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Abstract

We consider an outsourcing problem where a software agent procures multiple ser-
vices from providers with uncertain reliabilities to complete a computational task before a
strict deadline. The service consumer’s goal is to design an outsourcing strategy (defining
which services to procure and when) so as to maximize a specific objective function. This
objective function can be different based on the consumer’s nature; a socially-focused con-
sumer often aims to maximize social welfare, while a self-interested consumer often aims
to maximize its own utility. However, in both cases, the objective function depends on
the providers’ execution costs, which are privately held by the self-interested providers and
hence may be misreported to influence the consumer’s decisions. For such settings, we
develop a unified approach to design truthful procurement auctions that can be used by
both socially-focused and, separately, self-interested consumers. This approach benefits
from our proposed weighted threshold payment scheme which pays the provably minimum
amount to make an auction with a monotone outsourcing strategy incentive compatible.
This payment scheme can handle contingent outsourcing plans, where additional procure-
ment happens gradually over time and only if the success probability of the already hired
providers drops below a time-dependent threshold. Using a weighted threshold payment
scheme, we design two procurement auctions that maximize, as well as two low-complexity
heuristic-based auctions that approximately maximize, the consumer’s expected utility and
expected social welfare, respectively. We demonstrate the effectiveness and strength of our
proposed auctions through both game-theoretical and empirical analysis.

1. Introduction

There are many reasons why a business may choose to outsource a particular task, job, or
process. Some of the recognized benefits of outsourcing include an improved focus on core
business activities, increased efficiency due to the task being performed by specialists, and
reduced costs. Outsourcing has gained wide-spread popularity in a wide range of application
areas, including finance (Reddy & Ramachandran, 2008), IT (Lacity et al., 2009), cloud
computing (Motahari Nezhad et al., 2009), supply chain management (Winsper & Chli,
2013; Chli & Winsper, 2015), and marketing (Kotabe et al., 2011). The focus of this paper
is on outsourcing applications where both the outsourcer and the service providers are
automated software agents and the task can be procured and delivered by an automated
computer system. Examples of such settings can be found in (Stanford-Smith, 2000; Grefen,
2006; Tai et al., 2010; Gahletia, 2021).
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Although there are many benefits, outsourcing presents a number of challenges that
must be addressed. First, when a task is outsourced, the outsourcing agent, the consumer,
has no direct control over the process. Therefore, it may face some uncertainties in the
task’s delivery time and hence be in danger of task failure if a strict deadline must be met1.
In such settings, the consumer can outsource the task to multiple providers to allow for
extra redundancy and failure protection (Barbour & Wojcik, 1989). However, redundancy
can be very costly if not designed optimally, as it increases both the execution cost (i.e.,
the cost imposed on the providers to perform the task) and the invocation cost (i.e., the
cost paid by the consumer for recruitment).

The consumer will often wish to balance the tradeoff between the success probability
and either of these costs, based on its ultimate goal (i.e., prosocial vs. self-interested). A
prosocial (i.e., socially-focused) consumer often aims to maximize the expected social wel-
fare, which is equivalent to balancing the tradeoff between success and execution cost, while
a self-interested consumer often aims to maximize its own expected utility, which is equiv-
alent to balancing the tradeoff between success and invocation cost. However, some of the
information needed to find the tipping points of these tradeoffs, such as the providers’ exe-
cution costs, is often unavailable to the consumer and must be extracted from the providers.
In real-world applications, service providers are often self-interested and may misrepresent
their private information upon request, if this promises to increase their profits. For in-
stance, a self-interested provider, which aims only to maximize its own profit, may have
an incentive to inflate its cost to earn higher revenue. Eliciting truthful information from
self-interested providers is the second challenge faced by an outsourcing agent.

The main goal of this paper is to design an outsourcing mechanism that optimally
addresses the two challenges mentioned above. To address the challenge of uncertain de-
livery times, we introduce the method of contingent outsourcing planning that enables the
consumer to build more efficient redundancy-based outsourcing strategies by making its
decisions contingent on past observations. In this method, unlike the conventional simul-
taneous outsourcing techniques, where all the selected providers are simultaneously asked
to do the task (Zhang, 2018; Feldman et al., 2020), the outsourcing process is spread over
time to make room for observing the past decisions’ outcomes and making more informed
future decisions. In a contingent outsourcing plan, the consumer continuously updates its
belief about the providers’ service duration times based on its observations of the invoked
providers’ performance. The consumer may then decide to invoke some new providers if
the belief that the invoked providers can complete the task on time falls below a certain
threshold.

The parameters of the optimal contingent outsourcing plan, such as the time and order of
invocations, depend on the providers’ execution costs, which are unknown to the consumer
and must be elicited from self-interested providers. One way to address this challenge is
to design incentive-based outsourcing mechanisms, often called procurement auctions, that
ask providers to submit “bids” and then determine the outsourcing plan and the payments
based on these bids. For an incentive mechanism to be effective, the allocation function
and payment scheme, which map the bids to outsourcing plans and payments, respectively,

1. We consider the set of domains where a strict deadline is imposed for each task. A treatment for settings
when this is not the case (e.g., when the deadlines are slightly flexible or can be postponed by paying
penalties) is left for future work.
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must be designed such that the providers find it beneficial to (1) participate in the out-
sourcing process (individual rationality (IR)), and (2) bid their execution costs truthfully
(incentive compatibility (IC)). The available incentive mechanisms can be categorized based
on whether they establish these properties weakly (i.e., in expectation when other bidders
are truthful), namely interim IR and Bayesian IC (BIC), or strongly (i.e., at every single
outcome and irrespective of what others do), namely ex-post IR and dominant strategy IC
(DSIC). However, most existing mechanisms in any of these categories apply only for simul-
taneous outsourcing techniques and hence cannot be directly used for designing a contingent
planning-based incentive mechanism.

To bridge this gap, we first construct a mapping which transforms each contingent out-
sourcing plan into a randomized simultaneous outsourcing strategy. We then use Myerson’s
fundamental results for randomized simultaneous mechanisms (Myerson, 1981) to design
a weighted threshold payment scheme that guarantees the weaker versions of IC and IR
properties (i.e., BIC and interim IR) for a contingent planning-based incentive mechanism,
at the minimum cost. We show later that the auctions we design by employing this payment
scheme satisfy the stronger versions of both properties. The weighted threshold payment
scheme, which determines the price of recruiting each provider based on a weighted integral
over the provider’s possible bid values, is also highly compatible with approximation algo-
rithms, meaning that it ensures the nice features mentioned above even if the allocation
function is suboptimal. We take advantage of this property and design not only optimal
but also suboptimal low-complexity auctions, which are of practical importance.

In more detail, first, using the weighted threshold payment scheme, we design two novel
incentive mechanisms, in the form of procurement auctions, namely OCPA and ECPA, that
can be used to maximize the consumer’s expected utility and the expected social welfare,
respectively. These auctions do not only establish BIC and interim IR, but also exhibit the
stronger notions of DSIC and ex-post IR. As an additional interesting feature, the OCPA
auction ensures that the consumer will never run into a deficit. To test the effectiveness
of the proposed auctions, several benchmarks are adopted to demonstrate the performance
in terms of the consumer’s utility and social welfare. The results show that contingent
planning can improve these two metrics by up to 120% and 123%, compared to the current
state of the art, respectively.

Note that both OCPA and ECPA auctions, each seeking a different objective, use very
similar algorithms for selecting their contingent outsourcing plans. This algorithm is a
branch-and-bound-based method for a mixture of continuous and combinatorial optimiza-
tion. Determining the best contingent outsourcing plan for a specific bid vector falls within
this domain as decisions need to be made on both the sequence of services to be invoked
(discrete variables) and their invocation times (continuous variables). Our proposed branch-
and-bound algorithm solves the contingent planning problems optimally, but at the expense
of high time complexity. To overcome this issue, we have also developed a low-complexity
heuristic algorithm that can produce close-to-optimal solutions at reduced complexity.

Against this background, we advance the state-of-the-art in the following ways.

• We propose the first payment scheme that can be used to design both optimal and
suboptimal contingent planning-based incentive compatible mechanisms.
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• We are the first to develop a dominant strategy incentive compatible and ex-post
individually rational procurement auction that achieves the optimal tradeoff between
success probability and invocation cost. It achieves this by implementing contingent
action plans.

• We propose a novel social welfare maximizing contingent planning-based outsourcing
mechanism that is both dominant strategy incentive compatible and ex-post individ-
ually rational.

• We also present low-complexity versions of the above-mentioned auctions, called
SOCPA and SECPA, that reduce the runtime of the original auctions by 99%, while
preserving the DSIC and ex-post IR properties and not compromising the performance
(optimality gaps of less than 1%).

The rest of the paper is organized as follows. After a review of the main relevant
literature (Section 2), a specification of our outsourcing problem is given in Section 3.
In Section 4, we formally define contingent outsourcing planning as the main outsourcing
method used in this paper. In Section 5, we formulate the outsourcing problem with self-
interested agents as an auction design problem and derive conditions that guarantee our
desirable properties. Section 6 is devoted to solving the optimal (i.e., utility maximizing)
auction design problem introduced in Section 5. The theoretical properties of the designed
auction as well as a low-complexity version of it are presented in Section 7. Section 8
discusses how an approach similar to that used in Sections 5 and 6 can be used to design
a social welfare maximizing procurement auction. In Section 9, we evaluate our proposed
auctions by simulations compared to several benchmarks. We conclude our paper in Section
10.

2. Related Work

Reaching a desired outcome when agents have private information is often achieved through
some form of negotiation process (Jennings et al., 2001; Fatima et al., 2004; Bartolini et al.,
2004; Zheng et al., 2016). In (Yao et al., 2010; Wang et al., 2021), the authors propose
protocols that can be used for negotiation between the consumer and the service providers
in an outsourcing application. These protocols provide a desired outcome when agents are
truthful in information sharing. However, their performance significantly degrades when
providers are selfish and may misreport their private information if it benefits them.

Determining appropriate rules to achieve a desired outcome when providers are selfish
is the subject of incentive mechanism design (Myerson, 1988; Börgers, 2015; Farhadi &
Jennings, 2021; Farhadi et al., 2019). Incentive mechanisms can be very diverse. However,
according to the direct revelation principle (Myerson, 1979; Maskin et al., 1979; Holmström,
1977), the consumer can restrict attention to direct mechanisms where the providers are
asked to reveal their private information in terms of bids, and the outsourcing strategy
and payments are determined based on these bids. Such mechanisms are often known as
auctions and these are the basis for our work.

Auctions are categorized into two groups based on the auction’s primary goal: efficient
auctions or optimal auctions. The former are designed to maximize the social welfare, while
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the latter aim to maximize the auctioneer’s expected utility (also called revenue). Most of
the early works in the field have dealt with efficient auction design (Vickrey, 1961; Clarke,
1971; Groves, 1973). The first insights into the design of optimal auctions have started with
the works of Myerson (Myerson, 1981) and Riley and Samuelson (Riley & Samuelson, 1981)
in 1981. Since then, much effort has been devoted to both issues in auction theory. In the
next two subsections, we review the related works in each of these fields. We then briefly
review the other researches related to our study in Section 2.3.

2.1 Social Welfare Maximizing (Efficient) Auctions

The efficiency problem is theoretically solved by the Vickrey-Clarke-Groves (VCG) mech-
anism (Clarke, 1971; Groves, 1973) and its variants, including execution–contingent VCG
(Ramchurn et al., 2009; Gerding et al., 2010), dynamic VCG (Bergemann & Valimaki,
2006), multi-stage VCG (Zhang & Verwer, 2012), ad/position dependent cascade VCG
(APDC-VCG) (Farina & Gatti, 2017), and online VCG (Parkes & Singh, 2003). All of
these VCG-based mechanisms guarantee DSIC, mainly due to their specific payment scheme
called VCG payments. However, VCG payments guarantee DSIC only if the allocation func-
tion is the exact solution (and not an approximated solution) of an optimization problem,
which is generally NP-hard. This incompatibility of the VCG payments with approximation
algorithms is recognized as one of their main drawbacks (Kraft et al., 2014).

In order to reduce complexity, some researchers focus on developing heuristic non-VCG-
based mechanisms that approximate the optimal social welfare. Some of these mechanisms
satisfy DSIC (Babaioff et al., 2009; Huang & Kannan, 2012; Gerding et al., 2010; Stein
et al., 2011), however, some others turn to BIC, which is a weaker notion of incentive
compatibility (Hartline et al., 2011; Mansour et al., 2020; Dughmi et al., 2021). Among
these mechanisms, some satisfy ex-post IR (Babaioff et al., 2009; Gerding et al., 2010; Stein
et al., 2011), some satisfy interim IR (Huang & Kannan, 2012), and some do not satisfy
any notion of individual rationality (Mansour et al., 2020).

In the context of service procurement with uncertainty, the most efficient ex-post IR
mechanism available so far is a pairing mechanism proposed in (Stein et al., 2011). This
mechanism first pairs providers randomly. Then, for each pair, it puts the provider with
the lowest bid into a candidate set K and assigns it a virtual cost equal to its pair’s bid.
When this procedure ends, the mechanism restricts itself to providers in K and computes
the social welfare maximizing recruitment strategy by assuming that the providers’ costs
are equal to their virtual costs. Each provider will receive a payment equal to its virtual
cost upon recruitment. The pairing mechanism is proved to satisfy DSIC and ex-post IR
and is currently the state-of-the-art in the class of approximate social welfare maximiz-
ing service procurement auctions. However, we will show in the numerical results section
(Section 9) that the inefficiency of the pairing mechanism could be as high as 58%. We
will also demonstrate that our proposed heuristic-based low-complexity SECPA auction can
outperform the pairing mechanism by up to 137%.

2.2 Utility Maximizing (Optimal) Auctions

The study of optimal auctions started with the seminal work of Myerson in 1981 (Myerson,
1981). In this work, Myerson introduced the first BIC optimal auction for single-object
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problems, which has been proven later to also satisfy DSIC (Manelli & Vincent, 2010; Lee
et al., 2021). Since then, there has been some progress in extending Myerson’s fundamental
result to multi-object environments, however, a general and analytical optimal auction in
this framework has yet to be found (Nedelec et al., 2021).

The available literature on multi-object auction design can be categorized based on
whether the objects are identical or not (homogeneous (Maskin & Riley, 2000; Malakhov &
Vohra, 2009; Pycia & Woodward, 2021) vs. heterogeneous auctions (Vries & Vohra, 2003;
Ledyard, 2007; Xu et al., 2020)). The problem we investigate in this paper is a homogeneous
multi-object auction design, as the auctioneer can create multiple copies of the task and
assign them to different providers. However, there are two fundamental differences between
our problem and the standard multi-object optimal auction design studied in the literature.

1. In available multi-object auctions, the decision is on the number or the set of objects
(goods or tasks) assigned to each bidder. There is no time element in such auctions
and it is often assumed that all assignments are made simultaneously. These auctions
are often called simultaneous auctions (Zhang, 2018; Feldman et al., 2020). There is
a set of auctions called sequential auctions where the decisions about distinct sets of
objects are made separately and sequentially in time (Leme et al., 2012; Hosseinalipour
& Dai, 2017; Donna & Espin-Sanchez, 2018; Narayan et al., 2022; Kong, 2021). The
goal of this approach is to simplify the optimal auction design problem by restricting
attention to a subset of objects at each round. However, none of these works consider
time as a decision factor. Our paper is the first work that considers allocation time as
a deciding factor in the optimal auction design. Time adds a continuous aspect to the
allocation design part of the problem and hence significantly increases its complexity.

2. In available utility maximizing auctions for outsourcing problems, whether the invo-
cations are deterministic (Iyengar & Kumar, 2008) or randomized (Alaei et al., 2012;
Celis et al., 2014), they happen right after bid collection. However, in our auction, for
each set of bids, the auctioneer chooses a contingent plan for how different services
should be invoked over time based on whether the previously hired services are suc-
cessful or not. Making contingent and interdependent decisions over time is a unique
feature of our auction that has not been previously exploited for utility maximization
in outsourcing problem.

The features mentioned above differentiate our work from the existing literature, making
it the first work to address designing utility maximizing auctions when service procurement
can take place at arbitrary points in time.

2.3 Other Related Studies

Our work is also related to the areas of automated mechanism design, robust service pro-
curement, and contingent planning. We review the related works in these areas in Sections
2.3.1-2.3.3, respectively. We then distinguish the outsourcing problem studied in this paper
from some classic control problems (such as bandit problem, prophet inequality problem,
secretary problem, and Pandora’s box problem) in Section 2.3.4.
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2.3.1 Automated Mechanism Design

Automated mechanism design (AMD) is a process for automatically constructing mecha-
nisms via optimization (Conitzer & Sandholm, 2003). The idea is to build a constrained
optimization problem, where the desired properties (e.g., DSIC, ex-post IR) correspond
to the constraints and the designer’s goal (e.g., maximizing social welfare or revenue) cor-
responds to the objective function, and then computationally search through the space of
feasible mechanisms, rather than to design them analytically by hand. The variables of such
optimization problems are functions, so they are generally NP-hard and difficult to cope
with (Guo & Conitzer, 2010). There is a recent approach to AMD that aims to reduce the
complexity by first analyzing the domain in order to refine the formulation over a smaller
feasible space, and thereby improving the scale of problems that could be solved (Guo &
Conitzer, 2010; Guo et al., 2015). In this approach, optimization is often done not over all
feasible mechanisms, but rather over a parameterized subfamily of mechanisms that satisfy
the constraints.

Using theory to narrow the setting, then using search via a math-programming formula-
tion, is the strategy followed in our approach, too. However, our work is a modern evolution
of AMD, as unlike the previous works (Guo & Conitzer, 2010; Guo et al., 2015), it ensures
optimality not over a specific class of mechanisms but rather over all feasible mechanisms.

2.3.2 Robust Service Procurement

There is a body of work that suggests the use of redundancy to overcome uncertainty.
This is based on techniques that duplicate the critical components of a system in order to
increase its reliability (Tillman et al., 1977; Coit & Smith, 1996). Reliability and cost are
two important metrics in this area and tools are mainly focused on optimizing one of them
under constraints on the other. In this paper, however, we do not impose any constraints
on either of these two metrics and instead, find a redundancy structure that achieves an
optimal balance between them.

Redundancy can be achieved with either a parallel or a serial configuration. The parallel
redundancy, where the providers attempt the task concurrently, has seen a large amount
of research (Huhns et al., 2003; Koide & Sandoh, 2009; Zhang et al., 2009). The serial
redundancy, where a new service is invoked when the previous service fails or takes too
long, has also been studied in (Friese et al., 2005; Oinn et al., 2006; Erradi et al., 2006).
The parallel and serial redundancies are also known as redundant allocation and gradual
recruitment, respectively (You & Chen, 2005). Protocols that employ gradual recruitment
often use pre-defined deadlines to determine when to switch to an alternative provider (Oinn
et al., 2006; Erradi et al., 2006).

A major drawback of the works within this area is that they rely on simple heuristic
techniques that result in satisfactory, but far-from-optimal, redundancy structures. The
works of (Lukose & Huberman, 2000) and (Glatard et al., 2007) tackle this drawback by
studying when the current service should be optimally timed out to invoke a new one.
However, these studies assume that only one service provider could be active at any time.
This shortcoming is addressed by (Stein et al., 2011), where an algorithm for deriving the
efficient combination of parallel and serial redundancy has been proposed. This algorithm
gives a contingent plan for how different services should be invoked over time to maximize
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the social welfare, when the providers’ cost information is publicly known. The authors
also propose an incentive compatible and individually rational heuristic mechanism, called
pairing, for settings with unknown cost information and selfish providers. However, as we
show in Section 9, this heuristic mechanism is far from efficient.

Against the existing literature, our proposed approach is not heuristic, but rather sys-
tematic and guaranteed to produce optimal and efficient redundancy-based procurement
auctions. Our proposed auctions are also different from the well-known first-past-the-post
auctions, where the providers work on the task in parallel and then the first one that deliv-
ers the task is the only one that gets paid (Pandichi & Leon, 2011). Such auctions are not
well-suited to our context because they cause regret to those that attempt the task but do
not win and hence violate ex-post IR, which is one of the main properties we are interested
in.

2.3.3 Contingent Planning

Contingent planning is concerned with the problem of generating contingent plans that
achieve a goal in the presence of incomplete information and sensing actions (Peot & Smith,
1992; Pryor & Collins, 1996). This is one of the most general and hardest problems consid-
ered in the area of planning (Rintanen, 2004). Since the 2000s, significant progress has been
made in the area, resulting in a variety of contingent planning algorithms that can solve
large-scale problems (Bonet & Geffner, 2000; Hoffmann & Brafman, 2005; Bertoli et al.,
2006; Albore et al., 2009; Shmaryahu et al., 2019). However, these algorithms are not able
to deal with strategic agents trying to manipulate the system to their own benefit.

There are a few works that take the agents’ strategic behavior into account when an-
alyzing or designing contingent plans. Some studies have focused on specific applications
such as matching (Ergin & Sarver, 2015) and exchange economies (Angeloni & Martins-da
Rocha, 2009). Some others, however, provide some theoretical results that can be applied
to a range of problems (Forges, 2013). For example, the work of (Forges, 2013) characterizes
the set of all payoffs that can be achieved by contingent plans in a Bayesian game. However,
prior to our work, there has been no unified approach for designing efficient and optimal
incentive compatible contingent planning-based mechanisms for outsourcing application.

2.3.4 Distinction from Other Classic Control Problems

The outsourcing problem studied in this paper is similar in some aspects to some classic
problems such as the “multi-armed bandit”, “prophet inequality”, “secretary”, and “Pan-
dora’s box” problems), but differs in fundamental ways. Below, we will briefly discuss the
main differences between our outsourcing problem and each of these problems.

1. Multi-armed bandit (MAB) problem (Katehakis & Veinott Jr, 1987): In our outsourc-
ing problem, invoking any service provider can be interpreted as pulling an arm in a
MAB problem. However, there are fundamental differences between the two problems:
(1) In the MAB problem, the arms’ success probability distributions are unknown,
while these distributions are known to the decision maker in our problem. (2) MAB
algorithms often seek to minimize the regret, while the mechanisms proposed in this
work follow different objectives, such as utility or social-welfare maximizations.
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Note also that the following two assumptions made in early studies on the MAB are
also absent in our problem: (i) at most one arm can be active at each instant of
time, and (ii) the rewards of pulling different arms at different times are independent
random variables. However, these assumptions are lifted in more recent works in this
area (Gupta et al., 2021; Pike-Burke et al., 2017).

2. Prophet inequality (PI) problem (Lucier, 2017): In this problem, the decision maker
is faced with some random rewards, whose distributions are known upfront, but not
their realizations. These realizations are revealed one-by-one in an arbitrary (i.e., ad-
versarial (Krengel & Sucheston, 1977), random (Esfandiari et al., 2017), or best (Yan,
2011; Abolhassani et al., 2017)) order, and the goal is to give a reward-maximizing
strategy that, upon seeing the value of each reward, decides either to choose or leave
it. Our outsourcing problem looks a bit similar to the PI problem, as the times needed
by different providers to complete the task are random variables whose distributions,
and not their realizations, are known in advance. However, there is a fundamental dif-
ference between the two problems. In the PI problem, the realizations of the rewards
are revealed sequentially over time and the agent can use this information to make
a more informed decision. However, in our problem, even when we invoke a service
provider, the realization of its service time is not revealed until the task is completed.
So, the consumer cannot base its decisions on the realization of any random variable.

3. Secretary problem (Freeman, 1983): This problem is very similar to the prophet
inequality problem except that the distributions of the random rewards are not known
upfront. Therefore, the difference we mentioned in the previous section exists here as
well. In addition, in the secretary problem, the distributions are unknown, but in our
problem, they are known.

4. Pandora’s box problem (Weitzman, 1979): In this problem, a decision-maker faces n
boxes with known, independent distributions of their hidden rewards. To learn the
reward of a box, the decision maker must pay an inspection cost, and it can choose
the order of inspection. The objective is to maximize the collected reward from an
inspected box minus the costs paid. This problem is different from the PI problem
as (1) the information revelation is costly, and (2) the decisions are not taken in a
take-it-or-leave-it fashion. The Pandora’s box problem is also different from ours as
invoking our providers, which is equivalent to inspecting boxes, does not reveal their
exact value after a possible delay, but rather reveals some information about them
gradually over time. So, how long to wait for the revealed information to lead to an
optimal decision is an extra tradeoff that the decision maker faces in our problem.

3. Formal Model

A consumer C would like a task to be completed before a deadline D. The task has a
value V for the consumer if it is executed before the deadline. The consumer is no longer
interested in the task when the deadline is passed.2 The consumer cannot accomplish the

2. We consider the set of domains where there is a binary model for the success or failure. A treatment for
settings where the partial completion is valuable is left for future work (see Section 10).
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task itself and hence needs to outsource it to other agents that are capable of performing
it. There are n service providers (SPs) that can perform the task for the consumer. We
denote the set of available SPs by N = {1, . . . , n}.3 The consumer may be aware of this set
in advance or obtain this information when it designs an auction and calls for bids.

The time that each SP needs for executing the task is uncertain to the consumer, due to
concurrent orders from other consumers, hardware or network problems and the provider’s
scheduling policies. The consumer often has some prior knowledge regarding the providers’
service duration distributions (but not regarding their specific realizations in a given situ-
ation)4. However, the consumer can make this knowledge more accurate by incorporating
the new information it obtains during the outsourcing process. For example, when a SP has
not completed the task by a specific time, the consumer can perform a Bayesian update to
obtain a posterior belief on its service duration distribution. To benefit from this gradual
information revelation, the consumer may prefer to distribute the outsourcing process over
time and make its decisions contingent on the information that arrives later.

The design of a contingent outsourcing plan can follow different objectives. For exam-
ple, a prosocial (i.e., socially-focused) consumer might wish to maximize the sum of all
participants’ profits, this sum is called the social welfare, while a self-interested consumer
often aims to maximize its own individual utility. The problem of finding the best contin-
gent outsourcing plan that maximizes a specific objective would be a standard optimization
problem if the costs were known to the consumer, as discussed in Section 1. However, in
our case, each provider’s cost is its own private information and cannot be observed by
either the consumer or other providers. The consumer cannot extract the providers’ costs
by simply asking them, since the providers are strategic and have incentive to misreport
their costs.

Dealing with intelligent and strategic providers holding private information adds a new
dimension to the problem, as the consumer needs to pay an extra cost to incentivize the
providers to reveal truthful information. Our goal in this paper is to propose a unified
approach to design truthful contingent planning-based outsourcing mechanisms that can be
used by both prosocial and self-interested consumers. In the rest of this section, we model
the main components of our problem precisely. A schematic of the problem is depicted in
Fig. 1. We then use these components to build up a full design in Section 4.

3.1 Uncertainty in Service Provisioning

Providers may be different from each other in terms of the speed of performing the task.
The time Ti that each SP i requires to perform the task is uncertain. This uncertainty can
be due to different reasons, e.g., production lines of a SP might be less or more congested at
different times; resources required for performing the task could be temporarily unavailable.
We model this uncertainty by assuming that the time Ti required by provider i to complete
the task is not a deterministic, but a random variable obtained from a distribution with
cumulative density function Gi(t) = Prob(Ti ≤ t). We refer to function Gi(.) as provider
i’s duration function and assume that Gi(0) = 0 for all i ∈ N .

3. Extending the results of this paper to settings with a dynamically-changing set of providers is an inter-
esting direction for future work.

4. Such information can be obtained from past or shared experiences, for example from using a trust or
reputation system (Stein et al., 2011)
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Figure 1: Schematic of the problem

Remark 1 We make two assumptions that are commonly made about the providers’ dura-
tion functions: 1) they are independent across providers, and 2) they are commonly known
to both the consumer and providers. The first assumption covers settings where, for exam-
ple, the computational requirements for the task are known but there is uncertainty about the
load on the service provider’s resources at the time of execution. The second assumption is
also reasonable in settings where the duration functions can be obtained from past or shared
experiences, for example from using a trust or reputation system (Stein et al., 2011). We
will discuss in Section 10 what will happen if these assumptions are relaxed.

3.2 Providers’ Private Costs

Executing the task has a cost ci for each SP i. The cost of each provider i is drawn from a
regular distribution with support on the interval C = [0, cmax]. The cost distribution of each

SP i is said to be regular if ci+
Fi(ci)
fi(ci)

is non-decreasing in ci, where fi(.) and Fi(.) are density
and cumulative distribution functions of the provider i’s cost. The regularity condition is
satisfied by many distributions such as the uniform, normal, and Pareto distributions and is
a common assumption in the auction literature (Salek & Kempe, 2008; Feng et al., 2019)5.
The cost of each provider i is only known to itself and is considered as provider i’s private
information. The providers’ private information is not observed by either the other providers
or the consumer. However, the consumer knows the distribution Fi from which each ci is
drawn.

We assume that the costs of n providers are stochastically independent random vari-
ables.6 Thus, the joint density function for the cost vector c = (c1, . . . , cn) is f(c) =∏

i∈N fi(ci). Of course, each provider i considers its own cost ci to be a known quantity,
not a random variable. However, we assume that SP i assesses the probability distribu-
tion for the other providers’ costs in the same way as the consumer does. That is, both

5. Note that as discussed in (Iyengar & Kumar, 2008), the regularity condition for procurement auctions is
slightly different from that for forward auctions (Myerson, 1981). In each setting, the regularity condition
is defined to facilitate the optimal auction design.

6. Extension of our results to the settings where the providers’ costs are positively correlated is an interesting
direction for future research (see Section 10).
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the consumer and provider i assess the joint distribution function for the vector c−i =
(c1, . . . , ci−1, ci+1, . . . , cn) of costs of all providers other than i to be f−i(c−i) =

∏
j ̸=i fj(cj).

3.3 Providers’ Strategic Behavior

In order to invoke a service, the consumer has to make a payment to the provider at least
equal to its cost. However, as we discussed in Section 3.2, the consumer is not aware of
the providers’ costs. In this paper, the providers are assumed to be self-interested and will
act selfishly to maximize their own utilities. The utility of each provider i is the difference
between the payment πi it receives from the consumer and the cost ci it incurs for performing
the task. If a self-interested provider is asked to declare a cost, it may have an incentive
to either “mark up” the price to earn more profit or “mark down” the price to attract the
consumer.

In this situation, the consumer should design its outsourcing strategy and the payments
such that the providers cannot benefit by misreporting their costs. This can be done by
designing an incentive mechanism7(Brubaker, 1980). The consumer announces the mech-
anism’s rules in advance and then each provider seeks an action that maximizes its own
utility. The mechanism must be designed such that truth telling is the best strategy for
each provider.

3.4 Consumer’s Objective

The consumer may seek to achieve a number of different objectives. However, two of the
most common are: (1) maximizing the consumer’s expected utility, and (2) maximizing the
expected social welfare (Zhan, 2008). The first objective is often pursued by self-interested
consumers while the second objective is more suitable for socially-focused consumers.

Utility Maximization: The consumer’s utility is the difference between the value it
gets from the task (if any) and all the payments it should make. The consumer gets a
value V from the task if it is executed successfully before the deadline. Faster and more
reliable SPs, which can increase the chance of getting the task done before the deadline, are
often more expensive to hire. Therefore, the goal of a self-interested consumer that seeks
to maximize its own utility is to balance the tradeoff between the success value and the
invocation cost.

Social Welfare Maximization: Social welfare is defined as the total utility of the
consumer and all service providers. Each service provider’s utility is the difference between
the payment it receives and its incurred cost. Summing up the utilities of all providers and
the consumer (discussed in the previous paragraph), we obtain the social welfare as the
difference between the value of task completion and the cost of task execution. Thus, the
goal of the consumer that seeks to maximize the social welfare is to balance the tradeoff
between the success value and the execution (not invocation) cost.

At first glance the difference between the two above-mentioned objectives might seem
to be small, as they only differ in the cost that they assign to the providers’ invocations.
However, upon careful examination, it can be seen that the difference is important and
may have significant effect on the mechanism design process, as the invocation cost (which

7. We define the concept of incentive mechanisms formally in Section 5.
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appears in the first objective) is a function of the payments, which are known to and
designed by the consumer, while the execution costs (which appear in the second objective)
are unknown to the consumer and are privately held by the providers.

In this paper, we propose a unified approach to contingent planning-based incentive
mechanism design that can be used to maximize either of the above-mentioned objectives.
However, before that, we must formalize the concept of contingent outsourcing planning in
Section 4. We then are ready to begin our incentive mechanism design process from Section
5. In Section 5, constructing a mapping from contingent outsourcing plans to randomized
simultaneous outsourcing strategies, we propose a payment scheme that guarantees truth-
ful information elicitation from self-interested providers at the minimum cost. Using this
payment scheme, we design a utility maximizing contingent planning-based outsourcing in-
centive mechanism in Section 6. Analyzing the mechanism’s properties in Section 7, we
then discuss how the same approach can be used to design a social welfare maximizing
mechanism in Section 8.

4. Contingent Outsourcing Planning

4.1 Informal Definition and Importance

Outsourcing is a partially observable problem: the consumer can observe whether the task
has been delivered or not, but cannot observe how much time each SP needs to complete the
task. Operating in this partially observable environment, the consumer can gain important
information by direct experience, i.e., by recruiting a provider i and waiting for a period of
time τ to see how it acts. If the SP does not complete the task within the given time, the
consumer can perform a Bayesian update and obtain the distribution of Ti conditioned on
Ti > τ . Using this posterior distribution, the consumer can then decide whether this SP
is likely to complete the task on time or it is better to assign the task to a new SP. In the
latter case, both SPs will attempt the task in parallel.

Making outsourcing plans contingent on the information revealed over time is called the
contingent outsourcing planning. This method takes advantage of the following two out-
sourcing techniques: redundant allocation and gradual recruitment. Redundant allocation
is an approach to increase the task success probability by procuring multiple SPs to attempt
the task in parallel (Ha & Kuo, 2006). Gradual recruitment is an extension to redundant
allocation which lets the consumer distribute the recruitment process over time (Shen &
Xie, 1990). In both of these techniques, the consumer obtains value V if at least one of the
providers completes the task before the deadline D. Completing the task by more than one
SP does not provide any additional value to the consumer. However, the consumer cannot
stop hired providers from performing the task when the task is completed by one SP or the
deadline is reached. This means that the task is assumed to be non-interruptible and needs
to run to completion once it started.

Recruiting more providers increases the success probability, but it also increases both (i)
the execution cost, as more resources are allocated to task execution, and (ii) the invocation
cost, as the consumer should make a payment to each hired provider to incentivize it to
perform the task upon recruitment. Therefore, as shown in the example below, the consumer
should decide wisely which outsourcing plans lead to a better balance between the success
probability and any of the costs.
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Example 1 Suppose that a high-valued task can be performed by two SPs. Provider 1 is
cheap to hire, but its delivery time varies based on its workload. Under a low workload
(prob. α), provider 1 delivers the task after D/2 units of time. However, it needs at least
2D time-units to deliver the task when working at a high workload (prob. 1−α). The second
provider is expensive to hire, but it is totally reliable and always delivers the task by time
D/2.

In this situation, if the consumer knew provider 1’s workload, the optimal decision would
be to recruit provider 1 when the workload is low and to recruit provider 2 when the work-
load is high. This information is not available to the consumer beforehand. However, the
consumer can build a cheap experiment based on the gradual recruitment technique to first
find out provider 1’s workload and then make the decision accordingly. Specifically, the con-
sumer can first recruit provider 1 at a low cost and give it D/2 units of time to perform the
task. Whether or not provider 1 delivers the task by D/2 serves as a signal to the consumer
to discover provider 1’s workload. That is, provider 1’s workload is low if and only if the
job is delivered by time D/2. If based on this information, the workload is revealed to be
high, the consumer can spend more money to guarantee success by recruiting provider 2.
This contingent outsourcing plan provides the same value to the consumer as the one that
recruits provider 2 from the beginning (i.e., the probability of success is 1 in both cases),
however, it yields a lower execution cost if c1/c2 < α, i.e., the ratio of the providers’ costs
is less than the probability of provider 1’s workload being low. Therefore, this contingent
outsourcing plan is efficient for a consumer whose goal is to balance the tradeoff between
success value and execution cost. □

We formalize the idea of a contingent outsourcing plan in the next subsection. We then
start developing a technique to find optimal contingent outsourcing plans that maximize a
specific goal when providers are self-interested in Section 5.

4.2 Formal Definition

Definition 1 (Contingent outsourcing plan) A contingent outsourcing plan is a vector
ρ = ((s1, τ1), . . . , (sm, τm)), where each element represents the time τk ∈ [0, D] that provider
sk ∈ N is recruited if and only if the task has not been completed so far. The elements of this
vector are all different in their first component (i.e., sk ̸= sk′ if k ̸= k′) and ordered non-
decreasingly based on their second component τk, i.e., τk+1 ≥ τk, for all k ∈ {1, . . . ,m− 1}.
The vector size m can be any arbitrary integer between 0 and n.

A contingent outsourcing plan ρ specifies an ordered set of SPs ρs = (s1, . . . , sm) that are
candidates to be invoked, as well as their invocation time ρτ = (τ1, . . . , τm). The consumer
starts by recruiting the provider with the first turn, i.e., s1, at time τ1 and waits up to time
τ2 to see if the task is completed. If the task is not completed, the consumer increases the
success probability by invoking provider s2, which is second in the line, to attempt the task
in parallel with s1. This gradual recruitment continues until either the task is completed or
all the candidate providers have been invoked.

Remark 2 In this paper, for ease of presentation, we restrict our attention to contingent
plans with “pure” actions, where the consumer invokes a specific provider sk at each decision
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point τk if the task has not been delivered thus far. However, our analysis can be extended to
randomized settings, where the invoked provider is selected from a predetermined distribution
on N , in a straightforward manner.

We denote the set of all contingent outsourcing plans with pure actions by H. This
set is general enough to include the non-contingent plans (also known as “simultaneous
recruitment strategies”), where the recruitments happen simultaneously at an arbitrary
time τ (i.e. ρ = ((s1, τ), . . . , (sm, τ))) without being contingent on a specific event. A special
case of such non-contingent plans where the consumer recruits only one single provider (i.e.,
ρ = ((s1, τ1)) is often called a“single recruitment strategy” (Stein et al., 2011).

The consumer would like to choose an outsourcing plan ρ ∈ H that optimizes its ob-
jective function, which typically is either its own expected utility or the expected social
welfare. In the next two subsections, we quantify the consumer’s expected utility and the
expected social welfare for any arbitrary outsourcing plan ρ = ((s1, τ1), . . . , (sm, τm)). Then,
in Sections 5-8, we design incentive mechanisms that optimize these two objective functions.

4.3 Consumer’s Expected Utility from an Outsourcing Plan

We denote the consumer’s expected utility when it employs the outsourcing plan ρ and
makes payments π = (πi)i∈N to providers upon their recruitment, by

Ucon(ρ,π) = V (ρ,D)− CI(ρ,π), (1)

where V (ρ,D) is the expected value the consumer gets from task completion and CI(ρ,π)
is the expected invocation cost. All expectations are over the providers’ service duration
distributions Ti, i = 1, . . . , n. Below, we will first quantify the expected value and the
expected invocation cost for an arbitrary outsourcing plan ρ = ((s1, τ1), . . . , (sm, τm)). We
then subtract these two quantities to derive the consumer’s expected utility.

4.3.1 Expected Value of Task Completion

The consumer gets a value V if the outsourcing plan ρ is successful in delivering the task
before deadline D. An outsourcing plan ρ is successful if at least one of the recruited SPs
completes the task before the deadline. We define the completion time of the task when
outsourcing plan ρ is employed as the first completion time for providers ρs and denote it
by Tρ = mink∈{1,...,m} (τk + Tsk). The task completion time Tρ is a random variable whose
distribution depends on the duration functions of the recruited providers. Since each Tsk , for
sk ∈ ρs, is drawn independently from distribution Gsk , the cumulative distribution function
of Tρ can be derived as follows:

Gρ(t) = Prob(Tρ ≤ t) = 1− Prob(Tρ > t) = 1−
m∏
k=1

(1−Gsk(t− τk)). (2)

Based on (2), the success probability of outsourcing plan ρ for a task with deadline D can
be formulated as

Psucc(ρ,D) = Prob(Tρ ≤ D) = 1−
m∏
k=1

(1−Gsk(D − τk)). (3)
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We can use (3) to derive the expected value of an outsourcing plan ρ as

V (ρ,D) = V Psucc(ρ,D) = V (1−
m∏
k=1

(1−Gsk(D − τk))). (4)

4.3.2 Expected Invocation Cost

The consumer makes a payment πi to each provider i upon recruitment. Therefore, the
expected invocation cost of an outsourcing plan ρ when employed along with the payment
strategy π can be written as

CI(ρ,π) =

n∑
i=1

Pi(ρ)πi, (5)

where Pi(ρ) is the probability that provider i will be invoked in the outsourcing plan ρ.
Providers out of the set of candidate providers ρs have no chance for being hired, i.e.,
Pi(ρ) = 0, where i /∈ ρs. However, each provider i ∈ ρs will be recruited at a specific time
if all the providers with earlier turns fail to complete the task by then.

To formalize this, we define the order of provider i’s invocation in the outsourcing plan
ρ as oi(ρ), where

oi(ρ) =

{
k, if sk = i,

0, if i /∈ ρs.
(6)

Any provider i ∈ ρs will be invoked at time τoi(ρ) if all the providers j with oj(ρ) < oi(ρ)
fail to complete the task by τoi(ρ). Since the providers’ duration functions are independent
random variables, we can derive provider i’s invocation probability as

Pi(ρ) =
∏

j:oj(ρ)<oi(ρ)

Prob(τoj(ρ) + Tj > τoi(ρ)) =
∏

j:oj(ρ)<oi(ρ)

(1−Gj(τoi(ρ) − τoj(ρ))), (7)

where i ∈ ρs. It can be seen from (7) that the providers’ invocation probabilities are
inversely related to their invocation orders; providers with earlier turns have higher chances
of being recruited.

By substituting (7) in (5), we can derive the expected invocation cost as

CI(ρ,π) =
∑
i∈ρs

πi (
∏

j:oj(ρ)<oi(ρ)

(1−Gj(τoi(ρ) − τoj(ρ)))). (8)

4.3.3 Consumer’s Expected Utility

Combining the results of Subsections 4.3.1 and 4.3.2, we can obtain a closed form expression
for the consumer’s expected utility, as follows:

Ucon(ρ,π) = V Psucc(ρ,D)−
n∑

i=1

Pi(ρ)πi

= V (1−
m∏
k=1

(1−Gsk(D−τk)))−
∑
i∈ρs

πi (
∏

j:oj(ρ)<oi(ρ)

(1−Gj(τoi(ρ)−τoj(ρ)))). (9)
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4.4 Expected Social Welfare of an Outsourcing Plan

We denote the expected social welfare when outsourcing plan ρ employed by

SW (ρ) = V (ρ,D)− CE(ρ), (10)

where V (ρ,D) is the expected value of task completion and CE(ρ) is the expected execution
cost. The expected value V (ρ,D) is previously derived in Section 4.3.1. Therefore, what
we need to do in order to derive the expected social welfare is to compute the expected
execution cost CE(ρ) and substitute it in (10).

4.4.1 Expected Execution Cost

The expected execution cost CE(ρ) is the expected cost the service providers incur to
execute the task. Each provider i incurs a cost ci to execute the task if it gets invoked,
which happens with probability Pi(ρ). Therefore, we have

CE(ρ) =
n∑

i=1

Pi(ρ)ci. (11)

4.4.2 Expected Social Welfare

Substituting (4) and (11) into (10) gives us the following closed form expression for the
social welfare:

SW (ρ) = V (1−
m∏
k=1

(1−Gsk(D − τk)))−
∑
i∈ρs

ci (
∏

j:oj(ρ)<oi(ρ)

(1−Gj(τoi(ρ)−τoj(ρ)))). (12)

We can see that the expected social welfare (12) and the consumer’s expected utility (9)
are similar. The difference is that each payment πi in (9) is replaced by the actual service
cost ci in (12). This difference is fundamental, however, because unlike the payments that
are decision variables and can be determined by the consumer inline with its objective, the
actual service costs are fixed and also unknown to the consumer.

Our goal in this paper is to propose a unified contingent planning-based incentive mech-
anism design approach that can be used to maximize the two aforementioned objective
functions. We start working towards this goal by focusing on maximizing the consumer’s
expected utility in Sections 5-7. We then discuss in Section 8 how the same approach with
different parameters can be used to design a social welfare maximizing incentive mechanism.

5. Contingent Planning-based Incentive Mechanism Design

The purpose of this section and the next is to design a contingent planning-based incentive
mechanism to maximize the consumer’s expected utility. We achieve this goal by proceeding
as follows. In Section 5.1, we first introduce the two key components of an incentive mech-
anism (i.e., allocation function and payment function). We then formulate the consumer’s
problem as a mechanism design problem and describe our design goals. In Section 5.2, we
derive the payment function of an optimal contingent planning-based incentive mechanism
by constructing a mapping from contingent outsourcing plans into randomized simultaneous
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outsourcing strategies. This payment function achieves our desired features at the minimum
possible cost. Using this payment scheme, we design the allocation function of an optimal
contingent planning-based incentive mechanism in Section 6.

5.1 Mechanism Design Problem

As discussed in Section 3.2, the service costs are privately held by the self-interested service
providers and may be falsely reported if it increases the providers’ utilities. Each provider
may even decide to not contribute its service to the consumer if it finds it more beneficial.
In order to avoid such situations, which would lead to a non-optimal outsourcing plan,
the consumer should provide sufficient incentives to the providers, through an incentive
mechanism, to motivate providers’ voluntary participation and truth-telling. Ensuring these
two properties are known as individual rationality and incentive compatibility, respectively
(Börgers, 2015).

Incentive mechanisms can have many different forms. However, it has proven to be
without loss of generality to restrict attention to direct procurement auctions, where the
service providers directly bid their costs (Börgers, 2015). In a direct procurement auction,
each provider i’s bid bi must belong to the set of possible costs C and can be interpreted
as provider i’s reported cost. Notice that each provider i’s reported cost is not necessarily
equal to its actual cost ci. We denote the vector of all providers’ submitted bids by b =
(b1, . . . , bn) ∈ Cn.

A procurement auction M = (A(.),π(.)) is defined by an allocation function A(.) and a
vector of payment functions π(.) = (π1(.), . . . , πn(.)). The allocation function A : Cn → H
determines the outsourcing plan A(b) ∈ H that is selected by the consumer based on the
received bids b, and each payment function πi : Cn → R+ determines the amount of money
πi(b) that will be paid to provider i, upon recruitment. As stated before, in Sections 5-7,
we focus on settings where the consumer aims to maximize its own expected utility. In such
settings, the consumer’s objective is equivalent to designing a procurement auction that
(1) satisfies incentive compatibility, (2) satisfies individual rationality, and (3) maximizes
the consumer’s expected utility. In the following subsections, we derive conditions on the
auction’s allocation function A(.) and payment function π(.) that guarantee each of these
properties. We then conclude this section by formulating the consumer’s auction design
problem as an optimization problem.

5.1.1 Incentive Compatibility (IC)

Any procurement auctionM = (A(.),π(.)) induces a non-cooperative game with incomplete
information among service providers, where each provider i’s strategy is a mapping from
its true cost ci to the bid bi it submits. We say that a procurement auction is incentive
compatible (IC) if it motivates providers to bid their costs truthfully, in each game induced
by the auction. However, different forms of IC can be defined based on the conditions under
which this requirement is satisfied. In this paper, we investigate two notions of IC that are
applicable to our setting: Bayesian IC (BIC) and Dominant Strategy IC (DSIC).

Procurement auction M is said to be Bayesian incentive compatible (BIC) if truth-
telling (i.e., bi = ci,∀i ∈ N ) is a best strategy for each provider, given its belief, whenever
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the other providers also reveal their true costs (Börgers, 2015), i.e.,

Ui(A, πi, ci, ci) ≥ Ui(A, πi, ci, bi), ∀ci, bi ∈ C, i ∈ N , (13)

where

Ui(A, πi, ci, bi) =

∫
Pi(A(bi, c−i))[−ci + πi(bi, c−i)]f−i(c−i)dc−i, (14)

is provider i’s expected utility in auction M = (A(.),π(.)) when it submits bid bi, which
could be different from its true cost ci, and all other providers report their costs truthfully.
This definition of IC is equivalent to requiring that truth-telling be a Bayesian Nash equi-
librium (BNE) in each game induced by the auction (Börgers, 2015). However, it does not
violate the possibility of existence of other Bayesian Nash equilibria. Each game induced
by an auction may have multiple equilibria, however, the BIC condition only requires that
the truth-telling strategy should be one of them.

As a stronger notion of incentive compatibility, auction M is said to satisfy DSIC if
truth-telling is a best strategy for each provider irrespective of what other providers do,
i.e.,

Pi(A(ci, c−i))[−ci + πi(ci, c−i)] ≥ Pi(A(bi, c−i))[−ci + πi(bi, c−i)], (15)

for all ci, bi ∈ C, c−i ∈ Cn−1, i ∈ N . DSIC is a more desirable property than BIC as: (i)
Unlike BIC, each provider’s best strategy is independent of its belief about the distribution
of other providers’ costs. Thus, in DSIC implementation, providers can have inconsistent
and incorrect beliefs about the common prior without influencing the outcome (Jaekel,
2019). (ii) Unlike BIC, it ensures that no other equilibrium can be more beneficial than
truth-telling to the providers. Therefore, providers have a strong reason to always stick to
the truth-telling strategy.

Remark 3 For the definitions of BIC and DSIC, we do not need to worry about mixed
strategies. The reason is that each provider’s expected utility from a mixed strategy is the
weighted average of its utilities from pure actions, where the weight of each utility is the
probability of selecting the corresponding action. It is clear that the weighted average of a
set of numbers cannot be larger than the largest value in the set. Therefore, if there is no
pure action that outperforms truth-telling, there would also be no mixed strategy that does
so.

5.1.2 Individual Rationality (IR)

An auction is individually rational (IR) for a provider, if the utility it gains from the auction
is non-negative. There are different notions of IR in the literature; the two we focus on here
are called interim IR and ex-post IR. The difference between these two notions is at the
time the providers are allowed to drop out of the auction. In interim IR, providers should
make their decisions before the auction starts. However, in ex-post IR, the providers are
allowed to opt out of the auction even at the very end when the consumer decides to recruit
them.

The interim IR is guaranteed if the expected utility each provider i with cost ci gains
from participating in the auction is non-negative, i.e.,

Ui(A, πi, ci, ci) ≥ 0, ∀ci ∈ C, i ∈ N . (Interim IR)
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However, the ex-post IR requires that no provider has regrets regarding participation even
if any bid vector c−i is submitted by other providers, i.e.,

πi(ci, c−i)− ci ≥ 0, ∀ci ∈ C, c−i ∈ Cn−1, i ∈ N . (Ex-post IR)

Ex-post IR is a stronger requirement than interim IR and hence any mechanism that satisfies
ex-post IR is also interim individually rational.

5.1.3 Utility Maximization

In Section 4, we derived the consumer’s expected utility Ucon(ρ,π) when it employs the
outsourcing plan ρ and makes payments π = (πi)i∈N to providers upon their recruitment.
In the truthful equilibrium of the game induced by auctionM = (A(.),π(.)), each bid vector
c is submitted with probability f(c). When bid vector c is received, the consumer employs
the outsourcing plan A(c) and the payment strategy π(c). Therefore, the consumer’s
expected utility in an incentive compatible auction M = (A(.),π(.)) is

U(A,π) =

∫
Ucon(A(c),π(c))f(c)dc

=

∫
[V Psucc(A(c), D)−

∑
i∈N

Pi(A(c))πi(c)]f(c)dc. (16)

In (16), the expectation is over both the providers’ service durations and the providers’
service costs, as the service costs are also unknown to the consumer.

The consumer would like to choose the allocation function A and the payment function
π so as to maximize the expected utility U(A,π) under the strong notions of IC and IR
constraints (i.e., DSIC and ex-post IR). However, these notions are very demanding and
difficult to deal with. Therefore, in the design process, we relax these constraints to the BIC
and interim IR constraints. Then, we will theoretically show that the auction is sufficiently
well-designed to satisfy the DSIC and ex-post IR conditions, as well. Note that in addition
to simplifying the design process, this approach has another clear advantage as well. The
auction we will design with this approach will be an auction whose performance is optimal
not only among auctions that satisfy strong notions of DSIC and ex-post IR but also among
a wider group of auctions that only satisfy weaker requirements of BIC and interim IR.

With this explanation, we formulate the relaxed version of the problem faced by a utility
maximizing consumer as follows:

max
{A,π}

U(A,π) (17a)

s.t. Ui(A, πi, ci, ci) ≥ 0, ∀ci ∈ C, i ∈ N , (17b)

Ui(A, πi, ci, ci) ≥ Ui(A, πi, ci, bi), ∀ci, bi ∈ C, i ∈ N . (17c)

The rest of this section as well as Section 6 are devoted to solving optimization problem
(17).
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5.2 Characterization of BIC and Interim IR Contingent planning-based
Auctions

The variables in optimization problem (17) are the functions A(.) and π(.) defined on Cn
implying the dimensionality of the problem is infinite8. Such problems are generally diffi-
cult to solve and require special analytical or numerical methods (Gelfand & Fomin, 2012;
Saadatmandi & Dehghan, 2008; Maleki & Mashali-Firouzi, 2010). In mechanism design
literature, such optimization problems are often simplified by applying Myerson’s approach
that characterizes the set of auctions that satisfies the BIC and interim IR constraints.
This technique has been developed for simultaneous auctions, where the decisions are taken
at one point in time, and not over time (Myerson, 1981). In our problem, however, the
outsourcing happens gradually over time and can include decisions that are contingent on
the outcome of the past recruitments.

To adapt Myerson’s approach to our setting, we construct a mapping from the set of all
contingent planning-based auctions to the set of all randomized simultaneous auctions. As
we will prove in Lemma 1, this mapping keeps the providers’ expected utilities and hence
the BIC and interim IR constraints (17b)-(17c) invariant. Therefore, we can use the results
of Myerson for randomized simultaneous auctions to characterize the set of BIC and interim
IR contingent planning-based auctions.

Definition 2 (Equivalent simultaneous auction) Let ψ be a mapping that maps each
outsourcing plan ρ = ((s1, τ1), . . . , (sm, τm)) into a randomized simultaneous outsourcing
strategy ψ(ρ) that recruits each SP sk at time 0 with probability Psk(ρ) (see (7)). We use
mapping ψ to define the simultaneous equivalent of each contingent planning-based auction
M = (A(.),π(.)) as a randomized simultaneous auction M̂ = (Â(.),π(.)), where Â(c) =
ψ(A(c)), for all c ∈ Cn.

Lemma 1 The expected utility of each SP i is the same in each contingent planning-based
auction M = (A(.),π(.)) and its simultaneous equivalent M̂ = (Â(.),π(.)), i.e.,

Ui(A, πi, ci, bi) = Ui(Â, πi, ci, bi), ∀i ∈ N , ∀ci, bi ∈ C. (18)

We present the proofs of all the lemmas and propositions in Appendices A-K.
We can now use the Myerson’s results for simultaneous auctions to characterize the BIC

and interim IR contingent planning-based auctions. To this end, we define

Qi(A, bi) =

∫
Pi(A(bi, c−i))f−i(c−i)dc−i, (19)

as the conditional probability that service provider i will be hired in auctionM = (A(.),π(.))
given that it submits bid bi.

Lemma 2 A contingent planning-based auction M = (A(.),π(.)) satisfies the interim IR
and BIC constraints if and only if the following conditions hold:

(I1) The conditional probability function Qi(A, bi) defined in (19) is decreasing in its second
argument, i.e.,

(bi − ci)(Qi(A, bi)−Qi(A, ci)) ≤ 0; (20)

8. The dimension of an optimization problem is the number of its decision variables.
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(I2) Each provider i’s expected utility when it tells the truth satisfies the two following
conditions:

Ui(A, πi, ci, ci) = Ui(A, πi, cmax, cmax) +

∫ cmax

ci

Qi(A, bi)dbi, (21)

Ui(A, πi, cmax, cmax) ≥ 0. (22)

Based on Lemma 2, M = (A(.),π(.)) represents an optimal contingent planning-based
auction if and only if it maximizes U(A,π) subject to (20)-(22). Using this result, we can
derive an explicit closed form expression for the optimal payment function.

Lemma 3 Given the monotone allocation function A, the lowest payment that entices ser-
vice providers to participate in the auction and bid truthfully is

πAi (b) = bi +

∫ cmax

bi

Pi(A(b̂i, b−i))

Pi(A(b))
db̂i, ∀i ∈ N . (23)

The payment scheme proposed in (23), which we call the weighted threshold payment
scheme, is a two-part tariff. The first part is the bid submitted by the provider, and the
second part is called an information rent. The information rent is due to the asymmetry of
information and will be paid to a service provider in exchange for accurate disclosure of its
private information.

Based on (23), the information rent of each provider i is a weighted integral over the
provider’s possible bid values. The weight of each bid b̂i ≥ bi is the conditional probability
that i got hired if it reported b̂i, given that it is recruited when it submits bid bi. We denote
this weight by

dAbi,b−i
(b̂i) = Pi(A(b̂i, b−i))/Pi(A(b)), (24)

and call it relative desirability of bid b̂i for provider i over bi.

5.3 Formulating Problem (17) in terms of the Allocation Function

Lemma 3 reduces the complexity of designing an optimal auction by expressing the optimal
payment function π(.) in terms of the allocation function A(.). This result helps us to focus
on optimizing the allocation rule A(.) under the monotonicity condition (20) and then use
equation (23) to derive the minimum payments required to make the auction with this
allocation function BIC and interim IR.

Following this approach, in the next lemma, we state the optimal auction design problem
solely in terms of the allocation function A(.).

Lemma 4 Suppose that the allocation function A : Cn → H solves the following optimiza-
tion problem:

max
A

∫
[V Psucc(A(c), D)−

∑
i∈N

(ci +
Fi(ci)

fi(ci)
)Pi(A(c))]f(c)dc, (25a)

s.t. (bi − ci)(Qi(A, bi)−Qi(A, ci)) ≤ 0, ∀i ∈ N , ci, bi ∈ C. (25b)

Then, M = (A(.),πA(.)), where πA(.) is derived based on (23), represents the utility max-
imizing contingent planning-based auction.
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The objective function of problem (25) is similar in form to the consumer’s expected

utility (16), except that each payment πi(c) is replaced by a virtual cost ϕi(ci) = ci+
Fi(ci)
fi(ci)

.
These virtual costs are the consumer’s estimation of the payments it should make to the
providers. We see by definition that the providers’ virtual costs are always greater than or
equal to their actual costs, i.e., ϕi(ci) ≥ ci. This basically means that the cost that a utility
maximizing consumer evaluates for recruiting each provider i is higher than its actual cost.
The reason is simple. According to (23), the consumer should pay each recruited provider
i not only its actual cost ci, but also an information rent to induce the provider to disclose
its private information. The difference between the virtual cost and the real cost of each
provider is the expectation of the information rent that must be paid to the provider to
reveal truthful information.

The purpose of the next section is to develop an algorithm to solve optimization problem
(25). However, before we finish this section, two remarks should be made.

Remark 4 The mapping ψ we introduced in Definition 2 keeps the providers’ expected
utilities invariant (see Lemma 1), but does not do the same for consumer’s expected utility.
As shown by Example 2 in Appendix D, a contingent planning-based auction can produce a
much higher utility to the consumer compared to its equivalent simultaneous auction. This
is why we do not restrict our attention to simultaneous auctions and instead allow the
possibility of contingent decision making.

Remark 5 The optimal payment function (23) provides a good insight on why contin-
gent planning can reduce the expected invocation cost CI(ρ,π) =

∑n
i=1 Pi(ρ)πi (see Section

4.3.2). The reason of this is two-fold: (i) reducing providers’ invocation probabilities Pi(ρ)
and (ii) reducing the prices πi the consumer needs to pay to providers upon recruitment.
The first reason is obvious from the discussion in Section 4. When the consumer employs
a gradual recruitment strategy, it can stop the process as soon as one of the hired providers
completes the task. This reduces the invocation probabilities of the providers with later turns,
and accordingly reduces the consumer’s expected cost. The second reason is less apparent
and originates from the optimal payment function (23). This is illustrated by Example 3 in
Appendix E.

6. Optimal Allocation Function

The purpose of this section is to find an allocation function A : Cn → H that solves
optimization problem (25). For each i, ci and bi, the monotonicity constraint (25b) depends
on the outsourcing plan that allocation function A assigns not to a single cost vector, but
rather to a set of cost vectors {(ci, c−i), (bi, c−i), c−i ∈ Cn−1}. This interaction among
decision variables makes optimization problem (25) non-separable across cost vectors and
hence difficult to solve. However, the next lemma proves that the monotonicity constraint
(25b) is satisfied “for free” at the optimal allocation.

Lemma 5 When the providers’ cost distributions F1, . . . , Fn are regular, i.e., virtual costs
are increasing in costs, the allocation function that maximizes (25a) is monotone and sat-
isfies constraint (25b).
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Lemma 5 allows us to relax the monotonicity constraint and be sure that this con-
dition will be automatically satisfied at the final solution. If we drop the monotonicity
constraint (25b), the problem becomes separable and can be decomposed into the following
unconstrained subproblems η(c), c ∈ Cn:

η(c) : max
A(c)∈H

V Psucc(A(c), D)−
∑
i∈N

Pi(A(c))ϕi(ci).

For each cost vector c, problem η(c) aims to find the optimal outsourcing plan A∗(c) =
((s1, τ1), . . . , (sm, τm)) that specifies the optimal ordered set of providers A∗

s(c) = (s1, . . . ,
sm) and their optimal invocation times A∗

τ (c) = (τ1, . . . , τm). This problem is a mixture of
continuous and combinatorial optimization problems. Computing the optimal procurement
times A∗

τ (c) for each ordered set of providers As(c) is a continuous optimization problem.
However, determining the optimal ordered set A∗

s(c) is a combinatorial optimization prob-
lem. Combinatorial optimization problems can be viewed as searching for the best element
of some set of discrete items. Therefore, in principle, any sort of search algorithm can be
used to solve them. However, the number of ordered subsets of n providers can, in practice,
become quite large (e.g. 1,956 for n = 6 providers but 1,302,061,344 for n = 12 providers).
Exploring such a huge search space is computationally prohibitive and needs a carefully
constructed algorithm.

We proceed as follows to solve optimization problem η(c) for each cost vector c. In
Subsection 6.1, we focus on the continuous part of η(c) and discuss how to derive the
optimal invocation times A∗

τ (c) = (τ1, . . . , τm) for a fixed provider sequence As(c). We
make use of this result in Subsection 6.2 to develop a branch-and-bound algorithm for
solving the combinatorial part of the problem.

6.1 Continuous Part: Optimal Invocation Times

In this part, we assume that the optimal subset of providers and their ordering is given. That
is, we are given an ordered set of providers As(c) = (s1, . . . , sm), where sk is invoked before
sk+1. To compute the optimal invocation time, we must determine Aτ (c) = (τ1, . . . , τm),
where τk is the invocation time of sk, such that the objective function of problem η(c) gets
maximized.

Using (3) and (7), we can write the objective function of η(c) in terms of sk and τk,
k = 1, . . . ,m, as follows:

f(τ) = V (1−
m∏
k=1

(1−Gsk(D − τk)))−
m∑
k=1

ϕsk(csk)
k−1∏
k′=1

(1−Gsk′ (τk − τk′)). (26)

To derive the optimal invocation time, we must solve an optimization problem that maxi-
mizes f(τ) under the following constraints: ∀k : 0 ≤ τk ≤ D and ∀k, k′ : k < k′ =⇒ τk ≤
τk′ . This is a continuous non-convex optimization problem. There is currently no general
algorithm to find a global optimum of a non-convex optimization problem9, however, there

9. There are some algorithms in the literature that prove the global optimality of their solutions under
some specific assumptions (Dixon & Szego, 1978; Locatelli & Schoen, 2013), however, those assumptions
are not valid in our problem.
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are some widely used numerical methods, such as stochastic gradient descent (Robbins &
Monro, 1951) and saddle-free Newton (Dauphin et al., 2014), that use interesting techniques
to escape from local optima and/or saddle points10. Our optimization problem here can be
solved by any of those numerical methods. We denote the function that returns the optimal
invocation time for provider sequence (s1, . . . , sm) by Times(s1, . . . , sm).

6.2 Combinatorial Part: Optimal Provider Sequence

One of the most universally applicable approaches for reducing the search space in combina-
torial optimization problems is the branch-and-bound family of algorithms. Such algorithms
recursively split the search space into smaller groups; this splitting is called branching.
Branching alone would amount to brute-force enumeration of candidate solutions and test-
ing them all. To improve on the performance of brute-force search, a branch-and-bound
algorithm keeps track of a lower bound and an upper bound for all solutions in given groups.
The algorithm uses these bounds to prune the search space, eliminating groups that it can
prove will not contain an optimal solution (i.e., its upper bound is less than the lower bound
of another group). This systematic partitioning of the search space and removing the groups
that cannot contain an optimal solution can potentially reduce the space of solutions that
have to be searched. However, the performance of a branch-and-bound algorithm depends
crucially upon the appropriate selection of branching and bounding techniques.

In this paper, we adopt the branching and bounding techniques proposed in (Stein et al.,
2011). We briefly discuss each of these techniques below.

Branching technique: The main idea is to partition the search space, which is the
set of all ordered subsets of providers N = {1, . . . , n}, based on their first r elements. r is
a parameter that starts from 1 and increases gradually over iterations. The pseudo-code
of this algorithm is presented in Algorithm 1. In the first iteration, the search space is
partitioned into n groups {⟨1⟩ , ⟨2⟩ , . . . , ⟨n⟩} (Line 3), where each ⟨i⟩ represents the set
of orderings that have i as their first element. For example, for n = 3, we have ⟨1⟩ =
{(1), (1, 2), (1, 3), (1, 2, 3), (1, 3, 2)}. After this partitioning, the algorithm calculates a lower
bound and an upper bound for the best consumer’s utility within each group (Lines 5-6)
and keeps track of the highest lower bound found so far (Lines 7-10). We will discuss
how the Lower and Upper functions work later. The highest lower bound Ulow serves as a
touchstone for assessing the quality of the groups to be explored in the future. A group will
be discarded if its upper bound is lower than or equal to Ulow (Lines 11-13).

In the second iteration, the algorithm picks the group with the highest lower bound, as
this group is likely to have a better chance to contain the optimal ordering, and partitions it
into n− 1 smaller-sized groups based on the first two elements (Lines 16-18). The function
Expand(o) in Line 18 sub-partitions group o based on the next unfixed element. That is,
if the orderings within o match in their first r elements, the function Expand(o) partitions
them based on their (r + 1)-th elements. The aim of this function is to create the next
generation of groups to be explored more precisely. For example, if ⟨1⟩ is picked at Line 16
when n = 3, the next generation of groups will be Expand(⟨1⟩) = {⟨1, 2⟩ , ⟨1, 3⟩}. These

10. The random stochastic gradient descent algorithm achieves this goal by adding a random noise to the
gradient and the saddle-free newton algorithm accomplishes this objective by using the Hessian to find
a descent direction.
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Algorithm 1: Branch-and-Bound Algorithm

1 Input: Cost vector c, Duration functions
{Gi(.)}i∈N , Deadline D;

2 Let o∗(c) = ∅, Ulow = 0;
3 Q = {⟨1⟩ , ⟨2⟩ , . . . , ⟨n⟩};
4 for all o′ ∈ Q do
5 u← Lower(o′);
6 ū← Upper(o′);
7 if u > Ulow then
8 o∗(c)← o′;
9 Ulow ← u;

10 end
11 if ū ≤ Ulow then
12 Q← Q− {o′};
13 end

14 end

15 while Q ̸= ∅ do
16 o← argmaxo∈Q Lower(o);

17 Q← Q− {o};
18 P ← Expand(o);
19 for all o′ ∈ P do
20 u← Lower(o′);
21 ū← Upper(o′);
22 if u > Ulow then
23 o∗(c)← o′;
24 Ulow ← u;

25 end
26 if ū ≤ Ulow then
27 P ← P − {o′};
28 end

29 end
30 Q← {x ∈ Q ∪ P |Upper(x) > Ulow};
31 end
32 A∗

s(c)← o∗(c);
33 A∗

τ (c)← Times(o∗(c));

34 Output: Optimal outsourcing plan A∗(c) = (A∗
s(c), A

∗
τ (c))

new groups will be evaluated based on the highest potential utility they can provide for the
consumer and will be discarded if their upper bound is below Ulow (Lines 19-29). The groups
that survive from this generation along with the ones that survive from the first generation
(Line 30) go for another round of branching and bounding. This process continues until
there is no branchable group left.

Lower bounding technique: Deriving a lower bound for the highest expected utility
of the orderings within a group is simple. This is because the best expected utility provided
by any member of the group can be interpreted as a lower bound for the maximum utility
the whole group can provide to the consumer.

The groups we consider in our branch-and-bound algorithm are of the form ⟨i1, i2, . . . , ij⟩,
where j ≤ n, and is ∈ N , for all 1 ≤ s ≤ j. Each group o = ⟨i1, i2, . . . , ij⟩ is the set of
all orderings that start with i1, . . . , ij . We select ordering R(o) = (i1, . . . , ij) ∈ o as a
representative for group o. In ordering R(o), the consumer invokes i1, . . . , ij in turn and
does not invoke any other providers. The optimal invocation time for ordering R(o) is
(t∗1, . . . , t

∗
j ) = Times(R(o)), where Times(.) is the function derived in Section 6.1. Us-

ing this result, we can construct the best outsourcing plan with the ordering R(o) as
ρ∗(o) = ((i1, t

∗
1), . . . , (ij , t

∗
j )). We consider the consumer’s expected utility when employing

outsourcing plan ρ∗(o) as the lower bound for the highest expected utility members of the
group o can provide to the consumer. That is,

Lower(o) = V Psucc(ρ
∗(o), D)−

∑
i∈N

Pi(ρ
∗(o))ϕi(ci). (27)
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Upper bounding technique: Calculating an upper bound on the expected utility that
members of a group can provide for the consumer is not immediately obvious. Obtaining a
tight upper bound requires computing the utility provided by every member of the group,
which is too cumbersome to be practical. However, we can obtain a looser (but still effective)
upper bound by applying the following approach.

For each group o = ⟨i1, i2, . . . , ij⟩, we define

N ′(o) = {i ∈ N|i /∈ {i1, i2, . . . , ij}}. (28)

If N ′(o) = ∅, then (i1, i2, . . . , ij) is the only member of group o. Therefore, the upper
bound is equal to the lower bound discussed above. Otherwise, we create a virtual service
provider so that dominates all subsets of N ′(o). This service provider has the minimum cost
among all providers N ′(o), i.e., cso = mini∈N ′(o) ci, and can perform the task faster than any
combination of providers N ′(o), i.e., Gso(x) = 1−

∏
i∈N ′(o) (1−Gi(x)). Therefore, invoking

so is strictly better than invoking any subset of providers N ′(o). With this reasoning, we
obtain a new ordering ō = (i1, i2, . . . , ij , so) by appending so to o and then calculate the
upper bound as the maximum utility obtained by employing outsourcing plan ρ∗(ō) =
(ō, T imes(ō)), if this utility is higher than the lower bound Lower(o). Failure to meet this
condition indicates that it is not possible to achieve a higher utility by invoking further
providers; therefore, we can set the upper bound equal to the lower bound. That is,

Upper(o) = max (Lower(o), V Psucc(ρ
∗(ō), D)−

∑
i∈N

Pi(ρ
∗(ō))ϕi(ci)). (29)

Running Algorithm 1 with the lower and upper bounding techniques described above,
we can derive the optimal ordering o∗(c) for recruiting providers N with submitted cost
vector c. Based on the discussions in Section 6.1, the optimal time for hiring these providers
can be computed as Times(o∗(c)). Therefore, we can denote the optimal outsourcing plan
as A∗(c) = (o∗(c), T imes(o∗(c))) (Lines 32-34).

7. The Optimal Contingent Planning-based Auction

The allocation function A∗(.), presented in Section 6, along with the weighted threshold
payment function πA∗

(.), derived in Section 5.2, specifies our proposed auction MOCPA =
(A∗(.),πA∗

(.)). We call this an optimal contingent planning-based auction (OCPA) and the
general structure of OCPA is as follows (see Fig. 2):

1. Auction’s rules announcement: The consumer publicly announces that the allo-
cation function A∗(.) and the payment function πA∗

(.) are going to be used during
the auction.

2. Bidding: Each provider i analyzes the auction’s rules and submits a bid bi that best
serves its interest;

3. Determining the outsourcing plan and payment strategy: Based on the sub-
mitted bids, the consumer selects the outsourcing plan A∗(b) and the payment strategy
πA∗

(b);
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Figure 2: The general structure of the OCPA auction. This auction is composed of the
following four steps: Step 1 (Auction’s rules announcement), Step 2 (Bidding), Step 3 (De-
termining the outsourcing plan and payment strategy), and Step 4 (Outsourcing process).
These steps are explained thoroughly in Section 7.

4. Outsourcing process: The consumer recruits providers according to the ordering
A∗

s(b) at times A∗
τ (b), until either the task is completed or the deadline is reached.

Each provider i receives a payment πA∗
i (b) once it is recruited.

As we discussed in Section 5.2, the weighted threshold payment function πA∗
(.) is de-

signed to guarantee BIC and interim IR. Moreover, the allocation function A∗(.) is designed
to provide the highest possible utility to the consumer. We elaborate these arguments in the
next subsection to present and prove the fundamental properties of OCPA. Our discussion
in Section 7.1 will show that OCPA satisfies not only BIC and interim IR, but also stronger
notions of DSIC and ex-post IR.

7.1 Fundamental Properties of OCPA

In this section, we prove theoretically that our proposed OCPA auction satisfies all desirable
properties we were looking for. That is, the auction is dominant strategy incentive compat-
ible, ex-post individually rational, and utility maximizing. We also prove that OCPA can
always guarantee a non-negative expected utility for the consumer.

Proposition 1 (Dominant Strategy Incentive Compatibility) The truth-telling bid-
ding strategy is optimal for each provider irrespective of what the other providers bid. That
is, providers cannot benefit by misreporting their private costs.

Proposition 2 (Ex-Post IR) OCPA is ex-post individually rational. That is, the re-
cruited providers perform the task upon recruitment and do not regret their decision.

Proposition 3 (Utility Maximization) OCPA provides the consumer with the maxi-
mum expected utility that any BIC and interim IR auction could provide.

Propositions 1-3 show that the OCPA auction is a DSIC and ex-post IR auction that has
no competitors in terms of the consumer’s expected utility even among the auctions that
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satisfy weaker requirements of BIC and interim IR. This property is due to the constraint
relaxation approach we followed in this paper, which has been discussed in Section 5.1.3.

Proposition 4 (Non-negative Expected Utility) The consumer’s expected utility is al-
ways non-negative in OCPA. Therefore, it is rational for the consumer to participate in
OCPA.

7.2 Time Complexity

Propositions 1-3 prove that our proposed OCPA auction achieves the main properties we
were looking for. However, this is at the cost of high time complexity to find the opti-
mal allocation function using Algorithm 1. In Algorithm 1, we tried to reduce the time
complexity by using a branch-and-bound algorithm instead of brute-force search. However,
this algorithm still searches for the optimal solution and in the worst case, it may need to
examine the entire search space. This may be the case, for example, when there are large
numbers of highly similar providers and when the value of the task is very large in relation
to the service costs.

To reduce the worst-case complexity, in the next subsection, we present a low-complexity
heuristic algorithm (i.e., Algorithm 2) that can be substituted for Algorithm 1. As we will
show in Section 9, this algorithm reduces the runtime by over 99% with less than 1%
performance loss.

7.3 Heuristic Algorithm for Deriving a Near-Optimal Allocation Function

Algorithm 2 is based on a greedy search and aims to find a near optimal ordering for
recruiting providers. It starts with an empty ordering and then greedily adds, removes
or switches providers until a local optimum is reached. Intuitively, this algorithm benefits
from selecting providers that offer a good value/cost trade-off. By also allowing providers
to be removed or switched, it has some backtracking capabilities — thus an expensive but
reliable provider can eventually be replaced by many cheap and unreliable providers that
individually do not yield a high expected utility, but in combination result in a better
strategy.

In more detail, the algorithm stores the best ordering found so far and the expected
utility it can provide to the consumer by oapx(c) and Ubest, respectively (Line 2). The
algorithm also sets a flag that takes value 1 once a local optimum is found (Line 3). In each
round, the algorithm checks to see if ordering oapx(c) has a neighbor that provides better
utility for the consumer (Lines 5-7). If such neighbors exist, the algorithm replaces oapx(c)
by its best neighbor and goes to the next round (Lines 7-9). This process continues until
the best ordering found so far has no better neighbor and hence is a local optimum.

For the algorithm description to be complete, we need to define the neighborhood of an
ordering. The larger the neighborhood is, the better the quality of the returned solution is,
but at the same time the longer it takes to search the neighborhood at each iteration (Line
6). As an extreme case, if all orderings are defined to be neighbors, the algorithm will find
the exact optimum ordering in just one round, but at the cost of doing an exhaustive search
over all orderings.
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Algorithm 2: Heuristic Algorithm (Alternative to Algorithm 1)

1 Input: Cost vector c, Duration functions {Gi(.)}i∈N , Deadline D;
2 Let oapx(c) = ∅, Ubest = 0;
3 flag = 0;
4 while flag = 0 do
5 P ← Neighbors(oapx(c));
6 o′ ← argmaxo∈P Lower(o);
7 if Lower(o′) > Ubest then
8 oapx(c)← o′;
9 Ubest ← Lower(o′);

10 else
11 flag ← 1;
12 end

13 end
14 Output: Near-optimal ordering oapx(c)

In this paper, we define the neighborhood of an ordering o as the set of all orderings
that can be obtained by any of the three following actions: 1) selecting a provider i which
is currently not in o and adding it to o at any possible position, 2) selecting a provider
i ∈ o and removing it, 3) selecting two providers i, j ∈ o and swapping their turns. We will
show in Section 9 that this definition of neighborhood is wide enough to ensure the final
solution is close to the exact optimum. At the same time, it is narrow enough to enable the
algorithm to scale to realistic settings with hundreds of providers.

We close this section by Proposition 5. This proposition proves that replacing Algorithm
1 with Algorithm 2 does not ruin the incentive compatibility or individual rationality of
the auction. The only difference is a significant complexity reduction at the expense of less
than one percent decrease in the consumer’s expected utility, as will be shown in Section
9.3.

Proposition 5 (Auction with Heuristic Allocation Function) Our proposed sub-op-
timal contingent planning-based auction (SOCPA) MSOCPA = (Aapx(.),π

Aapx(.)), where
Aapx(c) = (oapx(c), T imes(oapx(c))) is derived by running Algorithm 2, satisfies ex-post
and interim individual rationality as well as DSIC.11

8. Social-Welfare Maximizing (Efficient) Auction

In Sections 5-7, we developed two contingent planning-based auctions, one optimal and one
low-complexity sub-optimal, with the goal of maximizing the consumer’s expected utility.
The aim of this section is to describe how the same approach with different parameters can
be used to design DSIC and ex-post IR social welfare maximizing auctions.

11. Note that as discussed in the proof of Proposition 1, monotonicity of the allocation function is a necessary
condition for DSIC. Therefore, the main step in the proof of Proposition 5, which is provided in Appendix
K, is to prove the monotonicity of the heuristic allocation function Aapx(.).
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In Section 4.4, we derived the social welfare SW (ρ) for an arbitrary outsourcing plan
ρ. In the truthful equilibrium of the game induced by an auction M = (A(.),π(.)), each
bid vector c is submitted with probability f(c). When bid vector c is received, the con-
sumer employs the outsourcing plan A(c). Thus, the expected social welfare in an incentive
compatible auction M = (A(.),π(.)) is

SW (A) =

∫
E [SW (A(c))] f(c)dc

=

∫
[V Psucc(A(c), D)−

∑
i∈N

Pi(A(c))ci]f(c)dc. (30)

The problem of designing a social welfare maximizing auction is equivalent to maximiz-
ing (30) under the DSIC and ex-post IR constraints. Similar to what we have done for
designing utility maximizing auctions, we first relax the constraints to BIC and interim IR,
which are easier to cope with. We then show that the social welfare maximizing auction
designed by taking this approach satisfies the stronger requirements of DSIC and ex-post
IR.

In Section 5.2, we characterized the set of all BIC and IR incentive mechanisms. In
particular, we first proved that the BIC and IR constraints (17b)-(17c) can be replaced
by constraints (20)-(22). We then proposed the weighted threshold payment scheme (23)
as the cheapest payment scheme that can guarantee (21)-(22) for a monotone allocation
function. In the social welfare maximizing auction design problem, the objective function
(30) does not depend on the payments. Therefore, although we do not need to minimize the
payments and can employ any payment scheme that guarantees (21)-(22), there is nothing
to prevent us from using the cheapest payment scheme (23) that satisfies the constraints.

Using (23) as the payment function, the problem is now reduced to that of determining
an allocation function A(.) that maximizes the social welfare (30) under the monotonicity
constraint (20). This problem is exactly similar to problem (25) except that in the objective

function, the virtual cost ϕi(ci) = ci+
Fi(ci)
fi(ci)

of each provider i ∈ N is replaced by its actual
service cost ci. So, the problem of this section can be solved by using the branch-and-bound
algorithm proposed in Section 6 where in both the Lower and Upper functions, each virtual
cost ϕi(ci) is replaced by its corresponding actual service cost ci.

In more detail, let Ã denote the social welfare maximizing (i.e., efficient) allocation
function derived by taking this approach. Then, we can denote our proposed efficient
contingent planning-based auction (ECPA) as MECPA = (Ã(.),πÃ(.)). By taking a similar
approach to that used in the proof of Propositions 1-3, we can show that ECPA is interim
and ex-post individually rational, dominant strategy incentive compatible, and social welfare
maximizing. However, similar to OCPA, it is of high computational cost. Therefore, we
use a similar approach to that of Section 7.3, to design a sub-efficient contingent planning-
based auction (SECPA) that significantly reduces the runtime of ECPA with only marginal
performance loss.

9. Numerical Results

In this paper, we proposed two utility maximizing (i.e., OCPA, SOCPA) and two social
welfare maximizing (i.e., ECPA, and SECPA) contingent planning-based auctions for the
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outsourcing problem defined in Section 3. We theoretically proved that these auctions
are able to incentivize providers to voluntarily participate in the mechanism and reveal
their private information truthfully. We also proved that OCPA and ECPA maximize the
consumer’s expected utility and the expected social welfare, respectively.

In this section, we want to augment our theoretical results by demonstrating the be-
havior of our proposed auctions in a variety of simulated environments and evaluating their
performance in terms of efficiency and robustness, compared with the existing methods. In
more detail, the purpose of our evaluation is four-fold. First, we investigate how the contin-
gent planning method enables our proposed auctions to adapt their outsourcing strategies to
different situations (Section 9.1). Second, we demonstrate the performance improvements
of our proposed auctions compared to the available benchmarks (Section 9.2). Third, we
compare the performance of our proposed sub-optimal auctions SOCPA and SECPA with
their corresponding optimal versions and show that these auctions significantly reduce the
running time without noticeably reducing the performance (Section 9.3). Finally, we check
the robustness of our results in Section 9.4.

Note that as the social welfare maximizing auctions ECPA and SECPA are developed
by using a similar approach to that for the utility maximizing auctions OCPA and SOCPA,
to avoid duplication and save space, unless specified we only report the evaluation results
of the utility maximizing auctions. However, the results of the social welfare maximizing
auctions are almost the same.

9.1 Behavior of Optimal Outsourcing Plans

The optimum point of tradeoff between success and invocation cost varies from situation to
situation and is greatly influenced by parameters such as the value V of task completion and
the deadlineD. For example, the higher the value of the task, the more money the consumer
is willing to spend to reduce the risk of failure. On the other hand, when the task is more
urgent, the consumer may place more weight on the providers’ speeds rather than their costs,
when evaluating providers. Therefore, the optimal outsourcing plan should be flexible and
adapts itself to different situations. In this section, we study how the contingent outsourcing
planning method we used in OCPA helps the consumer to achieve this goal. We are also
interested to find out how optimal outsourcing plans behave in different environments (e.g.,
what direct experiences will be purposeful and how much time gaps there should be between
different experiences).

To do this, we run a simulation with 100 service providers where each provider i’s
delivery time has an exponential distribution with cumulative distribution function (cdf)
Gi(t) = 1− eλit.12 We call parameter λi the service rate of provider i. In this experiment,
we assume, for ease of demonstration, that the service rates are spaced equally over the
interval (0,1], i.e., λi = 0.01i. We also assume that the service cost is an identity function
of the service rate, i.e., ci = λi, for all i = 1, . . . , 100. However, the nature of the results
does not depend on these assumptions.

To study a range of environments, we consider four different simulation settings where
the task has either a low (Vlow = 4) or a high value (Vhigh = 10) and the deadline is either

12. As it has been shown in (Stein et al., 2011), the exponential distribution enables us to derive the optimal
invocation times analytically. So, there will be no risk of getting stuck at a local optimum.
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normal (Dnormal = 3) or urgent (Durgent = 1). In each of these settings, we run Algorithm
1 to derive the utility maximizing outsourcing plan. The results of this experiment are
shown in Fig. 3. We can see that in Setting 1 where the task is high-valued and has a
normal deadline (i.e., Fig. 3a), it is optimal for the consumer to start the outsourcing
process by hiring a relatively fast provider (λ = 0.74) and wait for 0.83 time-units to see
if it can perform the task alone. If it cannot, the consumer should recruit some auxiliary
providers to increase success likelihood. This phase of recruitment starts with hiring slow
but cheap providers and then the closer the consumer is to the deadline, the faster and more
expensive providers are hired. Notice that since the completion of the task has a high value
for the consumer, it hires a very fast and expensive provider (λ = 0.9) when the deadline is
approaching to greatly increase the chance of success.

We can see from Fig. 3b that in Setting 2 where the task is low-valued and has a normal
deadline, the optimal outsourcing plan has two main differences with that of Setting 1: (i)
the first recruited provider is slightly slower (λ = 0.6) and has been given a longer period
of time to try the task alone (1.08 time-units); (ii) if the first provider is not successful, the
consumer recruits only two cheap auxiliary providers to increase the chance of success. In
this case, the task completion is not valuable enough for the consumer to recruit any more
expensive providers.

Comparing Figs. 3c and 3d with Figs. 3a and 3b, respectively, shows how the deadline
affects the optimal outsourcing plan. In fact, when the task is urgent, it is better for the
consumer to advance the outsourcing process by spending more money and recruit faster
providers sooner. This basically means that the gradual recruitment technique is of less
interest when the task has a tight deadline.

This result motivates us to study the efficiency and necessity of using redundant allo-
cation and gradual recruitment techniques in not just a specific example (i.e., a continuum
of providers with λi = ci), but in more general environments. To this end, for each fixed
V and D, we run 1000 simulations where in each simulation the number of providers n
is chosen uniformly from [2, 20] and the costs and service rates are drawn independently
and uniformly from [0, 1] 13. To simulate practical settings where faster services are often
more costly to procure, in all future simulations (unless otherwise stated), we construct
each provider i by assigning both the ith highest service cost and the ith highest service rate
to it. We will discuss in Section 9.4, how the results change if this correlation between the
service costs and service rates does not exist.

In each simulation, we use the following metrics to measure the efficiency of the redun-
dant allocation and gradual recruitment techniques:

• Number of total candidates (m): For each outsourcing plan ρ = ((s1, τ1), . . . , (sm, τm)),
m is the number of providers that have the chance to be recruited over time.

• Number of hired providers (mh): The outsourcing process continues until at least one
of the providers completes the task and hence not all of the candidate providers
(s1, . . . , sm) are recruited in each simulation. We denote by mh the number of
providers that are actually hired in a single simulation.

13. This technique has been previously used in (Stein et al., 2011) for generating random environments.
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(a) Setting 1: V = 10, D = 3 (b) Setting 2: V = 4, D = 3

(c) Setting 3: V = 10, D = 1 (d) Setting 4: V = 4, D = 1

Figure 3: Utility maximizing outsourcing plans when 100 providers with equally-spaced
service rates λ ∈ (0, 1] are available.

• Dispersion index (DI): For each outsourcing plan ρ = ((s1, τ1), . . . , (sm, τm)), we
define the dispersion index as DI = σ2/µ, where σ2 and µ are the variance and mean
of the recruitment times. This metric, which is also called variance-to-mean ratio
(VMR), is a standard measure to quantify whether a set of observed occurrences are
clustered or dispersed compared to a standard statistical model (Akbarov &Wu, 2012;
Gentillon et al., 2016). Low values of DI shows that the recruitment is more centered
around time 0, while high values of DI shows that the recruitment is distributed over
a longer period of time.

In Fig. 4, we plot these metrics as well as the expected utility and the expected invocation
cost for the optimal outsourcing plan versus the deadline. We can see that whether the task
is high-valued or low-valued, the dispersion index increases when the deadline is relaxed.
This shows that the benefit of using the gradual recruitment technique is highest when
the task is less urgent and hence the consumer has more time for recruitment. We can
also see that the number of total candidates increases, with a steep change at a certain
threshold. This threshold is 0.4 when V = 10 and equals 0.8 when V = 4. The number
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(a) High-valued task (V = 10) (b) Low-valued task (V = 4)

Figure 4: The efficiency metrics for redundant allocation and gradual recruitment techniques

of hired providers, however, increases up to the same threshold and decreases afterwards.
Before the threshold, the number of hired candidates is almost the same as the number
of candidate providers. This shows that before the threshold, redundant allocation is the
dominant technique; in this region, the consumer prefers to recruit multiple providers but
also prefers to recruit all of them almost simultaneously at time 0. This fact is also confirmed
by small values of DI before the threshold. However, after the threshold, the importance of
gradual recruitment becomes more apparent. In this region, the consumer finds it beneficial
to reduce its costs by postponing the hiring of some of the providers.

9.2 Performance Against the Benchmarks

In this section, we compare the expected utilities obtained by OCPA and SOCPA to those
obtained by the benchmarks (i.e., Bm1-Bm4). We also compare our results to the maximum
theoretical utility that could be achieved if full information was available to the consumer
(Bm5). This theoretical upper bound does not have practical usage in our setting as the
cost information is not available to the consumer and must be elicited from self-interested
providers.

(Bm1) Best single auction: This auction is optimal (i.e., utility maximizing) among non-
redundancy-based auctions that assign the task to just one single provider. Such
auctions are similar to single-object auctions discussed in Section 2.2 and hence the
optimal among them can be derived by using Myerson’s idea (Myerson, 1981).

(Bm2) Best simultaneous auction: This auction is optimal among redundancy-based
auctions that do not employ gradual recruitment technique. Such auctions recruit a
set of providers simultaneously at time 0 to attempt the task in parallel. Auction
Bm2 is the solution of a standard homogeneous multi-object auction design problem
which can be solved by techniques proposed in (Malakhov & Vohra, 2009).

(Bm3) Random gradual auction This auction uses both redundancy and gradual recruit-
ment, but in a random manner. In this auction, the consumer recruits a random
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subset of providers at random times. The payment to each recruited provider is the
maximum bid that it could have submitted, i.e., cmax. The random gradual auction
is incentive compatible as both the allocation and payment functions are independent
of the submitted bids and hence the outcome is non manipulable by the providers.

(Bm4) Pairing mechanism (Stein et al., 2011): This contingent planning-based auc-
tion is designed to obtain a high social welfare. The pairing mechanism is currently
the state-of-the-art in the class of approximate social welfare maximizing incentive
mechanisms.

(Bm5) Best full information mechanism: This mechanism provides the maximum utility
in full-information environments, where the providers’ cost function is fully available
to the consumer. Therefore, it serves as a theoretical upper bound for the performance
of any mechanism in the incomplete-information setting.

Comparing OCPA to these benchmarks allows us to quantify the benefit of using contin-
gent planning in an optimal and principled manner to deal with execution uncertainty. We
conduct the comparison by running 1000 simulations with randomly generated providers in
each of the four simulation settings described in Section 9.1 and use Tukey’s test (Keselman
& Rogan, 1977) to ensure statistical significance14. The expected utilities the consumer
obtains in these simulations for Settings 1-4 are shown in Figs. 5a-5d, respectively. In each
figure, the error bars show the standard deviations of repeated measurements. Below, we
will analyze the results obtained.

OCPA vs. SOCPA: Fig. 5 shows the close-to-optimal performance of the low-
complexity sub-optimal auction SOCPA. These simulations show that the consumer’s ex-
pected utility is degraded by less than 1% when it uses the less computationally demanding
auction SOCPA instead of the optimal auction OCPA. We further investigate the relation
between these two auctions in Section 9.3 to make sure that replacing OCPA with SOCPA
does not significantly compromise optimality.

OCPA vs. Best single auction (Bm1): Comparing the expected utility of OCPA
with that of Bm1, where only a single provider is recruited, show that the redundant alloca-
tion has a huge impact on the consumer’s expected utility over a wide range of environments.
We can see that OCPA results in 6.5%, 8.1%, 36.5%, and 26.9% higher utilities compared to
those obtained by Bm1 in Settings 1-4, respectively. The percentage of improvement can go
up to 377% when the value of the task and the deadline approach 40 and 0.1, respectively.
Experimental evidence for this claim is presented in Appendix L.1.

OCPA vs. Best simultaneous auction (Bm2): We can see from Fig. 5 that the
advantage of gradual recruitment shows itself more apparently when the task is not urgent
(i.e., Figs. 5a-5b).15 When the task is urgent (see Figs. 5c-5d), the OCPA auction is at most
2% better than Bm2. However, when the task has a normal deadline, this improvement
increases to 5%.

OCPA vs. Random gradual auction (Bm3): This shows the importance of “intel-
ligent” outsourcing planning. Fig. 5 shows that a non-intelligent use of the contingent plans

14. Tukey’s test is essentially a t-test, except that it corrects for family-wise error rate.
15. This result is consistent with our discussion in Section 9.1.
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(a) Setting 1: V = 10, D = 3 (b) Setting 2: V = 4, D = 3

(c) Setting 3: V = 10, D = 1 (d) Setting 4: V = 4, D = 1

Figure 5: Comparison of the performance of the OCPA and SOCPA auctions with bench-
marks introduced in Section 9.2 in terms of expected utility

can even lead to a performance worse than mechanisms without redundancy and contingent
decision making (e.g., Bm1).

OCPA vs. Pairing mechanism (Bm4): We can see from Fig. 5 that the OCPA
auction significantly outperforms the pairing mechanism proposed in (Stein et al., 2011), in
terms of the consumer’s expected utility. In fact, the expected utilities obtained by OCPA
are up to 59.5%, 61.8%, 122.4%, and 111% higher than those obtained by Bm4, in Settings
1-4, respectively. This improvement comes from three aspects:

1. Ignoring half of the providers in the pairing mechanism: As discussed previously, the
pairing mechanism pairs the service providers randomly and disposes of the providers
with the maximum cost at each pair. Some of the providers that are ignored by the
mechanism could be the ones that are optimal to be recruited. The effect of this
non-optimal decision making is more noticeable when the number of providers is low
(e.g. n ≤ 10), as in this case, the variety of services is low and hence there might not
be a good alternative to the ignored providers.
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Figure 6: Comparison of the performance of the our proposed auctions with the pairing
mechanism (Bm4) in terms of social welfare

2. Different payment functions: OCPA employs the weighted threshold payment scheme
which guarantees BIC and IR at the minimum cost. However, the pairing mechanism
uses a heuristic payment function, which based on the results provided in Fig. 5, pays
providers more than what is needed to incentivize them to tell the truth.

3. Different objectives: The pairing mechanism has the goal of maximizing social welfare,
not the consumer’s expected utility. Therefore, we shouldn’t expect it to provide a
high expected utility to the consumer. However, the pairing mechanism is the main
competitor for our social welfare maximizing auction ECPA. So, our last evaluation
in this section is to compare the social welfare levels under the ECPA auction and the
pairing mechanism.

In Fig. 6, we plot the social welfares obtained by our proposed auctions (ECPA and
OCPA) and the pairing mechanism in the four simulation settings described previously. We
can see that in all settings, our proposed social welfare maximizing auction ECPA provides
a significantly higher social welfare than the pairing mechanism (Bm4). The improvement
is up to 9.5%, 55.9%, 137.2%, and 103%, in Settings 1-4, respectively. Surprisingly, we can
also see that our utility maximizing auction OCPA results in a relatively high social welfare.
Results in Fig. 6 show that the maximum difference of social welfare between OCPA and
the social welfare maximizing auction ECPA is 2%, 2.8%, 7%, and 10.3%, in Settings 1-4,
respectively. Also note that the performance of our low-complexity sub-efficient auction
SECPA is not depicted in Fig. 6, as it is visually indistinguishable from that of ECPA.
In fact, the maximum difference of expected social welfare between SECPA and ECPA in
different settings and at different population sizes is below 1%.

9.3 Heuristics to Reduce the Time Complexity

In Section 9.2, we showed that the sub-optimal auction SOCPA which determines the
outsourcing plans by running Algorithm 2 (instead of Algorithm 1 in the optimal auc-
tion OCPA) provides a close-to-optimal expected utility to consumer in Settings 1-4. The
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(a) Maximum percentage of inefficiency caused by
using Algorithm 2 instead of Algorithm 1

(b) Average percentage of inefficiency caused by
using Algorithm 2 instead of Algorithm 1

Figure 7: Accuracy of the sub-optimal auction SOCPA introduced in Section 7.3

purpose of this section is to investigate the performance of SOCPA in a wider range of
environments.

To this end, for each fixed V ∈ {2, 4, . . . , 10} and D ∈ {1, 2, . . . , 5}, we conduct several
simulations with different number of providers n and different cost vectors c and compare
both the runtime and the utility provided by Algorithms 1 and 2. In terms of time com-
plexity, experiments show that Algorithm 2 reduces the average runtime by 64% − 99.8%,
and thus enables settings with large numbers of providers (e.g. 100 providers runs in 4.4
seconds).

We define the “inefficiency” of Algorithm 2 for each cost vector c and population size
n as the percentage decrease in the consumer’s expected utility from the optimal expected
utility of the outsourcing plan derived by Algorithm 1. These expected utilities include
expectations with respect to the stochastic execution times. The results show that for each
V andD, the inefficiency depends heavily on the cost vector c, and slightly on the population
size n. In Figs. 7a and 7b, we report the results of our worst-case and average-case analysis,
respectively. In particular, for each V and D, we report the maximum inefficiency and the
average inefficiency over all simulated cost vectors and population sizes. We can see from
Fig. 7a that the maximum inefficiency could be as high as 12.07% when V = 4 and D = 1.
However, the average inefficiency is not larger than 0.0058 (see Fig. 7b). This shows that
the worst-case instances are very rare and do not appear in practice very frequently.

In the setting of this article, where the providers’ costs are unknown to the consumer, the
consumer compares different mechanisms based on their average expected utilities, where
the average is taken over all possible cost vectors. Our simulations show that the average
inefficiency has a low sensitivity to the population size. For example, for V = 4 and D = 2,
the average inefficiency varies between 0.0047 and 0.0061 when n varies between 2 to 20.
Therefore, for each population size n, the average inefficiency over all possible cost vectors
is very close to the numbers reported in Fig. 7b. This shows that the SOCPA auction is a
very good choice for a consumer with limited computational power that aims to maximize
its expected utility.
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9.4 Robustness Analysis

We made the following assumptions in all our previous simulations (except Fig. 3):

A1 The consumer has precise knowledge about the providers’ duration functions;

A2 The providers’ costs and service rates are correlated, i.e., providing a faster service
incurs a higher cost;

A3 The providers’ population is homogeneous, i.e., all providers’ costs and service rates
are chosen from the same distribution;

A4 The providers’ duration distributions are exponential.

To check the robustness of the results in a wide range of circumstances, in this section,
we study how the results change when each of these assumptions is relaxed. Since OCPA
and SOCPA have very close performance, to save space, we will only report the results of
robustness analysis for OCPA. The details of the simulations are in Appendix L.2 and only
the main results are provided here.

Robustness to incorrect information (violation of Assumption A1): Our analy-
sis shows that although the information inaccuracy worsens the performance of all outsourc-
ing mechanisms (except for benchmark Bm3 where the available information is not used
for decision making), its negative effect on OCPA is much lower than the other available
benchmarks. The main impact of the information inaccuracy is not on the expected value,
but instead on the variance of the utility obtained, and this is true for all the auctions.
This is due to the nature of the problem. In a procurement auction, the decisions are often
made based on the relative order and not absolute values of providers’ service rates. The
information inaccuracy, however, often changes the providers’ absolute service rates but less
frequently their relative order. This feature allows the auctions to bypass the inaccuracy
and still choose a good outsourcing strategy even if the information is inaccurate.

Independent costs and service rates (violation of Assumption A2): Our anal-
ysis shows that Assumption A2 has no substantial effect on the results and hence all the
trends discussed in Sections 9.2 and 9.3 still exist when this assumption is lifted. The only
notable impacts of relaxing Assumption A2 are as follows: (1) For each fixed outsourcing
mechanism, the expected utility that the consumer can achieve if the service rates and
service costs are independent is higher than what it obtains when a positive correlation
exists among them; (2) Unlike the correlated setting, where the consumer’s expected utility
approaches a stationary level when the population size n increases, in environments with
independent service rates and service costs, the consumer’s utility is strictly increasing in
n. The reasons of such behaviors are discussed in Appendix L.2.2.

Heterogeneous population (violation of Assumption A3): In Appendix L.2.3,
we investigate how different outsourcing mechanisms behave when providers are of different
types with different duration and cost distributions. Our results suggests that OCPA offers
an improvement over the benchmarks in the heterogeneous setting. Moreover, OCPA as well
as Bm2 and Bm4 are capable of well adapting their outsourcing strategies to the population
distribution.

Non-exponential duration distributions (violation of Assumption A4): In Ap-
pendix L.2.4, we explored different duration distributions and observed that the results are
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very similar to those reported in previous sections. The only meaningful difference is the
percentage of improvement of OCPA over Bm2. Our studies reveal that OCPA outper-
forms the best simultaneous auction more significantly (up to 59%) when delivery times
have multi-modal (mixture) distributions (Razali & Al-Wakeel, 2013). A multi-modal dis-
tribution is mainly used when the provider has two or more operation modes with different
average delivery times. In such distributions, when the time passes the first mean and the
task is not delivered yet, the consumer may believe that the provider is not in its best
mode and hence update its estimation of the provider’s delivery time accordingly. This
phenomenon reveals some valuable information to the consumer over time and often gives
it extra incentives to hire providers gradually.

10. Conclusions and Future Work

We have designed four contingent planning-based outsourcing auctions for situations where
the service costs are privately and asymmetrically distributed among self-interested providers.
These mechanisms allow the consumer to base its decisions on the important information it
gains over time through direct experience. Our proposed auctions OCPA and ECPA achieve
the highest possible consumer’s utility and the highest possible social welfare, respectively.
Low-complexity versions of these auctions, called SOCPA and SECPA, enable the consumer
to achieve the same goals with less than 1% performance loss in a much lower running time.

All our developed auctions motivate self-interested providers to (i) voluntarily partic-
ipate (i.e., interim individual rationality), (ii) report their costs truthfully irrespective of
what others do (i.e., dominant strategy incentive compatibility), and (iii) perform the task
upon recruitment with no possibility of experiencing regret in the future (i.e., ex-post indi-
vidual rationality). Moreover, we showed empirically that the consumer’s utility of OCPA
significantly surpasses those of the best available outsourcing technologies by up to 59%.
The results also reveal that ECPA outperforms the current state-of-the-art in terms of social
welfare by up to 137%.

We plan to extend our work in several ways in the future. First, we would like to
provide a theoretical upper bound for the average-case computational complexity of the
heuristic-based auctions provided in this paper. Although this is a challenging task, it is
worth attempting as the analysis may suggest further improvements to the auctions. The
techniques provided in (Zhang, 2021) might be a good starting point towards this goal.

Second, it would be interesting to extend our binary completion model, with success
values at V and failure values at 0, to settings where the partial completion is valuable.
This extension is particularly important for settings where an any-time algorithm, which
returns a valid solution even if it is interrupted before completion, is available for task
execution. This extension is reasonably straightforward, since a similar approach to what
we present in this paper can be applied to an updated utility function.

Third, we will deal with dynamic settings where some structural parameters, such as
the set of providers, the service costs, and/or the task’s value, can change over time. This
extension is important as it enables the mechanism to adapt its outsourcing strategy to
dynamically changing real-world environments. The dynamic mechanism design techniques
provided in (Gallien, 2006) and (Pavan et al., 2014) may shed some light on how this goal
can be achieved.
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Finally, we intend to investigate settings where service durations (and/or costs) of dif-
ferent providers are correlated. In such domains, the execution uncertainty is not associated
with the providers’ workloads, but associated with the task difficulty. To address such set-
tings, we will extend our branch-and-bound algorithm and also consider more general utility
functions that capture such correlations.
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Appendix A. Proof of Lemma 1

Equation (14) shows the expected utility of SP i in a contingent planning-based auctionM =
(A(.),π(.)). In the simultaneous equivalent of this auction, i.e., auction M̂ = (Â(.),π(.)),
when provider i submits bid bi and other providers submit c−i, provider i will be recruited
at time 0 with probability Pi(A(bi, c−i)). If this happens, provider i incurs cost ci to perform
the task and receives payment πi(bi, c−i) in compensation. Therefore, the expected utility
of provider i in auction M̂ can be derived by taking an expectation over the opponents’
submitted cost vectors c−i as follows:

Ui(Â, πi, ci, bi) =

∫
Pi(A(bi, c−i))[−ci + πi(bi, c−i)]f−i(c−i)dc−i. (31)

We can see that (31) is equal to (14), which completes the proof.

Appendix B. Proof of Lemma 2

The BIC and interim IR constraints (17b)- (17c) depend only on the providers’ expected
utilities. We have shown in Lemma 1 that the providers’ expected utilities in each auction
M and its simultaneous equivalent M̂ are the same. Therefore, each auction M satisfies
BIC and interim IR constraints if and only if its simultaneous equivalent M̂ does so.

It has been shown in (Myerson, 1981) that conditions (I1)-(I2) of Lemma 2 are necessary
and sufficient to ensure the BIC and interim IR of a randomized simultaneous auction M̂ .
Therefore, the same conditions can characterize the set of BIC and interim IR contingent
planning-based auctions.

Appendix C. Proof of Lemmas 3 and 4

The proofs of these two lemmas follow directly from the proof of Lemma 3 in (Myerson,
1981).

Appendix D. Proof of the Statement of Remark 4

The example below shows that mapping ψ does not keep the consumer’s expected utility
invariant. This example is inspired from Example 1.
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Example 2 Suppose that a high-valued task can be performed by two SPs. Provider 1 is
cheap to hire, but its delivery time varies based on its workload. Under a low workload
(prob. α), provider 1 delivers the task after D/2 units of time. However, it needs at least
2D time-units to deliver the task when working at a high workload (prob. 1−α). The second
provider is expensive to hire, but it is totally reliable and always delivers the task by time
D/2.

Consider a contingent planning-based auction M = (A(.),πA(.)), where

A((c1, c2)) =

{
((1, 0), (2, D/2)), if c1/c2 < α,

((2, 0)), if c1/c2 ≥ α,
(32)

and the payments πA(.) are derived based on the weighted threshold payment scheme. This
auction always guarantees task completion, i.e., Psucc(A(c), D) = 1. So, the consumer’s
expected utility from auction M is

U(A,πA) = V −
∫ ∑

i∈N
Pi(A(c))π

A
i (c)f(c)dc. (33)

Now, consider M̂ = (Â(.),πA(.)) as the simultaneous equivalent of auction M . This
auction uses the same outsourcing plan when c1/c2 ≥ α, but recruits providers 1 and 2 with
probabilities 1 and P2(((1, 0), (2, D/2))) = 1−α, when c1/c2 < α. Auction M̂ has the same
expected invocation cost as M , but a lower success probability. That is,

Psucc(Â(c), D) =

{
α2 − α+ 1, if c1/c2 < α,

1, if c1/c2 ≥ α.
(34)

Therefore, when the service costs come from a uniform distribution on [0, 1], we have

U(Â,πA) = V (1 + α3/2− α2/2)−
∫ ∑

i∈N
Pi(A(c))π

A
i (c)f(c)dc, (35)

and hence,

U(A,πA)− U(Â,πA) = V
α2

2
(1− α). (36)

This difference can be arbitrarily high when the task’s value V is high.

Appendix E. Potential of Gradual Recruitment in Reducing the
Invocation Cost

Example below illustrates the impact of gradual recruitment and the weighted threshold
payment scheme on lowering the invocation cost.

Example 3 Consider a task with value V = 4 and deadline D = 1. Suppose that there
are two strategic service providers that can execute the task. The time needed by each of
these providers to complete the task is exponentially distributed with mean 1, i.e., G1(t) =
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(a) Best simultaneous auction (b) Best auction with gradual recruit-
ment

Figure 8: Two allocation functions for the setting described in Example 3. To save space,
we use short notations to show the recruitment strategy of each region. For example, 1 is
a short notation for ρ = ((1, 0)), 1, 2 is a short notation for ρ = ((1, 0), (2, 0)), and 1 → 2
represents any recruitment strategy ρ = ((1, 0), (2, t)) with t > 0.

G2(t) = 1 − e−t. Each provider i’s cost ci, which is only known to itself, is drawn from
uniform distribution over [0, 1].

In this setting, we denote the best simultaneous auction by Mno = (Ano(.),πno(.)). The
allocation function Ano(.) of this auction is shown in Fig. 8a. This allocation function
instructs the consumer to recruit both providers simultaneously at time 0 if submitted bids
b1 and b2 are both below 0.465. Otherwise, the consumer should only recruit the provider
with the minimum submitted bid. The minimum price that the consumer should pay to
the providers to make auction Mno with allocation function Ano(.) incentive compatible and
individually rational is derived based on (23), as follows:

πno(b1, b2) =


(0.465, 0.465), if b1, b2 ≤ 0.465,

(b2, 0), if b2 > 0.465, b1 ≤ b2,
(0, b1), if b1 > 0.465, b2 < b1.

(37)

In each pair returned by payment function πno(.), the first and second elements are the
prices paid to providers 1 and 2, respectively, upon recruitment.

Now, let’s study what will happen if the consumer takes advantage of gradual recruitment.
In this case, it is optimal for the consumer to run auction M∗ = (A∗(.),πA∗

(.)) with
allocation function A∗(.) shown in Fig. 8b16. This allocation function divides the region
with b1, b2 ≤ 0.465 into three subregions below and provides a different outsourcing plan for
each subregion:

• Subregion 1 (b1, b2 ≤ 0.27): Both providers get recruited simultaneously at time 0.

16. The optimal allocation function can be computed by using Algorithm 1 provided in Section 6.
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• Subregion 2 (0.27 < b2 ≤ 0.465, b1 ≤ b2): Provider 1 gets recruited at time 0.
Provider 2 is recruited in the future (i.e., at a time τ∗(b2)), if the task is not completed
by then.

• Subregion 3 (0.27 < b1 ≤ 0.465, b2 < b1): Provider 2 gets recruited at time 0.
Provider 1 is recruited in the future (i.e., at a time τ∗(b1)), if the task is not completed
by then.

The optimal invocation time τ∗(.) can be derived by techniques developed in Section 6.1.
However, for the sake of simplicity and since in this example our goal is just to show how
gradual recruitment can reduce the payments, we consider a suboptimal invocation time
τ(b) = 0.3, for all 0.27 < b ≤ 0.465. With this invocation time, the invocation probability of
the provider who is second in the queue is 1−Gi(0.3) = 0.74.

For this allocation function, we can derive the optimal payment function according to
(23), as follows:

πA∗
(b1, b2) =



(0.414, 0.414), if (b1, b2) ∈ Subregion 1,

(0.3441 + 0.26b2, 0.465), if (b1, b2) ∈ Subregion 2,

(0.465, 0.3441 + 0.26b1), if (b1, b2) ∈ Subregion 3,

(b2, 0), if b2 > 0.465, b1 ≤ b2,
(0, b1), if b1 > 0.465, b2 < b1.

(38)

Comparing (38) with (37), we can see that in each Subregion 1-3, the gradual recruitment
reduces the total cost of incentivizing providers to submit true bids. This fact is more
attractive and apparent in Subregion 1, as in this region, the allocation function A∗ is
exactly the same as Ano. Therefore, the gradual recruitment has not changed the providers’
invocation probabilities in this region. However, due to the changes it has made to the
allocation functions of other regions, the payments of Subregion 1 are reduced as well.

To see the reason, let’s take a closer look at πA
∗

1 (b1, b2) for Subregion 1. In this subregion,
the invocation probability of provider 1 is 1, i.e., P1(A

∗(b1, b2)) = 1. If provider 1 increases
its bid b̂1, its invocation probability remains 1 up until b̂1 = 0.27, and then drops to 0.74,
for 0.27 < b̂1 ≤ 0.465. Provider 1 will have no chance for being invoked if it submits a bid
greater than 0.465. Based on these values, we can use (23) to compute payment πA

∗
1 (b1, b2)

for Subregion 1 as follows:

πA
∗

1 (b1, b2) = b1 +

∫ 0.27

b1

1db̂1 +

∫ 0.465

0.27
0.74db̂1 = 0.414. (39)

Comparing (39) with πno,1(b1, b2) = b1 +
∫ 0.465
b1

1db̂1 = 0.465 clarifies why payments of Sub-
region 1 are reduced when gradual recruitment is employed. In auction M∗, if providers
increase their bids, they will be at the risk of losing their first position in the recruitment
queue and going to the second position. If this happens, the providers’ invocation probabili-
ties and hence their expected utilities decrease. Therefore, the providers have less incentive
to submit higher bids and hence it is easier for the consumer to incentivize them to tell the
truth. □
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Appendix F. Proof of Lemma 5

Consider optimization problem (25) when the monotonicity constraint is relaxed. This
problem can be written as follows

max
A

∫
[V Psucc(A(c), D)−

∑
i∈N

ϕi(ci)Pi(A(c))]f(c)dc. (40)

We can see that in this problem, each provider i’s virtual cost ϕi(ci) works to the disadvan-
tage of its hiring. Therefore, if provider i’s virtual cost ϕi(ci) goes up when everything else
is unchanged, provider i’s invocation probability Pi(A(c)) cannot be increased in the opti-
mal solution. When the providers’ cost distributions are regular, each provider i’s virtual
cost ϕi(ci) is an increasing function of its cost ci. In this case, each provider i’s invocation
probability is a decreasing function of its reported cost as well. That is,

bi ≥ ci ⇒ Pi(A(bi, c−i)) ≤ Pi(A(ci, c−i)), ∀c−i. (41)

Substituting (41) into (19) results in

bi ≥ ci ⇒ Qi(A, bi) ≤ Qi(A, ci), (42)

which is equivalent to the monotonicity constraint (25b). This shows that the solution of
problem (40) is monotone and hence, completes the proof of Lemma 5.

Appendix G. Proof of Proposition 1

The BIC property of the OCPA auction can be easily derived from Lemmas 2, 3, and
5. However, to prove the stronger notion of IC, i.e., DSIC, we need the following lemma,
borrowed from (Manelli & Vincent, 2010) and adopted to our problem.

Lemma 6 A procurement auction M with allocation function A(.) and payment function
πA(.) derived in (23) is dominant-strategy incentive compatible if and only if for all i ∈ N
and c−i, Pi(A(bi, c−i)) is non-decreasing on bi.

The requirement of Lemma 6 is stronger than the monotonicity condition (25b), as it is not
on each provider i’s “expected” invocation probability Qi(A, bi), where the expectation is
taken over all others’ cost vectors, but rather on provider i’s invocation probability for each
cost vector c−i that might be reported by others.

However, we have already proven this stronger notion of monotonicity in the proof of
Lemma 5. In Appendix F, we proved that the solution of optimization problem (40) satisfies
both (41) and (42), which are equivalent to the stronger and weaker notions of monotonicity
mentioned above, respectively. Using this, we can conclude that the OCPA auction whose
allocation function is a solution to (40) satisfies the monotonicity requirement of Lemma 6
and hence is dominant strategy incentive compatible.

Appendix H. Proof of Proposition 2

Based on Proposition 1, all providers report their costs truthfully at the equilibrium. When
a provider i reports its cost truthfully, it receives payment

πA
∗

i (c) = ci +
1

Pi(A∗(c))

∫ cmax

ci

Pi(A
∗(b̂i, c−i))db̂i, (43)
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upon recruitment, which is clearly greater than its own cost ci. This fact is irrespective of
the other providers’ bids and hence proves the ex-post individual rationality of OCPA.

Appendix I. Proof of Proposition 3

We designed OCPA’s allocation function as the solution of optimization problem (25). The
OCPA’s payment function is also designed based on the weighted threshold payment scheme
(23). Therefore, the utility-optimality of OCPA among all auctions that satisfy BIC and
interim IR follows directly from Lemma 4.

Appendix J. Proof of Proposition 4

Based on Proposition 3, OCPA provides the consumer with the maximum expected utility
that any BIC and interim IR auction could provide. Consider the auction M̃ = (Ã(.), π̃(.))
with

Ã(c) = ∅, π̃i(c) = 0, ∀c ∈ Cn. (44)

This auction neither recruits any provider nor makes any payment. This auction is both
BIC and interim individually rational as the providers’ expected utilities are 0 regardless of
the cost they declare. Therefore, OCPA should outperform M̃ in terms of the consumer’s
expected utility. That is,

U(A∗,πA∗
) ≥ U(Ã, M̃) = 0. (45)

Appendix K. Proof of Proposition 5

Monotonicity: To prove strong notions of monotonicity stated in Lemma 6, we show
that a provider i’s invocation probability Pi(.) increases if it declares a lower cost ci. This
increase occurs for two reasons:

1. Increasing the chance of i being among the candidate providers oapx: In Algorithm 2,
each ordering o is valued according to the expected utility Lower(o) it can provide to
the consumer. For regular distributions, this expected utility is decreasing in terms
of ci for all i ∈ o (see (27)). Therefore, declaring a lower cost by provider i increases
the values of all orderings that include i, while keeps the value of all other orderings
fixed. This provides a higher chance for orderings containing i to beat other orderings
and get selected as the final ordering oapx, and ultimately increases the invocation
probability Pi(.).

2. Advancing provider i’s invocation: As discussed in Section 6.1, for each ordering
o = (1, . . . ,m), the providers’ optimal invocation times τ∗1 , . . . , τ

∗
m are derived by

solving an optimization problem that maximizes f(τ) under some constraints. It can
be shown, by some algebra, that each τ∗i is an increasing function of ϕi(ci). Therefore,
when distributions are regular, reporting a lower cost ci decreases ϕi(ci) and hence
τ∗i , and ultimately increases Pi(.).

Incentive compatibility and individual rationality: Given the monotonicity of allo-
cation function Aapx, dominant strategy IC and ex-post and interim IR of SOCPA auction
can be proved by following the same procedure as in the proofs of Propositions 1 and 2.
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Figure 9: improvement-over-Bm1

Appendix L. Supplementary Numerical Experiments

L.1 Comparison between OCPA and Best Single Auction (Bm1) in terms of
the Consumer’s Expected Utility

For each pair of task’s value V and deadline D, we run 1000 experiments for each number
of providers n ∈ {2, 4, 6, . . . , 20} with randomly generated providers. We then calculate the
expected utilities provided by OCPA and Best Single Auction (Bm1) for each fixed tuple
(V,D, n), and denote them by UOCPA(V,D, n) and UBm1(V,D, n), respectively. We then
derive the maximum percentage of improvement of OCPA over Bm1 for each pair of (V,D)
by taking the maximum over the number of providers n. That is, the number reported in
each cell (V,D) of Fig. 9 is calculated as follows:

I1(V,D) = max
n

UOCPA(V,D, n)− UBm1(V,D, n)

UBm1(V,D, n)
. (46)

We can see from Fig. 9 that for each task’s value V , the maximum percentage of
improvement I1 is first increasing and then decreasing in the deadline D. When the task’s
value goes up to 40, the maximum percentage of improvement goes up to 377%, and this
occurs at deadline D = 0.1.

L.2 Robustness Analysis

L.2.1 OCPA’s Robustness to Incorrect Information

Our goal in this section is to assess the robustness of the OCPA auction regarding the
consumer having incorrect information about providers’ duration functions. To this end,
for each percentage of inaccuracy δ ∈ (0, 40), we conduct several simulations where the
consumer’s belief about the providers’ service rates λ = (λ1, . . . , λn) has at most δ percent
error (i.e., the consumer’s belief is in a sphere with center λ and radius 0.01δ|λ|). In each
of these simulations, we compare the consumer’s expected utility when it employs different
available mechanisms.

The results are shown in Figs. 10a-10d for Settings 1-4, respectively. In Figs. 10a-10d,
we plot the distribution of consumer’s utility for different ranges of inaccuracy. We can see

1006



Optimal Auction Design

(a) Setting 1: V = 10, D = 3 (b) Setting 2: V = 4, D = 3

(c) Setting 3: V = 10, D = 1 (d) Setting 4: V = 4, D = 1

Figure 10: Robustness of OCPA as well as the other available benchmarks to information
inaccuracy

that the OCPA auction is better than the benchmarks in all the cases tested. More detailed
discussions of the results are provided in Section 9.4.

Remark 6 In this analysis, we do not include Bm3 as it does not utilize the consumer’s
information about the providers’ duration functions and hence is not affected by information
inaccuracy.

L.2.2 Independent Costs and Service Rates

In this section, we study how the results change if Assumption A2 is lifted. To this end, we
repeated all the simulations performed in Sections 9.2 and 9.3 in a new environment where
providers’ costs and service rates are chosen independently and uniformly from [0, 1].17

Such simulations show that Assumption A2 has no substantial effect on the results and
hence all the trends discussed in Sections 9.2 and 9.3 still exist when this assumption is

17. In this environment, unlike the previous one, there may exist a provider i that provides a faster service
than j at a lower cost. In such cases, provider i is said to dominate provider j.
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(a) Correlated environment (with Assumption
A2)

(b) Independent environment (without As-
sumption A2)

Figure 11: Impact of removing Assumption A2 on the relative performance of OCPA and
the available benchmarks

lifted. However, to show the nature of the changes caused by removing Assumption A2, we
compare the results of the same study as that in Fig. 5a for correlated and independent
environments in Fig. 11.

We can see from Fig. 11 that the trends of the curves in both environments are quite
similar. However, there are two differences in detail:

1. Each mechanism (except Bm3) provides a higher expected utility in the independent
environment compared to the correlated one.

2. The curves (except that of Bm3) get flat after certain points in the correlated envi-
ronment, however, the same cannot be observed in the independent setting.

The reason for the first difference is that in the correlated setting, the consumer has to
spend more money if it wants to recruit a faster provider. However, in the independent
environment, there is a chance that the consumer finds a fast provider at a low cost. This
feature reduces the invocation cost and increases the utility of any intelligent mechanism in
the independent environment. The second difference also comes from a similar reason. In
the independent environment, the chance of there existing a high-speed provider with a low
cost increases as the number of providers goes up. Therefore, all the available mechanisms
(except Bm3) provide higher utilities when more service providers are available.

Note that the performance of random gradual auction (Bm3) is not improved in inde-
pendent environments, as it does not make intelligent decisions and hence may invoke a
slow provider at a high cost with the same probability that it may invoke a fast provider
at a low cost. The effects of these two types of possible outcomes cancel each other out
and keep the consumer’s expected utility almost the same as what it was in a correlated
environment.
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Figure 12: The distribution of different recruitment strategies in the OCPA auction for a
heterogeneous environment with n = 10, θ = 0.5, V = 10, and D = 3. The y-axis shows
the numbers of fast and slow providers that are recruited at time 0. The x-axis shows how
many fast and slow providers should be recruited gradually at t > 0.

L.2.3 Heterogeneous Population

Consider an environment where the population is not homogeneous, but consists of two
groups of providers with different properties. Providers of group 1 (G1) are cheap to hire
but slow in delivering the task (i.e. 0 < c, λ < 0.5), while providers of the second group
(G2) are high-speed but expensive to hire (i.e. 0.5 < c, λ < 1). We are interested to find the
answers to the following three questions: 1) How does the optimal outsourcing plan behave
in heterogeneous environments? 2) How much does the performance of OCPA depend
on the heterogeneity of the environment? 3) How does OCPA compare to the available
benchmarks in heterogeneous environments?

To answer the first question, we made several studies over environments with different
percentages θ of cheap-slow providers, different task values V , and different deadlines D.
We show one representative sample of the results in Fig. 12, where n = 10, θ = 0.5, V = 10,
and D = 3. This figure shows the distribution of different recruitment strategies in the
OCPA auction. We see that in the most popular outsourcing plan, which we call fast-slow-
fast (FSF), the consumer recruits one fast provider at time 0 and then recruits one slow
and one fast provider gradually over time. In the second popular strategy, however, the
consumer recruits two slow providers at time 0, recruits two more slow providers gradually
over time, and then recruits a fast provider if none of the slow providers was successful in
delivering the task. Popular recruitment strategies vary by θ, V , and D, however FSF is
often among the most popular ones.

To answer the second and third questions, we compare the performance of OCPA with
those of other benchmarks when the percentage θ of cheap-slow providers varies between 0
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(a) Setting 1: V = 10, D = 3 (b) Setting 2: V = 4, D = 3

(c) Setting 3: V = 10, D = 1 (d) Setting 4: V = 4, D = 1

Figure 13: Comparison of the performance of the OCPA auction with benchmarks in terms
of consumer’s expected utility in heterogeneous setting.

to 1. The results of this comparison in Settings 1-4 are shown in Figs. 13a-13d, respectively.
Fig. 13 suggests that OCPA offers an improvement over the benchmarks in the heteroge-
neous setting. Moreover, OCPA as well as Bm2 and Bm5 are capable of adapting such that
they provide very stable utility in the whole region. In fact, the utility provided by OCPA
has less than 12% variation, while the utilities provided by Bm1, Bm3, and Bm4, have over
40%, 48%, and 36%, variations, respectively.

L.2.4 Non-Exponential Duration Distributions

In Fig. 14, we bring one simple example of the environments when the providers have non-
exponential duration distributions.18 In this example, we consider two groups of providers,
where each provider of the first group has a deterministic delivery time D/2, and the de-
livery time of the second-group providers has a multi-modal distribution with two modes;
in the first mode, the provider needs D/2 units of time to deliver the task, however, the
delivery time of the second mode is 2D. The second group of providers can be in any of the

18. This example is similar to Example 1 in Section 4.1.
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(a) Consumer’s expected utility versus the num-
ber of providers

(b) Percentage of increase in consumer’s utility,
success probability, and invocation cost for OCPA
compared to Bm2

Figure 14: Performance comparison between OCPA and the benchmarks when the delivery
times of a group of providers have multi-modal distributions and V = 5.

modes with probability 0.5. We show the performance of OCPA and the benchmarks in Fig.
14. In Fig. 14a, we present the consumer’s expected utilities provided by different mecha-
nisms. The analysis of variance (Anova) and Tukey’s test revealed statistically significant
differences in the utilities provided by OCPA compared to the available benchmarks.

Fig. 14b shows the percentage of increase in the consumer’s expected utility, success
probability, and invocation cost for OCPA compared to the best simultaneous auction Bm2.
We can see that OCPA achieves 59% improvement in utility and 79% in success probability
over Bm2 when the number of providers is low, i.e., n = 2. In this case, the consumer
needs to spend 150% more money compared to Bm2 to obtain these advantages. When
the number of providers goes up (n ≥ 15), the OCPA auction provides 12% more utility
compared to Bm2 with an 8.6% increase in success probability and 11% reduction in total
costs.
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aggregated anonymous feedback. In Proceedings of the 34th International Conference
on Machine Learning (ICML).

Pryor, L., & Collins, G. (1996). Planning for contingencies: A decision-based approach.
Journal of Artificial Intelligence Research (JAIR), 4, 287–339.

Pycia, M., & Woodward, K. (2021). Auctions of Homogeneous Goods: A Case for Pay-as-
Bid. Cepr discussion papers 15656, C.E.P.R. Discussion Papers.

Ramchurn, S. D., Mezzetti, C., Giovannucci, A., Rodriguez-Aguilar, J. A., Dash, R. K., &
Jennings, N. R. (2009). Trust-based mechanisms for robust and efficient task allocation
in the presence of execution uncertainty. Journal of Artificial Intelligence Research
(JAIR), 35, 119–159.

Razali, A. M., & Al-Wakeel, A. A. (2013). Mixture weibull distributions for fitting failure
times data. Applied Mathematics and Computation, 219 (24), 11358–11364.

Reddy, Y. M., & Ramachandran, M. (2008). Outsourcing of finance and accounting opera-
tions: The feasibility of the vertical in the Indian context. ICFAI Journal of Services
Marketing, 6 (1).

Riley, J. G., & Samuelson, W. F. (1981). Optimal auctions. The American Economic
Review, 71 (3), 381–392.

Rintanen, J. (2004). Complexity of planning with partial observability.. In Proceedings of
the 14th International Conference on Automated Planning and Scheduling (ICAPS),
pp. 345–354.

Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22 (3), 400 – 407.

Saadatmandi, A., & Dehghan, M. (2008). The numerical solution of problems in calculus
of variation using chebyshev finite difference method. Physics Letters A, 372 (22),
4037–4040.

Salek, M., & Kempe, D. (2008). Auctions for share-averse bidders. In Proceedings of the 4th
International Workshop on Internet and Network Economics (WINE), pp. 609–620.

Shen, K., & Xie, M. (1990). On the increase of system reliability by parallel redundancy.
IEEE Transactions on Reliability, 39 (5), 607–611.

Shmaryahu, D., Shani, G., & Hoffmann, J. (2019). Comparative criteria for partially ob-
servable contingent planning. Autonomous Agents and Multi-Agent Systems, 33 (5),
481–517.

Stanford-Smith, B. (2000). Vesi-the solution for interorganisational dynamic supply chains.
E-business: Key Issues, Applications and Technologies, 475.

Stein, S., Gerding, E. H., Rogers, A., Larson, K., & Jennings, N. R. (2011). Algorithms
and mechanisms for procuring services with uncertain durations using redundancy.
Artificial Intelligence, 175 (14-15), 2021–2060.

1017



Farhadi, Chli, & Jennings

Tai, Y.-M., Ho, C.-F., & Wu, W.-H. (2010). The performance impact of implementing web-
based e-procurement systems. International Journal of Production Research, 48 (18),
5397–5414.

Tillman, F. A., Hwang, C.-L., & Kuo, W. (1977). Optimization techniques for system
reliability with redundancy:a review. IEEE Transactions on Reliability, 26 (3), 148–
155.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance, 16 (1), 8–37.

Vries, S., & Vohra, R. (2003). Combinatorial auctions: A survey. INFORMS Journal on
Computing, 15, 284–309.

Wang, Y., Niu, B., Guo, P., & Song, J.-S. (2021). Direct sourcing or agent sourcing?
contract negotiation in procurement outsourcing. Manufacturing & Service Operations
Management, 23 (2), 294–310.

Weitzman, M. L. (1979). Optimal search for the best alternative. Econometrica, 47 (3),
641–654.

Winsper, M., & Chli, M. (2013). Decentralized supply chain formation using max-sum loopy
belief propagation. Computational Intelligence, 29 (2), 281–309.

Xu, Y., Zhu, K., & Li, S. (2020). Hierarchical combinatorial auction in computing resource
allocation for mobile blockchain. Wireless Communications and Mobile Computing,
2020, 1–14.

Yan, Q. (2011). Mechanism design via correlation gap. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 710–719.

Yao, T., Jiang, B., Young, S. T., & Talluri, S. (2010). Outsourcing timing, contract selection,
and negotiation. International Journal of Production Research, 48 (2), 305–326.

You, P.-S., & Chen, T.-C. (2005). An efficient heuristic for series–parallel redundant relia-
bility problems. Computers & operations research, 32 (8), 2117–2127.

Zhan, R. L. (2008). Optimality and efficiency in auctions design: A survey. In Pareto
Optimality, Game Theory and Equilibria, pp. 437–454.

Zhang, J. (2021). Average-case approximation ratio of scheduling without payments. Algo-
rithmica, 83 (6), 1638–1652.

Zhang, L. (2018). Simultaneous Auctions with Item Bidding. Ph.D. thesis, McGill University.

Zhang, Y., Manisterski, E., Kraus, S., Subrahmanian, V., & Peleg, D. (2009). Computing
the fault tolerance of multi-agent deployment. Artificial Intelligence, 173 (3-4), 437–
465.

Zhang, Y., & Verwer, S. (2012). Mechanism for robust procurements. In Proceedings of
the 15th International Conference on Principles and Practice of Multi-Agent Systems
(PRIMA), pp. 77–91.

Zheng, R., Dai, T., Sycara, K., & Chakraborty, N. (2016). Automated multilateral negoti-
ation on multiple issues with private information. INFORMS Journal on Computing,
28 (4), 612–628.

1018


