
Journal of Artificial Intelligence Research 79 (2024) 599-637 Submitted 10/2022; published 02/2024

Practical and Parallelizable Algorithms for Non-Monotone
Submodular Maximization with Size Constraint

Yixin Chen chen777@tamu.edu
Department of Computer Science & Engineering
Texas A&M University
College Station, TX

Alan Kuhnle kuhnle@tamu.edu

Department of Computer Science & Engineering

Texas A&M University

College Station, TX

Abstract

We present combinatorial and parallelizable algorithms for the maximization of a submod-
ular function, not necessarily monotone, with respect to a size constraint. We improve the
best approximation factor achieved by an algorithm that has optimal adaptivity and nearly
optimal query complexity to 1/6− ε, and even further to 0.193− ε by increasing the adap-
tivity by a factor of O (log(k)). The conference version of this work mistakenly employed
a subroutine that does not work for non-monotone, submodular functions. In this version,
we propose a fixed and improved subroutine to add a set with high average marginal gain,
ThreshSeq, which returns a solution in O (log(n)) adaptive rounds with high probabil-
ity. Moreover, we provide two approximation algorithms. The first has approximation
ratio 1/6 − ε, adaptivity O (log(n)), and query complexity O (n log(k)), while the sec-
ond has approximation ratio 0.193− ε, adaptivity O (log(n) log(k)), and query complexity
O (n log(k)). Our algorithms are empirically validated to use a low number of adaptive
rounds and total queries while obtaining solutions with high objective value in comparison
with state-of-the-art approximation algorithms, including continuous algorithms that use
the multilinear extension.

1. Introduction

A nonnegative set function f : 2N → R+, defined on all subsets of a ground set N of size
n, is submodular if for all A,B ⊆ N , f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). A set function
is monotone if A ⊆ B implies f(A) ≤ f(B). Submodular set functions naturally arise in
many learning applications, including data summarization (Simon, Snavely, & Seitz, 2007;
Sipos, Swaminathan, Shivaswamy, & Joachims, 2012; Tschiatschek, Iyer, Wei, & Bilmes,
2014; Libbrecht, Bilmes, & Noble, 2018), viral marketing (Kempe, Kleinberg, & Tardos,
2003; Hartline, Mirrokni, & Sundararajan, 2008), and recommendation systems (El-Arini
& Guestrin, 2011). Some applications yield submodular functions that are not monotone:
for example, image summarization with diversity (Mirzasoleiman, Badanidiyuru, & Karbasi,
2016) or revenue maximization on a social network (Hartline et al., 2008). In this work,
we study the maximization of a (not necessarily monotone) submodular function subject
to a cardinality constraint; that is, given submodular function f and integer k, determine

©2024 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Chen & Kuhnle

arg max|S|≤k f(S) (SMCC). Access to f is provided through a value query oracle, which
when queried with the set S returns the value f(S).

As the amount of data in applications has exhibited exponential growth in recent years (e.g.
the growth of social networks (Mislove, Koppula, Gummadi, Druschel, & Bhattacharjee,
2008) or genomic data (Libbrecht et al., 2018)), it is necessary to design algorithms for
SMCC that can scale to these large datasets. One aspect of algorithmic efficiency is the
query complexity, the total number of queries to the oracle for f . Since evaluation of f is
often expensive, the queries to f often dominate the runtime of an algorithm. In addition
to low query complexity, it is necessary to design algorithms that parallelize well to take
advantage of modern computer architectures. To quantify the degree of parallelizability
of an algorithm, the adaptivity or adaptivive complexity of an algorithm is the minimum
number of sequential rounds such that in each round the algorithm makes O (poly(n))
independent queries to the evaluation oracle. The lower the adaptivive complexity of an
algorithm, the more suited the algorithm is to parallelization, as within each adaptive round,
the queries to f are independent and may be easily parallelized.

The design of algorithms with nontrivial adaptivity for SMCC when f is monotone was ini-
tiated by Balkanski and Singer (2018), who also prove a lower bound of Ω(log(n)/ log log(n))
adaptive rounds to achieve a constant approximation ratio. Recently, much work has fo-
cused on the design of adaptive algorithms for SMCC with (not necessarily monotone)
submodular functions, as summarized in Table 1. However, although many algorithms with
low adaptivity have been proposed, most of these algorithms exhibit at least a quadratic
dependence of the query complexity on the size n of the ground set, for k = Ω(n). For many
applications, instances have grown too large for quadratic query complexity to be practical.
Therefore, it is necessary to design adaptive algorithms that also have nearly linear query
complexity. An algorithm in prior literature that meets this requirement is the algorithm de-
veloped by Fahrbach, Mirrokni, and Zadimoghaddam (2019), which has O (n log(k)) query
complexity and O (log(n)) adaptivity. However, the approximation ratio stated in Fahrbach
et al. (2019) for this algorithm does not hold, as discussed in Section 1.1 and Appendix B.
During our revision of this paper, Fahrbach, Mirrokni, and Zadimoghaddam (2023) fixed
it, ensuring that the approximation ratio holds now.

Contributions. In this work, we propose two fast, combinatorial algorithms for SMCC:
the (1/6−ε)-approximation algorithm AdaptiveSimpleThreshold (AST) with adaptiv-
ity O (log(n)) and query complexity O (n log(k)); and the (0.193 − ε)-approximation algo-
rithm AdaptiveThresholdGreedy (ATG) with adaptivity O (log(n) log(k)) and query
complexity O (n log(k)).

The above algorithms both employ a lowly-adaptive subroutine to add multiple elements
that satisfy a given marginal gain, on average. The conference version (Kuhnle, 2021) of this
paper used the Threshold-Sampling subroutine of Fahrbach, Mirrokni, and Zadimoghad-
dam (2019), Fahrbach et al. (2019) for this purpose. However, the theoretical guarantee
(Lemma 2.3 of Fahrbach et al. (2019)) for non-monotone functions does not hold due to a
bug that has since been fixed in Fahrbach et al. (2023). In Appendix B, we give a coun-
terexample to the performance guarantee of Threshold-Sampling. In this version, we
introduce a new threshold subroutine ThreshSeq, which not only fixes the problem that

600

Practical and Parallelizable Algorithms for SMCC

Table 1: Adaptive algorithms for SMCC where objective f is not necessarily monotone. We con-
sider three metrics here. “Approximation Ratio” reflects the accuracy of the algorithm,
where a higher value signifies greater accuracy. “Adaptivity” measures the algorithm’s
parallelizability, with a lower value indicating higher parallelizability. “Queries” repre-
sents the total number of queries to the oracle for f , dominating the algorithm’s runtime.
A lower query count implies faster algorithmic performance. Both the adaptivity and
query complexity values presented in this table are asymptotic.

Reference Approximation Ratio Adaptivity Queries

Buchbinder et al. (2015) 1/e− ε ≈ 0.367− ε k n

Balkanski et al. (2018) 1/(2e)− ε ≈ 0.183− ε log2(n) OPT 2n log2(n) log(k)

Chekuri and Quanrud (2019) 3− 2
√
2− ε ≈ 0.171− ε log2(n) nk4 log2(n)

Ene and Nguyen (2020) 1/e− ε ≈ 0.367− ε log(n) nk2 log2(n)

Fahrbach et al. (2023) 0.039− ε log(n) n log(k)

Amanatidis et al. (2021) 0.172− ε
log(n)
log(n) log(k)

nk log(n) log(k)
n log(n) log2(k)

Theorem 7 (AST) 1/6− ε ≈ 0.166− ε log(n) n log(k)
Theorem 8 (ATG) 0.193− ε log(n) log(k) n log(k)

Threshold-Sampling faced, but achieves its guarantees with high probability as opposed
to in expectation; the high probability guarantees simplify the analysis of our approximation
algorithms that rely upon the ThreshSeq subroutine.

Our algorithm AST uses a double-threshold procedure to obtain its ratio of 1/6 − ε. Our
second algorithm ATG is a low-adaptivity modification of the algorithm of Gupta, Roth,
Schoenebeck, and Talwar (2010), for which we improve the ratio from 1/6 to 0.193 through a
novel analysis. Both of our algorithms use the low-adaptivity, threshold sampling procedure
ThreshSeq and a subroutine for unconstrained maximization of a submodular function
(Feige, Mirrokni, & Vondrák, 2011; Chen, Feldman, & Karbasi, 2019) as components. More
details are given in the related work discussion below and in Section 4.

The new ThreshSeq does not rely on sampling to achieve concentration bounds, which
significantly improves the practical efficiency of our algorithms over the conference version
(Kuhnle, 2021). Empirically, we demonstrate that both of our algorithms achieve superior
objective value to current state-of-the-art algorithms while using a small number of queries
and adaptive rounds on two applications of SMCC.

1.1 Related Work

Theshold Procedures. A recurring subproblem of SMCC (and other submodular op-
timization problems) is to add to a candidate solution S those elements x of the ground
set N that give a marginal gain of at least τ , for some constant threshold τ . To solve this
subproblem, the algorithm Threshold-Sampling is proposed in Fahrbach et al. (2019)

601

Chen & Kuhnle

for monotone submodular functions and applied in Fahrbach et al. (2019) and the confer-
ence version of this work (Kuhnle, 2021) as subroutines for non-monotone SMCC. How-
ever, theoretical guarantee (Lemma 2.3 of Fahrbach et al. (2019)) does not hold when the
objective function is non-monotone. Counterexamples and pseudocode for Threshold-
Sampling are given in Appendix B. A recent work by Fahrbach et al. (2023) has modified
the Threshold-Sampling algorithm and fixed the problem discussed above.

Two alternative solutions to the non-monotone threshold problem were proposed in Ama-
natidis et al. (2021) for the case of non-monotone, submodular maximization subject to a
knapsack constraint. Due to the complexity of the constraints, the thresholding procedures
in Amanatidis et al. (2021) have a high time complexity and require O

(
n2
)
query calls

within one iteration even when restricted to a size constraint. Although a variant with
binary search is proposed to get fewer queries, the sequential binary search worsens the
adaptivity of the algorithm.

In this work, we propose the ThreshSeq algorithm (Section 2) that fixes the problems of
Threshold-Sampling and runs in O (n) queries and O (log n) adaptive rounds. We solve
these problems by introducing two sets found by the algorithm: an auxilliary set A separate
from the solution set A′ found by ThreshSeq that solves Threshold (Def. 2) separately.
The algorithm maintains that A′ ⊆ A, and the larger set is used for filtering from the
ground set, while the smaller set maintains desired bounds on the average marginal gain.

Algorithms with Low Adaptivive Complexity. Since the study of parallelizable algo-
rithms for submodular optimization was initiated by Balkanski and Singer (2018), there have
been a number of O (log n)-adaptive algorithms designed for SMCC. When f is monotone,
adaptive algorithms that obtain the optimal ratio (Nemhauser & Wolsey, 1978) of 1−1/e−ε
have been designed by Balkanski, Rubinstein, and Singer (2019a), Fahrbach et al. (2019),
Ene and Nguyen (2019), Chen, Dey, and Kuhnle (2021). Of these, the algorithm of Chen
et al. (2021) also has the state-of-the-art sublinear adapativity and linear query complexity.

However, when the function f is not monotone, the best approximation ratio with poly-
nomial query complexity for SMCC is unknown, but falls within the range [0.385, 0.491]
(Buchbinder & Feldman, 2019; Gharan & Vondrák, 2011). For SMCC, algorithms with
nearly optimal adaptivity have been designed by Balkanski et al. (2018), Chekuri and Quan-
rud (2019), Ene, Nguyen, and Vladu (2019), Fahrbach et al. (2019), Amanatidis et al. (2021);
for the query complexity and approximation factors of these algorithms, see Table 1. Of
these, the best approximation ratio of (1/e−ε) ≈ 0.368 is obtained by the algorithm of Ene
and Nguyen (2020). However, this algorithm requires access to an oracle for the gradient
of the continuous extension of a submodular set function, which requires Ω(nk2 log2(n))
queries to sufficiently approximate. The practical performance of the algorithm of Ene and
Nguyen (2020) is investigated in our empirical evaluation of Section 5. Other than the algo-
rithms of Fahrbach et al. (2019) and Amanatidis et al. (2021), all parallelizable algorithms
exhibit a runtime of at least quadratic dependence on n. In contrast, our algorithms have
query complexity of O (n log k) and have O (log n) or O

(
log2 n

)
adaptivity.

After the conference version (Kuhnle, 2021) of this paper, Amanatidis et al. (2021) pro-
posed a parallelizable algorithm, ParCardinal, for knapsack constraints, which is the first

602

Practical and Parallelizable Algorithms for SMCC

constant factor approximation with optimal adaptivive complexity. In the paper, ParCar-
dinal is directly applied to cardinality constraints. It achieves a 0.172 − ε ratio with two
different variants: one has O (log(n)) adaptive rounds and O (nk log(n) log(k)) queries; an-
other one has O (log(n) log(k)) adaptive rounds and O

(
n log(n) log2(k)

)
queries. Compared

to our nearly linear algorithms, the first variant of ParCardinal requires total queries with
more than quadratic dependence on n; and the second variant gets a worse approximation
ratio and worse number of queries than our algorithm (ATG) with the same adaptivity.

The IteratedGreedy Algorithm. Although the standard greedy algorithm performs
arbitrarily badly for SMCC, Gupta et al. (2010) showed that multiple repetitions of the
greedy algorithm, combined with an approximation for the unconstrained maximization
problem, yields an approximation for SMCC. Specifically, Gupta et al. (2010) provided
the IteratedGreedy algorithm, which achieves an approximation ratio of 1/6 for SMCC
when the 1/2-approximation of Buchbinder, Feldman, Naor, and Schwartz (2012) is used
for the unconstrained maximization subproblems. Our algorithm AdaptiveThreshold-
Greedy uses ThreshSeq combined with the descending thresholds technique of Badani-
diyuru and Vondrák (2014) to obtain an adaptive version of IteratedGreedy, as described
in Section 4. Pseudocode for IteratedGreedy is given in Appendix E, where an improved
ratio of ≈0.193 is proven for this algorithm; we also prove the ratio of nearly 0.193 for our
adaptive algorithm ATG in Section 4.

1.2 Preliminaries

A submodular set function defined on all subsets of ground set N is denoted by f . The
marginal gain of adding an element x to a set S is denoted by ∆ (x |S) = f(S∪{x})−f(S).
Let OPT = max|S|≤k f(S), the optimal value of the SMCC problem for ground set N
and size constraint k. The restriction of f to all subsets of a set S ⊆ N is denoted by
f↾S . Next, we describe two subproblems both of our algorithms need to solve: namely,
unconstrained maximization subproblems and a threshold sampling subproblem. For both
of these subproblems, procedures with low adaptivity are needed.

The Unconstrained Maximization Problem. The first subproblem is unconstrained
maximization of a submodular function. When the function f is non-monotone, the problem
of maximizing f without any constraints is NP-hard (Feige et al., 2011). Recently, Chen
et al. (2019) developed an algorithm that achieves nearly the optimal ratio of 1/2 with
constant adaptivity, as summarized in the following theorem.

Theorem 1 (Chen et al. (2019)). For each ε > 0, there is an algorithm that achieves a
(1/2 − ε)-approximation for unconstrained submodular maximization using O (log(1/ε)/ε)
adaptive rounds and O

(
n log3(1/ε)/ε4

)
evaluation oracle queries.

To achieve the approximation factor listed for our algorithms in Table 1, the algorithm of
Chen et al. (2019) is employed for unconstrained maximization subproblems.

The Threshold Problem. The second subproblem is the following:

Definition 2 (Threshold). Given a threshold τ ∈ R and integer k, choose a set S such
that 1) f(S) ≥ τ |S|; 2) if |S| < k, then for any x ̸∈ S, ∆(x |S) < τ .

603

Chen & Kuhnle

Algorithms that can use a solution to this subproblem occur frequently, and so multiple
algorithms in the literature for this subproblem have been formulated (Fahrbach et al., 2019;
Balkanski, Rubinstein, & Singer, 2019b; Kazemi, Mitrovic, Zadimoghaddam, Lattanzi, &
Karbasi, 2019; Amanatidis et al., 2021; Chen et al., 2021). We want a procedure that
can solve Threshold with the following three properties: 1) using O (n) queries of the
submodular function; 2) in O (log n) adaptive rounds; 3) the function f is non-monotone.

None of the prior algorithms satisfy our requirements, since the procedures in Fahrbach et al.
(2019), Kazemi et al. (2019), Chen et al. (2021) only work when the submodular function
is monotone; and the two procedures in Amanatidis et al. (2021) have either O

(
n2 log(n)

)
queries or O

(
log2(n)

)
adaptivity. Moreover, in both Fahrbach et al. (2019) and Amanatidis

et al. (2021), the procedures for Threshold only guarantee E [f(S)] ≥ τ |S|.
In this paper, we propose ThreshSeq, an algorithm that makes O (n) query calls and
has O (log n) adaptive rounds to solve Threshold. However, this algorithm does not
exactly solve Threshold. Instead, it returns two sets that solve each of the questions in
Threshold, which is enough for our algorithms.

Organization. In Section 2, we introduce our threshold sampling algorithm: ThreshSeq.
Then, in Sections 3 and 4, we analyze our algorithms using the ThreshSeq and Uncon-
strainedMax procedures. Our empirical evaluation is reported in Section 5 with more
discussions in Appendix G.1.

2. The ThreshSeq Algorithm

In this section, we introduce the linear and highly parallelizable threshold sampling algo-
rithm ThreshSeq (Alg. 2). ThreshSeq takes as input oracle f , constraint k, error rate
ε, threshold τ , and failure probability parameter δ which reflects the success probability.
This algorithm has logarithmic adaptive rounds and linear query calls with high probabil-
ity. Rather than directly solving Threshold (Def. 2) with one solution set, it returns two
relevant sets that deal with the two properties separately.

Algorithm 1 A general framework of threshold sampling algorithms

1: procedure (f,N , k)
2: Input: evaluation oracle f : 2N → R+, constraint k, error ε, threshold τ
3: Initialize V ← N , A← ∅
4: while |V | > 0 do
5: V ← {x ∈ V : ∆ (x |A) ≥ τ and A ∪ {x} feasible}
6: T ← a subset of V ▷ make a decision on selecting a good subset from V
7: A← A ∪ T
8: return A

2.1 Algorithm Overview

The state-of-the-art threshold sampling algorithms, whether for monotone or non-monotone
functions, share a common structure (Alg. 1) that works as follows: 1) The algorithm initial-

604

Practical and Parallelizable Algorithms for SMCC

izes a candidate set V with the whole ground set N and an empty solution set A (Line 3);
2) During each iteration, it filters out elements in the candidate set V that either make
negligible contributions to A or violate the given constraint, and then selects a prefix of V
to add to A (Line 5-7); 3) Then, the algorithm repeats the last step until the candidate set
V is empty. The difference between those algorithms lies in how they select the prefix in
Step (2) on Line 6. Threshold-Sampling in Fahrbach et al. (2019) applies a random sam-
pling procedure for each prefix considered at that iteration. Threshold sampling algorithms
in Balkanski et al. (2019b) and Amanatidis et al. (2021) explicitly check all the candidate
elements for a given prefix. Later, Kazemi et al. (2019) and Chen et al. (2021) proposed
threshold sampling algorithms that work by performing a uniformly random permutation
of elements and making the decision after querying once for each prefix. This makes them
comparably much more practical in performance and demonstrates that multiple query calls
of a given prefix are redundant. Subsequently, we are able to keep a solution with the same
threshold and fewer query calls.

To efficiently obtain large sequences of elements with gains above τ , an approach inspired
by monotone threshold sampling algorithms in Kazemi et al. (2019) and Chen et al. (2021)
is proposed. As discussed above, these algorithms work by adaptively adding sequences
of elements to a set A, where the sequence has been checked in parallel to have at most
an ε fraction of the sequence failing the marginal gain condition. A uniformly random
permutation of elements is considered, where the average marginal gain being below τ is
detected by a high proportion of failures in the sequence. This step leads to a constant
fraction of elements being filtered out at the next iteration with high probability. When
combined with an exponentially decreasing candidate set and a constant number of adaptive
rounds for each iteration, these algorithms achieve logarithmic adaptivity and linear query
complexity.

The intuitive reason why this does not directly work for non-monotone functions (i.e. A is
not a solution to Threshold (Def. 2)) is: if one of the elements added fails the marginal
gain condition, it may do so arbitrarily badly and have a large negative marginal gain.
Moreover, one cannot simply exclude such elements from consideration, because they are
needed to ensure that the filtering step at the next iteration will discard a large enough
fraction of elements. Deleting such elements requires recalculating the marginal gains with
respect to the updated sets, which increases the number of adaptive rounds required in each
iteration by a factor of O (k). Our solution is to keep these elements in the set A which is
used for filtering and responsible for Property (2) of Threshold (Def. 2), but only include
those elements with a nonnegative marginal gain in the candidate solution set A′, which
is responsible for Property (1) of Threshold (Def. 2). The membership of A′ is known
since the gain of every element was computed in parallel. Moreover, |A′| ≥ (1 − ε)|A|
gives the needed relationship on the average marginal gain of each element of A′. Due
to submodularity, the objective value does not decrease when we exclude elements with
negative marginal gains.

Discussion of δ. Different from other threshold sampling algorithms, ThreshSeq incor-
porates an additional input parameter, δ. This parameter reflects the number of iterations
in the outer for loop, or specifically the adaptive rounds achieved by the algorithm. As

605

Chen & Kuhnle

Algorithm 2 A parallelizable threshold algorithm for threshold τ

1: procedure ThreshSeq(f,N , k, δ, ε, τ)
2: Input: evaluation oracle f : 2N → R+, constraint k, failure probability parameter

δ, error ε, threshold τ
3: Initialize A← ∅, A′ ← ∅, V ← N , ℓ = ⌈4

(
2
ε log(n) + log

(
n
δ

))
⌉

4: for j ← 1 to ℓ do ▷ Sequential for loop
5: Update V ← {x ∈ V : ∆ (x |A) ≥ τ} ▷ Filtering step w.r.t. A
6: if |V | = 0 then
7: return A,A′

8: V ← random-permutation(V)
9: s← min{k − |A|, |V |}

10: B[1 : s]← [none, · · · ,none]
11: for i← 1 to s in parallel do ▷ Parallel gain computation
12: Ti−1 ← {v1, v2, . . . , vi−1}
13: if ∆(vi |A ∪ Ti−1) ≥ τ then B[i]← true
14: elif ∆(vi |A ∪ Ti−1) < 0 then B[i]← false

15: i∗ ← max{i : #trues in B[1 : i] ≥ (1− ε)i} ▷ Detection of good filtering next
iteration

16: A← A ∪ Ti∗ ▷ A gets all elements
17: A′ ← A′ ∪ {V [i] : 1 ≤ i ≤ i∗, B[i] ̸= false} ▷ A′ only gets nonnegative-gain

elements
18: if |A| = k then
19: return A,A′

20: return failure

the algorithm progresses and more elements are added to the solution set, the size of A
increases while the size of V decreases. Then, the algorithm stops successfully once |A| = k
or |V | = 0. The more iterations, the more likely it is to succeed. Intuitively, the higher
δ is, the lower is the probability of ThreshSeq choosing a subset that improves on costs
and satisfies the constraint. As stated in Theorem 3 Property (1), ThreshSeq succeeds
with a probability greater than 1 − δ/n. For downstream approximation algorithms that
use ThreshSeq as a subroutine with a specific δ value, the more calls made to Thresh-
Seq, the lower success probability it achieves. The adoption of δ makes such probability
manageable.

2.2 Theoretical Guarantees

Theorem 3. Let (f, k) be an instance of SMCC. For any constant ε, the algorithm
ThreshSeq outputs A′ ⊆ A ⊆ N such that the following properties hold:

1) The algorithm succeeds with probability at least 1− δ/n.

2) There are O (n/ε) oracle queries in expectation and O (log(n/δ)/ε) adaptive rounds.

3) It holds that f(A′) ≥ (1− ε)τ |A|. If |A| < k, then ∆(x |A) < τ for all x ∈ N .

606

Practical and Parallelizable Algorithms for SMCC

4) It also holds that f(A′) ≥ f(A) and |A′| ≥ (1− ε)|A|

The performance of ThreshSeq is derived mainly by answering two questions: 1) if a
constant fraction of elements can be filtered out at any iteration with a high probability;
2) if the two sets returned solve Threshold (Def. 2) indirectly. In Lemma 4 below, it
is certified that the number of elements being deleted in the next iteration monotonically
increases from 0 to |V | as the size of the selected set increases. Then, by probability lemma
and concentration bounds (in Appendix A), Lemma 5 answers the first question.

Lemma 4. Given V after random-permutation on Line 8, let Si = {x ∈ V : ∆ (x |A ∪ Ti) <
τ}. It holds that |S0| = 0, |S|V || = |V |, and |Si−1| ≤ |Si|.

Lemma 5. It holds that Pr (i∗ < min{s, t}) ≤ 1/2.

Furthermore, with enough iterations, the candidate set V becomes empty at some point
with a high probability. Also, since the size of the candidate set |V | exponentially decreases,
intuitively, the total queries is linear in expectation.

A downside of this bifurcated approach is that a downstream algorithm receives two sets
A,A′ instead of one fromThreshSeq. It is obvious that the second property of Threshold
(Def. 2) holds naturally with set A. Lemma 6 below shows how we can relate set A′ with
set A. Therefore, by discarding the elements with negative gains in A, the gains of the rest
elements, denoted by A′, increase and follow the first property of Threshold (Def. 2).

Lemma 6. Say an element added to the solution set is good if its gain is greater than τ .
Suppose that Algorithm 2 terminates successfully. A and A′ returned by Algorithm 2 hold
the following properties:

1) There are at least (1− ε)-fraction of A that is good.

2) A good element in A is always a good element in A′.

3) And, any element in A′ has non-negative marginal gain when added.

The proofs of the lemmas above can be found in Appendix C. Now, we provide the proof
concerning the performance of ThreshSeq.

Proof of Success Probability (Property 1). The algorithm succeeds if |V | = 0 or |A| = k at
termination. If we can filter out a constant fraction of V or select a subset with k − |A|
elements at any iteration with a constant probability, then, with enough iterations, the
algorithm successfully terminates with a high probability.

From Lemma 4, there exists a point t such that t = min{i : |Si| ≥ ε|V |/2}, where the
next iteration filters out more than ε/2-fraction of elements if i∗ ≥ t. Intuitively, when
i ≤ t, there is a constant probability that the fraction of trues in B[1 : i] exceeds 1 − ε.
According to Lemma 4, Lemma 5 is provided to give the probability that whether |A| = k
or ε/2−fraction of V are filtered out at the next iteration.

For the purposes of the analysis, consider a version of the algorithm that does not break on
Line 7 when |V | = 0. If so, in subsequent iterations following |V | = 0, it is always the case

607

Chen & Kuhnle

that s = 0 and Ti∗ = ∅. Lemma 5 still holds in this case. As a result, the algorithm returns
the same solution set as the original one.

When the algorithm fails to terminate, at each iteration, it always holds that i∗ < s; and
there are no more than m = ⌈log1−ε/2(1/n)⌉ iterations that i∗ ≥ t. Therefore, there are no
more than m iterations that i∗ ≥ min{s, t}. Otherwise, with more than m iterations that
i∗ ≥ min{s, t}, if there is an iteration that s ≤ t, the algorithm terminates with |A| = k.
Otherwise, with more than m iterations that i∗ ≥ t, the algorithm terminates with |V | = 0.
Define a successful iteration as an iteration that i∗ ≥ min{s, t}, which means it successfully
filters out ε/2-fraction of V or the algorithm stops here. Let X be the number of successes
in the ℓ iterations. Then, X can be regarded as a sum of dependent Bernoulli trails, where
the success probability is larger than 1/2 from Lemma 5. Let Y be a sum of independent
Bernoulli trials, where the success probability is equal to 1/2. Then, the probability of
failure can be bounded as follows,

Pr (failure) ≤ Pr (X ≤ m)
(a)

≤ Pr (Y ≤ m) ≤ Pr (Y ≤ 2 log(n)/ε)

(b)

≤ e
−
(

log(n)

2 log(n)+ε log(n
δ)

−1

)2

·(2
ε
log(n)+log(n

δ)) ≤ δ

n
,

where Inequality (a) follows from Lemma 13, and Inequality (b) follows from Lemma 12.

Proof of Adaptivity and Query Complexity (Property 2). In Alg. 2, the oracle queries occur
on Line 5 and 13. Since filtering and inner for loop can be done in parallel, there are constant
adaptive rounds in an iteration. Therefore, the adaptivity is O (ℓ) = O (log(n/δ)/ε).

As for the query complexity, let Vj be the set V after filtering on Line 5 in iteration j. Let
ji be the i-th successful iterations, Yi = ji − ji−1. By Lemma 13 in Appendix A, it holds
that E [Yi] ≤ 2. For any iteration j that ji−1 + 1 ≤ j ≤ ji, there are i− 1 successes before
it. Thus, it holds that |Vj | ≤ n(1− ε/2)i−1.

At any iteration j, there are |Vj−1|+ 1 oracle queries on Line 5. As for the inner for loop,
there are no more than |Vj | + 1 oracle queries. The expected number of total queries can
be bounded as follows:

E [Queries] ≤
ℓ∑

j=1

E [|Vj−1|+ |Vj |+ 2] ≤ n+ 2ℓ+
ℓ∑

j=1

2E [|Vj |]

≤ n+ 2ℓ+
∑
i≥1

2E
[
Yi · n(1− ε/2)i−1

]
≤ n+ 2ℓ+ 4n/ε.

Therefore, the total queries are O (n/ε), where ε ∈ (0, 1).

Proof of Marginal Gains (Property 3 and 4). The algorithm terminates successfully if ei-
ther |V | = 0 or |A| = k during its execution. As proved above, this happens with a
probability of as least 1 − δ/n. In the proof below, we condition on the event that the
algorithm terminates successfully and returns A, A′.

608

Practical and Parallelizable Algorithms for SMCC

If the algorithm returns A such that |A| < k, then it must be the case that the algorithm
terminates with |V | = 0. So, for any x ∈ N , there exists an iteration j(x) + 1 such that
x is filtered out at iteration j(x) + 1. Let Aj(x) be A after iteration j(x). Then, due to
submodularity and Aj(x) ⊆ A, it holds that

∆ (x |A) ≤ ∆
(
x |Aj(x)

)
< τ.

Lemma 6 applies to any case in which the algorithm terminates successfully. As a reminder,
an added element is considered good if its gain is greater than τ with respect to the solution
prior to its inclusion. As per Line 17, A′ includes all such good elements that are in A.
Based on Property 1 of Lemma 6, it is guaranteed that the number of good elements in A′

is more than (1− ε)|A|. Hence, we have |A′| ≥ (1− ε)|A|.
Furthermore, due to the diminishing returns property of submodular functions, removing
an element from a set in a sequence will result in non-increasing marginal gains for the
remaining elements. For any x ∈ A, let A(x) be a subsequence of A before x is added
into A. Define A′

(x) analogously. Then, consider any x ∈ A, if x ̸∈ A′, it implies that

∆
(
x |A(x)

)
< 0; if x ∈ A′, it holds that ∆

(
x |A′

(x)

)
≥ ∆

(
x |A(x)

)
. Therefore,

f(A′) =
∑
x∈A′

∆
(
x |A′

(x)

)
≥
∑
x∈A′

∆
(
x |A(x)

)
+

∑
x∈A\A′

∆
(
x |A(x)

)
≥ f(A).

By Property 2 and 3 of Lemma 6, if an element x in A is good, it holds that ∆
(
x |A′

(x)

)
≥ τ ;

if not, it holds that ∆
(
x |A′

(x)

)
≥ 0. Then,

f(A′) =
∑
x∈A′

∆
(
x |A′

(x)

)
≥

∑
x∈A′,x is good

∆
(
x |A′

(x)

)
≥ (1− ε)τ |A|.

3. The AdaptiveSimpleThreshold Algorithm

In this section, we present the simple algorithm AdaptiveSimpleThreshold (AST,
Alg. 3) and show it obtains an approximation ratio of 1/6−ε with nearly optimal query and
adaptivive complexity. This algorithm relies on running ThreshSeq for a suitably chosen
threshold value. A procedure for unconstrained maximization is also required.

Overview of Algorithm. Algorithm AST works as follows. First, the for loop guesses a
value of τ close to OPT

(4+α)k , where 1/α is the ratio of the algorithm used for the unconstrained
maximization subproblem. Next, ThreshSeq is called with parameter τ to yield set A and
A′; followed by a second call to ThreshSeq with f restricted to N \A to yield set B and
B′. Next, an unconstrained maximization is performed with f restricted to A to yield set
A′′. Finally, the best of the three candidate sets A′, B′, A′′ is returned.

We prove the following theorem concerning the performance of AST.

609

Chen & Kuhnle

Algorithm 3 The AdaptiveSimpleThreshold Algorithm

1: procedure AST(f,N , k, ε)
2: Input: evaluation oracle f : 2N → R+, constraint k, accuracy parameter ε > 0
3: Initialize M ← maxx∈N f(x); c ← 4 + α, where α−1 is ratio of Unconstrained-

Max; ℓ← ⌈log1−ε(1/(ck)))⌉
4: for i← 0 to ℓ in parallel do
5: τi ←M (1− ε)i

6: Ai, A
′
i ← ThreshSeq (f, k, τi, ε, 1/2)

7: Bi, B
′
i ← ThreshSeq

(
f↾N\Ai

, k, τi, ε, 1/2
)

8: A′′
i ← UnconstrainedMax(Ai)

9: Ci ← arg max{f(A′
i), f(B

′
i), f(A

′′
i)}

10: return C ← arg maxi{f(Ci)}

Theorem 7. Suppose there exists an (1/α)-approximation for UnconstrainedMax with
adaptivity Φ and query complexity Ξ, and let ε > 0. Then there exists an algorithm for
SMCC with expected approximation ratio 1

4+α −ε with probability at least 1−1/n, expected

query complexity O
(
log1−ε(1/k) · (n/ε+ Ξ)

)
, and adaptivity O (log(n)/ε+Φ).

If the algorithm of Chen et al. (2019) is used for UnconstrainedMax, AST achieves
ratio 1/6 − ε with adaptivive complexity O (log(n)/ε+ log(1/ε)/ε) and query complex-
ity O

(
log1−ε(1/k) ·

(
n/ε+ n log3(1/ε)/ε4

))
. In the experiment, UnconstrainedMax is

implemented to use a random subset which gives an expected (1/4)−approximation ra-
tio (Feige et al., 2011). In this case, AST achieves ratio 1/8−ε with adaptivity O (log(n)/ε)
and query complexity O

(
log1−ε(1/k)n/ε

)
.

Overview of Proof. The proof uses the following strategy: either ThreshSeq finds a set
A′ or B′ with value approximately τk, which is sufficient to achieve the ratio, or we have
two disjoint sets A, B of size less than k, such that for any x ̸∈ A ∪ B, ∆ (x |A) < τ and
∆ (x |B) < τ . In this case, for any set O, we have by submodularity and nonnegativity,
f(O) ≤ f(O∩A)+f(O\A). The first term is bounded by the unconstrained maximization,
and the second term is bounded by an application of submodularity and the fact that the
maximum marginal gain of adding an element into A or B is below τ . The choice of constant
c balances the trade-off between the two cases of the proof.

Proof of Theorem 7. Let (f, k) be an instance of SMCC, and let ε > 0. Suppose algorithm
AST uses a procedure for UnconstrainedMax with expected ratio 1/α. We will show
that, with some events that happen with probability of at least (1−1/n), the set C returned
by algorithm AST(f, k, ε) satisfies E [f(C)] ≥

(
c−1 − ε

)
OPT, where OPT is the optimal

solution value on the instance (f, k).

Observe that τ0 = M = maxx∈N f(x) ≥ OPT/k by submodularity of f ; τℓ = M(1− ε)ℓ ≤
OPT/(ck) since M ≤ OPT. To better explain it, we attach Fig. 1 above. Because τi
decreases by a factor of 1 − ε, there exists i0 such that (1−ε)OPT

ck ≤ τi0 ≤ OPT
ck . Let

A,A′, B,B′, A′′ denote Ai0 , A
′
i0
, Bi0 , B

′
i0
, A′′

i0
, respectively. For the rest of the proof, we

610

Practical and Parallelizable Algorithms for SMCC

OPT
k

OPT
ck

(1 − ε)OPT
ck

τ0τℓ

Figure 1: Value of τ0 and τℓ. It is satisfied that τ0 ≥ OPT/k and τℓ ≤ OPT/(ck).

assume that the properties of Theorem 3 hold for the calls to ThreshSeq with threshold
τi0 , which happens with at least probability 1− 1/n by the union bound.

Case |A| = k or |B| = k. We suppose that |A| = k, the proof for the case |B| = k is
directly analogous. By Theorem 3 and the value of τi0 , it holds that,

f(A′) ≥ (1− ε)τi0 |A| ≥
(1− ε)2OPT

c
≥ (1/c− ε)OPT.

Then f(C) ≥ f(A′) ≥ (1/c− ε)OPT.

Case |A| < k and |B| < k. Let O be a set such that f(O) = OPT and |O| ≤ k. Since
|A| < k, by Theorem 3, it holds that for any x ∈ N , ∆ (x |A) < τi0 . Similarly, for any
x ∈ N \A, ∆ (x |B) < τi0 . Hence, by submodularity,

f(O ∪A)− f(A) ≤
∑
o∈O

∆(o |A) < kτi0 ≤ OPT/c, (1)

f((O \A) ∪B)− f(B) ≤
∑

o∈O\A

∆(o |B) < kτi0 ≤ OPT/c. (2)

Next, from (1), (2), submodularity, nonnegativity, Theorem 3, and the fact that A∩B = ∅,
it holds that,

f(A′) + f(B′) ≥ f(A) + f(B)

≥ f(O ∪A) + f((O \A) ∪B)− 2OPT/c

≥ f(O \A) + f(O ∪A ∪B)− 2OPT/c

≥ f(O \A)− 2OPT/c. (3)

Since UnconstrainedMax is an α-approximation, we have

αE
[
f(A′′)

]
≥ f(O ∩A). (4)

From Inequalities (3), (4), and submodularity, we have

OPT = f(O) ≤ f(O ∩A) + f(O \A)

≤ αE [f(C)] + 2f(C) + 2OPT/c,

from which it follows that E [f(C)] ≥ OPT/c.

611

Chen & Kuhnle

Algorithm 4 The AdaptiveThresholdGreedy Algorithm

1: procedure ATG(f,N , k, ε)
Input: evaluation oracle f : 2N → R+, constraint k, accuracy parameter ε > 0, failure
probability δ > 0

2: Initialize c ← 8/ε, ε′ ← (1 − 1/e)ε/8, ℓ = ⌈log1−ε′(1/(ck))⌉ + 1, δ ← 1/(2ℓ),
M ← maxx∈N f(x), A← ∅, A′ ← ∅, B ← ∅, B′ ← ∅

3: for i← 1 to ℓ do
4: τ ←M (1− ε′)i−1

5: S, S′ ← ThreshSeq(fA, k − |A|, τ, ε′, δ)
6: A← A ∪ S
7: A′ ← A′ ∪ S′

8: if |A| = k then break

9: for i← 1 to ℓ do
10: τ ←M (1− ε′)i−1

11: S, S′ ← ThreshSeq(fB↾N\A, k − |B|, τ, ε′, δ)
12: B ← B ∪ S
13: B′ ← B′ ∪ S′

14: if |B| = k then break

15: A′′ ← UnconstrainedMax(A, ε′)
16: C ← arg max{f(A′), f(B′), f(A′′)}
17: return C

Adaptivity and Query Complexities. The adaptivity of AST is twice the adaptivity
of ThreshSeq plus the adaptivity of UnconstrainedMax plus a constant. Further, the
total query complexity is log1−ε(1/(ck)) times the sum of twice the query complexity of
ThreshSeq and the query complexity of UnconstrainedMax.

4. The AdaptiveThresholdGreedy Algorithm

In this section, we present the algorithm AdaptiveThresholdGreedy (ATG, Alg. 4),
which achieves ratio ≈ 0.193 − ε in nearly optimal query and adaptivive complexity. The
price of improving the ratio of the preceding section is an extra log(k) factor in the adap-
tivity.

Overview of Algorithm. Our algorithm (pseudocode in Alg. 4) works as follows. Each for
loop corresponds to a low-adaptivity greedy procedure using ThreshSeq with descending
thresholds. Thus, the algorithm is structured as two iterated calls to a greedy algorithm,
where the second greedy call is restricted to select elements outside the auxiliary set A
returned by the first. Finally, an unconstrained maximization procedure is used within the
first greedily-selected auxiliary set A. Then, the best of three candidate sets is returned.
In the pseudocode for ATG, Alg. 4, ThreshSeq is called with functions of the form fS ,
which is defined to be the submodular function fS(·) = f(S ∪ ·).

612

Practical and Parallelizable Algorithms for SMCC

At a high level, our approach is the following: the IteratedGreedy framework of Gupta
et al. (2010) runs two standard greedy algorithms followed by an unconstrained maximiza-
tion, which yields an algorithm with O (nk) query complexity and O (k) adaptivity. We
adopt this framework but replace the standard greedy algorithm with a novel greedy ap-
proach with low adaptivity and query complexity. To design this novel greedy approach, we
modify the descending thresholds algorithm of Badanidiyuru and Vondrák (2014), which
has query complexity O (n log k) but very high adaptivity of Ω(n log k). We use Thresh-
Seq to lower the adaptivity of the descending thresholds greedy algorithm (see Appendix D
for pseudocode and a detailed discussion).

For the resulting algorithm ATG, we prove a ratio of 0.193 − ε (Theorem 8), which im-
proves the 1/6 ratio for IteratedGreedy proven in Gupta et al. (2010). Also, by adopt-
ing ThreshSeq proposed in this paper, the analysis of approximation ratio is simplified.
Thanks to the fact that the contribution of each element added to the solution set A′ is
determined, at least (1 − ε)|A| elements in the solution set A′ have marginal gains which
exactly exceed the threshold τ , while the rest of it have non-negative marginal gains. There-
fore, it is not needed to analyze the marginal gain in expectation anymore. An exact lower
bound is given by the analysis of the two greedy procedures.

A simpler form of our arguments shows that the improved ratio also holds for the original
IteratedGreedy of Gupta et al. (2010); this analysis is given in Appendix E. We prove
the following theorem concerning the performance of ATG.

Theorem 8. Suppose there exists an (1/α)-approximation for UnconstrainedMax with
adaptivity Φ and query complexity Ξ, and let ε > 0. Then the algorithm AdaptiveThresh-
oldGreedy for SMCC has expected approximation ratio e−1

e(2+α)−α − ε with probability at

least (1 − 1/n), adaptivive complexity of O
(
log1−ε(1/k) log(n)/ε+Φ

)
and expected query

complexity of O
(
log1−ε(1/k) · (n/ε) + Ξ

)
.

If the algorithm of Chen et al. (2019) is used for UnconstrainedMax, ATG achieves
approximation ratio ≈ 0.193 − ε with adaptivive complexity O (log(n) log(k)) and query
complexity O (n log(k)), wherein the ε dependence has been suppressed. Same as the
AST algorithm, UnconstrainedMax is implemented to use a random subset, and ATG
achieves approximation ratio ≈ 0.139− ε with adaptivive complexity O (log(n) log(k)) and
query complexity O (n log(k)).

Proof of Theorem 8. In this proof, we assume that the guarantees of Theorem 3 hold for
each call to ThreshSeq made by ATG; this occurs with probability at least (1− 1/n) by
the union bound and the choice of δ.

Overview of Proof. For the proof, a substantial amount of machinery is necessary to
lower bound the marginal gain. The necessary notations are made first; then, in Lemmas 9
– 10, we formulate the necessary lower bounds on the marginal gains for the first and
second greedy procedures. For each respective greedy procedure, this is accomplished by
considering the good elements in the selected set returned by ThreshSeq, or the dummy
element if the size of selected set is limited. This allows us to formulate a recurrence on the
sum of the marginal gains (Lemma 11). Finally, the recurrence allows us to proceed similarly

613

Chen & Kuhnle

to our proof in Appendix E after a careful analysis of the error introduced (Lemma 18 in
Appendix F).

Notations. Followed by the notations in the pseudocode of Alg. 4, A and A′ are returned
by the first greedy procedure, while B and B′ are returned by the second one. Let Ai

be the set A after iteration i, a′j be the j-th element in A′, and i(j) be the iteration that
returns a′j . If j > |A′|, let a′j be a dummy element, and i(j) = ℓ + 1. Furthermore, define
A′

j = {a′1, . . . , a′j}. Then, we define Bi(j) and B′j analogously.

Lemma 9. For 1 ≤ j ≤ k, there are at least ⌈(1− ε′)k⌉ inequalities where

f(A′
j)− f(A′

j−1) +
M

ck
≥ 1− ε′

k

(
f(O ∪Ai(j)−1)− f(A′

j−1)
)
.

And for any j,

f(A′
j) ≥ f(A′

j−1).

The proof of the above lemma can be found in Appendix F. Following the notations and
the proof of Lemma 9, we can get an analogous result for the gain of B′ as follows.

Lemma 10. For 1 ≤ j ≤ k, there are at least ⌈(1− ε′)k⌉ of j such that

f(B′j)− f(B′j−1) +
M

ck
≥ 1− ε′

k

(
f((O\A) ∪Bi(j)−1)− f(B′j−1)

)
.

And for any j,

f(B′j) ≥ f(B′j−1).

The next lemma proved in Appendix F establishes the main recurrence.

Lemma 11. Let Γu = f(A′
j(u))+f(B′j(u)), where j(u) is the u-th j which satisfies Lemma 9

or Lemma 10. Then, there are at least ⌈(1− ε′)k⌉ of u follow that

f(O\A)− Γu −
2M

c(1− ε′)
≤
(
1− 1− ε′

k

)(
f(O\A)− Γu−1 −

2M

c(1− ε′)

)
.

Lemma 11 yields a recurrence of the form (b− ui+1) ≤ a (b− ui), u0 = 0, and has the
solution ui ≥ b(1− ai). Consequently, we have

f(A′) + f(B′) ≥
(
1−

(
1− 1− ε′

k

)(1−ε′)k
)(

f(O\A)− 2M

c(1− ε′)

)
≥
(
1− e−(1−ε′)2

)(
f(O\A)− 2M

c(1− ε′)

)
(5)

614

Practical and Parallelizable Algorithms for SMCC

Let β = 1− e−(1−ε′)2 . From the choice of C on line 16, we have 2f(C) ≥ f(A′)+ f(B′) and
so from (5), we have

f(O \A) ≤ 2

β
f(C) +

2M

c(1− ε′)

≤ 2

β
f(C) +

2f(O)

c(1− ε′)
. (6)

Since an (1/α)-approximation is used for UnconstrainedMax, for any A, f(O ∩A)/α ≤
E [f(A′′)|A]; therefore,

E [f(O ∩A)] ≤ αE [f(C)] . (7)

For any set A, f(O) ≤ f(O∩A)+f(O\A) by submodularity and nonnegativity. Therefore,
by Inequalities 6 and 7,

f(O) ≤ E [f(O ∩A) + f(O \A)]

≤ αE [f(C)] +
2

β
E [f(C)] +

2f(O)

c(1− ε′)
.

Therefore, we have from Lemma 18 in Appendix F,

E [f(C)] ≥
1− 2

c(1−ε′)

α+ 2
β

f(O) ≥
(

e− 1

α(e− 1) + 2e
− ε

)
f(O).

5. Empirical Evaluation

In this section, we evaluate our algorithm in comparison with the state-of-the-art paralleliz-
able algorithms: AdaptiveNonmonotoneMax of Fahrbach et al. (2019), the algorithm
of Ene and Nguyen (2020), and two versions of ParCardinal in Amanatidis et al. (2021)
(ParCardinal(v1) represents the one without binary search and ParCardinal(v2) is the
one with binary search). Also, we compare four versions of our algorithms with different
threshold procedures: Threshold-Sampling of Fahrbach et al. (2019), two versions of
threshold sampling algorithms of Amanatidis et al. (2021), and ThreshSeq proposed in
this paper. Our results are summarized as follows. 1

• Our algorithm ATG obtains the best objective value of any of the parallelizable
algorithms; obtaining an improvement of up to 19% over the next algorithm, our
AST. Both Fahrbach et al. (2019) and Ene and Nguyen (2020) exhibit a large loss of
objective value at both small and large k values.

• Both our algorithm AST, ParCardinal(v1), and AdaptiveNonmonotoneMax
use a very small number of adaptive rounds. Both ATG and the algorithm of Ene
and Nguyen (2020) use roughly an order of magnitude more adaptive rounds.

1. Our code is available at https://gitlab.com/luciacyx/nm-adaptive-code.git.

615

Chen & Kuhnle

• The algorithm of Ene and Nguyen (2020) is the most query efficient if access is pro-
vided to an exact oracle for the multilinear extension of a submodular function and
its gradient 2. However, if these oracles must be approximated with the set function,
their algorithm becomes very inefficient and does not scale beyond small instances
(n ≤ 100).

• Our algorithms used fewer queries to the submodular set function than the linear-
time algorithm FastRandomGreedy in Buchbinder et al. (2015). Both versions of
ParCardinal are the most query inefficient.

• Comparing AST with four threshold sampling algorithms, our ThreshSeq proposed
in this paper is the most query and round efficient without loss of objective values.
If running Threshold-Sampling theoretically, with a large amount of sampling in
ReducedMean, we empirically establish that the query complexity of algorithms
using Threshold-Sampling can be three to four orders of magnitude worse than
other algorithms over the SMCC instances in our benchmark.

5.1 Algorithm Setup for AST and ATG

In the pseudocodes for AST and ATG, M is used as the upper bound of OPT/k which
is set to maxx∈N f (x). In the experiment, we used a sharper upper bound, the average of
the top k singleton values, maintaining the analysis of approximation ratio. Additionally,
the (1/2)−approximation UnconstrainedMax algorithm is substituted with a random
set, which is a (1/4)-approximation by Feige et al. (2011). Consequently, the obtained
approximation ratios for AST and ATG in the actual experiment are 1/8−ε and 0.139−ε,
respectively.

5.2 Comparison Algorithms and Other Settings

In addition to the algorithms discussed in the preceding paragraphs, we evaluate the fol-
lowing baselines: the IteratedGreedy algorithm of Gupta et al. (2010), and the linear-
time (1/e−ε)-approximation algorithm FastRandomGreedy of Buchbinder et al. (2015).
These algorithms are both O (k)-adaptive, where k is the cardinality constraint.

The algorithm of Ene and Nguyen (2020) requires access to an oracle for the multilinear
extension and its gradient. In the case of maximum cut, the multilinear extension and its
gradient can be computed in closed form in time linear in the size of the graph, as described
in Appendix G. This fact enables us to evaluate the algorithm of Ene and Nguyen (2020)
using direct oracle access to the multilinear extension and its gradient on the maximum
cut application. However, no closed form exists for the multilinear extension of the rev-
enue maximization objective. In this case, we found (see Appendix G.1) that sampling to
approximate the multilinear extension is exorbitant in terms of runtime; hence, we were
unable to evaluate Ene and Nguyen (2020) on revenue maximization.

For all algorithms, the accuracy parameter ε was set to 0.1; the failure probability parameter
δ was set to 0.1; 100 samples were used to evaluate expectations for Threshold-Sampling

2. The definition of the multilinear extension is given in Appendix G.

616

Practical and Parallelizable Algorithms for SMCC

in AdaptiveNonmonotoneMax (thus, this algorithm was run as heuristics with no per-
formance guarantee). Further, in the algorithmsAdaptiveThresholdGreedy, ParCar-
dinal, and AdaptiveNonmonotoneMax, we ignored the smaller values of ε, δ in each
algorithm, and simply used the input values of ε and δ. For AdaptiveThresholdGreedy
and ParCardinal, by using the best solution value found so far as a lower bound on OPT,
we used an early termination condition to check if the threshold value τ < αOPT(1− ε)/k,
where α is the approximation ratio for each algorithm. This early termination condition is
responsible for the high variance in total queries. We attempted to use the same sharper
upper bound on OPT/k as our algorithms in AdaptiveNonmonotoneMax, but it re-
sulted in significantly worse objective values, so we simply used the maximum singleton
as described in Fahrbach et al. (2019). ParCardinal is generalized by an algorithm that
deals with knapsack constraints. By calling threshold sampling algorithm a large number of
times, ParCardinal is able to achieve a constant probability on certain events. Hence, it
is comparatively less efficient than algorithms dealing with cardinality constraints. For our
experiments, we ran only ParCardinal(v1) and ParCardinal(v2) on BA and ca-GrQc
datasets.

Randomized algorithms are averaged over 20 independent repetitions, and the mean is re-
ported. The standard deviation is indicated by a shaded region in the plots. Any algorithm
that requires a subroutine for UnconstrainedMax is implemented to use a random set,
following the setting used for AST and ATG.

5.3 Applications and Datasets

Maxcut. The cardinality-constrained maximum cut function is defined as follows. Given
graph G = (V,E), and nonnegative edge weight wij on each edge (i, j) ∈ E. For S ⊆ V , let

f(S) =
∑

i∈V \S

∑
j∈S

wij .

In general, this is a non-monotone, submodular function. In our implementation, all edges
have a weight of 1.

Revmax. The revenue maximization objective is defined as follows. Let graph G = (V,E)
represent a social network, with nonnegative edge weight wij on each edge (i, j) ∈ E. We
use the concave graph model introduced by Hartline et al. (2008). In this model, each
user i ∈ V is associated with a non-negative, concave function fi : R+ → R+. The value
vi(S) = fi(

∑
j∈S wij) encodes how likely the user i is to buy a product if the set S has

adopted it. Then the total revenue for seeding a set S is

f(S) =
∑

i∈V \S

fi

∑
j∈S

wij

 .

This is a non-monotone, submodular function. In our implementation, each edge weight
wij ∈ (0, 1) is chosen uniformly randomly; further, fi(·) = (·)αi , where αi ∈ (0, 1) is chosen
uniformly randomly for each user i ∈ V .

617

Chen & Kuhnle

0 50 100 150 200
k

0.4

0.6

0.8

1.0

V
al

ue
/

It
er

at
ed

G
re

ed
y

(a) Objective, small k

0 50 100 150 200
k

0

1

2

3

4

V
al

ue
(×

10
5
)

IteratedGreedy

Ene et al. 2020

FastRandomGreedy

AdaptiveNonmonotoneMax

AST (ThreshSeq)

ATG (ThreshSeq)

(b) Absolute Objective, small k

0 50 100 150 200
k

101

102

103

A
da

pt
iv

e
R

ou
nd

s

(c) Rounds, small k

0.05 0.10 0.15 0.20
k/n

0.75

0.80

0.85

0.90

0.95

1.00

V
al

ue
/

It
er

at
ed

G
re

ed
y

(d) Objective, large k

0.05 0.10 0.15 0.20
k/n

107

109

1011

T
ot

al
Q

ue
ri

es

(e) Queries, large k

0.05 0.10 0.15 0.20
k/n

102

104

106

A
da

pt
iv

e
R

ou
nd

s

(f) Rounds, large k

Figure 2: Comparison of objective value (normalized by the IteratedGreedy objective
value), total queries, and adaptive rounds on web-Google for the maxcut applica-
tion for both small and large k values. The large k values are given as a fraction of
the number of nodes in the network. The algorithm of Ene and Nguyen (2020) is
run with oracle access to the multilinear extension and its gradient; total queries
reported for this algorithm are queries to these oracles, rather than the original
set function. The legend in Fig. 2(b) applies to all other subfigures.

Dataset. Network topologies from SNAP were used; specifically, web-Google (n = 875713,
m = 5105039), a web graph from Google, ca-GrQc (n = 5242,m = 14496), a collab-
oration network from Arxiv General Relativity and Quantum Cosmology, and ca-Astro
(n = 18772,m = 198110), a collaboration network of Arxiv Astro Physics. In addition, a
Barabási-Albert random graph was used (BA), with n = 968, m = 5708.

5.4 Main Results

In Fig. 2, we show representative results for cardinality-constrained maximum cut on web-
Google (n = 875713) for both small and large k values. Results on other datasets and rev-
enue maximization are given in Fig. 4 and 3. In addition, results for Ene and Nguyen (2020)
when the multilinear extension is approximated via sampling are given in Appendix G.1.
The algorithms are evaluated by objective value of solution, total queries made to the ora-
cle, and the number of adaptive rounds (lower is better). Objective value is normalized by
that of IteratedGreedy.

In terms of objective value (Figs. 2(a) and 2(d)), our algorithm ATG maintained better
than 0.99 of the IteratedGreedy value, while all other algorithms fell below 0.95 of the
IteratedGreedy value on some instances. Our algorithm AST obtained similar objective

618

Practical and Parallelizable Algorithms for SMCC

0 50 100 150 200
k

0.4

0.6

0.8

1.0

V
al

ue
/

It
er

at
ed

G
re

ed
y

(a) Objective, small k

0 50 100 150 200
k

106

T
ot

al
Q

ue
rie

s

(b) Queries, small k

0 50 100 150 200
k

101

102

103

A
da

pt
iv

e
R

ou
nd

s

(c) Rounds, small k

0.05 0.10 0.15 0.20
k/n

0.7

0.8

0.9

1.0

V
al

ue
/

It
er

at
ed

G
re

ed
y

(d) Objective, large k

0.05 0.10 0.15 0.20
k/n

106

107

108

T
ot

al
Q

ue
rie

s

(e) Queries, large k

0.05 0.10 0.15 0.20
k/n

102

103

104

A
da

pt
iv

e
R

ou
nd

s

(f) Rounds, large k

Figure 3: Results for revenue maximization on ca-Astro, for both small and large k values.
Large k values are indicated by a fraction of the total number n of nodes. The
legends in Fig. 2 and 4 apply.

0 50 100 150 200
k

0.6

0.8

1.0

V
al

ue
/

It
er

at
ed

G
re

ed
y

(a) Objective, BA

0 50 100 150 200
k

104

105

106

107

108

T
ot

al
Q

ue
rie

s

(b) Queries, BA

0 50 100 150 200
k

101

102

103
A

da
pt

iv
e

R
ou

nd
s

(c) Rounds, BA

0 50 100 150 200
k

0.4

0.6

0.8

1.0

V
al

ue
/

It
er

at
ed

G
re

ed
y

(d) Objective, ca-GrQc

0 50 100 150 200
k

104

105

106

107

108

T
ot

al
Q

ue
rie

s

(e) Queries, ca-GrQc

IteratedGreedy

Ene et al. 2020

FastRandomGreedy

AdaptiveNonmonotoneMax

AST (ThreshSeq)

ATG (ThreshSeq)

ParCardinal(v1)

ParCardinal(v2)

(f) Legend

Figure 4: Additional results for maximum cut on BA and ca-GrQc with ParCardinal
algorithms.

value to AdaptiveNonmonotoneMax on larger k values, but performed much better on
small k values. Finally, the algorithm of Ene and Nguyen (2020) obtained poor objective
value for k ≤ 100 and about 0.75 of the IteratedGreedy value on larger k values. It

619

Chen & Kuhnle

is interesting to observe that the two algorithms with the best approximation ratio of 1/e,
Ene and Nguyen (2020) and FastRandomGreedy, returned the worst objective values
on larger k (Fig. 2(d)). For total queries (Fig. 2(e)), the most efficient is Ene and Nguyen
(2020), although it does not query the set function directly, but the multilinear extension
and its gradient. The most efficient of the combinatorial algorithms was AST, followed
by ATG. Finally, with respect to the number of adaptive rounds (Fig. 2(f)), the best
was AdaptiveNonmonotoneMax, closely followed by AST; the next lowest was ATG,
followed by Ene and Nguyen (2020).

The results in Fig. 4 and 3 are qualitatively similar. Regarding the ParCardinal algo-
rithms, the results in Fig. 4 demonstrate that ParCardinal(v2) is highly parallelizable.
However, despite achieving a 0.172 approximation ratio, the objective values of ParCar-
dinal(v1) and ParCardinal(v2) fell below 0.85 of the IteratedGreedy. Because of a
constant number of call repetitions to ThreshSeq in ParCardinal, these two algorithms
are the most query inefficient and are roughly two to three orders of magnitude worse than
our algorithms.

5.5 Comparison of Different Threshold Sampling Procedures.

Fig. 5 shows the results of AST and ATG with different threshold sampling procedures
for cardinality-constrained maximum cut on two datasets, BA (n = 968) and ca-GrQc
(n = 5242). All the algorithms are run according to pseudocode without any modification.
TS-AMA-v1 and TS-AMA-v2 represent the ThreshSeq algorithms without and with
binary search proposed in Amanatidis et al. (2021).

All four versions of AST return similar results on objective values; see Figs. 5(a) and 5(d).
As for adaptive rounds, ThreshSeq, Threshold-Sampling, and TS-AMA-v1 all run
in O (log(n)) rounds, while TS-AMA-v2 runs in O

(
log2(n)

)
rounds. By the results in

Figs. 5(b) and 5(e), our ThreshSeq is the most highly parallelizable algorithm, followed
by TS-AMA-v1. TS-AMA-v2 is significantly worst as what it is in theory. Perhaps
the reason why our algorithm performed better in practical settings can be attributed
to the following factors. Theoretically, all algorithms except for TS-AMA-v2 have the
same order of adaptivity. However, the adaptivity of each algorithm is associated with
different constants, which in turn depend on the design of the algorithm. Our algorithm
maintains two sets A, A′ ⊆ A during its execution. At the beginning of each iteration,
the filtration step is with respect to set A, which contains elements with negative marginal
gains; at the end of the algorithm, elements with negative marginal gains are excluded
from A to get A′, which is used to get the average marginal gains of the solution. From
an experimental point of view, this implementation allows us to filter out more elements
after one round while maintaining the same average marginal gain. With respect to the
query calls, while our ThreshSeq only queries once for each prefix, Threshold-Sampling
queries 16⌈log(2/δ̂)/ε̂2⌉ times, and both TS-AMA-v1 and TS-AMA-v2 query |V | times.
According to Figs. 5(c) and 5(f), our ThreshSeq is the most query efficient one among
all. Also, the total queries do not increase a lot when k increases. With binary search,
TS-AMA-v2 is the second best one which has O

(
n log2(n)

)
query complexity. As for

620

Practical and Parallelizable Algorithms for SMCC

25 50 75 100
k

0.85

0.90

0.95

1.00
V

al
ue

/
It

er
at

ed
G

re
ed

y

AST (ThreshSeq)

AST (Threshold-Sampling)

AST (TS-AMA-v1)

AST (TS-AMA-v2)

(a) Objective, BA

25 50 75 100
k

101

102

A
da

pt
iv

e
R

ou
nd

s

(b) Rounds, BA

25 50 75 100
k

105

106

107

108

109

T
ot

al
Q

ue
ri

es

(c) Queries, ca-GrQc

25 50 75 100
k

0.85

0.90

0.95

1.00

V
al

ue
/

It
er

at
ed

G
re

ed
y

(d) Objective, ca-GrQc

25 50 75 100
k

101

102

A
da

pt
iv

e
R

ou
nd

s

(e) Rounds, ca-GrQc

25 50 75 100
k

106

107

108

109

T
ot

al
Q

ue
ri

es

(f) Queries, ca-GrQc

25 50 75 100
k

0.85

0.90

0.95

1.00

V
al

ue
/

It
er

at
ed

G
re

ed
y

ATG (ThreshSeq)

ATG (Threshold-Sampling)

ATG (TS-AMA-v1)

ATG (TS-AMA-v2)

(g) Objective, BA

25 50 75 100
k

103

4× 102

6× 102

A
d

ap
ti

ve
R

ou
n

d
s

(h) Rounds, BA

25 50 75 100
k

106

107

108

109

1010

T
ot

al
Q

ue
ri

es

(i) Queries, ca-GrQc

25 50 75 100
k

0.85

0.90

0.95

1.00

V
al

ue
/

It
er

at
ed

G
re

ed
y

(j) Objective, ca-GrQc

25 50 75 100
k

103

2× 102

3× 102

4× 102

6× 102

A
d

ap
ti

ve
R

ou
n

d
s

(k) Rounds, ca-GrQc

25 50 75 100
k

106

107

108

109

1010

T
ot

al
Q

ue
ri

es

(l) Queries, ca-GrQc

Figure 5: Results of AST and ATG with four threshold sampling procedures on two
datasets. The algorithms are run strictly following pseudocode. The legends
in Fig. 5(a) and 5(g) apply to all other subfigures.

Threshold-Sampling, with the input values as n = 968, k = 10, and ε = δ = 0.1, it
queries about 2× 105 times for each prefix which is significantly large.

Regarding to different ATG algorithms, they all return the competitive solutions compared
with IteratedGreedy; see Figs. 5(g) and 5(j). Since each iteration of ATG calls a

621

Chen & Kuhnle

threshold sampling subroutine which is based on the solution of previous iterations and
a slowly decreasing threshold τ , after the first filtration of the subroutine, the size of the
candidate set is limited. Thus, there is no significant difference between different ATGs
concerning rounds and queries. However, there are two exceptions. First, since TS-AMA-
v2 is the only one who has O

(
log2(n)

)
adaptive rounds, it still runs with more rounds; see

Figs. 5(h) and 5(k). Also, the number of queries of ATG with Threshold-Sampling is
significantly large with the same reason discussed before.

Among all, ThreshSeq proposed in this paper is not only the best theoretically, but also
performs well in experiments compared with the pre-existing threshold sampling algorithms.

6. Discussion and Future Directions

In this paper, we propose a new threshold sampling algorithm, ThreshSeq, which solves
Threshold on non-monotone instances with high probability, optimal adaptivity, and
query complexity. Different from other state-of-the-art thresholding algorithms, Thresh-
Seq is based on maintaining two sets that separately solve Threshold. Then, we propose
two approximation algorithms AdaptiveSimpleThreshold and AdaptiveThreshold-
Greedy that are inspired by IteratedGreedy.

Compared to state-of-the-art algorithms, our ThreshSeq exhibits the highest query effi-
ciency with relatively fewer adaptive rounds; ATG produces results that are almost identical
to IteratedGreedy in terms of objective value, and, relatively speaking, is the most query
efficient combinatorial algorithm; AST is the second most parallelizable algorithm among
all algorithms and delivers reasonably good objective values. Despite demonstrating good
results, it should be noted that our approximation algorithms rely on the Unconstrained-
Max subroutine, which requires access to the multilinear extension and may be impractical
in certain settings. So, in the experiment, we substituted it with a random subset sampling
approach which provides an expected (1/4)-approximation ratio. However, this substitution
may result in a decrease in the objective value during the experiment.

Further investigations are needed in our work and there is still significant room for im-
provement. For instance, in non-monotone submodular maximization problems, using
the objective value of max singleton to guess OPT is a common practice that involves
O (log(n)) guesses. If we can reduce the number of guesses to a constant, the query com-
plexity can be improved significantly by a factor of O (log(n)). Additionally, the current
theoretical best approximation ratio is 0.385. In our paper, the best we proposed is a
(0.193 − ε)−approximation algorithm ((0.139 − ε)−approximation in our experiment with
a random subset unconstraint algorithm). Hence, the question remains interesting: Can we
parallelize other algorithms that provide a better approximation ratio?

In our paper, we focus on the number of queries and the query parallelizability assuming
that the oracle computation time dominates the overall computation duration. However,
in practical scenarios, the function representation significantly influences algorithm perfor-
mance (e.g. the multilinear extension and its gradient have closed forms for maximum cut).
Thus, for any particular application, there is a lot of room for improvement based on such
specific representation of the submodular function.

622

Practical and Parallelizable Algorithms for SMCC

Appendix A. Probability Lemma and Concentration Bounds

Lemma 12. (Chernoff bounds (Mitzenmacher & Upfal, 2017)). Suppose X1, ... , Xn are
independent binary random variables such that Pr (Xi = 1) = pi. Let µ =

∑n
i=1 pi, and

X =
∑n

i=1Xi. Then for any δ ≥ 0, we have

Pr (X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ . (8)

Moreover, for any 0 ≤ δ ≤ 1, we have

Pr (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 . (9)

Lemma 13. (Chen et al., 2021). Suppose there is a sequence of n Bernoulli trials:
X1, X2, . . . , Xn, where the success probability of Xi depends on the results of the preced-
ing trials X1, . . . , Xi−1. Suppose it holds that

Pr (Xi = 1|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1) ≥ η,

where η > 0 is a constant and x1, . . . , xi−1 are arbitrary.

Then, if Y1, . . . , Yn are independent Bernoulli trials, each with probability η of success, then

Pr

(
n∑

i=1

Xi ≤ b

)
≤ Pr

(
n∑

i=1

Yi ≤ b

)
,

where b is an arbitrary integer.

Moreover, let A be the first occurrence of success in sequence Xi. Then,

E [A] ≤ 1/η.

Lemma 14. (Chen et al., 2021). Suppose there is a sequence of n + 1 Bernoulli trials:
X1, X2, . . . , Xn+1, where the success probability of Xi depends on the results of the preceding
trials X1, . . . , Xi−1, and it decreases from 1 to 0. Let t be a random variable based on the
n+ 1 Bernoulli trials. Suppose it holds that

Pr (Xi = 1|X1 = x1, X2 = x2, . . . , Xi−1 = xi−1, i ≤ t) ≥ η,

where x1, . . . , xi−1 are arbitrary and 0 < η < 1 is a constant. Then, if Y1, . . . , Yn+1 are
independent Bernoulli trials, each with probability η of success, then

Pr

(
t∑

i=1

Xi ≤ bt

)
≤ Pr

(
t∑

i=1

Yi ≤ bt

)
,

where b is an arbitrary integer.

623

Chen & Kuhnle

Appendix B. Counterexample for Threshold-Sampling with
Non-monotone Submodular Functions

Fahrbach et al. (2019) proposed a subroutine, Threshold-Sampling, which returns a
solution S ⊆ N that E [f(S)/S] ≥ (1 − ε)τ within logarithmic rounds and linear time.
The full pseudocode for Threshold-Sampling is given in Alg. 6. The notation U(S, t)
represents the uniform distribution over subsets of S of size t. Threshold-Sampling relies
upon the procedure ReducedMean, given in Alg. 5. The Bernoulli distribution input to
ReducedMean is the distribution Dt, which is defined as follows.

Definition 15. Conditioned on the current state of the algorithm, consider the process
where the set T ∼ U(A, t − 1) and then the element x ∼ A \ T are drawn uniformly at
random. Let Dt denote the probability distribution over the indicator random variable

It = I[f(S ∪ T + x)− f(S ∪ T) ≥ τ].

Below, we state the lemma of Threshold-Sampling in Fahrbach et al. (2019).

Lemma 16 (Fahrbach et al.’s (2019)). The algorithm Threshold-Sampling outputs S ⊆
N with |S| ≤ k in O (log(n/δ)/ε) adaptive rounds such that the following properties hold
with probability at least 1− δ:

1. There are O (n/ε) oracle queries in expectation.

2. The expected average marginal E [f(S)/|S|] ≥ (1− ε)τ .

3. If |S| < k, then fx(S) < τ for all x ∈ N .

In Fahrbach et al. (2019) and Kuhnle (2021), the above lemma is used with non-monotone
submodular functions; however, in the case that f is non-monotone, the lemma does not
hold. Alg. 5 only checks (on Line 13) if there is more than a constant fraction of elements
whose marginal gains are larger than the threshold τ . If there exist elements with large
magnitude, negative marginal gains, then the average marginal gain may fail to satisfy
the lower bound in Lemma 16. As for the proof in Fahrbach et al. (2019), the following
inequality does not hold (needed for the proof of Lemma 3.3 of Fahrbach et al. (2019)):

E [∆ (T |S)] ≥ (E [I1] + E [I2] + . . .+ E [It])τ,

where |T | = t∗ and t ≥ t∗/(1 + ε̂). Next, we give a counterexample for the two versions of
Threshold-Sampling used in Fahrbach et al. (2019) and Fahrbach et al. (2019) where the
only difference is that the if condition in Alg. 6 on Line 9 changes to |A| < 3k in Fahrbach
et al. (2019).

Counterexample 1. Define a set function f : 2N → R+ as follows, where a ∈ N ,

f(B) =

{
n2 + |B|, if a ̸∈ B

n2 + 1− (|B| − 1)n, if a ∈ B
.

Let k = n = |N | > 400, τ = 1, ε = 0.1, δ = 0.1. Run Threshold-Sampling(f, k, τ, ε, δ).

624

Practical and Parallelizable Algorithms for SMCC

Algorithm 5 The ReducedMean algorithm of Fahrbach et al. (2019)

1: Input: access to a Bernoulli distribution D, error ε, failure probability δ
2: Set number of samples m← 16⌈log(2/δ)/ε2⌉
3: Sample X1, X2, . . . , Xm ∼ D
4: Set µ̄← 1

m

∑m
i=1Xi

5: if µ̄ ≤ 1− 1.5ε then
6: return true

7: return false

Algorithm 6 The threshold sampling algorithm of Fahrbach et al. (2019)

1: procedure Threshold-Sampling(f, k, τ, ε, δ)
2: Input: evaluation oracle f : 2N → R+, constraint k, threshold τ , error ε, failure

probability δ
3: Set smaller error ε̂← ε/3
4: Set iteration bounds r ← ⌈log(1−ε̂)−1(2n/δ)⌉,m← ⌈log(k)/ε̂⌉
5: Set smaller failure probability δ̂ ← δ/(2r(m+ 1))
6: Initialize S ← ∅, A← N
7: for r sequential rounds do
8: Filter A← {x ∈ A : ∆(x, S) ≥ τ}
9: if |A| = 0 then

10: break
11: for i = 0 to m in parallel do
12: Set t← min{⌊(1 + ε̂)i⌋, |A|}
13: rm[t]←ReducedMean (Dt, ε̂, δ̂)

14: t′ ← min t such that rm[t] is true
15: Sample T ∼ U (A,min{t′, k − |S|})
16: Update S ← S ∪ T
17: if |S| = k then
18: break
19: return S

Proof. For any B ⊆ N and x ∈ N\B, the above set function follows that

∆ (x |B) =

1, if x ̸= a and a ̸∈ B

− n, if x ̸= a and a ∈ B

1− |B|(n+ 1), if x = a

.

Thus, f is a non-negative, non-monotone submodular function.

Consider the first iteration of the outer for loop, where S = ∅, and A = N after Line 8. For
any 1 < t ≤ |N |, |T | = t− 1,

E [It] = Pr (f(S ∪ T + x)− f(S ∪ T) ≥ τ) = Pr (x ̸= a and a ̸∈ T) = 1− t

n
.

So, with any value of ε, ReducedMean returns true when t > εn/2. The first round of
Threshold-Sampling samples a set T1 with t′1 = |T1| > εn/2. Then update S by S = T1.

625

Chen & Kuhnle

For the Threshold-Sampling in Fahrbach et al. (2019) with stop condition |A| < 3k, the
algorithm stopped here after the first iteration, no matter what is sampled. In this case,
the expectation of marginal gains of the set returned by the algorithm would be as follows,

E [∆ (S | ∅)] = Pr (a ∈ T1) · E [∆ (T1 | ∅) | a ∈ T1] + Pr (a ̸∈ T1) · E [∆ (T1 | ∅) | a ̸∈ T1]

=
t′1
n
·
(
1− (t′1 − 1)n

)
+

n− t′1
n
· t′1

= t′1

(
2− t′1 +

1− t′1
n

)
< 0.

Next, we consider the Threshold-Sampling with stop condition |A| = 0. After the first
iteration discussed above, if a ∈ T1, all the elements would be filtered out at the second
round. Algorithm stoped here and returned S, say S1. If a ̸∈ T1, T1 and a would be filtered
out at the second round, which means A = N\(S ∪{a}). And for any T ⊆ A and x ∈ A\T ,

f(S ∪ T + x)− f(S ∪ T) = 1.

Therefore, E [It] = 1 for all t. After several iterations, S = N\{a} would be returned, say
S2.

The expectation of objective value of the set returned would be as follows,

E [∆ (S | ∅)] = Pr (a ∈ T1) · E [∆ (S1 | ∅) | a ∈ T1] + Pr (a ̸∈ T1) · E [∆ (S2 | ∅) | a ̸∈ T1]

=
t′1
n
(1− (t′1 − 1)n) +

n− t′1
n

(n− 1)

=
2t′1
n
− 1− t′21 + n < 0,

since ε = 0.1, n > 400, and εn/2 < t′1 < ε(1 + ε/3)n/2.

Appendix C. Proofs for Section 2

Lemma 4. Given V after random-permutation on Line 8, let Si = {x ∈ V : ∆ (x |A ∪ Ti) <
τ}. It holds that |S0| = 0, |S|V || = |V |, and |Si−1| ≤ |Si|.

proof of Lemma 4. After filtering on Line 5, any element x ∈ V follows that ∆ (x |A) ≥ τ .
Therefore, S0 = ∅. Also, it is obvious that ∆ (x |A ∪ V) = 0. So, S|V | = V . Next, let’s
consider any x ∈ Si−1. By submodularity,

∆ (x |A ∪ Ti) ≤ ∆(x |A ∪ Ti−1) < τ.

Thus, for any x ∈ Si−1, it holds that x ∈ Si, which means Si−1 ⊆ Si.

Lemma 5. It holds that Pr (i∗ < min{s, t}) ≤ 1/2.

proof of Lemma 5. Call an element vi ∈ V bad iff ∆ (vi |A ∪ Ti−1) < τ ; and good, otherwise.
The random permutation of V can be regarded as |V | dependent Bernoulli trials, with

626

Practical and Parallelizable Algorithms for SMCC

success iff the element is bad and failure otherwise. Observe that, the probability that an
element in Ti is bad, when i ≤ t, is less than ε/2, conditioned on the outcomes of the
preceding trials. We know that,

Pr (i∗ < min{s, t}) ≤ Pr
(
bad elements in Ti′ > εi′, where i′ = min{s, t}

)
.

Let Xi = 1, if vi is bad; and Xi = 0, otherwise. Then, (Xi) is a sequence of dependent
Bernoulli trails. And for any i ≤ i′, Pr (Xi = 1) ≤ ε/2. Let (Yi) be a sequence of indepen-
dent and identically distributed Bernoulli trails, each with success probability ε/2. Then,
the probability of i∗ < min{s, t} can be bounded as follows:

Pr (i∗ < min{s, t}) ≤ Pr

(
i′∑

i=1

Xi > εi′

)
(a)

≤ Pr

(
i′∑

i=1

Yi > εi′

)
(b)

≤ 1/2,

where Inequality (a) follows from Lemma 14, and Inequality (b) follows from Law of Total
Probability and Markov’s inequality.

Lemma 6. Say an element added to the solution set is good if its gain is greater than τ .
Suppose that Algorithm 2 terminates successfully. A and A′ returned by Algorithm 2 hold
the following properties:

1) There are at least (1− ε)-fraction of A that is good.

2) A good element in A is always a good element in A′.

3) And, any element in A′ has non-negative marginal gain when added.

proof of Lemma 6. Let Aj be the set A after iteration j, Tj,i be the first i elements of Vj at
j-th iteration. Similarly, define A′

j as the set A′ after iteration j, T ′
j,i = Tj,i ∩A′.

From Algorithm 2, A =
∑ℓ

j=1 Tj,i∗ . For each Tj,i∗ , there are at least (1− ε)-fraction of Tj,i∗

are good. Totally, there are at least (1− ε)-fraction of A are good.

By Line 17, T ′
j,i only contains the elements with nonnegative marginal gains in Tj,i. There-

fore, any element in A′ has nonnegative marginal gain when added. For any good element

vi ∈ Vj , by submodularity, ∆
(
vi |A′

j−1 ∪ T ′
j,i−1

)
≥ ∆(vi |Aj−1 ∪ Tj,i−1) ≥ τ . Thus, a good

element in A is always good in A′.

Appendix D. ThresholdGreedy and Modification

In this section, we describe ThresholdGreedy (Alg. 7) of Badanidiyuru and Vondrák
(2014) and how it is modified to have low adaptivity. This algorithm achieves ratio 1−1/e−ε
in O (n log k) queries if the function f is monotone but has no constant ratio if f is not
monotone.

The ThresholdGreedy algorithm works as follows: a set S is initialized to the empty set.
Elements whose marginal gain exceed a threshold value are added to the set in the following
way: initially, a threshold of τ = M = arg maxa∈N f(a) is chosen, which is iteratively

627

Chen & Kuhnle

Algorithm 7 The ThresholdGreedy Algorithm of Badanidiyuru and Vondrák (2014)

1: procedure ThresholdGreedy(f, k, ε)
2: Input: evaluation oracle f : 2N → R+, constraint k, accuracy parameter ε > 0
3: M ← arg maxx∈N f(x);
4: S ← ∅
5: for τ = M ; τ ≥ (1− ε)M/k; τ ← τ(1− ε) do
6: for x ∈ N do
7: if f(S ∪ {x})− f(S) ≥ τ then
8: S ← S ∪ {x}
9: if |S| = k then

10: break from outer for
11: return S

Algorithm 8 The IteratedGreedy Algorithm of Gupta et al. (2010)

1: procedure IteratedGreedy(f, k)
2: Input: evaluation oracle f : 2N → R+, constraint k
3: A← ∅
4: for i← 1 to k do
5: ai ← arg maxx∈N f(A ∪ {x})− f(A)
6: A← A ∪ {ai}
7: B ← ∅
8: for i← 1 to k do
9: bi ← arg maxx∈N\A f(B ∪ {x})− f(B)

10: B ← B ∪ {bi}
11: A′ ← UnconstrainedMax (A)
12: return C ← arg max{f(A), f(A′), f(B)}

decreased by a factor of (1 − ε) until τ < M/k. For each threshold τ , a pass through all
elements of N is made, during which any element x that satisfies f(S ∪ {x}) − f(S) ≥ τ
is added to the set S. While this strategy leads to an efficient O (n log k) total number of
queries, it also has Ω(n log k) adaptivity, as each query depends on the previous ones.

To make this approach less adaptive, we replace the highly adaptive pass through N (the
inner for loop) with a single call to Threshold-Sampling, which requires O (log n) adap-
tive rounds and O (n/ε) queries in expectation. This modified greedy approach appears
twice in ATG (Alg. 4), corresponding to the two for loops.

Appendix E. Improved Ratio for IteratedGreedy

In this section, we prove an improved approximation ratio for the algorithm Iterated-
Greedy of Gupta et al. (2010), wherein a ratio of 1/(4 + α) is proven given access to a
1/α-approximation for UnconstrainedMax. We improve this ratio to e−1

e(2+α)−α ≈ 0.193
if α = 2. Pseudocode for IteratedGreedy is given in Alg. 8.

628

Practical and Parallelizable Algorithms for SMCC

IteratedGreedy works as follows. First a standard greedy procedure is run which pro-
duces set A of size k. Next, a second greedy procedure is run to yield set B; during this
second procedure, elements of A are ignored. A subroutine for UnconstrainedMax is
used on f restricted to A, which yields set A′. Finally the set of {A,A′, B} that maximizes
f is returned.

Theorem 17. Suppose there exists an (1/α)-approximation for UnconstrainedMax.
Then by using this procedure as a subroutine, the algorithm IteratedGreedy has approx-
imation ratio e−1

e(2+α)−α for SMCC.

Proof. For 1 ≤ i ≤ k, let ai, bi be as chosen during the run of IteratedGreedy. Define
Ai = {a1, . . . , ai−1}, Bi = {b1, . . . , bi−1}. Then for any 1 ≤ i ≤ k, we have

f(Ai+1) + f(Bi+1)− f(Ai)− f(Bi) = fai(Ai) + fbi(Bi)

≥ 1

k

∑
o∈O

fo(Ai) +
1

k

∑
o∈O\A

fo(Bi)

≥ 1

k
(f (O ∪Ai)− f (Ai) + f ((O \A) ∪Bi)− f (Bi))

≥ 1

k
(f (O \A)− (f (Ai) + f (Bi))) ,

where the first inequality follows from the greedy choices, the second follows from submod-
ularity, and the third follows from submodularity and the fact that Ai ∩ Bi = ∅. Hence,
from this recurrence and standard arguments,

f(A) + f(B) ≥ (1− 1/e)f (O \A) ,

where A,B have their values at termination of IteratedGreedy. Since f(A′) ≥ f(O ∩
A)/α, we have from submodularity

f(O) ≤ f(O ∩A) + f(O \A)

≤ αf(A′) + (1− 1/e)−1(f(A) + f(B))

≤ (α+ 2(1− 1/e)−1)f(C).

Appendix F. Proofs for Section 4

In this section, we provide the proofs omitted from Section 4.

Lemma 9. For 1 ≤ j ≤ k, there are at least ⌈(1− ε′)k⌉ inequalities where

f(A′
j)− f(A′

j−1) +
M

ck
≥ 1− ε′

k

(
f(O ∪Ai(j)−1)− f(A′

j−1)
)
.

And for any j,

f(A′
j) ≥ f(A′

j−1).

629

Chen & Kuhnle

Proof of Lemma 9. Since each element in A′ has nonnegative marginal gain, it always holds
that f(A′

j) ≥ f(A′
j−1).

From Lemma 6, there are at least (1− ε)-fraction of A are good elements. Therefore, there
are at least (1 − ε)k of a′j which is good element or dummy element. Next, let’s consider
the following 3 cases of a′j .

Case i(j) = 1 and a′j is good. By Theorem 3 and Lemma 6, it holds that

f(A′
j)− f(A′

j−1) ≥ τ1 = M ≥ 1

k

∑
o∈O

f(o) ≥ 1

k
f(O).

Case i(j) > 1 and a′j is good. Since a′j is returned at iteration i(j) and a′j is good, it holds
that: (1) f(A′

j) − f(A′
j−1) ≥ τi(j); (2) at previous iteration i(j) − 1, ThreshSeq returns

Si(j)−1 that |Si(j)−1| < k−|Ai(j)−2|. By property (2) and Theorem 3, for any o ∈ O\Ai(j)−1,
∆
(
o |Ai(j)−1

)
< τi(j)−1. Then,

f(A′
j)− f(A′

j−1) ≥ τi(j) = (1− ε′)τi(j)−1

>
1− ε′

k

∑
o∈O\Ai(j)−1

∆
(
o |Ai(j)−1

)
≥ 1− ε′

k

(
f(O ∪Ai(j)−1)− f(Ai(j)−1)

)
≥ 1− ε′

k

(
f(O ∪Ai(j)−1)− f(A′

i(j)−1)
)

(10)

≥ 1− ε′

k

(
f(O ∪Ai(j)−1)− f(A′

j−1)
)
, (11)

where Inequality 10 follows from the proof of Lemma 6, and Inequality 11 follows from
A′

i(j)−1 ⊆ A′
j−1.

Case i(j) = ℓ + 1 (or a′j is dummy element). In this case, |A| < k when the first for
loop ends. So, ThreshSeq in the last iteration returns Sℓ that |Sℓ| < k − |Aℓ−1|. From
Theorem 3, it holds that ∆ (o |Aℓ) < τℓ <

M
ck , for any o ∈ O\Aℓ. Thus,

M

ck
>

1

k

∑
o∈O\Aℓ

∆(o |Aℓ) ≥
1

k
(f(O ∪Aℓ)− f(Aℓ))

(a)

≥ 1

k

(
f(O ∪Aℓ)− f(A′

j)
)
,

where Inequality (a) follows from Aℓ = A and f(A′
j) = f(A′).

The first inequality of Lemma 9 holds in those three cases with at least (1− ε′)k of j.

Lemma 11. Let Γu = f(A′
j(u))+f(B′j(u)), where j(u) is the u-th j which satisfies Lemma 9

or Lemma 10. Then, there are at least ⌈(1− ε′)k⌉ of u follow that

f(O\A)− Γu −
2M

c(1− ε′)
≤
(
1− 1− ε′

k

)(
f(O\A)− Γu−1 −

2M

c(1− ε′)

)
.

630

Practical and Parallelizable Algorithms for SMCC

Proof of Lemma 11. From Lemma 9, f(A′
j(u)−1) ≥ f(A′

j(u−1)), and

f(A′
j(u)) ≥

(
1− 1− ε′

k

)
f(A′

j(u)−1) +
1− ε′

k
f(O ∪Ai(j(u))−1)−

M

ck

≥
(
1− 1− ε′

k

)
f(A′

j(u−1)) +
1− ε′

k
f(O ∪Ai(j(u))−1)−

M

ck
.

Similarly,

f(B′j(u)) ≥
(
1− 1− ε′

k

)
f(B′j(u−1)) +

1− ε′

k
f((O\A) ∪Bi(j(u))−1)−

M

ck
.

By adding the above two inequalities and the submodularity, we have,

Γu ≥
(
1− 1− ε′

k

)
Γu−1 +

1− ε′

k

(
f(O ∪Ai(j(u))−1) + f((O\A) ∪Bi(j(u))−1)

)
− 2M

ck

≥
(
1− 1− ε′

k

)
Γu−1 +

1− ε′

k
f(O\A)− 2M

ck
.

Lemma 18. Let ε ∈ (0, 1), and suppose c = 8/ε, ε′ = (1 − 1/e)ε/8, and β = 1 − e(1−ε′)2.
Then (

1− 2
c(1−ε′)

α+ 2
β

)
≥
(

e− 1

α(e− 1) + 2e
− ε

)
. (12)

Proof of Lemma 18. We start with the following two inequalities, which are verified below.

1− 2

c(1− ε′)
≥ 1− ε, (13)

2

1− e−(1−ε′)2
≤ 2

1− 1/e
+ ε/2. (14)

Let A = 1, B = 1/α + 2/(1− 1/e). From the inequalities above, the left-hand side of (12)
is at least A−ε

B+ε and

A− ε

B + ε
≥ A

B
− ε ⇐⇒ ε ≥ A

B
− A− ε

B + ε

⇐⇒ 1 ≥ A

εB
− A

ε(B + ε)
+

1

B + ε
.

Next,

A

εB
− A

ε(B + ε)
+

1

B + ε
=

A

B(B + ε)
+

1

B + ε
≤ 1/4 + 1/2 < 1,

since B ≥ 2 and A = 1. Finally, A/B = α(e−1)
e−1+2αe .

Proof of (13).

c ≥ 8/ε ≥ 2

ε(1− ε′)
,

631

Chen & Kuhnle

since ε′ = (1− 1/e)ε/8 < 3/4.

Proof of (14). Let λ = 1− 1/e, κ = e−(1−ε′)2 . Inequality (14) is satisfied iff.

2λ ≤ 2(1− κ) +
λε(1− κ)

2
⇐⇒ 2λ ≤ 2− 2κ+ λε/2− λεκ/2

⇐⇒ 2κ+ λεκ/2 ≤ λε/2 + 2− 2λ

⇐⇒ κ = e−(1−ε′)2 ≤ λε/2 + 2− 2λ

2 + λε/2

⇐⇒ (1− ε′)2 ≥ log

(
2 + λε/2

λε/2 + 2− 2λ

)
,

which in turn is satisfied if

2ε′ ≤ 1− log

(
2 + λε/2

λε/2 + 2− 2λ

)
.

Then

2ε′ = λε/4 ≤ 2 + λε/2− 4λ

2− λ
≤ 2 + λε/2− 4λ

2 + λε/2− 2λ

=
2(λε/2 + 2− 2λ)− 2− λε/2

λε/2 + 2− 2λ

= 2− 2 + λε/2

λε/2 + 2− 2λ

= 1−
(

2 + λε/2

λε/2 + 2− 2λ
− 1

)
≤ 1− log

(
2 + λε/2

λε/2 + 2− 2λ

)
,

where we have used log x ≤ x− 1, for x > 0.

Appendix G. Multilinear Extension and Implementation of Ene and
Nguyen (2020)

In this section, we describe the multilinear extension and implementation of Ene and Nguyen
(2020). The multilinear extension F of set function f is defined to be, for x ∈ [0, 1]n:

F (x) = E [f(S)] =
∑
S⊆V

f(S)Pr(S),

where
Pr(S) =

∏
i∈S

xi ·
∏
i ̸∈S

(1− xi).

The gradient is approximated by using the central difference in each coordinate

dF

dx
(x) ≈ F (x+ γ/2)− F (x− γ/2)

γ
,

632

Practical and Parallelizable Algorithms for SMCC

103102101100

Number of Samples
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
/ I

te
ra

te
dG

re
ed

y

Ene & Nguyên 2020 [sampling]
Ene & Nguyên 2020 [exact]
AdaptiveSimpleThreshold
AdaptiveThresholdGreedy

(a) Objective value

103102101100

Number of Samples

105

107

109

To
ta

l Q
ue

ri
es

(b) Queries to set function

103102101100

Number of Samples

101

102

103

Ad
ap

ti
ve

 R
ou

nd
s

(c) Adaptive Rounds

Figure 6: Comparison of our algorithms with Ene and Nguyen (2020) on a very small ran-
dom graph (n = 87, k = 10). In all plots, the x-axis shows the number of samples
used to approximate the multilinear extension.

unless using this approximation required evaluations outside the unit cube, in which case
the forward or backward difference approximations were used. The parameter γ is set to
0.5.

Finally, for the maximum cut application, closed forms expressions exist for both the mul-
tilinear extension and its gradient. These are:

F (x) =
∑

(u,v)∈E

xu · (1− xv) + xv · (1− xu),

and

(∇F)u =
∑

v∈N(u)

(1− 2xv).

Implementation. The algorithm was implemented as specified in the pseudocode on page
19 of the arXiv version of Ene and Nguyen (2020). We followed the same parameter choices
as in Ene and Nguyen (2020), although we set ε = 0.1 as setting it to 0.05 did not improve
the objective value significantly but caused a large increase in runtime and adaptive rounds.
The value of δ = ε3 was used after communications with the authors.

G.1 Additional Experiments

In this section, we further investigate the performance of Ene and Nguyen (2020) when
closed-form evaluation of the multilinear extension and its gradient are impossible. It is
known that sampling to approximate the multilinear extension and its gradient is extremely
inefficient or yields poor solution quality with a small number of samples. For this reason,
we exclude this algorithm from our revenue maximization experiments. To perform this
evaluation, we compared versions of the algorithm of Ene and Nguyen (2020) that use
varying number of samples to approximate the multilinear extension.

Results are shown in Fig. 6 on a very small random graph with n = 87 and k = 10. The figure
shows the objective value and total queries to the set function vs. the number of samples
used to approximate the multilinear extension. There is a clear tradeoff between the solution
quality and the number of queries required; at 103 samples per evaluation, the algorithm

633

Chen & Kuhnle

matches the objective value of the version with the exact oracle; however, even at roughly
1011 queries (corresponding to 104 samples for each evaluation of the multilinear extension),
the algorithm of Ene and Nguyen (2020) is unable to exceed 0.8 of the IteratedGreedy value.
On the other hand, if ≤ 10 samples are used to approximate the multilinear extension, the
algorithm is unable to exceed 0.5 of the IteratedGreedy value and still requires on the order
of 107 queries.

References

Amanatidis, G., Fusco, F., Lazos, P., Leonardi, S., Marchetti-Spaccamela, A., & Reiff-
enhäuser, R. (2021). Submodular maximization subject to a knapsack constraint:
Combinatorial algorithms with near-optimal adaptive complexity. In Meila, M., &
Zhang, T. (Eds.), Proceedings of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, Vol. 139 of Proceedings of Machine
Learning Research, pp. 231–242. PMLR.

Badanidiyuru, A., & Vondrák, J. (2014). Fast algorithms for maximizing submodular func-
tions. In Chekuri, C. (Ed.), Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014, pp. 1497–1514. SIAM.

Balkanski, E., Breuer, A., & Singer, Y. (2018). Non-monotone submodular maximization in
exponentially fewer iterations. In Bengio, S., Wallach, H. M., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., & Garnett, R. (Eds.), Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 2359–2370.

Balkanski, E., Rubinstein, A., & Singer, Y. (2019a). An exponential speedup in parallel
running time for submodular maximization without loss in approximation. In Chan,
T. M. (Ed.), Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 283–
302. SIAM.

Balkanski, E., Rubinstein, A., & Singer, Y. (2019b). An optimal approximation for sub-
modular maximization under a matroid constraint in the adaptive complexity model.
In Charikar, M., & Cohen, E. (Eds.), Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pp. 66–77. ACM.

Balkanski, E., & Singer, Y. (2018). The adaptive complexity of maximizing a submodular
function. In Diakonikolas, I., Kempe, D., & Henzinger, M. (Eds.), Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los
Angeles, CA, USA, June 25-29, 2018, pp. 1138–1151. ACM.

Buchbinder, N., & Feldman, M. (2019). Constrained submodular maximization via a non-
symmetric technique. Math. Oper. Res., 44 (3), 988–1005.

634

Practical and Parallelizable Algorithms for SMCC

Buchbinder, N., Feldman, M., Naor, J., & Schwartz, R. (2012). A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In 53rd Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ,
USA, October 20-23, 2012, pp. 649–658. IEEE Computer Society.

Buchbinder, N., Feldman, M., & Schwartz, R. (2015). Comparing apples and oranges:
Query tradeoff in submodular maximization. In Indyk, P. (Ed.), Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pp. 1149–1168. SIAM.

Chekuri, C., & Quanrud, K. (2019). Parallelizing greedy for submodular set function max-
imization in matroids and beyond. In Charikar, M., & Cohen, E. (Eds.), Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pp. 78–89. ACM.

Chen, L., Feldman, M., & Karbasi, A. (2019). Unconstrained submodular maximization
with constant adaptive complexity. In Charikar, M., & Cohen, E. (Eds.), Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pp. 102–113. ACM.

Chen, Y., Dey, T., & Kuhnle, A. (2021). Best of both worlds: Practical and theoreti-
cally optimal submodular maximization in parallel. In Ranzato, M., Beygelzimer, A.,
Dauphin, Y. N., Liang, P., & Vaughan, J. W. (Eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 25528–25539.

El-Arini, K., & Guestrin, C. (2011). Beyond keyword search: discovering relevant scientific
literature. In Apté, C., Ghosh, J., & Smyth, P. (Eds.), Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, August 21-24, 2011, pp. 439–447. ACM.

Ene, A., & Nguyen, H. L. (2019). Submodular maximization with nearly-optimal approxi-
mation and adaptivity in nearly-linear time. In Chan, T. M. (Ed.), Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pp. 274–282. SIAM.

Ene, A., & Nguyen, H. L. (2020). Parallel algorithm for non-monotone dr-submodular max-
imization. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, Vol. 119 of Proceedings of Machine Learn-
ing Research, pp. 2902–2911. PMLR.

Ene, A., Nguyen, H. L., & Vladu, A. (2019). Submodular maximization with matroid and
packing constraints in parallel. In Charikar, M., & Cohen, E. (Eds.), Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019,
Phoenix, AZ, USA, June 23-26, 2019, pp. 90–101. ACM.

Fahrbach, M., Mirrokni, V., & Zadimoghaddam, M. (2019). Submodular Maximization with
Nearly Optimal Approximation, Adaptivity, and Query Complexity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 255–273.

635

Chen & Kuhnle

Fahrbach, M., Mirrokni, V., & Zadimoghaddam, M. (2023). Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. arXiv preprint
arXiv:1808.06932.

Fahrbach, M., Mirrokni, V. S., & Zadimoghaddam, M. (2019). Non-monotone submodular
maximization with nearly optimal adaptivity and query complexity. In Chaudhuri,
K., & Salakhutdinov, R. (Eds.), Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, Vol. 97
of Proceedings of Machine Learning Research, pp. 1833–1842. PMLR.

Feige, U., Mirrokni, V. S., & Vondrák, J. (2011). Maximizing non-monotone submodular
functions. SIAM J. Comput., 40 (4), 1133–1153.

Gharan, S. O., & Vondrák, J. (2011). Submodular maximization by simulated annealing. In
Randall, D. (Ed.), Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pp. 1098–1116. SIAM.

Gupta, A., Roth, A., Schoenebeck, G., & Talwar, K. (2010). Constrained non-monotone
submodular maximization: Offline and secretary algorithms. In Saberi, A. (Ed.), In-
ternet and Network Economics - 6th International Workshop, WINE 2010, Stanford,
CA, USA, December 13-17, 2010. Proceedings, Vol. 6484 of Lecture Notes in Computer
Science, pp. 246–257. Springer.

Hartline, J. D., Mirrokni, V. S., & Sundararajan, M. (2008). Optimal marketing strategies
over social networks. In Huai, J., Chen, R., Hon, H., Liu, Y., Ma, W., Tomkins, A.,
& Zhang, X. (Eds.), Proceedings of the 17th International Conference on World Wide
Web, WWW 2008, Beijing, China, April 21-25, 2008, pp. 189–198. ACM.

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., & Karbasi, A. (2019). Sub-
modular streaming in all its glory: Tight approximation, minimum memory and low
adaptive complexity. In Chaudhuri, K., & Salakhutdinov, R. (Eds.), Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, Vol. 97 of Proceedings of Machine Learning Research,
pp. 3311–3320. PMLR.

Kempe, D., Kleinberg, J. M., & Tardos, É. (2003). Maximizing the spread of influence
through a social network. In Getoor, L., Senator, T. E., Domingos, P. M., & Falout-
sos, C. (Eds.), Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,
pp. 137–146. ACM.

Kuhnle, A. (2021). Nearly linear-time, parallelizable algorithms for non-monotone submod-
ular maximization. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Virtual Event, February 2-9, 2021, pp. 8200–8208. AAAI Press.

Libbrecht, M. W., Bilmes, J. A., & Noble, W. S. (2018). Choosing non-redundant repre-
sentative subsets of protein sequence data sets using submodular optimization. In
Shehu, A., Wu, C. H., Boucher, C., Li, J., Liu, H., & Pop, M. (Eds.), Proceedings of

636

Practical and Parallelizable Algorithms for SMCC

the 2018 ACM International Conference on Bioinformatics, Computational Biology,
and Health Informatics, BCB 2018, Washington, DC, USA, August 29 - September
01, 2018, p. 566. ACM.

Mirzasoleiman, B., Badanidiyuru, A., & Karbasi, A. (2016). Fast constrained submodular
maximization: Personalized data summarization. In Balcan, M., & Weinberger, K. Q.
(Eds.), Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, Vol. 48 of JMLR Workshop and
Conference Proceedings, pp. 1358–1367. JMLR.org.

Mislove, A., Koppula, H. S., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2008).
Growth of the flickr social network. In Faloutsos, C., Karagiannis, T., & Rodriguez,
P. (Eds.), Proceedings of the first Workshop on Online Social Networks, WOSN 2008,
Seattle, WA, USA, August 17-22, 2008, pp. 25–30. ACM.

Mitzenmacher, M., & Upfal, E. (2017). Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university press.

Nemhauser, G. L., & Wolsey, L. A. (1978). Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res., 3 (3), 177–188.

Simon, I., Snavely, N., & Seitz, S. M. (2007). Scene summarization for online image collec-
tions. In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio
de Janeiro, Brazil, October 14-20, 2007, pp. 1–8. IEEE Computer Society.

Sipos, R., Swaminathan, A., Shivaswamy, P., & Joachims, T. (2012). Temporal corpus
summarization using submodular word coverage. In Chen, X., Lebanon, G., Wang,
H., & Zaki, M. J. (Eds.), 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012,
pp. 754–763. ACM.

Tschiatschek, S., Iyer, R. K., Wei, H., & Bilmes, J. A. (2014). Learning mixtures of submod-
ular functions for image collection summarization. In Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N. D., & Weinberger, K. Q. (Eds.), Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp. 1413–1421.

637

