
Journal of Artificial Intelligence Research 77 (2023) 891-948 Submitted 01/2023; published 07/2023

Equivalence in Argumentation Frameworks with a
Claim-centric View: Classical Results with Novel Ingredients

Ringo Baumann baumann@informatik.uni-leipzig.de
Department of Computer Science,
Leipzig University, Germany

Anna Rapberger anna.rapberger@tuwien.ac.at
Institute of Logic and Computation,
TU Wien, Austria

Markus Ulbricht mulbricht@informatik.uni-leipzig.de

Department of Computer Science,

Leipzig University, Germany

Abstract

A common feature of non-monotonic logics is that the classical notion of equivalence
does not preserve the intended meaning in light of additional information. Consequently,
the term strong equivalence was coined in the literature and thoroughly investigated. In
the present paper, the knowledge representation formalism under consideration is claim-
augmented argumentation frameworks (CAFs) which provide a formal basis to analyze
conclusion-oriented problems in argumentation by adapting a claim-focused perspective.
CAFs extend Dung AFs by associating a claim to each argument representing its conclu-
sion. In this paper, we investigate both ordinary and strong equivalence in CAFs. Thereby,
we take the fact into account that one might either be interested in the actual arguments or
their claims only. The former point of view naturally yields an extension of strong equiv-
alence for AFs to the claim-based setting while the latter gives rise to a novel equivalence
notion which is genuine for CAFs. We tailor, examine and compare these notions and
obtain a comprehensive study of this matter for CAFs. We conclude by investigating the
computational complexity of naturally arising decision problems.

1. Introduction

Equivalence is an important subject of research in knowledge representation and reason-
ing. Given a knowledge base K, finding an equivalent one, say K′, helps to obtain a better
understanding or more concise representation of K. From a computational point of view,
equivalence is particularly interesting whenever a certain subset of a collection of informa-
tion can be replaced without changing the intended meaning. In propositional logic, for
example, replacing a subformula φ of ψ with an equivalent one, say φ′, yields a formula
ψ[φ/φ′] equivalent to ψ. That is, we may view φ as an independent module of ψ. Within
the KR community it is well known that this is usually not the case for non-monotonic
logics (Truszczyński, 2006; Baumann & Strass, 2022).

Motivated by this observation, the notion of strong equivalence was introduced in the
literature. In a nutshell, strong equivalence requires the aforementioned property by de-
sign: K and K′ are strongly equivalent if for any H, the knowledge bases K∪H and K′ ∪H
are equivalent. Although a naive implementation would require to iterate over an infinite
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number of possible H, researchers discovered techniques to decide strong equivalence of
two knowledge bases efficiently, most notably for logic programming (Lifschitz, Pearce, &
Valverde, 2001) and argumentation frameworks (AFs) (Oikarinen & Woltran, 2011). The
possibility to replace parts of a framework in a semantically neutral way is particularly
important whenever dynamics in argumentation are considered. The latter topic is rightly
one of the most active research areas within the community at the moment (Gabbay, Gia-
comin, Simari, & Thimm, 2021). In this paper, we extend this line of research to a recent
extension of AFs, called claim-augmented argumentation frameworks (CAFs) (Dvořák &
Woltran, 2020).

Dung boosted the research in abstract argumentation (Dung, 1995) which by now can
be considered a classical area in knowledge representation and reasoning. AFs have been
thoroughly investigated since then and various extensions have been proposed; e.g., the ad-
dition of supports (Cayrol & Lagasquie-Schiex, 2005), recursive (Baroni, Cerutti, Giacomin,
& Guida, 2011) and collective (Nielsen & Parsons, 2006) attacks, or probabilities (Thimm,
2012) to mention a few. A popular line of research that emerged in recent years is centered
around conclusion-oriented reasoning in argumentation (Baroni & Riveret, 2019; Dvořák &
Woltran, 2020). While traditional argumentation formalisms focus on the identification of
acceptable arguments, the emphasis in claim-focused argumentation lies on the argument’s
conclusions (claims).

Building on the observation that a claim can be supported by different arguments,
it becomes evident that the traditional argument-focused perspective is often insufficient
to capture claim-based reasoning. Claim-augmented argumentation frameworks (CAFs)
address this issue by extending AFs with a function that assigns a claim to each argument.
They are ideally suited to analyze instantiation-based approaches, e.g., instantiations of
logic programs (Caminada, Sá, Alcântara, & Dvořák, 2015), rule-based formalisms, e.g.,
assumption-based argumentation (Bondarenko, Toni, & Kowalski, 1993; Cyras, Fan, Schulz,
& Toni, 2018), or ASPIC+ (Modgil & Prakken, 2018), as well as logic-based instantiations
(Besnard & Hunter, 2001; Gorogiannis & Hunter, 2011), where the focus lies on the claims
of the constructed arguments. In a nutshell, such an instantiation procedure starts from a
knowledge base K by constructing arguments and identifying conflicts between them. In
the next step, one abstracts away from the internal structure of the arguments and analyzes
the resulting abstract framework. It then becomes possible to analyze the initial problem
in terms of the claims directly on the abstract level.

Our main motivation to investigate the behavior of CAFs is that they can help stream-
lining such instantiation procedures. To illustrate this, we consider an example within
assumption-based argumentation (ABA).1

Example 1.1. We consider an instantiation of an ABA framework D = (L,R,A, ) with
atoms L = {a, b, c, d, a, b, c, d, p}, assumptions A = {a, b, c, d}, and their contraries a, b, c, d.
We furthermore assume we are given five rules

r1 : ā← a, b. r2 : p← a. r3 : b̄← c. r4 : c̄← b. r5 : c̄← d.

1. We do not discuss ABA in detail in this paper. Confer the tutorial on assumption-based argumentation
by Toni (2014) for a comprehensive introduction. The example is given in a way that no ABA knowledge
is required in order to follow our reasoning.
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We obtain the associated AF FD as follows: each assumption in A yields a corresponding
argument and each rule ri yields an argument xi. Attacks depend on the conclusion of the
attacking argument, e.g., x3 attacks x4 because b is the contrary of b.

x3 x4x5 x1 x2

Thereby, both arguments x4 and x5 are associated with the conclusion c̄. Since Dung-
style AFs are not tailored to capture such a relationship between two arguments, some more
technical machinery is required where we need to make use of information encoded in the
underlying knowledge base; the AF itself does not contain sufficient information to assess
whether e.g. a certain conclusion is credulously accepted.

CAFs provide a natural solution to this problem by extending AFs in a way that to each
argument an associated claim is assigned as well. In recent years, CAFs have been studied
under various aspects, e.g., in terms of computational complexity (Dvořák & Woltran, 2020;
Dvořák, Greßler, Rapberger, & Woltran, 2023), their expressiveness (Dvořák, Rapberger,
& Woltran, 2020a), and their relation to other formalisms (Dvořák et al., 2020a; König,
Rapberger, & Ulbricht, 2022; Rocha & Cozman, 2022); in particular, it has been shown that
with CAFs it is possible to capture semantics which cannot be modeled by AFs (Rapberger,
2020). As pointed out by Dvořák and Woltran (2020), using CAFs to instantiate knowledge
representation formalisms streamlines the evaluation.

Example 1.2 (Example 1.1 ctd.). Let us consider the same instantiation procedure, but
this time augment the arguments with their respective conclusions.

x3

b̄

x4

c̄

x5

c̄

x1

ā

x2

p

We now see that the relationship between x4 and x5 is encoded in the graph and we can
assess the behavior of the knowledge base by investigating the CAF only.

CAFs thus provide a more robust translation and better preserve properties of the
instantiated knowledge base, making CAFs a promising subject to investigation. As a first
step, we will therefore examine ordinary and strong equivalence for CAFs. It will turn out
that, similar to related research for AFs, we can characterize strong equivalence for CAFs
in terms of semantics-preserving normal forms, called kernels.

We will then re-assess these results from the point of view of claim-based reasoning:
While our characterizations are solid whenever we are interested in both the arguments as
well as their claims, one could also interpret CAFs as a tool to reason solely with claims.
That is, we view a CAF as a representation of a multi-set of claims and their interactions.

Example 1.3 (Example 1.1 ctd.). Suppose we are only interested in the claims of each
argument, and abstract away their names. This would yield the following situation:

b̄ c̄c̄ ā p
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This is captured by our notion of renamings, which allow us to characterize isomorphisms
between CAFs. We will tailor a strong equivalence notion for this interpretation, called
strong equivalence up to renaming and see that characterizing this notion builds upon our
aforementioned kernel characterizations and the well-known graph isomorphism problem.

For many instantiation procedures in the literature, out-going attacks of arguments are
characterized by their conclusions. Arguments typically consist of a claim and a support,
and two arguments attack each other if the claim of an argument contradicts the support of
another argument. Prominent examples are argumentation formalisms based on logic; here,
arguments are pairs 〈Φ, α〉 consisting of a set of formulas Φ and claim α which determines
the outgoing attacks (Besnard & Hunter, 2018, Definition 5.5); ABA where arguments
are tree-derivations that attack each other if the contrary of an assumption is derived; or
instantiations of logic programs and default logic (Caminada et al., 2015; Dung, 1995;
Wu, Caminada, & Gabbay, 2009). This motivated the notion of so-called well-formed
CAFs (Dvořák & Woltran, 2020). In such frameworks, arguments with the same claim
have the same outgoing attacks. Driven by this observation, we will investigate well-formed
CAFs as a special case throughout this work.

Our main contributions can be summarized as follows:

• We discuss ordinary equivalence for general and well-formed CAFs and present de-
pendencies between semantics.

• We develop the notion of strong equivalence between CAFs and provide character-
ization results via semantics-dependent kernels. We achieve this for each semantics
which has been considered in the literature so far.

• We introduce novel equivalence concepts based on argument renaming which are gen-
uine for CAFs. We show that ordinary equivalence up to renaming coincides with
ordinary equivalence while strong equivalence up to renaming can be characterized
via kernel isomorphism.

• We present a rigorous complexity analysis of deciding equivalence between two CAFs
for all of the aforementioned equivalence notions. We show that deciding ordinary
equivalence can be computationally hard, up to the third level of the polynomial
hierarchy. Moreover, we show that strong equivalence up to renaming is as hard as
the graph isomorphism problem.

• We show that deciding whether two well-formed CAFs are isomorphic is tractable.
Building upon this observation, we infer tractability of strong equivalence up to re-
naming for this class of CAFs.

The present paper is an extended version of the conference version (Baumann, Rapberger,
& Ulbricht, 2022). Besides providing full proofs and a stronger intuition about our technical
details, the present version extends the previous conference publication by a comprehensive
analysis of the equivalence behavior of well-formed CAFs: we present novel results regarding
ordinary and strong equivalence, and strong equivalence up to argument renaming for this
important sub-class. We furthermore extend our computational complexity analysis to well-
formed CAFs. Moreover, the absence of space limit gives us the chance to better put our
results in context and discuss related work in more detail.
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2. Background

We start by giving necessary background on abstract and claim-based argumentation.

Abstract Argumentation. We fix a non-finite background set U . An argumentation
framework (AF) (Dung, 1995) is a directed graph F = (A,R) where A ⊆ U is a finite2 set
of arguments and R ⊆ A× A models attacks between them. We use AF to denote the set
of all AFs.

For two arguments a, b ∈ A, if (a, b) ∈ R we say that a attacks b as well as the set
E ⊆ A attacks b if a ∈ E. Analogously, a attacks E if (a, b) ∈ R for some b ∈ E. The
range of a set E ⊆ A is defined as E⊕F = E ∪ E+

F where E+
F = {a ∈ A | E attacks a}. E

is conflict-free in F (for short, E ∈ cf (F )) iff for no a, b ∈ E, (a, b) ∈ R. E defends an

argument a if any attacker of a is attacked by E. A semantics is a function σ : AF → 22U

with F 7→ σ(F ) ⊆ 2A. This means, given an AF F = (A,R) a semantics returns a set of
subsets of A. These subsets are called σ-extensions.

In this paper we consider so-called naive, admissible, complete, grounded, preferred,
stable, semi-stable and stage semantics (abbr. na, ad , co, gr , pr , stb, ss, stg). Apart
from naive, semi-stable and stage semantics (Verheij, 1996; Caminada, 2006), all mentioned
semantics were already introduced by Dung (1995).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈ na(F ) iff E is ⊆-maximal in cf (F ),

2. E ∈ ad(F ) iff E defends all its elements,

3. E ∈ co(F ) iff E ∈ ad(F ) and for any a defended by E we have, a ∈ E,

4. E ∈ gr(F ) iff E is ⊆-minimal in co(F ), and

5. E ∈ pr(F ) iff E is ⊆-maximal in ad(F ),

6. E ∈ stb(F ) iff E⊕F = A,

7. E ∈ ss(F ) iff E ∈ ad(F ) and E⊕F is ⊆-maximal in
{
D⊕F | D ∈ ad(F )

}
,

8. E ∈ stg(F ) iff E ∈ cf (F ) and E⊕F is ⊆-maximal in
{
D⊕F | D ∈ cf (F )

}
.

Claim-based Argumentation. A claim-augmented argumentation framework (CAF)
(Dvořák & Woltran, 2020) is a triple F = (A,R, cl) where F = (A,R) is an AF. We
call F the underlying framework. Similarly, we use G as underlying AF for a given CAF G.
The function cl : A→ C assigns a so-called claim to each argument; we assume that C is a
countable infinite set of claims. The claim-function is extended to sets in the natural way.
This means, for E ⊆ A we set cl(E) = {cl(a) | a ∈ E}. A CAF F is called well-formed if
a+
F = b+F for all a, b ∈ A with cl(a) = cl(b). For a claim c, we call an argument x ∈ A with

claim cl(x) = c an occurrence of c in F .
There are several ways in which semantics for AFs extend to CAFs. The most basic one

is to choose an appropriate AF semantics and consider the claims of the induced extensions.

2. Note that Dung does not restrict AFs to the realm of finiteness. Properties in the unrestricted case have
been studied by, e.g., Baumann and Spanring (2017).
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In this way, CAFs inherit all semantics introduced for Dung AFs; we thus call this variant
inherited semantics.

Definition 2.2. For a CAF F = (A,R, cl), F = (A,R), and a semantics σ, we define
the inherited variant of σ (i-σ) as σi(F) = {cl(E) | E ∈ σ(F )}. We call E ∈ σ(F ) with
cl(E) = S a σi-realization of S in F .

Example 2.3. Consider the following CAF F :

a1

a

c1

c

d1

d b1 b

a2 a

First, let us focus on stable semantics. For the underlying AF F we have the unique stable
extension E = {c1, b1} since c1 attacks a1 and d1 and b1 attacks a2. Hence we obtain
stbi(F) = {{c, b}}. Moreover, E is a stbi-realization of {c, b}.

Coming to naive semantics, we obtain the argument-sets {a1, d1}, {a1, b1}, {a1, a2},
{c1, b1}, and {c1, a2}, yielding the i-naive claim-sets {a, d}, {a, b}, {a}, {c, b}, and {a, c}.
Here, we experience an important difference to classical AF semantics: the claim-extensions
form not necessarily an anti-chain, i.e., {a} is a proper subset of {a, d}, {a, b}, and {a, c}.

Let us now turn to a family of semantics operating on the level of claims instead of
focusing on the underlying arguments. In order to do so we need to generalize the notion
of defeat to claims. A set of arguments E ⊆ A defeats a claim c ∈ cl(A) in F if E attacks
every a ∈ A with cl(a) = c (in F ). We use

E ∗F = {c ∈ cl(A) | E defeats c in F}

to denote the set of all claims which are defeated by E in F . The claim-range of a set E of
arguments is denoted by E~

F = cl(E) ∪E ∗F . If a singleton {x} defeats a claim c, we simply
write x defeats c. We say that E has full claim-range iff E~

F = cl(A).

Example 2.4 (Example 2.3 ctd.). Consider again the CAF F . Although c1 attacks a1, it
does not defeat the claim a since it does not attack the argument a2. However, E = {c1, b1}
defeats a, i.e. a ∈ E ∗F . The claim-range of E is thus E~

F = {a, b, c, d}.

Let us now turn to the CAF semantics which make direct use of claims. Hybrid seman-
tics as introduced by Dvořák et al. (2020a) provide an alternative evaluation method for
semantics based on maximization, e.g., for naive or preferred semantics, and for range-based
semantics such as stable or semi-stable semantics.

Let us discuss the case for stable semantics. Following Dung’s definition, a set is consid-
ered stable if each argument in the framework is either contained in or attacked by the set.
Adapting this concept to claim-level we say a set is stable if each claim is either accepted
or defeated by a given set of arguments. Now, consider again the CAF F from our running
example. As observed above, the set E = {c1, b1} has full claim-range, i.e., E~

F = {a, b, c, d}.
We say that {c, b} is hybrid stable because it has a realization with full claim-range. We
observe that there is another set of arguments with full claim-range: The set D = {a1, d1}
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contains claims a and d and defeats claims c and b, that is, D~
F = {a, b, c, d} as well. There-

fore, the claim-set {a, d} is stable on the level of claims although it has no realization that
is stable in the underlying AF. We note that the realization D with full claim-range is
conflict-free but not admissible. Following this observation, we identify two different ways
to lift stability to claim-level: the first variant requires that the underlying set of arguments
is conflict-free; the second variant additionally requires admissibility of the realization.

Below, we define h-preferred, h-naive, h-cf -stable, h-ad-stable, h-semi-stable and h-stage
semantics (abbr. prh, nah, cf -stbh, ad -stbh, ssh, stgh).

Definition 2.5. Let F = (A,R, cl) be a CAF with underlying AF F = (A,R). For a set
of claims S ⊆ cl(A),

• S ∈ prh(F) iff S is ⊆-maximal in ad i(F);

• S ∈ nah(F) iff S is ⊆-maximal in cfi(F);

• S ∈ τ -stbh(F), τ ∈ {cf , ad}, iff there is a τi-realization E of S in F and E~
F=cl(A);

• S ∈ ssh(F) iff there is an ad i-realization E of S in F which is ⊆-maximal in {D~
F |

D ∈ ad(F )};

• S ∈ stgh(F) iff there is an cfi-realization E of S in F which is ⊆-maximal in {D~
F |

D ∈ cf (F )}.

A set E ⊆ A σh-realizes the claim-set S in F if cl(E) = S and E satisfies the respective
requirements; e.g., E ∈ cf (F ) and E~

F = cl(A) for h-cf -stable semantics. We call E a
σh-realization of S in F .

Remark 2.6. Originally, hybrid semantics have been introduced under the name claim-
level semantics (Rapberger, 2020; Dvořák et al., 2020a). Inherited σ-claim-sets of a CAF F
have been denoted by σc(F) and the hybrid (former: claim-level) σ-claim-sets by cl -σ(F).
Following more recent publications (Dvořák et al., 2023; Rapberger, 2023), we adapted the
wording and the notation: we use σi instead of σc to denote the inherited variant of the
semantics σ, and σh instead of cl -σ to denote the hybrid variant, respectively.

Example 2.7. Consider the semantics cf -stbh. We have that S = {c, b} ∈ cf -stbh(F)
since the realization E = {c1, b1} for S has full claim-range as we already observed before.
Moreover, S′ = {a, d} ∈ cf -stbh(F) as well: As observed above, the realization D = {a1, d1}
defeats the claims c and b and hence, D~

F = {a, b, c, d}. Note that D is not a stable extension
of the underlying AF.

Comparing i-naive and h-naive semantics, we observe that the claim-set {a} is not h-
naive since it is not ⊆-maximal in cfi(F).

Basic relations between i-semantics carry over from AF semantics. For each CAF F ,

stbi(F) ⊆ ss i(F) ⊆ pri(F) ⊆ coi(F) ⊆ ad i(F) ⊆ cfi(F),

stbi(F) ⊆ stg i(F) ⊆ nai(F) ⊆ cfi(F);
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stbi

ad -stbh

cf -stbh

ssh

ssi

stg i

stgh

pri
prh

nai

nah

ad i

coi
gri

cfi

(a) Relations between CAF semantics.

stbi = cf -stbh = ad -stbh

sshssi stg istgh

pri = prh

nai

nah

ad i

coi
gri

cfi

(b) Relations for well-formed CAFs.

Figure 1: Relations between semantics for general (a) and well-formed CAFs (b)(Dvořák
et al., 2020a). An arrow from σ to τ indicates σ(F) ⊆ τ(F) for each (well-formed) CAF F .

moreover, gri(F) is unique and contained in (the intersection of) coi(F). Furthermore,
coi(F) forms a meet semilattice with respect to the subset relation. As shown by Dvořák
et al. (2020a), it holds that

stbi(F) ⊆ ad -stbh(F) ⊆ cf -stbh(F) ⊆ stgh(F) ⊆ nai(F),

ad -stbh(F) ⊆ ssh(F) ⊆ pri(F)

for each F . Moreover, for σ ∈ {pr ,na}, each σh-claim-set of F is ⊆-maximal in σi(F), i.e.

prh(F) ⊆ pr i(F) and nah(F) ⊆ nai(F).

For well-formed CAFs, the variants of preferred as well as the variants of stable semantics
collapse (Dvořák et al., 2020a). That is, for every well-formed CAF F , it holds that

stbi(F) = ad -stbh(F) = cf -stbh(F) and pri(F) = prh(F).

Figure 1 gives an overview over the relations between the semantics.

Notation. We write F = (F, cl) as an abbreviation for F = (A,R, cl) with AF F =
(A,R) (similar for CAFs G or H for which we denote the corresponding AFs by G and
H, respectively). Also, we use the subscript-notation AF , RF , and clF to refer to the
arguments, attack relations, and claims of a given CAF F .

3. Ordinary Equivalence

The distinction between explicit and implicit information is essential in knowledge represen-
tation. The former is interpreted according to the underlying semantics of the considered
formalism, i.e. the set of models in case of classical propositional logic or the set of exten-
sions in case of classical AFs. In contrast, the implicit information of an knowledge base
comes to light if it undergoes dynamic changes. Both concepts come along with an induced
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notion of equivalence, namely ordinary or strong equivalence, respectively. We start our
analysis by investigating ordinary equivalence for CAFs.

Definition 3.1. Two CAFs F and G are ordinarily equivalent w.r.t. semantics ρ, in symbols
F ≡ρo G, if we have ρ(F) = ρ(G).

Example 3.2. Consider the following CAFs F and G. Note that they disagree on the
attack relation between a1 and a2 only.

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

a1

a

b1

b

c1

c

a2

a

c2

c

We have stb(F ) = ∅ and stb(G) = {a2, c1}. Consequently, the inherited variants are
stbi(F) = ∅ and stbi(G) = {a, c} justifying F 6≡stbi

o G. If we consider instead the claim-
based versions, we observe that the two CAFs agree on their outcome: More precisely, due to
stbi(G) ⊆ ad -stbh(G) ⊆ cf -stbh(G) we obtain {a, c} ∈ ad -stbh(G), cf -stbh(G). Moreover, we
have that {a, c} ∈ ad -stbh(F), cf -stbh(F) since the set {a1, c1} is admissible (thus, conflict-
free) and defeats every remaining claim. As a side remark, we mention that the claim-set
{a, c} has two cfi-realizations in F and G since both of the sets {a1, c1}, {a2, c1} are conflict-
free and have full claim-range. It can be checked that no other claim-set than {a, c} satisfies
the requirements of the claim-based stable versions. Consequently, F and G are ordinarily
equivalent with respect to ad -stbh and cf -stbh semantics, in symbols: F ≡ad-stbh

o G and
F ≡cf -stbh

o G.

In the following we consider (non-)relations between ordinary equivalences w.r.t. differ-
ent semantics. We will see that the inherited variants behave differently in comparison to
claim-based versions. Let us recap the case of Dung-style AFs. It was shown that sharing
the same admissible/conflict-free sets guarantees no difference regarding preferred/naive
extensions. Moreover, equivalence with respect to naive sets implies that the conflict-free
sets coincide. Also, possessing the same complete extensions implies coinciding grounded
and preferred extensions (Oikarinen & Woltran, 2011, Proposition 1).

Let us start with the relations between inherited semantics.

Proposition 3.3. Consider two CAFs F and G. It holds that

1. F ≡coi
o G ⇒ F ≡

gri
o G,

2. F ≡nai
o G ⇒ F ≡cfi

o G.

Proof. The relations can be transferred from the case for the respective AF semantics. The
first item is due to the fact that the i-grounded claim-set is, per definition, the ⊆-minimal
i-complete claim-set. For the second item, assume that F and G agree on their i-naive
extensions, and let S ∈ cfi(F) be a i-conflict-free set in F . Since it holds that each subset of
every i-naive extension can be realized with a conflict-free set in both F and G, we obtain
that S is i-conflict-free in G as well. Hence we obtain cfi(F) = cfi(G).
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Interestingly, we observe that not all relations for AF semantics carry over to inherited
semantics. This is due to the fact that i-preferred (i-naive) semantics are not necessarily
⊆-maximal i-admissible (i-conflict-free) claim-sets. Let us consider the following example.

Example 3.4. Assume we are given two CAFs as follows:

a1

a

b1

b

F : a1

a

b1

b

a2

a

G :

We have ad i(F) = ad i(G) = {∅, {a}, {b}, {a, b}}. Hence, {a, b} is the unique i-preferred
claim-set of F . However, pri(G) = {{a}, {a, b}} witnessed by the extensions {a1, a2} and

{a1, b1}. Thus F ≡adi
o G 6⇒ F ≡pri

o G. This also shows F ≡cfi
o G 6⇒ F ≡nai

o G since cfi and
ad i as well as the respective variants of naive and preferred semantics coincide in F and G.

Let us next consider relations between inherited and claim-based semantics. Overall, we
observe that equivalence with respect to h-preferred semantics can be decided by looking
either at i-admissible, i-complete, or i-preferred semantics. Moreover, coincidence of i-naive
extension implies equivalence with respect to h-naive semantics. Also, inherited conflict-free
sets coincide if and only if h-naive semantics yield the same claim-sets.

Proposition 3.5. Consider two CAFs F and G. It holds that

1. F ≡adi
o G ⇒ F ≡prh

o G,

2. F ≡pri
o G ⇒ F ≡prh

o G,

3. F ≡coi
o G ⇒ F ≡

prh
o G,

4. F ≡cfi
o G ⇔ F ≡nah

o G,

5. F ≡nai
o G ⇒ F ≡nah

o G.

Proof. First, assume F ≡adi
o G. By definition, h-preferred extensions are the ⊆-maximal

i-admissible extensions, hence F ≡prh
o G follows. Since h-preferred extensions coincide with

the ⊆-maximal i-preferred and i-complete claim-sets for each CAF, we obtain that F ≡pri
o G

and F ≡coi
o G imply F ≡prh

o G.
Let us next consider the relation between i-conflict-free and h-naive semantics. By

definition, h-naive extensions are the ⊆-maximal i-conflict-free extensions, hence we obtain
F ≡cfi

o G implies F ≡nah
o G. For the other direction, note that each subset of a h-naive

extension has a conflict-free realization, hence the statement follows.
Finally, we note that h-naive extensions are precisely the ⊆-maximal i-naive extensions,

which implies the equivalence in the last item.

For well-formed CAFs, we obtain the following relations between ordinary equivalences.

Proposition 3.6. For any two well-formed CAFs F and G, it holds that

• F ≡ρo G ⇒ F ≡pr i
o G, ρ ∈ {ad i, coi, prh};

• F ≡stbi
o G ⇔ F ≡ad-stbh

o G ⇔ F ≡cf -stbh
o G.
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Proof. The relations follow since the variants of preferred as well as the variants of stable
semantics collapse for well-formed CAFs.

Let us now turn to the non-relations between the semantics. Negative results (i.e.,
counter-examples) generalize to CAFs from the corresponding AF semantics.

Lemma 3.7. For two AF semantics σ and τ , if σ(F ) = σ(G) 6⇒ τ(F ) = τ(G) for some
AFs F , G, then σc(F) = σc(G) 6⇒ τc(F) = τc(G) for some CAFs F , G.

Indeed, when identifying AFs with CAFs where each claim is unique (i.e., taking cl =
id), we obtain counter-examples from known results for AFs (Oikarinen & Woltran, 2011).
We furthermore recall that in this case, hybrid semantics coincide with their inherited
counterparts. Thus remains to provide counter-examples for naive, semi-stable, and stage
semantics as well as for stable semantics in the general case.

For naive semantics, we observe that in both CAFs from Example 3.4, preferred and
naive semantics coincide in both variants. To separate the stable variants, we consider the
following examples.

Example 3.8. Consider the following CAFs F1, F2, and G:

a1

a

b1

b

F1 : b1

b

F2 : a1

a

b1

b

a2

a
G :

It holds that stbhcf (F1) = stbhcf (G) = {{a}, {b}} but ρ(F1) 6= ρ(G) for ρ ∈ {stbc, stbhad};
moreover, ρ(F2) = ρ(G) = {{a}} and stbhcf (F2) 6= stbhcf (G).

Example 3.9. Consider the following CAFs F1, F2, and G:

a1

a

b1

b

F1 : b1

b

F2 : a1

a

b1

b

a2

b

G :

It holds that stbhad (F1) = stbhad (G) = {{a}, {b}} but stbc(F1) 6= stbc(G); moreover,
stbc(F2) = stbc(G) = {{a}} but stbhad (F2) 6= stbhad (G).

It remains to consider semi-stable and stage semantics.

Example 3.10. Consider the following (well-formed) CAF F :

a

ab1b

c

c dde e

b2b

f1

f

f2

f

In F , it holds that ssc(F) = {{a}}, ssh(F) = {{b, d}}, stgc(F) = {{c}, {a}}, and stgh(F) =
{{b, d}, {c}}. To obtain counter-examples for the involved semantics, it suffices to construct
a (well-formed) CAF G in which both variants agree on one of the aforementioned claim-
sets of F . First, let G1 = ({a}, ∅, id), then all considered semantics return claim-set {a}.
Thus ssc(F) = ssc(CG) but ssh(F) 6= ssh(G). Likewise, we let G2 = ({b, d}, ∅, id) to obtain
a counter-example for the other direction. For stage semantics, we consider the CAFs
G3 = ({a, c}, {(a, c), (c, a)}, id) and G4 = ({b, c, d}, {(b, c), (c, d), (d, c), (c, d)}, id) instead.
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This concludes our study of relations between semantics with respect to ordinary equiv-
alence. We considered both general and well-formed CAFs. Similar as for AFs, we observe
that ordinary equivalence for CAF semantics are largely independent of each other.

4. Strong Equivalence

A crucial observation is that ordinary equivalence is not robust when it comes to expansions
of the frameworks, e.g., if an update in the knowledge base induces new arguments or
attacks. Let us illustrate this by the following example:

Example 4.1. Assume we are given an updated version of F and G from Example 3.2
where an additional argument d1 has been introduced. Let F ′ and G′ be given as follows:

F ′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

G′:

a1

a

b1

b

c1

c

a2

a

c2

c

d1d

F ′ and G′ no longer agree on their admissible-based h-stable claim-sets: In G′, the set {a2, c1}
does not defeat claim d, thus ad -stbh(G′) = ∅ while {a, c} remains ad -based h-stable in F ′
due to {a1, c1}.

This is not due to CAF-specific properties, but a rather common behavior for many non-
monotonic logics considered in the literature. Driven by this observation, strong equivalence
has been introduced and investigated in other non-monotonic formalisms (Lifschitz et al.,
2001; Oikarinen & Woltran, 2011; Baumann & Strass, 2022). Strong equivalence is a more
restrictive notion which is tailored to handle equivalence between knowledge bases in a
dynamical setting, i.e. the behavior remains the same even if we update our information.

Two AFs F and G are said to be strongly equivalent w.r.t. a semantics σ if and only
if it holds that σ(F ∪ H ) = σ(G ∪ H ) for each AF H (denoted by F ≡σs G). Judging
this property merely by its definition, it appears to be computational hard at first glance:
Naively iterating over each conceivable H only yields semi-decidability of checking that F
and G are not strongly equivalent; if they are, the algorithm will not terminate.

Remarkably, this problem is tractable for all main AF semantics (Oikarinen & Woltran,
2011; Baumann, Linsbichler, & Woltran, 2016). It turned out that strong equivalence can
be characterized via syntactical identity of so-called (semantics-dependent) kernels. These
kernels are obtained by attack modifications of the given frameworks and are therefore
straightforward to compute. Let us recall the definitions of the stable, admissible, complete,
grounded, and naive kernel (Oikarinen & Woltran, 2011; Baumann et al., 2016).

Definition 4.2. For an AF F = (A,R), we define the stable kernel F sk = (A,Rsk);
admissible kernel F ak = (A,Rak); the complete kernel F ck = (A,Rck); grounded kernel
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F gk = (A,Rgk); and the naive kernel Fnk = (A,Rnk) with

Rsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}
Rak = R \ {(a, b) | a 6=b, (a, a)∈R, {(b, a),(b, b)}∩R 6=∅};
Rck = R \ {(a, b) | a 6= b, (a, a), (b, b) ∈ R};
Rgk = R \ {(a, b) | a 6=b, (b, b)∈R, {(b, a),(a, a)}∩R 6=∅};
Rnk = R ∪ {(a, b) | a 6= b, {(a, a), (b, b), (b, a)} ∩R 6= ∅}.

For a CAF F = (F, cl), we write Fk to denote (F k, cl) for k ∈ {sk, ak, ck, gk, nk}.

We recall the characterization results of strong equivalence for AF semantics.

Theorem 4.3 ((Oikarinen & Woltran, 2011; Baumann et al., 2016)). For any two AFs F
and G,

F ≡σs G iff F sk = Gsk for σ ∈ {stb, stg},
F ≡σs G iff F ak = Gak for σ ∈ {ad , pr , ss}
F ≡co

s G iff F ck = Gck

F ≡gr
s G iff F gk = Ggk

F ≡σs G iff Fnk = Gnk for σ ∈ {cf ,na}

For an AF F , we write F k(σ) to denote the kernel which characterizes strong equivalence
for the semantics σ.

Example 4.4. Consider the following AFs F and G:

a1b1
a2

F : a1b1
a2

G :

Since a2 is a self-attacking argument, out-going attacks are removed when constructing the
stb-kernel F sk. Therefore F sk and Gsk coincide.

a1b1
a2

F sk : a1b1
a2

Gsk :

Due to Theorem 4.3, we infer F ≡stb
s G without checking a single candidate H by hand.

In the following, our goal is to establish analogous results for CAFs. We characterize
strong equivalence for all considered CAF semantics by identifying appropriate kernels. In
brief, our findings reveal that all semantics apart from cf -based h-stable semantics can be
characterized with the kernels of their AF semantics counterpart. We identify a novel kernel
for cf -based h-stable semantics, which exhibits interesting overlaps with the stable and the
naive kernel for AF semantics.
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4.1 Strong Equivalence in CAFs

Before formally introducing strong equivalence for CAFs we require an additional concept
which ensures that expansions are well-defined.

Definition 4.5. Two CAFs F and G are compatible if clF (a) = clG(a) for each a ∈ AF∩AG .

Given two compatible CAFs we define the union F ∪G as usual, namely componentwise
as F ∪ G = (AF ∪AG , RF ∪RG , clF ∪ clG). We are now ready to define strong equivalence
for CAFs.

Definition 4.6. Two CAFs F and G are strongly equivalent w.r.t. a semantics ρ, in symbols
F ≡ρs G, iff

1. F and G are compatible; and

2. For each CAF H compatible with F and G we have, ρ(F ∪H) = ρ(G ∪ H).

Our first step is to discuss some general observations that turn out to be useful when
providing our characterization results. We will show that (i) two CAFs are strongly equiv-
alent to each other only if they agree on their arguments; and (ii) strongly equivalent CAFs
have the same self-attacking arguments.

We will first show that two CAFs with different arguments are not strongly equivalent.

Lemma 4.7. For any two compatible CAFs F and G, AF 6= AG implies F 6≡ρs G for any
considered semantics ρ.

Proof. W.l.o.g., we may assume that there is a ∈ AF with a /∈ AG . Let clF (a) = c. We
distinguish the following cases: (a) (a, a) /∈ RF and (b) (a, a) ∈ RF .

• In case (a, a) /∈ RF , we consider the following construction: For a fresh argument x
and a fresh claim d, let H = (AH, RH, clH) with

AH = (AF ∪AG ∪ {x}) \ {a};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};

and clH(b) = clF (b) for b ∈ AF ∪ AG and clH(x) = d; that is, we introduce a new
argument having a fresh claim d which attacks every argument except a. Observe
that {c, d} ∈ gri(F ∪ H) and {c, d} ∈ stbi(F ∪ H) since {a, x} is conflict-free, and x
is unattacked and attacks all remaining arguments except a in F ∪ H; thus there is
S ∈ ρ(F∪H) with {c, d} ⊆ S for every semantics ρ under consideration by Lemma 4.9.
On the other hand, {c, d} /∈ cf (G ∪ H) since x attacks every occurrence of clH(a) in
G; therefore, {c, d} /∈ ρ(G ∪ H).

• Now, let (a, a) ∈ RF . We construct our counter-example as follows: For a fresh
argument x and a fresh claim d, let H = (AH, RH, clH) with

AH = AF ∪AG ∪ {x};
RH = {(x, b) | b ∈ (AF ∪AG) \ {a}};
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and clH(b) = clF (b) for b ∈ AF , clH(b) = clG(b) for b ∈ AG ; and clH(x) = d; that is,
the new argument x attacks every argument in AF ∪ AG except a. Observe that a is
unattacked in G ∪H since a is a newly introduced argument in G ∪H1 by assumption
a /∈ AG . Therefore {c, d} ∈ gri(G ∪ H) since {a, x} is conflict-free and unattacked;
moreover, {c, d} ∈ stbi(G ∪ H) since {a, x} is conflict-free and attacks all remaining
arguments in G ∪H. By Lemma 4.9, {c, d} is thus contained in some ρ-claim-set for
every semantics ρ under consideration. On the other hand, {c, d} /∈ cf (F ∪ H) since
every realisation of {c, d} is conflicting: a is self-attacking and x attacks every other
occurrence of c. Thus {c, d} /∈ ρ(F ∪HH) for each considered semantics ρ.

In both cases, we found a witness H showing that ρ(F ∪H) 6= ρ(G ∪ H).

Next we show that two strongly equivalent CAFs F and G possess the same self-
attackers.

Lemma 4.8. For any two compatible CAFs F and G, (a, a) ∈ RF∆RG implies F 6≡ρs G for
any semantics ρ under consideration.

Proof. By Lemma 4.7, we may assume that AF = AG(= A), i.e., a is contained in both
CAFs F and G. W.l.o.g., let (a, a) ∈ RF and (a, a) /∈ RG . Let clF (a) = clCG(a) = c. Now,
for a fresh argument x and fresh claim d, consider the CAF H = (A,RH, clH) with

RH = {(x, b) | b ∈ A \ {a}}

and clH(b) = clF (b) for b ∈ A and clH(x) = d. Then {c, d} has no cf -realisation in F ∪H
since a is self-attacking and x attacks every remaining occurrence of c in F∪H. On the other
hand, {c, d} ∈ gri(G ∪ H) and {c, d} ∈ stbi(G ∪ H) since {a, x} is conflict-free and attacks
every other argument, moreover, x is unattacked. By Lemma 4.9, for all semantics ρ, there
is S ∈ ρ(G ∪ H) which contains {c, d}. Thus F 6≡ρs G.

Furthermore, the next auxiliary lemma will be convenient throughout the next subsec-
tions.

Lemma 4.9. For a CAF F and a set of claims S ⊆ cl(A), it holds that S ⊆ S′ for some
S′ ∈ stbi(F) implies that there is some S′′ ∈ ρ(F) with S ⊆ S′′ for all semantics ρ 6= gri
under consideration.

Proof. For all except h-preferred and h-naive semantics, the statement follows directly from
known relations between semantics (since stbi(F) ⊆ ρ(F) in this case). Let ρ ∈ {prh,nah}
and consider some claim-set S ⊆ cl(A) such that S ⊆ S′ for some S′ ∈ stbi(F) (⊆ τ(F)
for τ ∈ {pr i,nai}). Since h-preferred and h-naive claim-sets are precisely the ⊆-maximal
i-preferred resp. i-naive claim-sets, there is T ∈ prh(F) (T ∈ nah(F)) with T ⊆ S′.

4.2 Inherited Semantics

We start with discussing strong equivalence w.r.t. inherited semantics. The main result is
that inherited semantics can be characterized via already known AF kernels. More precisely,
a characterizing kernel for a specific AF semantics also serve for its inherited variant in the
realm of CAFs. The following theorem expresses this intuition in a formal way. The
remainder of this section collects propositions witnessing the truth of this claim.
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Theorem 4.10. For any two compatible CAFs F and G, and each considered AF seman-
tics σ, the following statements are equivalent:

• F ≡σis G,

• F ≡σs G,

• F k(σ) = Gk(σ).

Recall that F ≡σs G iff F k(σ) = Gk(σ) holds by former charaterization results (Oikarinen
& Woltran, 2011; Baumann et al., 2016). Moreover, for two compatible CAFs F and G
with strongly equivalent underlying AFs, i.e. F ≡σs G, we immediately deduce F ≡σis G as
σ(F ∪ H) = σ(G ∪ H) implies σi(F ∪ H) = σi(G ∪ H) for any CAF H compatible with
F and G.

It remains to show that being strongly equivalent on CAF-level implies the syntactical
identity of the associated kernels of the underlying AFs, i.e.F ≡σis G implies F k(σ) = Gk(σ).
We will show the contrapositive. Assume F k(σ) 6= Gk(σ). Applying Lemma 4.7 we may
further assume that AF = AG(= A). This means, F and G agree on their arguments.

Consequently, there must be some attack (a, b) ∈ Rk(σ)
F ∆R

k(σ)
G . Without loss of generality

we assume (a, b) ∈ Rk(σ)
F \Rk(σ)

G .

Let us discuss each kernel separately. We start with the most prominent one, the stable
kernel. This kernel deletes outgoing attacks from self-defeating arguments.

Proposition 4.11. Given two CAFs F and G satisfying (a, a) ∈ RF iff (a, a) ∈ RG and
AF = AG(= A). Then (a, b) ∈ RskF \RskG implies F 6≡σis G for σ ∈ {stb, stg}.

Proof. Since (a, b) ∈ RskF , we conclude that a is not self-attacking in F (which implies
(a, a) /∈ RG by Lemma 4.8). We construct our counter-example as follows: for fresh argu-
ments x, y, z and fresh claims c, d, e, let H = (A ∪ {x, y, z}, R, cl) with

R = {(b, z)} ∪ {(x, h) | h ∈ (A ∪ {y}) \ {a, b}} ∪ {(y, h) | h ∈ A ∪ {x, z}}

and cl(h) = clF (h) for h ∈ A, cl(x) = c, cl(y) = d, and cl(z) = e. First observe that
{y} is stable in both stb(F sk ∪ H) and stb(Gsk ∪ H), thus stb(F sk ∪ H) = stg(F sk ∪ H)
and stb(Gsk ∪H) = stg(Gsk ∪H). Moreover, {a, x, z} ∈ stb(F sk ∪H) since x attacks each
remaining argument; thus {cl(a), c, e} ∈ stbi(Fsk ∪H). On the other hand, {cl(a), c, e} has
no stbi-realisation in Gsk ∪ H since {a, x, z} does not attack b; every other realisation of
{cl(a), c, e} in Gsk ∪H is conflicting.

We proceed with the admissible kernel which serves as characterizing kernel for admis-
sible, preferred as well as semi-stable semantics.

Proposition 4.12. Given two CAFs F and G satisfying (a, a) ∈ RF iff (a, a) ∈ RG and
AF = AG(= A). Then (a, b) ∈ RakF \RakG implies F 6≡σis G for σ ∈ {ad , pr , ss}.

Proof. Since (a, b) ∈ RakF , it holds that either (a) (a, a) /∈ RakF ; or (b) (a, a) ∈ RakF and
{(b, a), (b, b)} /∈ RakF .
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(a) In case (a, a) /∈ RF , consider construction H from the proof of Proposition 4.11.
Then {cl(a), c, e} ∈ σi(Fak ∪H) since {cl(a), c, e} ∈ stbi(Fak ∪H); on the other hand,
{cl(a), c, e} has no ad -realisation in Gak ∪H1 since z is not defended against b; every
other realisation of {cl(a), c, e} in Gak ∪H1 is conflicting since z is attacked by b and
x attacks every remaining argument.

(b) For a fresh argument x and a fresh claim c, let

H2 = (A ∪ {x}, {(x, h) | h ∈ A \ {a, b}}, cl2)

with cl2(h) = clF (h) for h ∈ A and cl2(x) = c. Then {b, x} ∈ ad(Gak ∪ H2) since
b is not attacked by a in Gak and defended against any other potential attack by x;
moreover, {b, x} semi-stable in Gak ∪ H2 since there is no other set D ⊆ A ∪ {x}
with x ∈ D⊕Gak∪H2

(besides {x} which is a proper subset of {b, x}). Thus {cl2(b), c} ∈
σi(Gak∪H1). On the other hand, {b, x} /∈ ad(F ak∪H2) since b is not defended against
a in F ak ∪H2. Thus {cl2(b), c} /∈ σi(Fak ∪H2).

We now turn to complete semantics. In this case, only attacks between two self-defeating
arguments are rendered redundant.

Proposition 4.13. Given two CAFs F and G satisfying (a, a) ∈ RF iff (a, a) ∈ RG and
AF = AG(= A). Then (a, b) ∈ RckF \RckG implies F 6≡coi

s G.

Proof. We have either (a, a) /∈ RckF or (b, b) /∈ RckF . The case (a, a) /∈ RakF is analogous to
the case (a) in the proof of Proposition 4.12. It remains to discuss the case (b, b) /∈ RckF .
For fresh arguments x, y and fresh claims c, d, let

H3 = (A ∪ {x, y}, {(y, a), (y, y)} ∪ {(x, h) | h ∈ A \ {a, b}}, cl3)

with cl3(h) = clF (h) for h ∈ A, cl3(x) = c, cl3(y) = d. Then {cl3(b), c} ∈ coi(Gck ∪ H3)
since {b, x} is conflict-free and x defends b against each attack; moreover, a is not defended
by {b, x} against y. On the other hand, {cl3(b), c} /∈ coi(Fck∪H3) since the only conflict-free
sets containing x are {b, x}, which is not defended against a; {x}, which does not realise
cl3(b); and {a, x}, which is not defended against y (and a has potentially a different claim
than b).

The uniquely defined grounded extension is the most sceptical one among all complete
extensions. It is therefore not surprising that grounded semantics offers more potential for
redundancy than complete semantics. In fact, an attack (a, b) can also be deleted if both,
a is self-defeating and b counterattacks a.

Proposition 4.14. Given two CAFs F and G satisfying (a, a) ∈ RF iff (a, a) ∈ RG and

AF = AG(= A). Then (a, b) ∈ RgkF \R
gk
G implies F 6≡gri

s G.

Proof. Either (a) (b, b) ∈ RgkF and {(b, a), (a, a)} /∈ RgkF ; or (b) (b, b) /∈ RgkF . Since (b) is
analogous to the case considered in the proof in Proposition 4.13 where we constructed an
expansion H3 yielding different i-grounded claim-sets in Fgk ∪H3 and Ggk ∪H3, it remains
to discuss case (b, b) ∈ RgkF . For fresh arguments x, y and fresh claims c, d, let

H4 = (A ∪ {x, y}, {(b, y)} ∪ {(x, h) | h ∈ A \ {a, b}}, cl4)
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with cl4(h) = clF (h) for h ∈ A, cl4(x) = c, cl4(y) = d. Then x is unattacked and defends
a in Fgk ∪ H4, which in turn defends y. Thus {cl4(a), c, d} ∈ gri(Fgk ∪ H4). On the other
hand, we have {cl4(a), c, e} /∈ gri(Ggk ∪H4) since y is not defended against b.

This concludes the proof for the semantics σ ∈ {stb, stg , ad , pr , ss, gr , co}: in every case,
we found a witness H showing σi

(
Fk(σ) ∪H

)
6= σi

(
Gk(σ) ∪H

)
. By Lemma 4.16, we get

σi(F ∪H) = σi((F ∪H)k(σ)) = σi(Fk(σ) ∪H) 6= σi(Gk(σ) ∪H) = σi((G ∪H)k(σ)) = σi(G ∪H).

Hence, F 6≡sσi G is indeed shown.
Finally, let us consider conflict-free and naive semantics both characterized by the naive

kernel. This kernel behaves differently than any other considered kernel as it is the only
one that adds attacks instead of deleting them (Baumann, 2018, Section 4.2).

Proposition 4.15. Given two CAFs F and G satisfying (a, a) ∈ RF iff (a, a) ∈ RG and
AF = AG(= A). Then Fnk 6= Gnk implies F 6≡σis G for σ ∈ {cf ,na}.

Proof. For σ ∈ {cf ,na}, first notice that we can assume σi(F) = σi(G) otherwise let H =
(∅, ∅, ∅); furthermore, we can assume σ(F ) 6= σ(G); otherwise consider instead F ∪ H and
G ∪ H for a compatible CAF H with σi(F ∪H) 6= σi(G ∪ H).

First consider the case that there is some E ∈ σ(F )∆σ(G) such that E is not conflict-
free in F (or G, respectively). W.l.o.g., let E ∈ σ(F ) such that E is subset-minimal among
σ(F )∆σ(G), i.e., there is no E′ ∈ σ(F )∆σ(G) with E′ ( E; otherwise, exchange the roles
of F and G. For a fresh argument x and a fresh claim c, let H5 = (A ∪ {x}, {(x, b) | b ∈
A \E, cl5) with cl5(b) = clF (b) for b ∈ A and cl5(x) = c. Then cl5(E) ∪ {c} ∈ na(F ∪H5)
but {cl5(E)∪{c} has no cf -realisation in G ∪H5 since every subset of E is conflicting and x
attacks all remaining arguments, thus cl5(E) ∪ {c} /∈ σi(G ∪H5). Observe that this suffices
to conclude the proof for conflict-free semantics.

For naive semantics, assume that for all E ∈ σ(F )∆σ(G), E ∈ cf (F )∩cf (G). We derive
a contradiction: W.l.o.g., let E ∈ σ(F ) such that E is subset-minimal among σ(F )∆σ(G).
Since E is conflict-free in G, there is some E′ ∈ na(G) with E ⊆ E′. But then E′ ∈ cf (G)
and thus E ∈ cf (F ) by assumption, contradiction to E being a subset-maximal conflict-free
extension in F . We have shown F 6≡σis G for σ ∈ {cf ,na} concluding the proof.

4.3 Hybrid Semantics and AF Kernels

In this section we consider hybrid semantics. In particular, we are interested in h-ad -stable,
h-semi-stable, h-preferred, and h-naive semantics. We will show that strong equivalence
with respect to the first three semantics can be characterized via the classical admissible
kernel whereas h-naive semantics is characterized by the naive kernel for AFs.

We first consider h-ad -stable and h-semi-stable semantics. The following result show
that that claim-extensions remain unchanged if turning to the kernelized versions of the
initial CAFs.

Lemma 4.16. For any CAF F and any semantics ρ ∈ {ad -stbh, ssh}, ρ(F) = ρ(Fak).

Proof. Let F = (A,R, cl). As shown by Oikarinen and Woltran (2011), it holds that
σ(F ) = σ(F ak) for σ ∈ {ad , pr , semi}. Hence, it follows that σi(F) = σi(Fak); in particular,
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i-admissible semantics are preserved. It remains to prove that the range of every admissible
set E ⊆ A remains unchanged in F ak. By definition, we delete only attacks (a, b) with
(a, a) ∈ R when constructing the kernel. Hence, it follows that E+

F = E+
Fak for every conflict-

free (thus also for every admissible set) E. We obtain E ∗F = E ∗Fak and E~
F = E~

Fak for every
admissible set. Therefore, h-ad -stable and h-semi-stable semantics are preserved.

Next we will prove the central characterization theorem. Two compatible CAFs are
strongly equivalent under h-ad -stable as well as h-semi-stable semantics iff their admissible
kernels coincide.

Theorem 4.17. For any two compatible CAFs F and G,

F ≡ρs G iff F ak = Gak for ρ ∈ {ad -stbh, ssh}.

Proof. First suppose F ak = Gak and letH be a CAF compatible with F , G. By Lemma 4.16,
and since F ∪H = (F ∪H)ak by known results for AF (Oikarinen & Woltran, 2011, Lemma
5), we obtain ρ(F ∪H) = ρ((F ∪H)ak) = ρ((G ∪ H)ak) = ρ(G ∪ H). Therefore, F ≡ρs G.

Now assume Fak 6= Gak. We may assume ρ(Fak) = ρ(Gak) by Lemma 4.16; also,
AF = AG(= A) by Lemma 4.7 and F and G contain the same self-attacks by Lemma 4.8.
Thus there is (a, b) ∈ RakF ∆RakG ; w.l.o.g., let (a, b) ∈ RakF . We distinguish three cases: (a)
(a, a) /∈ RFak ; (b) (a, a) ∈ RFak and cl(a) 6= cl(b); and (c) (a, a) ∈ RFak and cl(a) = cl(b).

(a) In case (a, a) /∈ RFak , let H1 = (A ∪ {x, y}, R1, cl1) with

R1 = {(b, y)} ∪ {(x, h) | h ∈ A \ {a, b}}

and cl1(h) = clF (h) if h ∈ A and cl1(x) = c, cl1(y) = d for newly introduced
arguments x, y and fresh claims c, d. Note that {a, x, y} ∈ stb(F ak∪H1) since a defends
y against b and x attacks every remaining argument. Consequently, {cl1(a), c, d} ∈
stbi(Fak ∪H1) ⊆ ρ(Fak ∪H1).

On the other hand, we have that {cl1(a), c, d} is not admissible in Gak∪H1 since it has
no ad -realisation in Gak ∪H1: Clearly, every candidate set must contain x, y, which
are the only arguments having claims c, d. The only cf -realisation of {cl1(a), c, d} is
{a, x, y} since every other argument is attacked by x. Observe that y is not defended
against b by {a, x, y} in Gak ∪H1, thus {cl1(a), c, d} /∈ ρ(Gak ∪H1).

(b) In case (a, a) ∈ RFak , cl(a) 6= cl(b), let H2 = (A ∪ {x}, R2, cl2) with

R2 = {(x, h) | h ∈ A \ {a, b}}

for a fresh argument x with cl2(h) = clF (h) for h ∈ A and cl2(x) = clF (a).
First observe that (b, b) /∈ RakF (and thus also not in RakG ), otherwise (a, b) /∈ RakF
by definition. Hence E = {b, x} is admissible in Gak ∪ H2 since a does not at-
tack b and x attacks each remaining argument. Let S = cl2(E) and observe that
S ∪ E ∗Gak∪H2

= S ∪ cl2(A \ {a}) = cl2(A) since cl2(a) ∈ S. Thus S ∈ ρ(Gak ∪H2).

On the other hand, S /∈ ad i(Fak ∪ H2): Consider a cf -realisation D of S. In case
x /∈ D, we have that D is not defended against x in F ak ∪ H2 since x attacks any
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potential realization of cl2(a) in F which is not self-attacking. Now assume x ∈ D,
then also b ∈ D, since x attacks any other possible choice of cl2(b) in F . In this case
we have that D is not defended against a in Gak ∪H2 and thus S /∈ ad i(Fak ∪ H2).
It follows that ρ(Fak ∪H2) 6= ρ(Gak ∪H2).

(c) Now assume (a, a) ∈ RFak and cl(a) = cl(b). Let H3 = (A ∪ {x, y}, R3, cl3) with

R3 = {(x, y), (y, x)} ∪ {(y, h | h ∈ A ∪ {x}} ∪ {(x, h) | h ∈ A \ {a, b}}

and cl3(h) = clF (h) if h ∈ A and cl3(x) = c, cl3(y) = d for newly introduced
arguments x, y and fresh claims c, d, that is, H3 coincides with the construction
H1 from case (a) in the Proof of Theorem 4.24. The argument y guarantees that
ad -stbh(Fak∪H3) 6= ∅ and ad -stbh(Gak∪H3) 6= ∅ since in both Fak∪H3 and Gak∪H3,
the claim-set {d} is i-stable. Moreover, we have that {cl3(b), c} ∈ ad -stbh(Gak ∪H3)
(and thus {cl3(b), c} ∈ ssh(Gak ∪ H3)) since {b, x} is conflict-free and defends itself
in Gak ∪H3—recall that (b, b), (a, b) /∈ RakG and x attacks every remaining argument
except a. Since cl3(a) = cl3(b) it follows that {b, x} has full claim-range. On the other
hand, we have that {cl3(b), c} has no ad -realisation in F ak ∪H3: Clearly, each candi-
date must contain x which is the only argument having claim c. Thus {b, x} is the only
cf -realisation of {cl3(b), c} in F ak ∪H3. Observe that {b, x} is not admissible since b
is not defended against the attack from a. We obtain ρ(Fak ∪H3) 6= ρ(Gak ∪H3).

In every case, we have found a witnessH showing ρ(Fak∪H) 6= ρ(Gak∪H). By Lemma 4.16,
we get ρ(F ∪ H) = ρ((F ∪ H)ak) = ρ(Fak ∪ H) 6= ρ(Gak ∪ H) = ρ((G ∪ H)ak) = ρ(G ∪ H).
It follows that F 6≡sρ G.

We now show that deciding strong equivalence w.r.t. h-naive and h-preferred semantics
coincides with deciding strong equivalence w.r.t. their inherited counterparts.

Theorem 4.18. For any two compatible CAFs F and G,

F ≡σhs G iff F ≡σis G for σ ∈ {na, pr}.

Proof. If F ≡σis G, then σi(F ∪ H) = σi(G ∪ H) for every compatible CAF H. F ≡σhs G
follows since σh(F∪H) are the subset-maximal i-naive claim-sets of F∪H and, analogously,
σh(G ∪ H) are the subset-maximal i-naive claim-sets of G ∪ H.

Now assume F 6≡σis G and let σ = pr (the proof for σ = na is analogous). We may assume
AF = AG(= A) (by Lemma 4.7); also, pri(F) 6= pri(G) (otherwise consider instead F ∪ H
and G ∪H for a compatible CAF H with pri(F ∪H) 6= pri(G ∪H)). Hence ad(F ) 6= ad(G).
Consider a ⊆-minimal set E ∈ ad(F )∆ad(G). W.l.o.g., let E ∈ ad(F ).

In case there is no D ∈ ad(F )∩ ad(G) with D ( E, we consider the following construc-
tion: For a fresh argument x and a fresh claim c, let

H1 = ((A ∪ {x}, {(x, b) | b ∈ (A \ E}, cl1)

with cl1(b) = clF (b) for b ∈ A and cl1(x) = c. Then E ∪ {x} ∈ ad(F ∪H) since E ∪ {x} is
conflict-free and defends itself, thus cl(E) ∪ {c} ∈ ad i(F ∪H1). Also observe that there is
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no other admissible set D with D * E ∪{x} which contains x, thus cl(E)∪{x} is a subset-
maximal i-admissible set in F ∪H1. On the other hand, cl(E) ∪ {x} has no ad -realisation
in G ∪ H1 since no subset of E is admissible in G by minimality of E and x attacks every
remaining argument. Thus cl(E) ∪ {c} /∈ prh(G ∪ H1).

Observe that for naive semantics, this concludes the proof since by minimality of E, we
can always find a conflict-free set E such that there is no D ∈ cf (F ) ∩ cf (G) with D ( E.

In case of preferred semantics, we now assume that the assumption is not satisfied, i.e.,
there is D ∈ ad(F ) ∩ ad(G) with D ( E. There is some a ∈ E such that a /∈ D for
any D ∈ ad(F ) ∩ ad(G) with D ( E: Otherwise every argument a ∈ E is contained in
some admissible set D ( E, and thus

⋃
{D ∈ ad(G) ∩ ad(F ) | D ( E} = E, i.e., the

union of all admissible sets contained in E coincides with E, which implies E is admissible
in G, contradiction to the assumption. We consider the following construction: For fresh
arguments x, y and fresh claims c, d, let

H2 = (A ∪ {x, y}, {(a, y)} ∪ {(y, b) | b ∈ E} ∪ {(x, b) | b ∈ (A \ E)}, cl2)

with cl1(b) = clF (b) for b ∈ A, cl2(y) = d and cl2(x) = c. First observe that there is no
D ( E such that D ∈ ad(F ∪H2) (or D ∈ ad(G ∪H2) by the choice of a: y attacks every
argument b ∈ E and a is the only argument which defends E against y. Similar as above,
we conclude that cl(E) ∪ {c} ∈ prh(F ∪H2) since E is admissible in F ∪H2 and x attacks
every remaining argument; on the other hand, cl(E)∪ {c} /∈ prh(G ∪H2) since no subset D
of E is admissible in G.

In every case, we have found a witness H such that σh(F ∪H) 6= σh(G ∪ H).

4.4 cf -based h-stable Semantics

In this section we will introduce a novel characterizing kernel. Let us consider the so-called
cf -based h-stable semantics. It is not hard to see that outgoing attacks from self-attacking
arguments can be semantically neutral removed (apart from the self-attack itself) as such
an argument cannot be part of a cf -stbh-realization E, and moreover, it is not necessary
that E defends itself against such attacks.

While the removal of outgoing attacks from self-attacking arguments has been already
observed in the context of Dung AFs as integral part of many kernels (and defines the stable
kernel, cf. Definition 4.2), we observe a specific behavior regarding arguments with the same
claims: Coming back to our CAFs F ′ and G′ from Example 4.1, we recall that they yield
the same h-cf -stable claim-sets even after the argument d1 has been added. The reason is
that the direction of the attack between the arguments a1 and a2 is irrelevant since both
arguments possess the same claim a. Thus it suffices to include one of them in a h-cf -stable
claim-set in case not both of them are attacked.

Inspired by these observations, we introduce the novel cf -stable kernel for CAFs which
takes into account:

• remove all outgoing attacks (a, b) with a 6= b, if a is a self-attacking argument, and

• add attacks between different arguments a and b, if both carry the same claim.
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Definition 4.19. For a CAF F = (A,R, cl), we define the cf -stable kernel Fcsk =
(A,Rcsk, cl) with

Rcsk = R ∪ {(a, b) | a 6= b, (a, a) ∈ R ∨ (cl(a) = cl(b) ∧ {(b, a), (b, b)} ∩R 6= ∅)}.

We denote the underlying AF (A,Rcsk) by F csk.

Remark 4.20. The cf -stable kernel can be seen as a combination of the stable and naive
kernel for AFs. The claim-independent part stems from the stable kernel and the case
where two arguments have the same claim relates to the naive kernel. In a nutshell, it is
save to introduce an attack between different arguments a and b if a is self-attacking without
changing stable semantics. This is because attacks of this form neither interfere with the
conflict-free extensions of an AF nor change the range of a conflict-free set. In case two
arguments have the same claim, it is irrelevant which of these arguments is included in an
extension. It is thus save to introduce attacks between two arguments in case their union
is conflicting.

Example 4.21. Consider again our previous CAF F . Below we depict the stable kernel
Fsk, the naive kernel Fnk, and the newly introduced cf -stable kernel Fcsk:

Fsk:

a1

a

b1

b

c1

c

a2a c2

c
Fnk:

a1

a

b1

b

c1

c

a2a c2

c
Fcsk:

a1

a

b1

b

c1

c

a2a c2

c

In what follows, we will prove that the cf -kernel characterizes strong equivalence for
hybrid cf -stable and stage semantics. For this, we will first show that (i) a CAF admits
the same h-cf -stable (h-stage) claim-sets as its cf -stable kernel and (ii) syntactical identity
of the kernels implies that the kernels coincide under any possible expansion.

Lemma 4.22. For any CAF F and any semantics ρ ∈ {cf -stbh, stgh}, ρ(F) = ρ(Fcsk).

Proof. We show (a) cf (F ) = cf (F csk) and (b) for all E ∈ cf (F ), E ∗F = E ∗Fcsk .

To show (a), first observe that cf (F csk) ⊆ cf (F ) since no new attacks between two
unconflicting arguments are introduced. Moreover, we remove only attacks (a, b) where
either a or b is self-attacking, thus we obtain cf (F ) ⊆ cf (F csk).

To show (b), let E ∈ cf (F ). It holds that E ∗F ⊆ E ∗Fcsk . Now, let c ∈ E ∗Fcsk and assume

c /∈ E ∗F , i.e., there is b ∈ A with cl(b) = c which is not attacked by E in F but there is
a ∈ E such that (a, b) ∈ Rcsk. Hence either (a, a) ∈ R or cl(a) = cl(b) and (b, a) ∈ R or
(b, b) ∈ R, contradiction to E being conflict-free in F csk.

Next, we show that syntactical identity of cf -stable kernels of two CAFs F and G implies
that the kernels of F ∪H and G ∪ H coincide for any compatible H.

Lemma 4.23. For any two compatible CAFs F and G, Fcsk = Gcsk implies (F ∪H)csk =
(G ∪ H)csk for any CAF H compatible with F and G.
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Proof. First observe that (i) F ∪H ⊆ Fcsk ∪Hcsk ⊆ (F ∪H)csk holds for every two CAFs
F and H. Moreover, (ii) Fcsk = Gcsk implies that F , G contain the same self-attacks by
definition of the cf -stable kernel.

Now, suppose Fcsk = Gcsk and let (a, b) ∈ (F ∪H)csk. We show that (a, b) ∈ (G ∪H)csk

(the other direction is analogous): In case (a, b) ∈ F ∪ H, we have (a, b) ∈ Fcsk ∪ Hcsk by
(i). Since Fcsk ∪Hcsk = Gcsk ∪Hcsk we conclude (a, b) ∈ (G ∪H)csk. In case (a, b) /∈ F ∪H,
either (a, a) ∈ F∪H or cl(a) = cl(b) and {(b, b), (b, a)}∩(F∪H) 6= ∅. In case (a, a) ∈ F∪H
((b, b) ∈ F ∪ H), we are done since (a, a) ∈ G ∪ H ((b, b) ∈ G ∪ H) by (ii). Now, suppose
cl(a) = cl(b) and (b, a) ∈ F∪H, then (b, a) ∈ Fcsk∪Hcsk by (i), thus also (b, a) ∈ Gcsk∪Hcsk
by assumption Fcsk = Gcsk. In case (b, a) ∈ G ∪H, we get (a, b) ∈ (G ∪ H)csk; else we have
cl(a) = cl(b) and {(a, a), (b, b), (a, b)} ∩ (G ∪ H) 6= ∅. By definition of the cf -stable kernel
we obtain (a, b) ∈ (G ∪ H)csk.

We are now ready to prove our first main result stating that two CAFs F and G are
strongly equivalent to each other w.r.t. h-cf -stable and h-stage semantics if and only if their
h-stable kernels coincide. Let us sketch the idea.

First note that we obtain the ‘if’-direction from Lemma 4.22 and 4.23: indeed, in case
Fcsk = Gcsk holds for two compatible CAFs F and G, it holds that (F ∪H)csk = (G ∪H)csk

for any compatible CAF H by Lemma 4.23. From Lemma 4.22, we infer ρ(F ∪ H) =
ρ((F ∪H)csk) as well as ρ((G ∪ H)csk) = ρ(G ∪ H), hence we obtain ρ(F ∪H) = ρ(G ∪ H).

For the ‘only if’-direction, we will assume that the kernels disagree. By Lemma 4.7
and 4.8, it holds that F and G have the same arguments and in particular the same self-
attackers. It thus remains to provide counter-examples for the case that the kernels of F
and G disagree on an attack (a, b) for a 6= b. Figure 2 illustrates the counter-example for
the case cl(a) = cl(b) (case (b) in the proof of Theorem 4.24).

Theorem 4.24. For any two compatible CAFs F and G,

Fcsk = Gcsk iff F ≡ρs G for ρ ∈ {cf -stbh, stgh}.

Proof. We obtain Fcsk = Gcsk implies F ≡ρs G from Lemma 4.22 and 4.23 as outlined
above. It remains to prove the other direction. To do so, we suppose Fcsk 6= Gcsk. By
Lemma 4.22 we may assume ρ(Fcsk) = ρ(Gcsk); and AF = AG(= A) by Lemma 4.7. Thus it
holds that RFcsk 6= RGcsk . W.l.o.g., let (a, b) ∈ RFcsk \RGcsk ; we have a 6= b by Lemma 4.8.
Moreover, (a, a) /∈ RcskG (and thus, (a, a) /∈ RcskF ), otherwise, (a, b) ∈ RGcsk by definition.
We distinguish the following cases: (a) cl(a) 6= cl(b), and (b) cl(a) = cl(b).

(a) In case cl(a) 6= cl(b), consider two newly introduced arguments x, y and fresh claims
c, d. We consider the AF H1 = (A ∪ {x, y}, R1, cl1) where

R1 = {(x, y)} ∪ {(y, h) | h ∈ A ∪ {x}} ∪ {(x, h) | h ∈ A \ {a, b}},

and the function cl1 is given as follows: cl1(x) = c, cl1(y) = d, and the other claims
coincide with the given ones, i.e. cl1(h) = clF (h) if h ∈ A. First observe that {d} is
i-stable in both Fcsk ∪H1 and Gcsk ∪H1 and thus guarantees that ρ(Fcsk ∪H1) and
ρ(Gcsk ∪ H1) are non-empty. It can be checked that S = {cl(a), c} is h-cf -stable and
h-stage in Fcsk∪H1 (since {a, x} is stable); on the other hand, S /∈ ρ(Gcsk∪H1) since
b is not defeated by {a, x}. However, this is our only candidate since S has no other
cf -realization in Gcsk ∪H1.
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Fcsk∪H:

au o1 v

o2 wb u

x

c

y

d

z

e
Gcsk∪H:

au o1 v

o2 wb u

x

c

y

d

z

e

Figure 2: Counter-example for the case (a, b) ∈ RFcsk \ RGcsk (case (b) in the proof of
Theorem 4.24). New arguments introduced by H are {x, y, z} (in red), new attacks are
dashed (and red). The claim-set {u} is h-cf -stable (h-stage) in Gcsk∪H (since the set {a, b}
is stable in the underlying AF) but not in Fcsk ∪H.

(b) Now consider the case cl(a) = cl(b) and observe that (a, a), (b, b), (b, a) /∈ RcskG
(otherwise (a, b) ∈ RGcsk). Since F and G contain the same self-attacks, we fur-
thermore have (a, a), (b, b) /∈ RFcsk . Having established this situation let us con-
struct H2 as follows: For fresh arguments x, y, z and fresh claims c, d, e, we consider
H2 = (A ∪ {x, y, z}, R2, cl2) where

R2 = {(a, h) | h ∈ (A ∪ {x}) \ {a, b}} ∪ {(x, x), (b, y), (y, y), (z, b), (b, z), (z, y)}

and as before we let cl2(h) = clF (h) for h ∈ A; for the fresh arguments let cl2(x) = c,
cl2(y) = d, as well as cl2(z) = e. It can be checked that each CAF admits a stable
extension; thus it suffices to show that the h-cf -stable claim-sets disagree. First
observe that we now have {cl2(a)} ∈ ρ(Gcsk ∪ H2) since {a, b} is a stable extension
in Gcsk ∪H2. On the other hand, we have that {cl2(a)} is neither cf -stbh-realizable
nor stgh-realizable in Fcsk ∪H2. Figure 2 illustrates the construction.

In every case, we have found some H showing ρ(Fcsk ∪H) 6= ρ(Gcsk ∪H). By Lemma 4.22,
we get ρ(F ∪H) = ρ((F ∪H)csk) = ρ(Fcsk ∪H) 6= ρ(Gcsk ∪H) = ρ((G ∪H)csk) = ρ(G ∪H).
Thus it holds that F 6≡sρ G.

4.5 Strong Equivalence for Well-formed CAFs

We end this section with a brief discussion on strong equivalence for well-formed CAFs, i.e.
the two input CAFs F and G are well-formed but no further restriction is imposed on the
expansion H. Recall that F is well-formed if a+

F = b+F for all a, b ∈ A with cl(a) = cl(b).
Although the variants of stable and preferred semantics coincide for well-formed CAFs,

we observe that this is in general not the case when investigating strong equivalence.

Example 4.25. Consider the following two well-formed CAFs F and G depicted below:

F : a1

a

a2

a

b1 b G: a1

a

a2

a

b1 b

The set {a, b} is stable in both CAFs; also, Fsk = G = Gsk hence F ≡stbi
s G by Theorem 4.10.

However, if we add a novel argument x with claim a that attacks a1, we have that {a, b} is
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h-ad -stable in the expansion of F (witnessed by {x, b1}) but {a, b} is not even admissible
in G ∪ {x} (we already used this construction in the proof of Theorem 4.17).

Interestingly, we observe a close correspondence of i-stable and h-cf -stable semantics.

Proposition 4.26. F csk = Gcsk iff F sk = Gsk for every two well-formed CAFs F , G.

Proof. First note that, for each well-formed CAF, the set {a, b} with cl(a) = cl(b) is con-
flicting iff (a, a) ∈ R or (b, b) ∈ R. By Lemma 4.7 and 4.8, F and G have the same
(self-attacking) arguments. Hence (a, b) ∈ RF iff (b, b) ∈ RF iff (b, b) ∈ RG iff (a, b) ∈ RG
for all a, b ∈ ACF with cl(a) = cl(b). Hence if F and G agree on their cf -stable kernels
then the restriction to arguments with the same claims yields identical graphs. Since the
stable and the cf -stable kernel both delete the same attacks between arguments not having
the same claim, the statement follows.

It follows that two well-formed CAFs are strongly equivalent w.r.t. inherited stable
semantics iff they are strongly equivalent w.r.t. h-cf -stable semantics.

Corollary 4.27. F ≡stbi
s G iff F ≡cf -stbh

s G for every two well-formed CAFs F , G.

4.6 Summary

In this section, we have established strong equivalence characterizations for all CAF seman-
tics that have been considered in the literature so far. We have shown that most of the
semantics can be characterized by known kernels. We present a novel kernel to characterize
strong equivalence for h-cf -stable and h-stage semantics.

Our results can be summarized as follows:

Theorem 4.28. For any two CAFs F and G,

F ≡ρs G iff Fsk = Gsk for ρ ∈ {stbi, stg i} (Thm 4.10)

F ≡ρs G iff Fcsk = Gcsk for σ ∈ {cf -stbh, stgh} (Thm 4.24)

F ≡ρs G iff Fak = Gak for σ ∈ {ad i, pr i, ss i, prh, ad -stbh, ssh} (Thms 4.10, 4.17, 4.18)

F ≡coi
s G iff Fck = Gck (Thm 4.10)

F ≡gri
s G iff Fgk = Ggk (Thm 4.10)

F ≡ρs G iff Fnk = Gnk for σ ∈ {cfi,nai,nah} (Thms 4.10, 4.18)

For well-formed CAFs, we additionally have shown that the stable and the cf -stable
kernel coincide (cf. Proposition 4.26). We obtain the following results for well-formed CAFs:

Theorem 4.29. For any two CAFs F and G,

F ≡ρs G iff Fsk = Gsk for ρ ∈ {stbi, stg i, cf -stbh, stgh}
F ≡ρs G iff Fak = Gak for σ ∈ {ad i, pr i, ss i, prh, ad -stbh, ssh}
F ≡coi

s G iff Fck = Gck

F ≡gri
s G iff Fgk = Ggk

F ≡ρs G iff Fnk = Gnk for σ ∈ {cfi,nai,nah}

915



Baumann, Rapberger, & Ulbricht

5. Renaming and Equivalence

The equivalence notions we investigated so far were operating on the given arguments
together with their claims. However, as we already mentioned in the introduction, a key
motivation behind CAFs is the investigation of claim-based reasoning. It therefore makes
sense to consider an equivalence notion which abstracts from the underlying arguments
and thus focuses on the claims and their relationships only. Let us consider the following
illustrative example.

Example 5.1. Assume we are given two CAFs F and G (cf. Example 3.2) which both stem
from instantiating the same knowledge base using different argument naming schemes – the
CAF F relates argument names with the corresponding claim (e.g., arguments with claim
a are named ai) while G uses a consecutive numbering for all arguments:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

x1

a

x2

b

x3

c

x4

a

x5

c

It is evident that F and G are ordinary equivalent w.r.t. all considered semantics despite
the mismatch in argument names. However, when we consider equivalence in a dynamic
setting, we observe that different argument naming patterns can cause undesired effects.
To illustrate this let us suppose we are given H in a way that a novel argument e1 with
claim e is given which attacks x1 and x4:

F ∪H:

a1

a

b1

b

c1

c

a2

a

c2

c

e1

e

x4

a
x1

a

G ∪ H:

x1

a

x2

b

x3

c

e1

e

x4

a

x5

c

Evidently, the structure of F ∪H and G ∪ H do not match (although this was the case for
F and G). This has several issues: First, from an intuitive point of view, it does not make
much sense to disrupt the similarity between F and G that harshly; second, the modified
F ∪H and G ∪H do not correspond to the same modification of the underlying knowledge
base anymore (hence the disruption); third, CAFs are designed to reason with the claims
and not the underlying arguments and thus, if F and G agree on the interaction of the
claims (as they do), our expansion notion should preserve this property.

The technical problem revealed by this example is that F and G are not considered
strongly equivalent: Indeed, a is accepted in F ∪ H, but not in G ∪ H. The goal of this
section is to overcome this issue and tailor our strong equivalence notion suitably for claim-
based reasoning.

5.1 Basic Notions

As the above example suggests, the usual notion of strong equivalence does not handle
situations where we are interested in claims only very well. Preferably, we would like to
have a situation where argument names are ignored.
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Example 5.2 (Example 5.1 ctd.). Let us consider our running example in which F and
CG both stem from instantiating the same knowledge base. We want to abstract away from
the names of the arguments:

F :

a b c

a c

G:

a b c

a c

Since we formally work with CAFs, we require some technical machinery in order to take
arguments names out of the equation. Instead of removing them, we allow for changing
argument names arbitrarily. Formally, this idea yields the notion of a renaming.

Definition 5.3. For a CAF F and a set A′ of arguments we call a bijective mapping
f : AF → A′ a renaming for F . By f(F) we denote the induced CAF (Af , Rf , clf ) where

• Af = A′,

• Rf = {(a′, b′) ∈ A′ ×A′ |
(
f−1(a′), f−1(b′)

)
∈ RF}

• clf (a′) = clF
(
f−1(a′)

)
Due to the required bijection the latter both conditions can be reformulated in a more

eye-catching way as

• (a, b) ∈ RF iff (f(a), f(b)) ∈ Rf and

• clF (a) = clf (f(a)).

Example 5.4. Consider again our previous CAF F . Let us assume we are given A′ =
{x1, x2, y1, z1, z2}. The renaming f with ai 7→ xi, b1 7→ y1 and ci 7→ zi induces the following
CAF f(F):

F :

a1

a

b1

b

c1

c

a2

a

c2

c

f(F):

x1

a

y1

b

z1

c

x2

a

z2

c

We observe that f does not change the structure of F on the claim-level. In particular, we
observe that ρ(F) = ρ(f(F)) for all considered semantics ρ.

The last observation we made was no coincidence in the specific situation. More pre-
cisely, for the semantics considered in this paper, renaming does not change the meaning of
our CAF.

Proposition 5.5. For any CAF F and any renaming f of it, we have: ρ(F) = ρ(f(F))
for any semantics ρ considered in this paper.
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For convenience, we call this property renaming robust, i.e. ρ is renaming robust if
for each CAF F and any renaming f of F we have that ρ(F) = ρ(f(F)). With these
observations in mind, we can now proceed as follows when comparing two CAFs: We
synchronize the argument names in order to make the CAFs better comparable. Due to
Proposition 5.5 we can be certain that this procedure does not alter the meaning of the
CAFs. The resulting (renamed) CAFs can then be checked for (strong) equivalence.

Example 5.6. Recall the CAFs F and G:

F :

a1

a

b1

b

c1

c

a2

a

c2

c

G:

x1

a

x2

b

x3

c

x4

a

x5

c

Indeed, when applying the renaming f with a1 7→ x1, a2 7→ x4, b1 7→ x2, c1 7→ x3, c2 7→ x5

we get two identical CAFs. It is therefore easy to see that f(F) and G are (strongly)
equivalent.

This more desirable notion is formalized in the following definition of equivalence up to
renaming.

Definition 5.7. Two CAFs F and G are ordinary equivalent up to renaming for semantics ρ,
in symbols F ≡ρor G, iff there are renamings f and g for F and G, s.t. f(F) ≡ρo g(G).

So, informally speaking, Definition 5.7 requires that F and G are equivalent, at least
after the underlying arguments are relabeled in a suitable way. However, in Proposition 5.5
we have actually already established that this adjustment is superfluous for our semantics.
Consequently, we infer the following result.

Proposition 5.8. For two CAFs F and G, and any considered semantics ρ we have:
F ≡ρor G iff F ≡ρo G.

5.2 Strong Equivalence up to Renaming

Now we utilize the notion of a renaming in order to define an appropriated notion of
strong equivalence. We thereby proceed as in Definition 5.7. This means, we first allow for
renaming the given CAFs and then, secondly, using the modified versions, we check for the
desired property.

Definition 5.9. Two CAFs F and G are strongly equivalent up to renaming for semantics ρ,
in symbols F ≡ρsr G, iff there are renamings f and g for F and G, s.t. f(F) ≡ρs g(G).

Replacing the strong equivalence requirement with its definition yields the following two
conditions:

1. f(F) and g(G) are compatible with each other; and

2. ρ(f(F)∪H) = ρ(g(G)∪H) for each CAF H which is compatible with f(F) and g(G).

Let us reconsider our motivating Example 5.1.
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Example 5.10. Recall the CAFs F and G, the renaming f with f(a1) = x1, f(b1) = x2,
f(c1)=x3, f(a2)=x4, and f(c2)=x5 and let g = id.

f(F):

x1

a

x2

b

x3

c

x4

a

x5

c

G:

x1

a

x2

b

x3

c

x4

a

x5

c

Augmenting both f(F) and G with the CAF H considered above, we obtain the following
desired situation:

f(F)∪H:

x1

a

x2

b

x3

c

e1

e

x4

a

x5

c

G ∪ H:

x1

a

x2

b

x3

c

e1

e

x4

a

x5

c

Notice that Proposition 5.5 ensures that our renaming for F only prevents H from intro-
ducing novel arguments, while preserving the semantics of F .

Please note that strong equivalence up to renaming faithfully generalizes strong equiv-
alence as f = g = id can be chosen. This inside is expressed in the following proposition.

Proposition 5.11. For any two CAFs F and G and any possible semantics ρ we have:
If F ≡ρs G, then F ≡ρsr G .

Moreover, as expected, strong equivalence up to renaming is a stricter notion than
ordinary equivalence up to renaming.

Proposition 5.12. For any two CAFs F and G and any possible semantics ρ we have:
If F ≡ρs G, then F ≡ρor G .

Let us now show how to characterize strong equivalence up to renaming using our
kernels. Since this equivalence notion allows for changing the names of the arguments, we
expect our kernels to behave similarly. More specifically, we also need to consider renamed
versions of the CAFs before evaluating the kernels. However, checking strong equivalence
up to renaming will certainly require to take the structure of the CAFs into consideration.
We thus define what we mean by a CAF isomorphism.

Definition 5.13. Two CAFs F and G are isomorphic to each other iff there is a bijection
f : AF → AG such that for all a, b ∈ AF , clF (a) = clG(f(a)) and (f(a), f(b)) ∈ RG iff
(a, b) ∈ RF ; f is called isomorphism between F and G.

CAFs F and f(F) from Example 5.4 are isomorphic. The given renaming f naturally is
a CAF-isomorphism between F and f(F). More generally, it is easy to see that renamings
characterize all conceivable isomorphism.

Remark 5.14. Let F and G be two CAFs. Then F and G are isomorphic to each other iff
there is a renaming f for F s.t. f(F) = G.
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As it turns out, we can decide F ≡ρsr G in the following way: We choose the appropriate
kernel for ρ, compute the kernels of F as well as G, and then check whether those are
isomorphic to each other. To this end we require the following auxiliary result stating that
computing the kernel and applying an isomorphism commutes.

Proposition 5.15. Let F be a CAF and f be a renaming for F . The for any kernel k(ρ)
considered in this paper we have f(F)k(ρ) = f(Fk(ρ)).

Proof. The following statements hold trivially:

• a is a self-attacker in F iff a is a self-attacker in f(F);

• a attacks b in F iff f(a) attacks f(b) in f(F);

• cl(a) = c in F iff cl(f(a)) = c in f(F).

However, these properties characterize all kernels considered in this paper. Thus, (a, b) is
an attack in Fρ(k) iff (f(a), f(b)) is an attack in f(F)ρ(k). By definition of a renaming, (a, b)
is an attack in Fρ(k) iff (f(a), f(b)) is an attack in f(Fρ(k)). Hence the following statements
are equivalent:

• (f(a), f(b)) is an attack in f(Fρ(k)),

• (a, b) is an attack in Fρ(k),

• (f(a), f(b)) is an attack in f(F)ρ(k).

Theorem 5.16. For any two CAFs F and G, and any semantics ρ under consideration,
F ≡ρsr G iff Fk(ρ) and Gk(ρ) are isomorphic.

Proof. (⇐) Let Fk(ρ) and Gk(ρ) be isomorphic, witnessed by the isomorphism f . We have
f(Fk(ρ)) = Gk(ρ); and hence by Proposition 5.15 we infer f(F)k(ρ) = Gk(ρ). By the results
from Section 4, f(F) and G are strongly equivalent. Hence F ≡ρsr G.

(⇒) Now assume the kernels Fk(ρ) and Gk(ρ) are not isomorphic, i.e. for any two
renamings f and g, f(Fk(ρ)) 6= g(Gk(ρ)). Hence (again by Proposition 5.15) we find
f(F)k(ρ) 6= g(G)k(ρ) for any such f and g. Again by the results from Section 4 we find a suit-
able counter-example H for each conceivable pair f and g of renamings. Thus F 6≡ρsr G.

Example 5.17. For our CAFs F and G from Example 5.1 we see that their kernels are
isomorphic. Hence F and G are strongly equivalent up to renaming w.r.t. all semantics
considered in this paper.

5.3 Alternative Definitions

Our Definition 5.9 allowed for renaming both F and G and did impose any restriction on the
co-domain of the respective renamings f and g. In this section we discuss useful variations.

First, we show that renaming either of the two CAFs is already sufficient.

Proposition 5.18. For two CAFs F and G and a semantics ρ, it holds that F ≡ρsr G iff
f(F) ≡ρs G for some renaming f : AF → A.
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Proof. The (⇐) direction is obtained by setting g = id.
(⇒) Take suitable renamings f and g. By definition (and the characterizations of

Section 4), the kernels of f(F) and g(G) coincide. Therefore, the kernels of g−1(f(F)) and
G coincide due to Proposition 5.15.

We can further refine the strong renaming equivalence notion. As the following propo-
sition formalizes, the renaming of f must be chosen in a way that the arguments of f(F)
and G coincide.

Proposition 5.19. Given two CAFs F and G and a renaming f : AF → A for F . Let ρ
be any semantics under consideration. If ρ(f(F) ∪ H) = ρ(G ∪ H) for each CAF H which
is compatible with f(F) and G, then A = AG.

Proof. We assume that f(F) and G are strongly equivalent w.r.t. the semantics ρ. By
Lemma 4.7, we obtain f(AF ) = A = AG .

Consequently, the choice of f can be further restricted.

Corollary 5.20. For two CAFs F and G and a semantics ρ, it holds that F ≡ρsr G iff there
is a renaming f : AF → AG for F s.t. f(F) ≡ρs G.

6. Computational Complexity

In this section we examine the computational complexity of deciding equivalence between
two CAFs F and G for every equivalence notion which has been established in this paper.
We assume the reader to be familiar with the polynomial hierarchy (Papadimitriou, 1994).
Moreover, by QSAT∃n (QSAT∀n) we denote the generic ΣP

n-complete (ΠP
n-complete) problem,

i.e. checking validity of a corresponding QBF.
Our results reveal that ordinary equivalence can be computationally hard, up to the third

level of the polynomial hierarchy for both variants of semi-stable and stage semantics as well
as for i-preferred semantics. For the remaining semantics under consideration, the problem
is ΠP

2 -complete; the only exception is i-grounded semantics for which deciding ordinary
equivalence is in P. Moreover, we show that deciding strong equivalence up to renaming
extends the list of problems which lie in NP but are not known to be NP-complete.

6.1 Ordinary Equivalence

In this section, we discuss our complexity results for deciding ordinary equivalence for
CAFs. As we will see, deciding whether two CAFs admit the same claim-extensions can
be computationally hard, ranging up to the third level of the polynomial hierarchy. For
well-formed CAFs, the problem turns out to be easier: deciding ordinary equivalence drops
one level in the polynomial hierarchy for all (except grounded) semantics.

General CAFs. First we present our complexity results for ordinary equivalence regard-
ing general CAFs. We formulate the following decision problem:

Ver-OEρ

Input: Two CAFs F and G.
Output: true iff F and G are ordinary equivalent w.r.t. ρ.
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The goal of this subsection is to formally prove the following complexity bounds for the
various semantics.

Theorem 6.1. Ver-OEρ is

• in P for ρ=gri;

• ΠP
2 -complete for ρ ∈ {cfi, ad i, coi,nai, prh,nah, stbi, cf -stbh, ad -stbh, }; and

• ΠP
3 -complete for ρ∈{pri, ss i, stg i, stgh, ssh}.

Let us note that deciding Ver-OEgri is in P since computing the unique grounded
extensions of F and G and comparing the claims can be done in polynomial time (Dvořák
& Woltran, 2020). In the following, we will discuss the remaining results from Theorem 6.1
in more detail. To begin with, we present membership proofs.

Proposition 6.2. The problem Ver-OEρ is

• in ΠP
2 for ρ ∈ {cfi, ad i, coi,nai, prh,nah, stbi, cf -stbh, ad -stbh, }; and

• in ΠP
3 for ρ∈{pr i, ss i, stg i, stgh, ssh}.

Proof. Membership proofs for Ver-OEρ, ρ 6= gri are by standard guess-and-check proce-
dures for the complementary problems: Guess a set of claims S and (w.l.o.g.) check whether
it holds that S ∈ ρ(F) as well as S /∈ ρ(G).

For the semantics σi ∈ {cfi, ad i, coi,nai, stbi}, we proceed as follows:

• guess a set S of claims and a set E of arguments in F (∃-quantifier);

• verify that S = cl(E) and E ∈ σ(F) (polynomial);

• check for each set E′ of arguments in G that E′ it is not the case that S = cl(E′) and
E′ ∈ σ(G) (∀-quantifier);

this yields a ΣP
2 -algorithm for the complementary problem.

For the semantics ρ ∈ {prh,nah} we first recall that verification for h-preferred and
h-naive semantics is in DP

1 (Dvořák, Greßler, Rapberger, & Woltran, 2021). Thus we

• guess a set S of claims (∃-quantifier);

• require two DP
1 -oracle calls to check S ∈ ρ(F) and S /∈ ρ(G)

yielding ΠP
3 -procedures for the decision problem Ver-OEρ.

For the semantics ρ ∈ {cf -stbh, ad -stbh}, we proceed as follows:

• guess a set S of claims and a set E of arguments in F (∃-quantifier);

• verify that S = cl(E) and E ∈ ad(F) resp. E ∈ cf (F) attacks all claims outside S
(polynomial);

• check for each set E′ of arguments in G that E′ does not satisfy the above conditions
(∀-quantifier).
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Again, this is a ΣP
2 -algorithm for the complementary problem.

For the semantics ρ ∈ {pri, ss i, stg i, ssh, stgh}, we

• guess a set S of claims (∃-quantifier);

• require two ΣP
2 -oracle calls to check S ∈ ρ(F) and S /∈ ρ(G)

yielding ΠP
3 -procedures for the decision problem Ver-OEρ.

To show hardness of Ver-OEρ for ρ 6= gri, we present reductions from QSAT∀2 or
QSAT∃3 , respectively. The overall idea is to construct two CAFs F and G where ρ(F)
depends on the particular instance of the source problem while G serves as controlling
entity. Let us outline the idea for our ΠP

2 -hardness proofs.

For a given instance Ψ = ∀Y ∃Zϕ of QSAT∀2 , we construct two CAFs F and G as follows:

• First, the claim-extensions (under some given semantics ρ) of both CAFs F and G
should be of the form Y ′ ∪ Ȳ ′ ∪ Z for some subset Y ′ ⊆ Y and its complement
Ȳ ′ = {ȳ | y /∈ Y ′} (note that ȳ represents ¬y, as usual).

• Second, we construct F such that the models of ϕ determine the claim-extensions of
F . That is, given an arbitrary subset Y ′ ⊆ Y and its complement Ȳ ′, we want that
Y ′ ∪ Ȳ ′ ∪ Z is a claim-extension of F if and only if there exists a subset Z ′ ⊆ Z such
that Y ′ ∪ Z ′ is a model of ϕ.

Then it holds that Y ′ ∪ Ȳ ′ ∪ Z is a claim-extension of F for all Y ′ ⊆ Y if and only if
the formula Ψ is valid.

• Finally, we construct our controlling CAF G. This CAF is independent of the validity
of Ψ. It realizes all claim-extensions Y ′ ∪ Ȳ ′ ∪ Z for each subset Y ′ ⊆ Y by default.

Thus it holds that F and G yield the same claim-extensions if and only if Ψ is valid.

Below, we present the ΠP
2 -hardness proof for inherited and both variants of hybrid stable

semantics. The hardness proofs for the remaining semantics for which verifying ordinary
equivalence is ΠP

2 -complete proceed in a similar way; they can be found in the appendix.

Proposition 6.3. Deciding Ver-OEρ is ΠP
2 -hard for ρ ∈ {stbi, cf -stbh, ad -stbh}.

Proof. Let ρ = stbi and let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT∀2 where ϕ is given
by a set of clauses C over atoms in V = Y ∪ Z. We define two CAFs F = (AF , RF , clF ),
G = (AG , RG , id) as follows: For F , we let

AF = V ∪ V̄ ∪ C with V̄ = {v̄ | v ∈ V };
RF = {(v, cl) | cl ∈ C, v ∈ cl} ∪ {(cl, cl) | cl ∈ C}∪

{(v̄, cl) | cl ∈ C,¬v ∈ cl} ∪ {(v, v̄), (v̄, v) | v ∈ V },

with claim-function clF (z) = clF (z̄) = z for z ∈ Z and clF (a) = a otherwise. We note that
this reduction has been introduced byDvořák et al. (2023); it is a variant of the standard
translation for AFs (Dvořák & Dunne, 2018, Reduction 3.6).
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cl1cl1 cl2cl2 cl3 cl3
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ȳ1

ȳ1
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z1

z̄1

z1

z2

z2

z̄2

z2

y1

y1

ȳ1

ȳ1

y2

y2

ȳ2

ȳ2

z1

z1

z2

z2

Figure 3: CAFs F (left) and G (right) illustrating the reduction from the Proof of
Proposition 6.3 for the formula Ψ = ∀Y ∃Zϕ(Y, Z) where ϕ(Y,Z) is given by the clauses
{{y1, z1, z2}, {z̄1, z̄2, ȳ2)}, {ȳ1, z̄1, y2}}.

The CAF G is given by

AG = Y ∪ Ȳ ∪ Z;

RG = {(y, ȳ), (ȳ, y) | y ∈ Y }

and clG = id, i.e., clG(x) = x for all x ∈ AG . An example of the two CAFs is given in
Figure 3. We observe that stbi(G) = {Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z | Y ′ ⊆ Y }.

We show that Ψ is valid iff stbi(F) = stbi(G).

First assume Ψ is valid, let Y ′ ⊆ Y and consider a model M = Y ′ ∪ Z ′ of ϕ. Then the
set of arguments E = M ∪ {v̄ | v /∈ M} is stable in F : We observe that E is conflict-free;
moreover, E attacks every cl ∈ C since every clause cl is satisfied by M : In case there is
v ∈M with v ∈ cl we have v ∈ E with (v, cl) ∈ RF ; in case there is ¬v ∈M we have v̄ ∈ E
with (v̄, cl) ∈ RF . Since clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z we have shown that every such
claim-set is contained in stbi(F); stbi(F) = stbi(G) thus follows.

Now assume stbi(F) = stbi(G). Let Y ′ ⊆ Y , let E be a stbi-realization of Y ′ ∪ {ȳ | y /∈
Y ′} ∪ Z and let Z ′ = E ∩ Z. We show that M = Y ′ ∪ Z ′ is a model of ϕ: Consider an
arbitrary clause cl ∈ C. By assumption that E is stable in F there is some a ∈ E such that
(a, cl) ∈ RF . In case a = v for some atom v ∈ V we have v ∈ cl; in this case v ∈ M and
thus cl is satisfied. In case a = v̄ for some atom v we have ¬v ∈ cl; in this case v /∈M since
v̄ ∈ E and thus cl is satisfied. We obtain that M is a model of ϕ. We have shown that for
any Y ′ ⊆ Y there is Z ′ ⊆ Z such that Y ′ ∪ Z ′ is a model of ϕ; i.e., Ψ is valid.

ΠP
2 -hardness of Ver-OEρ for ρ ∈ {cf -stbh, ad -stbh} follows since stbi(F) = cf -stbh(F) =

ad -stbh(F) and stbi(G) = cf -stbh(G) = ad -stbh(G).

Turning now to the ΠP
3 -hardness results, we slightly adapt our strategy. Similarly as for

our ΠP
2 -hardness proofs, we construct two CAFs F and G such that the claim-extensions

of F depend on the validity of an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT∃3 while the
claim-extensions of G are independent of Ψ. Now, our target is to construct F in a way
such that ρ(F) 6= ρ(G) iff Ψ is valid.

To show ΠP
3 -hardness of Ver-OEssi and Ver-OEstgi , we will make use of the following

reduction (Dvořák et al., 2021).

Reduction 6.4. Let Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) be an instance of QSAT ∃3 , where ϕ is given
by a set of clauses C over atoms in V = X∪Y ∪Z. Let V ′ = X∪Y and let x̄ denote ¬x.
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Figure 4: CAF F ((left) and CAF G (right) from the proof of Proposition 6.5 for the formula
∃X∀Y ∃Zϕ(X,Y, Z) with clauses {{z1, x, y}, {¬x,¬y,¬z2, y}, {¬z1, z2, y}}.

We can assume that there is y0 ∈ Y with y0 ∈ cl for all cl ∈ C (otherwise we can add such
a y0 without changing the validity of Ψ). Let F = (A,R, cl) be given by

A = V ∪ V̄ ∪ C ∪ {d1, d2, ϕ, ϕ̄} ∪ {dv, dv̄ | v∈V ′};
R = {(a, cl) |cl∈C, a∈cl, a∈V ∪V̄ }∪{(cl, ϕ) | cl∈C}∪

{(a, da), (da, da) | a∈V ′∪V̄ ′} ∪ {(di, dj) | i = 1, 2}
∪ {(v, v̄), (v̄, v) | v∈V } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ), (ϕ, d1)};

and cl(v) = cl(v̄) = v for v ∈ Y ∪ Z; cl(cli) = ϕ̄ for i ≤ n; cl(d1) = cl(d2) = d; and
cl(a) = a else.

Proposition 6.5. Deciding Ver-OEρ is ΠP
3 -hard, ρ ∈ {ss i, stg i}.

Proof. Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT∃3 , where ϕ is given by a set
of clauses C over atoms in V = X ∪ Y ∪ Z. We will first discuss the case for i-semi-stable
semantics.

For the CAF F , we apply Reduction 6.4. The reduction has been used to show ΠP
3 -

hardness of the concurrence problem for semi-stable (and stage) semantics (Dvořák et al.,
2021): Given a CAF F , does it hold that ss i(F) = ssh(F) (resp. stg i(F) = stgh(F))?

Dvořák et al. (2021) showed that Ψ is not valid iff

ss i(F) = ssh(F) = {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∪ Z ∪ {e} | X ′⊆X, e ∈ {ϕ, ϕ̄}}.

Hence it suffices to construct the CAF G in such a way that ss i(G) = ssh(F). Then Ψ is
not valid iff ss i(G) = ssh(F) = ss i(F).

We construct such a CAF G = (AG , RG , id) by setting

AG = X ∪ X̄ ∪ Y ∪ Z ∪ {ϕ, ϕ̄}, and

RG = {(x, x̄), (x̄, x) | x ∈ X} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)}.

Figure 4 provides an illustrative example of F and G. It is easy to see that G possesses
exactly the desired i-semi-stable claim-sets.
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This concludes the proof for i-semi-stable semantics. For i-stage semantics, we note
that ss i(F) = stg i(F) and ssh(F) = stgh(F) (Dvořák et al., 2021). Hence, ΠP

3 -hardness of
Ver-OEstgi follows from the additional observation that ss i(G) = stg i(G).

The ΠP
3 -hardness proofs for i-preferred, h-stage, and h-semi-stable semantics can be

found in the appendix.

Observe that the computational complexity results from Theorem 6.1 extend to ordinary
equivalence up to renaming by Proposition 5.8 for any semantics under consideration.

Well-formed CAFs. Let us now discuss ordinary equivalence for well-formed CAFs. By
Ver-OEwf

ρ we denote the problem restricted to well-formed CAFs, as follows:

Ver-OEwf
ρ

Input: Two well-formed CAFs F , G.
Output: true iff F , G are ordinary equivalent w.r.t. ρ.

In general, we observe that the computational complexity of deciding ordinary equiva-
lence drops one level in the polynomial hierarchy for all considered semantics (except for
grounded semantics) when considering well-formed CAFs only. Our results can be summa-
rized as follows.

Theorem 6.6. Ver-OEwf
ρ is

• in P for ρ=gri;

• coNP-complete for ρ ∈ {cfi, ad i, coi,nai,nah, stbi, cf -stbh, ad -stbh}; and

• ΠP
2 -complete for ρ∈{pr i, ss i, stg i, prh, stgh, ssh}.

First, we recall that all variants of stable semantics coincide for well-formed CAFs, i.e.,
stbi(F) = cf -stbh(F) = ad -stbh(F) for each well-formed CAF F , likewise, both preferred
variants coincide. Hence it suffices to establish the complexity of one of the variants.

Membership results are obtained in the same way as for general CAFs. To this end we
have to make two additional observations: First, we have fewer cases here because for well-
formed CAFs some of our semantics coincide. Second, for all semantics except grounded,
we go down one level in the polynomial hierarchy. This is due to the lower computational
complexity of the verification problem (Dvořák & Woltran, 2020; Dvořák & Dunne, 2018),
for example in case of stbi we get the following procedure:

• iterate over each set S of claims (∀-quantifier);

• verify that either S ∈ stbi(F) and S ∈ stbi(G) or S /∈ stbi(F) and S /∈ stbi(G)
(polynomial).

The other membership results follow analogously.

The idea for the hardness proof is similar to the general case: for an instance ϕ of SAT
(an instance Ψ = ∀Y ∃Zϕ(Y,Z) of QSAT∀2), we construct two CAFs F and G such that

• ρ(F) = ρ(G) iff ϕ is unsatisfiable for ρ ∈ {cfi, ad i, coi,nai,nah, stbi}; or
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• ρ(F) = ρ(G) iff Ψ is valid for ρ∈{pr i, ss i, stg i, stgh, ssh}, respectively.

For admissible, complete, and stable semantics, we can utilize coNP-hardness of a a related
decision problem which is a special case of deciding ordinary equivalence. The non-emptiness
problem (Dvořák & Dunne, 2018) is formulated as follows: given a CAF F , does there exist
an extension S ∈ ρ(F) such that S 6= ∅?

Since deciding non-emptiness of claim-extensions is a special case of deciding ordinary
equivalence we obtain coNP-hardness for admissible, complete, and stable semantics.

Proposition 6.7. Ver-OEwf
ρ is coNP-hard for ρ ∈ {ad i, coi, stbi}.

Proof. Let G be a CAF for which ρ(G) = {∅} holds (e.g., by setting G = (∅, ∅, ∅)). Then it
holds that F and G are ordinary equivalent to each other iff F has no non-empty ρ-extension.
Since deciding non-emptiness of an extension is coNP-complete for admissible, complete,
and stable semantics (Dvořák & Dunne, 2018), we obtain coNP-hardness of Ver-OEwf

ρ .

The remaining hardness proofs make use of (modified) constructions by Dvořák and
Woltran (2020), Dvořák et al. (2023), Kiesel and Rapberger (2021), and Dvořák and
Dunne (2018), they can be found in the appendix.

6.2 Strong Equivalence

Having established complexity results for ordinary equivalence it remains to discuss the
computational complexity of strong equivalence and its renaming version.

Ver-SEρ

Input: Two CAFs F , G.
Output: true iff F , G are strongly equivalent w.r.t. ρ.

Recall that in Section 4, we have shown that strong equivalence of two CAFs F and G
can be characterized via syntactic equivalence of their kernels. Since the computation and
comparison of the kernels of F and G can be done in polynomial time, we obtain tractability
of strong equivalence for every semantics under consideration.

Theorem 6.8. The problem Ver-SEρ can be solved in polynomial time for any semantics ρ
considered in this paper.

Finally, we consider strong equivalence up to renaming. An analogous decision problem
can be formulated as follows:

Ver-SERρ

Input: Two CAFs F , G.
Output: true iff F , G are strongly equivalent up to renaming w.r.t. ρ.

As outlined above, the computation of the kernels lies in P and is therefore negligible;
the complexity of verifying strong equivalence up to renaming thus stems entirely from
deciding whether two labelled graphs (i.e., the kernels of the given CAFs) are isomorphic.
As a consequence we obtain that the complexity of Ver-SERρ coincides with the complexity
of the well-known graph isomorphism problem.
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Theorem 6.9. The problem Ver-SERρ is exactly as hard as the graph isomorphism prob-
lem for any semantics ρ considered in this paper.

Proof. For a reduction of the graph isomorphism problem to Ver-SERρ, consider two
undirected, unlabelled graphs F = (V,E) and G = (V ′, E′). We define the CAFs F
and G by replacing each undirected edge by a symmetric one, moreover, each argument
is labelled with the same claim. Formally, F = (V, {(v, v′), (v′, v) | {v, v′} ∈ E}, cl) and
G = (V ′, {(v, v′), (v′, v) | {v, v′} ∈ E′}, cl) with cl(v) = c for a fixed claim c. Observe
that for any semantics ρ considered in this paper, the ρ-kernel of F (G) coincides with
F (G, respectively): the CAFs do not contain self-attacking arguments; moreover, each
conflict between two arguments with the same claim is already symmetric (i.e., (a, b) ∈ R
iff (b, a) ∈ R), thus no new attacks are introduced by computing the stbh-kernel. We obtain
that F is isomorphic to G iff F and G are isomorphic iff F and G are strongly equivalent
up to renaming w.r.t. ρ.

For the other direction, observe that CAF isomorphism corresponds to the labelled
variant of the graph isomorphism problem that is both edge- and label-preserving. We
reduce Ver-SERρ by setting F := Fk(ρ) and G := Gk(ρ) for two given CAFs F and G.

6.3 Well-Formed CAFs and Isomorphisms

In this subsection we will see that we can decide whether two well-formed CAFs are isomor-
phic in polynomial time. However, in order to lift this result to deciding strong equivalence
up to renaming, we have to be careful: For this, we need to decide whether the kernels are
isomorphic, but the kernel of a well-formed CAF is not necessarily well-formed itself. We
will first discuss the case of well-formed CAFs and then see how to transition the underlying
observations to comparing the kernels of well-formed CAFs.

In the following, we let

x− = {y ∈ A | (y, x) ∈ R},

i.e. x− is the set of arguments attacking x.

The high level idea for deciding whether two well-formed CAFs F and G are is isomorphic
is that we can utilize the claims of the arguments for our guidance. We map arguments x in
AF with some claim c to arguments y in AG with the same claim s.t. cl(x−) = cl(y−), i.e.
x and y have the same claim and are attacked by the same claims. Due to well-formedness,
this information suffices to render the two arguments equivalent.

Let us apply this approach to our running renaming example, with some adjustments
to obtain two well-formed CAFs.

Example 6.10. Let F and G be the following CAFs.

F :

a1

a

b1

b

c1

c

c2

c

G:

x1

a

x2

b

x3

c

x5

c

Let us start with a1 ∈ AF ; this argument is unattacked and has claim a: it can therefore
be mapped to x1 ∈ AG which has the same properties. We continue with b1, characterized
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by cl(b1) = b and cl(b−) = {a, c}. The counterpart to this argument is x2 ∈ AG . Regarding
the two arguments with claim c, we have cl(c−1 ) = {b} and cl(c−2 ) = {c} corresponding to
x3 and x5, respectively. Hence our isomorphism is given by

a1 7→ x1 b1 7→ x2 c1 7→ x3 c2 7→ x5,

corresponding to the way we depicted the two graphs.

The following theorem states that this procedure works for any two well-formed CAFs
F and G.

Theorem 6.11. Deciding whether two well formed CAFs F and G, are isomorphic is
tractable.

Proof. Consider the following algorithm: Check whether cl(A(F)) = cl(A(G)) and then for
each claim c occurring in F , check if |{x ∈ A(F) | cl(x) = c}| = |{y ∈ A(G) | cl(y) = c}|; if
not, stop. Otherwise for each claim c, proceed as follows:

1. chose some unmarked x ∈ A(F) with cl(x) = c, compute cl(x−);

2. find an unmarked y ∈ A(G) with cl(y) = c, and cl(y−) = cl(x−);

• if such y does not exist, stop;

• else mark x and y as mapped to each other and go to 1.

If the algorithm successfully maps each x with cl(x) = c to some y with cl(y) = c for each
claim c occurring in both CAFs, the mapping suggested by the algorithm is an isomorphism.
If not, then there is some claim c and some set C of claims s.t.

|{x ∈ A(F) | cl(x) = c, cl(x−) = C}| 6= |{y ∈ A(G) | cl(y) = c, cl(y−) = C}|,

i.e. no isomorphism exists.

The problem with Theorem 6.11 is however that in order to decide strong equivalence
of two well-formed CAFs, it does not suffice to construct an isomorphism between the two
(well-formed) CAFs. Rather, we need to decide whether the kernels are isomorphic to
each other. However, these frameworks are not necessarily well-formed anymore, hence we
cannot directly apply our algorithm.

For the kernels which remove attacks (i.e., for the stable, admissible, complete, and
grounded kernel), we can circumvent this issue simply by considering the well-formed com-
pletion of the kernels instead.

Definition 6.12. For a CAF F = (A,R, cl) we define the well-forming operator wf(F) =
(A,R∪R′, cl) whereR′ ⊆ A×A is⊆-minimal in {R′′ ⊆ A×A | (A,R∪R′′, cl) is well-formed}.
We call wf(F) the well-formed completion of F .

We observe that wf is a function.

Lemma 6.13. wf(F) is unique for every CAF F = (A,R, cl).
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Proof. Towards a contradiction, assume there are two sets of attacks R1, R2 ⊆ A × A,
R1 6= R2, such that (A,R∪R1, cl) and (A,R∪R2, cl) are both well-formed and ⊆-minimal in
{R′′ ⊆ A×A | (A,R∪R′′, cl) is well-formed}.Wlog, let (a, b) ∈ R1\R2. Then there is (c, b) ∈
R with cl(a) = cl(c) (otherwise, (A,R ∪ (R1 \ {(a, b)}), cl) is well-formed, contradiction to
⊆-minimality of R1). Therefore, (a, b) ∈ R2 as well (otherwise, (A,R ∪ R2, cl) is not well-
formed).

Moreover, when applying the well-forming operator to the kernel of a well-formed CAF,
we obtain a subgraph of the original CAF (except for the naive kernel for obvious reasons).
In general, we obtain the following subset-relation between the well-forming operator and
most of the kernels:

Lemma 6.14. Let F be a well-formed CAF and let k ∈ {sk, ak, ck, gk}. It holds that
Fk ⊆ wf(Fk) ⊆ F .

We furthermore observe that Fk = wf(Fk)k for k ∈ {sk, ak, ck, gk}. This follows from
the observation that we can remove the attacks iteratively for the respective kernels.

Lemma 6.15. Let F = (A,R, cl) be a CAF and let k ∈ {sk, ak, ck, gk}. Let (x, y) ∈ F \Fk
and let F ′ = (A,R \ {(x, y)}, cl). It holds that (F ′)k = Fk.

Proof. Let k = sk. We have

RFsk = R \ {(a, b) | a 6= b, (a, a) ∈ R}
= (R \ {(x, y}) \ {(a, b) | a 6= b, (a, a) ∈ (R \ {(x, y)}}
= R(F ′)sk

Note that we do not remove self-attackers, hence we can remove the attack (x, y) without
affecting the deletion of other attacks. The proof is analogous for the remaining kernels.

Corollary 6.16. Let F = (A,R, cl) be a well-formed CAF and let k ∈ {sk, ak, ck, gk}. It
holds that Fk = wf(Fk)k.

Proposition 6.17. Let F , G be two well-formed CAFs, and let k ∈ {sk, ak, ck, gk}. Fk
and Gk are isomorphic to each other iff wf(Fk) and wf(Gk) are isomorphic to each other.

Proof. (⇒): Let h : AF → AG denote an isomorphism between Fk and Gk, i.e., h(Fk) = Gk.
We show that h is an isomorphism for wf(Fk) and wf(Gk): (a) clwf(Fk(a) = clwf(Gk(h(a)) is
satisfied since h is an isomorphism between the kernels and the well-forming operator does
not add new arguments. (b) Let (a, b) ∈ Rwf(Fk). In case (a, b) ∈ RFk , we are done; by
assumption, h is an isomorphism between the sub-frameworks, hence (h(a), h(b)) ∈ RGk ⊆
Rwf(Gk). Assume (a, b) ∈ Rwf(Fk) \RFk . This implies that there is some attack (c, b) ∈ RFk

with cl(a) = cl(c) (by minimality of wf(Fk)). Then (h(c), h(b)) ∈ RGk . Since h(a) and
h(c) have the same claims as a and c, we conclude that (h(a), h(c)) ∈ Rwf(Gk) as well (by

well-formedness of wf(Gk)). Hence (a, b) ∈ Rwf(Fk) implies (h(a), h(b)) ∈ Rwf(Gk). The other
direction is analogous.

(⇐): Let h : AF → AG denote an isomorphism between wf(Fk) and wf(Gk), i.e.,
h(wf(Fk)) = wf(Gk). Let H := h(wf(Fk)) = wf(Gk). Constructing the kernel of H yields
a unique framework, moreover, Hk = h(Fk) = Gk by Corollary 6.16, hence we obtain the
desired result.
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Let us now turn to the naive kernel. Recall that we construct the naive kernel by
making each attack symmetric; moreover, we add a symmetric attack (s, a) between each
self-attacker s and each argument a.

In the following, we show that the functions cl(x), cl(x−) still suffice to characterize the
naive kernel uniquely.

Proposition 6.18. Let C = {Fnk | F = (A,R, cl) is a well-formed CAF }. The function
R : C→ U × C × 2C with R(F) = {(x, cl(x), cl(x−)) | x ∈ AF} is injective.

Proof. R is well-defined by definition. We show that R is injective. Let R(F) = R(G).
Hence it holds that AF = AG(=: A), moreover, the claim-function in F and G coincides,
i.e., clF (x) = clG(x) for all x ∈ A. It remains to prove that RF = RG . Wlog, let (a, b) ∈ RF .
We show that (a, b) ∈ RG .

Recall that F is the naive kernel of some well-formed CAF F ′. Hence (b, a) ∈ RF as
well. Now, we proceed by case distinction: (a) a or b is self-attacking; or (b) a and b are
not self-attacking.

Case (a): Wlog, assume (a, a) ∈ RF . Then a symmetrically attacks each other argument
in F by construction of the naive kernel. By definition of R, we have (a, cl(a), cl(A)) ∈
R(F). Hence (a, cl(a), cl(A)) ∈ R(G) as well, therefore, (a, a) ∈ RG and a attacks (and is
attacked by) each other argument in A. Consequently, (a, b) ∈ RG .

Case (b): Now assume both a and b are not self-attacking. By construction of the naive
kernel, either (a, b) or (b, a) is contained in the original CAF F ′. Since F ′ is well-formed,
it holds that either clF ′(a) ∈ clF ′(b−F ′) (in case (a, b) ∈ RF ′) or cl(b) ∈ cl(a−F ′) (in case
(b, a) ∈ RF ′). Wlog, let us assume that cl(a) ∈ cl(b−F ′).

Let us briefly clarify the relation between cl(b−F and cl(b−F ′ : since we add attacks when
constructing the naive kernel, we might get more claims, i.e., it holds that cl(b−F ′ ⊆ cl(b−F .

Hence we obtain cl(a) ∈ cl(b−F ) as well. Therefore, the set R(F) contains a tuple
(b, cl(b), C) with cl(a) ∈ C. Since R(F) = R(G) we obtain that R(G) contains the tuple
as well. Consequently, each argument with claim cl(a) attacks the argument b in G. We
obtain (a, b) ∈ RG , as desired.

We have shown that well-formed CAFs and their naive kernels can be represented using
the same information, namely the claim cl(x) and all attacking claims cl(x−) for each
argument x. Therefore, we can apply the algorithm from Theorem 6.11 to construct an
isomorphism between two naive kernels.

We are ready to show that deciding strong equivalence up to renaming for well-formed
CAFs is tractable for all considered semantics.

Theorem 6.19. Let F and G be two well-formed CAFs and let ρ denote any semantics
considered in this paper. Deciding whether F and G are strongly equivalent up to renaming
w.r.t. ρ is tractable.

Proof. By our results from the preceding sections, F and G are strongly equivalent up to
renaming w.r.t. ρ iff their kernels corresponding to ρ are isomorphic.

First, let k ∈ {ak, sk, ck, gk}. We utilize Theorem 6.11 and Proposition 6.17: Fk and
Gk are isomorphic iff wf(Fk) and wf(Gk) are isomorphic to each other. The latter can be
decided in polynomial time.
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Now, let k = nk. By Proposition 6.18, we can encode the naive kernel of well-formed
CAFs analogous to well-formed CAFs. Hence, we can apply the algorithm from Theo-
rem 6.11 to construct the desired isomorphism.

7. Conclusion and Future Work

In this work, we examined several different equivalence notions for claim-augmented ar-
gumentation. We considered ordinary and strong equivalence as well as novel equivalence
notions based on argument renaming for CAFs w.r.t. all semantics for CAFs which have
been considered in the literature so far and provided a complexity analysis of all considered
equivalence notions. We show that strong equivalence can be characterized via semantics-
dependent kernels. Hence, we obtain tractability of strong equivalence w.r.t. all considered
semantics. In contrast, ordinary equivalence can be computationally expensive, ranging up
to the third level of the polynomial hierarchy. We furthermore show that strong equiva-
lence up to renaming has the same complexity as the graph isomorphism problem and is
thus presumably of higher complexity than classical strong equivalence. When restricting
the problem to the class of well-formed CAFs, we can exploit the structure of the graphs
sufficiently to compute an isomorphism in polynomial time. Hence we identified a tractable
fragment of the graph isomorphism problem in the course of our complexity analysis of
renaming strong equivalence.

7.1 Related Work

Ordinary equivalence for AFs has been studied by Baumann, Dvořák, Linsbichler, and
Woltran (2019) and by Oikarinen and Woltran (2011). Similar to our setting, there are only
few dependencies between the semantics. When comparing the computational complexity
of deciding ordinary equivalence between CAFs and AFs, we observe that in general, the
problem is one level harder for CAFs than for AFs, however, when moving to well-formed
CAFs, the problem is of the same complexity as for AFs. This behavior can be observed for
other well-known decision problems (e.g., for the verification problem) (Dvořák & Woltran,
2020; Dvořák et al., 2021).

Our characterization results for strong equivalence are in line with existing studies
for related argumentation formalisms (Oikarinen & Woltran, 2011; Dvořák, Rapberger, &
Woltran, 2020b): we show that strong equivalence can be characterized via syntactic equiva-
lence of semantics-dependent kernels; by that, we obtain tractability of testing strong equiv-
alence for CAFs. The notion of strong equivalence has been also tackled in several related
formalisms, most famously in the context of logic programs (LP) (Lifschitz et al., 2001),
but also in the context of structured argumentation (Amgoud, Besnard, & Vesic, 2014). In
contrast to the abstract setting, deciding strong equivalence can be computationally hard:
it is well-known that deciding strong equivalence is intractable for LPs (Pearce, Tompits,
& Woltran, 2001; Lin, 2002); recently, it has been shown that deciding strong equivalence
is intractable for flat ABA as well (Rapberger & Ulbricht, 2022). Amgoud et al. (2014)
study equivalence of logic-based argumentation by adapting the classical equivalence no-
tion of logical formulae to logical arguments. They show that under certain conditions on
the underlying logic, unnecessary arguments can be removed while retaining strong equiv-
alence. Similar studies have been carried out by Rapberger and Ulbricht (2022) in the
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context of assumption-based argumentation and instantiations of logic programming. They
introduce the notion of instantiated arguments which are tuples consisting of the claim
and the vulnerabilities of the arguments. They identify several semantics-dependent redun-
dancy patterns for instantiated arguments and show that these arguments can be modified
or even removed without affecting the respective semantics. Based on these redundancies,
they identify fragments for which deciding strong equivalence becomes tractable. In contrast
to the work by Amgoud et al. and Rapberger and Ulbricht, we do not assume any internal
structure of the arguments which makes our approach applicable even beyond the scope
of logic-based argumentation, ABA, and LP instantiations. In particular, both approaches
consider only instances for which the attack relation is well-formed. However, there are
several reasons why a framework might violate this condition, e.g., when taking preferences
into account (Cyras & Toni, 2016; Modgil & Prakken, 2014; Bernreiter, Dvořák, Rapberger,
& Woltran, 2022). The present work takes these observations into account. In our studies,
we do not restrict ourselves to the class of well-formed CAFs. Moreover, our studies are
independent of the underlying formalism of the instantiated argumentation system as we
do not impose any further constraints on the arguments or their claims; in this way, it is
even possible to test equivalence between argumentation systems stemming from entirely
different base formalisms.

An interesting difference between the structured and the abstract approaches to strong
equivalence lies in the different treatment of arguments and attacks: while in abstract
formalisms, the attack structure is modified, we observe that in structured formalisms,
arguments get modified. It would be interesting to study how these different approaches
relate to each other.

With our studies on strong equivalence, we tackle the long-term behavior of CAFs, un-
der the assumption that existing knowledge never gets lost. It is evident that the topic
is closely related to several other aspects of dynamics in argumentation, e.g., argument
revision (Coste-Marquis, Konieczny, Mailly, & Marquis, 2014; Baumann & Brewka, 2015;
Snaith & Reed, 2017; Cayrol, de Saint-Cyr, & Lagasquie-Schiex, 2010; Alfano, Greco, &
Parisi, 2021a), framework modifications (Liao, Jin, & Koons, 2011; Baumann, 2011), or en-
forcement (Baumann, 2012b; Wallner, Niskanen, & Järvisalo, 2017; Rapberger & Ulbricht,
2022). In this regard, we mention in particular the work by Cayrol et al. (2010) who
study framework expansions in the context of AFs. They focus on the addition of a new
argument to an AF which may interact with existing arguments. However, they do not
consider claims in their studies. There are several approaches to dynamics in structured
argumentation. Snaith and Reed (2017) consider revision operations in ASPIC+. Falappa,
Kern-Isberner, and Simari (2002) study changes in logic-based argumentation systems and
how the modification of strict to defeasible rules gives rise to the changing of arguments
and their attack relation. Alfano, Greco, Parisi, Simari, and Simari (2021b) study the addi-
tion and removal of knowledge in defeasible logic programming frameworks. They develop
methods to efficiently compute the warrant status of claims in evolving knowledge bases.
Also, Rotstein et al. (2008, 2010) consider a framework specifically designed for handling
dynamic changes in argumentation through the consideration of varying evidences. They
develop dynamic argumentation frameworks where arguments have a richer structure, in
particular, they keep track of the claims of the arguments. In their work, they consider the
addition and the removal of arguments and study associated interactions. In contrast to
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our work, all the aforementioned approaches allow for the removal of arguments and attacks
or for the modification of arguments. However, it would be interesting to explore revision
operators in the context of CAFs. Since CAFs lie in-between structured and abstract ap-
proaches, they could turn out to the perfect playground for applying established techniques
from the abstract universe in the structured setting; e.g., in the context of claim revision.

7.2 Future Work

For future work, we want to extend our strong equivalence studies by considering certain
constraints of the framework modifications. What has been commonly investigated in the
literature are normal expansions (Baumann, 2012a) where attacks can only be introduced
if they involve newly added arguments (observe that in the proof of Theorem 4.24, the
expansion in case (a) satisfy this criteria while H in case (b) introduces also new attacks
between existing arguments).

We moreover plan to adapt our renaming strong equivalence notion to arbitrary CAFs,
not only compatible ones, by relaxing the notion of framework expansions. By doing so,
we expect to generalize the considered equivalence notions even further. In this aspect, it
would be also interesting to investigate the connection between renaming equivalence and
bisimulation as both notions constitute a relaxation of graph isomorphism and preserve
semantics respectively truth values (when considering bisimulation in modal theories, for
instance). Further studies in these directions could reveal interesting novel connections
between different research areas.

On a more general note, we want to study other dynamic operators in the context
of CAFs. We believe that studies on several aspects of belief revision in the context of
claim-centric reasoning would be an interesting avenue for future research.
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Appendix A. Computational Complexity of Ordinary Equivalence:
Omitted Proofs from Section 6.1

Let us first provide the omitted proofs of the following theorem:

Theorem 6.1. Ver-OEρ is

• in P for ρ=gri;

• ΠP
2 -complete for ρ ∈ {cfi, ad i, coi,nai, prh,nah, stbi, cf -stbh, ad -stbh, }; and

• ΠP
3 -complete for ρ∈{pri, ss i, stg i, stgh, ssh}.

We will make use (variants of) the following reduction (Dvořák & Dunne, 2018, Reduc-
tion 3.6).
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Reduction A.1. Let ϕ be given by a set of clauses C = {cl1, . . . , cln} over atoms in X and
let X̄ = {x̄ | x ∈ X}. We construct AF F = (A,R) with

A = X ∪ X̄ ∪ C ∪ {ϕ}
R = {(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈ cl}∪

{(x, x̄), (x̄, x) | x ∈ X} ∪ {(cli, ϕ) | i ≤ n}

Let us furthermore recall the following reduction which we used in the proof of Propo-
sition 6.3. This construction modifies the standard construction.

Reduction A.2. For a formula ϕ which is given by a set of clauses C over atoms in V we
construct an AF F = (A,R) with

A = V ∪ V̄ ∪ C with V̄ = {v̄ | v ∈ V };
R = {(v, cl) | cl ∈ C, v ∈ cl} ∪ {(cl, cl) | cl ∈ C}∪

{(v̄, cl) | cl ∈ C,¬v ∈ cl} ∪ {(v, v̄), (v̄, v) | v ∈ V }.

Now, we are ready to give the remaining proofs of Theorem 6.1. Let us start with i-naive
semantics.

Proposition A.3. Deciding Ver-OEnai is ΠP
2 -hard.

Proof. Consider an instance Ψ = ∀Y ∃Zϕ(Y,Z) of QSAT∀2 , where ϕ is a 3-CNF, given by
a set of clauses C = {cl1, . . . , cln} over atoms in V = Y ∪ Z. We construct two CAFs
F = (AF , RF , clF ), G = (AG , RG , id), where F modifies the AF (A,R) obtained from
Reduction A.2 as follows:

AF = A ∪ Y2 ∪ Ȳ2 ∪ Z2;

RF = (R \ {(cl, cl) | cl ∈ C})∪
{(y2, ȳ2) | y2 ∈ Y2} ∪ (y, ȳ2), (y2, ȳ) | y ∈ Y };

and clF (y2) = y, clF (ȳ2) = ȳ for y2 ∈ Y2; clF (z2) = clF (z̄2) = z for z2 ∈ Z2; clF (cl) = ϕ̄
for cl ∈ C; clF (a) = a else.

Observe that Y ′ ∪{ȳ | y /∈ Y ′}∪Z ∪{ϕ̄} is i-naive for every Y ′ ⊆ Y : Let E = Y ′2 ∪{ȳ2 |
y2 /∈ Y ′2} ∪ Z2 ∪ C ∪ E′ with Y ′2 ⊆ Y2 and E′ ⊆ V ∪ V̄ is a non-conflicting subset-maximal
set of arguments which do not attack any cl ∈ C. E is conflict-free and subset-maximal by
the choice of E′; moreover, clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄}.

We construct G = (AG , RG , clG) such that nai(G) = {Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄} | Y ′ ⊆
Y } ∪ {Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z | Y ′ ⊆ Y }. Let

AG = Y1 ∪ Ȳ1 ∪ Y2 ∪ Ȳ2 ∪ Z ∪ {ϕ̄};
RF = {(yi, ȳi) | yi ∈ Yi, i ≤ 2}∪

{(a, b) | a ∈ Y1 ∪ Ȳ1, b ∈ Y2 ∪ Ȳ2 ∪ {ϕ̄}};

and clG(yi) = y, clG(ȳi) = ȳ for yi ∈ Yi; clG(z) = z, clG(z̄) = z̄ for z ∈ Z; clG(ϕ̄) = ϕ̄. See
Figure 5 for an illustrative example of F and G. It can be checked that G has precisely the
desired i-naive extensions.
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Figure 5: CAFs F (left) and G (right) illustrating the reduction from the Proof of Propo-
sition A.3 for the formula Ψ = ∀Y ∃Zϕ(Y,Z) where ϕ(Y,Z) is given by the clauses
{{y1, z1, z2}, {z̄1, z̄2, ȳ2)}, {ȳ1, z̄1, y2}}.

We show that Ψ is valid iff nai(F) = nai(G). First, assume Ψ is valid and fix some
Y ′ ⊆ Y . There is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a model of ϕ. Let E = M ∪ {v̄ | v /∈
M} ∪ Y ′2 ∪ {ȳ2 | y2 /∈ Y ′2} ∪ Z2. E is conflict-free; moreover, E is subset-maximal among
conflict-free sets since any other argument a ∈ AF \ E is in conflict with E: Since M is a
model of ϕ, we have that for each clause cl i there is either a positive literal v ∈ cl with v ∈M
or a negative literal v̄ ∈ cl with v /∈ M ; that is, each cl is attacked in F . Also, E contains
either v or v̄ for any atom v ∈ Y ∪ Z ∪ Y2, thus any argument representing a literal in F
which is not a member of E is attacked by E. It follows that Y ′∪{ȳ | y /∈ Y ′}∪Z ∈ nai(F)
for every Y ′ ⊆ Y . Each i-naive claim-set is thus either of the form Y ′∪{ȳ | y /∈ Y ′}∪Z∪{ϕ̄}
or Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z. Consequently, nai(F) = nai(G) in case Ψ is valid.

Now assume nai(F) = nai(G) and fix Y ′ ⊆ Y . Consider a nai-realisation E of Y ′ ∪ {ȳ |
y /∈ Y ′} ∪ Z and let Z ′ = E ∩ Z. We show M = Y ′ ∪ Z ′ is a model of ϕ: Consider an
arbitrary clause cl ∈ C. Since E is a subset-maximal conflict-free set of arguments we have
E ∪ {cl} is conflicting; that is, there is a ∈ E such that a attacks cl. In case a = v for some
atom v we have v ∈ cl; in case a = v̄ for some v we have v̄ ∈ cl. In the former case, v ∈M
and thus cl is satisfied, in the latter case we have v /∈M and thus cl is satisfied. We obtain
that M is a model of ϕ.

Proposition A.4. Deciding Ver-OEρ is ΠP
2 -hard, ρ ∈ {cfi, ad inah, prh}.

Proof. We will first show the statement for h-naive semantics: Consider an instance Ψ =
∀Y ∃Zϕ(Y, Z) of QSAT∀2 , where ϕ is a 3-CNF, given by a set of clauses C = {cl1, . . . , cln}
over atoms in V = Y ∪ Z. We construct two CAFs F = (AF , RF , clF ), G = (AG , RG , id).
The CAF F is given by

AF = Y ∪ Ȳ ∪ {vi | v ∈ cli, cli ∈ C}∪
{v̄i | ¬v ∈ cli, cli ∈ C};

RF = {(vi, v̄j), (v̄j , vi), (v, v̄i), (v̄i, v),

(vi, v̄), (v̄, vi) | v ∈ V ; i, j ≤ n};

and clF (vi) = clF (v̄i) = i, clF (y) = y, and clF (ȳ) = ȳ. We construct a CAF G having
the h-naive claim-sets Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n} for every Y ′ ⊆ Y by setting AG =
Y ∪ Ȳ ∪ {1, . . . , n} and RG = {(y, ȳ), (ȳ, y) | y ∈ Y }.
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First assume Ψ is valid. Fix some Y ′ ⊆ Y . Since Ψ is valid, there is Z ′ ⊆ Z such that
M = Y ′ ∪ Z ′ is a model of ϕ. Let E = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {vi | v ∈ M} ∪ {v̄i | v /∈ M}. E
is conflict-free since conflicts appear only between arguments representing negated literals;
moreover, since M is a model of ϕ, we have that for each clause cl i there is either a positive
literal v ∈ cli with v ∈M or a negative literal v̄ ∈ cli with v /∈M . Thus {1, . . . , n} ⊆ clF (E);
moreover, Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ clF (E). S = clF (E) is a maximal h-conflict-free claim-set
since S ∪ {c} /∈ cfi(F) for any c ∈ (Y ∪ Ȳ ) \ S as each realization of S ∪ {c} contains
y, ȳ for some y ∈ Y . It follows that Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n} ∈ nah(F) for every
Y ′ ⊆ Y . Moreover, there is no other h-naive claim-set of F since every proper superset has
no cf -realisation in F as outlined above. We have shown nah(F) = nah(G) in case Ψ is
valid.

Now assume nah(F) = nah(G) and fix some Y ′ ⊆ Y . Let E be some cf -realisation of
S = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {1, . . . , n}, let Z ′ = {z | zi ∈ E} and let M = Y ′ ∪ Z ′. Now,
consider an arbitrary clause cli. Since E cf -realises S, there is some argument with claim
i in E, that is, either vi ∈ E or v̄i ∈ E for some v ∈ Y ∪ Z (observe that yi ∈ E iff y ∈ E
and ȳi ∈ E iff ȳ ∈ E, thus a further case distinction for y ∈ Y , ȳ ∈ Ȳ is not required). In
the former case, we have v ∈M and thus M satisfies cli, in the latter case v /∈M and thus
cli is satisfied. We obtain that M is a model of ϕ.

Since conflict-free semantics satisfy downward closure (each subset of a conflict-free set
is conflict-free), we have cfi(F) = cfi(G) iff nah(F) = nah(G) and thus the statement follows
for i-conflict-free semantics. By symmetry of F and G we furthermore have ad(F ) = cf (F )
and ad(G) = cf (G) which implies ad i(F) = cfi(F), ad i(G) = cfi(G), prh(F) = nah(F), and
prh(G) = nah(G). Thus ΠP

2 -hardness of Ver-OEρ for i-admissible and h-preferred semantics
follow.

It remains to give the proof for complete semantics.

Proposition A.5. Deciding Ver-OEcoi is ΠP
2 -hard.

Proof. Consider an instance Ψ = ∀Y ∃Zϕ(Y,Z) of QSAT∀2 , where ϕ is given by a set of
clauses C = {cl1, . . . , cln} over atoms in V = Y ∪Z. We may assume that Z 6= ∅; i.e., there
is some z0 ∈ Z. We construct two CAFs F = (AF , RF , clF ), G = (AG , RG , clG), where F is
a modification of the standard construction (A,R) (cf. Reduction A.1) with

AF = A ∪ {ϕ̄} ∪ {dv | v ∈ V };
RF = R ∪ {(cl, cl) | cl ∈ C} ∪ {(dv, dv), (v, dv), (v̄, dv),

(dv, a) | v ∈ V, a ∈ V ∪ V̄ } ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ)};

clF (ϕ̄) = z0, clF (z) = clF (z̄) = z and clF (a) = a else. We observe that coi(F) contains
Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z for each Y ′ ⊆ Y as well as ∅. A witness is given by the complete
extension Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ̄}. Moreover, since at least one of v, v̄ has to be
contained in a complete extension E in order to be defended we observe that no subset of
any Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z, Y ′ ⊆ Y , is i-complete in F .
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The CAF G is given by

AG =Y ∪ Ȳ ∪ Z ∪ {ϕ, ϕ̄, dϕ} ∪ {dy | y ∈ Y };
RG = {(y, ȳ), (ȳ, y) | y ∈ Y }) ∪ {(dv, dv), (v, dv), (v̄, dv),

(dv, a) | v ∈ Y ∪ {ϕ}, a ∈ AG};

and clG(ϕ̄) = z0 and clG(a) = a else. Observe that G contains the i-complete claim-sets
Y ′∪{ȳ | y /∈ Y ′}∪{ϕ}∪Z and Y ′∪{ȳ | y /∈ Y ′}∪Z for Y ′ ⊆ Y as well as the empty claim-set
∅. Given a complete extension E 6= ∅ of G, we observe that either y or ȳ is contained in E
for every y ∈ Y since every a ∈ Y ∪ Ȳ ∪ {ϕ} ∪ Z must be defended against dy; similarly,
either ϕ or ϕ̄ is contained in E. Thus there is some Y ′ ⊆ Y such that Y ′∪{ȳ | y /∈ Y ′} ⊆ E.
In case ϕ ∈ E we have that E is of the form Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} ∪ Z for some Y ′ ⊆ Y
since each Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} defends itself and Z in G; in case ϕ̄ ∈ E we have that E
is of the form Y ′∪{ȳ | y /∈ Y ′}∪{ϕ̄}∪Z for some Y ′ ⊆ Y since each Y ′∪{ȳ | y /∈ Y ′}∪{ϕ̄}
defends itself and Z in G. In the former case, clG(E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} ∪ Z, in the
latter case, clG(E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z.

We show Ψ is valid iff Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈ coi(F) for each Y ′ ⊆ Y .

Assume Ψ is valid; fix some Y ′ ⊆ Y . Then there is Z ′ ⊆ Z such that M = Y ′ ∪ Z ′ is a
model of ϕ. We show that E = M ∪ {v̄ | v /∈M} ∪ {ϕ} is complete in F : E is conflict-free;
moreover, since M is a model of ϕ we have that each clause cl ∈ C is attacked; consequently,
E defends ϕ against each attack. E contains each defended argument since it attacks any
remaining argument a /∈ E in F . Thus clF (E) = Y ′ ∪ {ȳ | y /∈ Y ′} ∪ {ϕ} ∪ Z ∈ coi(F). As
Y ′ was arbitrary, we have shown Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈ coi(F) for each Y ′ ⊆ Y .

Now assume Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈ coi(F) for each Y ′ ⊆ Y . Fix some Y ′ ⊆ Y
and let E be the complete realization of Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} in F . We show that
M = Y ′ ∪ Z ′ with Z ′ = E ∩ Z is a model of ϕ: From ϕ ∈ E we obtain that every clause
cl ∈ C is attacked; that is, for every cl ∈ C, there is a ∈ E with (a, cl) ∈ RG . In case a = v
for some v ∈ V , we have v ∈ M ∩ cl; in case a = v̄ for some v ∈ V we have ¬v ∈ cl and
v /∈M—in both cases, cl is satisfied, thus M is a model of ϕ. It follows that Ψ is valid.

As outlined above, coi(F) contains Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z for each Y ′ ⊆ Y , moreover,
∅ ∈ coi(F) and Y ′ ∪ {ȳ | y /∈ Y ′} ∪ Z ∪ {ϕ} ∈ coi(F) for each Y ′ ⊆ Y iff Ψ is valid. By
design of G we obtain Ψ is valid iff coi(F) = coi(G).

This ends our proofs for ΠP
2 -hardness. It remains to prove ΠP

3 -hardness for i-preferred, h-
semi-stable, and h-stage semantics. We will make use of the following translations (Dvořák
et al., 2021, Definition 8).

Definition A.6. For a CAF F = (A,R, cl), we define three translations:

• Tr1(F) = (A′, R′, cl ′) with

A′ =A ∪ {a′ | a ∈ A}
R′ =R ∪ {(a, a′), (a′, a′) | a ∈ A}

and cl ′(a) = cl(a) for a ∈ A, cl(a′) = ca for a′ ∈ {a′ | a ∈ A} with fresh claims
ca /∈ cl(A).
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• Tr2(F) = (A′, R′2, cl ′) with

A′ =A ∪ {a′ | a ∈ A}
R′2 =R′ ∪ {(a, b′) | (a, b) ∈ R};

and cl ′ as before.

• Tr3(CF ) = (A′, R′3, cl ′) with

A′ =A ∪ {a′ | a ∈ A}
R′3 =R′2 ∪ {(b, a) | (a, b) ∈ R} ∪ {(a, b) | a ∈ A, (b, b) ∈ R};

and cl ′ as before.

As shown by Dvořák et al. (2021), it holds that (a) Tr1 maps i-preferred semantics to
h-semi-stable semantics, (b) Tr2 maps inherited to hybrid stable semantics, and (c) Tr3

maps inherited to hybrid stage semantics.

Lemma A.7. For a CAF F = (A,R, cl),

pri(F) = pri(Tr1(F)) = ssh(Tr1(F)),

stbi(F) = stbi(Tr2(F)) = τ -stbh(Tr2(F)) for τ ∈ {ad , cf },
stg i(F) = stg i(Tr3(F)) = stgh(Tr3(F)).

Since all translations can be computed in polynomial time, we obtain lower bounds for
Ver-OEρ ρ ∈ {ssh, stgh}: to decide σh(F) = σh(G) for two CAFs F and G, we can apply
the respective translation Ti and check σi(Ti(F)) = σi(Ti(G)) instead.

Proposition A.8. Deciding Ver-OEρ is ΠP
3 -hard for ρ ∈ {ssh, stgh}.

Proposition A.9. Deciding Ver-OEpri is ΠP
3 -hard.

Proof. We show hardness via a reduction from QSAT∃3 .
Consider an instance Ψ = ∃X∀Y ∃Zϕ(X,Y, Z) of QSAT∃3 , where ϕ is given by a set

of clauses C over atoms in V = X ∪ Y ∪ Z. W.l.o.g., we can assume there is y0 ∈ Y
which is contained in each clause cl ∈ C. We construct two CAFs F = (AF , RF , clF ),
G = (AG , RG , clG). Let (A,R) be given as in Reduction A.2. We construct F with

AF = A ∪ {ϕ, ϕ̄};
RF = R ∪ {(cl, ϕ) | cl ∈ C} ∪ {(ϕ, ϕ̄), (ϕ̄, ϕ̄)}∪

{(ϕ̄, z), (ϕ̄, z̄) | z ∈ Z};

and clF (y) = clF (ȳ) = y for y ∈ Y and clF (v) = v else; that is, F is the standard
construction for preferred semantics on AF level.

We construct the CAF G such that pri(G) = {V ′ ∪ {v̄ | v /∈ V ′} ∪ Y ∪ {ϕ} | V ′ ⊆
X ∪ Z} ∪ {X ′ ∪ {x̄ | x /∈ X ′} ∪ Y | X ′ ⊆ X}. This can be achieved by setting

AG = Xi ∪ X̄i ∪ Y ∪ Z ∪ Z̄ ∪ {ϕ}
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for two copies Xi, X̄i, i ≤ 2, of X and X̄, respectively;

RG = {(vi, v̄j), (v̄i, vj) | vi, vj ∈ X1 ∪X2}∪
{(v, v̄), (v̄, v) | v ∈ Z}∪
{(a, b), (b, a) | a ∈ A′ ∪ {ϕ}, b ∈ X2 ∪ X̄2}

where A′ = X1 ∪ X̄1 ∪ Z ∪ Z̄; moreover, clG(xi) = x, clG(x̄i) = x̄, and clG(a) = a for all
remaining a ∈ AG .

First observe that {V ′ ∪ {v̄ | v /∈ V ′} ∪ Y ∪ {ϕ} | V ′ ⊆ X ∪Z} ⊆ pri(F) since y0 ∈ cl for
every clause cl, that is, for every atom v ∈ V \ {y0}, we can choose either v or v̄ as long as
y0 is contained in E ⊆ AF , we have that E defends ϕ against each attack.

In case Ψ is not valid, consider some X ′ ⊆ X. Since Ψ is not valid, there is some
Y ′ ⊆ Y such that for all Z ′ ⊆ Z, some clause cl ∈ C is not satisfied. It follows that
E = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ | y /∈ Y ′} is preferred in F : Clearly, E is conflict-free
and defends itself. Now assume there is a ∈ A \ E such that E ∪ {a} ∈ ad(F ). In case
a = ϕ we have that each cl ∈ C is attacked, that is, for every clause cl ∈ C there is
v ∈ X ′ ∪ Y ′ such that either v ∈ X ′ ∪ Y ′ with v ∈ cl or v /∈ X ′ ∪ Y ′ with 6= v ∈ cl.
Thus X ′ ∪ Y ′ is a model of ϕ, contradiction to Ψ being not valid. Observe that the case
a ∈ Z ∪ Z̄ requires ϕ ∈ E, otherwise a is not defended against ϕ̄. We have thus shown that
cl(E) = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ∈ pri(F) for every X ′ ⊆ X.

We show that every i-preferred set of F is either of the form (a) V ′∪{v̄ | v /∈ V ′}∪Y ∪{ϕ}
for some V ′ ⊆ X ∪ Z or (b) X ′ ∪ {x̄ | x /∈ X ′} ∪ Y for some X ′ ⊆ X. As outlined above,
any such set is i-preferred in F , thus it remains to show that there is no other i-preferred
set in F . First notice that each i-preferred claim-set of F contains X ′ ∪ {x̄ | x /∈ X ′} ∪ Y
for some X ′ ⊆ X since every preferred set E of F contains X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ |
y /∈ Y ′} for some X ′ ⊆ X, Y ′ ⊆ Y by construction. Now assume there is S ⊆ cl(AF )
such that S ∈ pri(F) and S is not of the form (a) or (b). Let E be a pri-realisation of
S. First assume ϕ /∈ E. Then z, z̄ /∈ E for any z ∈ Z since ϕ is the only argument
which defends z, z̄ against ϕ̄. By the above consideration there are X ′ ⊆ X, Y ′ ⊆ Y
such that X ′ ∪ {x̄ | x /∈ X ′} ∪ Y ′ ∪ {ȳ | y /∈ Y ′} ⊆ E. Observe that a /∈ E for any
a ∈ (X \X ′) ∪ {x̄ | x ∈ X ′} ∪ (Y \ Y ′) ∪ {ȳ | y ∈ Y ′} since v, v̄ are mutually attacking for
any v ∈ X ∪Y . Since every remaining argument is either attacked by E or self-attacking it
follows that S = X ′ ∪ {x̄ | x /∈ X ′} ∪ Y . In case ϕ ∈ E, we have that every z, z̄ is defended
against ϕ̄. Thus E contains either z or z̄ for every z ∈ Z by subset-maximality of E. Thus
there is Z ′ ⊆ Z such that E = V ′ ∪ {v̄ | v /∈ V ′} ∪ {ϕ}. Since every remaining argument is
either attacked by E or self-attacking, we have S = V ′ ∪ {v̄ | v /∈ V ′} ∪ Y ∪ {ϕ} for some
V ′ ⊆ X ∪ Z. It follows that pri(F) = pri(G).

Now assume pri(F) = pri(G) and consider some X ′ ⊆ X. Let E be a pri-realisation of
X ′ ∪ {̄x̄ | x /∈ X ′} ∪ Y and let Y ′ = E ∩ Y . We show that for all Z ′ ⊆ Z, X ′ ∪ Y ′ ∪ Z ′ is
not a model of ϕ. Fix some Z ′ ⊆ Z and let M = X ′ ∪ Y ′ ∪ Z ′. Since E is preferred in F
we have that ϕ is not defended by E ∪Z ′ ∪{z̄ | z /∈ Z ′}; i.e., there is some cl ∈ C such that
E ∪Z ′ ∪ {z̄ | z /∈ Z ′} does not attack cl. Consequently, for all v ∈ V , in case v ∈ cl we have
v /∈M , and in case 6= v ∈ cl we have v ∈M . It follows that M is not a model of ϕ.

It follows that Ψ is not valid iff pri(F) = pri(G).
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Figure 6: CAFs F (left) and G (right) illustrating the reduction from the Proof of Propo-
sition A.10 for the formula ϕ given by the clauses {{x1, x3}, {x̄2, x̄3)}, {x̄1, x̄3, x2}}.

Let us now turn to well-formed CAFs. We provide the omitted proofs of the following
theorem:

Theorem 6.6. Ver-OEwf
ρ is

• in P for ρ=gri;

• coNP-complete for ρ ∈ {cfi, ad i, coi,nai,nah, stbi, cf -stbh, ad -stbh}; and

• ΠP
2 -complete for ρ∈{pr i, ss i, stg i, prh, stgh, ssh}.

For h-naive and conflict-free semantics, we utilize the standard construction once again.

Proposition A.10. Ver-OEwf
ρ is coNP-hard for ρ ∈ {cfi,nah}.

Proof. Consider a SAT instance ϕ given by a set of clauses C over atoms in X. We may
assume that there is no clause cl ∈ C such that x, x̄ ∈ cl for any atom x ∈ X. We construct
two CAFs. For F , construct (A,R, cl) as follows:

AF = X ∪ X̄ ∪ C with X̄ = {x̄ | x ∈ X};
RF = {(x, cl) | cl ∈ C, v ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈ cl} ∪ {(x, x̄), (x̄, x) | x ∈ X}

and clF (cl) = c for cl ∈ C and clF (a) = a otherwise; The CAF G is given by AG =
X ∪ X̄ ∪ {c}, RG = {(x, x̄), (x̄, x) | x ∈ X}, and clG = id. Then na(G) = nai(G) =
{X ′ ∪ X̄ ′ ∪ {c} | X ′ ⊆ X}. An example is given in Figure 6.

Let us consider the naive extensions of the underlying AF F of F . We observe that each
naive extension contains x or x̄ for each literal x (recall that we excluded clauses containing
both x and x̄). Hence each set X ′ ∪ X̄ ′, X ′ ⊆ X, is conflict-free in F . Moreover, we can
add one of the clause arguments cl ∈ C to the set X ′ ∪ X̄ ′ iff the set X ′ is not a model of
ϕ: by construction, X ′ is a model of ϕ iff all clause arguments are attacked. It holds that
X ′ ∪ X̄ ′ is naive in F iff all clause-arguments are attacked iff X ′ is a model of ϕ.

Hence ϕ is unsatisfiable iff X ′ ∪ X̄ ′ ∪ {cl} is naive for some cl ∈ C. Hence, we obtain
the desired result for h-naive semantics: ϕ is unsatisfiable iff nah(F) = nah(G). Since
each subset of a naive extension is conflict-free, the statement for conflict-free semantics
follows.

For i-naive semantics, we utilize a construction by Kiesel and Rapberger (2021).

Proposition A.11. Ver-OEwf
nai

is coNP-hard.
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Figure 7: CAF F and G from the proof of Proposition A.11 for a formula ϕ which is given
by the clauses {{x1, x3}, {x̄3, x̄2)}, {x̄1, x̄3, x2}}.

Proof. Consider an UNSAT instance ϕ given by clauses C over variables in X. We let F
be defined as follows:

AF =X ∪ X̄ ∪ C ∪ {ϕ} ∪ {a1, a2}, with X̄ = {x̄ | x ∈ X},
RF ={(x, cl) | cl ∈ C, x ∈ cl} ∪ {(x̄, cl) | cl ∈ C,¬x ∈ cl}

∪ {(x, x̄), (x̄, x) | x ∈ X} ∪ {(cli, ϕ) | i ≤ n} ∪ {(ϕ, a2)},

with cl(a1) = cl(a2) = a and cl(x) = x otherwise. We obtain G from F by setting
AG = AF \ {a2} and RG = RF \ {(ϕ, a2)}. The resulting CAF G has a unique claim per
argument. An example of this construction is given in Figure 7.

We can compute the naive extensions of F from G as follows: We obtain na(F ) from
na(G) by (1) taking all extensions containing ϕ, i.e., E ∈ na(F ) for all E ∈ na(G) with
ϕ ∈ E; (2) replacing ϕ in each extension by a2, i.e., (E \ {ϕ}) ∪ {a2} ∈ na(F ) for all
E ∈ na(G) with ϕ ∈ E; and (3) adding a2 to all naive extensions of E not containing ϕ,
i.e., E ∪ {a2} ∈ na(F ) for all E ∈ na(G) with ϕ /∈ E. Hence na(F ) = {E | E ∈ na(G), ϕ ∈
E} ∪ {(E \ {ϕ}) ∪ {a2} | E ∈ na(G), ϕ ∈ E} ∪ {E ∪ {a2} | E ∈ na(G), ϕ /∈ E}.

In case (1) and (3), the set E (and its modified version) has the same claims in F and G
(for the latter, observe that a1 is contained in each extension thus each set contains claim
a). Now, consider a set E ∈ na(G) with ϕ ∈ E, and let E′ = (E \{ϕ})∪{a2}. It holds that
cl(E′) = X ′ ∪ X̄ ′ ∪ {a} for some X ′ ⊆ X. Observe that E′ is not naive in G since E is a
proper superset of it. On the other hand, the set E′ is naive in F iff it is in conflict with each
clause-argument, i.e., iff E′ attacks each cli ∈ C. By well-known results (Dvořák & Dunne,
2018), this is the case iff X ′ is a model of ϕ, i.e., iff ϕ is satisfiable. Hence nai(F) = nai(G)
iff ϕ is unsatisfiable.

To obtain ΠP
2 -hardness for i-semi-stable and i-stage semantics for well-formed CAFs we

proceed analogous to the proofs of Propositions 6.3 and 6.5: again, we utilize constructions
used for showing hardness of the concurrence problem (Dvořák et al., 2021) for the respective
semantics.

For hybrid semi-stable and stage semantics, we utilize translations Tr1 and Tr3 (Dvořák
et al., 2021) to obtain ΠP

2 -hardness of deciding ordinary equivalence.

We will make use of the following reduction.

Reduction A.12. Let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT∀2 , where ϕ is given by a
set of clauses C = {cl1, . . . , cln} over atoms in X = Y ∪Z. Let (A,R) be the AF constructed
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ϕd1

d

d2

d

e

ϕ̄1 ϕ̄2

cl1 cl2 cl3

y1 ȳ1 y2 ȳ2 z1 z̄1 z2 z̄2

dy1 dȳ1 dy2 dȳ2

Figure 8: Reduction A.12 for the formula ∀Y ∃Zϕ(Y, Z) where ϕ(Y, Z) is given by the clauses
{{z1, y1, y2}, {ȳ1, ȳ2, z̄2)}, {z̄1, ȳ1, z2}}. Since cl(a) = a for all arguments a ∈ A \ {d1, d2},
we omit all claims that coincide with the arguments name.

from ϕ as in Reduction A.1. We define F = (A′, R′, cl) with

A′ = A ∪ {e, d1, d2, ϕ̄1, ϕ̄2}
R′ = R ∪ {(a, da)(da, da) | a ∈ Y ∪ Ȳ } ∪ {(di, dj) | i, j = 1, 2} ∪

{(a, b) | a, b ∈ {ϕ, ϕ̄1, ϕ̄2}, a 6= b} ∪ {(ϕ, e), (e, e), (ϕ, d1), (ϕ̄1, d1)}

and cl(d1) = cl(d2) = d and cl(v) = v otherwise.

See Figure 8 for an example of the reduction.

Proposition A.13. Ver-OEwf
ρ is ΠP

2 -hard for ρ ∈ {ss i, stg i, ssh, stgh}.

Proof. Let ρ = ss i and let Ψ = ∀Y ∃Zϕ(Y,Z) be an instance of QSAT∀2 where ϕ is given by
a set of clauses C over atoms in V = Y ∪ Z. Similar as in the proof of Proposition 6.5, we
make use of the complexity results for the concurrence problem: it has been shown that Ψ
is valid iff ss i(F) = ssh(F) (Dvořák et al., 2021). It suffices to construct the CAF G in such
a way that ss i(G) = ssh(F). Then it holds that Ψ is valid iff ss i(G) = ssh(F) = ss i(F).

To construct the CAF G appropriately, let us observe that the arguments d1 and d2 do
not influence hybrid semi-stable semantics at all; since d2 is neither contained nor attacked
by any conflict-free set, they are invisible from the perspective of h-semi-stable semantics.
Hence we can remove both arguments without influencing the outcome. This yields our
desired CAF G = (AG , RG , id): we let AG = AF \ {d1, d2} and RG = RF ∩ A2

G . We obtain
Ψ is valid iff ss i(G) = ssh(F).

This concludes the proof for i-semi-stable semantics. For i-stage semantics, we note that
ss i(F) = stg i(F) and ssh(F) = stgh(F) (Dvořák et al., 2021). For the hybrid counter-parts,
we utilize translations Tr1 and Tr3 (cf. Definition A.6).

It remains to prove ΠP
2 -hardness for preferred semantics. Deciding ordinary equivalence

w.r.t. preferred semantics is ΠP
2 -hard for the class of AFs (Baumann et al., 2019). Hence

we obtain the following result.

Proposition A.14. Ver-OEwf
pr i

is ΠP
2 -hard.
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Rotstein, N. D., Moguillansky, M. O., Garćıa, A. J., & Simari, G. R. (2010). A dynamic
argumentation framework. In Proceedings of the 3rd International Conference on
Computational Models of Argument (COMMA 2010), Vol. 216 of Frontiers in Artificial
Intelligence and Applications, pp. 427–438. IOS Press.

Snaith, M., & Reed, C. (2017). Argument revision. Journal of Logic and Computation,
27 (7), 2089–2134.

947



Baumann, Rapberger, & Ulbricht

Thimm, M. (2012). A probabilistic semantics for abstract argumentation.. In Proceedings
of the 20th European Conference on Artificial Intelligence (ECAI 2012), Vol. 242 of
Frontiers in Artificial Intelligence and Applications, pp. 750–755. IOS Press.

Toni, F. (2014). A tutorial on assumption-based argumentation. Argument & Computation,
5 (1), 89–117.
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