
Journal of Artificial Intelligence Research Vol 76 (2023) 613-644 Submitted 01/2023; published 03/2023

Liability Regimes in the Age of AI: a Use-Case Driven
Analysis of the Burden of Proof

David Fernández Llorca david.fernandez-llorca@ec.europa.eu
European Commission, Joint Research Centre (JRC)
Sevilla, 41092, Spain
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Abstract

New emerging technologies powered by Artificial Intelligence (AI) have the potential
to disruptively transform our societies for the better. In particular, data-driven learning
approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement
of multiple technologies in various application domains. But at the same time there is
growing concern about certain intrinsic characteristics of these methodologies that carry
potential risks to both safety and fundamental rights. Although there are mechanisms in
the adoption process to minimize these risks (e.g., safety regulations), these do not exclude
the possibility of harm occurring, and if this happens, victims should be able to seek
compensation. Liability regimes will therefore play a key role in ensuring basic protection
for victims using or interacting with these systems. However, the same characteristics that
make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their
self and continuous learning capabilities, may lead to considerable difficulties when it comes
to proving causation. This paper presents three case studies, as well as the methodology to
reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning
robots, delivery drones and robots in education. The outcome of the proposed analysis
suggests the need to revise liability regimes to alleviate the burden of proof on victims in
cases involving AI technologies.
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1. Introduction

AI-based systems have the potential to bring some benefits and opportunities to our soci-
eties, generating and transforming new products and services in multiple application do-
mains. In recent years, there has been a real technological revolution in the advancement
of AI, and more specifically, in ML and Deep Learning (DL) methods. Unlike conven-
tional computer algorithms, in which the programmer explicitly implements the instructions
needed to solve a particular problem, ML/DL approaches 1 are based on the idea that the
solution can be obtained by accessing data sufficiently representative of the problem and
using a training procedure that allows fitting a mathematical model to such data. These
approaches have been greatly benefited by the availability of massive data and improved
computing power, which has enabled the use of increasingly complex models capable of
solving increasingly sophisticated problems. In addition, this approach allows for continu-
ous improvement of the system throughout its life cycle as more data and experience of use
and interaction becomes available, making it a very powerful methodology.

However, as this technology advances, there is growing concern about the risks to safety
and fundamental rights that its adoption may entail (European Commission, 2020). These
risks arise mainly from certain intrinsic characteristics of certain AI approaches, such as lack
of causality, opacity, unpredictability or the uncertainty derived from self and continuous
learning capabilities. And although there are legal mechanisms proposed to minimize these
risks, such as ex-ante requirements in the recently proposed European regulatory framework
for AI (European Commission, 2021), general safety standards, or ethical and socially re-
sponsible AI approaches (Cheng, Varshney, & Liu, 2021; Kim, Hooker, & Donaldson, 2021),
they do not exclude the possibility of some end user or bystander being harmed. In such
cases, victims should be able to seek compensation, and the most typical way to do so is on
the basis of liability regimes, in particular tort law (e.g., see Chapter 8, Parts 5 and 6 by
Koziol, 2015). In addition, recent advances in AI allow the degree of human intervention
and supervision to become less and less, which also brings with it the need to clarify the
attribution of responsibility.

Generally speaking, we can identify three legal frameworks by which victims can obtain
compensation for product-induced damages (EC, 2019):

• Fault-based liability: where the injured parties or claimants have to prove, in
principle, that the defendant or wrongdoer (or its employees in the case of vicarious
liability) caused the damage intentionally or negligently. This involves identifying the
applicable standard of care the defendant should have fulfilled, and proving that it was
not fulfilled. In the language of negligence the issue would be whether the product
or some of its key components were negligently designed, manufactured, deployed,
secured, maintained, updated, monitored, marketed, operated, used, etc.

• Strict liability (a.k.a. risk-based liability): based on the understanding that someone
is allowed to use a dangerous object or perform a risky activity for her own purposes,
so this person also bears the loss if such risk materialises (Karner, Koch, & Geistfeld,
2021). Therefore the victim does not need to prove the misconduct on the part of
any wrongdoer. Instead, the injured parties only have to prove that the risk arising

1. From now on, the term AI will be used generically to refer to both ML and DL.
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from the sphere of the liable party actually materialised (i.e., the risk subject to strict
liability materialises).

• Product liability2: where victims can claim against the producer (manufacturer,
importer, supplier or seller) for a defect present at the time the product was placed on
the market. Injured parties or claimants have to prove that the product was defective
(irrespective of fault) and the causal link between the defect and the damage. A
defective product is a product with a (usually unintended) flaw, i.e., the finished
product does not conform to the producer’s own specifications or requirements or to
general safety requirements. In this sense, the product fails to provide the safety
that the public at large is entitled to expect (i.e., standard of safety), and this lack
of safety causes the damage. In the language of defectiveness (similar to fault) the
product or some of its key components may have design, manufacturing, maintenance
or marketing defects (Vladeck, 2014).

The same features that make AI systems inherently risky, such as lack of causality, opac-
ity, unpredictability or their self and continuous learning capabilities, may lead to consider-
able difficulties when it comes to proving defect or fault and causal link with the damage in
the different liability regimes. In this paper, we illustrate these difficulties presenting three
case studies, as well as the methodology to reach them. Specifically, we address the cases
of cleaning robots, delivery drones and robots in education.

2. Related Work

The impact and challenges that AI systems have on liability rules have been extensively
studied over the past few years. One of the first points of discussion focuses on the legal
personality that could be attributed to an autonomous AI-based system that makes deci-
sions without human intervention or supervision. As highlighted by Cerka, Grigiene, and
Sirbikyte (2015), neither national nor international law recognizes AI as a subject of law,
which means that an AI system cannot be held personally liable for the damage it causes.
The question to be asked would be who is liable for damages caused by the actions of AI.
On the one hand, when the AI system simply acts as a tool to provide humans with ad-
ditional knowledge, recommendations, etc., the person operating that tool would then be
ultimately responsible for any decisions (e.g., the learned intermediary doctrine, Sullivan &
Schweikart, 2019). On the other hand, as AI becomes more autonomous, it will be more
difficult to determine who or what is making decisions and taking actions (Shook, Smith,
& Antonio, 2018). Attributing legal personality to AI systems may be a possibility in some
cases, but as concluded by the Expert Group on Liability and New Technologies set up by
the European Commission for the purposes of liability (EC, 2019), it is not necessary to
give autonomous systems a legal personality, as the harm AI systems may cause can and
should be attributable to existing persons or organizations. Harm caused by AI systems,
even fully autonomous ones, is generally reducible to risks attributable to natural persons
or existing categories of legal persons, and where this is not the case, new laws directed

2. We focus primarily on product liability at the EU level, which a subcategory of strict liability but based
on defectiveness. Note that although in most US states product liability is linked to a defect, this is not
applicable in all cases.
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at individuals are a better response than the creation of a new category of legal person
(Abbott & Sarch, 2019).

Another point of debate has been to establish which liability framework is the most
appropriate for AI systems. One of the first questions was to decide whether to apply a
standard of care (negligence-based) or a standard of safety (defect-based). As discussed
by Vladeck (2014), and unlikely as it may seem, this issue was addressed by a court over
six decades ago (in 1957, based on US tort law) concerning a car accident due to one
pedestrian (the claimant) crossing inappropriately. In its analysis, the court argued that
the driver, however efficient, is not a mechanical robot capable of avoiding an accident in
such circumstances. Implicitly, the court argued that an autonomous vehicle must operate
according to a safety standard. As explained further by Vladeck (2014), in modern product
liability law, such a standard would likely be set on a risk-utility basis (strict liability). In
the past, claims related to product failures were initially handled under negligence theories,
largely because the focus was on the conduct of humans, not the performance of machines.
However, as negligence claims related to product failures became more difficult to prove,
strict liability principles took root to govern product liability cases, especially in the case
of complex and highly autonomous products such as modern AI systems.

As suggested by Giuffrida (2019), liability for a defective product applies when, among
other possibilities, a reasonable alternative design (or manufacturing, maintenance or mar-
keting processes) could have avoided or limited foreseeable risks of harm3. For complex
AI systems, deciding who is responsible and for what when someone has been injured can
be extremely complicated as many parties come into play in the complex supply chain.
For example, there are, among others: AI developers, developers of training frameworks,
data collectors, annotators, controllers and processors, providers of AI systems integrated
in other AI systems, manufacturers of the products incorporating the AI systems, users of
these products, etc. On top of that, we find the aforementioned specific characteristics of AI
systems (i.e., lack of causality, opacity, unpredictability and self and continuous learning)
which makes it substantially more difficult to demonstrate causal relationships (Bathaee,
2018). Therefore, the burden of proving a design alternative that might have avoided harms
can be huge and, in some cases, unfeasible for the victim to address. As explained by Buiten
(2019) with respect to arguing and evaluating how complex algorithms (e.g., AI systems)
may have caused harm, it is obvious that courts and injured parties remain at a disadvantage
compared to the expert developers producing the systems.

The problem of the difficulty in proving causation for AI systems has been clearly
identified in the literature, whether for fault-based or defect-based liability regimes. As
described by the Expert Group on Liability and New Technologies, regarding wrongfulness
and fault: “In the case of AI, examining the process leading to a specific result (how the
input data led to the output data) may be difficult, very time-consuming and expensive”.
And with respect to product liability: ”the complexity and the opacity of emerging digital
technologies complicate chances for the victim to discover and prove the defect and prove
causation” (EC, 2019). In view of these difficulties, experts and academics propose various
alternatives to alleviate the burden of proof on victims, including the reversal of the burden

3. This approach corresponds mainly to the US doctrine, which can be seen as a possible path within the
broader EU approach, where defect is primarily linked to the safety that the general public expects from
a product.
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of proof, rebuttable presumptions, or the application of strict liability regimes, among others
(Karner et al., 2021; Wendehorst & Duller, 2021). From a technical perspective, the need of
explainable AI has been also proposed as a mean to overcome the AI opacity issue (Padovan,
Martins, & Reed, 2022; Fraser, Simcock, & Snoswell, 2022).

In this paper, we focus on causation in the context of AI and liability to present a set of
use cases, including legally relevant technical details, which illustrate the specific difficulties
involved in AI systems when it comes to proving causation in liability regimes, either from
a standard of care or from a standard of safety point of view. Contrary to previous works
(EC, 2019; Karner et al., 2021; Erdélyi & Erdély, 2021) the objective of our use case analysis
is not only to test the legal or insurance issues, but to address the technical difficulties that
even in the best case scenario, i. e., with the cooperation of the defendant who provides
access to documentation, training data and logs (Wendehorst & Duller, 2021), an expert
would have to face in order to prove fault or defect. The same specific AI challenges related
to the burden of proof identified in the context of anti-discrimination law (Hacker, 2018; DG-
JUST, Gerards, & Xenidis, 2021) also apply to liability regimes. In this paper, we provide
a more specific analysis including use cases at a high level of granularity. We mainly focus
on systems that can produce physical damage, so the link between defect or fault and the
harm should be also established. We therefore omit pure software based cases such as the
recent Australian case of ACCC v Trivago (Fraser et al., 2022). The selected examples
represent recent technological developments, potentially available within a relatively short
time horizon, which may pose risks to third parties. In this analysis, we link the difficulties
in addressing the burden of proof to the characteristics of certain AI systems such as lack
of causality, opacity and unpredictability.

The structure of the rest of the paper is as follows. First, we describe those specific
features of AI that we consider pose a problem in demonstrating causality when attributing
responsibility in liability regimes. Second, we present the methodology for generating the use
cases. Third, we describe the use cases and, finally, provide a general discussion, conclusions
and future work.

3. Specific Features of Certain AI Systems

Unfortunately, there is no commonly accepted technical definition of AI that is valid for
multiple contexts (Samoili et al., 2021). Generally speaking, we can say that AI is a broad
concept related to machines capable of making decisions and performing tasks in a way
that we would consider intelligent or human-like. However, although AI is often discussed
in general terms, most of the features linked to safety and human rights risks are mainly
present in recent ML/DL approaches. Indeed, in these cases the methodology changes
substantially from conventional computational systems. Instead of explicitly implementing
the instructions needed to address a particular problem, data-driven AI techniques capture
data sufficiently representative of the problem to be solved, and fit a complex mathematical
model with many parameters that are determined during a training process. This approach
has been conveniently reinforced by the growing availability of massive datasets, as well as
increasingly powerful computational systems. They have allowed the use of more and more
sophisticated mathematical models with a greater number of parameters capable of dealing
with increasingly complex problems. Moreover, this approach allows for continuous training
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of the system throughout its life cycle as more data and experience of use and interaction
becomes available. This enables continuous improvement without a substantial change in
methodology.

On the one hand, the complexity and power of AI systems allows to implement solu-
tions that perform tasks and make decisions with increasing autonomy4, understood as the
capability to perform with an absent or low degree of external influence or human involve-
ment (Estevez Almenzar et al., 2022). However, it is important to note that complexity and
autonomy are not exclusive characteristics of AI systems. Complexity is a broader concept
related to the whole system (number of interconnected elements, complexity of the supply
chain, etc.) and to the operating environment (number and type of agents, interactions,
structure of scenarios, etc.). The level of autonomy, although dependent on the capacity of
the system, is still a design variable.

On the other hand, these approaches may suffer from multiple limitations that need to be
properly addressed. These include potential bias in the data that is indirectly incorporated
into the trained model (Tolan, 2018)5, possible problems of overfitting (Ying, 2019), i.e.,
an excessive fit to the data that leads to a lack of generalisation6, or the problem known
as the curse of dimensionality7 (Verleysen & Francois, 2005), especially relevant in
problems with multiple inputs. But again, it is important to note that bias issues, or the
ability to find a complete or sufficiently general solution to a problem, or the difficulties in
finding solutions to problems in high dimensional spaces, are not unique to AI systems. Bias
is introduced in both algorithm design and data, but it is a feature of virtually all designs
carried out by humans and, of course, is an intrinsic feature of human decision-making. The
dimensionality problem is an extrinsic feature that refers to the complexity of the operating
scenario and the number of variables involved in the system output. This is also related to
the need for data, as the number of data samples required for an acceptable representation
of the input space increases exponentially with dimensionality. Finally, overfitting or lack
of generalisation, while tending to be more prominent when systems are more complex
and flexible (e.g. ML/DL), other more conventional computational systems (e.g. expert
systems or a set of fixed rules) can suffer from the same problem, for example, due to bad
specification or poor design.

In our view there are four specific characteristics of certain AI systems that could pose
significant challenges to proving causality in liability regimes, namely, lack of causal-
ity, opacity, unpredictability and self and continuous learning capability. These
features are described in detail below. In Fig. 1 we illustrate all the aforementioned char-
acteristics of AI systems and their impact on the difficulty when proving causation. As can

4. Note that some research communities prefer to use ”automation” rather than ”autonomy”. The trend
we observe is that both concepts can be used interchangeably, although autonomy can also contemplate
actions beyond the intended domain.

5. Bias in AI can be more broadly defined as an anomaly in the output of AI systems, due to the prejudices
and/or erroneous assumptions made during the system development process or prejudices in the training
data, so the results from the AI system cannot be generalised widely (Estevez Almenzar et al., 2022).

6. Generalisation refers to the ability of the model to adapt adequately to new, previously unseen data,
drawn from the same distribution as that used to create the model.

7. The amount of data needed to represent a problem grows exponentially with the dimension of the input
space (i.e. with the number of variables or features).
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be seen, their impact and degree of exclusivity in relation to AI systems is conceived more
as a continuum than as a discrete categorisation.

  
Exclusive of AI/ML (notional)Non-exclusive of AI/ML (notional)

Im
p

a
c

t 
o

n
 p

ro
vi

n
g

 c
a

u
s

a
ti

o
n

 (
n

o
ti

o
n

a
l)

Low

High

Complexity

Self & continuous 
learning

Dimensionality

Medium

Opacity

Unpredictability
Overfitting / 
generalization

Autonomy

Bias

Intrinsic feature

Extrinsic feature

Lack of 
causality

Figure 1: Notional representation of the intrinsic and extrinsic features of AI systems and
their impact on proving causation. The abscissa represents the uniqueness of each
feature of AI systems compared to those based on more conventional computa-
tional methods.

3.1 Lack of Causality

Causality can be defined as a generic relationship between two variables: the effect and the
cause that gives rise to it. As described by Guo et al. (2020), when learning causality with
data, we need to be aware of the differences between statistical associations and causation.
The current success of data-driven AI is mainly based on its ability to find correlations and
statistical patterns in large-scale, high-dimensional data (i.e., statistical modelling). And
not just any type of data, but usually independent and identically distributed (i.i.d) data.
That is, random observations that are not dependent on each other and have the same
probability of occurring (e.g, rolling a die several times). Problems can be intrinsically i.i.d,
or they can be made approximately i.i.d. and, in such cases, convergence of a learning
algorithm can be theoretically guaranteed at the lowest achievable risk (Schölkopf et al.,
2021). Therefore, it is not surprising that, with sufficient data, data-driven AI can surpass
human performance.

The i.i.d. assumption can be violated in the “independent” part and/or in the “iden-
tically distributed” part. On the one hand, if there are statistical dependencies between
variables, this assumption does not allow explicit modelling and learning of the causal re-
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lationships between them. On the other hand, if the distribution from which the data is
derived differs slightly between the training phase and real-world operation, the data-driven
AI system often performs poorly. For example, computer vision systems can fail recognizing
objects when they appear under new lighting conditions, different viewpoints, or against
new backgrounds (Barbu et al., 2019).

In most cases, real-world data do not fully satisfy the i.i.d. hypothesis. As described by
Peters, Janzing, and Schölkopf (2017) and Schölkopf et al. (2021), generalising well outside
the i.i.d. setting requires learning not mere statistical associations between variables, but
an underlying causal model. Learning causal relations is highly complex, and it requires
collecting data from multiple domains (i.e., multiple distributions) as well as the ability to
perform interventions (i.e., interventional data) that trigger a change in the data distribution
(Schölkopf et al., 2021).

Causality (or lack thereof) is highly correlated with the ability of data-driven AI systems
to respond to unseen situations (linked to unpredictability and generalisation capabilities)
and to remain robust when some interventions change the statistical distribution of the
target task. This includes adversarial attacks, where carefully selected perturbations of
the inputs, typically imperceptible or inconspicuous to humans (e.g., adding invisible noise
to images, or inverting letters in a text) can induce large variations in the system’s outputs
(Papernot et al., 2016) (constituting violations of the i.i.d. assumption). In addition,
learning causality can help ML systems to better adapt to other domains (e.g., multi-task
and continuous learning), and improve interpretability and explainability of ML systems
(Chou et al., 2022) (linked to opacity as presented in Section 3.2). It has also been shown
that explainable AI focused on causal understanding (”causability”) can support effective
human AI interaction (Holzinger & Müller, 2021).

However, despite numerous advances in this field (Pearl, 2009; Peters et al., 2017), learn-
ing causal relationships still poses numerous challenges and so far, according to Schölkopf
et al. (2021), data-driven AI has neglected a full integration of causality. But in any case,
forcing AI systems to rely on causal mechanisms rather than correlations will not ensure
“intuitive” models, and we have to assume that certain phenomena may not be exhaustively
based on causal mechanisms (Selbst & Barocas, 2018).

3.2 Opacity

The formal definition of opacity refers to obscurity of meaning, resistance to interpretation
or difficulty of understanding. In the AI domain it is also known as the black-box effect
(Castelvecchi, 2016) since the decision-making process with ML appears inscrutable from
the outside. Even when AI experts, or the creators of the AI system themselves, examine
the system (source code of the model and the training process, the model architecture,
the trained parameters, the training, validation and test datasets, etc.), it is difficult or
impossible to understand how they combine to form a decision. Opacity arises from the
inability to provide human-scale reasoning from complex AI models (Burrell, 2016). Another
similar term for the fact that the rules governing the AI system are so complex, numerous,
and interdependent that they frustrate human comprehension is ”inscrutability” (Selbst &
Barocas, 2018).
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This intrinsic feature of certain AI systems has prompted the development of trans-
parency requirements, whether horizontal (e.g., the AI Act European Commission, 2021)
or sector-specific (e.g., possible requirements in the field of autonomous vehicles as described
by Fernández Llorca and Gómez (2021)). The compliance with transparency requirements
(which include measures to address traceability8, interpretability 9, or explainabil-
ity10) will alleviate the burden of proving causality. However, the well-known trade-off
between accuracy and interpretability in AI systems remains as an obstacle, i.e., more
accurate models are less interpretable and vice versa. Furthermore, attempts to explain
black-box machine learning models may not be sufficient to demonstrate causality (Rudin,
2019). Moreover, the field of explainable AI still needs stronger conceptual foundations
(Cabitza et al., 2023) and to overcome limitations regarding stability, robustness and com-
prehensibility of explanations (Saarela & Geogieva, 2022). Therefore, despite efforts to
develop interpretable systems by design or implement post-hoc explanations, the problem
of opacity of complex AI systems is likely to remain one of the most critical issues for victims
when trying to prove causation in either fault or defect schemes.

3.3 Unpredictability

Although unpredictability has often been associated with the self and continuous learning
capability of AI systems, this characteristic is also intrinsic to static or ”frozen” systems,
i.e. systems that do not continue to learn and adapt while in operation.

Unpredictability in data-driven AI systems is mainly due to two reasons. First, it can
apply in the case where the dataset is not sufficiently representative of the problem
to be addressed by the machine learning model. Regardless of the generalisation capability
of the model and the training process, the solution found in the poorly represented regions
of the input space will generate unpredictable results. We illustrate this effect in Fig. 2
(left). As can be seen, if the underlying (unknown) pattern of what is to be learned is very
complex and the training, validation and test data are not sufficiently representative, the
function learned by the data-driven AI model may not fit the real nature of the problem
and generate totally unpredictable values (which may lead to safety issues depending on the
scenario). This problem is very significant in cases of high dimensionality and complexity
of the input space, the operating environment, the number and type of interactions with
agents, etc., where obtaining sufficiently representative data is a major challenge.

The second reason refers to the lack of generalisation or overfitting of the learned
function. Even in the case where the input space is reasonably well represented by the
data set (which, after all, is always a limited sample of the entire input space), when the
learning process over-fits the data, the outcome of the learned function for samples not

8. Traceability of an AI system refers to the capability to keep track of the processes, typically by means
of documented recorded identification, or to the ability to track the journey of a data input through all
stages (Estevez Almenzar et al., 2022).

9. AI models are interpretable when humans can readily understand the reasoning behind predictions and
decisions made by the model (Estevez Almenzar et al., 2022).

10. Explainability in AI can be understood as a feature of an AI system that is intelligible to non-experts,
or as methods and techniques in AI such that the results of the solution can be understood by humans
(Estevez Almenzar et al., 2022)
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available during training, validation and testing can be totally unpredictable. This effect is
illustrated in Fig. 2 (right).
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Figure 2: Illustration of unpredictability issues due to (left) poor representation of the input
data space and (right) overfitting. The underlying function represent the desired,
unknown pattern. Two examples of erroneous and unpredictable results (red
circles) compared with the expected outcome (gray circles) are depicted on each
case. This is a simple scenario with only one input. Normally the dimension of
the input data space is much larger.

In both cases, these effects imply that even small, almost imperceptible, linear changes
in inputs can produce abrupt and unpredictable changes in outputs. This becomes more
pronounced the larger the non-linear relationship between inputs and outputs. Moreover,
it is these constraints that allow exploiting the aforementioned adversarial attacks.

In addition, it is important to highlight certain types of AI systems, that is, recurrent
models (Mandic & Chambers, 2001), in which the output not only depends on the inputs
but also on the internal state of the model. This means that the same input at two different
time instants (with two different model states) may provide different outputs. This feature
allows dealing with dynamic problems where states and inputs prior to the instant of decision
are relevant. But this feature also implies that, given the same inputs, small variations in the
state of the model can generate different results, which implies a source of unpredictability.

Finally, it should be noted that unpredictability can lead to significant problems of re-
peatability11, reproducibility12 or replicability13. While conventional computational
approaches are less likely to provide different results under the same operating conditions,

11. The measurement can be obtained with stated precision by the same team using the same measurement
procedure, the same measuring system, under the same operating conditions, in the same location on
multiple trials (Estevez Almenzar et al., 2022).

12. The measurement can be obtained with stated precision by a different team and a different measuring
system, in a different location on multiple trials (Estevez Almenzar et al., 2022).

13. The measurement can be obtained with stated precision by a different team using the same measurement
procedure and the same measuring system, under the same operating conditions, in the same or a different
location on multiple trials (Estevez Almenzar et al., 2022)
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the unpredictability issues described above pose an additional difficulty in ensuring system
consistency and robustness.

3.4 Self and Continuous Learning

Although the terms self-learning and continuous learning have often been used in a
somewhat vernacular way, for example by mixing them, or by referring to only one of them
with both meanings, these are two distinct terms with different meanings.

On the one hand, self-learning refers to the ability of the AI system to recognize
patterns in the training data in an autonomous way, without the need for supervision (Es-
tevez Almenzar et al., 2022). This definition implicitly refers to unsupervised learning (i.e.,
learning that makes use of unlabelled data during training (Estevez Almenzar et al., 2022))
but explicitly stating that this is done without human supervision (i.e., autonomously).
Nevertheless, this term does not specify if the process is performed off-line or while the sys-
tem is in operation. Another definition refers to learning from an internal knowledge base,
or from new input data, without introduction of explicit external knowledge (Estevez Almen-
zar et al., 2022). This definition implicitly mentions domain adaptation and might suggest
that the process is autonomous.

On the other hand, continuous learning refers to incremental training of an AI system
that takes place on an ongoing basis during the operation phase of the AI system life cycle
(Estevez Almenzar et al., 2022). Therefore, this term explicitly excludes off-line learning
as it specifically refers to on-line learning while in operation. Although the level of human
supervision is not included in the definition, we can implicitly assume that if the operation
of the system is autonomous, continuous learning also takes place autonomously. The
aforementioned characteristics of lack of causality and unpredictability make this approach
particularly risky in certain scenarios. Additionally, it is worth mentioning an effect known
as catastrophic forgetting. That is, under certain conditions, the process of learning a
new set of patterns (in this case continuously during operation) suddenly and completely
interferes, or even erases, the model’s knowledge of what it has already learned (French,
1999).

Self and continuous learning are crucial for systems operating in changing environments,
as they enable the acquisition, fine-tuning, adaptation and transfer of increasingly complex
knowledge representations. For example, they are widely used in contexts where adaptation
to the profile of each user is required. They are also commonly used during the development
phase of complex AI systems (e.g., reinforcement learning). However, once systems are
deployed, and in cases where they may cause damage to persons or property (triggering
liability mechanisms), such approaches may involve unacceptable risks. As highlighted by
Wendehorst and Duller (2021) when ”AI is learning in the field” the system adapts its
function and behaviour after the deployment and thus it is very difficult to assess the
risk because its risk profile can significantly change over time. Moreover, systems (e.g.,
hardware, platforms) may also be damaged, with the costs that this entails.

From the perspective of fault- and defect-based liability regimes, it is clear why self and
continuous learning are a major challenge, as they are directly related to the question of
foreseeability (Rachum-Twaig, 2020). It is reasonable to assume that a defendant will only
be held liable if it could reasonably foresee and prevent the potential results of an action
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(Benhamou & Ferland, 2021). If an AI system with self and continuous learning capabilities
is placed on the market and causes harm to a person, it would be very difficult for the
claimant to prove that the system was negligently designed or defective, and especially that
these issues existed when the system left the hands of the providers (Cerka et al., 2015).
That is one of the reasons for suggesting that the development risk defence, which allows
the provider to avoid liability if the state of scientific and technical knowledge at the time
when the product was put into circulation was not such as to enable the existence of the
defect to be discovered, should not apply in these cases (EC, 2019).

Safety regulations, or specific AI regulations (e.g., the AI Act European Commission,
2021), are conceived to certify that a specific ”version” of a system complies with established
requirements. Enabling self and continuous learning is highly unlikely, as these features may
substantially modify the behaviour of the system after certification. This could lead to cases
where two AI systems of the same type, exposed to different environments, would differ in
their behaviour over time. For example, in the context of vehicle safety regulations, there
is preliminary consensus that self and continuous learning should be not be allowed, as
they are incompatible with existing regulatory regimes and safety expectations (UNECE
WP.29/GRVA, 2021).

Another example can be found in the framework of the AI Act. High-risk AI systems that
“continue to learn” after being placed on the market or put into service shall be developed
with appropriate mitigation measures. Whenever there is a change in the behaviour that
may affect compliance with the regulation (i.e., a substantial modification) the AI system
shall be subject to a new conformity assessment (Article 43(4) of the AI Act proposal
European Commission, 2021). In other words, self and continuous learning are only allowed
if the provider can predetermine and foresee the changes in the performance. Depending
on the context, this may be virtually impossible. For example, we can consider cases where
behavioural adaptation through self and continuous learning is necessary to improve the
interaction with end-users, but only if the change in the AI system does not affect their
safety.

Accordingly, when we refer to the issue of lack of foreseeability or predictability of AI
systems, and how it challenges different liability regimes, it is more realistic to mainly focus
on the intrinsic features of lack of causality and unpredictability rather than on self and
continuous learning. It is reasonable to assume that safety or AI specific regulations will
not allow for the integration of self and continuous learning if they can affect the behaviour
of the system after certification, especially in cases where AI systems may pose a risk of
physical harm. That is the main reason why these characteristics appear with less impact
in Fig 1.

4. Use Case Selection Criteria and Descriptive Structure

The main goal of this work is to develop a number of use cases to illustrate the specific
difficulties of AI systems in proving causation, and to address the technical challenges that
an expert would face in proving fault or defect, including legally relevant technical details.
In this section we describe the inclusion criteria and the proposed structure for describing
the use cases.
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4.1 Inclusion Criteria

For the identification and elaboration of the use cases we have developed a three-pillar
inclusion criterion that comprises multiple elements related to the technology, the liability
framework and the risk profile. An overview of the proposed methodology is shown in Fig.
3. The proposed sets of criteria would need to be fulfilled cumulatively. In the following,
the different criteria used for the development of the use cases are described.
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Figure 3: A schematic view of the proposed methodology to develop the use cases.

4.1.1 Technology Aspects

From a technology point of view, the proposed approach takes into account two main
aspects.

• Technology readiness: the use cases should include AI systems that are sufficiently
realistic to be described with a sufficient degree of granularity and confidence. This
could refer to experimental platforms that could have been used in relevant but re-
stricted environments or piloted under certain conditions in operational environments.
Therefore, they do not necessarily have to be products currently on the market, but
they should have a relatively high level of technological maturity and availability. For
example, if we use the Technology Readiness Levels (TRLs) (Martinez Plumed et al.,
2022), we focus on systems between TRL 5 and 7.

• Specific AI features: we focus on the specific features of certain types of AI de-
scribed in Section 3, that is, lack of causality, unpredictability, opacity and, in some
cases, self and continuous learning. As described above, we can assume that safety
or AI specific regulations will not allow self and continuous learning if they can affect
the behaviour of the AI system in a potentially dangerous way. This applies in partic-
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ular to products subject to type-approval or ex-ante conformity assessment (usually
products that may pose a risk to the physical harm to persons).

4.1.2 Features of the Liability Framework

As far as the liability framework is concerned, we consider three main aspects: the liability
regime, the lack of insurance and the type of relationship between the victim and the
provider/manufacturer or user/operator. An additional criterion (the type of damage) can
also be linked to this section, but is mainly associated with the general context.

• Liability regimes: the main frameworks considered are the product liability and
fault-based liability regimes, based on proof of defect and fault, respectively. The
idea, therefore, is to avoid scenarios where risk-based liability is directly applicable,
or where it is at least compatible with product- and fault-based approaches.

• Lack of insurance: given that the purpose is to identify situations where the victim
must bear the burden of proof, it is more effective to avoid approaches where the
damage is covered by insurance (Erdélyi & Erdély, 2021). That is the case, for exam-
ple, for autonomous vehicles, which will be covered by motor insurance schemes. This
criterion is mainly related to the avoidance of risk-based liability, which is usually
supported by mandatory insurance.

• Victim - AI provider/user relationship: to avoid triggering consumer contrac-
tual law mechanisms that could prevail over liability approaches, the victim and the
AI system provider or user should not have any contractual relationship. That is,
scenarios should be based on the damage caused to third parties (e.g. bystanders).
Therefore, applications intended to be used outside of private environments would be
considered suitable for the use cases included.

4.1.3 Risk Profile

Once the type of relationship between the victim and the provider or user of the AI system
has been established, the next step is to define the risk profile, depending on the type of
potential harm and its significance.

• Type of harm: since the AI-specific issues of proof of causation can be applied irre-
spective of the type of harm, our analysis focuses on any type of harm compensable
under all liability regimes, i.e. personal injury, including medically recognised psycho-
logical damage, and property damage. In this way we ensure the broad relevance of
the use cases.

• Significance of harm: although the use cases may not necessarily put the ”general
public” at risk, the possibility of harm to third parties in the envisaged scenarios
should be reasonably high. In other words, the scale of potential accidents should
not be negligible. To realistically achieve this goal, on the one hand, we are looking
for applications operating in public environments. On the other hand, to provide
illustrative examples, we consider that AI systems should be embodied in some kind
of mobile robotic platform, whose operating dynamics are more likely to pose a danger
to bystanders.
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4.1.4 Autonomy

As mentioned in Section 3, we refer to autonomy as the ability of the AI system to perform
without external influence or human involvement. This feature cuts across the three sets of
requirements defined for the development of the inclusion criterion. On the one hand, and
although the design of autonomous systems is not unique to AI-based approaches, achieving
high degrees of autonomy, without requiring human intervention or supervision, is possible
today thanks to recent technological advances in AI. On the other hand, the fact that the
system does not require human intervention allows liability regimes to be triggered not
towards a person responsible for operation or supervision, but towards the AI provider or
user. This way, it would be difficult to link a human action or omission to a certain output
that caused the damage and the proof of causation would necessarily focus on the intrinsic
behaviour of the AI system itself. Finally, the ability of the system to operate in public
environments in a fully autonomous fashion is also related to the risk profile, the type of
damage and its significance.

4.2 Expert Knowledge

Followed by the specification of the inclusion criteria, we considered a number possible sce-
narios that would fulfil the aforementioned requirements. At this stage, as illustrated in Fig.
3, the interaction among the members of our team with different disciplinary background
(law, engineering, computer science, robotics, human cognition, human factors and social
science) was pivotal for the final identification of the use cases.

4.3 Use Cases Structure

As can be observed in Fig. 4, for each use case, we address the following steps. First, we
describe the main characteristics of the AI system(s) involved in the application and the
operating environment. Second, we describe the hypothetical events leading to the damage,
as well as the damage itself. Third, we identify the possible causes of the accident. Fourth,
we identify the possible liable parties. And finally, we detail the procedure for obtaining
compensation, highlighting the requirements and the main difficulties faced by the victim.
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Figure 4: Proposed structure to describe the use cases.
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5. Case Studies

5.1 General Considerations

This work focuses on fault- and defect-based liability regimes. Although a strict liability
regime could apply in some cases, where the claimant would only have to prove that the
risk arising from the sphere of the liable party (i.e., the user or the operator) materialised,
it is very likely that the user/operator would take recourse against the providers of the end
product or the individual AI components. Therefore, the need to prove fault or defect could
also apply.

Under national tort law, the claimants would in principle have to prove that the de-
fendant caused the damage negligently. That involves proving non-compliance with the
applicable standard of care (i.e., fault) and the causal relationship with the damage. Under
product liability, the claimants would have to prove that the AI-based product was defective
and the causal link with the damage.

In both cases, expert opinion, access to technical documentation on the design, func-
tioning and operation of the system, as well as access to relevant data and system logs (e.g,
inputs, outputs, internal states of the subsystems) corresponding to the last few minutes
before and after the accident, would be required. The expert would have to understand
in considerable detail the overall functioning of the system, components involved, inter-
dependencies, etc., and be able to interpret the available data. All this poses in itself a
considerable burden and cost for the claimant. Once the above requirements are fulfilled,
the expert must face the causal analysis to prove fault or defect and the link with the
damage.

Last but not least, we assume that victims can claim liability against multiple liable
parties, including product manufacturers, users or operators, and providers of AI systems
integrated in the products. Although the burden of proof will depend on the type of
defendant, our approach assumes the worst case scenario where the claimant raises the
claim against one or many of the AI systems providers, needing to go into the technicalities
of how the AI system works and what its state was at the time of the accident.

5.2 Autonomous Urban Cleaning Robots

5.2.1 Characteristics of the AI System and Operational Environment

An autonomous fleet of cleaning robots operates in pedestrianised public areas. The robots
are equipped with multiple sensors (e.g. cameras, Light Detection and Ranging (LiDAR),
radar, ultrasound, GPS, etc.), digital information (e.g., digital maps), connectivity features,
including communication between the robots and between the robots and the infrastructure,
and actuators to perform the cleaning tasks. The robots include multiple AI/ML systems,
each one responsible for a particular task (e.g. perception systems for the detection and
location of litter and dirt, robot localization and mapping, detection of obstacles, trajectory
planning or lateral and longitudinal control of the platform, etc.). Some examples of the
current state of this kind of technology are depicted in Fig. 5.

Each cleaning robot belongs to a fleet deployed throughout the city. An employee is
in charge of defining the operation areas to be cleaned (i.e., the missions) and monitoring
multiple robots in simultaneous operation from a remote-control centre. The fleet can
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Figure 5: From left to right, three examples of the current state of this kind of technology:
the systems developed by ENWAY (2021), Trombia (2020) and Boschung (2020).

coordinate the safe cleaning of the selected region, the interaction with pedestrians, and the
avoidance of obstacles, with a high degree of autonomy. The role of the human operator
is of a supervisory nature following the human oversight strategy defined by the cleaning
robot provider.

5.2.2 Description of the Events Leading to Damage

A colourful baby stroller is parked in front of an advertising banner with similar colour
patterns while the baby’s guardian looks at a nearby shop window. One of the cleaning
robots does not seem to recognize the stroller as an obstacle and collides with it. The
stroller is damaged and the baby slightly injured.

5.2.3 Potential Causes of the Accident

The accident described in this use case could have been caused by any of the following
issues:

• A flaw in the vision component of the system, the AI perception model, that caused
a failure in the detection of the trolley because it was somehow camouflaged with the
background (due to the presence of an advertising banner with colour and pattern
similar to the ones of the trolley). This led to an image segmentation error (i.e., a
false negative) that considered the stroller as part of the background of the banner.

• An AI cybersecurity vulnerability in the perception model that was exploited by a
third party causing the AI to malfunction. For example, an adversarial machine
learning vulnerability could have been exploited by vandals by placing printed stickers
on the advertising banner to prevent the detection of objects around it.

• An attack targeting the robot’s sensors, such as blinding, jamming or spoofing. In the
absence of mechanisms to mitigate this type of denial-of-service attacks, the perception
and planning systems can fail to detect the baby stroller, preventing the robot to avoid
the collision.

• A cyberattack that led to the compromise of any of the robot’s Electronic Control
Units (ECUs). An attacker could gain unauthorised access and force the system to
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take an unsafe action causing the robot to collide with the stroller. The attacker could
launch such an attack locally (e.g., through physical access to the robot) or remotely,
either from the vicinity (e.g., through WiFi or Bluetooth access) or from Internet
potentially from anywhere in the world.

On top of that, the presence of the flaw, or the conditions in which the accident took place,
could have the following origins:

• Failure due to an updated version of the perception system devised to reduce the
number of false positives and negatives of previous versions (resulting in many regions
not being cleaned correctly). The confidence threshold for considering a detection as a
true obstacle was increased to reduce the number of false positives. Unfortunately, the
similarity between the texture and colour of the baby stroller with the background of
the advertising banner from the camera’s perspective resulted in a potential obstacle
being detected with not very high confidence and discarded by the new updated
version of the segmentation module.

• Failure of the provider of the perception system to timely distribute a software update
to fix a known safety flaw or security vulnerability of the AI system. For example, if the
harm had been caused due to a flaw in the segmentation mechanism, the manufacturer
could have released a software update to address it by implementing a sensor fusion
approach that included range-based sensor data, which would have allowed the 3D
volume of the stroller to be detected as an obstacle, and be avoided by the path
planning system. Similarly, if the harm had been produced as a result of the malicious
exploitation of an adversarial machine learning vulnerability, the manufacturer could
have released a software update to mitigate it by, for example, updating the AI model
with a more resilient version trained with adversarial samples.

• Failure of the operator of the system to timely apply the software update that could
have been made available by the manufacturer to fix the safety flaw or security vul-
nerability that led to the harm described in this scenario.

• Failure of the remote human operator to properly supervise the operation of the robot
fleet. The failure may be due to inadequate supervision by the human operator (i.e.,
incorrect compliance with the human oversight mechanisms defined by the provider),
or to defects in the human-robot interfaces (i.e., deficiencies in the human oversight
mechanisms defined by the cleaning robot producer).

5.2.4 Potential Liable Parties

The autonomous cleaning robots are very complex systems with many different internal
components based on a variety of AI models, which affect each other and are usually de-
veloped and integrated by different parties or subcontractors. The faulty behaviour or the
defect can be in one of the components, in several components, or in a faulty integration of
these components. Consequently, there could be multiple liable parties within the complex
supply chain involved in the development of the cleaning robots. Therefore, potentially
liable parties include:
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• Final producer of the cleaning robots.

• Provider of individual AI components integrated in the cleaning robots (e.g. naviga-
tion, perception systems such as vision component, path planning, low-level controllers
and operational interfaces).

• Professional user or operator: the municipality, or a company providing the service
to the municipality, deploying the cleaning robot services in the urban area.

• Adversaries that attack the system by exploiting vulnerabilities in the AI components
(e.g., adversarial machine learning) or in the broader software and hardware surface
(e.g., buffer overflows).

5.2.5 Obtaining Compensation

As described in the scenario, there may be multiple alternative or cumulative reasons for
the damage, including low confidence detection, cyberattacks against the AI models or
the underlying software and hardware architecture, etc. A realistic scenario is to assume
that all these possible causes should be assessed by an expert opinion to prove fault or
defect. For instance, an expert could determine that the result of the perception system
seems to be wrong at the time of the collision, since the stroller does not seem to appear
in some list of detected objects (if available). The expert may thus be able to prove that
the stroller was not properly detected (without indicating the cause). She may also be
able to discard that the sensors were jammed or spoofed since the raw data seems correct
(raw data should be interpretable). The expert could further suppose a correlation between
such detection failure and the control decision of the robot to move forward until colliding
with the stroller. This may allow the claimant to establish prima facie evidence. However,
proving correlation does not allow discarding alternative causes of the damage (e.g., the
stroller could have moved towards the robot abruptly because it was unattended without a
brake).

With regard to the lack of causality and opacity features of the AI systems, it may be
impossible to infer a clear causal link between a specific input and the harmful output.
Concerning the unpredictability feature, it is possible that the same robot, in an almost
identical scenario, but with slight variations in lighting, would have behaved correctly (which
could be used as evidence in favour of the defendant). As for self and continuous learning, we
assume that type-approval procedures would not allow such an approach while the cleaning
robots are in operation.

It is worth noting that, in any case, the expert would require access to the the logs of
the cleaning robot and technical information about the internal AI systems in order to be
able to conduct a forensic analysis of the incident and reconstruct the facts that led the
robot behave in the way it did. This type of information is often only available to the
manufacturer of the robot.
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5.3 Autonomous Delivery Drones

5.3.1 Characteristics of the AI System and Operational Environment

A fleet of autonomous delivery drones (a.k.a. unmanned aerial vehicles or unmanned air-
craft) is used to transport small and medium-sized packages (maximum 15 kg) to people’s
homes in rural and suburban areas, where there are sufficiently large landing areas (of at
least 2m2 due to the size of the drones) to release cargo safely and without interaction with
end-users. The drone is a multirotor quadcopter with horizontally aligned propellers. The
drones are autonomous in the sense that the operator loads the cargo into the drone, es-
tablishes the final destination, and the drone is capable of performing autonomous vertical
take-off and landing, navigating to destination, dropping off the parcel and returning to ori-
gin without the need for a pre-defined key points route. They are capable of detecting and
avoiding possible obstacles within the planned local route (e.g., birds, high voltage lines,
trees, etc.), being robust against moderate wind disturbances. The drones are equipped
with multiple sensors and communication systems. Inertial Measurement Units (IMUs)
are used to calculate the orientation, altimetric pressure, velocity, rotation rate, angular
velocity and tilt, linear motion and heading of the drone. GNSS is used to perform global
localization and navigation. LiDAR sensors and digital cameras are used as the input to
sense the environment, detect obstacles, and ensure a clear and safe landing zone. The
drones have short-range communication systems within the visual line of sight (VLO) with
the operator, but in order to continue monitoring the system beyond the visual line of sight
(BVLO), they also have 3G/4G/5G cellular communications.

The drones make use of multiple AI components, each one responsible for a particular
task, e.g., scene understanding and obstacle detection, autonomous localization and navi-
gation, etc. They include four main operation modes: (1) global planning, (2) take-off, (3)
global and local navigation and (4) landing. The most critical tasks are vertical take-off and
landing, where the drone continuously monitors that the planned local trajectory is clear
of any obstacles. Depending on the weight of the cargo and wind conditions, the delivery
mechanism may involve landing the drone or landing the delivery by hovering a few meters
above the delivery spot while releasing a wire with the delivery tethered to it until it reaches
the ground.

The operator must comply with all requirements established by applicable civil aviation
regulations including the verification that the lighting and weather conditions for the in-
tended trip (outbound and return) are within the specifications provided by the provider.
They must check weight and dimensions of the cargo, the battery status and available
range, and verify that the landing conditions at the destination are as required by the
provider’s specifications. Only if all required conditions are met, the drone can be loaded
with the cargo and launched for delivery. Thanks to the mobile communication interface,
the operator can monitor the entire process remotely.

Some examples of current developments in autonomous delivery drones technology are
depicted in Fig. 6.

5.3.2 Description of the Events Leading to Damage

The drone is approaching a suburban area to deliver a cargo. The day is a bit windy and
cloudy, so the delivery mechanism selected by the operator was by landing the drone. Once
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Figure 6: From left to right, three examples of the current state of this kind of technology:
the systems developed by Wing (2022), Amazon Prime Air (2022) and Zipline
(2022).

the delivery point has been detected and checked that it is clear of obstacles, the drone
starts the vertical landing manoeuvre.

A child from the neighbouring house is playing in his garden and, when he hears the
drone approaching, he suddenly runs towards it. The vertical landing is not properly
aborted, and the drone eventually hits the child. As a result of the impact, the drone’s
control system becomes unstable and the drone crashes into a nearby car parked in the
street. The child is seriously injured, and the car undergoes considerable damage.

5.3.3 Potential Causes of the Accident

The accident could have been caused by any of the following issues:

• A flaw in the AI-based obstacle detection system that caused a failure in the detection
of the child approaching to the landing zone. This failure could have been produced
due to multiple reasons. For example, some bias or mislabelling in the training data
of the perception system related to small objects on the ground or inadequate lighting
conditions.

• A flaw in the AI-based decision-making and control systems of the drone that caused
it not to react in time to the sudden presence of the child, properly correcting the
trajectory. This could have been due to several reasons, such as insufficient reaction
time of the control system or because of stability problems due to inappropriate wind
conditions.

• Failure of the AI systems to handle evolving unfavourable weather conditions. The
lighting and weather conditions were adequate at the time the operator made the
decision to deliver the parcel with the autonomous drone but worsened as the drone
approached its destination. No self-diagnosis functions were incorporated into the
autonomous delivery drone and the mission was not remotely aborted by the operator.
Poor lighting conditions would have reduced the accuracy of the perception systems.
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Inappropriate wind conditions would have compromised the control system’s ability
to perform obstacle avoidance manoeuvres.

• A deliberate cyberattack on the drone’s systems, targeting the drone’s sensors (e.g.,
sensors blinding, jamming or spoofing), exploiting an AI cybersecurity vulnerability
(e.g., an adversarial machine learning attack to the camera-based perception system)
or exploiting a cybersecurity vulnerability in the broader hardware and software ar-
chitecture (e.g., unauthorised access to the internal systems of the drone through the
wireless interface or cellular communications).

5.3.4 Potential Liable Parties

Similarly to the cleaning robots described in Section 5.2, autonomous delivery drones are
very sophisticated systems with many different internal components, some of them making
use of different kind of AI models. These systems are designed to interact with each other,
and can be developed and integrated by different parties and subcontractors.

In this context, the origin of the faulty behaviour or defect can be in one of component, in
several components, or in their specific integration. Therefore, there are multiple potentially
liable parties, including:

• Final producer or manufacturer of the autonomous delivery drones.

• Provider or manufacturer of individual AI components integrated in the drone (e.g.,
localization, navigation, perception systems, low-level controllers, take-off, landing
and delivery mechanisms, and operational interfaces).

• Professional user or operator: the company providing the delivery service deploying
the autonomous delivery drones in the rural and suburban areas.

• Adversaries that attack the system by exploiting vulnerabilities in the AI components
(e.g. adversarial machine learning) or in the broader software and hardware surface
(e.g. jamming or spoofing of sensor signals, or buffer overflow vulnerabilities in the
software implementation).

5.3.5 Obtaining Compensation

Let us consider that an expert has access to the inputs/outputs and internal states of the
perception system a few minutes before the accident and during the accident, as well as the
technical documentation to enable its correct interpretation. One of the first hypotheses to
investigate would be the case that the child was not correctly detected by the perception
module. For example, if the system records some list of moving obstacles detected on the
ground, the expert could check whether or not any obstacle could be associated with the
boy on that list. If no obstacles were detected before or during the accident, this could
be presented as evidence of fault or defect, and may also serve to presume a causal link to
the damage. This is the best case scenario, but this internal list may not be accessible or
available. The perception system could provide other types of information represented in a
format not directly interpretable by humans (linked with the lack of causality and opacity
features), as input to the decision-making, path planning and control modules.
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If it is possible to demonstrate that the child was properly detected (e.g., with the
aforementioned list of obstacles), then the expert would have to investigate why the drone’s
decision making, path planning and control systems did not avoid the collision. Some
internal information would be needed on environmental conditions measured by or com-
municated to the drone (e.g., wind speed, lighting conditions), drone status (e.g., height,
rotors speeds, pose), intended route (e.g., the local trajectory of the drone) and control
actions (e.g., target and current speed of all rotors). If all this information were available,
it would even be possible to reconstruct the accident and verify that the planned route and
control actions did not prevent it. This could be presented as evidence of fault or defect,
and link to the damage. Again, this is a favourable scenario, but this information may not
be directly available, or not directly interpretable (i.e., opacity).

It could be the case that the entire system is based on a completely opaque end-to-
end model (from the raw sensor inputs to the final control actions on the rotors, without
learning causal relationships), so that intermediate representations are neither available nor
interpretable. Under these circumstances, it is possible that an expert may be able to
establish some correlation between some possible alternative causes and the damage caused
to the child and the parked vehicle. However, the lack of causality and the opacity of the
the drone’s AI systems can make it impossible to establish a clear causal link between any
of the possible alternative causes and the accident. In addition, if an analysis of raw sensor
data (e.g., IMUs, cameras, LiDAR, GNSS) shows that the sensors were jammed or spoofed,
it would be very difficult to determine the source of the attack as sensor data would be
compromised. As for the unpredictability feature, an added difficulty is that the defendant
may be able to prove that the same delivery drone, in an almost identical scenario, but with
slight variations in weather conditions, would have been able to safely abort the delivery
manoeuvre. Finally, regarding self and continuous learning, we can reasonably assume that
the regulations for type-approval of these products would not allow their implementation
once the systems are deployed and operational.

5.4 Robots in Education

5.4.1 Characteristics of the AI Systems and Operational Environment

Socially assistive robots (a.k.a. social robots) typically are used in complex physical environ-
ments with the purpose to interact with humans (Dautenhahn, 2007). They can integrate
into the social environment and, autonomously or with limited human supervision, navigate
physical space and interact with humans, usually in restricted settings such as healthcare
environments (Fosch-Villaronga & Drukarch, 2022). They usually have explicit or implicit
anthropomorphic features and they can perform across a spectrum of behavioural policies
which typically depend on their morphology.

Despite the diverse characteristics of robots, for the present use case we consider a
robot that has a configuration that would allow its effective use in educational contexts to
support the socio-emotional skills of autistic children. In this sense, the robot is mobile
and includes perception components, navigation, facial, speech and emotion recognition,
localization, decision-making, mapping and path planning systems, manipulation, grasping,
expressive communication and other AI-based systems. It is about 1.30m tall and it has
arms, mainly for gesturing, as an expressive behaviour. The robot is equipped with multiple
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sensors to detect the environment, including cameras, 3D sensors, laser, sonar infrared,
tactile, microphones and inertial measurements units. It is equipped with a tablet as an
alternative means for communication. It can perceive and process speech using AI systems,
including a module for verbal communication with expressive voice. It is capable of detecting
obstacles, people, and facial expressions using AI-based computer vision algorithms. Lastly,
it is equipped with an AI-based cognitive architecture which combines task-related actions
and socially adaptive behaviour for effective and sustained human-robot interaction. Some
examples of similar prototypes already tested in operational environments are depicted in
Fig. 7.

In addition, for the robot to be tailored for that specific application (autistic children
in school environments) it comes with pre-designed interventions for cognitive engagement
(task-oriented). The robot is capable to adapt its social behaviour according to the child’s
personal abilities and preferences in the context of autism.

  

Figure 7: From left-to-right, top-to-bottom, five different robotic platforms in the context of
education: De-Enigma (2019), Pepper (BBC News, 2021), QTrobot from LuxAI
(LuxAI, 2019), Nao robot (Zhang et al., 2019) and Haru (Charisi et al., 2020).

Focusing on the need for inclusion and preparation of autistic children for an independent
life, a mainstream primary school school unit decided to increase the number of admissions
for high functioning autistic children. However, the staff is not adequate to undertake
individual support for the autistic children. For this reason, the director of the school decides
to introduce one robot per class for personalized interaction with the autistic children for the
improvement of their social skills. The school signs a contract with the company providing
robotic educational services using the robot (as well as all integrated AI systems) to provide
the educational services at the school.

The robots are installed in the classrooms for regular personalized interventions with
the autistic children and for voluntary interaction during children’s free time. The robots

636



Liability in the Age of AI: a Use-Case Analysis of the Burden of Proof

are mobile, and they can navigate dedicated space during the children’s free time if a child
requests so. The robot learns from the interaction with the autistic children and adapts its
social behaviour. While during the lesson time the robot is available only for children with
autism to perform personalized interventions, during the free time, any child of the school
can interact with the robot at dedicated spaces.

5.4.2 Description of the Events Leading to Damage

In this use-case, we focus on harm which might be caused because of the adaptive behaviour
of the robot. Some property damage may also occur. We propose three different scenarios.

Scenario 1: Physical harm and property damage towards a child with darker skin. The
robot fails to perceive a child with darker skin, and it causes physical harm to the child.
The blow caused by the robot also resulted in the breakage of the child’s glasses.

Scenario 2: Physical harm and property damage towards a child that behaves in an
unexpected way. The robot fails to respond in an appropriate way to an autistic child that
might have unexpected behaviour and hits the child. The blow caused by the robot also
resulted in the breakage of the child’s glasses.

Scenario 3: Long-term psychological harm towards a neurotypical child. During chil-
dren’s free time at the school, a neurotypical child interacts with the robot on a regular basis.
The robot adapts to the child’s needs and requests which subsequently leads the child to
develop potentially medically recognised pathological such as addictive behaviour towards
the robot (e.g., increase preference of the child to interact with the robot rather than with
humans causes an abnormal socio-emotional development), depression (e.g., social isolation
can negatively influence psychological health leading to depressive symptoms), emotional
distress (e.g., the inappropriate robot response in scenario 2 leads to psychological trauma),
or abnormal cognitive and socio-emotional development and dependencies.

5.4.3 Potential Causes of the Accident

For the scenarios 1 and 2 the damage could have been caused by the following issues:

• Flaw in the robot’s perception module that does not perceive the child due to bi-
ases in the robot’s perception system with respect to children with certain physical
characteristics.

• Flaw on the decision-making and path planning modules of the robot which fails to
adapt to the child user, from a prolonged period of interaction with children with
certain behavioural characteristics.

• Flaw on the control module which fails to consider the physical and behavioural
differences of the child user.

For the scenario 3 the damage could have been caused by the following issue:

• Robot adaptation: the adaptation module of the robot embeds an intrinsic motivation
element which contributes to the human-robot sustained interaction. The robot’s
internal goal to remain in an optimal level of comfort for the child-user contributes
to its adaptation to the specific child’s characteristics, needs and behaviours. This
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robot behaviour develops a closed loop of cognitive and socio-emotional interaction
with the child that might lead to the child’s addiction to the specific robot behaviour.
In a long-term interaction the child might exhibit a preference for interaction with the
robot rather than human social agents. In that case, the child and the robot develop
in a mutual adaptation loop.

5.4.4 Potential Liable Parties

Social robots can be very complex systems with many different AI-based components that
are integrated in a single platform. These components fall into three main categories (i)
perception, decision-making and planning, and action and execution, and they need to
interact with each other. Similar to the use cases presented in Sections 5.2 and 5.3, the origin
of the faulty behaviour or defect can be in one of the components, in multiple components
or in their integration. In addition, for the specific scenario, there might be modules that
refer to a task-specific robot behaviour and other modules that relate to the robot’s social
interaction. For the task-specific robot behaviour, a separate company might be involved
who are specialists in pedagogy and autistic children.

As such, there are multiple potentially liable parties including:

• Manufacturer of the robot who is also the provider of the robot’s AI systems.

• Providers of the AI modules integrated into the robot before it is placed on the market.

• Provider of the educational system which provides the task-specific modules.

• Company using the robot to provide educational services.

• The school that makes use of educational robotic services.

5.4.5 Obtaining Compensation

For product liability the victim should prove defectiveness of the robot and link with the
damage. For fault-based liability, the victim should prove negligence by some of the po-
tentially liable parties and link with the damage. As described above the compensation
claims can be directed against the robot manufacturer, the providers of some of the AI
components, or the user (the company providing the educational services). Although the
victim could also claim against the school, it should be noted that the robot was intended
to function without supervision by a teacher, and therefore courts are unlikely to uphold
such a claim.

On the one hand, courts may or may not infer defect or fault and causality from the
fact that the robot caused the relevant injuries. The fact that the AI-systems influencing
the robot’s behaviour adapted during the latter’s autonomous operation (e.g., by means of
self and continuous learning) may put into doubt such an inference. Courts may namely
take into account that the robot’s behaviour depends on various circumstances that may be
considered unforeseeable for the provider or user (namely the precise operating environment,
human interaction and the input data the robot is exposed to). Demonstrating the extent
to which the robot’s mechanism of adaptation to the behaviour of the children it interacts
with led to a change in behaviour not foreseen by the provider (resulting in harm) is quite
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complex. On the victim’s side, it would require, at the very least, expert knowledge and
access to a considerable level of documentation regarding both the system design and the
logs while it was in operation.

On the other hand, regarding potential issues not linked with self and continuous learn-
ing, proving defect or negligence, and causal link with the damage, would require expert
analysis of the design and functioning of the robot, the relevant AI-systems, or the human
oversight mechanisms foreseen for users. In addition, the injured parties should be entitled
to access the necessary level of information for the purposes of their claim, including the
aforementioned logs while the robot was in operation. On the basis of such information,
an expert may notably be able to determine whether the result of the robot’s perception
system is correct at the time of the accident, for instance by checking whether the physically
injured child appears in the list of detected objects. The expert may also review the relevant
control decisions of the robot, e.g. the decisions to interact in a certain way with the affected
children, or the decision to actuate certain movements. The analysis may also inform the
supposition of a correlation between, for instance, a detection failure and a relevant control
decision of the robot, but establishing a clear causal link will be very difficult due to the
aforementioned specific AI features. Regarding the role of the user, with a sufficient level of
access to information, such as the user oversight requirements (e.g., instruction of use), and
data logged during the operation, the victim could establish a possible failure to comply
with the user’s standard of safety or care. All these elements could serve as evidence to
prove defect or negligence. However, due to the complexity of the system as a whole, as well
as the lack of causality, unpredictability or opacity of AI systems, it would be very complex,
even for an expert, to establish clear causation between the specific operating conditions
and the harmful event. For example, it would be quite complex to exclude other elements
such as inappropriate behaviour on the part of children or supervisors.

6. Conclusions

In this work, we presented three hypothetical use cases of products driven by multiple
AI systems, operating autonomously in non-private environments, causing physical harm
(including one scenario involving mental health) and property damage to third parties.
These use cases, selected based on a set of inclusion criteria, represent AI technologies with
a high level of readiness operating in real-world scenarios. We described them realistically
and with a high degree of technical granularity. In addition, we explored the scenarios
from the perspective of product and fault liability regimes, identifying the possible causes
of the accident, the liable parties, and describing the technicalities underlying the process
of obtaining compensation from the victim.

Through this process, we highlighted the technical difficulties that an expert opinion
would face in trying to prove defect or negligence, and the causal link to the damage. This
is due to certain characteristics that some AI systems intrinsically contain, namely lack
of causality, opacity, unpredictability and self and continuous learning We attempted to
provide certain degree of complementarity between the three use cases to allow the analysis
of different factors when dealing with the burden of proof. As a further contribution, we
identified and described these specific AI features in detail, so that they can serve as a
basis for other studies related to legal issues and AI. Our analysis indicates that liability
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regimes should be revised to alleviate the burden of proof on victims in cases involving AI
technologies. How to most effectively adapt liability regimes to meet the new challenges
specific to AI systems is still an open question for further research. In addition, future
works can also be directed towards the development of a formal model to guide possible
arguments in liability cases involving AI systems.
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