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José Hernández-Orallo jorallo@upv.es

VRAIN, Universitat Politècnica de València, Spain

Abstract

Even with obvious deficiencies, large prompt-commanded multimodal models are prov-
ing to be flexible cognitive tools representing an unprecedented generality. But the di-
rectness, diversity, and degree of user interaction create a distinctive “human-centred gen-
erality” (HCG), rather than a fully autonomous one. HCG implies that —for a specific
user— a system is only as general as it is effective for the user’s relevant tasks and their
prevalent ways of prompting. A human-centred evaluation of general-purpose AI systems
therefore needs to reflect the personal nature of interaction, tasks and cognition. We argue
that the best way to understand these systems is as highly-coupled cognitive extenders,
and to analyse the bidirectional cognitive adaptations between them and humans. In this
paper, we give a formulation of HCG, as well as a high-level overview of the elements and
trade-offs involved in the prompting process. We end the paper by outlining some essential
research questions and suggestions for improving evaluation practices, which we envision
as characteristic for the evaluation of general artificial intelligence in the future.

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.
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1. Introduction

A new paradigm of AI has emerged at the intersection of generative models and large
language models. The resulting AI systems are able to perform a wide variety of tasks
by being ‘prompted’, in which flexible inputs are ‘continued’ by equally flexible outputs.
We introduce the term massive multimodal models (M⋆s) to emphasise both the connection
with massive language models and their multimodal capabilities—both inputs and outputs
contain snippets of, e.g., text, images, or audio, and the output modes may differ from the
input modes1. New variants of these models are being released at a rapid pace, and we
show an illustrative selection with different input/output modalities in Table 1.

Table 1: Illustrative selection of current massive multimodal models (M⋆s).

Modalities Models

Text → Text GPT3 (Brown et al., 2020), PaLM (Chowdhery & et al., 2022),
BLOOM (BigScience et al., 2023), PanGu-α (Zeng et al., 2021)

Text → Image, or
Text × Image → Image

DALL-E (Ramesh et al., 2021, 2022), Stable Diffusion (Rombach
et al., 2022), Imagen (Saharia et al., 2022), Parti (Yu et al., 2022),
MidJourney (Midjourney, 2022), GLIDE (Nichol et al., 2021)

Image × Text → Text MAGMA (Eichenberg et al., 2022), Flamingo (Alayrac et al., 2022)
Speech → Speech pGSLM (Kharitonov et al., 2022)
Text × Code → Code Github Copilot/Codex (Chen et al., 2021)

Due to the flexibility of interaction and the reported versatility of the systems, interact-
ing with prompt-commanded AI is different from other ways of interacting with machines,
including other AI systems. This difference, together with the expectation of future avail-
ability and capability, demands a more systematic analysis of what ‘prompting AI’ implies
for the evaluation of similar general systems. Concretely, we discuss what is new and how
this affects human cognition (section 2), we consider the caveats of aggregation and the
personal nature of cognition and utility (section 3), and we dissect the relevant elements
of the prompting process (section 4). Lastly, we bolster our arguments by highlighting
some active processes that effectually transform cognition (section 5), and finish with some
essential research questions (section 6).

• M⋆s are best regarded as cognitive extenders, distinct from the autonomous
perspective of AI systems. Their utility is therefore highly user-dependent.

• Properly evaluating them will require adopting methodologies from HCI.

• Feedback loops are emerging that impact evaluation and society at large.

• We provide actionable suggestions for tackling some of the resulting challenges.

Takeaways

1. We abstain from using the term “foundation” models (Bommasani et al., 2021), as we explicitly also
include models not designed for fine-tuning.
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2. A New Kind of Cognitive Tool

Cognitive tools are external artefacts that are used to aid the psychological capacities of the
human brain in completing a cognitive task (Heersmink, 2021; Clark, 2008, 2004; Hutchins,
1999). Different tools place different cognitive needs upon users, either offloading or in-
creasing particular cognitive demands (Gilbert et al., 2020; Risko & Gilbert, 2016; Sparrow
et al., 2011; Clark, 2004). As with other technologies, the cognitive demands that M⋆s place
on users will stem from their exact functional capacities and usage requirements. Purely
illustrative, Fig. 1 shows an example of a cognitive task that is solved by a human using
increasingly powerful cognitive artefacts.

Figure 1: The evolution of cognitive extension for solving a grounded addition problem
where Alice wants to know how many pieces of fruit she has in total. (A) Using
a notebook. (B) Using a notebook and a calculator. (C) Using a language
model. (D) Using a massive multimodal model M⋆. Ultimately Alice only needs to
transform what she wants—knowing how many pieces of fruit there are in total—
into an adequate multimodal prompt (a photo plus verbal question), thereby
reducing the cognitive labour required of her.

There has been much discussion about the role of technology as cognitive extenders
—tools that become a literal part of an agent’s mind— in both philosophy and cognitive
science, but this has largely focused on simple technologies, such as a pen and paper or a
calculator, as shown in (A) and (B) in Fig. 1 (Clark & Chalmers, 1998; Menary, 2010). We
argue that the combination of three properties makes the interaction with M⋆s unique: (i)
flexibility, as in their input/output space, taking free-form language, images, code, etc.; (ii)
generality, as they are applicable to a broad range of tasks; and (iii) originality, as they
can be used to generate novel and original content. These features can be contrasted to the
rigidity of other cognitive tools, such as to current digital assistants, which are restricted
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in either task repertoire or searching the internet for content that must already exist, or to
spelling correctors, which do generate original content.

Interactions between M⋆s and their users are also becoming more sophisticated than a
single-step wrapping and unwrapping of multimodal elements. For example, Fig. 2 shows
how GLIDE (Nichol et al., 2021) is used for step-by-step ‘inpainting’, an interactive gener-
ation where the output of the system is used as one of the inputs in the following iteration.
Especially in these more complex interactions, the results obtained will depend on the ef-
fort and skills of the user when utilising the M⋆ to complete a cognitive task. For the user
in Fig. 2 this involves figuring out the right order and prompts that condition the image
generator in the direction they require.

Figure 2: Interactive generation with GLIDE. The first image is created from scratch using
the first prompt, while subsequent ‘inpainting’ is generated using the previous
image, the corresponding area marked in green, and the bottom prompt. Image
taken from (Nichol et al., 2021).

The same features that make M⋆s unique also make attributions of success or failure more
complicated. Both failure and success can be unexpected, and could relate to the phrasing of
the prompt, the range of system capabilities, or the presence/absence of reference material
in the training data. These attribution complexities are not something we would encounter
with, for example, a calculator.

Hence, to properly evaluate these systems, the trade-offs users have to deal with need
to be understood. These will include aspects such as the user’s required cognitive effort,
the probability of success, the intuitiveness of the system, or the reusability of a prompt.
We discuss these in section 3 in a more complete overview of the involved elements. This
analysis is common in the field of human-computer interaction (HCI) (Lazar et al., 2017;
Rapp et al., 2021), especially for specific task-oriented tools, and even when using generative
AI models cooperating with humans (Lee et al., 2022). However, they are only minimally
considered when evaluating the generality of AI systems, as there is a pervasive notion that
AI systems must be autonomous and ‘generality’ is often reduced to the notion of ‘success
in a wide range of tasks’ (Legg & Hutter, 2007).

For evaluation of systems like M⋆s, used as cognitive tools or extenders, these agent-
centric notions will have to give way.
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3. Human-Centred Generality

Because of the directness, diversity, and degree of user interaction, AI systems such as M⋆s
are ‘human-centred’ in a way that autonomous ones are not, and hence their generality
must be understood and measured differently. While these systems fit perfectly in the new
paradigm of ‘human-centered AI’ (Shneiderman, 2022), their generality and its evaluation
have not been analysed in this context yet.

We say that a system displays human-centred generality (HCG) in so far
as a user is able to use the system in (1) the completion of a wide range of
cognitive tasks relevant to them, (2) with the commands that are prevalent to
them and, (3) in a manner that is effective for them. For instance, if a system is
capable of performing some tasks, but the user is not able to find the right command for
any of them (in other words, if the desired behaviour is not easily accessible), we can say
that the system is not general for this particular user.

HCG can be formulated as

Vh(M
⋆) =

∑
t,p

P(t|h)︸ ︷︷ ︸
Tasks

·P(p|t, h,M⋆)︸ ︷︷ ︸
Prompts

· vh(M⋆, t, p)︸ ︷︷ ︸
Utility

. (1)

The expected utility of a particular M⋆ for a particular user h is the sum of the utility
for various tasks t and prompts p, weighted by how likely it is that the user requires the
task (its relevance) and how likely it is that the user comes up with that particular ‘prompt’
for that task (its prevalence). The utility vh is synonymous with the overall effectiveness
of the M⋆ for the task-prompt combination (also see section 4). Both distributions and the
function vh are complex components that need discussion, but it should be clear they are
highly individual and may vary significantly for different pairs of ⟨h,M⋆⟩. For example,
it could be that some systems solve a wider range of tasks of interest for a user, covering
P(t|h) better, but they may also require more pre- and post-processing from the user.

We also already know that some M⋆s work better —or are less harmful— for some
individuals, groups or cultures (Abid et al., 2021; Bender et al., 2021; Hutchinson et al.,
2020; Brown et al., 2020; Vig et al., 2020) and that direct negative impact can be caused
by a lack of fairness or representation (Mehrabi et al., 2021; Cheng et al., 2021). In design
and training of these systems, a social choice (Rossi et al., 2011) is implicitly made when
aggregating preferences. The chosen interpretation of the user’s prompt and the given
output will be decided by existing inductive biases, which are a product of the perspectives
represented in training data and system development. Our measure of human-centred
generality would reflect the choices made and the biases that are present.

There are of course limits to how unique different people are; i.e., it can still make sense
to use a fixed set of prompts and tasks, or to aggregate Vh(M

⋆) for a particular distribution
p(h) over humans. But we hope that by formulating the definition like this, (i) it becomes
explicit what distribution is chosen, e.g., for reasons of transparency, (ii) we pay attention to
the differences across people and systems, and (iii) we can start zooming in on the cognitive
costs involved, which is what we do in the next section.
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4. Elements of the Prompting Process

In the generic prompting process, illustrated in Fig. 3, a user gets a task done by providing
a multimodal ‘prompt’ to an M⋆, which responds, or ‘continues’ by outputting an answer.
The result is then typically checked for adequacy and further transformed by the user before
using it.

I want t done
with x1 and x2

User

1.

From my model of
M*, the command

w(t,x1,x2) may

work

From my model of
M*, u(q) is

interpreted as y

Prompting effort
(prompt choice,

wrapping)

Extracting effort
(unwrapping,

validating)

Cost if wrong,
inappropriate or

unsafe

Cost of updating
belief about M*

Using y

Updating model
of M*

M*

2.

4.

5.

6.

Cost of running
the system

Runs3.

M*w(t,x1,x2) 

 

^

X1 X2

What can I make
with...

M*

0:00/3:53

Easy potato 

omelette recipe!

0:00/3:53

Easy potato 

omelette recipe!

step 1 step 2 step 3 step 4 step 5 step 6

I'm hungry! The system
tends to buy

things. Next time
I will be more

explicit about the
video

Figure 3: Top: Elements and process of a user (human) directly prompting an M⋆. The
user wants a task t done (1) possibly including some multimodal elements x1 and
x2 and, according to the internal model of M⋆ (denoted by M̂⋆) has to articulate
the wrapping of these elements p = w(t, x1, x2) into a prompt for the system
(2), producing an output q (3) from which the user unwraps the result y = u(q),
validates/assesses it (4) before finally using it (5). Given this iteration, the user
updates (6) the internal model of M⋆. Bottom: Figurative six steps in the process
of an M⋆ generating a recipe video from the contents of a user’s refrigerator
photo and a voice prompt. The user needs to deal with several outputs given by
the M⋆, including not only a recipe video generated by M⋆ but also some other
continuations such as buying more ingredients or ordering the whole dish to a
restaurant, which she had to stop. After this interaction, the user updates her
model of the system (M̂⋆) thinking she should be more explicit about the recipe
video next time.

Most parts of the process have received scientific attention independently: prompt choice
and wrapping, e.g. (Liu et al., 2021; Reynolds & McDonell, 2021; Ben-David et al., 2022);
improving the usefulness and safety of outputs, e.g., (Ouyang et al., 2022); or calibration,
e.g. (Kumar, 2022; Lin et al., 2022; Kadavath et al., 2022).
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But all of this effort is mostly made with regards to the correctness of the model, only in
the subset of tasks where this is applicable, and assuming the prompts, transformations and
other cognitive efforts are discounted or simply ignored. Nonetheless, the elements shown
in Fig. 3 and further described in Table 2 paint a more complex picture than the error
metrics used in standardised evaluation benchmarks of language models and generative
models (Hendrycks et al., 2020; Brown et al., 2020; Reynolds & McDonell, 2021; Scao &
Rush, 2021; Srivastava et al., 2022).

Benefit(+) or Cost(−) Description Origin

Service(+)
Potential gain of an answer such as a proof to a theorem, a generated image,
auto-completed piece of code, the translation of some text, etc., which is rel-
ative to the problem and the cost of the user doing it themselves.

Task

Templating the
prompt(−)

Cost of devising a prompt template or schema, and anticipating the format
of the result, according to the user’s mental model of M⋆, denoted by M̂⋆.
For instance, the pairs "Input:" and "Output:" may be general prompts
templates for many tasks, but are not sufficient for many others (Miltenberger,
2015; Laurel, 2013; Bourguet, 2003; Stivers & Sidnell, 2005).

System

Wrapping and
unwrapping(−)

A prompt can be reused for many instances, but then the relevant elements
should be inserted along the prompt and extracted from it, as it is usually
surrounded by irrelevant material, and both ‘prompt and answer engineering’
need to be anticipated (Liu et al., 2021).

System

Validation(−)
Even if the user does not know the answer, for certain tasks they can at least
validate if it is meaningful or fit for purpose (e.g., expecting a number when
asking ‘how many?’).

Task

Consequences of in-
correct or unsafe
results(−)

Cost measured in terms of the wide consequences of its use, including side
effects or harmful stereotypes (Challen et al., 2019; Kocielnik et al., 2019;
Russell et al., 2015; Venkatesh & Goyal, 2010; Vig et al., 2020).

Task

Miscalibration(−)
Cost given the quality of the reliability or confidence given by the system, if so
provided (Dinga et al., 2019), as it influences the validation process between
steps 4 and 5 in Fig. 3.

System

User’s training(−)
Cost of building and updating the mental model M̂⋆ (Nelson & Cheney, 1987;
Davis, 1989; DeLone & McLean, 1992) and the associated mental processes to
interface with it more and more efficiently.

System

Reusability(+)

The more diverse P(t|h) is, the higher the (unit) cost in vh and the lower the
reusability will be. As in any automation or assistance problem, the number
of tasks and instances that are repetitive compensate for the user’s training
costs, while also considering the times each prompt template can be reused
according to task distribution.

Task

Table 2: Benefits and costs involved when using an M⋆ as a cognitive tool. All of these
should be considered as part of the utility function vh in Eq. 1. The last column
indicates whether the cost is mostly tied to the system or if the task also has a
significant impact.

In general we would like to contrast the costs of the whole procedure against the utility
of an acceptable answer. As shown in (Casares et al., 2022), the costs of interaction might
outweigh the benefits, even when the system’s outputs are of similar quality to those of
the user themselves. The elements we lay out define the landscape of tasks that are most
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suitable for M⋆s in terms of the cognitive costs and benefits involved. These trade-offs are
intuitively considered when, for instance, our attention is captured by a generative system
such as DALL-E (Ramesh et al., 2021) and its ‘avocado chairs’2. But how useful is an M⋆

for calculating the price of an item on sale? And how dangerous is it for determining the
dose of a prescribed drug? While the benefit/cost breakout can help answer these questions
in stable situations, users and M⋆s are also subject to continuous transformations, and the
point in time the question is asked can have different answers due to these changes.

5. Bidirectional Cognitive Transformations

An additional complexity for robust evaluation, and an important topic for society at large,
is that while these systems keep being adapted to humans, humans will simultaneously
adapt themselves to these system as well. We argue that M⋆s and their users will
be continuously co-affecting one another in a self reinforcing cognitive loop.
This two-way interaction creates a cognitively coupled entity ⟨human, M⋆⟩ that could be
evaluated as a cognitive system in its own right (Clark, 2008; Palermos, 2014). This critical
feedback system is shown on the right-hand side of Fig. 4.

The original M⋆s are being adapted to the user, e.g. by giving more useful and factual
answers through retrieval (Nakano et al., 2021; Borgeaud et al., 2022) or through fine-tuning
with newly gathered human feedback and preferences (Ouyang et al., 2022; Askell et al.,
2021). Meanwhile, humans are finding surprising new ways of making these systems work
for their needs. Curious examples are adding the phrase “Yo be real” to a prompt to make
the system indicate when it can not answer a question3, or telling the system to “show their
work” to improve arithmetic reasoning (Nye et al., 2021; Wei et al., 2022); entire guides4 are
being written for instructing these systems effectively, and even a ‘prompt marketplace’5

has popped up. In (Mishra et al., 2021) they find that adapting your instruction style has
an impact that generalises across tasks. A more drastic adaption is the common need to
switch to a non-native but well represented language (Wang et al., 2022), or the poten-
tial internalisation of systemic biases that are present in the output of these systems, e.g.
regarding gender and professional occupation (Vig et al., 2020).

Throughout the prompting process, the user acts according to a mental model M̂⋆ of
the behaviour and capabilities of the actual system M⋆, and further interaction creates
some meta-cognitive awareness of how best to interface with it. Transparency about sys-
tem limitations could bootstrap this mental model. For example, most tools are upfront
about the possible generation of harmful or biased content. Additionally, explainability and
interpretability tools could help make the system more predictable quickly, but these are
currently not implemented for the available public systems, and little XAI research has been
done for systems at this scale. In any case the total utility Vh(M

⋆) and all of its elements are
influenced greatly; as an example, this loop changes the range of tasks the user considers
solvable.

2. These images are hard to create or find, and easy to unwrap and validate.
https://openai.com/blog/dall-e/

3. https://www.gwern.net/GPT-3#expressing-uncertainty.
4. https://dallery.gallery/the-dalle-2-prompt-book/
5. https://promptbase.com/
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Trains,
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Figure 4: Interaction loops between humans (globally on the left and individually on the
right) and M⋆s. Understanding the evolution of these systems will need to take
these loops into account.

Moving to the left side of Fig. 5, we also identify a way in which M⋆s are dependent on
interaction loops with external entities. Imagine that millions of images generated through
a process like that depicted in Fig. 2 come to flood the Internet in the next few years, as
is already happening with deepfakes (Fallis, 2021; Rini, 2020). Because M⋆s are commonly
trained on web-collected data, which the M⋆ replicates (Bender et al., 2021), this interaction
would create another feedback loop. In the data loop, M⋆s are trained on existing web
data and then create new data representing the bias and human distribution
present in the source, which can then in turn be picked up for the training of
new generations of systems.

Transformation of human cognition has also happened with other related technologies,
e.g., (Marsh & Rajaram, 2019; Ward et al., 2017; Applin & Fischer, 2015; Ferguson et al.,
2015; Ward, 2013; Sparrow et al., 2011; Dror & Harnad, 2008; Woods & Hollnagel, 2006).
We hypothesise that if these two loops are uncontrolled (i.e., left to evolve organically),
they would cause negative consequences at both the individual and societal levels, e.g per-
petuating existing social inequities (Bender et al., 2021). Instead, to control them, we
need to better understand them and design appropriate interventions, e.g., by redesigning
how these systems evolve and understanding how human cognition gets transformed with
them. We collect some pertinent related research questions and suggestions in the following,
concluding, section.

6. Forced Opportunities

The vision of commanding machines by training instead of programming them (Turing,
1950; Lieberman, 2001) is now leading way to machines that are prompted; unlike com-
puter languages and data, multimedia prompts condition a continuation. This multimodal
prompting is theoretically and practically unprecedented in AI, with only some related
ideas having been hypothesised in early visions of human-computer interaction (Lieberman
& Maulsby, 1996) or analysed at a philosophical level in a continuum of cognitive extension
(Hernández-Orallo & Vold, 2019).
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Holistic analysis of the benefits and efforts involved in the use of M⋆s
Novel experimental analysis involving human interaction on the usefulness of language models can be found

in (Casares et al., 2022) and (Lee et al., 2022), but we suggest to extend this analysis to other modalities

as well, and in general, to adopt these HCI-based methodologies more broadly. Similar investigations like

(Rapp et al., 2021) or (Schmidhuber et al., 2021) with chatbots could also serve as inspiration.

Discrepancies in generality across people and groups
With the notion of human-centred generality in mind, we should give special care to any measured differ-

ences across people and groups. The costs of unfair discrimination, toxic language and harmful stereotypes

quickly come to mind, but breakouts like Table 2 can highlight other nuanced discrepancies as well, so we

suggest to measure and compare them. As discussed in (Weidinger et al., 2021)[Sec. 2], a system simply

less well for you can be harmful too, e.g. by perpetuating social inequalities.

Prompt sensitivity and the use of ‘promptese’ languages
M⋆s seem to be sensitive to the order of examples (Lu et al., 2022) and details in the wording that should

be irrelevant, e.g. as in (Patel et al., 2021). We suggest using multiple prompts and variations for what

humans would consider ‘the same question’. This could help uncover whether the systems lack capability

to complete the task, or the problem lies with specific language & its interpretation, which can easily vary

between humans and cultures. For example, research like (Mishra et al., 2021) shows that adapting your

instructional style can have an impact that generalises across tasks.

Cognitive loops, data loops, and their impact
These prompt sensitivities might carry over to interaction with humans, and the same holds for any

potential internalisation of what a normal system output is. We want to re-iterate that we should prevent

our systems perpetuating stereotypes and exclusionary norms because they are present in the training

data. We need to analyse how these systems transform users, cultures, and the data sources we use for

training. For evaluation in particularly, we additionally care about train-test contamination (Brown et al.,

2020)[Sec. 4], and distribution shifts (in users or data) (Ngo et al., 2021).

Formation of humans’ mental models for various systems
Especially related to cognitive loops, we have little insight into how humans form mental models of these

M⋆s, how that influences HCG, what tasks they consider solvable, or how it compares to mental models

for other AI systems. Given the non-use of explainability techniques in current systems, exploring ways

for integration seems worthwhile to investigate as well. A concrete research question might be what the

influence is of (un)wrapping assistance, i.e. techniques such as auto-prompting (Shin et al., 2020), prompt

diversification (Jiang et al., 2020), or question decomposition (Perez et al., 2020)

Transparency on system limitations
Transparency is an essential aspect of human-centred AI (European Commission, 2019), and we believe it

to be valuable for both increasing human-centred generality (by bootstrapping users’ mental-models), and

for making human-centred evaluation more efficient (by reducing duplicate work and focusing evaluation

efforts). Specifically, we suggest including negative examples in published papers (or in linked repositories)

and releasing logs of all prompts testers run against the system. Additionally, a systems uncertainty about

its output is a form of transparency (Bhatt et al., 2021). Some works investigate including e.g. textual

notions of uncertainty in system output (Mielke et al., 2022; Lin et al., 2022), but this effort could be

expanded to other modalities or other ways of integrating it into the user interfaces.

Table 3: Major research opportunities, challenges and suggestions for the evaluation of
the generality of M⋆s and the consequence of their use. Especially concrete and
actionable suggestions are italicised.
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On on side, these systems are an ideal test bed for evaluating and steering general AI
systems: they are the first incarnations of AI systems with this level of general utility
and widespread usage, and many of the perspectives and challenges will carry over to more
capable (and more impactful) systems. On the other hand, the issues we outline in the paper
are issues worth tackling today. Indeed, “human-centred generality” forces us to rethink
our evaluation procedures and borrow perspectives from the behavioural sciences while
hybridising with those of artificial intelligence. In Table 3, we present a pertinent selection
of these ‘forced opportunities’ as research topics interleaved with policy and methodology
suggestions that might help tackle the evaluation and ethical challenges we raise.

In the norm, test batteries in AI lack human interaction (Hernández-Orallo et al., 2017;
Shoham, 2017; Zhang et al., 2021; Martinez-Plumed et al., 2021). While still informative,
and comparatively cheap, this user-agnostic benchmarking philosophy is insufficient. As in
the area of HCI, we also need more holistic and realistic evaluations with humans to answer
core questions. For which humans, tasks, and ways of interacting do these systems actually
work? Why these humans, why those tasks? Since a cognitive tool can only be as general
as it is effective for the users’ relevant tasks and prevalent ways of interacting, our standard
evaluation practices should aim to reflect this generality, any notable differences, and the
social choices instilled into the tool that created them.
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