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Abstract

Group fairness definitions such as Demographic Parity and Equal Opportunity make as-
sumptions about the underlying decision-problem that restrict them to classification prob-
lems. Prior work has translated these definitions to other machine learning environments,
such as unsupervised learning and reinforcement learning, by implementing their closest
mathematical equivalent. As a result, there are numerous bespoke interpretations of these
definitions. This work aims to unify the shared aspects of each of these bespoke definitions,
and to this end we provide a group fairness framework that generalizes beyond just classifi-
cation problems. We leverage two fairness principles that enable this generalization. First,
our framework measures outcomes in terms of utilities, rather than predictions, and does
so for both the decision-maker and the individual. Second, our framework can consider
counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes
where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete
examples of how our utility fairness framework avoids these assumptions and thus natu-
rally integrates with classification, clustering, and reinforcement learning fairness problems.
We also show that many of the bespoke interpretations of Demographic Parity and Equal
Opportunity fit nicely as special cases of our framework.

1. Introduction

Machine learning (ML) is used to automate decision-making in settings such as hospital
resource allocation (Obermeyer et al., 2019), job application screening (Raghavan et al.,
2020), and criminal sentencing recommendations (Kleinberg et al., 2018). In this work,
we focus on group fairness definitions, where an algorithm is considered fair if its results
are independent of one or more protected attributes such as gender, ethnicity, or sexual-
orientation. Many group fairness works focus only on classification settings (Berk et al.,
2021; Chouldechova, 2017; Corbett-Davies et al., 2017; Dwork et al., 2012; Hardt et al.,
2016; Kusner et al., 2017; Galhotra et al., 2017). This often conceals assumptions that do
not always hold true in other contexts, resulting in definitions that are tightly coupled with
a particular problem domain. In this paper we examine four such assumptions.

Assumption 1. Fair predictions have fair outcomes.

Many group fairness definitions require equal predictions between protected groups (Berk
et al., 2021; Chouldechova, 2017; Corbett-Davies et al., 2017; Dwork et al., 2012; Hardt
et al., 2016). For example, in the binary case with a minority group and a majority group,
Demographic Parity considers a binary classifier to be fair if it predicts the positive class
for individuals in the minority group and majority groups with equal probability. This
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implicitly assumes that a positive prediction is always a good outcome for an individual.
However, there are many problem domains where this is not true. For instance, Liu, Dean,
Rolf, Simchowitz, and Hardt (2018) consider an algorithm that predicts whether or not
a loan applicant will repay a loan, which then informs a loan-approval decision. In this
scenario, a positive prediction results in a loan approval, which has a positive outcome for
those who will pay back the loan, but has a negative outcome for those who will default
on the loan. More generally, in situations where predictions impact individuals from the
minority and majority groups differently, prediction-based fairness definitions may actually
result in unfair outcomes (Liu et al., 2018; Creager, Madras, Pitassi, & Zemel, 2020). We
refer to this as the prediction-outcome disconnect issue.

Assumption 2. Observed values of the target variable are independent of predictions.

Some fairness definitions depend on the observed value of the target variable as well as
the prediction. For example, Equal Opportunity requires equal treatment of the qualified
individuals in each group, where qualified refers to individuals who were observed to be
in the positive class (Hardt et al., 2016). However, consider a classifier that predicts if an
individual convicted of a crime will recidivate, where the prediction informs a judge’s deci-
sion on whether to impose a prison sentence. It is possible that the decision of whether to
assign prison time actually influences the individual’s probability of being qualified, which
corresponds to not recidivating. For example, suppose there is a group of backlash individ-
uals that will only recidivate if they are sentenced to prison (Imai & Jiang, 2020). If the
algorithm predicts that these individuals will recidivate, which causes the judge to sentence
them to prison, these individuals will be considered unqualified because they will in fact re-
cidivate. However, if the algorithm had instead predicted these backlash individuals to not
recidivate, then they will not actually recidivate and will be considered qualified. Thus an
algorithm can satisfy Equal Opportunity through a self-fulfilling prophecy by manipulating
who is considered qualified (Ensign, Friedler, Neville, Scheidegger, & Venkatasubramanian,
2018; Imai & Jiang, 2020; Barocas, Hardt, & Narayanan, 2017; Kasy & Abebe, 2021).

Assumption 3. The objective is to predict some unobserved target variable.

In classification problems, the goal is to make a single prediction of some latent qual-
ification attribute of the individual. However, this is not true in other ML environments
where the decision is not necessarily a prediction of some ground-truth value, and where
there may be more than one decision per individual. In sequential decision settings such
as reinforcement learning (RL), the goal is to maximize a reward rather than predict a
target. Additionally, there can be multiple sequential decisions made for each individual
and we may wish to measure fairness across the entire sequence. Ranking problems and
clustering also have differing objectives than traditional classification, and so require alter-
native fairness considerations. Several works have attempted to remedy this for particular
environments, such as for sequential decision processes (Jabbari et al., 2017; Bower et al.,
2017; Dwork et al., 2020; Emelianov et al., 2019), for ranking (Celis et al., 2017; Singh
& Joachims, 2019; Zehlike et al., 2021), and for clustering (Chierichetti et al., 2017; Bera
et al., 2019; Chen et al., 2019; Abbasi et al., 2021).

Assumption 4. Decisions for one individual do not impact other individuals.
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Each classification prediction is independent of the predictions made for other individu-
als. However, this does not generalize to all of ML. In clustering, for instance, the impact of
one individual’s cluster assignment may depend on the cluster assignments of other individ-
uals. For example, Abbasi et al. (2021) consider redistricting as a fair clustering problem,
where fairness implies that constituents from each political party are equally represented by
their assigned district. In order to measure how well a constituent is represented by their
district, we need to know who else was assigned to their district. We term this conjoined
fairness when the impact of a decision for one individual requires measuring the decisions
made for other individuals as well.

1.1 Our Contributions

In this work, we introduce a utility-based group fairness framework that helps resolve the
issues resulting from Assumptions 1-4. Most notably, our framework enables group fairness
definitions to naturally extend to other ML environments, including reinforcement learning
and clustering. We also define a novel interpretation of Equal Opportunity based on mutual
beneficence that can be used even in situations where the notion of “qualification” may
be less obvious. There are two principles that characterize our group fairness framework:
individual utility (benefit) and counterfactual outcomes.

Individual Utility (Benefit) Borrowing terminology from Heidari, Ferrari, Gummadi,
and Krause (2018), we introduce a variable to our framework called benefit, which represents
the individual’s utility resulting from a prediction. By measuring fairness directly in terms
of benefit, our definitions enforce fair outcomes even in domains where the predictions
impact individuals differently. Furthermore, since utility is a more universal concept than
prediction or target variable, this approach makes sense in a broader range of domains where
Assumptions 3 and 4 may not hold.

Counterfactual Outcomes We saw in our discussion of Assumption 2 that the standard
definition of Equal Opportunity is vulnerable to self-fulfilling prophecies. In order to remedy
this, we construct a more extensible Equal Opportunity definition by giving a more general
interpretation of what it means to be qualified.1 As we explain in Section 3, we interpret
qualification as an individual where there exists a decision that will yield a good outcome for
both the decision-algorithm and the individual. In other words, we measure qualification in
terms of counterfactual utility outcomes for both the decision-algorithm and the individual.
By considering counterfactual outcomes, our Equal Opportunity definition prevents self-
fulfilling prophecies and is well-defined for a broader range of ML environments.

1.2 Additional Related Work

We are not the first to consider bringing utilities into fairness definitions. Liu et al. (2018)
model a loan applicant’s credit score as a utility function and show that adhering to common
group fairness definitions can lower the credit scores of the disadvantaged groups. Heidari
et al. (2018) demonstrate that optimizing for individual utility directly often results in group
outcome equality. Hu and Chen (2020) characterize fair outcomes by translating group fair-
ness differences into measures of social welfare. Wen, Bastani, and Topcu (2021) make use

1. We provide one possible generalization of Equal Opportunity, but there could certainly be others.
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of an individual reward function to extend group fairness definitions to Markov decision pro-
cesses (MDPs). Ben-Porat, Sandomirskiy, and Tennenholtz (2021) consider when individual
utilities are modeled, but may be incorrect, and design fairness constraints that help the
disadvantaged group despite the mismatch. Dwork, Reingold, and Rothblum (2023) charac-
terize when the mapping of prediction probabilities to desirable outcomes differ between fair
and unfair environments. Each of these works leverage individual utility to resolve fairness
issues for a particular domain. Our contributions differ in that we provide definitions that
generalize across many domains.

Our use of counterfactuals may seem reminiscent of the literature on causal fairness
notions such as counterfactual fairness (Kusner et al., 2017; Kilbertus et al., 2017; Nabi &
Shpitser, 2018; Loftus et al., 2018; Makhlouf et al., 2020). However, there the counterfactual
is what decision the algorithm would make if the protected attribute were different, while
for us the counterfactual is what a different choice of algorithm would do. Krishnaswamy,
Jiang, Wang, Cheng, and Munagala (2021) consider counterfactual algorithm choices, but
do so in order to have a baseline on how well the best classifier for a group can perform.
Our use of counterfactuals is more similar to the way they are used in principal fairness
(Imai & Jiang, 2020) and performative prediction (Perdomo et al., 2020; Miller et al.,
2021). Mashiat, Gitiaux, Rangwala, Fowler, and Das (2022) also consider fairness in terms
of outcomes over utilities, and consider counterfactuals in the form of regret. However, they
focus on bridging the gap between group fairness in machine learning and fair division, and
so they do not intend to generalize fairness to other settings such as RL and clustering.

Several works have tried to construct more general group fairness definitions. Creager
et al. (2020) use directed acyclic graphs (DAGs) to help resolve the prediction-outcome
disconnect issue, but do not generalize to RL or clustering. Alternatively, Williamson
and Menon (2019) aim to generalize fairness definitions to non-binary sensitive groups and
non-convex objectives by borrowing ideas from risk measures, but only consider loss dis-
parity and thereby violate Assumption 1. Similarly, Jiang, Han, Fan, Yang, Mostafavi, and
Hu (2021) strive to generalize Demographic Parity to continuous sensitive attributes while
preserving tractable computation. Deldjoo, Anelli, Zamani, Belloǵın, and Di Noia (2019)
extend fairness to recommender systems in a way that enables domain knowledge injection.
Tajbakhsh, Sadeghi, and Shams (2011) try to generalize the problem of cost and fairness
trade-offs for cooperative data exchange. Our contributions differ from these works in that
we provide a consistent paradigm for defining group fairness in machine learning, rather
than extending group fairness for a specific use case.

2. Preliminaries

The group fairness definitions we study were originally developed in the context of classifi-
cation. Following Hardt et al. (2016), we think of this task as predicting a target value Y
based on features X and protected attribute Z where the population of individuals is repre-
sented by the joint distribution of (X,Z, Y ) and the goal is to develop a classifier Ŷ (X,Z).
We typically omit the arguments to Ŷ for brevity when they are clear. An individual is
an element of X × Z × Y. Here X and Y are the sets of possible feature values and target
values. We restrict the protected attribute space to be binary Z = {0, 1} purely for ease of
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exposition.2 We refer to individuals with Z=0 as the minority group, and those with Z=1
as the majority group. There is a loss function L : Y × Y → R and the objective is to find
the classifier that minimizes expected loss L(Y, Ŷ (X,Z)). We refer to the tuple (X,Z, Y, L)
as a supervised learning classification problem (SLCP).

While there are many group fairness definitions (Pessach & Shmueli, 2020; Verma &
Rubin, 2018), we focus our exposition on two of the most important to illustrate our ap-
proach. 3

Definition 2.1 (Classification Demographic Parity). A classifier Ŷ satisfies Classification
Demographic Parity (DemParClf) for an SLCP (X,Z, Y, L) if

P (Ŷ=1 | Z=0) = P (Ŷ=1 | Z=1) . (2.1)

Definition 2.2 (Classification Equal Opportunity). A classifier Ŷ satisfies Classification
Equal Opportunity (EqOppClf) for SLCP (X,Z, Y, L) if

P (Ŷ=1 | Y=1, Z=0) = P (Ŷ=1 | Y=1, Z=1) . (2.2)

3. Intuition for Utility-Based Fairness

DemParClf is defined exclusively in terms of SLCP variables. However, the concept behind
Demographic Parity, that equal outcomes should be enforced across groups, may be relevant
in any domain. Suppose that we instead define a more general version of Demographic
Parity where we replace Ŷ with a variable W that represents the benefit of the decision
from the individual’s perspective. Assuming W can take on a range of values, our general
Demographic Parity becomes

P (W ≥ τ | Z=0) = P (W ≥ τ | Z=1), (3.1)

where τ ∈ R is some domain-specific threshold representing the minimum benefit to be
considered a good outcome for the individual. 4 Rather than assuming that a prediction
of 1 is a good outcome, as in DemParClf, we use W to explicitly capture the relationship
between a decision and an outcome, which allows us to incorporate a variety of domain-
specific aspects.

We could also define fairness in terms of equal expected benefits as

E[W | Z=0] = E[W | Z=1]. (3.2)

2. In Section 5.4 we consider three protected groups to show how our approach generalizes beyond just two
groups.

3. Appendix A details how other fairness metrics are implemented in our framework.
4. For simplicity, our formulation assumes individuals have cardinal utilities, so that whether an outcome

is good can be determined by comparing utility to a fixed threshold. However, a similar definition could
be given in terms of ordinal preferences since all we really need is to be able to calculate the probability
that an individual receives an outcome which is considered good.

751



Blandin & Kash

This eliminates the need for thresholds, but may be susceptible to outliers dominating the
fairness signal. While both definitions are viable, we focus on the threshold form (Equation
3.1) for consistency and for easy comparison to the classification form (Equation 2.1) which
more closely resembles the threshold form.

We can also modify EqOppClf to use W instead of Ŷ : P (W ≥ τ | Y=1, Z=0) = P (W ≥
τ | Y=1, Z=1) . However, this definition is still using the SLCP variable Y . In order
to extend this definition to environments outside of classification, we need to inspect the
intuition for Equal Opportunity, which is that the probability that a qualified individual
receives a beneficial outcome is independent of the individual’s protected attribute. The
part of the definition referring to the beneficial outcome is already covered by the benefit
concept, so we only need to modify the definition to allow qualified to also to extend to
other settings. We develop intuition for what it means to be qualified by considering some
examples of Equal Opportunity:

• The probability that a skilled job candidate is hired is independent of their protected
attribute.

• The probability that a straight-A student is admitted to a university is independent
of their protected attribute.

Thus, qualified individuals are those where there exists a decision with a mutually beneficial
outcome for both the individual and the decision-maker:

• The beneficial outcome for a job applicant is to be hired. If hired, a skilled job
candidate will also benefit the employer since they will be competent at their job.

• The beneficial outcome for a student is to be admitted to the university. If admitted, a
straight-A student will benefit the university by enhancing the university’s reputation.

Therefore, our general Equal Opportunity interpretation is: For the subset of individuals
where there exists an outcome that will benefit both the individual and the decision-maker, the
probability that a beneficial individual outcome occurring is independent of the individual’s
protected attribute. We can represent this notion of mutual beneficence in equation form as

P (W ≥ τ | Γ=1, Z=0) = P (W ≥ τ | Γ=1, Z=1) (3.3)

where Γ is an indicator random variable with Γ = 1 when the decision-algorithm can
produce an outcome that is beneficial for both the individual and the decision-maker. The
benefit to the individual is captured by W . We can similarly capture the impact on the
decision-maker with a cost function C, thus Γ becomes:5

Γ =

{
1 if ∃Ŷ ′ : WŶ ′ ≥ τ ∧ CŶ ′ ≤ ρ
0 otherwise .

(3.4)

Here WŶ ′ and CŶ ′ are the benefit and cost, respectively, produced by predictor Ŷ ′; and ρ is
similar to τ but for the cost instead of benefit.We can check that Equation 3.3 generalizes

5. We use cost over utility due to the convention of minimizing loss functions.
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well by applying it to the Section 1 recidivism example where EqOppClf allows for self-
fulfilling prophecies: For the subset of individuals (inmates) where there exists an outcome
that will benefit both the individual (no prison) and the decision-maker (no recidivism),
the probability that a beneficial individual outcome (no prison) occurring is independent
of the individual’s protected attribute. We see that our more general Equal Opportunity
resolves the self-fulfilling prophecy issue by conditioning on individuals who could have
been qualified. Thus, the qualified individuals are those that will not recidivate if they
do not receive prison time. In other words, our more general interpretation conditions on
counterfactually qualified individuals.

Our counterfactual utility framework embraces a notion shared by Mashiat et al. (2022)
that “what is fair” may be contingent on “what is possible”. For instance, in an effort
to bridge the gap between fairness in machine learning and fair division, Mashiat et al.
compare two different forms of outcome-based fairness that depend on counterfactuals—the
first being an improvement over a counterfactual baseline (e.g. if there was no fairness
intervention), and the second with respect to the best possible outcome. We posit that the
definition of a “good” outcome should be context-dependent, and so we allow for numerous
interpretations by abstracting W and τ . This allows for fairness definitions to be extended
to new domains beyond classification, while also allowing for more nuanced definitions such
as those of Mashiat et al.

4. Utility Fairness Problem Definitions

We now provide our formal model for defining benefit and counterfactual qualification. We
do so in an abstraction that we term a Utility Fairness Problem (UFP). UFPs generalize
the classification definitions from Section 2 to other ML environments such as RL and
clustering.

4.1 Utility Fairness Problem

In a UFP, a decision-maker selects a decision-algorithm m which has somehow been selected
from a class of such algorithms M . An individual is an outcome of random variable (I, Z).
I ∈ I represents the individual’s non-sensitive attributes that are relevant for determining a
decision’s impact on the decision-maker or on the individual themselves. E.g. in university
admissions, I may include the applicant’s GPA since it is may be a proxy for post-graduation
success which impacts the university’s reputation; I may also include the applicant’s family
income level since a rejection may have greater impact for applicants with less options to
choose from. Z ∈ Z = {0, 1} captures the individual’s protected attribute. The decision-
maker has a cost function C : (I × {0, 1}) ×M → R which maps an individual’s relevant
non-sensitive attributes, sensitive attribute, and a decision-algorithm to the expected cost.
We capture the cost associated with a given decision-algorithm m as a random variable
Cm : I × {0, 1} → R. The impact of m on an individual is captured by the benefit function
W : (I × {0, 1}) × M → R which is identical to the cost function except that it maps
to expected benefit instead. Similar to the cost function, W depends on the individual’s
attributes and the decision-algorithm, so we represent the benefit associated with a given
decision-algorithm m as a random variable Wm : I × {0, 1} → R. Two threshold constants
τ and ρ are required where τ represents the minimum benefit needed for the outcome to
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be considered good from the individual’s perspective, and ρ represents the maximum cost
needed for the outcome to be considered good from the decision-algorithm’s perspective.6

In summary, an UFP is compactly represented by a 7-tuple (I, Z,M,W,C, τ, ρ). Fairness
definitions are then characterized by comparisons of benefit W , cost C, thresholds τ and ρ,
and protected attribute Z.

4.2 Utility Fairness Definitions

We can now formally define our Utility Demographic Parity and Utility Equal Opportunity.
As discussed in Section 3, multiple variants of the definition are possible based on different
ways of summarizing the distribution of benefits of each group.

Definition 4.1 (Utility Demographic Parity). Given UFP (I, Z,M,W,C, τ, ρ), a decision-
algorithm m ∈M satisfies Utility Demographic Parity (DemParUtil) for threshold τ if

P (Wm ≥ τ | Z=0) = P (Wm ≥ τ | Z=1) . (4.1)

Alternatively, m satisfies Expectation Utility Demographic Parity DemParExpUtil if

E[Wm | Z=0] = E[Wm | Z=1] . (4.2)

Definition 4.2 (Utility Equal Opportunity). Given UFP (I, Z,M,W,C, τ, ρ), a decision-
algorithm m ∈M satisfies Utility Equal Opportunity (EqOppUtil) if

P (Wm ≥ τ | Γ=1, Z=0) = P (Wm ≥ τ | Γ=1, Z=1) (4.3)

where Γ is an indicator variable with

Γ =

{
1 if ∃m′ ∈M : Wm′ ≥ τ ∧ Cm′ ≤ ρ
0 otherwise

(4.4)

Alternatively, m satisfies Expectation Utility Equal Opportunity EqOppExpUtil if

E[Wm | Γ=1, Z=0] = E[Wm | Γ=1, Z=1] (4.5)

where Γ is defined as in Equation 4.4.

For brevity, we only provide explicit UFP definitions for Demographic Parity and Equal
Opportunity. We defer to Appendix A the UFP definitions for other common group fairness
definitions, including Predictive Parity (Chouldechova, 2017), Equalized Odds (Hardt et al.,
2016), Conditional Demographic Parity (Corbett-Davies et al., 2017), Predictive Equality
(Chouldechova, 2017), Conditional Use Accuracy Equality (Berk et al., 2021), Overall
Accuracy Equality (Berk et al., 2021), Treatment Equality (Berk et al., 2021), and Test
Fairness (Chouldechova, 2017).

6. In Section 5 we consider a number of examples which show how these thresholds can be chosen based
based on domain-specific considerations.
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4.3 Utility Fairness Definitions Applied to Binary Classification

Here we show how to apply our generalized definitions to a specific environment: binary
classification, and show that they reduce to their original classification counterparts.

A binary classification problem is an SLCP (X,Z, Y, L). For concreteness we assume L
is the zero-one loss. We can construct a corresponding UFP with non-sensitive individual
attributes I = (X ×Y ), decision algorithms space M = Ŷ = (X ×{0, 1})×{0, 1} the set of

all possible classifiers, and cost function C = L. A positive prediction Ŷ = 1 always implies
a good outcome for the individual. This corresponds to a benefit function W = Ŷ with
minimum threshold τ = 1. We set the maximum cost threshold to ρ = 0 so that a good
outcome from the decision-maker’s perspective reflects a correct prediction (L = 0). The

individual’s target Y is not influenced by the prediction Ŷ , thus the parameterized benefit
Wm = W = Ŷ and Cm = C = L. A binary classifier Ŷ : X × {0, 1} → {0, 1} under this
problem formulation satisfies DemParUtil if

P (Ŷ ≥ 1 | Z=0) = P (Ŷ ≥ 1 | Z=1) . (4.6)

Because this is a binary classification problem, Ŷ ≥ 1 is equivalent to Ŷ = 1, which makes
Equation 4.6 equivalent to DemParClf (Equation 2.1). Similarly, a classifier Ŷ satisfies
EqOppUtil if

P (Ŷ ≥ 1 | Γ=1, Z=0) = P (Ŷ ≥ 1 | Γ=1, Z=1) (4.7)

where Γ is an indicator variable with

Γ =

{
1 if ∃Ŷ ′ ∈ Ŷ : Ŷ ′ ≥ 1 ∧ L(Y, Ŷ ′) ≤ 0

0 otherwise .
(4.8)

If Γ=1 in Equation 4.8, then it must be that Y=1, which makes Equation 4.7 equivalent to
traditional Equal Opportunity (Equation 2.2). Since Equation 4.6 reduces to Equation 2.1,
and Equation 4.7 reduces to 2.2, DemParClf and EqOppClf are special cases of DemParUtil
and EqOppUtil, respectively.

5. Applications

In Section 1 and 3 we discussed the motivation and intuition for our utility fairness frame-
work. In Section 4 we formally defined the UFP framework and showed that the original
classification forms of Demographic Parity and Equal Opportunity are special cases of the
utility definitions. In this section we provide several examples demonstrating how UFPs are
useful in practice. In each example, one or more of the four assumptions detailed in Sec-
tion 1 are violated, making classification fairness definitions poor characterizations of their
intended fairness measures. We demonstrate how UFPs help facilitate a more appropriate
fairness definition in each case.

5.1 Prediction-Outcome Disconnect with German Credit Dataset

Here we provide an experimental analysis on an environment where classification fairness
metrics fail to appropriately measure fairness due to Assumption 1. In order to ensure
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that our analysis is consistent with other group fairness works, we leverage the fairness-
comparison benchmark of Friedler et al. for data preprocessing, algorithm implementation,
and fairness measurement calculations (Friedler et al., 2019).7

Dataset We consider the loan application scenario described by the German Credit
Dataset (Dua & Graff, 2017), which consists of 1,000 loan application records. Each record
in the dataset consists of 20 attributes about a loan applicant, including a binary label in-
dicating whether the applicant is a good or bad credit risk. Following convention (Friedler
et al., 2019), we consider the credit risk label as our prediction target Y , with Y = 1 cor-
responding to good-risk applicants and Y = 0 corresponding to bad-risk applicants. The
classification objective is to correctly predict which applicants are good-risk, and which
are bad-risk. In addition to the credit risk label, the dataset consists of other financial
attributes about the applicant such as the number of open credit lines, credit history, as
well as demographic information such as age and sex. For this experiment, we consider
the applicant’s sex the protected attribute, with Z = 0 corresponding to female applicants
and Z = 1 corresponding to male applicants. The dataset also provides a payoff matrix
representing the downstream “cost” of each prediction error, where we assume that loans
are granted to applicants predicted to be good-risk, and loans are rejected for applicants
predicted to be bad-risk. We can use this payoff matrix to define our UFP cost function C:

C(Y,Z, Ŷ ) =


0 if Ŷ = Y

1 if Ŷ = 0 ∧ Y = 1

5 if Ŷ = 1 ∧ Y = 0

(5.1)

where Ŷ is the binary prediction with Ŷ = 1 if the classifier predicts a good-risk applicant
and Ŷ = 0 if it predicts bad-risk. Equation 5.1 implies zero cost for granting loans to
good-risk applicants or rejecting bad risk applicants, a cost of 1 if a good-risk applicant is
rejected for a loan, and a cost of 5 if a loan is granted to a bad-risk applicant. The dataset
thus articulates that it is much worse for an applicant to fail to repay a loan (i.e. defaulting)
than it is to reject an applicant that would have repaid a loan.

Algorithms We evaluate six of the binary classification algorithms studied in (Friedler
et al., 2019), with a mix of algorithms that optimize for accuracy only and algorithms that
optimize for both accuracy and fairness. The first two algorithms are standard classifica-
tion techniques that only optimize for accuracy: Decision Tree (DT) and Support Vector
Machine (SVM). The next three algorithms are Feldman Decision Tree (Feld-DT), Feldman
SVM (Feld-SVM), and Feldman Logistic Regression (Feld-LR) (Feldman, Friedler, Moeller,
Scheidegger, & Venkatasubramanian, 2015), each of which optimizes for both accuracy and
fairness by preprocessing techniques that modify the input attributes (X) to have equal
marginal distributions based on the subsets of that attribute with a given sensitive value.
The final algorithm, ZafarFair (Zafar, Valera, Rogriguez, & Gummadi, 2017), adds a
fairness constraint to the accuracy optimization.

7. We make some modifications to the framework, but these are only for extension purposes, such as for
new fairness measurements. The full code repository to reproduce the results in this paper is available
at https://github.com/jackblandin/group-fairness-in-machine-learning-via-utilities.
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Figure 1: Using the German Credit dataset, six binary classification algorithms are eval-
uated for efficiency (i.e. cost in our UFP framework), shown on the y-axis, and fairness,
shown on the x-axis. The axes are constructed so that more efficient (lower cost) algorithms
are higher-up and more fair algorithms are further right.

Fairness Measures We evaluate each of the six algorithms on three different fairness
measures. The first two measures quantify the extent to which DemParClf and EqOppClf

are achieved:

DemParClfRatio = min

(
P (Ŷ = 1 | Z = 0)

P (Ŷ = 1 | Z = 1)
,
P (Ŷ = 1 | Z = 1)

P (Ŷ = 1 | Z = 0)
,

)
, (5.2)

EqOppClfRatio = min

(
P (Ŷ = 1 | Y = 1, Z = 0)

P (Ŷ = 1 | Y = 1, Z = 1)
,
P (Ŷ = 1 | Y = 1, Z = 1)

P (Ŷ = 1 | Y = 1, Z = 0)

)
. (5.3)

For the third measure, we introduce a utility-based measure that quantifies the extent to
which DemParUtil is achieved:

DemParUtilRatio = min

(
P (W ≥ τ | Z = 0)

P (W ≥ τ | Z = 1)
,
P (W ≥ τ | Z = 1)

P (W ≥ τ | Z = 0)

)
(5.4)

where the benefit function W is equal to the (negative) cost function defined in Equation
5.1,8 and τ = −1 so that W ≥ τ indicates the applicant did not default. We selected
this threshold since it best separates the extreme benefit values that occur from applicant
defaults.

Results We execute and measure each algorithm using 10-fold cross-validation. For each
performance measurement, we report the average value as well as the 10th and 90th per-
centiles. The results are shown in Figure 1. A practitioner using classification fairness
definitions, as represented in Figures 1a and 1b, may conclude that a trade-off needs to be
made between cost and fairness. On the other hand, a practitioner using the utility-based
fairness definitions, as in Figure 1c, would correctly conclude that fairness is positively
correlated with cost, and so no trade-off is necessary. The discrepancy occurs because our

8. Since the applicant and lender (prediction algorithm) share the same incentives, we can reasonably
assume that they share the same utility functions. Section 5.2 discusses an example where the benefit
and cost functions diverge.
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utility fairness measures are able to properly weight the magnitude of impact on the ap-
plicant for a false positive (default) versus a false negative (rejecting a qualified applicant)
through appropriate instantiation of the benefit function. I.e. an applicant defaulting on
a loan is considered more severe than a qualified applicant not receiving a loan, so UFP
fairness measures weight applicant defaults higher when measuring fairness. More generally,
fairness definitions composed using our UFP framework can encode the fairness impact for
different outcomes through the benefit function, thereby mitigating the prediction-outcome
disconnect issue.

5.2 Self-Fulfilling Prophecies

Here we show how to apply utility-based fairness to a setting with feedback loops, and
show how EqOppUtil’s counterfactual interpretation of qualification prevents self-fulfilling
prophecies. We use the recidivism prediction example posed by Imai and Jiang (Imai &
Jiang, 2020) where a binary classifier predicts whether an inmate convicted of a crime will
recidivate, which informs a judge’s decision Ŷ of whether to detain (Ŷ = 0) or release
(Ŷ = 1) the inmate. The target variable Y corresponds to whether or not the inmate will
recidivate, with Y = 0 indicating recidivism. This problem differs from typical classification
since Y is influenced by Ŷ . When decisions influence the observed target variable, it is
helpful to visualize the dataset by principal strata (Frangakis & Rubin, 2002) where each
principal stratum characterizes how an individual would be affected by the decision Ŷ with
respect to the variable of interest Y . Since this is a binary classification problem with binary
decisions and binary targets, we have a total of four principal strata. We assign labels to
each stratum according to their behavior in Table 5.1. For example, an individual in the
Backlash stratum will recidivate if they are detained, so P (Y=1 | Ŷ=0) = 0, but will not
recidivate if released, so P (Y=1 | Ŷ=1) = 1.

To model inmates who always prefer to be released, we can take the benefit function to
be a binary function with W = 1 when the inmate is released and W = 0 when detained.
Similarly, to model a judge (decision-maker) who always prefers outcomes where the inmate
does not recidivate, we can set the cost function to C = 1 when the inmate recidivates and
C = 0 when they do not. Following a similar fairness criteria of that posed by (Imai & Jiang,
2020), we want to ensure that inmates who will not recidivate if released are released with
equal probability for each protected group. Therefore, we set the benefit threshold τ = 1
so that a good outcome from an inmate’s perspective is when they are released. Similarly,
we set the cost threshold ρ = 0 such that a good outcome from the judge’s perspective is
when an inmate does not recidivate.

EqOppClf considers an individual as qualified if the value of Y is observed to be 1. This
means that an inmate is qualified if they do not recidivate, which corresponds to inmates
that (a) are in the Safe stratum, (b) are in the Backlash stratum and are released, or
(c) are in the Preventable stratum and are detained. Therefore, even if the minority and
majority inmate populations are identical in every way other than their protected attribute,
a classifier could satisfy EqOppClf while having different release rates for inmates who would
not recidivate. For example, a decision-maker could get away with detaining more safe
minority inmates than the majority simply by releasing more preventable inmates. We can
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P (Y = 1|Ŷ = 1) = 0 P (Y = 1|Ŷ = 1) = 1

Dangerous Backlash

P (Y = 1|Ŷ = 0) = 0
Detained Unq CfUtil

Released Unq Clf, CfUtil

Preventable Safe

P (Y = 1|Ŷ = 0) = 1
Detained Clf Clf, CfUtil

Released Unq Clf, CfUtil

Table 5.1: The four principal strata for the recidivism prediction problem. Clf cells cor-
respond to qualified inmates according to EqOppClf. CfUtil are qualified according to
EqOppUtil. Unq are unqualified according to both.

see how this works by inspecting an equivalent form of EqOppClf:

‖(Ŷ = 1 ∩ Y = 1 ∩ Z = 0)‖
‖(Y = 1 ∩ Z = 0)‖

=
‖(Ŷ = 1 ∩ Y = 1 ∩ Z = 1)‖
‖(Y = 1 ∩ Z = 1)‖

.

Detaining more Safe minority inmates reduces the numerator for the minority, but this can
be offset by releasing more Preventable inmates which causes the minority denominator
to also decrease. The classifier thus attains “fairness” through a self-fulfilling prophecy by
manipulating who is considered “qualified”.

Alternatively, EqOppUtil has a prediction-independent definition of “qualification”, and
so it cannot be satisfied through qualification manipulation. Referencing Equation 4.4, an
individual is qualified under EqOppUtil with τ = 1 and ρ = 0 if ∃Ŷ ′ ∈ Ŷ : WŶ ′ ≥ 1∧CŶ ′ ≤
0 . In other words, an inmate is considered qualified if there exists a classifier that will
produce W ≥ 1 and C ≤ 0, which is only possible for individuals who will not recidivate
when released. Thus, according to EqOppUtil, an inmate is qualified if they are in the Safe

or Backlash stratum, regardless of if they are detained or released.
This example shows how self-fulfilling prophecies can be avoided by considering coun-

terfactuals in qualification. Appendix B.1 has a fully worked example.

5.3 Fairness in Reinforcement Learning

In this section we provide an example of how our counterfactual utility definitions extend
to RL, a domain that violates Assumption 3. We provide formalisms for MDPs and then
discuss how to construct the corresponding UFP. We defer a fully worked RL example to
Appendix B.2.

Definition 5.1. A Markov Decision Process (MDP) is a 6-tuple {S,A, T,R, γ, µ} where S
is a set of states; A is a set of actions; T : S ×A → ∆S is a mapping of state-action pairs
to a distribution over new states: T (st|st−1, at−1) ; R : S ×A → R is the reward function,
which maps a state-action pair to a real number; γ ∈ [0, 1] is the discount factor; and µ
is the initial state probability distribution. A typical goal is to find a policy π∗ ∈ Π that
maximizes the expected discounted reward.

When constructing the UFP, some parameters can be inferred from the MDP directly,
while others need to be defined according to the problem domain and desired fairness
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criteria. UFP parameters I, Z, M , and C can be inferred from the MDP as follows. The
MDP state s ∈ S corresponds to an individual’s unprotected attributes s̃ ∈ S̃ (i.e. I = s̃)
and protected attribute Z (i.e. s = {s̃, Z} and S = S̃ × Z). Therefore, the initial state s0

represents an individual in the first timestep s0 = {s̃0, Z} . The individual’s unprotected
attributes s̃ can change over subsequent timesteps, and do so according to the transition
function st ∼ T (st−1, π(st−1)) with st = {s̃t, Z}. We assume that the individual’s protected
attribute Z does not change throughout an episode. M = Π, the set of policies. Following
RL reward convention, the cost function Cπ is the negative expected cumulative sum of
rewards after executing the policy π ∈ Π:

Cπ = −E
[ ∞∑
t=0

γtR(st, π(st))
]
. (5.5)

We can construct the benefit function W similarly by defining it as the expected cumulative
sum of a domain-defined benefit contribution function w : S ×A → R:

Wπ = E
[ ∞∑
t=0

γtw(st, π(st))
]

(5.6)

Thus, in order to define W (s, π), and therefore Wπ(s), we only need to define w(s, a). As
we can see, the benefit contribution function w shares the same signature as the reward
function R, and can be thought of as the individual’s reward function.9 The remaining
UFP parameters τ and ρ can be assigned to implement the desired fairness criteria.

5.4 Fairness in Clustering with Chicago Ward Redistricting

In this section we apply our framework to a clustering setting where we evaluate the fairness
of two competing ward redistricting maps for the city of Chicago. We demonstrate how a
practitioner may decide on selecting the appropriate benefit function and τ parameterization
in a real-world scenario. We also show how our framework extends to situations with more
than two protected groups.

We consider the task of ward redistricting for the city of Chicago. Figure 2 shows two
different ward maps proposals for 2,746,388 constituents and 50 wards. Figure 2a shows
the People’s Map which was drawn by the Chicago Advisory Redistricting Commission—
a committee of 13 individuals tasked with producing a map that empowered historically
marginalized communities (City of Chicago – Office of the City Clerk, 2023a). The People’s
Map was rejected by the Chicago city council in favor of the Rules Committee Map (Figure
2b), which went into effect in May of 2023 (City of Chicago – Office of the City Clerk,
2023b).

We model this redistricting setting as a clustering problem where the goal is to segment
a geographic region into K = 50 wards so that each of the n = 2, 746, 388 constituents are
assigned to a single ward. Formally, we define a ward map J as a mapping of n constituents
(X̄, Z̄) to an n-length vector of ward assignments, where Z̄ and X̄ are n-length vectors of
protected and unprotected individual attributes, respectively. The unprotected attributes
may correspond to any non-sensitive attributes such as geographic location, although we

9. This is similar in concept to individual utility function in (Wen et al., 2021) and the benefit function in
(Heidari et al., 2018).
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do not explicitly need them for the fairness computations in this example. The protected
attribute Z corresponds to race. Since Chicago has significant populations of black, hispanic,
and white constituents, we allow the protected attribute Z ∈ Z to take on three values:
Z = {black, hispanic, white}. We can easily modify our Section 4 definitions to account
for this generalization of Z. For instance, we can define DemParUtil (Equation 4.1) as:

P (Wm ≥ τ | Z=zi) = P (Wm ≥ τ | Z=zj) ∀ zi, zj ∈ Z . (5.7)

(a) The People’s Map. (b) The Rules Committee Map.

Figure 2: Two different 2023 Chicago ward map proposals. Images from Chicago Advisory
Redistricting Commission (2023).

Next we evaluate the fairness of each map using our utility framework. We start by
considering one common clustering fairness definition, balanced clustering, which we can
implement as DemParUtil.

Balanced Clustering Balanced clustering strives to distribute each protected group
evenly across all clusters (Chierichetti et al., 2017) . We can represent balanced clustering
as DemParUtil by having an individual’s benefit be proportional to the balance of their as-
signed cluster. That is, for an individual i sampled from (X̄, Z̄) and assigned to cluster k by
clustering J , we define the individual’s benefit as the ratio of the least populated protected
group in cluster k relative to the rest of the population in cluster k:

WJ = balance(k)

= min
z∈Z

[∑j=n−1
j=0

[
1
∣∣ J(Xj , Zj) = k ∧ Zi = Zj

]∑j=n−1
j=0

[
1
∣∣ J(Xj , Zj) = k ∧ Zi 6= Zj

]] . (5.8)
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In this case, τ represents the minimum balance to be considered a “well-balanced” clus-
ter. To determine the appropriate value for τ , we need to consider the ward redistricting
domain—a ward map satisfies DemParUtil if the probability that a constituent is assigned
to a τ -balanced ward is independent of their protected attribute. So we need to decide what
minimum balance we want to assign to τ .

We use data from the 2020 US Census (United States Census Bureau, 2021a) to obtain
the Citizen Voting Age Population (CVAP) split by race.10 Figure 3 shows the results of
evaluating P (WJ≥τ |Z=z) ∀z ∈ Z for the two ward maps for different values of τ . We
can think of τ on the x-axis as the minimum balance for a cluster to be considered “well-
balanced”, and the y-axis as the probability that a constituent is assigned to a “well-
balanced” ward.

Figure 3: Group clustering results for the two Chicago ward map proposals. The y-axis
shows the probability that a constituent with race z is assigned to a “well-balanced” ward,
where “well-balanced” is defined by τ on the x-axis.

Figure 3 only has nonzero probabilities when τ ≤ .20. So if we set τ > .20, then
no ward would be considered well-balanced. This begs the question–––is being assigned
to a ward with a balance of .20 a desirable outcome for a constituent? Reflecting on
this question, it is difficult to come up with a reason why a more balanced ward implies
a better outcome for a constituent. In other words, balance does not appear to be an
appropriate benefit function for constituents. If the goal is to ensure that each protected
group has a proportional representation in government, as appears to be the goal of the
Rule’s Committee Map (Mercado, 2023),11 then being assigned to a well-balanced ward
is actually a bad outcome—balanced wards can result in a form of gerrymandering where
a single group has a slight majority in most or all of the wards. A benefit function that
encourages fair group representation in government more closely resembles representative
clustering.

Representative Clustering Rather than trying to evenly distribute groups across clus-
ters, representative clustering tries to group similar individuals together (Abbasi et al.,
2021). We can implement representative clustering by defining the benefit of a constituent’s

10. All data points used are provided in Tables C.1-C.2 in Appendix C.
11. The People’s Map was interested in equitable representation in government, but they also wanted to

preserve neighborhoods as much as possible (Chicago Advisory Redistricting Commission, 2023).

762



Generalizing Group Fairness in ML

ward assignment as the proportion of constituents in their assigned ward who share the same
protected attribute (race) as the constituent. Formally, the benefit for constituent i assigned
to ward k is

WJ =

∑j=n−1
j=0

[
1
∣∣ J(Xj , Zj) = k ∧ Zi = Zj

]∑j=n−1
j=0

[
1
∣∣ J(Xj , Zj) = k

] . (5.9)

Figure 4: Representative clustering results for the two Chicago ward map proposals. The
y-axis shows the probability that a constituent with race z is assigned to a ward with at
least a τ proportion of z constituents. E.g. the blue circle at τ = .5 shows the probability
that a Black constituent will be assigned to a ward with a Black majority.

With this benefit function, a ward map satisfies DemParUtil if the probability that a
constituent is assigned to a ward with at least τ proportion of constituents with their same
race. As before, we need to select a proper value for τ . Figure 4 shows the DemParUtil

results for various values of τ . One intuitive choice is to set τ = .5 so that a constituent’s
“good” outcome is when they are assigned to a ward where their race represents the majority.
In that case, the People’s Map appears to be more fair than the Rule’s Committee Map
since the three data points at τ = .5 are closer together.

Once again, however, we need to check that our benefit function and τ parameterization
properly characterize a “good” outcome for a constituent. Is it really a good outcome if the
constituent is in the majority of their ward, but the majority is insufficient to secure an elec-
toral majority? For instance, if we consider voter turnout rates from the 2020 United States
Presidential Election: 62.6% for blacks, 53.7% for hispanics, and 70.9% for whites (United
States Census Bureau, 2021b), we immediately realize that a slight CVAP majority for
blacks or hispanics may not be enough to secure an electoral majority. Therefore, we need
to modify the definition for a “good” outcome to actually reflect the outcome we desire:
constituents from each race should have an equal probability of being assigned to a ward
where they are likely to have an electoral majority. We can also adjust the benefit function
to reflect the updated definition for a “good” outcome. Setting V (Z) → R ∈ [0, 1] as the
voter turnout rate for protected group Z, we modify the benefit function to be proportional
to the number of constituents in their protected group who are expected to vote:

WJ =

∑j=n−1
j=0

[
V (Zj)

∣∣ J(Xj , Zj) = k ∧ Zi = Zj
]∑j=n−1

j=0

[
V (Zj)

∣∣ J(Xj , Zj) = k
] . (5.10)

Figure 5 shows the results of using the Equation 5.10 benefit function with the 2020
United States Presidential Election voter turnout rates. Once we factor in these voter
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Figure 5: Representative clustering results for the two Chicago ward map proposals with
voter turnout factored into the benefit function.

turnout rates, it is clear that the hispanic population has a much lower probability of
achieving the desired outcome than the black and white population.

Our goal in this example is not to declare which of the two maps are more fair, nor is it
to declare which benefit function is most appropriate. For instance, we did not incorporate
measures of neighborhood preservation into the benefit function, which was one of the
primary goals of the People’s Map. Rather, we aim to illustrate how even a well-intentioned
practitioner can unknowingly select policies that do not adhere to their fairness principles
when they do not properly consider the outcomes they are striving to achieve. Using our
framework, the need to choose W and τ encourages practitioners to articulate what they
believe to be the ideal outcome for individuals. This leads to more productive debates on
which fairness principles are relevant and how they can be achieved.

6. Discussion

We conclude by discussing three practical considerations. First, there may be situations
where counterfactual outcomes need to be considered but the causal structure between
decisions and observed outcomes is unknown. In this case, we can leverage techniques
from the causal inference literature (Rubin, 2005) to estimate the causal structure, or use
off-policy evaluation techniques (Bang & Robins, 2005; Creager et al., 2020) in order to
estimate counterfactual outcomes without explicitly learning the causal structure. Second,
our analysis focuses on expanding the range of settings where group fairness definitions
can be applied. There are additional issues that are orthogonal to our goal, including how
best to satisfy fairness during learning and how to trade off between fairness and utility.
Third, practitioners may disagree on the most appropriate benefit function or appropriate
threshold values to be considered “good” outcomes. We actually see benefit and threshold
disagreements as a feature of our framework since, unlike prediction-based fairness metrics,
our definitions naturally decouple discussions of “how individuals are impacted” from “what
is fair”, thereby focusing debates on the actual points of disagreement.
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Appendix A. Extension to Other Group Fairness Definitions.

In addition to Demographic Parity and Equal Opportunity, we can extend our framework
to implement various other group fairness definitions. In this section we translate common
group fairness definitions from their original classification (Clf) form into their utility-based
(UFP) representations.

Predictive Parity Predictive Parity (Chouldechova, 2017) is essentially the inverse of
Equal Opportunity, which requires that the probability that an individual predicted to be
positive actually belongs to the positive class is equal for both groups:

P (Y=1 | Ŷ=1, Z=0) = P (Y=1 | Ŷ=1, Z=1) ; (Clf)

P (Γ=1 |W ≥ τ, Z=0) = P (Γ=1 |W ≥ τ, Z=1) . (UFP)

Equalized Odds Similar to Equal Opportunity, Equalized Odds (Hardt et al., 2016)
requires both the true positive rates (P (Ŷ = 1|Y = 1)) and false positive rates (P (Ŷ =
1|Y = 0)) to be equal:

P (Ŷ=1 | Y=y, Z=0) = P (Ŷ=1 | Y=y, Z=0) ; (Clf)

(
P (Wm ≥ τ | Γ=1, Z=0) = P (Wm ≥ τ | Γ=1, Z=1)

)
∧(

P (Wm ≥ τ | Γ=0, Z=0) = P (Wm ≥ τ | Γ=0, Z=1)
)
.

(UFP)

Conditional Demographic Parity Conditional Demographic Parity (Corbett-Davies
et al., 2017) extends Demographic Parity (Definition 2.1) by allowing one or more legitimate
attributes L to impact the outcome of the decision:

P (Ŷ=1 | L=l, Z=0) = P (Ŷ=1 | L=l, Z=1) ; (Clf)

P (Wm ≥ τ | L=l, Z=0) = P (Wm ≥ τ | L=l, Z=1) . (UFP)

for some l. Here L is playing a similar role as Γ in Equation 4.4, as it requires equal benefit
for some subset of the general population.

Predictive Equality Predictive Equality (Chouldechova, 2017) is satisfied if individuals
in the negative class have equal probabilities of receiving a positive prediction for each
protected group:

P (Ŷ=1 | Y=0, Z=0) = P (Ŷ=1 | Y=0, Z=1) ; (Clf)

P (Wm ≥ τ | Γ=0, Z=0) = P (Wm ≥ τ | Γ=0, Z=1) . (UFP)
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Conditional Use Accuracy Equality Conditional Use Accuracy Equality (Berk et al.,
2021) requires the probability for individuals with positive predictions to belong to the
positive class to be equal for both protected groups, and the probability for individuals
with negative predictions to belong to the negative class to be equal for both protected
groups: (

P (Y=1 | Ŷ=1, Z=0) = P (Y=1 | Ŷ=1, Z=1)
)

∧
(
P (Y=0 | Ŷ=0, Z=0) = P (Y=0 | Ŷ=0, Z=1)

)
; (Clf)

(
P (Γ=1 |Wm ≥ τ, Z=0) = P (Γ=1 |Wm ≥ τ, Z=1)

)
∧
(
P (Γ=0 |Wm < τ,Z=0) = P (Γ=0 |Wm < τ,Z=1)

)
. (UFP)

Overall Accuracy Equality Overall Accuracy Equality (Berk et al., 2021) requires the
probability that an individual is assigned to their true class to be equal for both protected
groups:

P (Ŷ=Y,Z=0) = P (Ŷ=Y,Z=1) ; (Clf)(
P (Wm ≥ τ,Γ=1, Z=0) = P (Wm ≥ τ,Γ=1, Z=1)

)
∧
(
P (Wm < τ,Γ=0, Z=0) = P (Wm < τ,Γ=0, Z=1)

)
.

(UFP)

We interpret Y = 1 as Γ = 1 and Ŷ = 1 as Wm ≥ τ . Similarly, we interpret Y = 0 as Γ = 0
and Ŷ = 0 as Wm ≥ τ .

Treatment Equality Treatment Equality (Berk et al., 2021) requires an equal ratio of
false negatives (P (Ŷ=0|Y=1)) and false positives (P (Ŷ=1|Y=0)) for each protected group:

P (Ŷ=0 | Y=1, Z=0)

P (Ŷ=1 | Y=0, Z=0)
=
P (Ŷ=0 | Y=1, Z=1)

P (Ŷ=1 | Y=0, Z=1)
; (Clf)

P (Wm < τ | Γ=1, Z=0)

P (Wm ≥ τ | Γ=0, Z=0)
=
P (Wm < τ | Γ=1, Z=1)

P (Wm ≥ τ | Γ=0, Z=1)
. (UFP)

Test Fairness Test Fairness (Chouldechova, 2017) applies to classifiers that predict a
probability S rather than a binary class Y . A classifier satisfies Test Fairness if, for any
predicted probability S, individuals in each protected group have equal probability of being
in the positive class:

P (Y=1 | S=s, Z=0) = P (Y=1 | S=s, Z=1) ∀s ∈ [0, 1] ; (Clf)

P (Γ=1 |Wm=w,Z=0) = P (Γ=1 |Wm=w,Z=1) ∀w ∈ R . (UFP)

Appendix B. Fully Worked Examples

B.1 Self-Fulfilling Prophecies

Here we provide a more complete example of the recidivism prediction problem from Section
5.2, which illustrates how Assumption 2 allows for self-fulfilling prophecies with EqOppClf
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but not with EqOppUtil. Additionally, we show that principal fairness (Imai & Jiang,
2020), which also prevents self-fulfilling prophecies, is a special case of our framework.

We use the recidivism prediction example posed by Imai and Jiang (Imai & Jiang, 2020)
where a binary classifier predicts whether an inmate convicted of a crime will recidivate.
The target variable Y corresponds to whether or not the inmate will recidivate, with Y = 0
indicating recidivism. This problem differs from typical classification since Y is influenced
by Ŷ . When decisions influence the observed target variable, it is helpful to visualize
the dataset by principal strata (Frangakis & Rubin, 2002) where each principal stratum
characterizes how an individual would be affected by the decision Ŷ with respect to the
variable of interest Y . Since this is a binary classification problem with binary decisions and
binary targets, we have a total of four principal strata. We assign labels to each stratum
according to their behavior in Table 5.1. For example, an individual in the Backlash

stratum will recidivate if they are detained, so P (Y=1 | Ŷ=0) = 0, but will not recidivate if
released, so P (Y=1 | Ŷ=1) = 1.To model inmates who always prefer to be released, we can
take the benefit function to be a binary function with W = 1 when the inmate is released
and W = 0 when detained. Similarly, to model a judge (decision-maker) who always prefers
outcomes where the inmate does not recidivate, we can set the cost function to C = 1 when
the inmate recidivates and C = 0 when they do not.

Following a similar fairness criteria of that posed by (Imai & Jiang, 2020), we want to
ensure that inmates who will not recidivate if released are released with equal probability
for each protected group. Therefore, we set the benefit threshold τ = 1 so that a good
outcome from an inmate’s perspective is when they are released. Similarly, we set the cost
threshold ρ = 0 such that a good outcome from the judge’s perspective is when an inmate
does not recidivate.

We wish to evaluate the fairness of a classifier Ŷ † that produces the results shown in
Table B.1. We compare three different fairness definitions when evaluating Ŷ †: EqOppClf,
EqOppUtil, and principal fairness.

An individual is qualified under EqOppClf if Y is observed to be 1. This means that
an inmate is qualified if they do not recidivate, which corresponds to inmates that (a) are
in the Safe stratum, (b) are in the Backlash stratum and are released, or (c) are in the
Preventable stratum and are detained. Thus, EqOppClf becomes:

P
(
Ŷ=1

∣∣ Z=0,(Y P = Backlash ∧ Ŷ=1)

∨ (Y P = Preventable ∧ Ŷ=0)

∨ (Y P = Safe)
)

= P
(
Ŷ=1

∣∣ Z=1,(Y P = Backlash ∧ Ŷ=1)

∨ (Y P = Preventable ∧ Ŷ=0)

∨ (Y P = Safe)
)
.

Therefore, even if the minority and majority inmate populations are identical in every
way other than their protected attribute, a classifier could satisfy EqOppClf while having
different release rates for inmates who would not recidivate. This can be done through
a self-fulfilling prophecy where the classifier manipulates who is considered “qualified”.
Ŷ † accomplishes this by detaining more Backlash minority inmates and releasing more
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Preventable minority inmates (Table B.1), while still satisfying EqOppClf:

20 + 160

20 + 80 + 40 + 160

?
=

20 + 160

20 + 80 + 40 + 160
3

5
=

3

5
.

Ŷ † causes two-thirds of the minority (Z = 0) Backlash inmates to recidivate by detaining
them, thus rendering them unqualified according to EqOppClf. 12 Since Ŷ † detains only half
of the majority (Z = 1) Backlash inmates, this results in a larger proportion of minority
inmates who were rendered unqualified through detainment. This results in a self-fulfilling
prophecy since Ŷ † satisfies EqOppClf by biasing the selection of qualified inmates rather
than by making fair decisions.

Conversely, EqOppUtil does not allow for self-fulfilling prophecies since it has a prediction-
independent definition of “qualification”. Referencing Equation 4.4, an individual is qual-
ified under EqOppUtil with τ = 1 and ρ = 0 if ∃Ŷ ′ ∈ Ŷ : WŶ ′ ≥ 1 ∧ CŶ ′ ≤ 0 . In other
words, an inmate is considered qualified if there exists a classifier that will produce W ≥ 1
and C ≤ 0, which is only possible for individuals who will not recidivate when released.
Thus, according to EqOppUtil, an inmate is qualified if they are in the Safe or Backlash

stratum, regardless of if they are detained or released. EqOppUtil is then evaluated as:

P
(
Ŷ=1

∣∣ Z=0, Y P ∈ {Safe,Backlash}
)

?
=P
(
Ŷ=1

∣∣ Z=1, Y P ∈ {Safe,Backlash}
)

20 + 160

40 + 20 + 40 + 160

?
=

20 + 160

20 + 20 + 40 + 160

.692 < .750 .

As expected, the proportion of qualified minority inmates who were released (.692) is less
than that of majority inmates (.750), which means that Ŷ † does not satisfy EqOppUtil.
Contrasted against EqOppClf which requires equal release rates for those observed to not
recidivate, EqOppUtil accounts for counterfactuals by requiring equal release rates for those
who would not recidivate if released. By considering counterfactuals, EqOppUtil ensures
fairness is not satisfied through self-fulfilling prophecies.

Although it is a stricter set of requirements than Equal Opportunity, principal fair-
ness (Imai & Jiang, 2020) also aims to prevent self-fulfilling prophecies by requiring equal
release rates for each principal stratum. To demonstrate the robustness of our UFP model,
we will implement principal fairness as a UFP instantiation. If there are p principal strata,
principal fairness is defined as a conjunction of p constraints:

P (WC ≥ τ | Z=0,Γi=1) = P (WC ≥ τ | Z=1,Γi=1)

∀i ∈ {0, ..., p− 1}
(B.1)

12. Similarly, the detained Preventable inmates were “manipulated” into not recidivating.
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Z = 0 Z = 1

Dangerous Backlash Dangerous Backlash
Detained 120 40 Detained 80 20
Released 30 20 Released 20 20

Preventable Safe Preventable Safe
Detained 80 40 Detained 80 40
Released 10 160 Released 80 160

Table B.1: A numerical illustration of the results of the predictions from classifier Ŷ †

on 1,000 inmates, separated by protected attribute and principal stratum. Each cell rep-
resents the number of inmates in the principal stratum and protected group who were
detained (Ŷ = 0) and released (Ŷ = 1). The table is partially reproduced from Imai and
Jiang’s example (Imai & Jiang, 2020) which represents the results of a classifier that satisfies
EqOppClf, EqOppUtil, and principal fairness. However, we modified the Z = 0 numerical
results to demonstrate a scenario where EqOppClf is satisfied, but EqOppUtil and principal
fairness are not. See Table 5.1 for the definitions of each principal stratum.

where Γi = 1 if the individual is in the ith principal stratum. For the recidivism prediction
problem, WC = W = Ŷ , so Equation B.1 corresponds to

P (Ŷ ≥ 1 | Z=0,Danger) = P (Ŷ ≥ 1 | Z=1,Danger) (B.2a)

∧ P (Ŷ ≥ 1 | Z=0,Backlash) = P (Ŷ ≥ 1 | Z=1,Backlash) (B.2b)

∧ P (Ŷ ≥ 1 | Z=0,Prevent) = P (Ŷ ≥ 1 | Z=1,Prevent) (B.2c)

∧ P (Ŷ ≥ 1 | Z=0, Safe) = P (Ŷ ≥ 1 | Z=1, Safe) . (B.2d)

Principal fairness is not satisfied by Ŷ † since the release rates of the Backlash (B.2b) and
Preventable (B.2c) strata are unequal between protected groups. I.e. for Backlash:

P (Ŷ ≥ 1 | Z=0, Y P = Backlash)

?
= P (Ŷ ≥ 1 | Z=1, Y P = Backlash)

20

40 + 20

?
=

20

20 + 20
1

3
6= 1

2
.

Generally, we prefer EqOppUtil over principal fairness since the latter requires equality in
strata that may be irrelevant to fairness (e.g. requiring equal release rates in the Danger-
ous strata is not relevant since releasing a Dangerous inmate is an undesirable outcome).
However, as demonstrated, principal fairness is well defined within our UFP model.

B.2 Fairness in Reinforcement Learning

Here we continue the discussion from Section 5.3 on applying our framework to reinforce-
ment learning, and focus the discussion on a two-stage loan application MDP. We apply
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Equations 5.5 and 5.6 to Equation 4.3 and 4.4 in order to define EqOppUtil in the RL
setting. We then compare EqOppUtil to that of (Wen et al., 2021) who also provide an
RL-translation of Equal Opportunity using an individual utility function, but do not fully
consider counterfactual scenarios.13

As a motivating example, we consider a two-stage loan application decision process rep-
resented as an MDP, where a loan applicant applies for loans in two sequential timesteps,
as shown in Figure 6. The decision-maker corresponds to the lender, who is represented by
a policy which can either grant or reject the applicant’s loan application in each timestep.
There are two types of applicants. The first type, prime, will pay back a loan with 70% prob-
ability in the first timestep, and 80% in the second timestep. The second type, subprime,
will pay back a loan with 60% probability in the first, and 70% in the second. Applicants
in the minority group are twice as likely to be subprime as prime, whereas applicants in the
majority group are twice as likely to be prime as subprime. The MDP state includes the
applicant’s behavior type (prime or subprime), protected attribute (minority or majority),
and the timestep (0 or 1). The reward function R is defined so that the lender benefits
when a loan is repaid, loses when a loan is defaulted on, and is indifferent when a loan is
rejected. Table B.2 provides the full definition of R.

UFP parameters I, Z, C, and M can be inferred from the MDP as described in Section
5.3, so we only need to define W , τ , and ρ. Next, we need to define the benefit contribution
function w, from which we can construct the benefit function W . Similar to the single-
stage loan example in Section 5.1, we define the the benefit contribution function w so that
an applicant benefits when they repay a loan, loses when they default on a loan, and is
indifferent when rejected. The full definition of w is defined in Table B.2.

In order to define the remaining UFP parameters τ and ρ, we first need to establish our
fairness objective. Building on the no unnecessary harm principle (Ustun, Liu, & Parkes,
2019; Martinez, Bertran, & Sapiro, 2020), we aim to to ensure that the lender does not
cause significant harm to one protected group more than the other, unless doing so avoids
severe harm to the lender. 14 We consider significant harm for the applicant to be when
they default twice, when they are rejected twice, or when they are rejected once and default
once. In other words, we consider a policy to be causing an applicant significant harm
unless at least one loan is granted and repaid. This corresponds to a benefit threshold of
τ = 1. From the lender’s perspective, we consider significant harm to be when the applicant
defaults at least once, which corresponds to a cost threshold of ρ = −4. Because our fairness
objective considers both the applicant’s benefit and lender’s cost, we will want to use Equal
Opportunity as our fairness definition.

13. They also provide an RL-translation of demographic parity. As this does not involve qualification, it is
equivalent to DemParUtil in this setting. They do not examine the ability of this approach to extend to
non-RL settings.

14. Our meaning of the no unnecessary harm principle is slightly different from other works. For example,
(Ustun et al., 2019; Martinez et al., 2020) use it to mean that one protected group’s benefit should
not decrease unless it increases the benefit of another protected group. Here, we use it to mean that
the probability difference of causing negative benefit between the protected groups should not increase
unless doing so decreases the cost for the decision-maker. Intuitively, other works consider the principle
to mean Pareto optimality across all of the protected groups, whereas we consider it as Pareto optimality
across all protected groups plus the decision-maker.
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State s Action a Outcome w R Probability
Applicant Type Z Timestep

Prime * 0 Grant
Repaid +2 +3 .7

Defaulted -1 0 .3

Subprime * 0 Grant
Repaid +2 +3 .6

Defaulted -1 0 .4

Prime * 1 Grant
Repaid +2 +3 .8

Defaulted -1 0 .2

Subprime * 1 Grant
Repaid +2 +3 .7

Defaulted -1 0 .3

* * * Reject Rejected 0 +2 1

Table B.2: Joint distributions for the benefit contributions w and rewards R for the two-
stage loan MDP example. The * character serves as a wildcard and represents “any value”.
As an example of interpreting this table, the first row is interpreted as follows: a Prime
applicant in the initial timestep that is granted a loan will repay the loan with 70% proba-
bility, which yields w = +2 and R = +3, and will default on the loan with 30% probability,
yielding w = −1 and R = 0. These values are also shown within the MDP diagram in
Figure 6.

Suppose we are given the policy πPrime that assigns loans to all prime applicants and
rejects loans to all subprime applicants, and we wish to evaluate if πPrime satisfies our fair-
ness objective. First, we will evaluate Wen, Bastani, and Topcu’s MDP translation of Equal
Opportunity (Wen et al., 2021), hereafter referred to as EqOppMDPStatic. EqOppMDPStatic
requires the cumulative expected individual rewards (benefit) to be equal for qualified in-
dividuals in both protected groups:

E(Wπ | p0 ≥ α,Z=0) = E(Wπ | p0 ≥ α,Z=1)

where p0 is the individual’s probability of repaying the loan in the first timestep, and α is
some qualification threshold. We can apply EqOppMDPStatic to our two-stage loan MDP
example by selecting the qualification threshold α, which we set to α = 2/3 since the optimal
policy grants loans to applicants with a repayment probability of at least 2/3. This means
prime applicants (p0 = .7) are qualified under EqOppMDPStatic while subprime applicants
(p0 = .6) are not. Therefore, the policy πPrime that grants loans to all prime applicants and
rejects all loans to subprime applicants is fair according to EqOppMDPStatic since

E(WπPrime | Prime, Z=0) = E(WπPrime | Prime, Z=1) .

However, subprime applicants are as likely to repay a loan in the second timestep as
prime applicants are in the first. Certainly the lender would prefer to grant them loans, so
it seems unfair to say that subprime applicants are forever unqualified just because they
are initially beneath the qualification threshold. Instead, we want our fairness definition to
be able to understand that qualification may be a moving target, and that the applicants’
repayment probability in later timesteps should also be considered.
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EqOppUtil, on the other hand, considers an applicant to be qualified if there exists a
policy that will result in good outcomes for both the applicant and the lender:

P (WπPrime ≥ τ | Γ=1, Z=0) = P (WπPrime ≥ τ | Γ=1, Z=1) (B.3)

where Γ is an indicator variable representing qualified individuals:

Γ =

{
1 if ∃π′ ∈ Π : Wπ′ ≥ τ ∧ Cπ′ ≤ ρ
0 otherwise .

This means that qualification under EqOppUtil is determined by the applicant’s repayment
probability across both timesteps, rather than just the initial timestep as in EqOppMDPStatic.
When we initialized our two-stage loan UFP parameters, we set the threshold parameters
τ and ρ such that a good outcome, for both the applicant and lender, is when at least one
loan is granted and repaid. Table B.3 shows that there exists a policy πFair that will, in
expectation, yield such benefit and cost values for every applicant. Therefore, all applicants
are considered qualified (i.e. Γ = 1 for all applicants). Using the values shown in Table
B.4, we see that the benefit for Prime applicants is WπPrime = 2.5, which is greater than τ .
On the other hand, the benefit for Subprime applicants is WπPrime = 0 which is less than τ .
Therefore, EqOppUtil evaluates as:

P (WπPrime ≥ 1 | Z=0)
?
= P (WπPrime ≥ 1 | Z=1)

P (Prime | Z = 0)
?
= P (Prime | Z = 1)

.34 6= .66 .

Under πPrime, the probability that a minority applicant will have benefit above τ is .34.
This is because the only way to have benefit above τ is to be Prime, and the probability of
a minority applicant being Prime is .34. Since a majority applicant has a higher probability
of having benefit above τ (.66), πPrime does not satisfy EqOppUtil.

Relative to EqOppMDPStatic, EqOppUtil better aligns with fairness intuition as it deems
the prime-only policy πPrime unfair since it results in a lower probability of at least one
successful loan repayment for minority applicants than majority applicants. More generally,
EqOppUtil is a more robust interpretation of Equal Opportunity since it naturally allows
qualification to be defined across multiple timesteps.
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Figure 6: Two-stage loan application MDP with two actions and eight total states. Benefit
contributions w(s, a) are displayed alongside the rewards R(s, a). States (large circles) have
3 parameters, with the first element indicating if the applicant is prime (1) or subprime (0);
the second element is the binary protected attribute Z with Z = 0 indicating the minority
and Z = 1 the majority; and the third element is the loan timestep with zero indicating
the first timestep and 1 indicating the second timestep. The action a = 1 corresponds to
the lender granting the applicant a loan, and a = 0 corresponds to the lender rejecting the
applicant. The four left-most percentages represent the initial state distribution µ; e.g. an
applicant sampled from µ has a 17% probability of being a minority, prime applicant. The
remaining percentages represent the joint probabilities of the benefit contributions w and
rewards R occurring, given the selected action.
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Applicant Type Z 1st Outcome 2nd Outcome
∑
w −

∑
R Probability Wπ = E[

∑
w] Cπ = −E[

∑
R]

Prime 0

Repaid Repaid +4 -6 (.7)(.8) = .56

2.5 -4.5
Repaid Defaulted +1 -3 (.7)(.2) = .14

Defaulted Repaid +1 -3 (.3)(.8) = .24

Defaulted Defaulted -2 0 (.3)(.2) = .06

Subprime 0
Rejected Repaid +2 -5 (1)(.7) = .70

1.1 -4.1
Rejected Defaulted -1 -2 (1)(.3) = .30

Prime 1

Repaid Repaid +4 -6 (.7)(.8) = .56

2.5 -4.5
Repaid Defaulted +1 -3 (.7)(.2) = .14

Defaulted Repaid +1 -3 (.3)(.8) = .24

Defaulted Defaulted -2 0 (.3)(.2) = .06

Subprime 1
Rejected Repaid +2 -5 (1)(.7) = .70

1.1 -4.1
Rejected Defaulted -1 -2 (1)(.3) = .30

Table B.3: The above calculations correspond to the outcomes produced by the policy πFair,
which is the policy that rejects Subprime applicants in the first timestep, and grants loans
otherwise. Since all applicants have Wπ ≥ τ and Cπ ≤ ρ, all applicants are qualified (i.e.
Γ = 1) when evaluating any policy for EqOppUtil.

App Type Z 1st Outcome 2nd Outcome
∑
w Γ Probability Wπ P (AppType | Z) P (Wπ ≥ τ | Z,Γ=1)

Prime 0

Repaid Repaid +4 1 (.7)(.8) = .56

2.5 .34
.34

Repaid Defaulted +1 1 (.7)(.2) = .14

Defaulted Repaid +1 1 (.3)(.8) = .24

Defaulted Defaulted -2 1 (.3)(.2) = .06

Subprime 0 Rejected Rejected 0 1 (1)(1) = 1 0.0 .66

Prime 1

Repaid Repaid +4 1 (.7)(.8) = .56

2.5 .66 .66

Repaid Defaulted +1 1 (.7)(.2) = .14

Defaulted Repaid +1 1 (.3)(.8) = .24

Defaulted Defaulted -2 1 (.3)(.2) = .06

Subprime 1 Rejected Rejected 0 1 (1)(1) = 1 0.0 .34

Table B.4: Calculations for the probabilities of each possible outcome under policy πPrime.
E.g. under πPrime, the probability that a Z = 0 Prime applicant will repay loans in both
timesteps, thus resulting in +4 benefit, is .56. These calculations are used to produce the
right-most column, which is used to evaluate EqOppUtil. Since .34 6= .66, πPrime does not
satisfy EqOppUtil.

Appendix C. Additional Tables
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Ward CVAP Black CVAP Hispanic CVAP White CVAP
1 40771 52.14% 4.19% 42.82%
2 39919 28.41% 52.78% 18.34%
3 40855 93.67% 3.38% 2.69%
4 40856 95.58% 2.45% 1.30%
5 41571 75.64% 2.22% 21.58%
6 43965 96.72% 0.80% 1.97%
7 40990 90.37% 5.65% 2.39%
8 38956 18.88% 59.18% 20.47%
9 42447 94.66% 1.51% 3.18%
10 41144 93.19% 2.10% 3.47%
11 42205 95.47% 3.04% 1.34%
12 40112 35.70% 57.23% 6.10%
13 41557 2.02% 41.58% 55.09%
14 38830 2.02% 75.78% 19.76%
15 47934 53.25% 4.73% 34.30%
16 40920 19.51% 52.41% 22.37%
17 38301 7.12% 68.11% 13.41%
18 43413 86.74% 2.31% 7.75%
19 42094 24.44% 68.45% 6.93%
20 43281 3.58% 21.11% 35.04%
21 42594 14.73% 51.38% 27.14%
22 51182 26.57% 7.06% 53.42%
23 41529 79.12% 11.28% 7.91%
24 47477 21.74% 7.50% 57.48%
25 39942 91.25% 4.92% 3.51%
26 44031 68.25% 14.14% 16.15%
27 53557 4.26% 5.51% 77.98%
28 51540 6.38% 5.17% 79.39%
29 48816 5.74% 13.63% 74.28%
30 41144 70.79% 19.28% 8.96%
31 43737 10.53% 50.54% 35.63%
32 46475 11.77% 7.69% 74.12%
33 49855 5.34% 5.64% 82.03%
34 44598 4.84% 25.78% 62.98%
35 44684 4.16% 52.63% 38.09%
36 43997 2.96% 50% 42.06%
37 43924 4.29% 57.12% 32.75%
38 43230 3.28% 50.12% 41.95%
39 52945 4.35% 6.82% 82.44%
40 41776 2.44% 37.41% 53.96%
41 44359 2.67% 10.41% 80.22%
42 51865 15.72% 9% 64.69%
43 44071 6.15% 32.82% 46.21%
44 45034 6.56% 13.68% 67.30%
45 45268 1.25% 11.53% 81.59%
46 41362 3.94% 18.93% 55.99%
47 42482 1.36% 19.36% 71.16%
48 49778 14.00% 10.57% 65.84%
49 47391 27.68% 14.21% 52.71%
50 42451 11.63% 13.41% 48.21%

Table C.1: CVAP data from the 2020 US Census (United States Census Bureau, 2021a)
used to evaluate the fairness of the People’s Map for Chicago’s 2023 redistricting ward
map proposal (City of Chicago – Office of the City Clerk, 2023b).
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Ward CVAP Black CVAP Hispanic CVAP White CVAP
9 40325 94.59% 2.52% 2.21%
10 38281 26.24% 54.22% 19.10%
19 40513 28.46% 5.66% 64.77%
21 43187 96.96% 1.13% 1.52%
8 42336 97.49% 0.61% 1.58%
7 41013 91.71% 4.90% 3.08%
18 43203 65.17% 22.16% 10.46%
6 41059 96.96% 1.32% 1.20%
17 39973 93.52% 4.40% 1.82%
14 38121 16.17% 69.85% 12.43%
5 43910 64.63% 3.69% 25.85%
16 38420 86.26% 11.52% 1.68%
13 41253 2.09% 51.28% 45.58%
20 39232 78.01% 7.66% 11.04%
15 39521 19.42% 66.10% 12.45%
23 39036 1.94% 61.31% 34.33%
12 38678 2.40% 67.41% 15.69%
3 45585 59.49% 4.23% 28.16%
22 37982 12.47% 78.06% 8.82%
4 44404 61.03% 4.47% 27.02%
11 43048 3.47% 16.78% 39.75%
25 42510 9.85% 58.40% 25.85%
24 38911 81.77% 12.23% 5.43%
28 40438 74.16% 7.00% 14.26%
34 48652 11.01% 7.34% 67.59%
42 50156 4.90% 5.84% 77.43%
27 46716 48.46% 10.35% 36.40%
37 40105 79.99% 17.48% 2.04%
29 42138 69.00% 14.59% 15.03%
1 50297 5.91% 17.58% 70.71%
2 53324 5.61% 4.76% 81.14%
26 43651 11.64% 63.18% 22.52%
43 50972 5.11% 5.41% 81.53%
36 44843 5.76% 53.88% 35.94%
32 46560 4.55% 10.63% 78.34%
35 47303 3.57% 42% 48.99%
31 44826 4.28% 61.24% 30.30%
30 44979 3.07% 48.72% 43.11%
44 52301 3.81% 5.93% 83.78%
38 46397 2.43% 24.22% 67.13%
47 47236 3.30% 9.50% 80.18%
46 51848 13.80% 10% 68.56%
33 46241 5.67% 37.10% 43.15%
45 45243 1.90% 22.46% 68.20%
39 44803 3.59% 18.28% 59.65%
41 43865 1.15% 12.24% 80.54%
48 50596 14.65% 10.52% 63.58%
40 46671 8.53% 15.46% 58.39%
50 41672 10.85% 13.74% 51.02%
49 48718 26.95% 13.05% 55.13%

Table C.2: CVAP data from the 2020 US Census (United States Census Bureau, 2021a) used
to evaluate the fairness of the Rules Committee Map for Chicago’s 2023 redistricting
ward map proposal (City of Chicago – Office of the City Clerk, 2023b).

776



Generalizing Group Fairness in ML

References

Abbasi, M., Bhaskara, A., & Venkatasubramanian, S. (2021). Fair clustering via equitable
group representations. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pp. 504–514.

Bang, H., & Robins, J. M. (2005). Doubly robust estimation in missing data and causal
inference models. Biometrics, 61 (4), 962–973.

Barocas, S., Hardt, M., & Narayanan, A. (2017). Fairness in machine learning. Nips tutorial,
1, 2.

Ben-Porat, O., Sandomirskiy, F., & Tennenholtz, M. (2021). Protecting the protected group:
Circumventing harmful fairness. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35, pp. 5176–5184.

Bera, S., Chakrabarty, D., Flores, N., & Negahbani, M. (2019). Fair algorithms for clus-
tering. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
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