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Abstract

Influence maximization is the problem of finding a set of seed nodes in the network
that maximizes the influence spread, which has become an important topic in social
network analysis. Conventional influence maximization algorithms cause “unfair” influence
spread among different groups in the population, which could lead to severe bias in public
opinion dissemination and viral marketing. To address this issue, we formulate the fair
influence maximization problem concerning the trade-off between influence maximization
and group fairness. For the purpose of solving the fair influence maximization problem in
large-scale social networks efficiently, we propose a novel attribute-based reverse influence
sampling (ABRIS) framework. This framework intends to estimate influence in specific
groups with guarantee through an attribute-based hypergraph so that we can select seed
nodes strategically. Therefore, under the ABRIS framework, we design two different
node selection algorithms, ABRIS-G and ABRIS-T. ABRIS-G selects nodes in a greedy
scheduling way. ABRIS-T adopts a two-phase node selection method. These algorithms
run efficiently and achieve a good trade-off between influence maximization and group
fairness. Extensive experiments on six real-world social networks show that our algorithms
significantly outperform the state-of-the-art approaches.

1. Introduction

With the rapid development of Internet technology, online social networks have become
the mainstream platform for interpersonal communication, which play an important role in
spreading information, innovation, and influence among its users. Influence maximization
(IM) in social networks is the problem of finding a set of seed nodes in the network that
maximizes the spread of influence under a certain information prorogation model. Due to its
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great potential in viral marketing and public opinion analysis, the influence maximization
problem has received great attention from academia and industry.

Kempe et al. (2003) formulated the influence maximization problem as a combinational
optimization problem and proposed a greedy algorithm that yields a (1−1/e)-approximation
under the Independent Cascade (IC) and Linear Thresholds (LT) diffusion models. Since
then, many algorithms (Goyal, Lu, & Lakshmanan, 2011; Liu, Xiang, Chen, Xiong, Tang,
& Yu, 2014; Chen, 2009; Chen, Wang, & Wang, 2010) have been proposed to improve the
efficiency and scalability of the IM algorithm.

FemaleMale

All users:100 Influenced users: 40

Social Network
Conventional

 Influence Maximization

Influenced users: 38

Fair Influence 
Maximization

FemaleMale FemaleMale

              70%                 30%               80%                 20%               69%                 31%

Figure 1: A toy example of fair influence maximization. The left figure shows the original
social network, with two attributed groups: 70% males and 30% females. The middle figure
shows that a conventional influence maximization approach activates 40 users, with 80%
males and 20% females, resulting in more influence in the male group. The right figure
shows that the fair influenced maximization approach activates 38 users with 69% males
and 31% females, which is more consistent with the original male/female percentage.

However, the past research unilaterally sought the greatest overall influence in public
networks without considering the attributes attached to the nodes, such as race, age, gender,
and educational background. Generally, people in a social network or real life are meant to
form different groups according to their attribute statuses. A group of nodes sharing the
same attribute status in a social network can be called an attributed group. For instance,
in a residential area, it may be the young or the old; in a school, it may be the faculties
or the students; and in a society, it may be the sexual majorities or the sexual minorities.
Many studies show that social groups exert huge impacts on the organization of social
networks, ranging from user demographics to subjective preferences like political orientation
and personal interests.

Conventional influence maximization approaches, while pursuing the overall influence
without paying attention to alternative groups, will cause the problem of uneven influence
spread among different groups. For a toy example, as illustrated in Figure 1, there are 100
users in the original network, where 70% are males and 30% are females. A conventional
influence maximization algorithm activates/influences 40 users, where 80% are males and
20% are females. Clearly, the algorithm has more influence in the male group and less
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influence in the female group, causing an uneven spread of influence in the network. Uneven
influence spread sometimes could lead to severe bias in the result, such as opinion polls for
the election. An ideal influence maximization algorithm should approach the maximum
influence spread while maintaining fairness among different groups. As suggested in Figure
1, it may sacrifice a few influenced nodes to trade for group fairness, e.g., activating 38
users, where 69% are males and 31% are females to keep it more consistent with the original
gender percentage. For this purpose, this paper studies a novel problem referred to as the
fair influence maximization problem: Given a network G with group information Ψ and a
budget k, find k seed nodes to activate the other nodes in the network so that the numbers of
influenced nodes among different groups are proportional to their original populations, and
the total influence spread reaches the maximum. Solving the fair influence maximization
problem is non-trivial and encounters several challenges.

The first challenge concerns the efficiency of the algorithm for large-scale social networks.
Since most existing approaches rely on Monte Carlo simulation to estimate influence spread,
repeatedly traversing the whole network for influence evaluation is highly inefficient. Making
use of sampling techniques like Reverse Influence Sampling (RIS) can reduce complexity
dramatically. But most sampling techniques emphasize the overall influence in the whole
network without considering the influence in specific groups.

The second challenge refers to the fairness of influence spread among different groups.
This requires an accurate estimation of influence in each individual attributed group and
an efficient scheduling strategy or mechanism with a theoretical guarantee to select seed
nodes for fair influence. The trade-off between influence maximization and group fairness
is the key design of the solution.

To address the issues, this paper proposes an attribute-based reverse influence sampling
(ABRIS) framework, including two novel node selection algorithms for the fair influence
maximization problem in social networks. The ABRIS framework adopts the RIS technique
to construct an attribute-based hypergraph, where influence spread in each individual
group can be estimated with guaranteed accuracy. Under the ABRIS framework, we
propose two different algorithms called ABRIS-G and ABRIS-T from different perspectives
for seed nodes selection. To be specific, ABRIS-G is a basic greedy algorithm with a
scheduling strategy that chooses seed nodes iteratively to achieve the objectives of influence
maximization and influence fairness among groups. ABRIS-T is an extended algorithm
with a two-phase node selection mechanism. The first phase seeks the solution to maximize
the minimum fraction of influenced users within all influenced groups, where we provide a
theoretical guarantee for the procedure in large-scale social networks. But it would probably
select many low-influence seeds when some groups are not well-connected. Therefore in the
second phase, we adopt a greedy approach to iteratively change the lowest influence node
for the node with larger overall influence to chase better performance of fair influence
maximization. We evaluate the performance based on six real-world datasets. Extensive
experiments show that the proposed solutions perform very close to the conventional
influence maximization algorithms in influence spread. They can also balance the influence
among groups, which significantly outperforms the state-of-the-art approaches.

The proposed fair influence maximization algorithms have wide-range applications.
They surely benefit the viral marketing and advertisement service by taking into account
different finer-grained attributed groups. They are also acquired in public opinion
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dissemination, like candidates’ political opinions and public policies for different groups
of people, which is more important to achieve fair influence maximization instead of simply
chasing the maximum influence spread. The contributions are summarized as follows.

• We identify the fair influence maximization problem in social networks and formulate
the objective, simultaneously considering the influence maximization and the disparity
among group influences. It is novel and fundamental for social network studies.

• We propose an attribute-based reverse influence sampling (ABRIS) framework. It
estimates influence spread in specific groups with lower computation complexity and
accuracy guarantee so that seed nodes can be selected strategically.

• Under the ABRIS framework, we design two node selection algorithms. They are
ABRIS-G, based on a greedy scheduling strategy and ABRIS-T, through a two-phase
node selection approach. These algorithms run efficiently and achieve a good trade-off
between influence maximization and group fairness.

• We evaluate the performances of the proposed approaches based on six real-world
social networks scaling from thousands of nodes to millions of nodes. Extensive
experiments show that our solution significantly outperforms the state-of-the-art
methods on fair influence maximization in large-scale social networks.

2. Related Work

In this section, we introduce the related works in detail through the basic influence
maximization problem and the latest progress on fair influence maximization.

2.1 Influence Maximization Problem

Social networks play a fundamental role as a medium for the spread of information,
innovation, and influence among its members. There had been a great number of models
to describe the process of information/influence propagation in social networks (Shah &
Zaman, 2010; Shah, 2011; Bailey et al., 1975; Easley & Kleinberg, 2010). In the last
decades, the problem of identifying a set of influential users in social networks gradually
received more and more attention by academia and industry.

Kempe et al. (2003) formulated the influence maximization (IM) problem as an
optimization problem: given a budget k to find k seed nodes in the network, such that
by activating them we can reach the maximum spread of influence in the network. They
showed that the problem is NP-hard and proposed a greedy algorithm to get a (1−1/e−ε)-
approximate solution. Kempe et al.’s algorithm is simple and effective, but it suffers
from high time complexity of O(k(m + n)n) which is hard to apply in large-scale social
networks. To address the inefficiency issue, Leskovec et al. (2007) improved the greedy
method with the lazy-forward heuristic (CELF), which took advantage of the submodular
property (Minoux, 1978) to reduce the number of evaluations on the influence spread of
individuals. Goyal et al. further optimized the strategy and proposed CELF++ (Goyal
et al., 2011) which reduced the times of Monte Carlo simulation for influence evaluation.

Some studies tried to solve the problem through a series of heuristic algorithms based
on degree centrality or other structural properties (Kempe et al., 2003; Liu et al., 2014;
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Chen, 2009; Chen et al., 2010; Jalili & Perc, 2017). Liu et al. (2014) developed a
quantitative metric named Group-PageRank to quickly estimate the upper bound of the
social influence. Chen et al. proposed an algorithm called PMIA (Chen et al., 2010), which
used a tunable parameter to control the balance between the running time and the influence
spread. However, all of these heuristic methods shared the same shortcoming of giving up
the approximation guarantee to ensure the efficiency of algorithms.

Recently, Borgs et al. (2014) proposed a Reverse Influence Sampling (RIS) framework
for influence maximization, which made a theoretical breakthrough on the problem by
presenting a near-linear time algorithm under independent cascade (IC) model. Tang et al.
proposed an enhanced algorithms called TIM that runs in O((k+l)(n+m) log n/ε2) expected
time and returns a (1−1/e−ε)-approximate solution with at least 1−n−l probability (Tang,
Xiao, & Shi, 2014). Later a few algorithms (Tang, Shi, & Xiao, 2015; Nguyen, Thai, & Dinh,
2016b) were proposed to improve the algorithm with better bounds.

2.2 Fair Influence Maximization

The research on influence spread in specific groups can trace back to the target influence
maximization (TIM) problem, where the goal is to maximize the influence over a group
of target users (Li, Zhang, & Tan, 2015; Li, Li, & Shan, 2011). However, this paper
focuses on the fair influence maximization problem, which is a novel problem that tends
to maximize the total social influence while keeping the influence fairness among users
regarding different groups. In previous works, one closely related problem is the robust
submodular observation selection (RSOS) problem (Krause, McMahan, Guestrin, & Gupta,
2008) which constrains influences in different monotone submodular functions. For the
RSOS problem, Chekuri et al. (2010) proposed an optimal (1−1/e)-approximate algorithm
with O(n8) time complexity. Recently, Udwani (2021) introduced a state-of-the-art three-
stage method based on Multiplicative-Weight-Updates (MWU) with asymptotic (1−1/e)2−
λ-approximation and Õ(n/λ3) time with the assumption that the number of submodular
functions is o(k/ log3 k).

The MaxMin problem of RSOS (Krause et al., 2008) maximizes the minimum fraction of
users within each influenced group can be served as an effective objective to achieve group
fairness in some studies (Tsang, Wilder, Rice, Tambe, & Zick, 2019; Becker, D’Angelo,
Ghobadi, & Gilbert, 2022). However, this objective stems from the fact that the equality of
outcomes may be undesirable and perform badly in overall influence, especially when some
groups are much better connected than the others. Furthermore, in the past two years, many
other researchers proposed alternative approaches to solve the fair influence maximization
problem from different perspectives. Fish et al. (2019) proposed to use the social welfare
function as an objective and gave empirical evidence that a simple greedy-based strategy
worked well in practice. Some works (Ali, Babaei, Chakraborty, Mirzasoleiman, Gummadi,
& Singla, 2022; Anwar, Saveski, & Roy, 2021; Lin, Li, & Lu, 2020) chose to define the
influence disparity among groups and made it a penalty to the overall influence in the
whole network. Later, a more recent fairness-aware IM framework was proposed by Farnadi
et al. (2020), which was based on an integer programming formulation of the influence
maximization problem. With the development of deep learning, the powerful tool could
also be utilized to solve the fairness issue in the IM problem. Khajehnejad et al. (2021)
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first introduced deep learning into the fair influence maximization problem. The authors
proposed an adversarial network to obtain similarly distributed embeddings across sensitive
attributes. The seed set was selected by clustering the embeddings. What’s more, other
variants of the fair influence problem (Ali et al., 2022; Anwar et al., 2021) were also
studied. Recently Becker et al. (2022) studied the impact of randomization on fairness. The
authors allowed randomized strategies for choosing the seed nodes rather than restricted to
deterministic methods. And two probabilistic strategies based on node and set views were
proposed to derive seeds.

Even though these works solved such problem to some extent, all of the proposed
algorithms were only processed in small-size (less than 10k nodes) networks. While
Gershtein et al. (2021) refined a Multi-Objective IM to solve the problem in large-scale
networks, where all objectives except one are turned into constraints for groups, and the
remaining objective is optimized subject to these constraints. Unlike all of these existing
studies, in this work, we design a novel attribute-based reverse influence sampling (ABRIS)
framework along with two node selection methods so that the fair influence maximization
problem can be solved theoretically and efficiently in large-scale (more than 1000k nodes)
social networks.

3. Problem Formulation

In this section, we propose the formulation of the fair influence problem and the solution
framework. The notations used in the rest of the paper are summarized in table 1.

Table 1: Notations

Notation Description

m,n Nodes and edges number of graph G = (V,E)
ψi The sign of group i.
Ψ The attributed group set,ψi ∈ Ψ

Iψi(S) Influence spread of seed set S ⊆ V in ψi.

Îψi(S) The estimated influence of S in ψi through ABRIS.
OPTi The maximum Iψi(S) for any size-k seed set S.
Vψi The set for vertices in group ψi.
ni The number of vertices in group ψi, ni = |Vψi |.

DΨ(S) The disparity for influence among groups.
γ The discount factor to penalty the disparity.

F(S) Objective function for fair influence maximization.
R(v) The Reverse Reachable (RR) set of v
Rψi θi RR sets generated for group ψi

F (S,Rψi) The fraction of RR sets in Rψi covered by S.

We model a social network as an undirected weighted graph G(V,E,W ) with |V | = n
nodes and |E| = m edges. Each edge (u, v) ∈ E is associated with a weight W (u, v) ∈ [0, 1]
representing the probability that u and v influence each other. Let S ⊆ G be a set of seed
nodes with size |S| = k.
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Influence spread in a social network can be described as a diffusion process. As
introduced by Kempe et al. (2003), there are two essential diffusion models called Linear
Threshold (LT) and Independent Cascade (IC). In this paper, we particularly focus on the
IC diffusion process to explain our algorithm. Note that the proposed approach can be
extended to other influence diffusion models without difficulty.

The process of IC model runs round by round to activate/influence nodes in the social
network as follows:

(1) In round 0, all nodes in S are activated, and all nodes in V − S are not activated.
(2) In each subsequent round, the newly activated nodes will try to activate their

neighbors. Each newly activated node u has a single chance to activate each inactive
neighbor v with the probability proportional to the edge weight W (u, v).

(3) Once a node becomes active, it will remain active in all subsequent rounds. The
process ends when no more nodes get activated.

In the diffusion process, we refer to S as the seed set, and the size of |S| = k as the
budget. Let I(S) be the number of nodes that are activated when the diffusion process
converges. We call E(I(S)) the influence spread of S under the IC diffusion model.

Further more, in a social network with attributed groups, each node is attached with
one or more groups from a group set Ψ = {ψ1, ψ2, · · · }, where Ψ can be overlapping or
non-overlapping groups. For example, this is a group set Ψ = {male, female, student}. We
further define the influence spread in a group ψi as the number of activated nodes in group
ψi, which is denoted by Iψi(S)(i = 1, 2, · · · ) accordingly.

Tsang et al. (2019) provided two representative fairness metrics as Maximin Fairness and
Diversity Constraints Fairness from different perspectives and proposed solutions to them.
Maximin Fairness maximizes the minimum influence received by any of the groups but
may select many low-influence seeds. Diversity Constraints Fairness tries to maximize the
overall influence on the premise of ensuring the least rational influence for each group. Also
it may select influential nodes with severe unfair influence. Thereby we propose an objective
function simultaneously considering both influence maximization and group fairness.

Let Vψi(i = 1, 2, · · · ) be the set of nodes with size ni in the group ψi in network G. The

percentage of influenced node for each group can be represented by
E(Iψi (S))

ni
(i = 1, 2, · · · ).

To measure the fairness of influence spread in different group, we introduce the disparity
metric DΨ(S) (Lin et al., 2020; Anwar et al., 2021) as:

DΨ(S) = n · (max
ψi∈Ψ
{
E(Iψi(S))

ni
} − min

ψi∈Ψ
{
E(Iψi(S))

ni
}), (1)

where the right part measures the difference between the maximum and minimum influence
percentage in attributed groups, and we multiply it by n to not only avoid the value being
too small but also normalize the disparity by the size of the graph.

With the above definitions and notations, we formally describe the fair influence
maximization problem and its objective in the following.

Definition 3.1 (Fair influence maximization problem). Given a graph G with attributed
group set Ψ and a budget k, the influence maximization problem is to find a set S of at most
k nodes maximizing

F(S) = E(I(S))− γDΨ(S) = E(I(S))− nγ max
ψi∈Ψ
{E(Iψi(S))

ni
}+ nγ min

ψi∈Ψ
{E(Iψi(S))

ni
} (2)
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where E(I(S)) is the total overall expected influence spread, DΨ(S) is the disparity, and
γ ∈ [0,+∞) is a discount factor.

According to the definition, the fair influence maximization problem aims to maximize
the total expected influence spread and take disparity as a penalty term to achieve group
fairness. With the value of γ getting larger, the emphasis on fair influence becomes larger.
We generally adopt γ = 1 by default. Because at this time, the overall influence and
disparity are both scaled by graph size n and can achieve good trade-off performances in
practice. But γ can also be tuned according to practical needs. In particular, when γ = 0,
it reduces to the conventional influence maximization problem. However, when γ > 0, the
objective function F(S) is neither monotonic nor submodular, which is different from the
conventional influence maximization problem. Therefore we have the following theorem.

Theorem 3.1. When γ > 0, the objective function F(S) = E(I(S)) − γDΨ(S) is neither
monotonic nor submodular.

Proof. We respectively prove the non-monotonicity and non-submodularity for F(S) when
γ > 0 through offering counterexamples.

Non-monotonicity: When γ ∈ (0, 1], we can construct two non-overlapping groups that
one larger group has 2 · b 2

γ c nodes and the other smaller group has two nodes. Assume that

a seed set S has an expected influence of b 2
γ c for the larger group and 1 for the smaller

group, we can derive F(S) = b 2
γ c + 1. We now expand the seed set S with another node

v which is the other uninfluenced node in the smaller group and it can only activate itself.
In this way, we have F(S ∪ {v}) = b 2

γ c + 2 − γ(b 2
γ c + 1) < b 2

γ c + 2 − 1 = b 2
γ c + 1 = F(S).

When γ ∈ (1,+∞), we can also assume two non-overlapping groups and each group has two
nodes. The seed set S expectedly influences 1 node for each group and thus F(S∪{v}) = 2.
If we expand the seed set S with the other uninfluenced node v in a certain group and v
can only activate itself, we can derive F(S ∪ {v}) = 3 − 2γ < 2 < F(S). However, for the
interval of γ ∈ (0,+∞) in the same construction of two non-overlapping groups with each
group having one node, if S influences 1 node in a certain group and (S ∪ {v}) influences
both two nodes, we can derive F(S ∪ {v}) = 2 > 1 − 2γ = F(S) on the contrary. Hence,
when γ ∈ (0,+∞), the function F(S) is non-monotonic.

Non-submodularity: Similarly, we construct two non-overlapping groups and each group
has two nodes respectively, namely G1 = {a, b}, G2 = {c, d}. We have two seed sets as
S1 = {a, c} and S2 = {a, b, c} together with a node v = d to expand the seed sets. It’s
obvious that S1 ⊂ S2. Assuming that the nodes can only influence themselves respectively,
we should get F(S1 ∪ {v}) − F(S1) = 3 − 2γ − 2 = 1 − 2γ and F(S2 ∪ {v}) − F(S2) =
4− 3 + 2γ − 2 = 1 + 2γ. There is no doubt that F(S1 ∪ {v})− F(S1) < F(S2 ∪ {v})− F(S2)
when γ > 0. In this way, for γ > 0, the function F(S) is non-submodular.

4. The ABRIS Framework

In this section, we propose the attribute-based reverse influence sampling (ABRIS)
framework with two different node selection algorithms, ABRIS-G and ABRIS-T.
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4.1 Preliminary

Reverse influence sampling (RIS) is an efficient algorithm framework introduced by Borgs
et al. (2014) to find a set of seeds to maximize the influence spread with a guaranteed
approximation ratio. To describe the RIS framework, we first introduce the following
concepts.

Definition 4.1. (Reverse Reachable (RR) Set (Tang et al., 2014)) Given a graph G and
a node v ∈ G, let g be a sample graph from G obtained by removing each edge (vx, vy) in
G with probability 1−W (vx, vy). The Reverse Reachable (RR) set of v is the set of nodes
that can reach v in g, which is denoted by R(v).

Definition 4.2. (RR Set Coverage) A node u is said to cover an RR set R(v) if and only
if u ∈ R(v).

By definition, if a node u ∈ R(v) is chosen as a seed, then it should have a chance to
activate v along a certain path in G during information spread. Intuitively, if we generate a
number of RR sets for random nodes in G, then the nodes appearing in more RR sets should
have a higher probability to activate more nodes in G. This can be used to estimate the
influence of a seed set: the set of nodes covering more RR sets yields higher probability to
spread influence in G. Based on the rationale, Borgs et al. (2014) proposed RIS algorithm
to solve influence maximization problem. The algorithm runs in two steps:

• Generate a collection of RR sets for random nodes from G.

• Use the greedy algorithm for the maximum coverage problem (Vazirani, 2001) to select
k nodes to cover the maximum number of RR sets, and return the selected k nodes
as the seed set.

Borgs et al. (2014) proved that if constructing RR sets for 144(m + n)ε−3 log(n), the
RIS algorithm returns a (1 − 1/e − ε)-approximate solution. Tang et al. (2014) further
proved that if the number of generated RR sets is larger than (8 + 2ε)n(log n+ log(

(
n
k

)
) +

log 2)/(OPTε2), the RIS algorithm achieves a (1 − 1/e − ε)-approximation ratio with at
least 1− 1/n probability.

4.2 Attribute-based Reverse Influence Sampling

Inspired by the RIS framework, we propose an attribute-based reverse influence sampling
(ABRIS) framework. This framework includes three steps:

• Sampling and Influence Estimation: Firstly, we generate certain numbers of random
RR sets for attributed groups in the network and use them to estimate the influence
spread in different groups for the node set S . A basic theoretical lower bound is
provided to derive the minimum number of RR sets to guarantee the estimation
accuracy.

• Attributed-based Hypergraph Construction: Based on the generated RR sets, we
construct an attribute-based hypergraph where the edges in the hypergraph represent
the individual node’s influence.
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• Node Selection: Based on the attribute-based hypergraph, we can design algorithms
to select nodes as seed set which can cause fair influence maximization in groups, and
output the seed set with the given budget.

The details of these steps are explained below.

4.2.1 Sampling and Influence Estimation

In this step, we generate random RR sets for influence estimation under different groups.
For each group ψi, we randomly sample θi nodes with replacement in group ψi to generate
θi RR sets, denoted by Rψi , which are used for influence estimation. Theoretically, the more
RR sets are generated, the more accurate the estimation is. However, the larger number
of RR sets means a higher computational cost. Therefore it is important to determine the
number of RR sets θi to guarantee some level of estimation accuracy.

Next, we provide theoretical analysis to derive the number of θi (∀ψi ∈ Ψ). The following
theorems will be used in our derivation.

Lemma 4.1. Given a graph G with groups, a RR set R(v) generated from a random node
v in group ψi ∈ Ψ. For a seed set S, the expected influence of S in group ψi, denoted by
Iψi(S), can be estimated by E[Iψi(S)] = ni Pr[S ∩R(v) 6= ∅].

Lemma 4.1 is the direct extension of the work of Borgs et al. (2014), and the proof
is omitted. According to Lemma 4.1, the expected influence spread of a seed set can be
derived by the probability that S intersects R(v). According to definition 4.2 , S∩R(v) 6= ∅
is equal to S cover R(v), which probability can be estimated by the fraction of RR sets in
Rψi covered by S. This directly yields the following Lemma.

Lemma 4.2. Let F (S,Rψi) be the fraction of RR sets in Rψi covered by S. The equation
E[Iψi(S)] = niE[F (S,Rψi)] always holds.

Lemma 4.2 says that the influence for a group of a seed set S can be estimated by the
ratio that S covers the RR sets in this group.

Lemma 4.3. Let X be the sum of c i.i.d. random variables sampled from a distribution on
[0, 1] with a mean µ. For any δ > 0, Pr[X − cµ ≥ δ · cµ] ≤ exp(− δ2

2+δ cµ).

Lemma 4.3 is the classical Chernoff bound (Mitzenmacher & Upfal, 2005), which proof
is omitted. This lemma will be used to derive the minimum number of RR sets for a group
to guarantee the estimation accuracy of influence spread.

Theorem 4.4. Consider an attribute graph G where the number of nodes attached with
attribute ψi is ni. Let OPTi be the expected maximum influence in attribute ψi of any
size-k seed set. Let θi be the number of RR sets generated for attribute ψi. For every given
precision parameter ε ∈ (0, 1), if θi satisfies:

θi ≥
ni(ε+ 2)(log 2ni|Ψ|+ log

(
n
k

)
)

OPTi · ε2
(3)

Then, for any set S with k nodes, the following inequality holds with larger than 1 −
1/(ni|Ψ|

(
n
k

)
) probability:

|niF (S,Rψi)− E[Iψi(S)]| < ε ·OPTi. (4)
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Proof. By Lemma 4.1 , we have

ρi = E[F (S,Rψi)] = E[Iψi(S)]/ni

where ρi is the expected percentage of nodes with attribute ψi that are influenced by S.
We have:

Pr[|niF (S,Rψi)− E[Iψi(S)]| ≥ ε ·OPTi]

= Pr[|θiF (S,Rψi)− ρiθi| ≥
εθi
ni
·OPTi]

= Pr[|θiF (S,Rψi)− ρiθi| ≥
ε ·OPTi
niρi

· ρiθi]

Let δ = ε · OPTi/(niρi). Appling Lemma 4.3, and the fact that ρi = E[Iψi(S)]/ni ≤
OPTi/ni, we have:

Pr[|niF (S,Rψi)− E[Iψi(S)]| ≥ ε ·OPTi]

< 2 exp(− δ2

2 + δ
· ρiθi)

= 2 exp(− ε2 ·OPT 2
i

2ni2ρi + εni ·OPTi
· θi)

≤ 2 exp(− ε2 ·OPT 2
i

2niOPTi + εni ·OPTi
· θi)

= 2 exp(− ε2 ·OPTi
(2 + ε) · ni

· θi)

Let the right part of the above equation less than 1/(ni|Ψ|
(
n
k

)
) , that is 2 exp(− ε2·OPTi

(2+ε)·ni ·θi) ≤
1/(ni|Ψ|

(
n
k

)
) , and thus we have

θi ≥
ni(ε+ 2)(log 2ni|Ψ|+ log

(
n
k

)
)

OPTi · ε2

Therefore the theorem is proved.

Theorem 4.4 gives a basic bound for the estimation guarantee that if the generated
RR sets exceed a certain number, the estimation of influence spread based on the RR sets
approaches its expectation with a high probability (larger than 1/(ni|Ψ|

(
n
k

)
)). To determine

the minimum number of θi in Eq.(3), we need to know the exact value of OPTi which is
hard to obtain. We can only calculate the lower bound of OPTi , notated as OPT−i , to
ensure enough RR sets. Fortunately, there have been plenty of works on obtaining the lower
bound of the maximum influence of a set of nodes in social networks (Tang et al., 2014; Li
et al., 2011, 2015; Nguyen, Dinh, & Thai, 2016a; Li, Chen, Feng, Tan, & Li, 2014), which
can be applied to calculate a lower bound of the maximum influence in a particular group
as well. Here we adopt the iterative estimation method (Tang et al., 2014) to get the lower
bound OPT−i .
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4.2.2 Attribute-based Hypergraph Construction

After generating enough RR sets for each group ψi, we construct an attribute-based
hypergraph H based on the RR sets. Let V be the set of nodes in G, and R = ∪iRψi
be the set of generated RR sets. The hypergraph comprises the nodes in V and all the
RR sets in R. For each node v ∈ V , if RR set contains node v, there is an edge from v to
this RR set. To clearly represent the influence in different groups, the RR sets are grouped
according to the group identification of the sampled nodes to simulate inverse influence. An
example of the constructed hypergraph is illustrated in Figure 2. Note that the red nodes in
RR sets are the randomly chosen nodes to simulate inverse influence spread. The detailed
algorithm to construct the attribute-based hypergraph is described in algorithm 1.
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Figure 2: An example of hypergraph construction. On the left are graph nodes with their
groups. On the right are the RR sets. Via a random node (the red one) sampled from a
specific group with replacement, each RR set is generated by the inverse influence spread.
And then each RR set links to the left according to its contained nodes.

According to the reverse influence sampling mechanism, the probability of the influence
spread of a node is proportional to the number of RR sets it covers. In the hypergraph, an
edge represents the relationship that a node covers a RR set. Therefore the influence of a
node in V can be estimated by its degree (the number of RR sets linked) in the hypergraph.
For a node v ∈ V , let dψi(v) be the number of edges from v to the RR sets of group ψi. The
total degree regarding group ψi for a seed set S can be represented as dψi(S). According
to Lemma 4.1 , the influence in group ψi of the seed set S can be estimated by

Îψi(S) = niF (S,Rψi) = ni
dψi(S)

θi
. (5)
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Algorithm 1 BuildHypergraph (G,Θ,Ψ)

Input
Θ : {θi}, the number of RR sets in Vψi
Ψ : The set of groups
Output H: The constructed hypergraph

1: Initialize H(R = ∅, V = ∅, E = ∅)
2: for attributed group ψi in Ψ do
3: while |Rψi | < θi do
4: Choose a node u from Vψi uniformly at random and mark down its group ψi.
5: Simulate inverse influence spread, starting from u.
6: Let Z be the discovered nodes set.
7: Generate an RR set based on Z and add it into Rψi .
8: Add the edges between Z and V to H.
9: end while

10: end for
11: return H

4.2.3 Node Selection

On the foundation of previous two steps, we design two algorithms ABRIS-G and ABRIS-T
to select seed nodes for fair influence maximization.

Algorithm ABRIS-G:

ABRIS-G is a basic greedy node selection algorithm, which runs round by round
iteratively with a scheduling strategy according to the groups. In this algorithm, we first
adopt Theorem 4.4 to construct the attribute-based hypergraph H since the number of
required RR sets is easy to obtain. And then the procedure to select seed nodes is as
follows:

(1) The seed set is initialized as an empty set, and its influence on each group is set to
a random tiny real number larger than 0.

(2) In each round, with the constructed hypergraph, the algorithm estimates influence

in each group as ni
dψi (S)

θi
and chooses the group ψi with the least influence percentage.

Then for each node in V , the algorithm counts the number of its linked RR sets in group
ψi, namely dψi(v). the node v with the maximum number is chosen to expand S, i.e.,
S = S + {v}.

(3) Removes v and all the RR sets linked by v from the hypergraph.

(4) Repeat (1)-(3) until the budget reaches, i.e., |S| = k.

The detailed algorithm is described in Algorithm 2. Since the algorithm identifies the
group with the least influence percentage in each round and selects the node with the
maximum influence in the group, it can achieve influence maximization while balancing the
influence on different groups.

Complexity: we discuss the complexity of the whole process of ABRIS-G under the
ABRIS framework. As illustrated, there are three steps in the whole process of ABRIS-G.
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Algorithm 2 ABRIS-G (G, ε, k,Ψ)

Input:
G : The graph with attributed groups; Ψ : The attributed group set
k : The number of budget; ε : The precision parameter for influence estimation
Output:
S∗k : The set of selected vertices to spread influence

1: Θ = ∅, S∗k = ∅
2: for ψi in Ψ do
3: Calculate OPT−i
4: Compute θi by Eq.(3) and add θi to Θ
5: end for
6: Construct H = BuildHypergraph(G,Θ,Ψ)
7: while |S∗k | < k do
8: ψi = argminψi(E[Iψi(S∗k)]/ni)
9: v = argmaxvdψi(v)

10: Remove v with all its connected RR sets and corresponding hyperedges
11: S∗k = S∗k ∪ {v}
12: end while
13: return S∗k

The first step is sampling and influence estimation. In this step, we should calculate θi for
each group. If we adopt the iterative estimation method (Tang et al., 2014) to estimate
OPTi, we can obtain the complexity of O((m+ni) log ni) for each group. Thus for all groups,
the complexity is O(

∑
i(m+ni) log ni) = O(|Ψ|(m+n) log n). In the second step, the main

procedure is to generate RR sets for attribute-based hypergraph construction. Let āi denote
the expected number of random spread to generate an RR set for a randomly selected node
in Vψi . For a group ψi the complexity is O(θiāi). According to the work (Borgs et al., 2014),
āi ≤ m

ni
OPTi. Together with Theorem 4.4, we have O(θiāi) = O(km log n/ε2). Therefore

for all groups, the complexity is O(k|Ψ|m log n/ε2). In the third step, the complexity of
node selection can be easily derived as O(kn) for we process k selection procedures and in
each procedure, we traverse group influence for all nodes. Summarizing the above results,
the complexity of ABRIS-G is O(k|Ψ|(m+ n) log n/ε2).

Algorithm ABRIS-T:

Theorem 3.1 indicates that the objective function for the fair influence maximization
problem is neither monotone nor submodular. Thus it’s hard to achieve the objective
of Eq.(2) directly. But on closer inspection, we can first consider maximizing the third

term of n · minψi∈Ψ{
E(Iψi (S))

ni
}, which means the lowest proportional of influence over all

attributed groups. Because when E(I(S)) is large enough, the continuous growth of the
lowest group proportion influence would certainly lead to the decline of the highest group
influence proportion until the two values are close. Thus continuously maximizing the third

term of n·minψi∈Ψ{
E(Iψi (S))

ni
} indicates minimizing the second term of n·maxψi∈Ψ{

E(Iψi (S))

ni
},
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and the first term of E(I(S)) can also be relatively large. In this situation we can further
utilize a simple greedy approach to seek for larger overall influence E(I(S)) so that the
trade-off between influence maximization and group fairness can be achieved for better
performance of the objective function F(·).

Fortunately, many works (Krause et al., 2008; Tsang et al., 2019; Udwani, 2021)
proposed algorithms for finding a set S with size k so that S = arg maxS⊆V minψi∈Ψ{n ·
E(Iψi (S))

ni
}, which is called the MaxMin problem. The experiments of these studies show

that the solution to the MaxMin problem would lead to group fairness to some degree.
However, the algorithms of the MaxMin problem have two deficiencies according to our
goal of large-scale fair influence maximization. One is that the algorithms are not suitable
for large-scale social networks. All of them are run in small-size (less than 10k nodes)
networks. While the other deficiency is that MaxMin does not take overall influence into
consideration. When some groups are not well-connected, the algorithms would probably
select many low-influence seeds into the result set. Even though great group fairness may
be achieved, it does not satisfy the initial idea of influence maximization. Therefore, we
develop a two-phase node selection algorithm ABRIS-T. The first phase is the larger-scale
phase, where ABRIS-T maximizes the lowest proportional of influence among all attributed
groups with a guarantee in large-scale social networks. The second phase is the larger-
influence phase, where ABRIS-T uses a greedy method to pursue a larger influence spread
for a better performance of fair influence maximization.

(1)The first phase: larger-scale phase. Generally, the MaxMin problem can be
solved by finding the maximum constraint proportional factor α for a special multi-objective
optimization problem: given a set of monotone submodular functions for attributed groups
F = {E[Iψi(·)]} and a set of corresponding determined values T = {αni} which serve
as constraints with the same proportional factor α, find a set S with size k so that
E[Iψi(·)] ≥ αni for every group ψi that has got to work. Thus in order to solve the MaxMin
problem, we can continuously binary search for the largest proportional factor α with a
feasible solution set S for the special multi-objective optimization problem. Once obtaining
the maximum α with a feasible solution S, the MaxMin problem is finally settled.

Actually, the special multi-objective optimization problem is a special case of the robust
submodular observation selection (RSOS) problem (Krause et al., 2008), which constrains
arbitrarily for different monotone submodular functions. In work (Udwani, 2021), a state-
of-the-art three-stage method based on Multiplicative-Weight-Updates (MWU) is proposed
for the RSOS problem. MWU returns a solution with ω(1 − 1/e)2 − δ approximation and
O( n

λ3
log |Ψ| log n

λ ) time complexity for |Ψ| = o(k/ log3 k) submodular functions, where λ is
a precision parameter and ω is a small factor approaching 1. Similarly, for the monotone
submodular functions F = {E[Iψi(·)]} and feasible determined values T = {αni}, with a
precision parameter λ, the MWU method returns an (ω(1−1/e)2−λ)-approximate solution
for the special multi-objective optimization problem. However, calculating E[Iψi(·)] costs
O(m+n), and the joint complexity of adopting MWU is O((m+n) n

λ3
log |Ψ| log n

λ ), which is
extremely computationally expensive in large-scale social networks. But with the attribute-
based hypergraph H in the ABRIS framework, Îψi(·) can be directly utilized to estimate
E[Iψi(·)]. Such issue can be settled efficiently with a guarantee.
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Under the ABRIS framework by exploiting Îψi(·) to estimate E[Iψi(·)], the approximation
guarantee to MWU also concerns the number of generated RR sets. But the number of
RR sets derived beforehand by Theorem 4.4 cannot meet the requirement. Therefore, we
prove the following Theorem 4.5 and Theorem 4.6, and derive the least amount of RR sets
for each attributed group to guarantee the performance of MWU under ABRIS framework
with a high probability (larger than 1− 1/mini{ni}).

Theorem 4.5. Consider a graph G with attributed groups where the number of nodes
attached to group ψi is ni. Let OPTi be the expected maximum influence in group ψi of any
size-k seed set. Assume that the constraint αni serves as the accuracy criterion where α
is the proportionality factor. Let θi be the number of RR sets generated for group ψi. For
every precision parameter ε ∈ (0, 1), if θi satisfies:

θi ≥ (log 2ni|Ψ|+ log
(
n
k

)
)
2OPTi + εαni

ε2α2ni
(6)

Then, for any set S with k nodes, |niF (S,Rψi)− E[Iψi(S)]| < εαni holds with larger than
1− 1/(ni|Ψ|

(
n
k

)
) probability.

Proof. Similar with the proof in Theorem 4.4, if ρi = E[F (S,Rψi)] = E[Iψi(S)]/ni is the
expected percentage of nodes in group ψi that are influenced by S. We have:

Pr[|niF (S,Rψi)− E[Iψi(S)]| ≥ ε · αni]

= Pr[|θiF (S,Rψi)− ρiθi| ≥
εθi
ni
· αni]

= Pr[|θiF (S,Rψi)− ρiθi| ≥
ε · αni
niρi

· ρiθi]

Let δ = εα/ρi. Applying Lemma 4.3, and the fact that ρi = E[Iψi(S)]/ni ≤ OPTi/ni,
we have:

Pr[|niF (S,Rψi)− E[Iψi(S)]| ≥ ε · αni]

< 2 exp(− δ2

2 + δ
· ρiθi)

= 2 exp(− ε2 · α2

2ρi + εα
· θi)

≤ 2 exp(− ε2α2ni
2OPTi + εαni

· θi)

Let the right part of the above equation less than 1/(ni|Ψ|
(
n
k

)
) , that is 2 exp(− ε2α2ni

2OPTi+εαni
·

θi) ≤ 1

ni|Ψ|
(
n
k

) , and thus we have

θi ≥ (log 2ni|Ψ|+ log
(
n
k

)
)
2OPTi + εαni

ε2α2ni

Therefore the theorem is proved.

With such number of RR sets for hypergraph H, the following theorem of approximation
guarantee in terms of MWU under ABRIS framework can be derived:
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Theorem 4.6. On the foundation of ABRIS framework, assume that the number of RR
sets in the attribute-based hypergraph satisfies Eq.(6) with the accuracy criterion αni at
the precision parameter ε ∈ (0, 1). For the special multi-objective optimization problem with
F = {E[Iψi(·)]} and T = {αni}, where |F ′| = |F | = |Ψ| = o(k/ log3 k), if using F ′ = {Îψi(·)}
to estimate F , the MWU method at precision parameter λ returns an (ω(1− 1/e)2−λ− ε)-
approximate solution with probability 1− 1/mini{ni}.

Proof. With parameters F ′, T, λ the MWU method returns a result Sk with the fact that

Îψi(Sk) ≥ [ω(1− 1/e)2 − λ] · αni

In this case, by applying Theorem 4.5 we have:

E[Iψi(Sk)] > niF (Sk,Rψi)− ε · αni
= Îψi(Sk)− ε · αni
≥ [ω(1− 1/e)2 − λ] · αni − ε · αni
= [ω(1− 1/e)2 − λ− ε]αni

Obviously, the output of MWU under the ABRIS framework also achieves comparable
approximation when ε is small. Specifically, the theorem here should hold simultaneously
for all size-k seed sets in all groups and thus, the solution is obtained with probability
1− 1/mini{ni}.

Observing the required number of RR sets in Eq.(6), we can find that OPTi is in the
numerator of the equation. It is different from Eq.(3). Thereby, we should calculate an
upper bound for OPTi to ensure enough RR sets for the guarantee. We notate the upper
bound of OPTi as OPT+

i and give an efficient hypergraph-based method as follows.

The method adopts a hypergraph H constructed beforehand by Theorem 4.4. Besides,
we introduce a greedy algorithm Ai(H, k) to obtain an optimal size-k seed set Ski for the
maximum influence in a specific group ψi. It is analogous to the vanilla IM problem solution
based on RIS (Borgs et al., 2014; Tang et al., 2014, 2015) via a single modification. Ai(H, k)
runs for k rounds. In each round for every node in V , Ai(H, k) counts the number of linked
RR sets in group ψi. The node v with the maximum number is chosen to expand Ski , and
then the node v together with all its linked RR sets is not considered in later rounds. It’s
with algorithm Ai(H, k) that we can prove the following theorem for OPT+

i calculation.

Theorem 4.7. When using Θ = {θi} derived by Eq.(3) with a given precision parameter
ε′ in Theorem 4.4 to construct the hypergraph H, and then adopting Ai(H, k) to get a seed
set Ski , we can have:

OPTi ≤
E[Iψi(Ski )]

(1− 1/e)(1− ε′)− ε′
(7)

holds simultaneously for all groups Ψ with larger than 1− 1/min{ni} probability.

Proof. Obviously, Ai(H, k) is a standard greedy algorithm for set covering problem in order
to find k nodes covering the maximum number of RR sets in group ψi. Assuming the optimal
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solution for the maximum RR sets coverage is S̃ki and the optimal solution resulting in OPTi
is S̄ki , we can derive:

dψi(S
k
i ) ≥ (1− 1/e)dψi(S̃

k
i ) ≥ (1− 1/e)dψi(S̄

k
i )

The first inequality is obtained as the result of the ordinary bound through adopting the
greedy approach to solve set covering problem. Since S̃ki is the optimal solution for the
set covering problem, there is no doubt that the second inequality holds. Thus applying
Theorem 4.4, we have

E[Iψi(S
k
i )] > niF (Ski ,Rψi)− ε

′OPTi

= ni
dψi(S

k
i )

θi
− ε′OPTi

≥ ni
(1− 1/e)dψi(S̄

k
i )

θi
− ε′OPTi

= (1− 1/e)niF (S̄ki ,Rψi)− ε
′OPTi

≥ (1− 1/e)(1− ε′)OPTi − ε′OPTi

Therefore

OPTi ≤
E[Iψi(Ski )]

(1− 1/e)(1− ε′)− ε′

For the reason that Theorem 4.4 holds with at least 1 − 1/(ni|Ψ|
(
n
k

)
) probability, by the

union bound, the theorem here should hold simultaneously for all size-k node sets in all
attributed groups with larger than 1−

∑
i 1/(|Ψ|ni) ≥ 1− 1/mini{ni} probability.

According to Theorem 4.7, we can first use a preliminary attribute-based hypergraph
H constructed beforehand by Eq.(3) to calculate an upper bound OPT+

i . With the upper
bound OPT+

i , we then obtain the required number of RR sets (Theorem 4.5) for the multi-
objective optimization guarantee (Theorem 4.6). Only after generating enough RR sets
into the preliminary hypergraph H (add more if not enough) can we continue to solve the
MaxMin problem by MWU({Îψi(·)}, {αni}, λ) under the ABRIS framework accordingly.

(2)The second phase: larger-influence phase. Once the optimal solution S∗k for the
MaxMin problem is obtained, we have finished the first phase of ABRIS-T. However, the
solution in the first phase may perform badly in overall influence when some groups are
worse connected than others since it probably expends many low-influence seeds to improve
the influence fractions of the badly-connected groups. Thus in the second phase, we make
up for such a disadvantage with a greedy approach. It can achieve the trade-off between
influence maximization and group fairness for better performance of the objective function.
For each time we find a node with the lowest influence in solution S∗k . We exchange it for
another node in V \ S∗k with a larger overall influence to chase the best performance of the
objective function F(·). Repeat the procedure until the objective function cannot get larger
anymore. Even though the second greedy phase is not guaranteed, it can be proven effective
in balancing the overall influence and disparity through experiments. In this way, the whole
process of algorithm ABRIS-T under the ABRIS framework is shown in Algorithm 3.
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Algorithm 3 ABRIS-T (G, ε, ε′, λ, k,Ψ)

Input:
G : The graph with attributed groups; k : The number of budget
Ψ : The group set; κ : The stop condition for binary search
ε, λ : The precision parameters for influence estimation and MWU method
ε′ : The parameter for OPT+ calcualtion
Output:
S∗k : the set of selected vertices to spread influence

1: Θ = ∅
2: for ψi in Ψ do
3: Calculate OPT−i
4: With OPT−i and ε′, compute θi by Eq.(3); and then add θi to Θ
5: end for
6: Construct H = BuildHypergraph(G,Θ,Ψ)
7: for ψi in Ψ do
8: Calculate OPT+

i by Theorem 4.7
9: end for

10: a = 0, b = mini{OPT+
i /ni}, α = (a+ b)/2

11: while (b− a) · n > κ do
12: for ψi in Ψ do
13: With OPT+

i , ε and α, compute θ′i by Eq.(6) for the required guarantee
14: if θi < θ′i then
15: Generate (θ′i − θi) RR sets with ψi
16: Add these RR sets to H and θi = θ′i
17: end if
18: end for
19: S∗k = MWU({Îψi(·)}, {αni}, λ) (Udwani, 2021)
20: if S∗k is feasible then
21: a = α, α = (α+ b)/2
22: else b = α, α = (α+ a)/2
23: end if
24: end while
25: F′ = F(S∗k)
26: while True do
27: u = arg minu∈S∗

k
Î(u)

28: v = arg maxv∈V \S∗
k , Î(v)>Î(u) F(S∗k ∩ {v} \ {u})

29: if F(S∗k ∩ {v} \ {u}) > F′ then
30: S∗k = S∗k ∩ {v} \ {u} and F′ = F(S∗k)
31: else return S∗k
32: end if
33: end while

Algorithm 3 can be divided into four parts. The first part from line 1 to line 6 is
constructing the preliminary hypergraph by Eq.(3), which is the same as ABRIS-G. The
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second part is from line 7 to line 9. The process intends to obtain the upper bound OPT+
i by

Theorem 4.7. With OPT+
i , we can calculate the required number of RR sets through Eq.(6)

and also give a relatively small value as the beginning for binary search. The third part from
line 10 to line 24, is the process of adopting the MWU method in large-scale social networks
based on the hypergraph H. In the process, binary search is utilized to seek the largest
feasible α with determined constraints T = {αni}. In each α-search iteration, according to
Theorem 4.6 with the searched α, we should generate enough RR sets into hypergraph H
(add more if not enough) to ensure the approximation guarantee. And then we make use
of MWU({Îψi(·)}, {αni}, λ) to obtain a feasible solution S∗k . The fourth part is from line
25 to line 33. In this part, we try to elevate overall influence through a greedy approach.
Each time from the pending seed set S∗k , we find the node with minimum influence and then
node u is replaced by a node v ∈ V \ S∗k with a larger overall influence to bring about the
maximum increase of the objective function. Note that instead of computing E(I(·)), we
exploit Î(·) through the hypergraph to reduce complexity for the procedure. The objective
of this part is to find a higher overall influence to obtain a better objective result.

Complexity: we also discuss the complexity of ABRIS-T. The complexity of the first
part in the algorithm is similar with ABRIS-G, which is O(k|Ψ|m log n/ε′2). For the second
part, the complexity of line 6 is O(k|Ψ|n) because we process k selection procedures for |Ψ|
groups respectively, and in each procedure we traverse group influence for all nodes. The
procedure of binary search consists of two major subprocedures: RR sets generation and
MWU. RR sets generation can be combined with the complexity in the first part since they
jointly construct hypergraph H. Thus their joint complexity depends on the final number
of RR sets. If we denote r as mini{αni/OPTi}, similar with the complexity analysis in
ABRIS-G, we can derive the final complexity for hypergraph construction is O(k|Ψ|(m +
n) log n/ε2r2). For the third part of MWU, the complexity is O( n

λ3
log |Ψ| log n

λ ), and
the total complexity including binary search procedure is O(log min{ni} nλ3 log |Ψ| log n

λ ) =

O(n log |Ψ| log2 n/λ3). In the fourth part, assume that the iteration is executed for t times.
In each time after identifying the node with minimum overall influence, we may search O(n)
times to find the node to exchange for. During each searching process, we need to estimate
F(S∗k∩{v}\{u}) through hypergraphH, the complexity is O(k|Ψ|m log n/ε2r2n). Therefore,
the complexity for the third part is O(tk|Ψ|m log n/ε2r2). To sum up, the final complexity
for ABRIS-T is O(k|Ψ|(m + n) log n/ε2r2 + n log |Ψ| log2 n/λ3 + tk|Ψ|m log n/ε2r2), which
mostly depends on O(n log |Ψ| log2 n/λ3). Therefore when the graph scale grows larger, the
proportion of time consumption for the second phase will get smaller and smaller.

5. Performance Evaluation

In this section, we conduct experiments to evaluate the performances of our proposed
algorithms based on six real-world datasets.

5.1 Experimental Settings

5.1.1 Default System Parameters

Here we present the setting of default system parameters. In the graph model, we follow
the independent cascade model proposed by Kempe et al. (2003) and set the influence
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probability on each edge to 0.01 (Kempe et al., 2003; Chen, Wang, & Yang, 2009; Anwar
et al., 2021). In the ABRIS-G algorithm, we set the precision parameter ε = 0.1. For
ABRIS-T algorithm, we make the parameters ε′ = 0.1, ε = 0.4, λ = 0.4 and set κ = 10 as
the stop condition of binary search. For each system settings, we repeat the experiment
for 10 times to obtain the average value for performance evaluation and calculate the stand
error as error bars to measure and compare the variability of different algorithms. The
experiments are conducted on a personal computer with Intel Xeon E5-2620 v2 2.10GHz
CPU and 128GB memory, running 64-bit CentOS Linux 7.2.

5.1.2 Datasets

The experiments are conducted on six real-world networks. They are three small-size
graphs: UVM, UCSC and UPENN and three large-size graphs: DBLP, Pokec and AMiner.
We consider overlapping groups for datasets UVM, UCSC, Pokec and AMiner and non-
overlapping groups for UPENN and DBLP. The statistics of these networks are summarized
in Table 2. And the details of the datasets are as below.

Table 2: Statistics of the datasets.

Name Nodes Edges Groups Groups Description

UVM 7,322 191,197 4
Status: Faculties (12%), Students (88%)

Grade: Senior (40%), Junior (60%)

UCSC 8,990 224,545 4
Status: Faculties (10%), Students (90%)

Gender: Males (45%), Females (55%)

UPENN 29,634 831,213 2 Grade: Senior (29%), Junior (71%)

DBLP 280,200 750,601 2 Gender: Males (77%), Females (23%)

Pokec 1,099,121 10,794,057 4
Age: The old (18%), The young (82%)

Gender: Males (51%), Females (49%)

AMiner 1,560,640 4,258,946 5
Nation: Developing (42%), Developed (58%)

Study Interset: Software (12%), Data (14%), Modeling (32%)

(1) UVM (Traud, Mucha, & Porter, 2012): A facebook social network in UVM.
We remove the nodes without user information in the network profile and choose four
overlapping attributed groups according to users’ status and grade. These groups are
respectively the faculties (12%), the students (88%), the senior (40%) and the junior (60%).

(2) UCSC (Traud et al., 2012): A facebook social network in UCSC. Based on the
basic information of the users, we choose four overlapping groups in terms of status and
gender. They are the faculties (10%), the students (90%), the males (45%) and the females
(55%) respectively.

(3) UPENN (Traud et al., 2012): A facebook social network of the users in UPENN.
We remove the non-student users from the network and attach each node with the group of
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senior and junior students in light of the year of enrollment. The majority are 71% junior
students, and the minority are 29% senior students.

(4) DBLP (Karimi, Génois, Wagner, Singer, & Strohmaier, 2018): A co-
authorship network from DBLP, a website that provides comprehensive list of research
papers in the area of computer science. The nodes represent scientists and the edges
represent paper co-authorships. The groups are the male and the female scientists. The
minority are 23% of the female, and the majority 77% of the male.

(5) Pokec (Takac & Zabovsky, 2012): The most popular online social network in
Slovakia, where the nodes represent users and the edges represent the friendship between
them. We consider the groups as the old (19%), the young (81%), the males (51%) and the
females (49%) in terms of the age and gender information.

(6) AMiner (Zhang, Tang, Ma, Tong, Jing, & Li, 2015): A co-author graph
extracted from AMiner.org. We consider 5 different overlapping groups. According to the
affiliations, we divide the authors into two groups that they are from developing (42%)
or developed (58%) nations. With respect to the descriptions of their study interests, we
derive three groups as software (12%), data (14%) and modeling (32%) fields.

5.1.3 Metrics and Baselines

To evaluate the performance of ABRIS algorithm, we adopt the following three metrics.

• Activated set size: the total number of nodes activated by the seed set in the original
graph, which measures the scale of influence spread.

• Disparity: the difference between the maximum and minimum influence percentage in
the attributed groups defined in Eq. (1), which measures the fairness of influence spread in
different attributed groups.

• Objective function value: the value to describe the fair influence result of a seed set.
The calculation is defined in Eq.2. We use γ = 1 by default since in this case, overall
influence and disparity penalty are both scaled by graph size n can achieve good trade-off
performances in practice.

We implement two algorithms ABRIS-G and ABRIS-T. And we compare the proposed
algorithms with other five algorithms: (1) Degree (Kempe et al., 2003): this algorithm
selects the top-k nodes with highest degree centrality as seed set. (2) TIM (Tang et al.,
2014): the state-of-the-art algorithm for influence maximization, which enhanced the RIS
framework that runs efficiently with approximation guarantee. We make the parameters
in this algorithm as l = 1, ε = 0.1. (3) RMOIM (Gershtein et al., 2021): an algorithm
based on multi-objective constraints. It adopts the vanilla RIS framework as well and
can be used in large-scale social networks. We set the threshold parameter t = (1 −
1/e)/|Ψ| as the authors suggest. (4) SET-EP (Becker et al., 2022): it proposed set-based and
node-based randomized strategies for choosing the seed nodes. We choose the set based ep
method because it shows greater performance with a determined seed set S. (5) Adversarial
(Khajehnejad et al., 2021): By using an autoencoder coupled with a discriminator in an
adversarial setting, the algorithm is the first to exploit embedding learning for fair influence
maximization. Note that we display the results for SET-EP and Adversarial methods only
in small-size graphs (i.e., UVM, UCSC, UPENN) because they respectively throw out of
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time (more than 24 hours) and out of memory errors when running in large-size graphs (i.e.,
DBLP, Pokec, AMiner).

5.2 Performance of ABRIS Algorithms

Activated Set Size Comparison. Figure 3 shows the total influence spread of different
algorithms under different budgets. From the figure, we can see that TIM outperforms all
other algorithms in all datasets. The reason is that TIM seeks maximum influence spread
over the whole network. The standard error for all baselines is not significant. The overall
influence for ABRIS-G and ABRIS-T are very close to TIM for all datasets except Pokec
because the phenomenon of sacrificing overall influence for fairness in Pokec is visible. In
addition, ABRIS-G and ABRIS-T perform very close even though they select seeds from
different perspectives. In UVM, UCSC and UPENN datasets, the results of all methods
are very close except Adversarial. Adversarial cannot perform well, probably because the
feature space of the initial node representations is too large to enable DNN capturing key
influence patterns. In DBLP, the method of degree heuristic performs much worse than the
other methods, which implies that in academic collaboration networks the users with the
most collaborators may not be the most influential ones.
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Figure 3: Comparison of activated set size of different algorithms under different budgets.
The x-axis stands for different sizes of seed sets. The y-axis is the overall influence caused
by the seed sets from different algorithms.

Objective Function Comparison. Figure 4 compares the objective function Eq. (2)
of different algorithms. When taking disparity as a penalty, the proposed ABRIS-G and
ABRIS-T algorithms significantly outperform the other algorithms. Generally, ABRIS-T
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performs better than ABRIS-G for all datasets. In small-size graphs, the performance of
the Adversarial method is not so good, mainly because it fails to maximize overall influence
even though the disparities are relatively small. But SET-EP shows greater performance
than the other baselines. In datasets UCSC and DBLP, when the budget size is small (less
than 50), RMOIM shows comparable performance with ABRIS-G and ABRIS-T. Since TIM
and Degree will cause a large disparity, they often exhibit low objective function values. For
the variability of the algorithms, we can find that ABRIS-G and ABRIS-T have relatively
small variabilities, and ABRIS-G showed better stability than ABRIS-T. The variability for
Adversarial in UVM is visible, which is mainly due to the indeterminacy of deep learning.
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Figure 4: Comparison of objective function of different algorithms under different budgets.
The x-axis stands for different sizes of seed sets. The y-axis is the objective function values
caused by the seed sets from different algorithms.

Trade-off Results Comparison. We further study the trade-off between maximizing
influence spread and minimizing disparity. The results of different algorithms are shown in
Figure 5. We run simulations with a budget ranging from 50 to 100 and draw the 1 − δ
elliptic contour of the maximum-likelihood 2D Gaussian distribution. From the figure, TIM
has the maximum activated set size, but its disparity is also very large. Therefore its
influence spread among different attributed groups is highly unfair. In small-size graphs,
RMOIM and SET-EP perform better than other baselines but worse than ABRIS-G and
ABRIS-T. In DBLP, the performance of RMOIM is even worse than TIM. The ABRIS-G
and ABRIS-T algorithms have much lower disparities than the other algorithms, and their
activated set sizes are comparable to TIM. The performances for ABRIS-G and ABRIS-T
are similar, but ABRIS-T is better than ABRIS-G in activated set size and disparity for all
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datasets. Therefore the proposed ABRIS algorithms can achieve a better trade-off between
maximizing influence spread and minimizing disparity.
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Figure 5: Comparison of the trade-off between influence maximization and disparity. The
x-axis and y-axis display different levels of disparities and overall influences.

Ablation Experiment for ABRIS-T. ABRIS-T consists of two phases. One is the first
larger-scale phase by adopting binary search. The other one is the second larger-influence
phase to seek for larger overall influence spread. In order to study the influence of these
two phases, we conduct an ablation experiment. The result is shown in Figure 6. From the
figures, we can see that with either single phase, the resulting curve is lower than that of
ABRIS-T. It means that these two phases are both effective in node selection to cause fair
influence maximization. And generally speaking, the larger-scale phase with MWU is more
important than the larger-influence phase since the results with a single larger-scale phase
are better than those with a single larger-influence phase in all datasets.
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Figure 6: Ablation experiments for ABRIS-T. The x-axis shows different sizes of seed sets.
The y-axis is the objective function values regarding ABRIS-T, ABRIS-T without the first
phase and ABRIS-T without the second phase.

Trade-offs for the second phase in ABRIS-T. The second phase for ABRIS-T is
important in obtaining an effective seed set to balance the overall influence and disparity.
Figures 7(a) and 7(b) display the ratios of time consumption for the second phase procedure.
We can see that the time consuming for phase two takes up less than 10% in general, and
when the graph grows larger in scale, the ratio will further decrease. The phenomenon
conforms to the time complexity analysis of ABRIS-T. Thus running the second phase
does not lead to considerable time consumption. In addition, we use Pokec to present the
trade-off for the second phase between the overall influence and disparity in Figure 7(c).
The red point is the result for only the first phase, where the phenomenon of sacrificing
overall influence for less disparity is very visible. The white points are the results for further
running the second phase under different γ values. The parameter γ is a discount factor to
take disparity as a penalty to measure different importances of disparity. We can see that
the second phase does have the ability to mitigate the phenomenon of selecting many low-
influence nodes for less disparity, so that a better objective function performance is achieved.
The extent of such mitigation can be tuned with parameter γ. The less importance of the
disparity considered, the more extent for the mitigation in the second phase.
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Figure 7: Trade-offs for the second phase in ABRIS-T. Figures 7(a) and 7(b) show the ratios
of time consumption for the second phase. Figure 7(c) presents the trade-off between the
overall influence and disparity for the second phase.
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5.3 Parameter Analysis

In this subsection, we explore the sensitivity of hyper-parameters γ, ε, λ, κ which directly
influence the performances of our proposed algorithms. We use datasets UCSC and Pokec
with overlapping groups to conduct the experiments for ease of analysis.
Parameter γ. γ is a discount factor to take disparity as a penalty. We use γ = 1 by
default because at this time the penalty of disparity is normalized by the graph size n,
which is comparable with the overall influence in the whole network. But in real life, we do
not exclude that γ can be assigned with another nonnegative real number. γ can be large
when emphasizing absolute justice like race issue and γ can also be small when highlighting
overall influence like marketing. Thus we vary γ in {0, 0.5, 1, 1.5} to see the performances
for the fair influence algorithms. The results can be seen in Figure 8. When γ = 0, the fair
influence maximization problem is reduced to a vanilla IM problem. The result of ABRIS-T
is much better than the other algorithms. Because in this case, the second phase of ABRIS-
T reduces to the standard greedy approach for IM problem. When γ gets larger, we can
find that the performance of ABRIS-T and ABRIS-G are both better than Adversarial,
SET-EP and RMOIM. ABRIS-T can be adaptive to random γ when chasing for better
objective function value with the second phase, while the other algorithms cannot.
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Figure 8: Comparison of the objective function of different algorithms under different
budgets when parameter γ changes. γ is a parameter of the discount factor to take disparity
as a penalty. The x-axis shows different sizes of seed sets. The y-axis is the objective function
values under different γ settings.

Parameter ε. ε is the parameter to control the precision of influence estimation in each
individual attributed group. It is adopted not only in ABRIS-G but also in ABRIS-
T. Therefore in Figures 9(a), 9(e), 9(b) and 9(f), we vary the εs for both algorithms in
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{0.1, 0.2, 0.3, 0.4, 0.5} to show the influences on the objective function. From the figures, we
can find that the influence of different ε for ABRIS-G in UCSC is more visible. It means that
the change of parameter ε has a greater influence in ABRIS-G for small-size datasets. While
for ABRIS-T, when the budget is small (no more than 50), the curves coincide. When the
budget grows, the curve declines slightly with ε increasing. Though ε increases to 0.5, the
performance is still satisfactory. Thus we can use larger ε to reduce computation complexity
with fewer RR sets to obtain comparable results. Overall, our proposed algorithms can put
up with considerable deviations for the influence estimation in most cases.

Parameter κ. κ is the parameter to control the stop condition of the ABRIS-T algorithm.
Larger κ means earlier termination of the binary search procedure and less computation
complexity. We vary parameter κ in range {10, 20, 40, 80, 160} and the result is shown in
Figures 9(c) and 9(g). We can see that the curve also reduces very slightly with κ getting
larger. The reasons are two-fold. One is that MWU returns a similar output when the
proportional factor α is within a certain interval. Therefore when ABRIS-T adopts larger
κ, the curve rarely shows a sharp decline. While the other one is that the second phase can
also help improve the performance of ABRIS-T to some extent.

Parameter λ. λ is the parameter for the MWU method and is also related to the precision
for the first phase in the algorithm ABRIS-T. We vary λ in {0.1, 0.2, 0.3, 0.4, 0.5}, and the
corresponding influence can be seen in Figures 9(d) and 9(h). The curves of λ = 0.1 to
λ = 0.4 nearly coincide, in which situation the influence of changing λ is small. The curve
of λ = 0.5 declines slightly, which is not very visible. But as the key procedure in ABRIS-T,
it’s recommended to adopt relatively small λ to ensure the effectiveness of MWU.
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10 20 30 40 50 60 70 80 90 100
Budget

200

300

400

500

600

700

800

900

E
(I
(S
))
−
γD

Ψ
(S
)

UCSC

λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

(d) λ for ABRIS-T

10 20 30 40 50 60 70 80 90 100
Budget

0

200

400

600

800

1000

1200

E
(I
(S
))
−
γD

Ψ
(S
)

Pokec

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

(e) ε for ABRIS-G

10 20 30 40 50 60 70 80 90 100
Budget

0

200

400

600

800

1000

1200

E
(I
(S
))
−
γD

Ψ
(S
)

Pokec

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4
ε = 0.5

(f) ε for ABRIS-T
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Figure 9: Comparison of the objective function of different algorithms under different
budgets when parameters ε, κ, λ change. ε is the parameter to control the precision of
influence estimation for ABRIS-G and ABRIS-T. κ controls the stop condition of ABRIS-
T. λ is the MWU parameter related to the precision of the first phase in ABRIS-T.
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6. Conclusion and Discussion

Conventional influence maximization algorithms could cause severe bias for influence spread
in social networks with attributed groups. To address this issue, we formulate the fair
influence maximization problem and propose an attribute-based reversed influence sampling
framework. Based on the solution framework, we design two novel seed node selection
algorithms. One is called ABRIS-G through a basic greedy approach, and the other is called
ABRIS-T by adopting a two-phase node selection method. Extensive experiments based on
six real-world social network datasets show that our solutions significantly outperform the
state-of-the-art approaches.

This paper does further work towards the design of efficient algorithms for the fair
influence maximization problem in large-scale networks with a theoretical guarantee.
Looking ahead, the following considerations concerning fair influence maximization may
be helpful in future study.

• First, structural centralities would greatly help identify fair influential nodes. They
are more practical and not subject to a specific diffusion model. And some metrics
like degree and betweenness positively correlate with the cascade influence (Jalili &
Perc, 2017; Ghanbari, Jalili, & Yu, 2018). Therefore, they can probably be reformed
to measure the capability of fair influence. For example, the disparity derived from
different groups can be added to degree centrality, Katz centrality (Katz, 1953) or
truncated Katz centrality (Lin, Li, Song, Nguyen, Wang, & Lu, 2021) to measure the
relative fair influence of a vertex.

• Second, recently graph neural networks (GNNs) have become more and more
popular in dealing with NP-hard graph based problems (Ranjan, Grover, Medya,
Chakravarthy, Sabharwal, & Ranu, 2022; Bai, Xu, Sun, & Wang, 2021). Even though
many works have tried to propose deep learning methods (Li, Gao, Gao, Guo, & Wu,
2022; Khajehnejad et al., 2021) for influence maximization related problems, there is
still great potential in solving fair influence maximization through GNN models.

• Third, besides the fair influence maximization problem discussed in this work, there
are also fairness in budgets (Nguyen, Pham, Le, & Snášel, 2022), fairness of time (Ali
et al., 2022) and fairness of content spread (Swift, Ebrahimi, Nova, & Asudeh, 2022)
for the influence maximization problem. Therefore, more variants of fairness can be
taken into consideration to meet the tangible needs.
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