝐸𝑢(𝑍|𝑋,𝐴)[𝑙𝑜𝑔𝑝(𝐴}𝑍]

− 𝐾𝐿[𝑢(𝑍|𝑋, 𝐴)||𝑝(𝑍)] 

𝑧𝑝
𝑇𝑧𝑞  𝐴𝑝𝑞  

(D. Wang 

et al., 

2016) 

Deep Auto-en-

coder 

∑ ||𝐷𝑒𝑐(𝑧𝑝)𝑝𝜖𝑉 − 𝑆𝑝||2
2  MLP 𝑠𝑝 

(Tu, Cui, 

Wang, 

Yu, et al., 

2018) 

Deep Auto-en-

coder 

∑ ||(𝑧𝑝)𝑝𝜖𝑉 −

∑ 𝐿𝑆𝑇𝑀(𝑧𝑝)𝑝𝜖𝒩(𝑝) ||2
2  

 

LSTM 

 

𝑠𝑝 
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Figure 2: An auto-encoder-based approach to constructing a 𝑧𝑖 embedding of a few dimensions 

from a high-dimensional vector 𝑆𝑛. 

 

The embedding function is denoted here by ℎ𝑧. The regularization of graphs makes use of a function 

analogous to this one. Graph regularization is similar to traditional regularization, except it relies 

on node embedding results for model training rather than node attributes. The encoder-decoder 

framework is a generalization of all graph embedding approaches. The encoder embeds the input 

nodes into low-dimensional spaces, and the decoder reconstructs the original data for each node, as 

seen in Figure 2. 

Encoder: The encoder is formally seen as a function that maps 𝑝 ∈  𝑉 nodes to 𝑧𝑝 ∈  ℝ𝑑 vector 

embeddings. Embeddings formed in the higher-dimensional latent space have better discriminatory 

power. 

This decoder module is also simpler to reverse-engineer into the actual function vector. From an 

arithmetical standpoint, we have the encoder: 𝑉 →   ℝ𝑑. 

Decoder: The decoder module rebuilds graph statistics from the implanted node. The decoder can 

try to anticipate the next neighbour 𝑁(𝑣) or row node embedding 𝑧𝑣 in the adjacency matrix 𝐴[𝑢]. 

Pair-form decoders are proven to predict node similarity. Mathematically, Decoder: ℝ𝑑  × ℝ𝑑   →

 ℝ+. 

4.2.2 SHALLOW GRAPH EMBEDDING 

It is preferred for node embeddings to reflect graph structure characteristics immediately surround-

ing them. The framework known as shallow network embeddings aims to optimize a neural network 

to generate embeddings that keep these features intact. A crucial characteristic of this feature is that 

the degree of resemblance in the embedding space ought to closely correspond to the degree of 

similarity in the source Graph (Figure 3). Different approaches are taken due to the numerous syn-

onyms for “method.” For instance, the brief path length between two nodes can be used to describe 

network similarity, whereas the dot product can be used to define embedding space similarity. More 

advanced approaches can capture more detailed similarity measurements, allowing a more accurate 

reflection of the network structure. The semantic meaning of edges (i.e., relation types) can be 

useful to incorporate into learned embeddings for heterogeneous graphs. Since each relation is split 

into many embeddings representing the head node, the tail node, and the relation type, knowledge 

graph embedding methods (Bordes et al., 2013; Dong et al., 2017; Nickel et al., 2011; Z. Sun et al., 
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2019; Trouillon et al., 2016; B. Yang et al., 2014) generate similarity metrics by considering a wide 

variety of node relations. 

Factorization: For the class of factorization-based approaches, a matrix is factorized to provide 

the node embedding, with the matrix specifying the relationship between each pair of nodes. When 

constructing a similarity network, this matrix typically includes essential structure information like 

normalized Laplacian and adjacency matrices. The factorization of such matrices can take many 

forms depending on several factors. The eigenvalue decomposition of the normalized Laplacian 

Matrix makes sense because it is also positive and semi-definite. 

Random Walk: A useful method for approximating several properties of a Graph, such as its 

nodes’ centrality (Newman, 2005) and similarity (Fouss et al., 2007). One of the attributes that may 

be approximated is the degree to which two nodes are similar. Therefore, random node embedding 

strategies are useful when just a portion of the graph is available or where the graph is too big to 

be effectively managed.   According to one definition (Perozzi et al., 2014), “similarity” is defined 

as “co-occurrence in a series of random walks of length k.” It is possible to reproduce random walks 

on graphs through various approaches, such as depth-first search algorithms, breadth-first search 

walks, and hybrids (Grover & Leskovec, 2016). 

Shallow embedding approaches have performed well on many semi-supervised tasks, but re-

searchers have struggled to overcome their drawbacks. Shallow embedding generates only one 

graph embedding. It also does not assess node properties, and few common parameters are used. 

Since the encoder creates a fresh vector at each node, it requires its unique set of parameters. Shal-

low embedding approaches exclude node characteristics, another major concern. Encoding may 

contain extensive feature information. Semi-supervised learning uses this since each node contrib-

utes feature information. Shallow embedding techniques have always relied on a transductive ap-

proach (W. L. Hamilton et al., 2017). Nodes identified after the training phase cannot generate their 

embeddings. Because of this limitation, inductive applications cannot use shallow embedding tech-

niques.  

4.2.3 DEEP GRAPH EMBEDDING 

Recently, many deep embedding approaches have been created to circumvent these limits. Embed-

ding something shallow requires a different set of skills than embedding something deep. In this 

case, the encoder would consider the properties of the graph in addition to the graph’s structure. 

When doing semi-supervised learning tasks with a transductive setup, the node embeddings are 

utilized for training a top-level classifier, which then makes predictions regarding the class labels 

of unlabeled nodes. Auto-encoder-based approaches diverge from shallow embedding approaches 

in two key respects; they rely on Deep Learning (DL) models and employ a unary decoder rather 

than a paired one. As shown in Figure 2, the goal of the Auto-encoder based method is to encode 

each node according to the linked vector 𝑠𝑖 and then restructure it using the embedding findings, 

expecting the restored one to be as close to the initial as possible. 

4.3 Graph-based Unsupervised Learning 

Data samples and annotated labels from the real world are presented when working in a supervised 

or semi-supervised scenario. In the unsupervised context, labeled samples are unavailable; there-

fore, the loss function must infer the properties of the Graph’s nodes, edges, and topology. Perhaps 

the most emblematic task in unsupervised graph learning is the link prediction problem, which 
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Figure 3: Shallow Network Embeddings. 

involves predicting the existence of unseen edges in a graph. Table 4 represents contrastive learn-

ing, auto-encoders, and random walks as the basis of several unsupervised graph learning methods. 

4.3.1 CONTRASTIVE LEARNING 

The unsupervised learning environment uses contrastive learning to acquire expertise in graph rep-

resentations. Deep Graph Infomax (DGI), which is an extension of the deep InfoMax described by 

(Hjelm et al., 2018), was proposed by (Velickovic et al., 2019). DGI exploits the shared information 

amid the representations of the nodes and the graph. Infograph (F.-Y. Sun et al., 2019)  simplifies 

learning graph depictions by optimizing the information gained across graph-level and subgraph- 

level illustrations of varying sizes, like nodes, links, and triangles. First-order adjacency matrices 

representation and graph diffusion are compared in (Hassani & Khasahmadi 2020), which achieves 

State-of-the-art (SOTA) results on various graph learning problems. (Okuda et al., 2021) recently 

employed an unsupervised graph representation study to identify generic objects and create a lo-

calization strategy for accumulating images of individual objects. 

4.3.2 GRAPH-BASED AUTO-ENCODERS 

In their ground-breaking work, Kipf & Welling (2016b) introduced the Graph Auto-encoder 

(GAE), an enhanced auto-encoder designed to handle graph-structured data effectively. This para-

digm’s fundamental training principle is centered on a loss computation that effectively contrasts 

the original adjacency matrices with their carefully recreated counterparts. 

The emergence of the Variational Graph Auto-encoder (VGAE) methodology reveals a fundamen-

tal role played by variation in the learning process. In innovation, two parallel investigations were 

conducted by C. Wang et al. (2017) and J. Park et al. (2019). The researchers aimed to deviate from 

using the adjacency matrix and instead focused on accurately reproducing feature matrices in 

their investigations. The minimized Graph Autoencoder (MGAE) is a novel approach that utilizes 

minimized noise removal principles to capture the characteristics of flexible nodes effectively. In 

a notable advancement, J. Park et al. (2019) endeavored to enhance the breadth of decoding capa-

bilities. The researchers improved the decoding process by strategically incorporating Laplacian 

sharpening, effectively revealing concealed states with exceptional precision. The culmination of 

this transformation resulted in the emergence of an asymmetrical Graph Auto-encoder known as   
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Paper Feature re-

trieval 

Method Task Important Functions 

(F.-Y. Sun et 

al., 2019) 

Contrastive K-layer Graph 

Convolutional 

Network (GCN) 

Node Classification 

(NC), Link predic-

tion (LP), Graph 

Classification (GC) 

Graph-level depictions. 

(Hjelm et 

al., 2018) 

Contrastive Neural Network 

(NN) 

NC New method for representation study 

without supervision. 

(Velickovic 

et al., 2019) 

Contrastive CNN NC Increasing node-graph correlation 

(Hassani & 

Khasahmadi, 

2020) 

Contrastive GCN NC, GC Acquiring knowledge of node and 

graph-level illustrations. 

(Pan et al., 

2018) 

Graph Auto-

encoder 

(GAE) 

GCN LP, GC Low dimensional modelling of graph-

structured data for graph analytics. 

(J. Park et 

al., 2019) 

GAE GCN NC, LP, GC A graph’s irregular regions were used 

to extract low-dimensional latent rep-

resentations. 

(G. Cui et 

al., 2020) 

GAE GCN NC, LP Vectorize node properties and network 

structure via graph embedding. 

(C. Wang et 

al., 2017) 

GAE GCN GC Marginalized graph auto-encoder clus-

tering technique. 

(Kipf & 

Welling, 

2016b) 

GAE GCN LP The underlying representations of un-

directed graphs that are comprehensi-

ble are taught. 

(I. Li et al., 

2021) 

GAE NN NC Mastering knowledge acquisition pro-

cesses in both familiar and distant do-

mains. 

(Dong et al., 

2017) 

Random 

Walk (RW) 

NN NC Learning a Heterogeneous Representa-

tion of Network Nodes. 

(Adhikari et 

al., 2018) 

RW NN NC Create a subgraph embedding issue 

(Tang, Qu, 

Wang, et al., 

2015) 

RW NN NC, LP Embeddings of low-dimensional nodes 

in extremely large networks. 

Table 4: GNN-based unsupervised learning methods. 

the Graph Convolutional Auto-encoder using Laplacian smoothening (GALA). GALA is antici-

pated to pave the way for new advancements in the ever-evolving landscape of graph-based auto-

encoders. 

4.3.3 RANDOM WALK 

Random walks have also been shown to compensate for structural equivocation, which occurs when 

two vertices have similar local structures and similar embeddings, and when two vertices have 

similar embeddings and belong to the same community (Du et al., 2018).  Perozzi et al. (2014) 

efficiently capture large-scale networks’ graph structure through the Deepwalk approach. Du et al. 

(2018) and Perozzi et al. (2014) revealed that random walks and contemporary language modeling 

representation learning methods might produce high-quality vertex representations for downstream 
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learning tasks like vertex and edge prediction. Adhikari et al. (2018) and Dong et al. (2017) have 

expanded random walk-based approaches to capture vertex representations in heterogeneous 

graphs and subgraph embeddings. 

4.4 Graph-based Self-Supervised Learning 

Self-supervised learning is a cutting-edge field of study in DL. In semi-supervised learning, the 

reliance on hand labeling for identification, and ground-truth labeling, which requires intensive 

processing, prediction accuracy, and inadequate protection in contrast to adversarial attacks, are all 

addressed (X. Liu, Zhang, et al., 2021). By teaching a model to complete carefully crafted “Pre-

textTasks,” self-supervised learning overcomes the abovementioned drawback. Self-supervised 

learning performs “downstream tasks” (Y. You et al., 2020) such as node, edge, and graph level 

tasks better because it learns more generic representations given unmarked input. Table 5 presents 

an overview of the current approaches utilized in graph self-supervised learning. 

4.4.1 PRETEXT TASKS 

Self-supervised learning relies heavily on the model’s ability to perform well on downstream tasks; 

hence their development is crucial. We classify the pretext task as follows: Masked Feature Re-

gression (MFR), Auxiliary Property Prediction (APP), Same-Scale Contrasting (SSC), Cross-Scale 

Contrasting (CSC), and Hybrid Self-supervised Learning (HSL). 

Masked Feature Regression.  The computer vision task of picture inpainting inspired a new cat-

egory of pretext challenges called Masked Feature Regression (MFR) (J. Yu, Lin, et al., 2018). The 

goal of this technique is to change the attribute of a node or edge to zero or another number. The 

primary objective is to unearth the original node/edge information prior to when GNNs obfuscate 

the data. (Y. You et al., 2020) node-based MFR approach allows GNN to obtain features from 

environmental data. Reconstructing raw features from noisy input data, ideal input data, and noisy 

feature embeddings are context problems used to acquire robustly generalized models. 

Table abbreviations: Node Classification (NC), Link Prediction (LP), Graph Classification (GC), Augmentation Same-

Scale Contrasting (ASSC), Context same-scale contrasting (CSSC), Cross-Scale Contrasting (CSC), Classification Aux-

iliary Property Prediction (CAPP), Hybrid Self-Supervised Learning (HSSL), Masked Feature Regression (MFR), Pre-

training and Fine-tuning (PT&FT), Collaborative Learning (CL), Unsupervised Representation Learning (URL). 

Paper Pretext 

Task 

Cate-

gory 

Mode of 

Training 

Method Task Important Functions 

(Y. Zhu et al., 

2021) 

ASSC URL GCN NC NC Graph contrast learning with personal-

ized enhancement. 

(H. Zhang et 

al., 2020) 

ASSC URL/CL GCN/GIN GC Iteratively performed self-distillation 

with graph augmentations. 

(Qiu et al., 

2020) 

ASSC 

 

URL/ 

PT&FT 

GIN NC, GC Random walks supplement subgraphs, 

and artificial positional node embeddings 

are node characteristics. 

(J. Zeng & 

Xie, 2021) 

ASSC 

 

URL/ 

PT&FT/CL 

NN GC Marginalized graph auto-encoder clus-

tering technique. 

(J. Wu et al., 

2021) 

ASSC PT&FT GCN LP GCN recommendation reliability and du-

rability improvement. 
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(Choudhary et 

al., 2021) 

ASSC 

 

URL 

 

GCN 

 

NC, LP, 

GC 

Automating several pretext tasks. 

(Che et al., 

2021) 

ASSC 

 

PT&FT GCN 

 

NC, LP, 

GC 

Graph representation study. 

(Jin et al., 

2020) 

CSSC PT &FT 

/(CL) 

GCN NC Building domain-specific pretext tasks 

using unlabelled data reduces DL’s need 

for expensive annotated data. 

(Kipf & 

Welling, 

2016b) 

CSSC URL GCN LP Design explainable undirected graph im-

plicit representations. 

(Z. Peng, 

Dong, et al., 

2020) 

CSSC CL NN NC, LP Established a subtask to forecast meta-

paths using node embeddings. 

(Kim & Oh, 

2022) 

CSSC CL GAT NC Graph attention system for noisy graphs. 

(J. Zhang et 

al., 2020) 

CSSC 

 

PT&FT 

 

NN 

 

NC Pre-training a graph-based transformer 

model involves structure recovery. 

(Y. You et al., 

2020) 

CAPP PT&FT/CL GCN NC Pre-computed cluster index for node 

clustering. 

(Rong et al., 

2020) 

CAPP 

 

PT&FT 

 

NN 

 

NC, LP, 

GC 

Acquiring rich molecular structure and 

semantic knowledge from massive un-

tagged molecular data. 

(K. Sun et al., 

2020) 

CAPP 

 

CL GCN NC Train a pseudo-label encoder architec-

ture. 

(Z. Hu et al., 

2019) 

CAPP 

 

PT&FT 

 

GCN 

 

NC, LP, 

GC 

 

GNN-pretrained structural feature ex-

traction. 

(Subramonian, 

2021) 

CSC URL GCN 

 

GC Discovering pattern motifs iteratively 

and improving graph-motif embeddings. 

(Hjelm et al., 

2018) 

CSC 

 

URL GCN NC Learning graph-structured node repre-

sentations. 

(Q. Sun et al., 

2021) 

CSC 

 

CL GCN GC Differentiating the subgraph between 

graphs using the local subgraph and 

global Graph representations. 

(Ren et al., 

2020) 

CSC URL GCN/GAT 

 

NC Enhanced local and global shared 

knowledge for representation learning in 

heterogeneous graphs. 

(C. Park et al., 

2020) 

CSC URL GCN NC, LP Embedding a multiplex network with at-

tributes. 

(J. Cao et al., 

2021) 

CSC 

 

URL NN NC, LP Maximizing mutual information com-

pletes a bipartite graph embedding. Max-

imum knowledge sharing. 

(Opolka et al., 

2019) 

CSC 

 

URL GCN NC Training embeddings to solve node-level 

regression. 
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(Hassani & 

Khasahmadi, 

2020) 

CSC 

 

URL GCN NC, GC Optimizing node mutual information for 

graph learning. 

(F.-Y. Sun et 

al., 2019) 

CSC URL 

 

NN GC Improving substructure-graph represen-

tation knowledge to improve graph-level 

tasks. 

(Jiao et al., 

2020) 

CSC 

 

URL GCN NC Graph representations learning uses good 

compatibility among key nodes and their 

observed subgraphs to capture regional 

structure information. 

(P. Wang et 

al., 2021) 

 

CSC PT&FT Shallow NN 

 

LP Contextual node forecasting in heteroge-

neous networks. 

(Jin et al., 

2021) 

HSSL CL GCN/HGCN 

 

NC, GC Effectively leverage several pretext tasks 

automatically. 

(S. Li et al., 

2021) 

HSSL URL GCN NC Identifying Ethereum Phishing Scams. 

(Wan et al., 

2021) 

HSSL CL GCN/HGCN 

 

NC Generative and contrastive Convolu-

tional graph network 

(J. Lin et al., 

2021) 

HSSL URL GCN NC, LP, 

GC 

 

Categorization of fundus images using 

several labels. 

(W. Hu et al., 

2019) 

MFR PT&FT 

 

GCN NC An innovative method for pretraining 

GNNs on nodes and graphs. 

(Manessi & 

Rozza, 2021) 

MFR CL GCN NC Develop GNN models using a multi-task-

ing approach. 

Table 5: GNN-based self-supervised learning methods. 

Auxiliary Property Prediction In addition to the aforementioned MFR methods, there are further 

methods that investigate the fundamental attribute data of nodes and edges, as well as the graph 

topology, to generate new pretext jobs for the self-supervision models. Additional property predic-

tion methods include regression and categorization (Y. Liu et al., 2022). In contrast to MFR, the 

regression-based method emphasizes context problems, such as the prediction of graph properties 

based on features and structures, rather than on numerical analysis. One such local structure-aware 

pretext job that considers both local and global structure information is the NodeProperty pretext 

task proposed by (Jin et al., 2020). A method called Distance2Cluster was put out by (Jin et al., 

2020) to determine how far unlabeled nodes are from preset clusters in the graph. This method 

causes the node illustration to reflect the training's overall location. PairwiseAttrSim, also proposed 

by (Jin et al., 2020), attempts to minimize the discrepancy between a pair of nodes’ similarity value 

and their feature matching on the representation dispersion. It is based on improving feature mod-

ification for local structures to avoid over-smoothing. 

Creating pseudo labels to aid model training is taken on by classification-based methods instead 

of regression-based techniques. Multi-Stage Self-Supervised (M3S) is a technique proposed by  K. 

Sun et al. (2020) that involves training an encoder design to assign dummy labels to unlabeled 

nodes. Over the entirety of the training procedure, the DeepCluster (Caron et al., 2018) network is 
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the backbone of this approach. Y. You et al. (2020) created the Node Clustering approach, which 

is quite similar and uses self-supervised labels in the form of a previously computed cluster index. 

Same-Scale Contrasting: Unlike the first two methods, which build upon a single node in the 

graph, contrastive learning techniques improve by continually practicing consensus across two 

nodes (such as a single node). This strategy aims to increase the number of positive pairs or samples 

that share the same semantic data while minimizing the number of negative pairs. Same-scale con-

trast (SSC) splits two graph parts by comparing them on a similar scale, such as graph-to-graph and 

node-to-node. Additionally, SSC-based procedures are classified into two groups (context and aug-

mentation) depending on the idea of good and adverse pairings. 

Based on the context-based same-scale contrasting (CSSC), the contextual nodes are brought 

closer together in the embedding space. In a Graph, the contextual nodes are typically located close 

to one another. The Homophily hypothesis (McPherson et al., 2001) forms the basis for the percep-

tion that entities with similar semantic data should be related. Creating collections of nodes with 

comparable semantic data via a random walk defines a context. Positive pairs refer to nodes closer 

together, whereas opposing pairs refer to node pairs obtained through negative sampling. 

In the past few years, contrastive visual feature learning has significantly progressed (K. He et al., 

2020). These developments also drive augmentation-based same-scale contrasting (ASSC), which 

creates fresh augmented examples for real-world data sets. ASSC’s definition of the data augmen-

tation process is essential. Positive pairs of enhanced samples from genuine data are treated as such, 

whereas negative pairings of augmented samples from various actual data are so-called. These 

methods utilize mutual information (MI) estimate (Hjelm et al., 2018) and InfoNCE for estimation 

(Oord et al., 2018) and come under this category. For node-level tasks, Qiu et al. (2020) introduced 

a technique known as Graph contrastive coding (GCC), concentrating on universal unattributed 

graphs. This method augments subgraphs using random walks and restarts for each node before 

using positional node embeddings that were purposefully created as node features. Graph Contras-

tive Representation Learning (GRACE) by  Y. Zhu et al. (2020) learns two augmentation proce-

dures by deleting masked node characteristics and edges to improve graph representation. External 

and internal negative pairings are contrasted. 

Cross-Scale Contrasting: Cross-Scale Contrasting (CSC) is an alternative contrasting learning 

method to SSC used to learn representations of graphs at different scales (node-subgraph, node-

graph contrasting). The graph or subgraph summary is often obtained via a readout function. The 

goal of these techniques is the same as that of ASSC, which is to maximize mutual information.  

Hjelm et al. (2018) suggested utilizing the Jensen-Shannon divergence to estimate mutual infor-

mation.  (Velickovic et al., 2019) created Deep Graph Infomax (DGI) to maximize the mutual 

information between the top-level graph summary and the related patch representations to learn 

node representations. DGI obtains negative samples of each Graph by deliberately contaminating 

its node attributes. The reliability of the Graph’s architecture is preserved through DGI. Also along 

these lines is Multi-view representation learning on graphs (MVGRL), a technique developed by 

(Hassani & Khasahmadi, 2020) to pay attention to multi-view contrasts. This method separates the 

perspectives of the original graph structure and the diffusion.  The goal is to maximize the two-way 

information flow between various perspectives represented in different ways. Jiao et al. (2020) have 

presented the Subgraph Contrast (Subg-Con) to contrast the subgraph context and the node embed-

dings to comprehend the regional spatial relationships of the graph.  
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Hybrid Self-supervised Learning: Few proposed systems effectively merge pretext tasks from 

several domains into multitasking learning algorithms. The Generative Pre-Trained GNN (GPT-

GNN) (Z. Hu et al., 2020), based on the multi-feature regression (MFR) algorithm, is a pretraining 

approach for the GNN that replaces the edge prediction problem with the production of new graphs. 

Z. Peng et al. (2020) devised a method called graphical mutual information (GMI) to include and 

optimize shared knowledge between the basic feature of a nearby node and the node embedding. 

At the same time, it optimizes the edge similarity metric for graph representation learning (node 

embedding of two adjacent nodes). Bert (J. Zhang et al., 2020) offers a node feature reconstruction 

methodology. The MFR and graph structure retrieval are used to pre-train a transformer-based 

graphs model. To acquire knowledge about context-based SSCs and augmentation as self-super-

vised study signals, Wan et al. (2021) used downstream node classification tasks. 

4.4.2 SELF-SUPERVISED TRAINING STRATEGIES 

Based on the relationship between pretext tasks, downstream tasks, and graph encoders, self-super-

vised learning techniques can employ one of three training strategies: Collaborative Learning (CL), 

Pretraining and Fine-tuning (PT & FT), or Unsupervised Representation Learning (URL). For Col-

laborative study, the encoder and the pretext task are trained together. Self-supervised learning is 

combined with task loss function error to form the combined loss function. A trade-off hyperpa-

rameter can adjust the relative importance of individual errors in determining the total error. It’s 

being passed off as practice for multitasking or as an attempt to standardize the work that comes 

later.  In Pretraining and Fine-tuning, the encoder and the pretext jobs are taught beforehand; this 

can be thought of as setting the encoder’s default values. Also, the prediction head and pre-trained 

encoder are simultaneously tuned per the instructions of precise downstream jobs. Like PT and FT, 

Unsupervised Representation Learning completes pretext tasks and pre-trains the encoder at the 

outset. However, the second phase is distinct due to the fixed encoder parameters. URL is more 

challenging than other training approaches because each encoder is trained separately. 

5. Graph Neural Networks 

Graph Neural Networks (GNNs) is a Deep Learning Neural Networks (NN) appropriate for ana-

lyzing graph-structured data. It is analogous to a graph, with nodes representing the data to be 

studied and edges representing the connections between them. Graph theory and deep learning un-

derpin GNNs. The graph neural network is a model class that learns model class that learns data 

structures and graph tasks using graph representations. Feature propagation and aggregation in 

GNNs improve graph representations. Graphs are frequently used in representation learning tasks, 

where the Graph includes some domain knowledge that, while not explicitly stated in the graph 

structure, can be learned through instances. In a nutshell, graph neural networks extract more in-

formation from data with less organized labeling, iteratively spreading neighbourhood information 

until convergence (recognizes the structure of a given graph or node and learns to represent it). 

These computationally intensive investigations belong to recurrent Graph neural networks 

(RecGNNs) (Z. Wu et al., 2020). Despite efforts to overcome these weaknesses, many scholars 

have used the achievement of CNNs in computer vision to advance new convolution algorithms 

related to graphs, such as convolutional GNNs (ConvGNNs). Spectral-based strategy models (Y. 

Zhang et al., 2019) and spatial-based strategy models (Micheli, 2009; Niepert et al., 2016; H. Peng 

et al., 2020) can be used to categorize ConvGNNs. In the spectral-based approach, models are  
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Figure 4: Neighbourhood Aggregation. 

constructed using spectral graph theory, and eigen decomposition of Laplacian graphs filters sig-

nals on a graph (Oellermann & Schwenk, 1991). In the spatial-based method, the graphs themselves 

undergo the convolution processes, and the convolution itself is embodied as a blend of feature 

exchange from the neighbours of each node. In contemporary GNN models, the illustration vector 

of a node is calculated by iteratively aggregating and altering the illustration vectors of its neigh-

bours; this approach is also known as neighbourhood aggregation (or message forwarding) (Gilmer 

et al., 2017).  

The goal is to teach a feature function 𝑓(𝐺) to recognize patterns in 𝐺. The function receives the 

following input: Matrix representation of the Graph 𝐺 structure, normally in the shape of an Adja-

cency matrix A (or other functions) and yielding node-level or graph-level output, and a feature 

depiction 𝑥𝑣 for each node 𝑣 ∈ 𝑉 summed in a feature matrix X. The application must specify the 

vectors used to represent the node features in this calculation. In a database context, they may take 

the form of word vectors, pixel values, or a hybrid of image characteristics and word vectors to 

describe scenes. The aim is to acquire a good vector illustration over time; hence aggregation is 

performed recursively over neighbouring nodes. After aggregation by 𝑘 rounds (𝑘 = 1,2, . . . , 𝐾), 

the representation of a node gets the depth information inside the 𝑘-hop network neighbourhood 

that node (Figure 4). 

The formal description of the feature vector of a node 𝑣 in a GNN model at the 𝑘-th iteration, 

where k is the number of layers in the model, is as follows, given a graph 𝐺: 

𝒉𝑣
(𝑘)

= 𝐴𝐶𝑇(𝑘)(𝑾𝑘𝐴𝐺𝐺({𝒉𝑢
𝑘−1, ∀ 𝑢 ∈ 𝑁(𝑣)}), 𝛾      (2) 

 

𝛾 = 𝑩𝑘𝒉𝑣
𝑘−1, 𝒉𝑣

0 = 𝑥𝑣                                         (3) 

where 𝑘 ∈ [1, 𝐾] shows number of iterations, 𝑾𝑘 is a learnable weight matrix in the 𝑘-th layer, 𝑩𝑘 

is a bias, 𝑩𝑘𝒉𝑣
𝑘−1 v is a self-loop stimulation for node 𝑣, 𝐴𝐶𝑇(𝑘)(. ) is a non-linear stimulation 

function in the 𝑘 − 𝑡ℎ layer, e.g., Rectified Linear Unit (ReLU), sigmoid, and 𝐴𝐺𝐺(𝑘)(. ) is a com-

bination function in the 𝑘-th layer, e.g., max-pooling, sum. The layer’s output typically denotes 

each node’s ultimate representation. Applying pooling to layer representations is useful for activi-

ties at the graph level. Optimal graph representation learning by a GNN model relies on the careful 

selection of 𝐴𝐶𝑇(𝑘)(. ) and 𝐴𝐺𝐺(𝑘)(. ). The main challenge is to establish the aggregate schema 
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and aggregation order for each node. Several GNN alternates with distinct neighbourhood combi-

nations and graph-level pooling schemes have evolved in recent years. This includes graph convo-

lutional network (GCN) (Kipf & Welling, 2016a), graph isomorphism network (GIN) (K. Xu, Hu 

et al., 2018), graph attention network (GAT) (Velickovic et al., 2017), and local extrema graph 

neural network (LEConv) (Ranjan et al., 2020). These GNNs have demonstrated prevailing perfor-

mance in a variety of tasks, including semantic segmentation (L.-Z. Chen et al., 2021), node clas-

sification (Z. Liu et al., 2019), and recommendation systems (C. Huang et al., 2021; Pang et al., 

2022; J. Zhang et al., 2019), among others. 

5.1 General Layout and Structures of GNN 

Here, we look at GNN models from the perspective of a creative director. First, the study covers 

the big picture of creating a GNN model, as depicted in Figure 5. Subsequently, we discuss each 

step-in great depth in the sub-sections below. As a rule, four stages are involved in designing a 

GNN model for a particular task on a specific graph type. a) determining the application’s graph 

structure, b) characterizing the graph’s kind and scale, c) developing a suitable loss function, and 

d) developing a model incorporating computational modules. n the following paragraphs, we’ll 

discuss the requirements for different design stages. 

5.1.1 GRAPH STRUCTURE 

We must first ascertain the application’s graph structure. Scenarios typically fall into one of two 

categories: structural or non-structural. Many systems, including physical systems, chemicals, 

knowledge networks, etc., exhibit graph structures. In addition to being present in structural con-

texts, implicit graphs also occur in non-structural domains. Thus, we must first construct the Graph 

from the specified task, such as creating a fully linked “word” graph for text or the scene graphs 

for an image. Once we have the Graph, we can determine which GNN model will work best. 

5.1.2 TYPES OF GRAPHS 

The type and size of the graph should be determined when we understand the Graph’s structure 

within the context of the relevant application. More information about the graph’s nodes and edges 

can be stored in a complex graph. There are a few common ways to classify graphs. 

a) Directed or Undirected Graphs: Whether a graph is directed or undirected depends on the 

direction of its edges, but directed graphs carry more content than undirected graphs. Undirected 

edges in a graph are considered the same way as two edges in directed graphs. 

b) Homogeneous or Heterogeneous Graphs: In contrast to heterogeneous graphs, which fea-

ture a wide variety of node and edge types, homogeneous networks have a uniform structure. Re-

searching the different sorts of nodes and edges is essential for understanding heterogeneous 

graphs. 

c) Static or Dynamic Graphs: A dynamic graph is one in which the input attributes or graph 

structure vary over time. Temporal information in dynamic graphs should be carefully analyzed. 

Since these classes are orthogonal to one another, they can be combined to form a dynamically 

directed heterogeneous graph. Signed graphs and hypergraphs are two further types of graphs that 

serve specialized purposes. Both “small” and “large” graphs look the same to the naked eye. Due 

to the ever-evolving nature of computing, the criteria are constantly evolving. 
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Figure 5: A GNN model’s overall design workflow. 

5.1.3 DESIGN LOSS FUNCTION 

It is the task at hand and the parameters of the training set that inform the optimization of the loss 

function. There are essentially three categories of graph-learning initiatives. 

In node-level tasks, such as node classification, node clustering, node regression, and so on, the 

qualities of individual nodes are emphasized. The objective of node classification is to divide nodes 

into manageable chunks. In node clustering, similar nodes are grouped for easier analysis. A valid 

value is predicted for each node, so this process is called “node regression.” 

Edge-level tasks include edge classification and link prediction, which entails the model making 

predictions about the existence of edges between pairs of input nodes and identifying the types of 

edges in a network. Graph-level tasks like matching, classification, and regression depend on the 

model learning appropriate graph representations. From a supervisor’s vantage point, graph learn-

ing activities are broken up into diverse learning settings. Training in a supervised setting allows 

access to labeled data. At the same time, a semi-supervised design provides many untagged nodes 

and a small number of tagged nodes for the training procedure. In an unsupervised setting, the 

model can only learn to recognize patterns in data that have not been labeled. 

5.1.4 BUILD MODEL USING COMPUTATIONAL MODULES 

Using the regular computational modules, we start building the model as follows: 

a) Propagation Module: This module spreads data between nodes so that feature and structural 

data can be added to the aggregated data. Convolution and recurrent operators are widely employed 

in this module to obtain neighbour information. Furthermore, the skip connection is often used to 

get information from previous node illustrations and deal with the issue of over-smoothing. 

b) Sampling Module: When graphs are large, sampling modules are typically necessary for 

graph propagation. Combining the sampling and propagation modules is common. 

c) Pooling Module: Pooling modules collect data for representation when highly ranked sub-

graphs or graphs are required. 
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Graph-based learning systems can demonstrate different degrees of computational complexity 

depending on the specific algorithms and approaches utilized. Random walk-based methods, graph 

convolutional networks, graph attention networks, and graph neural networks are widely acknowl-

edged methodologies for gaining insights into graph structures. The complexity of these ap-

proaches can be adjusted by several methods, depending on criteria such as the model’s scale, the 

number of parameters, and the graph’s size. The computational cost of graph representation learn-

ing methods can exhibit significant variability, contingent upon the particular approach employed 

and the characteristics of the graph dataset, including its size and complexity. Specific techniques 

may show high computational complexity and require substantial memory resources, whereas oth-

ers may be more streamlined and adaptable. GCNs (Kipf & Welling, 2016a) are a type of neural 

network architecture specifically designed to operate on graph-structured data. The forward pass in 

GCNs entails the aggregation of information from adjacent nodes and the subsequent application 

of a neural network layer. The computational complexity of a singular layer is commonly expressed 

as 𝑂|𝑉| + |𝐸|, where |𝑉| denotes the cardinality of the set of nodes and |𝐸|,  represents the cardi-

nality of the set of edges within the graph. The utilization of multiple layers in GCNs enables the 

learning of hierarchical representations. The computational complexity of stacking 𝐿 layers is de-

noted as 𝑂(𝐿 ∗ (|𝑉| + |𝐸|)))). In order to operate effectively, GCNs necessitate the retention of 

three key components: the adjacency matrix or an edge list, node features, and model parameters, 

which include weights and biases. The memory demand is contingent upon the dimensions of the 

graph and the quantity of model parameters. The attention mechanism is employed by GATs 

(Velickovic et al., 2017) to facilitate information aggregation by assessing the relative significance 

of neighbouring nodes. The formula 𝑂(𝑑 ∗ |𝑉|2) is commonly used to express the computational 

complexity of the attention mechanism. In this notation, 𝑑 denotes the number of attention heads, 

while |𝑉| indicates the number of nodes. In order to enhance their overall effectiveness, GATs 

commonly employ several attention heads. The overall complexity is augmented to 𝑂(𝐻 ∗ 𝑑 ∗

|𝑉|2), where 𝐻 represents the total number of attention heads. Similar to GCNs, GATs require a 

designated storage space for the adjacency matrix or edge list, as well as the node attributes and 

model parameters. The required memory capacity is contingent upon both the dimensions of the 

graph and the quantity of model parameters. 

Sampling is a crucial aspect of Graph Sample and Aggregated (GraphSAGE), as it enables the 

efficient processing of large graphs. GraphSAGE achieves this by performing its operations on 

subgraphs that have been carefully selected through the sampling process. The computational com-

plexity is directly proportional to both the size of the sampled subgraphs and the number of layers 

integrated into the model. Its algorithm employs a diverse set of aggregation functions, including 

mean, max, and Long Short-Term Memory (LSTM), to collect and integrate information from 

neighbouring nodes at each layer. The aforementioned data is subsequently utilized in the subse-

quent stratum. The computational complexity of aggregation is contingent upon the specific func-

tion employed and the magnitude of the neighbourhood (W. Hamilton et al., 2017). The manage-

ment of large-scale graph datasets presents several challenges, encompassing constraints related to 

memory capacity, processing time limitations, and issues pertaining to scalability. As the size of 

the graph increases, the computational requirements in terms of time and memory can experience 

a significant and rapid escalation. Consequently, conventional methods become inefficient or in-

feasible to execute. 

In order to tackle the computational difficulties associated with graph datasets of significant 

scale, scholars have put forth a range of optimization methodologies.  
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Sampling Techniques: Researchers employ sampling approaches to extract subsets of the graph 

that are representative of the complete chart, circumventing the need to process the entire network. 

Utilizing these methodologies can significantly reduce the computational load while maintaining 

the integrity of the graph’s overall structure. Sampling techniques are used to select a subset of 

nodes and edges from a large chart to reduce computational load while preserving the overall de-

sign and properties of the network. In research, many sampling methods are frequently employed, 

such as node, edge, and neighbourhood(X. Liu, Yan, et al., 2021; H. Zeng et al., 2019). 

Parallelization: is a technique that can yield advantages for graph algorithms, especially when ap-

plied to modern computer architectures like GPUs and TPUs. Parallelizing graph operations can 

offer advantages such as enhanced computational speed and increased efficiency. Parallelization 

involves subdividing graph computations into smaller tasks that can be executed simultaneously 

on multiple processing units, including graphics processing units (GPUs) and central processing 

units (CPUs). This method facilitates accelerated computations and enhances efficiency (Chiang et 

al., 2019; D. Zhang et al., 2020). 

Approximation methods can be utilized in certain situations to obtain approximate solutions and 

minimize computational requirements. These estimations may be deemed sufficient for specific 

applications, particularly when dealing with large-scale graphs. Approximation methods possess 

the capability to provide approximate solutions while concurrently minimizing the computational 

resources required, rendering them well-suited for application in scenarios involving large-scale 

graphs. In pursuit of enhanced computational efficiency, these strategies sacrifice accuracy.   

The concept of “sparsity exploitation” pertains to the utilization of the observation that the majority 

of graphs exhibit a relatively low density of edges relative to the total number of potential connec-

tions. The utilization of sparsity has the potential to yield significant reductions in computational 

requirements. The utilization of distributed frameworks in computing is another method. These 

frameworks are employed to handle exceedingly large graphs that surpass the storage capacity of 

a single machine’s memory. This is achieved by distributing the graph processing tasks across mul-

tiple nodes within a cluster (Weber et al., 2018) (Abu-El-Haija et al., 2020).  

In summary, the computational complexity of graph-based learning methods exhibits significant 

variability, and the analysis of extensive graph datasets requires meticulous deliberation of optimi-

zation strategies, parallelization techniques, approximation methodologies, and the integration of 

dedicated hardware accelerators. Academic researchers consistently seek novel methodologies to 

surmount these challenges and render graph-based learning feasible and adaptable to practical ap-

plications (C. Li et al., 2023) (Lee et al., 2023). 

6. Applications  

Unlike traditional neural networks, which function with arrays, GNNs can operate on graphs. 

Graphs’ rising popularity can be attributed to their ability to depict complex situations in the actual 

world. Information within the applications is structured. Social networks, chemical structures, web 

connection data, and other unstructured data are studied by modeling them as graphs. Different 

sorts of unstructured data and testing rely on this information. Although node classification, graph 

classification, graph generation, network embedding, and spatial-temporal graph prediction are all 

examples of GNNs, they aim to do slightly different things. This study highlights several research-

based applications in the following fields: 
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Figure 6: Scene Graph Image Representation. 

Computer Vision (CV): In computer vision, GNN activities include the generation of scene 

graphs, the classification of point clouds, and the detection of actions. Understanding the context 

in which things are placed helps in visual scene interpretation. Models that generate scene graphs 

aim to analyze a scene by graphing components and their semantic relationships (Dhingra et al., 

2021). For semi-supervised image classification, where both labeled and unlabeled image occur-

rences are used, the graph neural network simulates the fine-grained region correlations and in-

creases classification performance (Hong et al., 2020; Luo et al., 2016; Satorras & Estrach, 2018).  

Captioning images was demonstrated by (X. Yang et al., 2019) using a novel Scene Graph Auto-

Encoder (SGAE). There are two stages to this particular captioning workflow: First, by employing 

a Convolutional Neural Network (GCN) to encode the image’s scene graph, then decoding the 

phrase using the recording illustration; second, by including the image’s scene graph into the cap-

tioning model. 

Similarly, (L. Li et al., 2019) present the Relation-aware Graph Attention Network (ReGAT), an 

innovative framework for Visual Question Answering (VQA) to describe multi-type object rela-

tions with a query adaptive attention mechanism. To use graph data in images and text, the authors 

(J. Yu, Lu, et al., 2018) introduce a novel cross-modal retrieval model they call a dual-path neural 

network with a graph convolutional network. It considers regular vector-structured visual illustra-

tions and irregular graph-structured textual representations to learn linked features concurrently 

and shared latent semantic space. Furthermore, (S. Wang et al., 2020) generate the text scene and 

visual scene graphs by mining the image and text for objects and associations (Figure 6). Ulti-

mately, they developed a model called Scene Graph Matching (SGM). This model uses two spe-

cialized graph encoders to transform the raw data from the visual and text scene graphs into a 

feature graph. After gaining knowledge of the properties present at both the object and connection 

levels in each graph, it will be possible to match the two feature graphs that correspond to the two 

modalities at two levels with greater success.  

Brain Networks: Centralized activities that reveal a region’s importance in a network (Page et al., 

1999), together with anatomical and functional connectivity (Fornito et al., 2013), is now among 

the most studied aspects of the brain. Differences in sex and age (Zuo et al., 2012), mania and 

depression (Deng et al., 2019), blindness and vision loss (Q. Lin et al., 2021), diabetes and neurop-

athy (Q.-H. Xu et al., 2020), and genetics and epigenetics (Wink et al., 2018) have all been shown 

by analyzing functional connectivity centrality. 
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Figure 7: Biomedical Application. 

Recommendation System: In social networks and advertising platforms, recommendations play a 

crucial role (W. L. Hamilton et al., 2017; Mao et al., 2021; Z. Wang et al., 2020; Z. Zhao et al., 

2020). Some networks include spatial and temporal data (Kermarrec et al., 2011) and structure, 

content, and label data. In mobile applications, spatial-temporal embedding (C. Zhang et al., 2017) 

is a developing field. GNNs are a valuable tool to employ with user and item relational character-

istics. KGNN-LS (H. Wang et al., 2019) improves the item representation in a knowledge graph by 

carrying out aggregations among its associated neighbourhood. Another assumption made by 

KGNN-LS (H. Wang et al., 2019) is that related objects in the knowledge graph would likely have 

similar user preferences. It adds the regularization term to acquire such a customized weighted 

knowledge network. KGCN and KGAT (X. Wang et al., 2019) generally have similar concepts. 

An auxiliary loss for knowledge graph reconstruction is the only significant difference. 

Biomedical Application: Biomedical data analysis can make use of graph representation learning. 

For instance, brain network data can be represented as a graph, with the signals from the brain 

acting as the nodes (D. Zhang et al., 2018)(B. Li & Pi, 2020). The brain’s structures and functions 

in response to various inputs can be studied using embedding techniques (Figure 7). For the study 

of Alzheimer’s disease (C. Hu et al., 2015) (Si et al., 2019) and the brain’s response to magne-

toencephalography signals (R. Liu et al., 2018), various frameworks have been put forth. Drug 

repurposing algorithms have been utilized with Electronic Health Record (EHR) data (Hurle et al., 

2013) (Pushpakom et al., 2019). For instance, (Gurwitz, 2020) used EHR using data to modify 

drugs to treat COVID-19. (Y. Wu et al., 2019) identified several non-cancer drugs as modifiable 

options for cancer treatment. Based on the omics (proteomics and transcriptomics) signature data 

of bladder cancer patients, (Mokou et al., 2020) developed a drug repurposing pipeline. 

Natural Language Processing (NLP): The text classification problem is somewhat old in the field 

of NLP. Documents can serve as nodes in the citation network, with references between them serv-

ing as edges. The bag-of-words approach is commonly employed when describing the attributes of 

nodes in a citation network. When dividing articles into distinct sets, node classification is the 

quickest and easiest option. Numerous Graph convolutional networks have been explored, to name 
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a few: (W. Hamilton et al., 2017; Kipf & Welling, 2016a; Levie et al., 2018; Monti et al., 2017; C. 

Zhuang & Ma, 2018). 

On the other hand, you may use graph classification to sort the texts and analyze the documents 

graphically (i.e., each document is modeled as a graph) (Defferrard et al., 2016). TextGCN (H. 

Peng et al., 2018) also models the entire corpus to a heterogeneous graph and simultaneously learns 

word and document embeddings before classifying the text using a SoftMax classifier. Using a 

graph pooling layer and hybrid convolutions comprising graph convolution and classic convolu-

tion, Gao et al. (H. Gao et al., 2019) use node ordering information to perform better than traditional  

CNN-based ones GCN-based techniques. As the number of labels increases, especially if they are 

all at various degrees of topical granularity, the effectiveness of these methods may decrease. Using 

a graph-of-words to represent long-distance semantics, (H. Peng et al., 2018) apply a recursive 

regularized graph convolution model to use the pyramid of labels. The foundation of many NLP-

related applications is information extraction, and graph convolutional networks have been exten-

sively used in this and its related challenges. For instance, GraphIE (Qian et al., 2018) discovers 

non-local relationships between textual units, generates local context-aware latent reconstructions 

of words or sentences, and utilizes a decoder to label words at the word level. GraphIE is compatible 

with information extraction methods like named entity extraction. Word-relationship extraction (Y. 

Zhang et al., 2018) and event-extraction (S. Cui et al., 2020; X. Liu et al., 2018; Nguyen & 

Grishman, 2018) are two applications of convolutional graph networks. Furthermore, Mar-

cheggiani et al. create a syntactic graph convolutional network model that can be applied to syn-

tactic dependent trees and is appropriate for numerous NLP applications, including neural machine 

translation (Bastings et al., 2017) and semantic role labeling (Marcheggiani & Titov, 2017). Graph 

convolutional networks can give phrase encoders a semantic bias and enhance performance in se-

mantic machine translation (Marcheggiani et al., 2018). 

Traffic:  For an intelligent transportation system to function, it must accurately predict traffic den-

sity, road capacity, or speed in traffic systems. Several researchers use spatial-temporal GNNs 

(STGNNs) to develop models that can deal with a wide range of traffic network problems; these 

include (Y. Li et al., 2017; B. Yu et al., 2017; J. Zhang et al., 2018). The sensors installed along the 

roads are viewed as nodes in a spatial-temporal graph, with the distances between each pair of 

sensors representing edges. The average traffic speed at each node throughout a given frame is 

provided as a dynamic input element, whereas (Agafonov & Myasnikov, 2021; Bing et al., 2020; 

Bogaerts et al., 2020; L. Cai et al., 2020; L. Zhao et al., 2022) focused on solving the problem of 

Road traffic speed. (X. Fang et al., 2020; H. He et al., 2021; James, 2021; F. Li et al., 2021; Y. 

Zhang, Li, et al., 2021) looked at the angle of predicting road travel time, whiles (Bai et al., 2021; 

J. Chen, Liao, Hou, et al., 2020; X. Chen, Zhang, Du, et al., 2020; S. Fang et al., 2020; Ge et al., 

2020; Jiang & Luo, 2022; Yin et al., 2021) also focused on solving and predicting road traffic flow. 

7. The Limitations of Using GNNs and Some of the Possible Solutions 

The over-smoothing, scalability, and expressive ability of GNNs are only a few of their well-doc-

umented shortcomings. This paper provides an overview of the most important articles that deal 

with these topics. 

7.1 Over-Smoothing  

It has been established that the depth limitation of GNNs is a significant issue (Q. Li et al., 

2018)(Oono & Suzuki, 2019). The first layer considers a node’s immediate neighbours when using  
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Authors Proposed Solution 

(Dong et al., 2021) AdaGNN 

 (Klicpera et al., 2018) APPNP 

 (K. Zhou et al., 2020) DGN-GNN 

 (M. Liu et al., 2020) DAGNN 

 (Rong et al., 2019) DropEdge 

(Kipf & Welling, 2016a) GCN 

(M. Chen, Wei, Huang, et al., 

2020) 

GCNII 

 (Hasanzadeh et al., 2020) GDC 

(D. He et al., 2022) GCN+inflation 

(K. Xu, Li, et al., 2018) JKNet-Concat 

 (Chamberlain et al., 2021) GRAND-PDE 

 (Eliasof et al., 2021) PDE-GCN 

 (H. Zeng et al., 2021) SHADOW-SAGE 

(F. Wu et al., 2019) SGC 

Table 6: Some proposed over-smoothing techniques.  

Authors Algorithm Solution Summary 

 (Azizian & Lelarge, 

2020)  

FGNN  Adding matrix multiplication to the model 

 (Balcilar et al., 2021)  GNNML  Using a broad receptive field and spectral domain design to create the con-

volution. 

 (Z. Chen et al., 2019)  Ring-GNN  Adding and multiplying by means of a ring of matrices 

 (Dasoulas et al., 2019)  CLIP  Utilizing colors to separate related node properties 

(Z. Huang et al., 2022)  PG-GNN  Using a permutation-aware aggregate to capture the correlation between 

nearby nodes. 

(P. Li et al., 2020)  DEGNN  Incorporating a distance-based additional node functionality 

(Maron et al., 2019) PPGN  Taking higher-order message forwarding into account 

(Morris et al., 2019) k-GNN  Using subgraph structures for message passing rather than nodes 

(Murphy et al., 2019)  RP-GNN  Including a special node label 

(Papp et al., 2021)  DropGNN  Randomly removing some of the nodes 

 (Sato et al., 2021)  rGIN  Adding random features to GIN  

(H. Wang et al., 2022) PEG  Updating the node and positional features over distinct channels. 

(Wijesinghe & Wang, 

2021)  

GraphSNN  Facilitating information transfer by incorporating additional framework. 

 (M. Zhang & Li, 2021)  NGNN  Rather than encoding each node as a rooted subtree, a rooted subgraph is 

used. 

Table 7: A summarization of significant solutions suggested to enhance GNN expressive power. 
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GNN methods. A node’s second layer travels to its two-hop neighbours as a sub-layer, and succes-

sive layers are layered similarly in the node’s neighbours. The resulting vectors will be over-

smoothed since local information for each vertex is lost after several layers. To address the problem 

of over-smoothing, Graph Random Neural Network (GRAND) proposes a novel architecture. 

Drop Node is used in this method to expand the feature matrix of the input graph similarly to the 

Drop Edge process (Rong et al., 2019). This improvement helps lessen a node’s reliance on other 

neighbouring nodes. Then, to reduce the likelihood of over-smoothing, it combines neighbours of 

a node up to K hops away. Consistency regularization is used in the model’s training process 

(Berthelot et al., 2019) to lessen the problem of overfitting in the semi-supervised environment 

when dealing with scarce labels. Theoretically, it has been demonstrated by (M. Chen, Wei, Huang, 

et al., 2020) that over-smoothing may be defeated by adding two straightforward approaches to 

GCN at each layer. An initial linking to the input features must be established to guarantee that 

some node features are included in the final node representation. To guarantee at least the same 

efficiency level as a shallow GCN, the identity matrix is recommended to be included in the weight 

matrix. As shown in Table 6, many approaches have been taken to overcome the over-smoothing 

problem in GNN. 

7.2 Scalability 

In addition, GNNs have difficulty scaling since the embeddings of a node are constructed by com-

bining the representations of that node’s neighbours. In particular, the temporal complexity of 

neighbour aggregation for a GNN with many layers is significant. In huge graphs, there may be a 

lot of neighbours, which slows down GNN training and uses more memory. This issue is resolved 

by (C. Zhuang & Ma, 2018) and (Chiang et al., 2019; Gomez et al., 2017)by picking a portion of 

node neighbours. A node’s neighbours are sampled separately at each tier (J. Chen et al., 2018).  

By using clustering algorithms to sample a subgraph one per batch and a graph convolution filter 

on the subgraph’s nodes, Cluster-GCN (Chiang et al., 2019) lessens the memory issue associated 

with GCN. Specific techniques like SGC (F. Wu et al., 2019) eliminate the non-linear activation 

function to shorten training time. By using reversible connections (Gomez et al., 2017), RevGNN 

(G. Li et al., 2021) lessens the memory footprint of GNNs as a function of layer count. The feature 

matrix is separated into many categories as inputs to this model. The most recent input’s propaga-

tion method output is stored in memory, an advantage of this method. The scalability of GNNs has 

also been examined in several other works, including (Bojchevski et al., 2020; M. Chen, Wei, Ding, 

et al., 2020; M. Ding et al., 2021; Fey et al., 2021; Z. Huang et al., 2021; Yoon et al., 2021). 

7.3 Expressive Ability  

The ability of a model to distinguish between various graphs is referred to as expressive power. To 

rephrase, the model may assign equivalent graphs to the same embedding and dissimilar graphs to 

different embeddings. The Weisfeiler & Lehman (WL) test limits the expressive power of popular 

GNNs like GCN (Kipf & Welling, 2016a) and GraphSAGE (W. Hamilton et al., 2017), and they 

are unable to recognize some non-isomorphic substructures. Graph Isomorphism Network (GIN), 

a more potent GNN-based embedding technique, is suggested in (K. Xu, Hu, et al., 2018). GIN 

aggregates a node’s neighbours using the sum operator rather than the mean or max operators. The 

expressive capability of GIN is also theoretically demonstrated to be equivalent to that of the WL 

test. A coloring mechanism is suggested by Identity-aware Graph Neural Networks (ID-GNN) (J. 
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You et al., 2021) as a means of enhancing the expressive capability of GNNs.  P. Li et al. (2020) 

add distance-based features to each node, increasing the GNNs’ expressive power by creating dis-

tance vectors for each node relative to each center node. Table 7 compiles the results of some 

experiments aimed at making GNNs more expressive. 

7.4 Destructive Loss  

Destructive loss occurs whenever a neural network model is retrained for a different job. To solve 

this problem in GNNs, H. Liu et al. (2021) suggest a topology-aware weight-preserving module 

(TWP). This portion evaluates how crucial the GNN’s parameters are once each task has been 

learned. By associating negative reinforcement with adjustments to critical parameters, the model 

is forced to remember the past settings when studying a new task. When learning new tasks, an 

experience replay-based model (ER-GNN) (F. Zhou & Cao, 2021) chooses and replays a few nodes 

from earlier tasks. In model training, the repeated nodes have the most impact and coverage because 

their qualities are closest to the class average of all features. 

7.5 Over-Squashing  

One of the problems with GNNs is that they tend to over-squash when trying to capture long-range 

interactions. When a graph learning task calls for only brief interactions and more layers are added 

to a GNN, the node embeddings become ambiguous, and a phenomenon known as over-smoothing 

happens. In GNNs, the input from far-off neighbours is crushed into a fixed-length vector as extra 

layers are added to account for long-range relationships. This results in over-squashing and poor 

throughput from GNNs (Alon & Yahav, 2020). Alon & Yahav (2020) offers a straightforward so-

lution to this issue by adding an adjacent layer as the final layer to a GNN model. In this layer, all 

possible pairs of nodes are linked, allowing for representations of nodes to consider relationships 

with neighbours beyond those immediately adjacent to the nodes in question. Over-squashing is 

proven to be caused by negatively curved edges (Topping et al., 2021). Negative curvature occurs 

in a graph whenever there is a connection between two sides of the graph that would be severed if 

the edge in question were removed. 

7.6 Interpretability 

Implementing deep graph representation learning in new domains presents challenges in interpret-

ability. Scholars within the field of computational social science emphasize the importance of in-

tegrating prediction and reasoning (Hofman et al., 2021). Neural networks possess a significant 

level of opacity as perceived by human observers. Deep learning is extensively utilized in diverse 

fields, although it needs to be more understood by the general public. The understanding of task 

fulfillment and the assimilation of acquired expertise by a specialist in deep learning continue to 

present challenging initiatives. The lack of sufficient human feedback degrades the credibility of 

neural network models, impedes human learning from their results, and limits their potential for 

further progress. The increasing popularity of Graph Neural Networks (GNNs) has led to the de-

velopment of several GNN-based approaches that aim to facilitate reasoning on graphs. Recently, 

scholars have put forth various methodologies to elucidate the rationale behind the predictions gen-

erated by these opaque models. The attribute of interpretability holds excellent importance in ma-

chine learning models, particularly in practical scenarios where the outcomes of these models might 

have substantial ramifications. GNN-based methodologies frequently encounter criticism due to 

their limited interpretability, as the acquired representations tend to be intricate and challenging to 

comprehend. Nevertheless, recent endeavors have tackled this concern by developing techniques 
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to elucidate the learned representations (Y. Zhang, Tivno, et al., 2021). Previous scholarly literature 

has given two distinct methods in offering reasons for model outcomes. The initial methodology 

entails providing impromptu justifications after the production of products. The second methodol-

ogy entails adjusting the model’s framework to improve the caliber of the explanations. The meth-

ods to explain these concepts might vary, encompassing techniques such as offering analogous in-

stances, elucidating distinct attributes of the input features, revealing latent layers and extracting 

semantic knowledge from them, or deducing logical principles. In addition, explanations can be 

categorized as either local, which concentrates on specific samples, or global, which offers reasons 

for the entire dataset. One possible strategy for improving the interpretability of GNNs entails the 

identification of the most salient attributes within the graph, specifically nodes, and edges. The 

work can be achieved by employing GraphLIME (Q. Huang et al., 2022)(Schnake et al., 2021). 

The relevance of individual characteristics is assessed by methods that evaluate the influence on 

the model’s output when a specific feature is removed. (Q. Huang et al., 2022) the approach utilizes 

the Local Interpretable Model-Agnostic Explanations (LIME) technique to clarify the predictions 

generated by GNNs. 

The methodology used in this study comprises creating a set of modified graphs that share simi-

larities with the original chart but with the removal of specific nodes and edges. Afterward, the 

GNN is trained on each altered graph. The relevance of particular nodes and edges is then deter-

mined by assessing the changes in the model’s output. The authors illustrate the effectiveness of 

their methodology in identifying the most crucial nodes and edges in the graph, providing valuable 

insights into the model’s decision-making process. GraphSAINT (H. Zeng et al., 2019) is a tech-

nique that leverages subgraph sampling in order to enhance the interpretability of GNNs. The ap-

proach involves the process of extracting a collection of subgraphs from the primary graph and 

subsequently training the GNN on each of these subgraphs. The significance of every node and 

edge is subsequently calculated by evaluating the impact on the model’s output. The study demon-

strates the applicability of their approach in identifying the most significant subgraphs within a 

given graph and offering valuable insights into the decision-making mechanism of the model. 

Another potential approach to enhance the interpretability of GNNs involves employing visualiza-

tion techniques to depict the decision-making process employed by the model. One possible ap-

proach to achieve this objective is through the utilization of techniques such as (J. Yu et al., 

2021)(Selvaraju et al., 2019). This method facilitates the creation of heatmaps that effectively em-

phasize the nodes and edges within the graph that hold the greatest significance. The approach 

operates by calculating the gradient of the output concerning the activations of the final convolu-

tional layer of the GNN. The gradient is subsequently employed to calculate a weighted summation 

of the activations, with the weights being determined based on the significance of each node and 

edge within the graph. The authors demonstrate the efficacy of their approach in offering enhanced 

precision and nuanced elucidation of the decision-making mechanisms employed by GNNs. (Leow 

et al., 2019; Z. Liu et al., 2022; X. Shi et al., 2021), employ visualization techniques to depict the 

acquired node representations within the graph. The authors demonstrate the applicability of their 

methodology in identifying clusters of nodes that exhibit similar characteristics, as well as in visu-

alizing the model’s decision-making process. Rule extraction is a technique that entails extracting 

logical rules from a model’s decision-making process. One approach to achieve this is through the 

utilization of Relational Inductive Biases, which involve the acquisition of a collection of logical 

rules that can be employed to elucidate the decision-making mechanism of the model. The utiliza-

tion of rule extraction methods has been employed for the purpose of extracting logical rules from 
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GNNs. The process of model simplification which is another approach, entails modifying the 

model’s structure in order to enhance its interpretability. One possible approach to achieve this is 

by employing techniques such as Graph Transformer Networks (Yun et al., 2019). These networks 

leverage a transformer-based architecture to streamline the model and enhance its interpretability. 

The aforementioned instances serve as mere illustrations of potential methods for enhancing the 

interpretability of Graph Neural Networks (GNNs). There remains a lack of consensus regarding 

the optimal approaches for enhancing the interpretability of a model. Scholars are currently en-

gaged in ongoing investigations to explore various possibilities, resulting in a multitude of chal-

lenges and intriguing subjects within this domain. 

There exist multiple potential avenues for addressing the challenges associated with scalability 

and over-smoothing, among other issues, in graph representation learning. One potential avenue 

for investigation involves exploring novel architectural designs capable of effectively managing 

dynamic graphs, which represent the evolving structures and attributes of entities. Most graph em-

bedding models primarily focus on static graphs. However, temporal fluctuations impact the struc-

ture and features of graphs (C. Chen et al., 2019; Mitrovic & De Weerdt, 2019). The study of graph 

evolution involves the examination of several dynamic characteristics, including the evolution of 

topology, features, degree distribution, and node roles. Several models have been developed to 

capture and reflect evolutionary patterns, although they may not fully encompass dynamic behav-

iors (Rahman et al., 2018). For example, individuals can modify their place of origin, professional 

occupation, and position within a restricted group through social networks. Models can depict the 

dynamic structure and attributes of entities, thereby guiding the direction of research. 

An alternative approach involves exploring novel graph embedding models capable of accom-

modating disassortative graphs, characterized by a tendency for nodes with distinct labels to be 

interconnected. Upon reviewing the sampling method employed by GNNs and graph transformer 

models, it is observed that the vector embeddings of the target nodes are updated by considering 

the properties of their k-hop neighbours (P. Wang et al., 2019; K. Xu, Hu, et al., 2018). This issue 

pertains to classification tasks in which the aggregation processes operate under the assumption 

that interconnected nodes should possess identical labels. However, this assumption starkly con-

trasts with the disassortative graph structure. In recent years, various approaches have been sug-

gested to address the challenges associated with classification tasks on disassortative graphs (Brody 

et al., 2021)(Xie et al., 2020). Nevertheless, the utilization of message-passing-based techniques 

poses a persistent obstacle and presents a significant barrier in the context of disassortative graphs. 

Furthermore, the scalability of graph-based models can be enhanced through the utilization of 

optimization techniques, such as sampling and parallelization. In order to mitigate the issue of over-

smoothing, future research endeavors might effectively address this concern by incorporating an 

initial residual connection, employing dropout techniques, and leveraging the utilization of Pag-

eRank algorithms (M. Chen, Wei, Huang, et al., 2020; Chien et al., 2020; Xie et al., 2020). More-

over, the development of a deep-learning model to effectively tackle the issue of over-smoothing 

remains an unresolved matter and a highly encouraging avenue for further investigation. Several 

researches have suggested the utilization of graph transformer models as a potential solution to 

address the constraint imposed by the message-passing mechanism through the incorporation of 

self-attention. The majority of contemporary models are developed in isolation, tailored to address 

specific tasks that have not yet been generalized, even when dealing with graphs within the same 

domain (Z. Wu et al., 2020). Despite various pre-trained graph transformer models for related tasks, 

their transferability to different tasks remains constrained, particularly in the context of particular 
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graph data (Hussain et al., 2022; J. Zhang et al., 2020). This issue arises from the necessity of 

training models from the beginning whenever fresh graph data and other tasks are introduced, re-

sulting in a time-consuming process that restricts the practical feasibility. The utilization of pre-

trained models is advantageous in addressing the limited availability of node labels. Hence, in the 

event that the graph embedding models have undergone pre-training, they possess the potential to 

be transferred and effectively employed for the purpose of addressing novel challenges.  

8. Graph Neural Architecture Search (G-NAS) 

Generating efficient GNN designs for various applications and datasets needs manual labor and 

subject-matter expertise. Some strategies were offered to automatically construct a suitable archi-

tecture for the provided datasets and downstream activities. Reinforcement learning automates ar-

chitecture design using the Graph Neural Architecture Search method (G-NAS) (Y. Gao et al., 

2022). Both the hyperparameters (HPs) of the GNN model, such as the dropout and learning rates, 

and the GNN architecture constituents (ACs), which comprise the attention, aggregation, and acti-

vation functions, are essential. Choosing these components in conventional GNNs is a challenge 

solved using professional judgment and unwritten conventions. 

Consequently, it is challenging to combine these components in an optimum manner. Testing 

many GNN architectures before settling on the optimal one is necessary to create the finest GNN 

models for specific applications. Applying such a procedure to massive graph data would take too 

long or impossible. Different tasks require varied HP tweaking to achieve the best results. Follow-

ing the recent breakthroughs in neural architecture search (NAS) for CNN and RNN architectures, 

various scholars are attempting to bring AutoML techniques into the graph space. There has been 

a recent uptick in research into automatically determining the best GNN models for certain jobs. 

Common names for it include Graph Neural Architecture Search (G-NAS). G-NAS is receiving 

more attention due to the increased interest in GNN models. According to the search space, a model 

comprises ACs and HPs. The mission of G-NAS is to discover the model that gives high the ex-

pected efficiency 𝜖𝑝(𝑠)  on a validation set 𝐷𝑣𝑎𝑙 ⊂ 𝐷, with a searching space, 𝑆 made up of all 

feasible designs and dataset 𝐷. In other words, it seeks the best model possible. 

𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠∈𝑆)𝜖𝑝(𝑠)               (4) 

(Oloulade et al., 2021) The ability to display diverse strategies within a consistent framework is 

made possible by categorization. Existing G-NAS frameworks are organized along three dimen-

sions, each representing a different aspect of the complexity with which they were built: (1) search-

ing space, which specifies a collection of GNN designs; (2) searching algorithm, which specifies 

how to identify the optimal GNN models within the searching space; and (3) efficiency assessment, 

which evaluates how well a GNN model performs. GNN models are typically constructed from a 

searching space using a searching method, and their efficacy is measured using a performance as-

sessment method (Figure 8). 

8.1 Searching Space 

The shape of the chosen architectures is determined by a searching space that includes all possible 

possibilities for each part of a GNN model. The longer it takes to calculate, however, the more 

possibilities there are for selecting the best model inside the area of search. It is, therefore, difficult 

to construct a complete and compact search space that accounts for all possible optimal structures. 

There have been several efforts to address this issue, each of which has proposed a unique searching  
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Constituents Functions Values 

Architecture constituents 

Activation function 

Attention function 

Aggregation function 

Attention head 

Combine function 

Skip connection 

Hidden size 

Sigmoid, tanh, ReLU, linear, softmax 

Linear, sym-GAT, cos, linear, gene-linear, 

constant, and GAT 

mean, max, sum, mlp 

1,2,4,6 

Concat Avg, 

Stack, skip-sum, skip-cat 

 

2 to 16, 32, 64,128, 256, 512 

 

Hyperparameter 

Learning rate 

Dropout 

Weight decay 

Batch normalization 

Batch sizes 

Optimizers 

Training epochs 

0.0001 to 0.1000 

0.1 to 0.9 

0.00001 to 0.00100 

True, false 

16, 32, 64 

SGD, Adam Optimizers 

2 to 300 

Table 8: Typical values used for hyperparameters and functions. 

Model Architecture constituents Hyperparameter 

F1 F2 F3 F4 F5 F6 F7 F8 Hp1 Hp2 Hp3 Hp4 Hp

5 

Hp

6 

Hp

7 

AGNN (K. 

Zhou et al., 

2019) 

Y Y Y Y Y N N Y N N N N N N  N 

AutoGraph 

(Y. Li & 

King, 2020) 

Y Y Y N Y Y Y Y N N N N N N N 

AutoGM 

(Yoon et al., 

2020, 2022) 

Y Y Y N Y N Y Y N N N Y N N N 

AutoNE (Tu 

et al., 2019) 

N N N N N N N N Y Y Y N Y Y Y 

DSS (Y. Li et 

al., 2021) 

Y Y Y N N Y N Y Y Y Y N N N N 

DiffMG (Y. 

Ding et al., 

2021) 

N N N N Y N N Y Y Y Y N N N N 

GNAS (S. Cai 

et al., 2021) 

N N Y N N Y N N Y N N N N N N 

GeneticGNN 

(M. Shi et al., 

2020) 

Y Y Y N Y N N Y Y Y Y N N N N 
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Table 9: Details of a Searching Space. 

Note: F1 = Attention, F2 = Activation, F3 = Aggregation, F4 = Combine, F5 = Attention head, F6 = Skip connection, F7 

= Number of layers, F8 = Hidden size, H1 = Learning rate, H2 = Drop out, H3 = Weight decay, H4 = Batch normalization, 

H5 = Batch sizes, H6 = Optimizers, and H7 = Training epochs. 

space, which we here categorize into three broad classes: There are three distinct types of searching 

spaces: (1) one that only considers GNN model ACs while leaving HPs at their default values; (2) 

one that only considers HP tuning choices for a predetermined GNN; and (3) one that considers 

both GNN model ACs and HPs.  

8.1.1 ARCHITECTURE CONSTITUENTS SEARCHING SPACE  

Here, fixed HPs are applied to the ACs of GNN models and generate a search space for them (Y. 

Gao et al., 2019) and (H. Zhao et al., 2020). It’s possible that nodes’ representations in one layer 

of a GNN model’s ACs don’t depend on those in the layer below it, opening up the possibility of a 

micro search space. While HPs are an integral part of the entire model, the existence of such search 

spaces is troublesome because it reduces the searching efficiency. Improving only the GNN struc-

ture, however, can result in a subpar model because even a small shift in the learning settings can 

have a major effect on the optimized GNN architecture. 

8.1.2 HYPERPARAMETER SEARCHING SPACE  

Using fixed and specified GNN model ACs, this searching space (Tu et al., 2019) optimizes the 

HPs exclusively for a given GNN model. A less-than-ideal solution is achieved using Hyperparam-

eter Optimization (HPO), the major purpose of which is to optimize the HPs for a given neural 

network. 

 

 

 

 

 

 

 

Figure 8: Graph Neural Architecture Search. 

 

 

PDNAS(Y. 

Zhao et al., 

2020) 

Y Y Y Y Y Y N Y N N N N N N N 

SANE (H. 

Zhao et al., 

2021) 

Y Y Y N Y Y N Y Y N Y N N N N 

SNAG (H. 

Zhao et al., 

2020) 

Y Y Y N Y Y N Y N N N N N N N 
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Method Advantage Disadvantage 

Architecture constituents searching 

space with pre-set hyperparame-

ters. 

Reduced computational load and 

limited searching space. 

Ignoring the importance of opti-

mizing hyperparameters can result 

in a less-than-ideal or unreliable 

model. 

Hyperparameters searching space 

with pre-set architecture constitu-

ents. 

Reduced computational load and 

limited searching space 

Only optimizing hyperparameters 

can lead to a suboptimal model 

Architecture constituents searching 

space, and hyperparameters search-

ing space. 

It gives a stabilized solution. Expenditure of extra computing 

time due to the size of the searching 

space 

Table 10: Searching Space Design Analysis. 

8.1.3 ARCHITECTURE CONSTITUENTS AND HYPERPARAMETER SEARCHING SPACE  

Here, the spaces where ACs and HPs of GNN models can be found through a search are specified 

(M. Shi et al., 2020)(Y. Li & King, 2020). The impact of a slight shift in HPs on a model is also 

considered. However, the scale of the search space may necessitate more calculation costs even if 

this arrangement ensures good results. While these search spaces might produce excellent out-

comes, they are typically not transferable from one GNN architecture to another. The lack of a 

solution to this problem hinders the identification of effective GNN models. Table 8 provides a 

breakdown of the ACs and HPs most typically employed by G-NAS frameworks, whereas Table 9 

summarizes the functions or HPs existing works have adopted. In Table 10, this study summarizes 

the results of comparing the current approaches to building search spaces. In order to develop a 

better model, the calculation time will increase in proportion to the size of the search space. There 

is a scalability problem with this particular functionality. There have been numerous search strate-

gies developed in an attempt to address this issue. In the following paragraphs, some methods for 

achieving these ends are elaborated. 

8.2 Searching Algorithm 

When there are several possible GNN models, the search method specifies how to zero in on the 

best one. When defining the search algorithm, it is vital to consider the computational time and 

space requirements. More preferably, the algorithm should require fewer computational resources 

and reach the ideal answer faster. Therefore, the most difficult part is developing a search algorithm 

that finds the optimal balance between high efficiency, low cost, and enhanced efficiency. The 

range of used searching algorithms is extensive, including reinforcement learning, Bayesian opti-

mization, evolution learning, differentiable search, and random search. 

8.2.1 BAYESIAN OPTIMIZATION (BO)  
BO probabilistic approach takes a preceding probability and a likelihood function and uses the 

result to calculate a posterior probability. As new information becomes available, forecasts and 

error estimates are revised accordingly. The two primary parts of BO are a Bayesian statistical 

model, also known as a substitute function, and an acquisition function, which is used to identify 

where to obtain the next sample. In BO, a probability dispersal is built over samples of interest that 

are put through the surrogate function’s tests. The response from the substitute function is inter-

preted with the help of the acquisition function, and appropriate samples are found for the ultimate 

objective function assessment. With each passing step, the acquisition function is fine-tuned to pick 
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the most representative sample possible for subsequent evaluation. The process is repeated after 

the model has been updated and convergence has been achieved. Only (Yoon et al., 2020) have 

employed BO to solve the G-NAS problem, and their outcomes are not encouraging despite BO’s 

superior performance in NAS (H. Zhou et al., 2019). BO is computationally demanding for large-

scale data and nearly impractical to perform effectively. 

8.2.2 REINFORCEMENT LEARNING (RL)  

In RL, an agent learns to maximize reward by making a series of decisions informed by continuous 

feedback, explained by a machine learning algorithm. There are three key parts: the agent, who is 

aware and can make decisions; the environment, from which the agent studies and selects which 

actions to do; and the rewards for those acts.  The searching space represents the environment in 

RL-based approaches for G-NAS, the agent is a neural network defined as an optimizer that seeks 

to create a great layout (a submodel) from the searching space over time, and the compensation is 

the evaluation of the generated model’s behavior. This method, which can be broken down into 

two categories, has been implemented in various G-NAS frameworks (K. Zhou et al., 2019).  One 

has had no changes made, whereas the other has made some changes. The first category of frame-

works anticipates a total overhaul of the existing good sub-model, regardless of how similar the 

subsequent sub-model may be to the existing one (Y. Gao et al., 2019). In other words, the perfor-

mance of a constructed model is evaluated at each level; if the goal has not been met, a new model 

is generated from scratch. One major drawback of this strategy is that the controller cannot effi-

ciently execute the search since it cannot identify which characteristic of a sub-model is responsible 

for the observed performance difference compared to the prior sub-model. Second, there is a group 

of frameworks that, working off the assumption that the amount changed only marginally improves 

the result generated by the original sub-model, create a new sub-model by modifying a little piece 

of the old one (Y. Li & King, 2020). It is possible that the controller’s number of neural networks 

would be equal to the total number of model parts in this case. At each iteration, the system’s 

entropy assigns a weight to each part following its relative significance. As a result, with relatively 

minor modifications to the infrastructure, this approach can guide the exploration of the search 

space. However, the size of the search spaces used by these models still prevents them from being 

fully expressive. 

8.2.3 EVOLUTIONAL LEARNING  

Natural selection and genetics inspired the mechanisms behind evolution learning, a generalized 

population-based metaheuristic optimization approach. Multiple iterations of this method exist, but 

the genetic algorithm (GA) for NAS frameworks is now the most often used. The people (or pop-

ulation) who inhabit a certain area are the GA’s most crucial constituent.  An individual is com-

posed of genes or elements of a solution. An individual from an initial population is evaluated using 

a fitness function, and the best individual or individuals are chosen to populate the next generation. 

It is possible to produce a new population using a mix of crossover and mutation, but the mutation 

is the most common method. A new person is thus made by picking the most desirable applicant 

and adjusting them. In the G-NAS issue, the search space stands in for the sample population, and 

the genes characterize the framework of a GNN. The size of the search area makes it difficult to 

ascertain every person’s fitness, and in the case of a large graph dataset, training GNN can be very 

time-consuming. (M. Shi et al., 2020) and (Y. Li & King, 2020) randomly choose a fixed-size 

population and start it. This method’s sluggish convergence is its biggest drawback. 
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8.2.4 DIFFERENTIABLE SEARCH  

The fundamental goal of the differentiated search approach is to lessen the burden on the network’s 

resources by combining training and architecture samples into a supernet. This idea proposes gen-

erating a continuous search space as an alternative to doing a series of independent candidate 

searches. In contrast to traditional search algorithms, constant search spaces facilitate the differen-

tiation of training objectives, lead to more efficient optimization, and lead to faster convergence. 

The differentiated search, first for the NAS problem (H. X. Liu et al., 2019)(Pham et al., 2018), 

focuses on discovering repeating patterns in a network of units.  The final form of contemporary 

neural networks is built by stacking one or more computing blocks atop one another (Noy et al., 

2020). In G-NAS systems based on a differentiable search, a block is often embodied as a direct 

acyclic graph (Y. Zhao et al., 2020)(S. Cai et al., 2021) consisting of a sequential set of nodes. We 

wanted to select a network action for each layer, five in total. A differentiable search for G-NAS is 

predicated on stacking mixed processes to create a network (supernet). Each layer’s candidates are 

used in each mix operation, and the resulting sets are linearly blended. Our ultimate goal is to have 

the mixed coefficients serve as thresholds in deciding. Finally, we can do architectural searching 

by attempting to minimize a loss function, like the cross-entropy loss. When all is said and done, 

the operation that yields the highest coefficient across all layers is selected for use in the final 

architecture. 

8.2.5 RANDOM SEARCH 

In RS, submodels are generated at random from the search space. Some researchers (Lai et al., 

2020)  have examined RS for G-NAS. Regrettably, even though this technique can produce effec-

tive results, it is not frequently used due to its risky outcomes, which are often less desirable than 

those by other approaches. To mitigate the danger inherent in this method, You et al. (J. You et al., 

2020) employed a controlled RS to compare the weight given to one option with that granted to 

others involving the same component. The method randomly picks the other components and eval-

uates a predetermined number of GNN models. The program evaluates the performance of the 

selected GNN models for each option before rating them and examining the ranking distribution. 

The final GNNs are chosen based on the most crucial option. This method produces good results 

despite being expensive in terms of computing. Therefore, additional investigation into it provides 

an intriguing line of inquiry. Even if the majority of the research techniques mentioned above have 

produced positive results, each has flaws that are important to be aware of. Here, we compare the 

aforementioned search strategies while pointing out their benefits and drawbacks. Table 11 displays 

the comparison. 

8.3 EFFICIENCY ASSESSMENT  

Evaluating the effectiveness of a GNN design produced by a search algorithm requires a clear un-

derstanding of how to assess its performance. It can be viewed as part of the evaluation process 

while comparing the various structures produced by the search algorithm. It helps focus the inves-

tigation on the most relevant results. The difficulty of performance evaluation arises from the need 

to learn the submodel efficiency distribution to direct the search efficiently. It is standard practice 

to assess the submodel as a whole or the significance of its parts. When developing a new submodel, 

however, only minor adjustments to the parent model are necessary (M. Shi et al., 2020; K. Zhou 

et al., 2019). Element relevance in the variance of submodel performances will be evaluated to 

those elements. In cases where the existing submodel must be erased to make room for the new  
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Search Strategy Benefit Limitation 

Reinforcement learning Optimize results to their fullest ex-

tent. 

Time-consuming 

Bayesian optimization Employ a stochastic model Optimization based on a series of 

models; a heavy computational bur-

den 

Evolution learning Innately parallel, effortlessly distrib-

uted 

It’s contingent on the starting popu-

lation, and it’s simple to get trapped 

in false convergence. 

Differentiable search Training and sampling in the context 

of architecture. 

Expensive computation cost 

Random search Cheap to compute without sacrific-

ing accuracy. 

dangerous effect 

Table 11: Analyzing the Search Algorithms. 

one, the evaluation will reflect the submodel’s overall performance. Metric performance is consid-

ered, but only if it makes sense for the given task. Accuracy is used to evaluate the entire model for 

node classification, while entropy is used to appraise individual features. 

The primary contest is improving the efficiency and timeliness of the submodel review process. 

A few methods available can be used alone or in tandem with some different frameworks. Param-

eter weight sharing (also known as weight sharing or parameter sharing) was the first strategy to 

gain instant popularity (Y. Li & King, 2020). In order to avoid retraining a newly constructed sub-

model to convergence from scratch, weight sharing allows leveraging the weights of already-

trained models. However, this approach could backfire if the weights are distributed unevenly 

among different-sized models. To counteract this shortcoming, numerous researchers have chosen 

a constraint that limits weight allocation between two models that lack a predetermined level of 

similarity. Parameter sharing is not useful for experiments, as K. Zhou et al. (2019) demonstrated. 

Another alternative is the single path one-shot concept (Guo et al., 2020) which uses only a single 

action between each input and outcome pair in each iteration. The sub-model assessment for G-

NAS could be sped up using performance prediction (Klein et al., 2016; Wen et al., 2020; Zheng 

et al., 2020) in preference of training all generated models to gain the performance metrics. The 

time needed to conduct the sub-model evaluation could be drastically reduced. However, using this 

approach, you’ll need hundreds of GNN performance distributions along with the graph data prop-

erties to build a neural predictor. Graph representation learning is another application area for the 

buffer method (Lai et al., 2020).  

9. Open Cases and Ongoing Research 

The subject of graph representation learning is highly active. Despite the development of several 

techniques, there are still fundamental problems and difficulties that must be resolved. GNNs have 

been constrained in many ways, including expressive capability, over-smoothing, scalability, and 

over-squashing. For these problems, various solutions have been put forth. Some of them, like over-

squashing, were only recently discovered, and the treatments for them are still in the early stages. 

Additionally, the proposed GNN limitations solutions address static GNNs, and there are no ef-

forts to address the issues with dynamic and spatial-temporal GNNs. Furthermore, dynamic settings 
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may introduce new problems that are not yet identified but merit investigation. Finally, novel GNN 

flaws that are interesting to investigate and address may be found by incorporating GNNs into 

various real-world issues and datasets. 

Higher-Order Structure: Motifs and graphlets play an important role in complex networks, espe-

cially in biology, when characterizing protein-protein interactions. However, GNNs can typically 

only process data at the node and edge levels. The expressive power of graph-based models could 

be improved by incorporating these components into the message and transmission process. 

Investigating the GNN Theory: GNNs are seen to be useful in so many contexts; therefore, re-

searchers have tried to dissect their performance at the theoretical level. Optimization features and 

generalization over graph sizes are two aspects of GNN models for which there is less theoretical 

evaluation. The initial stages of comprehending the global meeting of gradient descent in GNNs 

are examined by (K. Xu et al., 2021). As shown by (Yehudai et al., 2021), GNNs can’t generalize 

to larger unseen graphs when trained on specific graph distributions. Therefore, additional study is 

needed to fully comprehend these topics. 

Including domain knowledge into GNNs: Often, a machine learning model lacks access to crucial 

information—domain expertise. This information can be incorporated into the models by adjusting 

the input, loss function, and model structure (Dash et al., 2022). As an example, we can improve 

the input data bearing in mind additional limitations on the entities’ pre-existing associations.  

Limited Training Data Labels: Indeed, it has always been difficult to train neural networks with 

only little data, and the same is true for training graph neural nets. The label scarcity problem is 

addressed by employing graph neural networks, which use solutions like self-supervised learning, 

data augmentation, and contrastive learning. However, more research into various forms of learning 

in GNNs in both static and dynamic contexts is still possible. 

Robustness and Assured Efficiency: The reliability of GNNs under adverse conditions, such as 

when the data are noisy, or the network is under attack, is another crucial and mostly unexplored 

area of study. Just like the traditional neural network models, GNNs are just as vulnerable to ad-

versarial attacks. Graph attacks account for the structure of a network, as opposed to harmful attacks 

on images or text that only focus on attributes.  

Transferring Advances in Deep Learning Models to GNNs:  Deep learning methods are imple-

mented in graph neural networks. Graph neural networks can be modified to use any deep learning 

technique or model. Particularly bustling is the discipline of computer vision and natural language 

processing; the new models generated for photos, videos, and texts may all be evaluated in graphs. 

Since the perception of objects’ motion in video frames is analogous to nodes shifting over time, it 

is possible that principles from video representation learning could be beneficial in dynamic graph 

learning. 

Additional Applications: GNNs have succeeded considerably in various fields, including protein 

structures, financial networks, and social networks. Some of the more recent uses of GNNs include 

article publishing prediction (Guan et al., 2021), medicine over-prescription prediction (J. Zhang 

et al., 2021), and electrical power grid monitoring (Ringsquandl et al., 2021). Therefore, looking 

into how well GNNs perform in different applications is intriguing. 
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Conclusion 

This study covers graph representation learning extensively. The paper examines many models, 

including traditional methods like graph kernels and matrix factorization, as well as recent deep-

learning models adapted to specific graphs. Graph neural network (GNN)-based models operate 

well in many real applications, notably those with large graph datasets. 

In contrast to previous summaries, the analysis of this study on graph representational learning is 

comprehensive. This study offered up-to-date literature at the time of writing for every type of 

learning environment (supervised, unsupervised, semi-supervised, and self-supervised). The vari-

ous learning strategies used in each setting have partitioned the learning space into discrete sections. 

Although deep graph embedding models have undeniably exhibited impressive achievements in 

recent years, they are nevertheless constrained by some restrictions. The challenge of attaining an 

ideal balance between a network’s underlying structure and its nodes’ particular properties remains 

a significant obstacle for these models in various applications in downstream stages. This study 

reviewed the overarching framework of GNNs, the various types that fall under that umbrella, and 

the fields in which they find practical use. Some of the issues with GNNs and proposed solutions 

are included as well. These constraints hinder the capacity to express oneself creatively and capture 

long-range dependencies. Additionally, this study supplies the G-NAS framework, an environment 

for designing automated architecture generation for specific datasets and subsequent tasks. Current 

issues and potential future developments for GNNs have been discussed. 
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