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Abstract
Combinatorics math problems are often used as a benchmark to test human cognitive and log-

ical problem-solving skills. These problems are concerned with counting the number of solutions
that exist in a specific scenario that is sketched in natural language. Humans are adept at solving
such problems as they can identify commonly occurring structures in the questions for which a
closed-form formula exists for computing the answer. These formulas exploit the exchangeability
of objects and symmetries to avoid a brute-force enumeration of all possible solutions. Unfortu-
nately, current AI approaches are still unable to solve combinatorial problems in this way. This
paper aims to fill this gap by developing novel AI techniques for representing and solving such
problems. It makes the following five contributions. First, we identify a class of combinatorics
math problems which traditional lifted counting techniques fail to model or solve efficiently. Sec-
ond, we propose a novel declarative language for this class of problems. Third, we propose novel
lifted solving algorithms bridging probabilistic inference techniques and constraint programming.
Fourth, we implement them in a lifted solver that solves efficiently the class of problems under
investigation. Finally, we evaluate our contributions on a real-world combinatorics math problems
dataset and synthetic benchmarks.

1. Introduction

One of the fundamental goals of AI is to outperform humans on tests associated with intelligence
and advanced cognitive skills, such as puzzles (Chesani et al., 2017), games (Silver et al., 2016)
and math problems (Mitra & Baral, 2016; Roy & Roth, 2018; Dries et al., 2017). Among math
problems, combinatorics math problems have received less attention in the problem-solving AI
literature despite posing interesting and relevant challenges. In combinatorics math problems the
task is to count how many configurations of a finite set of objects satisfy a given set of constraints.
For instance:

P1. A kit of toy shapes contains five triangles and two squares. One triangle and one square are red.
Another triangle and the other square are blue and the remaining triangles are green. In how many
different rows of four objects can the shapes be arranged if the two squares are included and the
second object is green?

P2. Given the same set of shapes as P1, in how many ways can the objects be divided into three
(non-empty) groups such that the green objects all belong to the same group?

These examples fall into the category of math word problems (Zhang, Wang, Zhang, Dai, &
Shen, 2020), which are concerned with the task of solving a math problem described in natural
language. This task presents multiple challenges ranging from interpreting the text in natural lan-
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Figure 1: Visualization of P1 (left) and P2 (right).

guage down to defining a solving procedure. Dries et al. (2017) and Suster, Fivez, Totis, Kimmig,
Davis, De Raedt, and Daelemans (2021) introduced a two-step approach for probability problems,
in which text is first mapped to a model expressed in a modelling language, that is then solved in a
second step (Figure 2). They showed that this two-step approach can solve more problems than us-
ing an end-to-end neural model. The modelling language is formal and should allow to declaratively
represent and reason about the math word problems under consideration.

Therefore, in order to apply a declarative approach to combinatorics math problems, there are
two key points to address:

• Modelling: design a modelling language for modelling combinatorics problems.

• Reasoning: design a solver that is able to (efficiently) find solutions to such problems.

For combinatorics math problems, there are currently no elegant solutions for neither modelling
nor reasoning. Declarative models should directly support primitives for standard concepts from
combinatorics (such as permutations, repeated objects, sets,. . . ). Furthermore, solvers should be
able to count without enumerating all solutions, that is, solvers should work at the lifted level. The
key contribution of this paper is that we, for the first time, introduce a modelling language and
accompanying solver to directly support combinatorics math problems.

While combinatorial counting problems can sometimes be encoded in particular modelling lan-
guages (such as logic and Constraint Satisfaction Problems) and even solved, the encodings are, as
we shall show in Section 2, often indirect, cumbersome and complicated, or the solvers are inef-
ficient as they enumerate all solutions. We will say that such frameworks do not directly support
combinatorial counting.

Modelling combinatorics math problems requires support for three fundamental primitives: 1)
multisets, 2) configurations and 3) constraints. First, multisets are fundamental for representing the
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Figure 2: Declarative approach to math word problems.
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Problem Multiset Configuration Constraints

P3. A shipment of 12 different TVs contains 3 defec-
tive ones. In how many ways can a hotel purchase
5 of these TVs and receive at least 2 of the defective
ones? Solution:

(3
2

)
·
(9

3

)
+
(3

3

)
·
(9

2

)
= 288

set
{TV1, . . . ,TV12}

set set of size 5
with at least 2
defective TVs

P4. Fourteen construction workers are to be assigned
to three different tasks. Seven workers are needed for
mixing cement, five for laying bricks, and two for car-
rying the bricks to the brick layers. In how many
different ways can the workers be assigned to these
tasks? Solution:

(14
7

)
·
(7

5

)
·
(2

2

)
= 72072

set
{W1, . . . ,W14}

set of sets 3 groups of
fixed sizes (7,

5, 2)

P5. In how many distinguishable ways can the letters
in B A N A N A be written? Solution: 6!

1!·3!·2! = 60

multiset
{3×A,2×
N,1×B}

permutation

Table 1: Combinatorics math problems from Dries et al. (2017). The solutions are obtained by applying
counting rules based on the sizes of the groups of objects defined.

objects in the domain, to model identical (repeated) objects (e.g. green triangles in P1). Second,
configurations define how these objects are grouped together. We distinguish level 1 configurations,
where there is a single group of objects, such as a set or a permutation (e.g. “rows” in P1), from level
2 configurations, where grouping is nested, such as a set of sets, also called partitions (e.g. “objects
[. . . ] divided into three (non-empty) groups” in P2). We also distinguish between ordered and un-
ordered configurations, e.g. permutations or sets. Third, constraints specify desired properties of
the configuration (e.g. “the second object is green” in P1). Table 1 includes a selection of real-world
examples of combinatorics math problems from the dataset of Dries et al. (2017), along with the re-
quired modelling primitives. Existing languages such as logic and Constraint Satisfaction Problems
(CSPs) do not directly support the modelling of multi-sets and certain types of configurations, (cf.
Section 2).

Reasoning, on the other hand, requires the identification of independent subproblems that allow
for exploiting the well-known counting formulas from combinatorics as illustrated in Table 1. This
is akin to lifted probabilistic inference (Van den Broeck, 2015; Poole, 2003). The solutions for prob-
lems P3 to P5 are illustrations of lifted inference where the solution is derived from (a combination
of) counting rules considering the size of groups of objects. Moreover, in P3 we divide the problem
into two subproblems: counting the purchases first with 2 defective TVs and then with 3.

Solvers for traditional declarative frameworks such as logic and CSPs are based on proposi-
tional reasoning, that is, counting at the level of individual objects that are explicitly enumerated or
grounded. The number of combinations in combinatorics problems typically grows exponentially in
the number of objects involved, therefore counting on a propositional level is prohibitively expen-
sive. On the other hand, existing probabilistic lifted inference techniques are severely limited in the
kind of model that they can lift. We shall discuss the difficulty in applying them to combinatorial
counting in Section 2.
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Combinatorics math problems represent an interesting position between modelling and reason-
ing under constraints and the lifted counting strategies developed in the context of (probabilistic)
first-order logic theories. Unfortunately, both approaches fall short w.r.t. the modelling and/or rea-
soning requirements, as they do not directly support the necessary primitives for combinatorics math
problems. This does not come at a surprise as lifted inference languages were designed to model
joint probability distributions using first-order logic, which does not directly support multisets, con-
figurations, and constraints. CSP languages typically have direct support for sets, constraints, and
some types of configurations, but do not directly support multisets. Moreover, CSP solvers are
limited too, because counting is typically done by enumeration. Lifted probabilistic inference tech-
niques (Poole, 2003) can be applied to some types of problems, but cannot exploit many high-level
reasoning opportunities offered by the constraints typically used in combinatorial counting.

In Section 2 we discuss the details of these limitations and we address them in the remainder of
this paper. In particular, our contributions are as follows:

1. In Section 3 we define lifted counting techniques to reason over general counting constrained
satisfaction problems (#CSPs).

2. In Section 4 we identify a class of combinatorics math problems which traditional lifted count-
ing techniques fail to model or solve efficiently, and

3. we address the modelling gap by defining a dedicated modelling language, CoLa.

4. In Section 5 we present a lifted solver, CoSo, for CoLa problems. CoSo implements the lifted
reasoning techniques presented in Section 3 for the combinatorics math problems formalized
in Section 4.

5. In Section 6 we compare different propositional approaches to our lifted solver, showing
how lifted inference outperforms propositional techniques on both a real-world dataset (Dries
et al., 2017) and synthetic benchmarks.

We find that we can represent and correctly solve 88% of the real-world problems using CoLa
and CoSo. Moreover, we found that 32% of the questions cannot be solved by directly applying
a counting rule. In these cases CoSo divides the problem into independent subproblems, solves
each one, and then combines those solutions to arrive at the final answer. The comparison of CoSo
with propositional methods on a set of real and synthetic benchmarks shows how a lifted approach
can bring significant speed-ups in counting the number of valid configurations. At the same time
with CoLa we show that the level of abstraction offered by the modelling language influences the
opportunities for lifted reasoning and counting.

2. Related Work and Motivation

In this section we discuss the limitations of traditional declarative frameworks concerning modelling
and reasoning over combinatorics math problems. We consider Constraint Satisfaction Problems
(CSPs), for their constraint-oriented modelling approach, and probabilistic reasoning frameworks,
for their lifted counting techniques based on grouping and symmetries. We focus on the key as-
pects that most combinatorics math problems share, namely, the presence of 1) multisets, that is,
objects with repeated (indistinguishable) copies 2) configurations, in particular unordered and level
2 configurations and 3) constraints on the given configuration.
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2.1 Constraint Satisfaction Problems

Past work on CSPs offers modelling languages which directly support sets and constraints, but fails
to provide efficient solving techniques for the counting problem.

Modelling Primitive types for multisets and partitions (a level 2 configuration) are missing alto-
gether in most popular general-purpose constraint modelling languages, for instance MiniZinc (Nether-
cote et al., 2007). Zinc (Marriott et al., 2008) instead supports nested types, therefore partitions, but
not repeated objects, thus multisets.

On the other hand, ESSENCE (Frisch et al., 2008) is a constraint language designed to specify
combinatorial problems. ESSENCE supports a wide range of types for combinatorial problems, in-
cluding multisets and partitions. There are however limitations regarding multisets. First, a variable
can be of type multiset but not an object from a multiset. In fact, given a set S and a size s, we can
define a variable of type multiset as any multiset of size s of objects in S (the domain is a set of mul-
tisets, level 2). However, variables cannot be of type object from a multiset of objects (the domain is
a multiset, level 1). Second, unnamed types, that is, the declaration of a set from a label and a size,
do not express the indistinguishable repetition of the same object, as multisets do, but rather a set
of interchangeable objects that are internally labelled. This internal labelling is used in the current
interpretation of Conjure (Akgün et al., 2022), solver paired with ESSENCE. To illustrate the ef-
fect of Conjure’s current design choice, consider a multiset ns = {N,N}, which repeats the letter N
twice. Let ns be the unnamed type in ESSENCE letting ns be new type of size 2 which is
labelled internally to two different constants, e.g. ns1 and ns2. Consequently, when searching for the
sequences of length 2 of elements in ns, Conjure returns 4 solutions ([ns1,ns1],[ns1,ns2],[ns2,ns1],
[ns2,ns2]), instead of the only sequence [N,N]. We would like to emphasize that this is an implemen-
tation choice, and future versions of the solver (or another solver designed to work with ESSENCE)
may include symmetry breaking on unnamed types that results in removing some or all of these
redundant solutions.

Counting Constraint modelling languages are usually associated with solvers designed to answer
the satisfiability question, i.e. “Does a solution exist?”, rather than the counting question we are
concerned with, i.e. “How many solutions exist?”. While many solvers can find all solutions,
usually this is done by enumeration, which is highly inefficient for combinatorial problems. For ex-
ample, Conjure is a refinement system that translates a model in ESSENCE to ESSENCE’, a subset of
ESSENCE. ESSENCE’ lacks the high-level features of ESSENCE such as the unnamed types, quan-
tifications over variables, or nested types. Similarly to the problems expressed in Zinc or MiniZinc,
ESSENCE’ can then be compiled for different constraint solvers that can enumerate the satisfiable
variable assignments. Tractability of enumeration has been studied in the past, for example by Greco
and Scarcello (2010), where the focus is on algorithms that enumerate solutions with polynomial
delay, that is, given an instance of size n, they require time O(p(n)), where p(·) is a polynomial, to
discover if there are no solutions, or output all solutions in a way that a new solution is computed
in time O(p(n)) from the previous one. On the other hand, the counting question, that is, solving
counting constraint satisfaction problems (#CSPs), has been approached in the past from a theoreti-
cal perspective regarding tractability (Gottlob, Leone, & Scarcello, 2000; Bulatov, 2013) rather than
designing a solver that can efficiently answer a counting question, as we do in this paper.
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2.2 Lifted Probabilistic Inference

The problem of counting the number of valid assignments for a set of (random) variables plays a
central role in probabilistic lifted inference, but modelling combinatorics math problems is limited
because variables and constants always receive a unique identifier. This prevents a direct support
for multisets and unordered configurations, as we show in the following paragraphs.

Modelling Lifted probabilistic inference frameworks are based on languages that are not suited
for the problem at hand, because they offer primitives to model joint probability distributions rather
than combinatorial objects and constraints. In fact, these languages map to a representation based
on first-order logic which has no direct support for the three key aspects of combinatorics math
problems: multisets, configurations of level 2 and sets, and constraints. First order logic frameworks
reason over a set of constants which are always identified with a unique label, therefore multisets are
not directly supported. Different variables are also uniquely identified, that is, if v1 and v2 represent
two different constants then the assignment v1 = C1,v2 = C2 is different from v1 = C2,v2 = C1,
therefore an order is induced and unordered configurations are not directly supported.

Example 1. Consider P3: we can model in first-order logic a 5-subset of 12 TVs by defining a set of
5 variables representing the selected objects. We specify the set of TVs with constants and a unary
predicate tvs/1, e.g. tvs(TV1), . . . , tvs(TV12). Then the formula

tvs(tv1)∧·· ·∧ tvs(tv5)∧ tv1 < tv2∧ tv2 < tv3∧·· ·∧ tv4 < tv5 (1)

represents a subset of 5 TVs as follows. Variables tv1, . . . , tv5 correspond to 5 TVs from the set
tvs/1; however, variables are associated with a unique identifier, therefore additional constraints
are needed to exclude the (indistinguishable) permutations of the assignments. This is done by
defining an order relation < over the constants to exclude for each satisfying assignment for vari-
ables tvi the indistinguishable permutations w.r.t. <. As we later show, lifted counting over < is not
supported in all lifted reasoning frameworks. Counting the number of assignments to variables tvi

that satisfy Formula 1 thus corresponds to the number of subsets of 5 TVs.

Moreover, unique identifiers prevent the encoding of partitions altogether.

Example 2. Encoding the unordered groups in P2 means modelling a set of sets (partition). If each
subset is identified by a different predicate as in Example 1, e.g. group1/1, group2/1, group3/1,
then an ordering is established by the labels. Similarly, if we represent groups as a set of constants
G1,G2,G3, e.g. contains(Gi,x) defines that group Gi contains object x, then we order each group
with the identifiers of the corresponding constant. Therefore, the lack of indistinguishable objects
in first order logic prevents modelling this problem.

The lack of direct support for constraints also prevents lifted reasoning opportunities, for exam-
ple with aggregate constraints. Aggregate constraints depend only on the set of values assigned to
the variables, e.g. stating that any two of the purchased TVs is defective, instead of specifying that
the first first and the second are defective, or the first and the third,. . . However, without dedicated
language constructs the combinations of specific assignments have to be explicitly modelled, thus
preventing reasoning at the lifted level.

Example 3. Consider again P3 and let df/1 be a predicate identifying defective TVs. Following
Example 1 we can enforce the number of defective TVs by conjoining the logic formula (1) with a
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formula specifying the possible ways that 2 out of the 5 selected TVs are defective, i.e. belong to the
set df/1:

df (tv1)∧df (tv2)∧¬df (tv3)∧¬df (tv4)∧¬df (tv5))∨
df (tv1)∧¬df (tv2)∧df (tv3)¬df (tv4)∧¬df (tv5))∨
·· ·∨
¬df (tv1)∧¬df (tv2)∧¬df (tv3)∧df (tv4)∧df (tv5)

This has to be also repeated for the remaining cases of “at least two”, i.e. 3,4 and 5 defective TVs
in the purchased set. This means enumerating in the model the possible configurations satisfying
the counting constraint, thus preventing a lifted counting.

These limitations are inherent to the formalisms and languages based on (first-order) logic, such
as Answer Set Programming, ASP (Gebser, Kaminski, Kaufmann, & Schaub, 2012), Prolog (van
Emden & Kowalski, 1976), and the conjunctive normal form (CNF) required by #SAT solvers (Thur-
ley, 2006). In particular, sets and multisets are not first-class citizens of these languages. Therefore,
the aforementioned limitations in manipulating these types both as variable objects (Example 1)
and domains (Example 2) arise. ASP offers counting aggregates to compactly encode the num-
ber of true literals l1, . . . , ln in an expression of the form l #count {l1, ..., ln} u. However,
Gebser et al. (2012) remark that “if the literals do not belong to domain predicates, the value of an
aggregate is not known during grounding, in which case gringo unwraps all possible outcomes of
the aggregate’s evaluation”. This means that reasoning on aggregate operators, such as counting,
over variable configurations still resorts to explicitly grounding out the different combinations and
reasoning over individual objects. Consider for instance the following example:

Example 4. The following ASP program selects 3 TVs out of a set of 3 defective and 3 working TVs
with a counting aggregate of defective TVs:
defective(tv1). defective(tv2). defective(tv3).

tvs(X) :- defective(X).

working(tv4). working(tv5). working(tv6).

tvs(X) :- working(X).

3{purchase(N): tvs(N)} 3.

n def(C) :- C=#count{S:purchase(S),defective(S)}.
In the grounded program all the possible outcomes of the counting aggregate depending on the
choice of purchased TVs are generated:
n def(0):-0=#count{tv1:purchase(tv1);tv2:purchase(tv2);tv3:purchase(tv3)}.
n def(1):-1=#count{tv1:purchase(tv1);tv2:purchase(tv2);tv3:purchase(tv3)}.
n def(2):-2=#count{tv1:purchase(tv1);tv2:purchase(tv2);tv3:purchase(tv3)}.
n def(3):-3=#count{tv1:purchase(tv1);tv2:purchase(tv2);tv3:purchase(tv3)}.

Therefore, counting aggregates over a variable configuration still leads to grounding out ex-
plicitly all possible outcomes {0,1,2,3}. Moreover, each combination requires considering all
possible choices that lead to the specific outcome. In fact, each grounded count aggregate in the
body is conditioned on which specific TV is chosen for purchase, i.e. which predicates are true in
{tv1:purchase(tv1);tv2:purchase(tv2);tv3:purchase(tv3)}.
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Sets/
Multisets

Configurations Constraint
arity

Modelling Lifted
counting

Forclift x x = 2 x X
WFOMC FO2 x x ≥ 2 x X

GC-FOVE x x ≥ 2 x X
CSPs sets X ≥ 2 X x

CoLa+CoSo X X ≥ 2 X X

Table 2: Probabilistic frameworks (Forclift, GC-FOVE) are limited in modelling by the input lan-
guage and first-order logic, but implement lifted counting algorithms with limited constraint sup-
port. On the other hand CSP frameworks offer direct support for sets and constraints but not for
multisets and lifted counting.

In Prolog, where such a counting construct is not available, the user has to explicitly write these
rules for the different combinations of selections and counts. As for CNF, this format expresses
a propositional theory as the logical conjunction C1 ∧ ·· · ∧Cn of clauses, where a clause Ci is a
disjunction v1∨·· ·∨vm of a number of variables vi or their negations ¬vi. Therefore, if a first-order
theory contains an exponential number of rules to encode aggregates, then the CNF would be simply
a rewriting in a different (propositional) format of the such logic rules.

Counting Despite being based on principles similar to the ones used by humans on combinatorics
problems, lifted probabilistic frameworks struggle at offering a satisfactory approach to the reason-
ing task. This is true even for problems where language is not a limitation, i.e. when all objects
are uniquely identifiable and the configuration is ordered. Combinatorics math problems are usu-
ally solved in two ways: 1) by applying a counting rule based on the size of the sets involved, e.g.
for n objects there are n! permutations or

(n
k

)
subsets of size k, or 2) by decomposing the problem

into subproblems where the first method is applicable, and combining them in a count for the main
problem.

This is the same principle underlying lifted probabilistic inference (Poole, 2003), which reasons
about multiple individuals as a group when there is no additional information that makes relevant
distinctions between the individuals. Lifted probabilistic inference techniques apply this principle
to two of the main probabilistic inference approaches: variable elimination (de Salvo Braz, Amir,
& Roth, 2005; Taghipour, Fierens, Davis, & Blockeel, 2012) and knowledge compilation (Van den
Broeck, Taghipour, Meert, Davis, & De Raedt, 2011). Lifting can lead to polynomial complex-
ity results for some classes of problems (Van den Broeck, Meert, & Darwiche, 2014; Kazemi,
Kimmig, Van den Broeck, & Poole, 2016) despite the fact that the #SAT problem (also known as
propositional model counting) reduces to probabilistic inference (Cooper, 1990), which is thus #P-
complete (Valiant, 1979). This motivates the relevance of lifted reasoning for efficient probabilistic
inference. Algebraic Model Counting (Kimmig, Van den Broeck, & De Raedt, 2017) generalizes
probabilistic inference, #SAT, and Weighted Model Counting and shows how knowledge compila-
tion solves any Algebraic Model Counting problem. Note that in this context the term “model” is
used to denote a satisfying assignment to the variables, rather than the problem specification. We
now discuss the characteristics of the main lifted reasoning frameworks, summarized in Table 2.

Weighted First-Order Model Counting (WFOMC), implemented in Forclift (Van den Broeck
et al., 2011), lifts a Weighted Model Counting task with a set of lifted knowledge compilation

8



LIFTED REASONING FOR COMBINATORIAL COUNTING

formulas. However, such formulas can lift only binary constraints of the form v∈D and t1 = t2 (and
their negation), where v is a variable, D is a set of constants and ti is either a variable or a constant.

WFOMC with counting quantifiers (Kuzelka, 2021) considers the two-variable fragment of first-
order logic (FO2) with counting quantifiers (Gradel, Otto, & Rosen, 1997) and shows that WFOMC
can be extended to this class of problems for polynomial-time inference. Counting quantifiers in
FO2 in terms of modelling can play a similar role as the counting constraint shown in Example 3.
This framework however is based on first-order logic, therefore the aforementioned limitations re-
garding sets and multisets apply. This means that problems involving unordered configurations
(sets, partitions) or configurations with repetition (multisets) are not directly supported.

GC-FOVE (Taghipour et al., 2012) introduces lifted techniques under arbitrary constraints us-
ing constraint trees to represent the set of admissible assignments to variables. However, this ap-
proach can struggle with some kind of constraints, for instance the constraint tree for a non-repeated
(all-different) type of configuration (that is, a non-repetition constraint on the variables), e.g. a per-
mutation, would correspond to a tree enumerating all possible permutations of the variables, thus
precluding lifted optimizations.

3. Lifted Reasoning over Counting Problems

Probabilistic lifted reasoning techniques are designed for first-order logic representations and not
CSPs. CSPs on the other hand are a more suitable formal representation than first-order logic, but
they rely on enumeration for counting. For this reason, in this section we introduce the missing
intersection of the two approaches: general lifted reasoning techniques for #CSPs based on the
principles of probabilistic lifted reasoning. The section is organized as follows: first, we present the
necessary background and notation for #CSPs and probabilistic lifted reasoning (Section 3.1) and
then propose novel lifted reasoning techniques for #CSPs (Section 3.2).

3.1 Background

We divide the background information between #CSPs and lifted probabilistic inference techniques.

3.1.1 #CSPS

A counting Constraint Satisfaction Problem, #CSP, is the task of counting the number of solutions
of a CSP.

Definition 1. (Rossi, van Beek, & Walsh, 2006) A Constraint Satisfaction Problem (CSP) P is a
triple P = 〈V,D,C〉 where V = 〈v1, . . . ,vn〉 is a n-tuple of variables, D = 〈D1, . . .Dn〉 is a corre-
sponding set of domains such that vi ∈ Di, C is a set of constraints.

Note that a CSP treats variables as a tuple, which means that an ordering is implicit in the prob-
lem statement. This is undesirable in our setting because problems require reasoning over unordered
configurations: this point will be revisited in Section 4. A solution of a CSP is an assignment that
satisfies the given constraints. Let DW denote the subset of D corresponding to variables W .

Definition 2. A constraint is a pair (W,RW ) where W ⊆ V is an m-tuple of variables in V and RW

is a relation of arity m over the Cartesian product of the domains in DW .

Definition 3. An assignment for W ⊆V is a function f : W → D1×·· ·×Dm mapping variables to
elements in the respective domains: f (〈v1, . . . ,vm〉) = 〈d1, . . . ,dm〉, di ∈ Di,Di ∈ DW .
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f is a partial assignment when W ⊂ V , or total when W = V . A satisfying assignment is an
assignment that satisfies all the constraints in C.

Definition 4. An assignment f satisfies a constraint c = (W,RW ), f (W ) ` c, when f (W ) ∈ RW .

The task in a #CSP is to count the number of satisfying assignments (solutions). We refer to the
set of all solutions of a #CSP P = 〈V,D,C〉 as M(V,D,C). The goal is then to find MC(V,D,C) =
|M(V,D,C)|. This notation derives from probabilistic lifted inference and weighted model counting,
where a counting problem is specified as the problem of finding the number of assignments to a set
of logic variables that satisfy a given (first-order) logic formula (the model).

3.1.2 PROBABILISTIC LIFTED REASONING PRINCIPLES

We briefly introduce the main lifted reasoning principles from probabilistic lifted inference that we
apply to constraint satisfaction problems.

Exchangeability Niepert and Van den Broeck (2014) argue that exchangeability of a finite set of
random variables is one of the fundamental concepts for tractable probabilistic inference.

Definition 5. (Niepert & Van den Broeck, 2014) A set of random variables X = {X1,X2, . . .Xn} is
fully exchangeable if and only if Pr(X1 = x1, . . . ,Xn = xn) = Pr(X1 = xπ(1), . . . ,Xn = xπ(n)) for all
permutations π of {1, . . . ,n}.

Exchangeability is exploited to define partitions of exchangeable variables (variable decom-
positions) to decompose the probabilistic inference problem into tractable parts. Exchangeability
is closely related to the concept of symmetries in CSPs. Rossi et al. (2006, Chapter 10) present
an overview of the different terminology associated to symmetries. In particular, it defines solu-
tion and problem symmetries: a solution (problem) symmetry is a permutation of the set of pairs
〈variable,value〉which preserves the set of solutions (constraints). Exchangeability is thus a form of
solution symmetry: it maps solutions to solutions (and non-solutions to non-solutions). The prob-
abilistic inference literature uses also the terms indistinguishable or interchangeable (Taghipour
et al., 2012; Milch et al., 2008) to refer to exchangeable variables. However, we use these terms to
refer to different concepts in combinatorics and CSPs: we already used “indistinguishable” to refer
to unlabelled copies of objects following the mathematical terminology presented in Stanley (2012)
and formalized in Section 4, while in Section 3.2 we use “interchangeable” to refer to a particular
form of symmetry in counting CSPs.

We now informally discuss some fundamental principles of lifted reasoning that are shared by
both lifted inference frameworks based on variable elimination (Kisynski & Poole, 2009; Poole,
2003), and those based on knowledge compilation (Van den Broeck et al., 2011).

Multiplication Multiplication is the operation that exploits the independence of two subproblems
(parametric factors in lifted variable elimination or clauses in lifted knowledge compilation) to lift
the count of their combinations. For example, we exploited this principle to compute the combina-
tions of the choices for the workers to assign to the mixing cement task and the laying bricks task
in P4: the problem of choosing 7 workers out of 14 for mixing cement is independent of choosing
5 workers out of 7 for laying bricks, therefore the respective number of choices can be multiplied to
derive the solution of the problem.

10
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Splitting and Shattering Splitting is the operation of dividing a problem (parametric factor or
clause) into a set of subproblems equivalent to the original one such that they are pairwise indepen-
dent, and thus the multiplication principle can be applied. Shattering is the repetition of the splitting
operation until no longer applicable. For instance in P1 to count the possible rows described we can
split the problem between the subproblem of counting the different choices for placing an object in
second position and the problem of counting the permutations for the other three positions.

Propositionalization Propositionalization, also called grounding, is a principle that acknowl-
edges that lifted reasoning is not always possible and in such cases traditional reasoning on the
propositional level is necessary. Propositionalization however can create new opportunities for the
application of lifted principles. For instance in P2 we have to reason explicitly on three differ-
ent cases, namely the problem where the size of the group with the three green objects is s with
s ∈ {3,4,5}, and thus the group contains n = s−3 non-green objects. Any solution for a fixed s can
now be lifted by choosing n of the non-green objects to add to this group, and then distributing the
remaining ones over the other two groups. The number of possible choices is given respectively by
the binomial coefficient and the Stirling numbers of the second kind.

We now present our application of these concepts to the setting of #CSPs.

3.2 Applying Lifted Reasoning Principles to #CSPs

We adapt and develop in the context of #CSPs the definitions and concepts that lifted probabilistic
inference proposed to reason about groups of individuals. We begin with defining the difference
between exchangeability, interchangeability and indistinguishability:

Definition 6. A tuple of variables V = 〈v1, . . . ,vn〉 is exchangeable (≡V ) w.r.t. a CSP 〈V,D,C〉 if
for all satisfying assignments 〈d1, . . . ,dn〉 and all permutations π of {1, . . . ,n}, 〈dπ(1), . . . ,dπ(n)〉 is
a satisfying assignment as well.

Exchangeability thus applies to variables, while interchangeability and indistinguishability ap-
ply to values. We say that values are interchangeable when they correspond to a value symmetry
(Rossi et al., 2006, Chapter 10): two values a and b are symmetric values if each solution containing
the value a can be mapped to a solution containing the value b and vice versa. Finally, indistinguish-
able values are interchangeable values that do not correspond to new solutions, thus are considered
identical (unlabelled) copies of each other:

Definition 7. Given a #CSP 〈V,D,C〉 and two interchangeable values a and b, a and b are indistin-
guishable if each solution obtained by mapping a to b, and vice versa, is not counted as a different
solution.

Example 5. Given a #CSP 〈V,D,C〉 where V = 〈v1,v2〉 and D1 = D2 = {d1,d2,d3}, C={}, if d2
and d3 are indistinguishable then of the 9 possible assignments only 4 are counted because the fol-
lowing assignments are symmetric w.r.t. the indistinguishability of d2 and d3: (〈d1,d2〉,〈d1,d3〉),
(〈d2,d1〉,〈d3,d1〉), (〈d2,d3〉,〈d3,d2〉,〈d2,d2〉,〈d3,d3〉). These 8 assignments count only for 3 distin-
guishable solutions, along with the fourth 〈d1,d1〉.

In the rest of the paper we will exploit these kinds of symmetries to count solutions of #CSPs.
In particular, when variables are exchangeable we know that all the permutations of a satisfying
assignment are solutions as well:

11
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Property 1. Given a CSP 〈V,D,C〉 such that V is exchangeable, if 〈d1, . . . ,dn〉 is a satisfying as-
signment then there are n! corresponding exchangeable satisfying assignments.

Variables v1, v2 are exchangeable (v1 ≡ v2) when their domains are equal and all constraints
affect both variables such that exchanging their values does not change any constraint’s satisfiability.
If v1 and v2 are such that D1 = D2 and all constraints are not affected by different permutations of
their assignments, then for each valid assignment where v1 = d1 and v2 = d2 the same assignment
where v1 = d2 and v2 = d1 is also valid. This is because d2 ∈ D1,d1 ∈ D2 from D1 = D2, and
under the aforementioned constraints if 〈d1,d2〉 is valid then 〈d2,d1〉 is valid as well. We denote the
domain of a set of exchangeable variables V as dom(V ).

In CSPs symmetries are redundancies to be avoided. Hence, the model is usually reformulated
to exclude symmetric parts of the search space or expanded with symmetry-breaking constraints. In
contrast, in #CSPs the symmetric solutions also have to be counted, therefore lifted reasoning ex-
plicitly tries to identify partitions of the problem where symmetries can be recognized and exploited
for fast counting. We now analyze how this goal can be achieved in the context of #CSPs.

We define the multiplication operation in the context of #CSPs as follows: the multiplication
rule counts the combinations of two sets of partial assignments for two subproblems, under the
precondition that variables are disjoint.

Definition 8. Given two CSPs 〈V1,D1,C1〉, 〈V2,D2,C2〉, such that V1∩V2 = /0, the model count of
the union of the two problems is the product of the model counts of the two problems: MC(V1 ∪
V2,D1∪D2,C1∪C2) = MC(V1,D1,C1) ·MC(V2,D2,C2) (multiplication rule).

A split of a problem generates two subproblems where the multiplication rule is applicable.
We also consider the case where the count from the multiplication rule is adjusted by means of a
constant.

Definition 9. Given P= 〈V1∪V2,D,C〉,V1∩V2 = /0, a split for MC(P) is a pair of CSPs (P1,P2),Pi =
〈Vi,Di,Ci〉, such that MC(P) = c ·MC(P1) ·MC(P2), c ∈ N.

The role of the constant c is to account for exchangeable or interchangeable choices that may be
lifted when defining P1 and P2, for example as we do in the lifted operators presented in Section 5.

Example 6. A CSP 〈V,D,C〉, V = 〈v1,v2,v3〉, D1 = D2 = D3 = 〈1,2,3〉, C = {v1 < 3,v2 6= v3},
can be split into (P1 = 〈{v1},{D1},{v1 < 3}〉,P2 = 〈{v2,v3},{D2,D3},{v2 6= v3}〉: MC(V,D,C) =
MC(P1) ·MC(P2) = 2 ·6 = 12. Note that v2 and v3 are exchangeable and c = 1.

As in probabilistic lifted inference, the repeated application of the splitting operation leads to a
shattering:

Definition 10. Given a CSP P = 〈V,D,C〉, a shattering for MC(P) is a set of problems {P1, . . . ,Pn},
Pi = 〈Vi,Di,Ci〉, such that MC(V,D,C) = c ·∏n

i=1 MC(Pi),c ∈ N.

The multiplication rule holds only if the subproblems Pi are independent, i.e. a satisfying as-
signment for variables Vi on Pi is a partial assignment for the initial problem 〈V,D,C〉 independent
of the others. That is, C does not contain any non-trivial constraint relating the value of a variable
v1 to the value of a variable v2 with v1 ∈ Pi, v2 ∈ Pj and i 6= j. To decompose further the problem
we introduce the notions of constraint split and shattering. They allow us to express the count of a
problem where a constraint binds two or more variables as the combination of the counts of a set
of problems where the constraint is no longer present. The solutions of the original problem are
obtained by uniting the solutions of the problems defined by the split or shattering.
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Definition 11. Given two tuples of disjoint variables V1,V2 and two (partial) assignments f1(V1) =
〈d1, . . . ,dm〉, f2(V2) = 〈dm+1, . . . ,dn〉, the union of the two assignments f1 + f2 is the tuple:
〈d1, . . . ,dm,dm+1, . . . ,dn〉. The union of two sets M1,M2 of partial assignments is M1 + M2 =⋃

f1∈M1

⋃
f2∈M2
{ f1(V1)+ f2(V2)}.

A constraint split defines a pair of problems such that the union of their solutions is a solution
for a problem with the constraint.

Definition 12. Given a CSP 〈V1∪V2,D1∪D2,C〉,V1∩V2 = /0, a constraint split is a pair 〈C1,C2〉
such that for each satisfying assignment f1 and f2 for, respectively, 〈V1,D1,C1〉 and 〈V2,D2,C2〉:

f1(V1) `C1∧ f2(V2) `C2 =⇒ f1(V1)+ f2(V2) `C

Example 7. Consider Example 6: P2 cannot be further split since the constraint v2 6= v3 relates the
choices for the two variables. A constraint split for {v2 6= v3} is ({v2 = 1},{v3 6= 1}): any union
of satisfying assignments for the subproblems 〈{v2},{D2},{v2 = 1}〉 and 〈{v3},{D3},{v3 6= 1}〉
satisfies P2 as well.

Similarly to problem splits, we generalize constraint splits to constraint shatterings:

Definition 13. Given a CSP 〈V,D,C〉, V = V1 ∪V2 ∪ ·· · ∪Vn,Vi ∩Vj = /0, i, j ∈ {1, . . . ,n}, i 6= j,
D = D1 ∪D2 ∪ ·· · ∪Dn, a constraint shattering is a set of problems 〈Vi,Di,Ci〉 such that for each
satisfying assignment fi:

f1(V1) `C1∧ f2(V2) `C2∧·· ·∧ fn(Vn) `Cn =⇒ f1(V1)+ f2(V2)+ · · ·+ fn(Vn) `C

While constraint splits and shatterings preserve satisfiability, they do not preserve the model
count, as Example 7 shows: the set of satisfying assignments for the split is a subset of the set of
solutions for P2. We then consider sets of constraint splits (shatterings) such that the union of the
solutions corresponding to each split (shattering) is the set of satisfying assignments of the original
problem. We call such a set of constraint splits (shatterings) a constraint partition.

Definition 14. Given a CSP P = 〈V,D,C〉, V = V1∪V2∪ ·· · ∪Vn,Vi∩Vj = /0, i, j ∈ {1, . . . ,n}, i 6=
j, D = D1 ∪D2 ∪ ·· · ∪Dn, a constraint partition C(P) is a set of constraint shatterings {C1 =
〈C1

1 ,C
1
2 , . . . ,C

1
n〉, . . . ,Cm = 〈Cm

1 ,C
m
2 , . . . ,C

m
n 〉} such that:

M(V,D,C) =
⋃

Ci=〈Ci
1,C

i
2,...,C

i
n〉∈C(P)

M(V1,D1,Ci
1)+M(V2,D2,Ci

2)+ . . .+M(Vn,Dn,Ci
n)

Constraint partitions can be exploited in counting by summing the counts of the corresponding
subproblem. However, this is sound only when no solution is double-counted. This is guaranteed
when non-overlapping splits (shatterings) are considered:

Definition 15. Two constraint splits 〈C1
1 ,C

1
2〉 and 〈C2

1 ,C
2
2〉 for a problem 〈V1∪V2,D,C〉, V1∩V2 = /0,

overlap if there exist two satisfying assignment f1 and f2 such that f1(V1) `C1
1 , f1(V2) `C1

2 , f2(V1) `
C2

1 , f2(V2)`C2
2 and f1(V1)+ f1(V2)= f2(V1)+ f2(V2). Otherwise, the two splits are non-overlapping.

We generalize the notion of non-overlapping splits to constraint shatterings by considering more
than two (disjoint) sets of variables and constraints.

A problem partition is a set of problem shatterings corresponding to non overlapping constraint
shatterings that partition the solution space of the problem into multiple subproblems:
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Definition 16. Given a CSP P = 〈V,D,C〉, V =V1∪V2∪·· ·∪Vn,Vi∩Vj = /0, i, j ∈ {1, . . . ,n}, i 6= j,
D = D1 ∪D2 ∪ ·· · ∪Dn, and a constraint partition C(P), a problem partition P(V,D,C) is the set
{{Pi

1 = 〈V1,D1,Ci
1〉, . . . ,Pi

n = 〈Vn,Dn,Ci
n〉} |Ci = 〈Ci

1,C
i
2, . . . ,C

i
n〉 ∈ C(P)}.

We can thus express the count of the solutions of a CSP 〈V,D,C〉 as the sum over all the prob-
lem shatterings in the partition (because the respective constraint shatterings are non-overlapping),
and, by definition, on each problem shattering we can apply the multiplication rule (because each
〈Vi,Di,Ci〉 is pairwise independent):

Property 2. Given a CSP 〈V,D,C〉, V = V1∪V2∪ ·· ·∪Vn,Vi∩Vj = /0, i, j ∈ {1, . . . ,n}, i 6= j, D =
D1∪D2∪·· ·∪Dn, and a problem partition P(V,D,C) :

MC(V,D,C) = ∑
{P1,P2,...,Pn}∈P(V,D,C)

n

∏
i=1

MC(Vi,Di,Ci)

Example 8. Consider Example 7: we can partition the problem on the splits for constraint v2 6= v3:
{(〈{v2},{D2},{v2 = i}〉,〈{v3},{D3},{v3 6= i}〉) | i ∈ D2}. Each split i has a count of 2, therefore
summing the subproblems from the shattering equals 6.

This operation has analogies with propositionalization since a constraint shattering can be ob-
tained by propositionalizing one of the variables in the constraint, as in Example 8. When further
shattering of the two split problems is required, this operation has also analogies with summing out,
a (lifted) variable elimination principle where nested summations are factored w.r.t. independent
subproblems.

4. Modelling Combinatorics Math Problems

The challenge of designing a framework for combinatorial counting based on lifted reasoning lies in
recognizing when and where the principles presented in Section 3 are applicable. This process starts
from the language in which the problem is expressed, therefore a modelling language with direct
support for the fundamental primitives is essential for effective reasoning. In fact, as Examples 1
and 3 show, the level of abstraction of the language influences directly the opportunities for lifted
reasoning on a model. Moreover, a higher level of abstraction simplifies the more general task of
solving math word problems by closing the distance between the natural and formal languages. In
this section we define a modelling language for a class of combinatorics math problems: CoLa
(Combinatorics math problems Language). With CoLa we define the scope of problems for which
a fully lifted reasoning approach is implemented in our solver for combinatorics math problems:
CoSo (Combinatorics math problems Solver, Section 5). The goal of CoLa is thus to match the
scope of the lifted solver presented in this paper, rather than being a general purpose language for
combinatorics math problems. CoLa and CoSo directly support a class of problems general enough
to cover a wide range of real-world problems (cf. Section 6.1). At the same time this class contains
hard instances for both lifted reasoning and enumeration-based counting techniques, and it is thus
suitable to analyze and compare the two approaches (cf. Section 6.2).

We identify the class of problems under investigation by defining a combinatorics math problem.
Broadly speaking, a combinatorics math problem involves counting how many configurations of a
finite set of objects satisfy a given set of constraints. The subsequent subsections specify the three
characterizing components:
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1. the multiset describing the atomic objects involved (Section 4.1);

2. the configurations corresponding to the special cases where counting rules are applicable
(Section 4.2);

3. the constraint language for the problems at hand (Section 4.3).

Along with the characterizations we describe the corresponding statements in CoLa, and the cor-
responding semantics by mapping a sequence of statements S = s1; s2; ...; sN; to a counting
Constraint Satisfaction Problem (summarized at the end of this section in Table 5).

4.1 Multisets

The first characterizing component is the finite set of atomic objects we reason about. As we argued
in Section 2, expressing them as a simple set of constants here is not sufficient, because in com-
binatorics math problems it is relevant to refer to indistinguishable objects and their properties. In
P1, for instance, the shapes are divided into groups with the same shape or colour, and the green
triangles are indistinguishable because they have the same properties “green” and “triangle”. On
the other hand, in P3 all TVs are distinguishable, i.e. buying one rather than another is a different
purchase, and there is a subset of 3 TVs with the property “defective”. To effectively model the
setting of a combinatorics math problem we thus need to express 1) indistinguishability of objects
and 2) subsets of objects.

To address (1), we base our reasoning framework on multisets. A multiset is a pair (E, f ) where
E is a set and f : E → N is a function counting the (indistinguishable) copies of each element of E
in the multiset. A set is a special case of a multiset where ∀e ∈ E : f (e) = 1. We call a real-world
item object and the corresponding mathematical representation entity, an element of E. Therefore,
an entity e ∈ E corresponds to f (e) indistinguishable objects.

To address (2) we define a property as a subset of the entities: an entity e has a property P⊆ E if
e ∈ P and does not if e 6∈ P. We call the universe the multiset of objects along with the partitioning
identified by the properties (Figure 3). Properties are subsets of entities because two objects cannot
be indistinguishable if they do not have the same properties. If an entity e has a property P which
is exclusive, i.e. P = {e}, then e corresponds to an object with no indistinguishable copies. An
example of such property is the name of a person or a serial number of a TV. It follows that two
objects are indistinguishable iff. they have the same properties.

Example 9. Consider P1: the multiset of entities is (E, f ) where E = {sqr,sqb, trr, trb, trg} and
f (sqr) = 1, f (sqb) = 1, f (trr) = 1, f (trb) = 1, f (trg) = 3. The properties are: blue = {sqb, trb},
red = {sqr, trr}, green = {trg}, square = {sqr,sqb} and triangle = {trr, trb, trg}. Figure 3 shows
the objects as a Venn-diagram on the left and the corresponding multiset on the right, along with
the corresponding properties.

A framework based on multisets is fundamentally different from traditional declarative settings
(cf. Section 2) where the problem’s atomic objects are a set of constants (e.g. propositional and first-
order logic) or sets of admissible values (e.g. the domains in CSPs). Generalizing sets to multisets
is relevant because indistinguishability influences how solutions are counted, i.e. we do not count
a solution as new (different) if it is obtained by replacing in a valid configuration objects with their
indistinguishable copies. For example replacing any green triangle in a sequence 〈N,N〉 with the
third green triangle does not give a different solution.
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Figure 3: On the left, the objects in Example 1 grouped by their properties. On the right, the corre-
sponding multiset. Stars represent the colour property, black items represent the shape property.

The separation between the abstraction of entities and real-world objects introduces the issue
of whether the user (1) should label the objects according to their indistinguishability or (2) should
let the system infer the labels according to the properties specified. In the first case the user should
already identify the partition into indistinguishable sets of objects induced by the properties, for
instance in P1 by recognizing that the intersection of the properties square, blue and red makes all
squares distinguishable by means of their colour. The multiset can be then represented as an explicit
enumeration of objects where distinguishable objects have different labels. This inference on small
human-solvable examples is simple, and therefore it might appear more intuitive. However, this
task becomes harder when enumerating an increasing number of objects and groups. Here, the
second option is preferable, where the groups (properties) of objects are declared along with their
cardinality, and the corresponding implicit multiset is inferred from their intersections.

We clarify the difference by describing their implementation in CoLa, where both options are
supported. Regardless of whether the universe is specified explicitly or implicitly, the semantics
of the CoLa statements for declaring multiset of entities and the corresponding properties is the
specification of the domains D of a #CSP MC(V,D,C), as we further specify in Section 4.2.

Enumeration In the first case, where indistinguishability is already sorted out, the universe (E, f )
is declared by enumerating the objects, and indistinguishable objects receive the same label, i.e. for
each entity e ∈ E there are f (e) repetitions of the label e. Properties P ⊆ E are declared by enu-
merating the labels that correspond to the entities with the property. The keywords universe and
property distinguish the two types of declaration, for example:

Example 10. The universe of P1, following Example 9, is declared with the CoLa statements:
universe shapes = {sqr,sqb, trr, trb, trg, trg, trg};
property red = {trr,sqr};
property blue = {trb,sqb};
property green = {trg};
property triangle = {trr, trb, trg};
property square = {sqb,sqr};
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Example 11. We express the multiset of letters (the universe) in P5 as:
universe letters = {a,a,a,n,n,b}

Problems with distinguishable objects reduce to a set declaration:

P6. In how many different ways can Ann, Bob, Carl and Dan queue at the bus stop?

universe people = {ann, bob, carl, dan};

Properties can also be defined by means of set formulas: a set formula is either a property or an
expression of the form (A & B), denoting the intersection A∩B where A and B are a set-formulas,
or (A + B), denoting the union A∪B, and ¬(A), denoting the complement A w.r.t. the universe.

Cardinality In the second case only properties and their cardinality are declared: the universe
is the union of the properties and labelling objects is a reasoning step for the solver. Instead of
explicitly specifying all objects with a property P, a size constraint (cf. Section 4.3) of the form
#P = n, where n is a natural number, specifies how many objects have the property. In this case we
assume that two properties are disjoint unless a size greater than 0 is specified for their intersection.
The keyword labelled can be prepended to the property declaration as a shortcut for expressing
that all objects having the property can be distinguished from one another.

Example 12. The universe of P1, following Example 9, is declared with the CoLa statements:
property red; property blue; property green;

#red=2; #blue=2; #green=3;

property triangle; property square;

#triangle=7; #square=2;

#square&red=1; #square&blue=1;

#triangle&red=1; #triangle&blue=1; #triangle&green=3;

Example 13. In P6 we can express the set of people as:
labelled property people; #people=4;

The encoding for P5 by means of cardinalities is:
property a; property n; property b;

#a=3; #n=2; #b=1;

4.2 Configurations

The second characterizing component of combinatorics math problems is the configuration in which
objects are arranged. In Sections 1 and 2 we presented some examples where a valid configuration
is a selection of objects or a distribution into groups. For instance a selection (without replacement)
is the row of four shapes in P1 or the purchased TVs in P3. The former is ordered and the latter not.
An example of distribution is the partition of the shapes into groups in P1 or workers into tasks in
P4.

In order to answer the question “what is a configuration?” we have to characterize these notions
of selection, order, repetition and distribution. To do so, we follow the Twelvefold-way (Stanley,
2012), which is a mathematical model based on indistinguishability for a wide range of combina-
torics math problems. The configurations in the Twelvefold-way are the most common because they
correspond to the special cases where the number of possible configurations can be computed from
the size of the universe. The combination of two dimensions defines a configuration: constraints and
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the (in)distinguishability of the objects. Despite using the same characterization of configurations,
our framework is more general than the Twelvefold-way because it expands both dimensions.

The Twelvefold-way defines a combinatorics problem as the task of counting the number of func-
tions g : X→Y between two finite sets X and Y . As illustrated in Table 3, two dimensions determine
different types of problems and configurations. The first is whether the function g is arbitrary (gany),
or constrained to be either injective (ginj) or surjective (gsur). Our framework expands this dimension
with additional constraints over the function (Section 4.3). The second dimension is concerned with
the indistinguishability of objects, where we have all objects distinguishable (6=, a set), objects in X
all indistinguishable and those in Y all distinguishable (=X ), objects in X distinguishable and those
in Y indistinguishable (=Y ), or objects in both X and Y indistinguishable (=X

Y ). Our framework
expands this direction by considering any multiset of objects, while the Twelvefold-way restricts
either to a set, or a multiset (E, f ) where all objects are identical, i.e. |E|= 1.

Intuitively, in the Twelvefold-way an ordered (resp. unordered) configuration is a set of labelled
(resp. unlabelled) slots represented by a set of distinguishable (resp. indistinguishable) objects.
There are two types of configurations. Configurations of level 1 map slots to objects, that is, each
slot corresponds to exactly one object. Configurations of level 2 map objects to slots, that is, multiple
objects can be mapped to the same slot, which thus represents a subset of the objects. Figure 4
represents the difference between the two types.

Similarly to configurations, we also distinguish two levels of properties. Level 1 properties
group together objects. Level 2 properties group subsets of objects sharing a set level feature such
as the size of the set or the number of objects in the set having some level 1 property.

Example 14. In problem P2 having all green objects in one group is a level 2 property because
it defines that there is one part containing all three objects with the level 1 property “green”. In
problem P4 we distinguish between three level 2 properties: the parts of size 7, those of size 5, and
those of size 2. Suppose we could distinguish workers with the level 1 property “intern”. Then, an
example of level 2 property is “subsets of workers where there are 3 interns”. This level 2 property is
the set of all possible subsets of workers where the number of objects presenting the level 1 property
“intern” is 3.

Following the Twelvefold-way, we define a configuration in our framework as a mapping be-
tween multisets. The properties of the mapping identify the characterizing components of a config-
uration:

g : X → Y gany ginj gsur

6= x-sequences of Y : yx x-permutations of Y : yx y-compositions of X :
{x

y
}

y!

=X x-multisubsets of Y :
(y+x−1

x
)

x-subsets of Y :
(y

x
)

y-int. compositions of X :
(x−1

x−y
)

=Y k-partitions of X : ∑
y
k=0
{x

k
}

partitions of X : [x≤ y] y-partitions of X :
{x

y
}

=X
Y k-integer partitions of X : ∑

y
k=0 pk(x) integer partitions: [x≤ y] y-integer partitions of X : py(x)

Table 3: Twelvefold Way: basic combinatorial configurations with the corresponding counting rules.
y = |Y |,x = |X |, yx is the falling factorial,

(·
·
)

is the binomial coefficient,
{·
·
}

is the Stirling number
of the second kind, py(x) is the integer partition of x into y parts and [x≤ y] is 1 if x≤ y, 0 otherwise.
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1 2 X X=X

Y

f1 f1 g1 g1

fi : X → Y

f1 : 1 2

f2 : 1 2

f3 : 1 2

f4 : 1 2

f5 : 1 2

f6 : 1 2

gi : X=X → Y

g1 :

g2 :

g3 :

1 2 X X=X

Y

f1 f1 f1 g1 g1 g1

fi : Y → X

f1 : 1 1 2

f2 : 2 1 2

f3 : 1 2 2

f4 : 2 2 1

f5 : 1 2 1

f6 : 2 1 1

gi : Y → X=X

g1 :

g2 :

g3 :

Figure 4: Level 1 configurations map slots to objects Y (left). Level 2 configurations map objects Y
to slots (right)

Definition 17. Given a multiset of entities E, a configuration is a pair (C,g), where C = (S, f )
is a multiset and g is a function between E and C (see Level). The fundamental properties of the
configuration are:

• Order. A configuration is either ordered (∀s ∈ S : f (s) = 1) or unordered (|S|= 1). In CoLa
we denote ordered configurations with [·] and unordered configurations with {·}

• Level. Levels define how entities are grouped together: g : C→ E (resp. g : E→C) is a level
1 (level 2) configuration. Figure 4 visualizes how inverting the role of the two sets changes
a configuration from one level into another. Moreover, sets in level 2, which we call parts to
distinguish them from the configuration name, can be empty (gany) or not (gsur). In CoLa we
use a second level of brackets to denote level 2 configurations (cf. Table 4).

• Repetition. In Level 1 configurations entities can be repeated (gany) or not (ginj). In CoLa we
denote configurations with the keyword repeated in front of the entity set (cf. Table 4).

Table 4 summarizes the configurations we will consider throughout the paper. Note that in level
2 repeating elements from one selection for a subset to another reduces to many independent subset
problems, hence we do not consider it explicitly.

In CoLa we label a valid configuration with a statement of the form label in X, where X is
one of the configurations in Table 4

Example 15. In P3 the purchase is unordered, therefore the configuration of purchased TVs is a
subset (level 1), because we cannot purchase multiple times the same TV (no repetition). In CoLa

level 1 level 2
repeated non-repeated non-repeated

ordered sequence: [repeated ϕ] permutation: [ϕ] composition: [{ϕ}]
unordered multisubset: {repeated ϕ} subset {ϕ} partition: {{ϕ}}

Table 4: Configuration types and the corresponding CoLa syntax for a set-formula ϕ
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we encode it as: purchase in {tvs}; for the set labelled property tvs; #tvs=12;

In P2 the indistinguishable green triangles are distributed in groups (level 2), hence do not have an
order or label (unordered). Therefore, the configuration is a partition and the declaration in CoLa
is: groups in {{shapes}}; with the declaration of the universe of Example 10.
In P6 four (distinguishable) objects are arranged in an ordered configuration where objects are not
further grouped (level 1) and should not be repeated: a permutation. In CoLa: queue in [people].

As for the semantics as a #CSP, the universe or set formula ϕ in the declaration of the config-
uration maps to the domains D of the variables. In fact, we use variables V to represent an object
in the configuration on level 1, or a part in level 2. Therefore, the domain of a variable vi ∈ V is,
respectively, the multiset ϕ or its powerset, i.e. Di =ϕ (level 1) or Di =P(ϕ) (level 2). To simplify
the encoding as a CSP, we introduce an additional parameter, cf , that encodes the three fundamental
properties of a configuration. This parameter is syntactic and has the added benefit of bringing the
description closer to the internal representation of the problem in the dedicated solver (Section 5).
Therefore, from now on, the #CSP corresponding to a combinatorics math problem expressed in
CoLa is MC(V,D,C,cf ), where cf is a symbol in {[| ·], [| ·],{|| ·},{| ·},{{·}}, [{·}]} corresponding
to the given configuration (the symbols || and | denote configurations respectively with and without
repetition). The additional parameter explicitly and compactly denotes whether we are interested
in unordered configurations, whereas the traditional definition of CSP defines a tuple (i.e., ordered
set) of variables.1 Similarly, including this parameter in the configuration constraints, allows us to
separate the additional constraints C (Section 4.3) from those intrinsic in the configuration.

As we argued in Section 2, most declarative frameworks cannot naturally represent the con-
figurations described in problems where unlabelled objects are involved, which are needed either
for the representation of indistinguishable objects or the properties (Order) of a configuration. The
Twelvefold-way is limited as well, in the encoding of multisets and constraints.

Example 16. P6 is modelled by the Twelvefold-way because people are all distinguishable. On the
contrary, P5 is modelled by our definition of universe but is not by the Twelvefold-way. P3 counts
only functions that map the set of purchased TVs to at least 2 defective ones, restricting further the
family of injective functions, therefore P3 is not expressible by the Twelvefold-way.

In the Twelvefold-way, each combination of function type and distinguishability of the sets
corresponds to a counting rule providing the number of mappings between the two sets.

Definition 18. A counting rule is a closed-form formula that given two multi-sets representing the
set of entities and a configuration, and a function g between the two (gany,ginj,gsur), returns the
number of functions g between the two multisets.

The problems in the Twelvefold-Way therefore do not require any particular reasoning technique
since it suffices identifying the corresponding counting rule. As in P3, the complexity of such basic
problems is increased when introducing additional constraints. As a result, the counting rules are no
longer applicable, therefore lifted reasoning techniques are needed to decompose complex problems
into components where counting rules are again applicable. We now define the constraints that can
be added to a configuration in our framework. They allow us to analyze more sophisticated cases
from the perspective of lifted reasoning, and significantly expand the number of real-world problems
falling into our framework (cf. Section 6).

1. We could model this aspect by explicitly defining a variant of a CSP over a set of variables rather than a tuple, or add
dedicated constraints to the (low-level) constraint language to exclude the indistinguishable alternative orderings.
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4.3 Constraints

The constraints are specifications of which configurations are considered valid w.r.t. the specified
objects and characteristics of the configuration itself. We thus define a constraint language for
entities and configurations by introducing three kinds of constraints: size constraints, counting con-
straints and positional constraints. From now on, we will use the following notation: ∗ denotes a
numerical relation, i.e. ∗ ∈ {≤,<,>,≥, 6=,=}, n denotes a natural number, i.e. n ∈ N. We use this
language as the constraint language for MC(V,D,C,cf ).

Size constraints Size constraints define either the size of a configuration or a part:

Definition 19. Given a configuration cf , a size constraint is:

a) a tuple (cf ,∗,n), which is satisfied when the size of the configuration is k and k ∗ n. The
corresponding syntax in CoLa is: #cf ∗ n.

b) a tuple ((cf , i),∗,n) where cf is of level 2. The constraint is satisfied when the ith part of cf
contains k entities and k ∗n. The corresponding syntax in CoLa is: #cf[i] ∗ n.

Let s be the size of the universe. Size constraints of type (a) define the set of valid sizes for
a configuration, removing from the interval {1, . . . ,s} the values i such that i ∗ n is false. Size
constraints #cf[i] ∗ n, type (b), apply to vi ∈ V and the corresponding declaration is simply
added to C.

Example 17. In P4, let groups be the name of the configuration, then the number of groups of
workers is expressed with: (groups,=,3). In CoLa:

labelled property workers; #workers = 14;

groups in {{workers}};
#groups = 3;

Counting constraints Counting constraints count either entities (level 1) or parts (level 2):

Definition 20. Given a configuration of level i, a counting constraint is a pair (ϕ,∗,n), where ϕ is
a property of level i. If i = 1 (resp. i = 2) the constraint is satisfied when in the configuration there
are k objects (resp. parts) belonging to ϕ and k ∗n.

In CoLa counting constraints are statements of the form #ϕ ∗ n, which explicitly distinguish
between the two levels for ϕ , which is:

1. A level 1 property counting the objects in a set-formula ϕ ′: cf & ϕ ′.

2. A level 1 property counting the objects from a set-formula ϕ ′ of the ith part of a composition
cf: cf[i] & ϕ ′.

3. A level 2 property, where part is a reserved word denoting any part of the level 2 configura-
tion, counting the number of parts with a given:

3.1. size, when ϕ is the size constraint: (#part ∗ m).

3.2. number of entities from a set-formula ϕ ′, when ϕ is the counting constraint:
(#part & ϕ ′ ∗ m).
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When ϕ ′ is the universe, the expression part & ϕ ′ can be abbreviated to part and cf[i] & ϕ ′ to
cf[i].

Example 18. In a configuration “permutation” a counting constraint (green,=,3) states that the
number of objects with the property “green” is equal to 3. In a configuration “partition” ((green,=
,3),=,1) states that there is exactly one part containing three green objects (Problem P1).

Example 19. In P4 we express the constraints over the sizes of the groups as: ((worker,=,7),=,1),
((worker,=,5),=,1), (worker,=,2),=,1). The complete model in CoLa for P4 is thus obtained by
adding the size constraints to Example 17:

labelled property workers; #workers = 14;

groups in {{workers}};
#groups = 3;

#(#part = 7) = 1; #(#part = 5) = 1; #(#part = 2) = 1;

Example 20. P3 is modelled as the universe U = {tvs,defective}, tvs = {tv1, tv2, . . . , tv12}, f (tv) =
1 for all tv ∈U, defective = {tv1, tv2, tv3}. They are arranged in a configuration cf of type subset
with the size constraint (cf ,=,5) and counting constraint (defective,≥,2). In CoLa:

labelled property tvs; #tvs = 12;

property defective; #(tvs & defective) = 3;

purchase in {tvs}; #purchase = 5;

#(purchase & defective) >= 2;

Positional constraints Positional constraints apply to ordered configurations, where it is mean-
ingful to refer to a particular position in the order. This kind of constraint is interesting from a
reasoning perspective because, contrary to counting constraints, it requires reasoning about a spe-
cific component of the configuration, instead of a global (aggregate) feature.

Definition 21. Given a configuration of size k and level i, a positional constraint is a pair (ϕ,n),
where ϕ is a property of level i, and n ≤ k. The constraint is satisfied when the object or part in
position n belongs to ϕ .

Positional constraints (ϕ,n) for an ordered configuration cf of level 1 are expressions of the
form cf[i] in ϕ where i is a natural number and ϕ is a set-formula. Similarly, for an ordered
configuration cf of level 2 positional constraints are expressions of the form cf[i] = ϕ where i
is a natural number and ϕ is a set-formula. Positional constraints apply to the corresponding i-th
variable vi ∈V , and similarly to counting constraints are added to C.

Example 21. In a configuration “permutation” a positional constraint (green,2) states that the
second entity in the order is green. For instance in problem P1 we express this constraint in CoLa:

row[2] = green;

In a configuration “composition” ((green,=,3),1) states that the first part in the order contains
exactly three green objects.

Example 22. P6 with the additional positional constraint:
universe people = {ann, bob, carl, dan};
queue in [people]; #queue = 4; queue[1] in {ann, dan};
In Table 5 we summarize all CoLa statements and their semantics presented in this section.
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Syntax Semantics Description
property P; #P = n P = {e1, . . . ,en} Add property P with n entities to U

property P = {e1,...,en}; P = {e1, . . . ,en} Add properties P plus P1, . . .Pn to U
labelled property P; #P = n P1 = {e1}, . . . ,Pn = {en}
cf in {{U}} or cf in [{U}] cf = {{·}}/[{·}], Di =P(U) Define level 2 config., its label and set

cf in [repeated U] or cf in [U] cf = [||·]/[|·], Di =U Define ordered level 1 config., label, set
cf in {repeated U} or cf in {U} cf = {||·}/{|·}, Di =U Define unordered level 1 conf., label, set

#cf ∗ n V = 〈V1, . . .Vi〉, i∗n Define size(s) of configuration(s) cf
#cf[i] ∗ n C =C∪{((V, i),∗,n)} Define size of the i-th part in cf

cf[i] in ϕ C =C∪{(ϕ, i)} Define level 1 positional constraint on i
cf[i] = ϕ C =C∪{(ϕ, i)} Define level 2 positional constraint on i
#ϕ ∗ n C =C∪{(ϕ,∗,n)} Define level 1 or 2 counting constraint

Table 5: Summary of CoLa syntax and corresponding semantics. U denotes the universe corre-
sponding to the given objects and properties.

5. Lifted Reasoning over Combinatorics Math Problems

This section describes CoSo2, a solver for the full range of problems expressible in CoLa (Section 4).
CoSo thus implements our novel general-purpose lifted approach for counting constraint satisfaction
problems (Section 3) in a solver for the class of problems identified by CoLa. While the Twelvefold-
way provides the counting rules to directly solve certain combinatorics problems (Table 3), our
framework is more general than it. One of our key contributions presented in this section is a set of
efficient counting strategies based on the lifted reasoning principles for CSPs (Section 3) to reduce
the problems outside the Twelvefold-way to liftable base cases.

Constraints generally prevent the application of counting rules, therefore we rely on splitting
and shattering techniques from Section 3 to divide a problem into (simpler) subproblems. The sub-
problems are solved either by an applicable counting rule or by further decomposition into smaller
subproblems, in a divide-and-conquer fashion. Figure 5 provides a high-level description of how
CoSo partitions problems into liftable subproblems. The left side of the diagram represents the steps
where exchangeability is exploited to lift the count of the solutions of the problem. The right side
corresponds to the divide-and-conquer approach: we collect the counts of the subproblems obtained
by splitting and shattering, and from them we derive the count of the valid configurations.

This section is organized as follows: first, we present the preliminary steps that lead to identi-
fying the case in which the instance falls, and the corresponding operator (Section 5.1). We then
present these cases starting from the base ones (Section 5.2), followed by the propagation of count-
ing constraints under exchangeability (Section 5.2.3). We then move to the right-hand side of the
diagram in Figure 5 and consider the dual case when variables are not exchangeable, defining the
corresponding partition of the problem (Section 5.3.2). We then extend this operator to the level
1 configurations where the entities are not repeated (Section 5.4), and finally consider the level 2
partition problems when the base cases are not applicable (Section 5.5).

2. Python implementation: https://github.com/PietroTotis/CoSo
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P = MC(V,D,C,cf )

V exchangeable?
Sec.5.3.1

Propagate c ∈C
Sec. 5.2.3

Partition/shatter
P into P

Solve subprob-
lems Pi ∈ P

Combine counts
(Property 2, . . . )Solution

Base cases:
Sec. 5.2.1, 5.2.2

C = /0?
Sec. 5.2

Fixed
relevant?
Sec.5.1.1

Sec. 5.3.2, 5.4, 5.5

no

yes

yes L1

yes L2

yes

nono

Figure 5: Solver reasoning schema. L1= level 1 configurations, L2 = level 2 configurations. Dashed
arrows denote recursive calls to the solver.

5.1 Manipulating Domains, Multisets and Constraints

We now describe how variables, domains, and constraints in MC(V,D,C,cf ) are instantiated in
CoSo, along with the general grouping techniques applied at any stage. The first step is to consider
the size constraint specifying the sizes of valid configuration: let I be the interval of natural numbers
defined by the constraint. For each valid i ∈ I, we solve a different #CSP where the number of
variables is i. The solution of the problem is thus ∑i∈I MC(〈v1, . . . ,vi〉,D,C,cf ).

To define the domains, the first step is to define the universe by considering the objects declara-
tions: each declaration by enumeration is directly converted into the corresponding multiset, while
the objects belonging to the properties declared by size are inferred as follows. For each statement of
the form #ϕ = n we convert ϕ into disjunctive normal form, to identify the unions and intersection
of properties that characterize the entities in the set. We assume that all properties are disjoint unless
otherwise specified (e.g. with a statement #ϕ1 & ϕ2 = n). We then build a directed acyclic graph
(N,A) on nodes (ϕ,n)∈N corresponding to the declared sets: ϕ is a set-formula and n∈N∪{ξ} is
a size, where ξ stands for an unknown size. The arcs A denote the subset relation: (ϕi,ϕ j) ∈ A if ϕ j

is a subset of ϕi. From this graph, the sizes of the nodes are inferred as follows: first, given a parent
(ϕ,ξ ), its size is the sum of its children: we replace ξ with nϕ = ∑((ϕ,ξ ),(ϕi,ni))∈E ni, if each child
has a known size. Second, given a parent (ϕ,n),n 6= ξ , we can infer the size of a child (ϕi,ξ ) from
the sizes of the other children: we replace ξ with ni = n−∑((ϕ,n),(ϕ j,n j))∈A,(ϕ j,n j)6=(ϕi,ξ ) n j. This is
applicable only if a single child has unknown size. We reject incomplete or inconsistent programs,
that is, when the inference criteria are not met or there are inconsistent declaration of sizes, i.e. the
size of a parent is different form the sum of the sizes of the children.

Once the universe is defined, each domain is instantiated according to the configuration level.
Domains are represented implicitly by set formulas in problems of level 1. In level 2, they are rep-

24



LIFTED REASONING FOR COMBINATORIAL COUNTING

resented by a set of (level 2) constraints to exploit the fact that each part belongs to some refinement
of the power set of the universe. Then, positional constraints (i,ϕ) are propagated immediately, by
instantiating the corresponding domain Di to the set ϕ .

Example 23. Consider P1 and Example 10: we want to count the number of 4-permutations where
the second object is green and there are 2 squares, corresponding to the CoLa statements:

row in [shapes]; #row = 4;

row[2] in green; #row & squares = 2;

The corresponding #CSP is MC(V,D,C,cf ) where:
V = 〈v1,v2,v3,v4〉, D = 〈shapes,green, shapes,shapes〉, C = {(squares,≥,2)}, cf = [|·].

Example 24. Consider P2 and Example 10: we want to count the number of 3-partitions where
exactly one of the parts has three green objects, corresponding to the CoLa statements:

parts in {{shapes}}; #parts = 3;

#{#part & green = 3} = 1;

The corresponding #CSP is MC(V,D,C,cf ) where: V = 〈v1,v2,v3〉, D = 〈{},{},{}〉, C =
{((green,=,3),=,1)}, cf = {{·}}. Note that in level 2 problems the empty domains represent
the absence of additional constraints on the actual domain, the power set of the universe.

Multisets group objects according to their indistinguishability (properties). However, we can
often identify combinations of properties that are more specific than the counting task requires.

Example 25. Consider Example 23: the constraints are defined w.r.t. two properties: green and
squares. This means that red and blue squares are interchangeable w.r.t. these properties since they
are (both) squares and not green. The following sections show how to exploit this interchangeability
to lift the counts for this problem.

Therefore, we define relevant properties, relevant parts, and histograms. They allow us to reason
on a higher lever of granularity than multisets by grouping not only indistinguishable entities but
also the interchangeable ones.

5.1.1 RELEVANT PROPERTIES, RELEVANT PARTS, HISTOGRAMS

We define relevant properties to formally characterize the groups of entities which are interchange-
able w.r.t a given configuration.

Definition 22. A relevant property P is a property such that:

• there is a pair of different entities ei,e j ∈ P such that ei and e j are indistinguishable.

• a counting constraint counts entities from (a subset of) P.

• a positional constraint restricts the domain of a variable w.r.t. P.

A relevant part groups together a set of interchangeable entities w.r.t. relevant properties. By
capturing only the properties important for solving the given problem, they enable lifting reasoning
from the entity level to sets of interchangeable entities. We determine the partitioning of the universe
where only relevant properties divide entities from one part to the other as follows:
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Definition 23. Let P = {P1, . . . ,Pn} be the set of relevant properties, the relevant parts of P are
defined recursively, with a distinction in the base case between level 1 and 2. In level 1 configu-
rations relevant(P) = {P1} if n = 1. In level 2 configurations relevant(P) = {P1,P1} if n = 1.
In both cases if n > 1: relevant({P1, . . . ,Pn−1}∪{Pn}) = {Pn ∩R |R ∈ relevant({P1, . . . ,Pn−1})}∪
{Pn∩R |R ∈ relevant({P1, . . . ,Pn−1})}.

The two base cases differ because in level 1 defining the number of entities from P1 in the
configuration also determines the number of P1 as a difference with the universe. On the contrary,
in level 2 the number of P1 in a subset does not determine how many entities form P1 belong to the
subset.

Finally, we associate to relevant partitions a size, which we will use in the definitions of the
constraint shatterings (Section 5.3).

Definition 24. A histogram for a set of entities E and a set of relevant parts R is a set h =
{(ni,Ri) |Ri ⊆ E,ni ∈ N} such that

⋃
(ni,Ri)∈h Ri = E and 0≤ ni ≤ |Ri|.

We denote by hst(E) the set of histograms corresponding to all possible combinations of ni.

Example 26. In Example 25 the relevant properties are “green”, from indistinguishability and
“squares” from the counting constraints. We want to reason over the cases where the green variable
is a square, or vice versa, when the unconstrained variables are a triangle: (green∩ squares and
green∩ squares), hence the histograms that summarize the relevant information are:

hst(univ) = {{(n1,green∩ squares),(n2,green∩ squares)}|n1 ∈ {0, . . . ,3},n2 ∈ {0}}

We will use such histograms to define the subproblems that should be considered to properly de-
compose the counts over the free variables and the one constrained to be “green”.

Relevant partitions are fundamental to avoid unnecessary reasoning over a larger number of
cases which could otherwise be lifted, without loss of relevant information. In fact, |relevant(P)|=
2n−1 in level 1 and |relevant(P)| = 2n in level 2, therefore reasoning on the coarsest partition can
reduce the number of subproblems considered by an exponential factor.

Example 27. In Example 26 it is not relevant to make distinctions between blue or red objects,
since such information does not change the satisfiability of the constraint over green objects. We
thus consider only relevant({green,squares}): a histogram counting the number of green (resp.
non-green) objects, n= n1+n2 (resp. |U |−n, where U is the universe), accounts for all the different
combinations of blue and red objects without considering each case for a subproblem corresponding
to the different combinations of non-green objects summing up to |U |−n.

5.2 Base Cases

In this section we analyze the case where variables are exchangeable, and thus no partitioning of the
problem is required. When there are no counting constraints, then for configurations of level 1 it is
possible to count the number of solutions by applying one or more counting rules. The same applies
to level 2 configurations but only when the number of entities from the relevant partitions is known
for each part. When there are counting constraints, we propagate one of the counting constraints
with the same operator for both cases.
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5.2.1 LEVEL 1: BASE CASES

Level 1 configurations correspond to the four top-left cases in Table 3, which provide the counting
rules for the problems where all entities are distinguishable. In CoLa, however, the universe is a
multiset, therefore, we generalize the “all distinguishable” base cases with the corresponding base
cases for multisets. In this case, all variables V are exchangeable, hence they share the same domain
dom(V ) = (S, f ).

Sequences Sequences are solved by the formula

|dom(V )|n (2)

since each of the n variables is an independent choice of any element of dom(V ).

Permutations The counting rule for permutations over a multiset dom(V ) = (S, f ) is the well-
known expression |dom(V )|!

f (s1)!· f (s2)!·...· f (sk)!
,si ∈ S,k = |S|. This formula however counts the permutations

of length |dom(V )|: to consider the cases where n≤ |dom(V )|, we have to consider the multisubsets
N ⊆ dom(V ) s.t. |N|= n, then apply the counting rule returning the number of permutations of M,
therefore the number of permutations of dom(V ) of length n is:

∑
M=(T,g)⊆dom(V ),|M|=n

|M|!
f (t1)! · f (t2)! · . . . · f (t j)!

, ti ∈ T, j = |T | (3)

Subsets The same reasoning applies to subsets: when counting the subsets of size n of dom(V ) =
(S, f ), we can use the binomial coefficient to count the subset of distinguishable entities, but we
have to account for the indistinguishable copies in dom(V ). Note that this is different from counting
multisubsets of S: the number of indistinguishable copies appearing in the subset is limited by how
many copies are in dom(V ), while in counting multisubsets the number of repetitions of an object
in the subset is not bound. Let S = {s1, . . . ,sk},k = |S| and let ai = f (si), Ferraris, Mendelson,
Ballesio, and Vercauteren (2015) define a counting rule for this case:

∑
L∈P(Ik)

(−1)|L|
(

n+ k−1−|L|−∑i∈L ai

k−1

)
(4)

Where P(Ik) is the power set of Ik = {1,2, . . . ,k}.

Multisets Because in counting multisubsets the number of repetitions of an object in the subset
is not bound, we reduce the count of multisubsets of size n of a multiset dom(V ) to the number of
multisubsets of S: (

|S|+n−1
n

)
(5)

since the number of identical copies in dom(V ) has no influence on the number of identical copies
in the subset.

5.2.2 LEVEL 2: BASE CASES

The counting rules from the Twelvefold-way are applicable when there are no additional constraints
on the configuration and all objects are either all distinguishable or all indistinguishable.

In this section we define a novel counting rule for level 2 problems over multisets of entities.
By considering any type of multiset, we go beyond the rules in the Twelvefold-way, which only
contains rules for multisets where the entities are either all distinguishable or all indistinguishable.
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Compositions Let P = MC(V,D,C,cf ), V = 〈v1, . . . ,vn〉: since relevant parts partition the uni-
verse, each part vi can be described as the union of subsets of each relevant part R j. In this base
case we assume that the number of entities from each R j is known for each variable: let 〈h1, . . .hn〉
be the histograms describing such quantities for each part. Relevant parts are by definition disjoint,
therefore the choices for a selection from R j are independent of those from Rk if j 6= k. The number
of interchangeable subsets for vi is thus the product of the number xi

j of interchangeable subsets of
each relevant part R j. Since relevant parts distinguish between interchangeable and indistinguish-
able entities, this number is xi

j ≥ 1 for the former and xi
j = 1 for the latter. For interchangeable

entities xi
j is the binomial coefficient between the available entities ai

j and the number ni
j to be se-

lected. The former is given by how many entities of R j have already been used: ai
j = ∑k<i nk

j. Here
the order of the variables matters, hence we are counting compositions. The latter is defined by the
histogram for vi: (ni

j,R j) ∈ hi. Therefore:

xi
j =


(ai

j

ni
j

)
if entities in R j are interchangeable

1 if entities in R j are indistinguishable
(6)

Finally, the total number of compositions is the product of the choices for each subset, which is the
product of the choices for each relevant part:

compositions(V ) = ∏
i∈{1,...,|V |}

∏
(n j

i ,R j)∈hi

xi
j (7)

Partitions Let V/≡ be the partition of V into equivalence classes induced by the exchangeability
relation, i.e. V/ ≡ is {[v1], . . . , [vk]} where [v] = {vi ∈ V | vi ≡ v}. The number of partitions is
obtained by dividing the number of compositions by the number of indistinguishable permutations
of each class of exchangeable variables, that is: |[v1]|! · . . . · |[vk]|! for each [vi] ∈ V/ ≡. Therefore,
the counting rule for partitions with fixed sizes of each relevant part is:

partitions(V ) =
compositions(V )

∏[vi]∈V/≡ |[vi]|
. (8)

Example 28. Consider Example 24 and a partition of green entities in three subsets with the follow-
ing histograms: {{(3,green),(0,green)},{(0,green),(2,green)}, {(0,green),(2,green)}}. Green
triangles are indistinguishable, therefore no exchangeable solutions w.r.t. green triangles is counted
as different, but the count of exchangeable solutions w.r.t. non-green is lifted by Equation 8 as:(4

2

)
·
(4−2

2

)
= 6. In this case part 2 and 3 are exchangeable, since the number of green and non-green

entities is the same, hence the count of partitions is 6
2! = 3, that is {trg, trg, trg} combined with one

of: {{sqr,sqb},{trr, trb}}, {{sqr, trb},{trr,sqb}}, {{sqr, trr},{trb,sqb}} (cf. P4 in Example 33).

5.2.3 LEVEL 1 AND 2: PROPAGATING COUNTING CONSTRAINTS

Counting constraints are propagated without distinctions between level 1 and 2. When variables
are exchangeable and C 6= /0 one of the counting constraints c ∈ C is propagated. Otherwise, the
problem is partitioned according to the shattering of one of the counting constraints (Section 5.3.2).
Let c be a counting constraint (ϕ,=,s). We focus on equality as the other operators derive from it:
let S = {s1, . . . ,sk} be the set of admissible sizes defined by the constraint. Then, the solution of the
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problem is ∑s∈S MC(V,D,C∪{(ϕ,=,s)},cf ). To satisfy c we narrow the domain of s variables in
V to entities (or parts) in ϕ . Here exchangeability is exploited: under distinguishability of positions
(sequences, permutations, and compositions) there are e =

(n
s

)
exchangeable choices of variables to

propagate c (as usual, n = |V |), 1 otherwise.

Algorithm 1 COUNT≡

Precondition: P = 〈V,D,C,cf 〉,≡V ,C = {(ϕ,=,s)}
Operator: COUNT≡(P)

let e =
(n

s

)
if cf ∈ { [·], [{·}]} else 1

Dsat = {Di = dom(V )∩ϕ | i ∈ {1, . . . ,s}}
Dunsat = {Di = dom(V )∩ϕ | i ∈ {s+1, . . . ,n}}
P1 = 〈{v1, . . . ,vs},Dsat ,{},cf 〉
P2 = 〈{vs+1, . . . ,vn},Dunsat ,{},cf 〉 return 〈P1,P2〉

Postcondition: 〈P1,P2〉 is a split for P: MC(P) = e ·MC(P1) ·MC(P2) (Definition 8)

Proof. We prove that 〈P1,P2〉 is a split for P, therefore that the multiplication rule counts e ex-
changeable solutions of P. The multiplication rule counts solutions of P because each assignment
f1 for P1 has exactly s entities (parts) belonging to ϕ , and similarly, an assignment f2 for P2 has
no entities (parts) belonging to ϕ . Therefore, each union f1 + f2 has exactly s entities (parts) in
ϕ . Any assignment f1 + f2 is thus a satisfying assignment for P. If the exchangeable variables are
distinguishable, then for each satisfying assignment f1 + f2 there are n! exchangeable assignments.
MC(P1) accounts for s! exchangeable assignments within P1 and MC(P2) accounts for (n− s)! ex-
changeable assignments for P2, therefore there are n!

s!(s−n)! =
(n

s

)
= e distinguishable exchangeable

assignments of the split.

5.3 Level 1 and 2: Exchangeability and Shattering Counting Constraints

If none of the base cases are applicable, then variables are not exchangeable, and we resort to split-
ting and partitioning. Therefore, we have to define variables, domains and constraints for the splits

Configuration Fixed relevant Exchangeable Non-exchangeable
sequence

n.a.

Base case
multisubset (Section 5.2.1, Equations 2 and 5 )
permutation Base case NOREP BASE 6≡

subset (Sec. 5.2.1, Eq. 3 and 4) (Section 5.4 )

partition
composition

|R|= 0
Base case

(Section 5.2.2, Equations 7 and 8)

|R|= 1
PARTS≡ PARTS 6≡

(Section 5.5.2) (Section 5.5.3)

|R|> 1
PART

(Section 5.5.4)

Table 6: Operator cases without counting constraints. (n.a.= not applicable)
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Configuration Exchangeable Non-exchangeable
sequences, multisets

COUNT≡
(Section 5.2.3)

COUNT 6≡
partitions, compositions (Section 5.3.2)

permutations NOREP 6≡
subsets (Section 5.4)

Table 7: Operator cases with counting constraints.

and parts. In Section 5.3.1 we describe how the non-exchangeable variables are divided between
the two subproblems of a split. Because the corresponding domains and constraints are specific to
the type of problem, we consider particular combinations of exchangeability and constraints, sum-
marized in Tables 6 and 7. In Section 5.3.2 we begin with the partitioning of counting constraints,
which applies to all problems but those with a non-repetition constraint (permutations and subsets).

5.3.1 EXCHANGEABILITY

When the precondition of exchangeability is not met (6≡V ), then we shatter the problem P =
MC(V,D,C,cf ) into splits 〈Pi

1,P
i
2〉 such that Pi

1 is on exchangeable variables, thus leading to a
liftable subproblem, while Pi

2 is further shattered if necessary. We define the variables of the
two splits of P as follows. Consider the equivalence classes induced by the exchangeability re-
lation ≡ over V : ≡ induces a partition V/ ≡ into sets (classes) of exchangeable variables, i.e.
[v] = {vi ∈V | vi ≡ v}. Each class [v] is a set of exchangeable variables and when V is not exchange-
able |V/ ≡ | > 1. To define 〈Pi

1,P
i
2〉 we consider a class [v] ∈ V/ ≡, and the remaining variables

V̂ = {w |w ∈ [vi], [vi] ∈V/≡ \{[v]}}. Then Pi
1 = ([v],Di

[v],C
i
[v],cf ) and Pi

2 = MC(V̂ ,Di
V̂
,Ci

V̂
,cf ) with

problem Pi
1 defined on exchangeable variables. The domains Di

[v] and Di
V̂

and constraints Ci
[v] and

Ci
V̂

depend on the specific splitting operator.

Example 29. In Example 23 domain D= 〈univ,green,univ,univ〉 hence [v1] = 〈v1,v3,v4〉 and [v2] =
{v2}. If the second class [v2] is chosen for the split, then V̂ = {v1,v3,v4}. Note that in this example
there are only two classes, hence V̂ is also exchangeable, but when |V/≡ |> 2 this is not the case.

5.3.2 LEVEL 1 AND 2: SHATTERING COUNTING CONSTRAINTS

Again, we make no distinction between the two levels when reasoning on counting constraints, but
we distinguish between level 1 configuration with or without repetition (Table 7). When variables
are not exchangeable and C 6= /0, we partition the problem to account for the different choices of
variables to propagate the counting constraints. In this section we shatter counting constraints alone,
in Section 5.4.2 we define the shattering of both size and non-repetition constraints. We shatter a
counting constraint c = (F,=,s) into the possible numerical contribution from the split class [v] and
the other variables in V̂ , defined as in the previous section. The shattering of multiple counting
constraints is obtained by recursively combining the individual constraint shattering with the splits
of the other constraints. Let P = 〈V,D,C,cf 〉 and let c be a counting constraint: we denote with
P+ c the problem 〈V,D,C∪{c},cf 〉.
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Algorithm 2 COUNT 6≡

Precondition: P = MC(V,D,C,cf ) : 6≡V ,C = {(ϕ,=,s)}∪C′, cf 6∈ {[|·],{|·}}
Operator: COUNT 6≡(P)

P= {}
if C′ = /0 then

for i in {0, . . . ,s} do
Pi

1 = 〈[v],D[v],{(ϕ,=, i)},cf 〉
Pi

2 = 〈V̂ ,DV̂ ,{(ϕ,=,s− i)},cf 〉
P= P∪{〈Pi

1,P
i
2〉}

else
P′ = COUNT 6≡(V,D,C′,cf )
for 〈P j

1 ,P
j

2 〉 ∈ P′ do
for i ∈ {0, . . . ,s} do

Pi
1 = P j

1 +{(ϕ,=, i)}
Pi

2 = P j
2 +{(ϕ,=,s− i)}

P= P∪{〈Pi
1,P

i
2〉}

return P
Postcondition: P is a partition for P: MC(P) = ∑〈Pi

1,P
i
2〉∈P

MC(Pi
1) ·MC(Pi

2) (Property 2)

Proof. By induction on |C|. We prove that P is a partition, hence that each pair in P is a split, that
does not overlap with the others, and that all solutions of P are counted.

Base case: |C| = 1. If |C| = 1 then C′ = /0 and the pairs 〈Pi
1,P

i
2〉 are defined accordingly. Each

〈Pi
1,P

i
2〉 is a split for P since [v]∩V̂ = /0 and each satisfying assignment f1 (resp. f2) for P1 (resp. P2)

has exactly i (resp. s− i) entities (parts) from ϕ , therefore a satisfying assignment f1 + f2 for P has
i+ s− i = s entities (parts) from ϕ . The fact that we consider a different i for each pair ensures that
the solutions do not overlap, and by considering each i ∈ {0, . . . ,s} we cover all the possible cases
summing up to s, hence P is a partition for 〈V,D,C,cf 〉.

Inductive case: |C|> 1. Let C = {(ϕ,=,s)}∪C′ with C′ 6= /0, let P′ be a partition 〈V,D,C′,cf 〉
and let 〈P j

1 ,P
j

2 〉 be a split in P′. Let f1 and f2 be respectively a solution for P j
1 and P j

2 : f1 + f2 is
a satisfying assignment 〈V,D,C′, f 〉. The same arguments from the base case apply: 〈P j

1 +(ϕ,=

, i),P j
2 + (ϕ,=,s− i)〉 is a split for P: [v]∩ V̂ = /0 and the new counting constraints ensure that

each union of solutions of the two splits satisfies {(ϕ,=,s)}. The different values of i define non-
overlapping splits and cover all the possible cases to partition s entities from ϕ between the two
subproblems, hence P is a partition for 〈V,D,C,cf 〉.

5.4 Level 1: Shattering Non-repetition

The distinction between configurations with or without repetition is specific to level 1 configura-
tions. Like for counting constraints, we consider the two cases: exchangeable and non-exchangeable
variables. If variables are exchangeable, then we can apply a base case (Section 5.2.1). In this sec-
tion we describe the case where variables are not exchangeable. First, we define the case without ad-
ditional counting constraints, |C|= 0 (Section 5.4.1), then we generalize it to |C|> 0 (Section 5.4.2).
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5.4.1 LEVEL 1: SHATTERING REPETITION WITHOUT COUNTING CONSTRAINTS

The non-repetition constraint in P = 〈V,D,C,cf 〉 is split into two problems P1 and P2 where the
respective variables [v] and V̂ are defined as in Section 5.3.1. Let D[v] and DV̂ be the corresponding
domains in D. We obtain a split by fixing a number k of entities in each relevant property for vari-
ables [v], such that the problem on V̂ is solved knowing that k fewer different choices are available.
We thus exploit interchangeability of entities to avoid reasoning on each possible entity choice in
a solution for P1. If variables are not exchangeable then there are some positional constraints on
the variables that determine different domains, therefore the relevant properties, in addition to the
groups of indistinguishable entities, are the equivalence classes of the exchangeability relation over
V̂ : P = {W |[W ] ∈ V̂/≡}. We define histograms for [v], as usual, as the set of the combinations of
the possible cardinalities of the relevant partitions relevant(P). Then we solve P1 by constraining
each of its satisfying assignments f1 to yield the given histogram, and we solve P2 knowing for each
relevant property (and partition) how many different entities are already in the partial assignment f1
for P. To do so, we denote with D−h the set of domains obtained by removing from each Di ∈D a
number of entities r from each relevant partition R such that (r,R) ∈ h.

Algorithm 3 NOREP BASE 6≡

Precondition: P = MC(V,D,C,cf ) : 6≡V , |C|= 0
Operator: NOREP BASE 6≡(P)

P= {}
for h in hst(dom([v])) do

Ch
1 = {(R,=,r) |(r,R) ∈ h}

Ph
1 = 〈[v],D[v],Ch

1 , f 〉
Ph

2 = 〈V̂ ,DV̂ −h,{}, f 〉
P= P∪{〈Ph

1 ,P
h
2 〉}

return P
Postcondition: P is a partition for P: MC(P) = ∑〈Ph

1 ,P
h
2 〉∈P

MC(Ph
1 ) ·MC(Ph

2 ) (Property 2)

Proof. We prove that each 〈Ph
1 ,P

h
2 〉 is a (non-overlapping) split of P and that the sum of the counts

for each split is the count for P. By definition the histogram is a partition of the relevant properties
and the respective cardinalities are a different (valid) combination for each h ∈ hst(dom([v])). This
guarantees that the pairs are non-overlapping and cover all possible satisfiable cases.

To prove that each 〈Ph
1 ,P

h
2 〉 is a split, we note that a satisfying assignment f2 for P2 excludes a

specific selection of entities according to a histogram h, but there is no guarantee that any solution
f1 for P1 is such that f1([v])∩ f2(V̂ ) = /0 and thus that f1+ f2 is a solution for P. Therefore, we
prove that each union of the two satisfying assignments is a solution for P up to a renaming of the
entities. Let H be the set of entities removed from the domains DV̂ . If f1 maps variables to exactly
the entities in H then f1 + f2 is trivially a satisfying assignment for P, since f2 does not map any
variable to H. If this is not the case then there is at least an entity e in a relevant partition R such
that e ∈ R\H and e ∈ f1([v]). We examine the individual case which can be generalized to multiple
entities. If e 6∈ f2(V̂ ) then f1 + f2 is a satisfying assignment for P. If e ∈ f2(V̂ ) then f1 + f2 is not
a satisfying assignment for P, however this entails the existence of an entity e′ ∈ R∩H which does
not appear in f1([v]). This because |R∩ [v]|= |R∩H|= r and e is in f1([v]), but not in H, otherwise
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e 6∈ f2(V̂ ). Therefore, by renaming e with e′ in f2(V̂ ), which are interchangeable entities since they
belong to the same relevant partition R, f1([v])+ f2(V̂ ) corresponds to a satisfying assignment.

5.4.2 LEVEL 1: SHATTERING REPETITION WITH COUNTING CONSTRAINTS

We generalize the operators NOREP BASE 6≡(P) and COUNT 6≡(P) to shatter problems where both
counting constraints and the non-repetition constraint are present. We combine the two approaches
presented in the previous sections into a general operator for non-repetition where histograms define
the shattering of counting constraints as well as the non-repetition constraints. Let [v] and V̂ be the
usual split of the non-exchangeable variables of P = MC(V,D,C,cf ). The relevant properties P
in this case are the union of the relevant properties for counting constraints and non-repetition:
∀c ∈C,c is (ϕ,=,s) : ϕ ∈P and ∀ [w] ∈ V̂/≡: dom([w]) ∈P , which also contain the information
about indistinguishability. From the histograms on P we define the constraints and domains for the
split problems Ph

2 similarly to the previous operators: complementary counting constraints for the
two split problems to satisfy the counting constraints over P and domain exclusion on variables in
V̂ to count satisfying assignments w.r.t. non-repetition.

Algorithm 4 NOREP 6≡

Precondition: P = MC(V,D,C,cf ) : 6≡V

Operator: NOREP 6≡(P)
P= {}
for h in hst(P) do

Ch
1 = {(R,=,r) |(r,R) ∈ h}

Ch
2 : {(ϕ,=,s− i) |c : (ϕ,=,s),c ∈C, i = ∑(r,R)∈h,R⊆ϕ r}

Ph
1 = 〈[v],D[v],Ch

1 ,cf 〉
Ph

2 = 〈V̂ ,DV̂ −h,Ch
2 ,cf 〉

P= P∪{〈Ph
1 ,P

h
2 〉}

return P
Postcondition: P is a partition for P: MC(P) = ∑〈Ph

1 ,P
h
2 〉∈P

MC(Ph
1 ) ·MC(Ph

2 ) (Property 2)

Proof. The arguments for this proof are similar to those previously presented in the proofs for the
two distinct constraint shatterings: constraints Ch

2 ensure that for each counting constraint (ϕ,=,s)
the number of entities in ϕ in the union of the satisfying assignments for Ph

1 and Ph
2 is s. At the same

time the domains DV̂ −h ensure the correctness of the count of the assignments for P that satisfy the
non-repetition constraint. Histograms guarantee non-overlapping splits accounting for all solutions
of P.

In Section 5.6 we give a detailed description of how Example 29 is partitioned and solved by
applying the operators presented in this section.

5.5 Level 2: Shattering Parts

Level 2 problems require us to distinguish two levels of properties in a problem P=MC(V,D,C,cf ):
global properties of the parts, i.e. counting constraints C (level 2 properties), and local properties of
each individual subset (level 1 properties), i.e. the set of constraints defining Di for each part i. We
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propagate the former as described in Section 5.3.2, therefore in this section we assume that C = /0
and focus on the local constraints, that is, counting the valid combinations of domains resulting
from this propagation.

Example 30. Consider Example 24: after the propagation of the counting constraint the #CSP is:
V = 〈v1,v2,v3〉, D = 〈{(green,=,3)},{(green, 6=,3)},{(green, 6=,3)}〉, C = /0, cf = {{·}}.

Clearly, level 1 constraints prevent the application of the counting rules (Table 3) for problems
of level 2.

Next, we generalize the approach in Section 5.2.2 for shattering a level 2 problem into n subset
problems to the case where the number of entities from each relevant part is not known for each
subset. Intuitively, we fix the content of each subset by considering one relevant part at a time. We
begin with fixing the number of entities from a relevant part in all subsets, and recursively add on
top of this distribution the possible distributions for the remaining relevant parts. In doing so, we
have to account for the satisfiability of the constraints and exchangeability.

Example 31. In Example 24 propagating the number of green objects in the parts results in Ex-
ample 30. While the number of green entities in the three parts is fixed by the counting constraint
to be 〈3,0,0〉, the number of non-green entities can vary, e.g. 〈0,2,2〉, 〈1,1,2〉, . . . Of the possible
distributions of the 4 entities into the 3 parts 〈4,0,0〉 and 〈3,1,0〉 (and the exchangeable 〈3,0,1〉)
are not valid distributions because at least one part would be empty.

In Section 5.5.1 we give a high-level description of the function distribute, which ensures that
the configuration constraints remain satisfiable at each step. In the rest of the section we present the
operators that account for exchangeability in the definition of the distributions of each relevant part.
We distinguish three cases: (1) the case where variables are exchangeable and a count of a relevant
property can be propagated (Section 5.5.2); (2) the case where variables are not exchangeable (Sec-
tion 5.5.3); and (3) the general case with multiple relevant properties, solved by means of recursion
(Section 5.5.4).

5.5.1 DISTRIBUTING ENTITIES

The goal of the operators presented in this section is to define a histogram for each subset of the
partition or composition. These histograms must satisfy three kinds of constraints: the two defined
by the configuration type cf plus the additional constraints, namely:

1. parts partition the universe, hence all entities must belong to some part;

2. all parts are non-empty;

3. the individual counting constraints restricting the domains of the parts.

We distribute one relevant part at a time, which means that the entities at each step are either indis-
tinguishable or interchangeable, therefore we can do lifted reasoning over the number of the entities
rather than their exact identity. We thus divide the entities by considering integer distributions. An
integer distribution of r over k parts is an integer partition where summands can be zero. In fact, a
subset can have zero entities from a relevant part as long as no constraint is violated. The satisfia-
bility of the constraints is ensured by a function distribute. The function distribute(P,R,r,k) takes
as input the problem P, the number of entities r from the set R, and the number of parts k. It returns
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a set I of tuples of integers of the form 〈i1, . . . , ik〉 describing an integer distribution of r in k parts,
such that no constraint in P is violated.

Integer distributions ensure that all entities of a relevant part are assigned to some subset (con-
straint 1). Moreover, we use bounds consistency techniques to consider only integer distributions of
|R| that satisfy constraints (2) and (3). For instance, if the valid subsets for v j have 0 entities from all
relevant partitions but R, then i j > 0 (constraint 1). Example 31 shows the distributions of entities
from the universe excluded by distribute(P,green,4,3). We also exclude the distributions where i j

does not satisfy a local constraint about R in D j (constraint 3).
We rely on the function distribute in both cases where variables are exchangeable (Section 5.5.2)

and they are not exchangeable (Section 5.5.3), with the difference that under exchangeability we
choose one ordering for the distribution 〈i1, . . . , ik〉 and account for the exchangeable ones in a lifted
manner. On the contrary, when variables are not exchangeable we consider a distribution over
exchangeability classes rather than individual variables, therefore different orderings in the integer
distribution define different problems. For this reason in this case we have to consider explicitly the
different permutations in propagating the number of entities of a relevant partition.

5.5.2 ONE NON-FIXED RELEVANT PART: EXCHANGEABLE VARIABLES

When variables are exchangeable (case 1) we compute the set of valid integer distributions and for
each of them consider a new subproblem. In each suproblem corresponding to a distribution i =
〈i1, . . . , ik〉, the number of entities from R is fixed to be i j for each v j in V by adding to D j a counting
constraint (R,=, i j). Variables are exchangeable, therefore we can lift the count of exchangeable
assignments. Similarly to the propagation of counting constraints, we pick an order of {i1, . . . , ik}
for the tuple of variables and account with a constant for the exchangeable ways of propagating the
corresponding counting constraints to the variables. We denote such constant with e(cf , i). If the
configuration is a partition, exchangeable assignments are indistinguishable, hence e({{·}}, i) = 1
for any i. Otherwise, the number of exchangeable propagations of i is e([{·}], i}) = |i|

n1!·····n j!
where

n1, . . . ,n j count the occurrences of each of the j different integers in i.

Algorithm 5 PARTS≡

Precondition: P = 〈V,D,C,cf 〉 :≡V ,C = /0,R = {(r,R)}
Operator: PARTS≡(P,R)

P= {}
for i = 〈i1, . . . , i|V |〉 in distribute(P,R, |V |) do

D′ = {D j ∪{(R,=, i j)}|D j ∈ D}
P= P∪{(e(cf , i),〈V ′,D′,C,cf 〉)}

return P
Postcondition: P is a partition for P: MC(P) = ∑(c,〈V ′,D′,C,cf 〉)∈P c ·MC(V ′,D′,C,cf ) (Property 2)

Proof. We prove that P is a partition of P, hence that P defines non-overlapping shatterings that
cover the solution space of P. If P is unsatisfiable, i.e. MC(V,D,C,c f ) = 0, there are two cases.
Either distribute(P,R, |V |) = /0, hence P = /0 and MC(V ′,D,C,cf ) = 0, or regardless of how we
partition the entities in R, the problem remains unsatisfiable, hence MC(V ′,D′,C,cf ) = 0 for all
V ′,D′. We now consider the case where P is satisfiable, hence we prove that P defines subproblems
corresponding to non-overlapping constraints, from which the model count of P can be derived. If

35



TOTIS, DAVIS, DE RAEDT, & KIMMIG

P is satisfiable then there exists at least a solution f1 where the entities of R are partitioned across
V . Let i = 〈i1, . . . , i|V |〉 be the distribution of entities from R in each of the |V | parts in such solution.
Since this is a valid distribution of R w.r.t. V , then it belongs to distribute(P,R, |V |). i corresponds to
a subproblem of P where each part v j is constrained to contain exactly i j entities in R. f1 is a solution
for such subproblem and since variables are exchangeable, f1 is one of the c = e(cf ,{i1, . . . , i|V |})
different exchangeable assignments of each ik ∈ {i1, . . . , i|V |} to some part. A set of constraints
corresponding to a distribution i′ 6= i does not overlap with those corresponding to i: if i′ 6= i then
there is either some i′k ∈ i′ such that i′k 6∈ i or such that i′k ∈ i and the number of occurrences is
different between i′ and i. Therefore, no assignment for V can satisfy both sets of constraints at the
same time, hence the constraints corresponding to distribute(P,R,r, |V |) are non-overlapping. Since
distribute(P,R,r, |V |) contains all valid distributions of R, we can conclude that P partitions P.

5.5.3 ONE NON-FIXED RELEVANT PART: NON-EXCHANGEABLE VARIABLES

If variables are not exchangeable (case 2), we distribute r entities from a relevant property R into
the exchangeable classes first, then propagate the constraints in each class. The first step is done
by distribute(P,R,r,k), which produces a distribution of r, i = 〈i1, . . . , ik〉,over the k exchangeability
classes. This means that the jth class corresponds to a new problem of distributing i j entities from R
over its exchangeable variables (parts), that is, case 1. Each distribution within a class is independent
of the others, hence they can be united in a solution for the original problem. Given two sets
A = {(eA

1 ,P
A
1 ), . . . ,(e

A
n ,P

A
n )} and B = {(eB

1 ,P
B
1 ), . . . ,(e

B
m,P

B
m)} we denote with A×B the union of the

two sets of problems in a cartesian-product form: {(eA
1 · eB

1 ,P
A
1 ∪PB

1 ), . . . ,(e
A
1 · eB

m,P
A
1 ∪PB

m), . . . ,(e
A
n ·

eB
n ,P

A
n ∪PB

m)} where PX
i = 〈vX

i ,D
X
i ,C,cf 〉 and PA

i ∪PB
j = 〈vA

i ∪ vB
j ,D

A
i ∪DB

j ,C,cf 〉. We also denote
with ×{A1,A2, . . . ,An} the operation A1×A2 · · · ×An. The operator corresponding to case 2 thus
distributes entities across the exchangeability classes first, then within each class according to case
1, and finally combines the case 1 distributions of each class with those from the other classes.

Algorithm 6 PARTS 6≡

Precondition: P = 〈V,D,C,c f 〉 : 6≡V ,C = /0,R = {(r,R)}
Operator: PARTS 6≡(P,R)

let V/≡ be {V1, . . . ,Vk}
P= {}
for i = 〈i1, . . . , ik〉 in distribute(P,R,k) do

join =×{PARTS≡(〈Vj,DVj ,C, f 〉,{(i j,R)}) |Vj ∈V/≡}
P= P∪ join

return P
Postcondition: P is a partition for P: MC(P) = ∑(c,〈V ′,D′,C,cf 〉)∈P c ·MC(V ′,D′,C,cf ) (Property 2)

Proof. As in the exchangeable case, we prove that P is a partition of the solutions of P. We distribute
the entities of R across the exchangeability classes: classes are not exchangeable hence different
orders in the integer partition define different subproblems. For a given integer distribution, each
exchangeability class corresponds to a set of valid distributions of the given number of entities as
in PARTS≡(P,R) hence they do not overlap. Therefore, a solution for one class can be united with
one solution of each class: classes are distinguishable hence each subproblem is different from each
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other. The result is a satisfiable subproblem of P since the sum of the entities in R is equal to |R|
and no constraint in D is violated.

5.5.4 MANY NON-FIXED RELEVANT PARTS

Finally, when more than one relevant property requires to be propagated (case 3), we propagate one
relevant property R and recursively consider the different subproblems corresponding to each valid
distribution of R across the parts.

Algorithm 7 PART

Precondition: P = 〈V,D,C,cf 〉 : C = /0,R = {(r,R)}∪R ′

Operator: PART(P,R)
if |R ′|> 0 then

P′ = PART(P,R ′)
for (c,〈V ′,D′,C,cf 〉) in P′ do

if |V ′/≡ |= 1 then
P= PARTS≡(〈V ′,D′,C,cf 〉,{(r,R)})

else
P= PARTS 6≡(〈V ′,D′,C,cf 〉,{(r,R)})

else
if |V/≡ |= 1 then

P= PARTS≡(P,R)
else

P= PARTS 6≡(P,R)
return P

Postcondition: P is a partition for P: MC(P) = ∑(c,〈V ′,D′,C,cf 〉)∈P c ·MC(V ′,D′,C,cf ) (Property 2)

In Section 5.6 we complete Examples 30 and 31 with a detailed description of the application
of the operators for level 2 configurations.

5.6 Detailed Examples

We give a step-by-step description of how the lifted reasoning techniques implemented in the oper-
ators in CoSo solve combinatorics math problems of level 1 (with a non-repetition constraint) and
level 2, with counting and positional constraints. For each lifted step we describe the corresponding
ground configurations that are counted.

Example 32. We complete Example 29: the goal is to count the number of 4-permutations
where the second object is green and there are 2 squares. Let univ = squares ∪ triangles =
{�,�,N,N,N,N,N}. As described in Example 29 the result of the propagation of the positional
constraint is the #CSP P = MC(V,D,C,cf ), where V = 〈v1,v2,v3,v4〉, D = 〈univ,green, univ,univ〉,
C = {(squares,≥,2)}, cf = [|·]. We represent the corresponding configuration as 〈F,N,F,F〉,
whereF denotes an undecided shape with undecided colour.

First, we notice that variables are not exchangeable due to the positional constraint, hence we
have to partition the problem. We pick [v2] as the split class for 〈univ,green,univ,univ〉, thus P1 =
〈V1,D1,Ch

1 ,cf 〉 with V1 = 〈v2〉,D1 = 〈green〉 and P2 = 〈V2,D2,Ch
2 ,cf 〉 with V2 = 〈v1,v3,v4〉,D2 =
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Operator: NOREP 6≡(P) =
P= {}
for h in hst(P):

Ch
1 = {(R,=,r) |(r,R) ∈ h}

Ch
2 : {(ϕ,=,s− i) |c : (ϕ,=,s),

c ∈C, i = ∑(r,R)∈h,R⊆ϕ r}
Ph

1 = 〈[v],D[v],Ch
1 ,cf 〉

Ph
2 = 〈V̂ ,DV̂ −h,Ch

2 ,cf 〉
P= P∪{〈Ph

1 ,P
h
2 〉}

return P
Postcondition: P is a partition for P
MC(P) = ∑〈Ph

1 ,P
h
2 〉∈P

MC(Ph
1 ) ·MC(Ph

2 )

Operator: COUNT≡(P) =
let e =

(n
s

)
if cf ∈ { [·], [{·}]} else 1

Dsat = {Di = dom(V )∩ϕ | i ∈ {1, . . . ,s}}
Dunsat = {Di = dom(V )∩ϕ | i ∈ {s+1, . . . ,n}}
P1 = 〈{v1, . . . ,vs},Dsat ,{},cf 〉
P2 = 〈{vs+1, . . . ,vn},Dunsat ,{},cf 〉
return 〈P1,P2〉
Postcondition: 〈P1,P2〉 is a split for P
MC(P) = e ·MC(P1) ·MC(P2)

Figure 6: Operators required for solving Example 32

〈univ,univ,univ〉. Then, following NOREP 6≡, we consider the different histograms counting the rele-
vant properties in a solution for P1 to solve P2 independently.

In Example 26 we define the relevant parts green and squares, along with the histograms in Ex-
ample 29. Of the possible histograms for P1, only h = {(1,green∩ squares),(0,squares∩ green)}
is feasible. Therefore, we consider just one split where Ch

1 = {(green∩ squares,=,1),(squares∩
green,=,0)} and Ch

2 = {(squares,=,2)}. The domains of P2 are then updated (DV̂ − h) such
that one green∩ squares entity is removed from the universe (univ∗ = {�,�,N,N,N,N}, hence
squares = {N,N,N,N} in P2).

P1 First we solve P1: the variables (〈v2〉) are exchangeable, therefore the counting constraints can
be propagated (COUNT≡): the domain of v2 remains unchanged in the resulting problem P∗1 . Ch

1 is
now empty and a counting rule can be applied, returning 1 as the number of solutions for P∗1 and
since e = 1 this is the solution for P1 as well.

P2 In P2 variables are exchangeable and there is a counting constraint: COUNT≡ propagates
the constraint and the resulting domains (in P∗2 ) are 〈squares,squares,squares〉 with 3 exchange-
able choices. This step corresponds to the (non-lifted) configurations: 〈�,N,�,N〉, 〈N,N,�,�〉,
〈�,N,N,�〉. Now variables are not exchangeable hence we split (skipping trivial steps) P∗2 into
P2a = 〈〈v1,v3〉,〈squares,squares〉,{},cf 〉 and P2b = 〈〈v4〉,〈squares〉,{},cf 〉. Both now are base
cases: MC(P2a) = 2! = 2. This means lifting the count of:

• ��: 〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉

• ��: 〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉

P 6≡V P= {〈P1,P2〉} Solve subproblems P1,P2

MC(P) = ∑{〈P1,P2〉}MC(P1) ·MC(P2) P1 P2MC(P) = 1 ·18 = 18

NOREP 6≡

Figure 7: Solver execution flow for P1
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P1 ≡V C 6= /0 Propagate c ∈Ch
1

e = 1
P∗1

≡VC = /0
Base case:
Equation 3

MC(P∗1 ) = 1

MC(P1) = e ·MC(P∗1 ) = 1

Figure 8: Solver execution flow for the first subproblem of P1

MC(P2b) = 3 because the two green triangles in squares are indistinguishable and the different
interchangeable choices are only between a red/blue/green triangle. P2b lifts the count of:

N: 〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉,
〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉

N: 〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉,
〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉

N: 〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉,
〈�,N,�,N〉, 〈N,N,�,�〉, 〈�,N,N,�〉

Therefore the solution for P2 is the product of the 3 exchangeable choices for propagating the
number of squares: MC(P2) = 3 · (2 ·3) = 18. The solution of the problem is thus:

MC(P) = MC(P1) ·MC(P2) = 1 ·18 = 18.

P2 ≡V C 6= /0 Propagate c ∈Ch
1

e = 3
P∗2

6≡VP= {〈P2a,P2b〉}
Solve subprob-

lems P2a,P2b

P2a ≡V C = /0
Base case:
Equation 3

MC(P2a) = 2

P2b ≡V C = /0
Base case:
Equation 3

MC(P2b) = 3

MC(P2) = e ·∑{〈P2a,P2b〉}MC(P2a) ·MC(P2b) MC(P) = 3 · (2 ·3) = 18

NOREP 6≡

Figure 9: Solver execution flow for the second subproblem of P1

39



TOTIS, DAVIS, DE RAEDT, & KIMMIG

Operator: PARTS≡(P,R) =
P= {}
for i = 〈i1, . . . , i|V |〉 in distribute(P,R, |V |):

D′ = {D j ∪{(R,=, i j)}|D j ∈ D}
P= P∪{(e(cf , i),〈V ′,D′,C,cf 〉)}

return P
Postcondition:

MC(P) = ∑(c,P′)∈P c ·MC(P′)

Operator: PARTS 6≡(P,R) =
let V/≡ be {V1, . . . ,Vk}:
P= {}
for i = 〈i1, . . . , ik〉 in distribute(P,R,k):

j =×{PARTS≡(〈Vj,DVj ,C, f 〉,{(i j,R)})|Vj ∈V/≡}
P= P∪ j

return P
Postcondition:

MC(P) = ∑(c,P′)∈P c ·MC(P′)

Figure 10: Operators required for solving Example 33

Example 33. We complete Examples 30 and 31: the goal is to count the number of partitions in
three non-empty subsets where green triangles all belong to the same part. The propagation of the
counting constraint picks one of the parts to be the one containing the triangles. Since variables
are exchangeable but the parts are indistinguishable, there are no interchangeable solutions to
count. After the counting constraint propagation the domains of the three variables not all sizes
of relevant parts ({green,green}) are known in each partition (Example 31): V = 〈v1,v2,v3〉, D =
〈{(green,=,3)},{(green, 6=,3)},{(green, 6=,3)}〉, C = /0, cf = {{·}}. Variables 〈v1,v2,v3〉 are not
exchangeable, i.e. [v1] = {v1}, [v2] = {v2,v3}.

We thus apply the operator PARTS 6≡: the only satisfiable composition of green is [3,0] (because
the counting constraint already determined a part for all green entities), let P′′ denote the cor-
responding partition. We thus propagate the distribution to the two exchangeability classes with
PARTS≡: the domain in [v1] is unchanged, the domains of [v2] from 〈{(green, 6=,3)},{(green, 6=
,3)}〉 become 〈{(green,=,0)},{(green,=,0)}〉. We thus recursively fixed the sizes of the first rel-
evant part and now propagate the second. This completes the second recursive call on the two
relevant parts: with the (singleton) partition obtained we consider the first recursive call on the
relevant part green.

The following step is to consider the single subproblem obtained from the propagation of the
number of green entities. The exchangeability classes are unchanged, hence we consider again
PARTS 6≡: the valid distributions for green over the two classes are {[0,4], [1,3], [2,2]} because [4,0]
and [3,1] would leave one of the two parts empty (thus distribute does not return them). We then
consider a different partition of the problem for the three valid distributions and propagate each
within the exchangeability classes (PARTS≡). For each valid [i, j] in the corresponding problem
the domain for v1 is simply updated with (green,=, i). For 〈v2,v3〉 we consider again the valid
distributions of j entities over 2 parts. For j = 2 the valid distribution is [1,1] ([2,0] violates non-
emptiness), similarly, j = 3 corresponds to [1,2], while j = 4 can be distributed either as [2,2] or
[1,3].

Once the distribution is propagated as counting constraints we obtain the following problem
partition:

P1. 〈{(green,=,3),(green,=,2)},{(green,=,0),(green,=,1)},{(green,=,0),(green,=,1)}〉
Corresponding to: {{N,N,N,F,F},{F},{F}}

P2. 〈{(green,=,3),(green,=,1)},{(green,=,0),(green,=,2)},{(green,=,0),(green,=,1)}〉
Corresponding to: {{N,N,N,F},{F},{F,F}}
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P ≡V C 6= /0 Propagate c ∈Ch
1

e = 1
P∗

6≡Vnon-fixed

MC(P) = ∑(c=1,Pi) c ·MC(Pi)

MC(P) = 6+12+4+3 = 25

Partition
P′ (green)

Partition
P′′ (green)

[3,0,0]

[1,3][2,2]

[0,1,3]

[0,4]

[0,2,2][1,1,2][2,1,1]

fixed fixedfixedfixed

Base
case

(Eq. 8)

Base
case

(Eq. 8)

Base
case

(Eq. 8)

Base
case

(Eq. 8)

MC(P2) =
12

MC(P1) =
6

MC(P3) =
3

MC(P4) =
4

PARTPART

PARTS 6≡
PARTS 6≡

PARTS 6≡

PARTS≡ PARTS≡PARTS≡ PARTS≡

PARTS 6≡

Figure 11: Solver execution flow for P2

P3. 〈{(green,=,3),(green,=,0)},{(green,=,0),(green,=,3)},{(green,=,0),(green,=,1)}〉
Corresponding to: {{N,N,N},{F},{F,F,F}}

P4. 〈{(green,=,3),(green,=,0)},{(green,=,0),(green,=,2)},{(green,=,0),(green,=,2)}〉
Corresponding to: {{N,N,N},{F,F},{F,F}}

The relevant parts are now fixed for each subset, therefore we can apply the base cases for a
lifted count (note that in the first and last problem partitions two subsets are exchangeable):

P1. (4
2)·(

2
1)

1·2 = 6, Corresponding to:

{{N,N,N,N,N},{�},{�}}, {{N,N,N,�,N},{�},{N}},
{{N,N,N,N,�},{N},{�}}, {{N,N,N,�,�},{N},{N}},
{{N,N,N,�,N},{�},{N}}, {{N,N,N,N,�},{N},{�}}.

P2. (4
2)·(

3
2)

1·1·1 = 12 Corresponding to:

{{N,N,N,N},{N},{�,�}}, {{N,N,N,N},{�},{�,N}},
{{N,N,N,N},{�},{N,�}}, {{N,N,N,�},{N},{N,�}},
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{{N,N,N,�},{N},{�,N}}, {{N,N,N,�},{�},{N,N}},
{{N,N,N,N},{�},{N,�}}, {{N,N,N,N},{N},{�,�}},
{{N,N,N,N},{�},{�,N}}, {{N,N,N,�},{N},{N,�}},
{{N,N,N,�},{N},{N,�}}, {{N,N,N,�},{�},{N,N}}.

P3. (4
0)·(

4
3)

1·1·1 = 4 Corresponding to:

{{N,N,N},{N},{N,�,�}}, {{N,N,N},{N},{N,�,�}},
{{N,N,N},{�},{N,�,N}}, {{N,N,N},{�},{N,�,N}}.

P4. (4
0)·(

4
2)

1·2 = 3 (Example 28) Corresponding to:

{{N,N,N},{N,N},{�,�}},
{{N,N,N},{N,�},{N,�}},
{{N,N,N},{N,�},{N,�}}.

Then, the solution of the problem is the sum over the problem partitions nr. 1,2,3 and 4, hence 25.

6. Language and Solver Analysis

In this section we evaluate empirically the contributions of the paper on a dataset of combinatorics
math problems (Dries et al., 2017) and on a set of synthetic benchmarks. We designed a language,
CoLa, to express a wide range of combinatorial problems and a solver, CoSo, to efficiently compute
their solutions; with the experiments we want to assess:

Q1) whether CoLa can encode real-world combinatorics math problems,

Q2) how many of these problems can CoSo solve,

Q3) what type of problems is hard for CoSo,

Q4) how CoSo compares to existing methods.

6.1 Modelling: Language Analysis (Q1)

To answer the first question, we encoded in CoLa a dataset of real-world math problems collected
by (Dries et al., 2017). The dataset contains 210 combinatorics math problems, of which 185 (88%)
can be expressed in CoLa and 106 (51%) in the Twelvefold-way. The configurations are distributed
as follows: 101 (54%) of the problems regard sequences and permutations, 72 sets and multisubsets
(39%), 8 (5%) partitions and 4 (2%) compositions. Cola can encode 79 more problems (37%)
by extending the Twelvefold-way in the two dimensions with multisets of objects and additional
positional and counting constraints. The former allows us to encode 22 (12%) problems, the latter
are used in 57 (31%) of the encoded problems, divided between 15 (8%) problems with positional
constraints and 42 (23%) problems with counting constraints.

We now briefly analyze the most common patterns of the 25 problems that cannot be encoded
in CoLa (12% of the dataset), which thus provide interesting indications about the limitations of
the language that can be addressed with future work. The majority of such problems (10) regard
permutations with relative position constraints: CoLa can encode absolute positions, i.e. “position i
must have an entity/partition with the given properties”, but not relative positions between groups,
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for example “entities of group A are next to each other” or “entities of group A are next to/between
entities of group B”, for example:

P7. Five married couples bought 10 tickets for a concert. In how many ways can they sit, in the
same row, if the five men want to sit together?

P8. Nine chairs in a row are to be occupied by six students and Professors Alpha, Beta and Gamma.
These three professors arrive before the six students and decide to choose their chairs so that each
professor will be between two students. In how many ways can Professors Alpha, Beta and Gamma
choose their chairs?

These types of problems require a more expressive constraint language for positions, and corre-
sponding lifted counting techniques.

Other problems (4) use a configuration not included in the Twelvefold-way, that is, a circular
permutation, for example:

P9. In how many ways can three men and three women sit at a round table if each woman sits in
between two men?

The circularity of the permutation has an impact on the satisfiability of the relative positional con-
straints.

Finally, we report 3 problems where entities are numbers and constraints are expressed over
arithmetic operations over them, for example

P10. Three distinguishable dice numbered 1, 2, 3, 4, 5 and 6 are thrown. In how many ways can
they land and give a sum of 9?

In this case, on a language level, we would need data types (integer) and a corresponding set of oper-
ations in the constraint language (e.g. sum, or in general, arithmetic operations). On the reasoning
level, the associativity and commutativity of the sum make the variable numbers exchangeable,
hence a lifted solver would be able to account for such symmetry.

This analysis therefore shows how combinatorics problems present a wide variety of symmetries
tightly related to the modelling language, where a lifted approach is possible. While CoLa and CoSo
can deal with the most common cases, they fall short on tackling some less standard combinations
of constraints and objects. Including more configurations and object types in the language, paired
with the respective lifted reasoning techniques, is thus an interesting direction for future work. This
means expanding CoLa with new language constructs in the two dimensions of the Twelvefold-way.

The first dimension concerns how the configuration is represented. Here, it is possible to con-
sider more types of configurations such as circular permutations. These could be added in one of
two ways. The first direction is to add ad-hoc labels for the new configurations. On the reasoning
side, this would require dedicated counting rules and redefining the propagation of all constraints,
in particular the splitting operation, on the new configuration. However, this direction is limited
in terms of modularity and expansibility of the language, because each new type of configuration
requires introducing new primitives in the language. The second approach would involve expanding
CoLa’s primitives to allow specifying arbitrarily complex configurations in a modular way. While
in the Twelvefold-way the configuration is a simple set, more sophisticated configurations define
(binary) relations over the set. For example a circular permutation is no longer an order derived
from labels but defines a (circular) successor relation. Relations between elements of the same set
are called homogeneous (Schmidt & Ströhlein, 1993). Different combinations of properties, e.g.
reflexive, transitive, symmetric,. . . , define different types of homogeneous relations which include
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(un)directed graphs, orders and equivalences. On the one hand, an interesting direction is to study
how exchangeability changes with respect to these properties and the resulting relation. On the
other hand, introducing a homogeneous relation allows us, in principle, to refer to the relation in
the constraints. For example if the configuration is a graph, we could ask that “each neighbour of a
professor will be a student” rather than “each professor will be between two students”. The ques-
tion is then how to count the exchangeable choices while propagating the constraints regarding the
relation.

The second dimension of the Twelvefold-way involves the constraints placed on the function
mapping objects to the configuration. Here, we could include new types of constraints such as the
relative positions between properties. While adding new constraints is not hard, it is difficult to
handle them in a lifted manner because each new constraint requires introducing new propagation
and splitting rules, both individually and in combination with other constraints. In fact, with the
operators presented in Section 5, we showed that splitting typically requires shattering of constraints
and different combinations must be taken into account. For example, the non-repetition constraint
and counting constraints are split at the same time and the corresponding operator (NOREP 6=) defines
how this can be done by means of histograms. In general, existing constraint modelling languages
provide a reference point as to which type of constraints are most useful and interesting language-
wise.

6.2 Reasoning: Solver Analysis (Q2, Q3, Q4)

To answer the questions about reasoning we consider two experimental setups for benchmarking:
1) the dataset from Dries et al. (2017) to test CoSo on questions designed to be approachable by
humans, and 2) a set of randomly generated CoLa problems which includes more computationally
challenging problems. We compare CoSo (Q4) with three modelling languages and the correspond-
ing reasoning systems:

• ASP, Clingo. Answer Set Programming (Gebser et al., 2012) is a prominent logic program-
ming framework based on first order logic with counting constraints. Clingo (Gebser, Kamin-
ski, Kaufmann, Ostrowski, Schaub, & Wanko, 2016) is one of the widely adopted solvers for
ASP programs (version 5.4.0).

• CNF, sharpSAT. sharpSAT (Thurley, 2006) is one of the most prominent propositional coun-
ters for satisfiability, which takes as input a propositional logic formula in conjunctive normal
form (CNF). The sharpSAT version adopted is 12.08.

• ESSENCE, Conjure. ESSENCE (cf. Section 2) is translated by Conjure (Akgün et al., 2022)
to the input format of the solver Minion (Gent, Jefferson, & Miguel, 2006), a CSP solver. We
use ESSENCE 1.3 along with Conjure 2.3.0.

We test CoSo on the benchmarks on a machine equipped with a 4 cores/4 threads CPU and 32 Gb
of RAM. Both Clingo and Conjure are called in enumeration mode to count the number of solutions
of the problem. We set a timeout of 300 seconds on each problem.

6.2.1 REAL-WORLD PROBLEMS (Q2, Q3, Q4)

Problem decomposition CoSo solves correctly all models (Q2): in Figure 12 we analyze the
running time with respect to the number of subproblems considered by the solver. A subproblem is
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Figure 12: CoSo solving time (log scale) tends to increase with the number of subproblems consid-
ered. Real-world dataset and synthetic benchmarks combined.

counted each time the solver is called recursively, therefore when the start node diagram in Figure 5
is traversed. Figure 12 shows that compared to synthetic benchmarks, real world problems require
considering fewer subproblems, and thus can be reduced to the lifted reasoning principles in fewer
steps. Of the problems that are not decomposed (1 subproblem, 135 instances) 30 (22%) cannot be
solved by the Twelvefold-way, because either a multiset (19) or a constraint (11, propagated without
splitting) are needed. These 11 problems together with the 48 (26%) that require a decomposition
into subproblems, make a total of 59 (32%) problems which cannot be solved by directly applying
a counting rule.

The slowest problem of the real-world dataset, which CoSo decomposes in 87 subproblems,
requires 8.49 seconds to be solved:

P11. From three Russians, four Americans, and two Spaniards, how many selections of people can
be made, taking at least one of each kind?

P11 belongs to a class of problems that highlights some opportunities for improving the rea-
soning techniques (Q3). In fact, the most complex instances do not specify a single size for the
configuration: in Section 5 we explain that we solve a separate #CSP for each valid size. In prac-
tice, for some problems it may be possible to exploit the work done on the smaller instances to speed
up the solving of the bigger ones. Similarly, hard instances contain counting constraints of the kind
“at least n”, which are decomposed, one by one, into many equality constraints corresponding to
each valid value (Section 5). Here instead humans are able to satisfy the three constraints at once,
by recognizing that they are independent because the sets of Russians, Americans and Spaniards are
disjoint and by “building” the valid subsets already including one person of each type.
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Framework # unsolved avg. time (solved)
CoLa-CoSo 0 0.18s
ASP-Clingo 52 5.70s

CNF-sharpSAT 75 7.44s
ESSENCE-Conjure 32 34.99s

Table 8: Comparison of the solvers on the 185 problems that can be encoded in CoLa. CoSo
outperforms on the real-world dataset the other frameworks by solving all problems within the
timeout and with a lower average running time.

We automatically translated the CoLa models to ASP and Essence to compare the propositional
solvers with CoSo on the real-world examples. The number of problems that reach the 300 seconds
timeout for each solver is presented in Table 8, along with the average running time on the remaining
problem for which the solution could be computed. Even on problems designed to be solvable by
humans, the frameworks based on propositional reasoning struggle to compute the answer within
the time limit on many instances.

Growing domains Given a combinatorics math problem, we expect that increasing the number of
entities involved does not affect the performances of CoSo because of its lifted reasoning techniques.
On the other hand we expect a degradation of the performances of propositional methods because
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Figure 13: The solving time of propositional methods increases exponentially with the number of
objects or the size of the configuration.
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of the exponentially larger number of combinations at the propositional level. To verify this, we
consider our three real-world running examples, P3, P4 and P5, and test the solvers on problems
of increasing size as follows. For P3, starting from the original problem with 12 TVs of which 3
are defective (Problem 0 on the x scale), we add at each step i one defective TV and one working
TV for i ∈ {1, . . . ,10}, thus reaching 32 TVs of which 13 are defective in Problem 10. For P4 we
add a worker at each step i for i ∈ {1, . . . ,10} and increase by one the size of partition i mod 3, thus
reaching in Problem 10 24 workers partitioned in groups of sizes {11,8,5}. For P5 we maintain the
number of objects constant (twice the original: 2 Bs, 6 As, 4 Ns) and increase the size of a word,
starting from 2 and increasing it up to 12 over the 10 Problems.

The results, summarized in Figure 13, confirm our expectations. All problems are solved by
CoSo in less than a second with constant time with respect to the increase of the number of entities.
On the contrary, the running time of propositional methods increases exponentially in the size of
the universe or, in the case of P5, the size of the configuration. We note that for P5 the number
of solutions between Problem 9 and Problem 10 does not change, hence in this case there is no
exponential increase in the running time of ESSENCE-Conjure between the two. Here the couple
ESSENCE-Conjure scales better than ASP-Clingo or CNF-sharpSAT, while in P4 ASP-Clingo is the
only combination that does not time out already from the original problem formulation (Problem 0
on the x scale).

6.2.2 SYNTHETIC BENCHMARKS (Q3, Q4)

To test CoSo and propositional methods on computationally harder benchmarks we generate a set
of random CoLa problems as follows. We consider all types of configuration except partitions as we
argued (Section 2) that not all frameworks support them. For each configuration type we consider
a size of the universe of u objects with u ∈ {10,15,20}, and a configuration size of reference s ∈
{5,10,15}. We generate a random multiset by adding a new object and a random number of copies
until the target size u is reached. We complete the universe by selecting a random number of subsets
representing their properties. We randomly choose a comparison symbol in {=, 6=,≥,≤,>,<} to
set the size of the configuration w.r.t. s. A random number of positional constraints (if applicable
to the configuration type) and counting constraints are generated similarly, by choosing a random
number in {0, . . . ,s} for the position or the required count, and a random subset to require at the
position or to be counted. Comparison symbols in counting constraints are random as well.

Of the 30 synthetic benchmarks in three cases none of the solvers finished within the timeout.
We report one of them (permutation problem) in the plots as it was possible to compute the solution
and the number of subproblems by running CoSo for a reasonable amount of time beyond the time
limit. The other two are composition problems, which in general are difficult for CoSo (Q3) when
the multiset presents many entities representing few copies: the many entities usually require to
consider a large number of cases for distributing entities into the parts and the few copies of each do
not offer an advantage in terms of reasoning over set sizes. This situation thus results in a solving
procedure similar to enumeration. The results of the benchmarks are summarized in three plots.

Figure 12 relates the running time of CoSo to the number of subproblem considered. We com-
bine the two datasets of problems into the figure: the majority of the problems from the real-world
dataset contribute to the instances that can be solved by considering a small amount of splits, while
the synthetic benchmarks populate the bars on the right side of the plot. The plot shows a mild
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Figure 14: Solving times (log scale) on synthetic benchmarks: CoSo outperforms propositional
frameworks in most cases, in particular with the increase of the number of solutions.

correlation between the number of subproblems in which the instance is partitioned and the total
time required to compute the solution.

Figure 14 contains the running time for the satisfiable problems, ordered on the x axis by the
number of solutions. Here we observe how the performances of the propositional methods degrades
quickly with the increase of the number of solutions to be enumerated, while CoSo’s runtime is
unrelated to it.

In Figure 15 we report the running time for the unsatisfiable problems. These examples confirm
the trend of CoSo being faster than propositional methods. At the same time these experiments
show that the efficiency of propositional methods is influenced not only by the number of solutions
to be enumerated, but also in the case of Clingo and sharpSAT by the size of the ground program,
which needs to be computed before constraints are analyzed. In particular, the problems where
ASP and sharpSAT time out are ordered configurations, hence requiring considering all possible
permutations of values, of size ≥ 10 and universe with cardinality ≥ 15.
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Figure 15: On unsatisfiable configurations CoSo outperforms propositional frameworks on most of
the instances (log scale). For ASP and sharpSAT most of these instances have the largest groundings
of the dataset. Legend format: configuration type universe size/configuration size of reference.
ms=multiset, pm=permutation, sq=sequence, cp=composition.

7. Conclusion

We presented a framework capable of modelling and efficiently solving a wide range of real-world
combinatorics math problems. Contrary to traditional declarative frameworks, our framework has
direct support for the fundamental primitives required to model such problems and combinatorial
counting. The framework is composed by (1) a novel modelling language for combinatorics math
problems, CoLa, and (2) a solver for CoLa problems, CoSo. CoLa expands a well-known character-
ization of the basic combinatorial problems, the Twelvefold-way, with a richer constraint language
and a more general multiset specification. CoSo implements novel lifted reasoning techniques for
counting constraint satisfaction problems. They represent an important step in bridging lifted prob-
abilistic inference techniques based on first-order logic with general #CSPs. We considered a class
of combinatorics math problems which the existing declarative frameworks do not directly support,
failing at either modelling adequately the problems or performing efficiently the counting task. An
experimental evaluation of propositional methods shows these limitations and the benefit of a lifted
approach. This motivates the relevance of our work on CoLa and CoSo, which are capable of ef-
fectively modelling and solving the large majority of a real-world dataset of combinatorics math
problems. The analysis of the cases where this is not possible suggests interesting directions for
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future work, not only in terms of expanding the expressivity of CoLa, but also in terms of the
corresponding lifted reasoning techniques.
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Appendix A

This appendix describes the automatic translation from the CoLa encoding to the ASP and ESSENCE

formats that are adopted in the experiments, along with some examples of the translations. CoSo can
output each format when invoked with the corresponding option. The CNF (sharpSAT) encodings
are obtained by first generating the ASP encoding and then translating it to CNF with existing tools3.
The CNF encodings consist of several thousand lines, therefore we do not report them here. The
translation is divided in two parts: the translation of the universe (and properties) and the translation
of the configuration with the corresponding constraints.

ASP In the translation to ASP, if the universe is a set then properties are predicates with a domain
where each object is a different number. For example, the domain of 12 TVs of which 3 are defective
in P3 is translated to universe(1..12)., defective(1..3). If the universe is a multiset, for
example the letters BANANA in P5, then each object is paired with the number of indistinguishable
copies, e.g. letter("A", 3). letter("N", 2). letter("B", 1). Along with the declared
universe, the same mapping is applied on each property used in the constraints.

Example 34. The ASP encoding of the set of objects in P3 automatically generated from CoLa is
as follows:

1 % Multisets and universe specification.

2 tvs (1..3).

3 tvs (4..12).

4 universe(X) :- tvs(X).

5 defective (1..3).

6 universe(X) :- defective(X).

7 sf_0 (1..3).

8 universe(X) :- sf_0(X).

The ASP encoding of the set of objects in P5 automatically generated from CoLa is as follows:

1 % Multisets and universe specification.

2 bs_0("B", 1).

3 bs(X) :- bs_0(X, _).

4 universe(X) :- bs(X).

5 as_0("A" ,3).

6 as(X) :- as_0(X, _).

7 universe(X) :- as(X).

8 ns_0("N" ,2).

9 ns(X) :- ns_0(X, _).

10 universe(X) :- ns(X).

3. https://research.ics.aalto.fi/software/asp/lp2sat/
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Level 1 configurations of size n are defined by means of a predicate of arity n where each vari-
able is a slot of the configuration with the corresponding domain. A choice rule selects exactly one
valid configuration per stable model, such that the number of stable models is the number of valid
configurations (solutions). For subsets and multisets symmetry breaking constraints (respectively <
and ≤) are added to remove exchangeable solutions.

Example 35. The ASP encoding of the configuration in P3 automatically generated from CoLa is
as follows:

9 % Configuration declaration

10 subset_guess_5(A,B,C,D,E) :-

11 universe(A), universe(B), universe(C), universe(D), universe(E),

12 A<B, B<C, C<D, D<E.

13 % Choose one subset for each answer set

14 1{ subset_5(A,B,C,D,E):subset_guess_5(A,B,C,D,E)}1.

15 % Auxiliary predicate for aggregates

16 used_5(X,0) :- subset_5(X, _, _, _, _).

17 used_5(X,1) :- subset_5(_, X, _, _, _).

18 used_5(X,2) :- subset_5(_, _, X, _, _).

19 used_5(X,3) :- subset_5(_, _, _, X, _).

20 used_5(X,4) :- subset_5(_, _, _, _, X).

If the universe is a multiset or the configuration does not contain repetitions, constraints with
counting predicates are added to ensure that no configuration contains more indistinguishable copies
of an objects than allowed.

Example 36. The ASP encoding of the configuration in P5 automatically generated from CoLa is
as follows:

11 % Configuration declaration

12 permutation_guess_6(A,B,C,D,E,F) :-

13 universe(A), universe(B), universe(C),

14 universe(D), universe(E), universe(F).

15 % Choose one permutation for each answer set

16 1{ permutation_6(A,B,C,D,E,F):permutation_guess_6(A,B,C,D,E,F)}1.

17 % Auxiliary predicate for aggregates

18 used_6(X,0) :- permutation_6(X, _, _, _, _, _).

19 used_6(X,1) :- permutation_6(_, X, _, _, _, _).

20 used_6(X,2) :- permutation_6(_, _, X, _, _, _).

21 used_6(X,3) :- permutation_6(_, _, _, X, _, _).

22 used_6(X,4) :- permutation_6(_, _, _, _, X, _).

23 used_6(X,5) :- permutation_6(_, _, _, _, _, X).

24 % Do not use more copies than the available

25 :- bs_0(S,SN), C = #count{N:used_6(S,N)}, C>SN.

26 :- as_0(S,SN), C = #count{N:used_6(S,N)}, C>SN.

27 :- ns_0(S,SN), C = #count{N:used_6(S,N)}, C>SN.

Compositions are modelled with a constant identifying each set and a predicate
1{put(E,N,P): int(N), N<=EN} 1 :- property(E, EN), part(P).

chooses for each entity E how many of the available indistinguishable copies to put in each part.
Constraints ensure that each part is non-empty:

:- part(P), #count{E,N:put(E,N,P), N>0}==0.
and all entities are distributed:
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:- property(E,EN), #sum{N,P:put(E,N,P),part(P)}!=EN.
Finally, positional constraints are imposed in level 1 on the domain of the variables representing the
objects, and in level 2 on the facts denoted by put/3.

Example 37. If we wanted to constrain position 2 in P5 to be an “a”, the declaration of the per-
mutation would look like:

1 permutation_guess_6(A,B,C,D,E,F) :-

2 universe(A), as(B), universe(C),

3 universe(D), universe(E), universe(F).

The encoding of counting constraints is similar to the constraints for the number of indistin-
guishable copies. The variable object in the used predicate is counted if it belongs to the predicate
denoting the set formula in the constraint.

Example 38. The ASP encoding of the constraint in P3 automatically generated from CoLa is as
follows:

21 % Exclude invalid values

22 :- C = #count{N:used_5(S,N),sf_0(S)}, C=0.

23 :- C = #count{N:used_5(S,N),sf_0(S)}, C=1.

ESSENCE In the translation to ESSENCE the universe and properties are mapped to an enumer-
ated type. For example on P5, this would entail letting the universe be new type enum

{b, a, n}. If the universe is a multiset, the definition of a function counting the number of indis-
tinguishable copies is added, e.g. letting f be function(b-->1, a-->3, n-->2).

Example 39. The ESSENCE encoding of the universe in P3 automatically generated from CoLa is
as follows:

1 letting universe be new type enum

2 { td_0 , td_1 , td_2 ,

3 tnd_0 , tnd_1 , tnd_2 , tnd_3 , tnd_4 , tnd_5 , tnd_6 , tnd_7 , tnd_8 }

4 letting f_universe be function(

5 td_0 --> 1, td_1 --> 1, td_2 --> 1,

6 tnd_0 --> 1, tnd_1 --> 1, tnd_2 --> 1, tnd_3 --> 1, tnd_4 --> 1,

7 tnd_5 --> 1, tnd_6 --> 1, tnd_7 --> 1, tnd_8 --> 1)

8 letting defective be { td_0 , td_1 , td_2 }

9 letting df_0 be { td_0 , td_1 , td_2 }

The ESSENCE encoding of the universe for P5 automatically generated from CoLa is as follows:

1 % Multisets declaration: entities and corresponding copies

2 letting universe be new type enum { a, n, b }

3 letting f_universe be function(a --> 3, n --> 2, b --> 1)

4 letting bs be { b }

5 letting as be { a }

6 letting ns be { n }

As we remarked in Section 2, currently it is not possible to declare multisets to be the domain
of a configuration, e.g. letting S be mset(0,1,1,1), find s : sequence (size l)

of S. Level 1 configurations of size n are defined by means of a sequence (ordered) or multiset
(unordered) of length n where each variable is a slot of the configuration with the corresponding
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domain. If the configuration forbids repetitions, then an upper bound is added on the number of
copies of the objects. This set to be less or equal to those available, such as:

forAll e: universe. sum([1 | i: int(1..l), configuration(i)=e])<=f(e)

Example 40. The ESSENCE encoding of the configuration in P3 automatically generated from
CoLa is as follows:

10 % Configuration declaration

11 letting vals_0 be { 2,3,4,5 }

12 letting l_5 be 5

13 find conf_5 : mset (size l_5) of tvs

The ESSENCE encoding of the configuration in P5 automatically generated from CoLa is as follows:

7 % Configuration declaration

8 letting l_6 be 6

9 find conf_6 : sequence (size l_6) of universe

10 such that

11 % no repetition

12 forAll e: universe.

13 sum ([1 | i: int (1.. l_6), conf_6(i)=e]) <= f_universe(e)

Compositions are modelled with a matrix indexed by the universe and the parts, such that for
each pair (e, p) the number in the matrix specifies how many copies of entity e belong to part p.
Also in this case additional constraints impose the non-emptiness of all parts:

forAll p:myparts. sum([put[e,p] | e:universe]) > 0

and the requirement that all objects are distributed over the parts:
forAll e: universe. sum([put[e,p] | p:myparts]) = f(e).

Positional and counting constraints are applied similarly. For the former, a constraint restricts the
domain of the variable in the given position, e.g. conf(i) in property. For the latter, the
frequency of the objects belonging to the constraint property is checked, e.g. sum([freq(conf,

i) | i: universe, i in property]) in valid values.

Example 41. The ESSENCE encoding of the constraint in P3 automatically generated from CoLa
is as follows:

13 find conf_5 : mset (size l_5) of tvs

14 %Configuration constraints

15 such that

16 % no repetition

17 forAll e: tvs.

18 forAll e: universe. freq(conf_5 ,e) <= f_tvs(e)

19 % Counting constraints

20 /\ sum([freq(conf_5 , i) | i: tvs , i in df_0]) in vals_0

Problem 1

We present as an additional representative example of the translations to ASP and ESSENCE the
encodings for P1.

Example 42. The ASP encoding of P1 automatically generated from CoLa is as follows:
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1 shapes_0("5" ,3). % shapes

2 shapes(X) :- shapes_0(X, _).

3 shapes_1("1", 1).

4 shapes(X) :- shapes_1(X, _).

5 shapes_2("2", 1).

6 shapes(X) :- shapes_2(X, _).

7 shapes_3("3", 1).

8 shapes(X) :- shapes_3(X, _).

9 shapes_4("4", 1).

10 shapes(X) :- shapes_4(X, _).

11 universe(X) :- shapes(X).

12 red_0("1", 1). % red

13 red(X) :- red_0(X, _).

14 red_1("3", 1).

15 red(X) :- red_1(X, _).

16 universe(X) :- red(X).

17 blue_0("2", 1). % blue

18 blue(X) :- blue_0(X, _).

19 blue_1("4", 1).

20 blue(X) :- blue_1(X, _).

21 universe(X) :- blue(X).

22 green_0("5" ,3). % green

23 green(X) :- green_0(X, _).

24 universe(X) :- green(X).

25 triangle_0("5" ,3). % triangles

26 triangle(X) :- triangle_0(X, _).

27 triangle_1("3", 1).

28 triangle(X) :- triangle_1(X, _).

29 triangle_2("4", 1).

30 triangle(X) :- triangle_2(X, _).

31 universe(X) :- triangle(X).

32 squares_0("1", 1). % squares

33 squares(X) :- squares_0(X, _).

34 squares_1("2", 1).

35 squares(X) :- squares_1(X, _).

36 universe(X) :- squares(X).

37 df_0_0("1", 1). % two squares set formula

38 df_0(X) :- df_0_0(X, _).

39 df_0_1("2", 1).

40 df_0(X) :- df_0_1(X, _).

41 universe(X) :- df_0(X).

42 % each variable corresponds to an object of the permutation

43 permutation_guess_4(A,B,C,D) :-

44 universe(A), pf_1(B), universe(C), universe(D).

45 pf_1_0("5" ,3). % second green object

46 pf_1(X) :- pf_1_0(X, _).

47 universe(X) :- pf_1(X).

48 % each stable model is a different solution

49 1{ permutation_4(A,B,C,D):permutation_guess_4(A,B,C,D)}1.

50 % multiset constraints: do not use more copies than the available

51 used_4(X,0) :- permutation_4(X, _, _, _).

52 used_4(X,1) :- permutation_4(_, X, _, _).

53 used_4(X,2) :- permutation_4(_, _, X, _).

54 used_4(X,3) :- permutation_4(_, _, _, X).

55 :- shapes_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.
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56 :- shapes_1(S,SN), C = #count{N:used_4(S,N)}, C>SN.

57 :- shapes_2(S,SN), C = #count{N:used_4(S,N)}, C>SN.

58 :- shapes_3(S,SN), C = #count{N:used_4(S,N)}, C>SN.

59 :- shapes_4(S,SN), C = #count{N:used_4(S,N)}, C>SN.

60 :- red_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.

61 :- red_1(S,SN), C = #count{N:used_4(S,N)}, C>SN.

62 :- blue_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.

63 :- blue_1(S,SN), C = #count{N:used_4(S,N)}, C>SN.

64 :- green_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.

65 :- triangle_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.

66 :- triangle_1(S,SN), C = #count{N:used_4(S,N)}, C>SN.

67 :- triangle_2(S,SN), C = #count{N:used_4(S,N)}, C>SN.

68 :- squares_0(S,SN), C = #count{N:used_4(S,N)}, C>SN.

69 :- squares_1(S,SN), C = #count{N:used_4(S,N)}, C>SN.

70 % counting constraints: used squares are exactly 2

71 :- C = #count{N:used_4(S,N),df_0(S)}, C=0.

72 :- C = #count{N:used_4(S,N),df_0(S)}, C=1.

73 :- C = #count{N:used_4(S,N),df_0(S)}, C=3.

74 :- C = #count{N:used_4(S,N),df_0(S)}, C=4.

Example 43. The ESSENCE encoding of P1 automatically generated from CoLa is as follows:

1 % Multisets declaration: entities and corresponding copies

2 letting universe be new type enum { e_5 , e_1 , e_2 , e_3 , e_4 }

3 letting f_universe be function(

4 e_5 --> 3, e_1 --> 1, e_2 --> 1, e_3 --> 1, e_4 --> 1

5 )

6 letting red be { e_1 , e_3 }

7 letting blue be { e_2 , e_4 }

8 letting green be { e_5 }

9 letting triangle be { e_5 , e_3 , e_4 }

10 letting squares be { e_1 , e_2 }

11 letting pf_1_0 be { e_5 }

12 letting df_0 be { e_1 , e_2 }

13 letting l_4 be 4

14 letting vals_0 be { 2 }

15 % configuration declaration

16 find conf_4 : sequence (size l_4) of shapes

17 such that

18 forAll e: shapes.

19 % do not use more copies than available

20 sum([1 | i: int (1.. l_4), conf_4(i)=e]) <= f_shapes(e)

21 % positional constraint

22 /\ conf_4 (2) in pf_1_0

23 % counting constraint

24 /\ sum ([1 | i: int (1.. l_4), conf_4(i) in df_0]) in vals_0

References
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