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Abstract 
Despite achieving accuracies higher than 90% on recognizing upper-limb movements through 
sEMG (surface Electromyography) signal with the state of art classifiers in the laboratory 
environment, there are still issues to be addressed for a myo-controlled prosthesis achieve similar 
performance in real environment conditions. Thereby, the main goal of this review is to expose the 
latest researches in terms of strategies in each block of the system, giving a global view of the 
current state of academic research. A systematic review was conducted, and the retrieved papers 
were organized according to the system step related to the proposed method. Then, for each stage 
of the upper limb motion recognition system, the works were described and compared in terms of 
strategy, methodology and issue addressed. An additional section was destined for the description 
of works related to signal contamination that is often neglected in reviews focused on sEMG based 
motion classifiers. Therefore, this section is the main contribution of this paper. Deep learning 
methods are a current trend for classification stage, providing strategies based on time-series and 
transfer learning to address the issues related to limb position, temporal/inter-subject variation, and 
electrode displacement. Despite the promising strategies presented for contaminant detection, 
identification, and removal, there are still some factors to be considered, such as the occurrence of 
simultaneous contaminants. This review exposes the current scenario of the movement 
classification system, providing valuable information for new researchers and guiding future works 
towards myo-controlled devices. 

1. Introduction 

Electromyography (EMG) is the study of electrical manifestation resulting from neuromuscular 
activation in the occurrence of muscle contraction (De Luca 1979). Although the study of muscles 
has its  importance recognized for centuries,  the focus on researches regarding the electrical activity 
is  recent. The first documented acquisition of surface electromyography signal dates back to 1849, 
being performed by the German physiologist Emil Heinrich Du Bois-Reymond through a primitive 
type of galvanometer (Pearce 2001; Pozzo et al. 2004). Since then, the study of electromyography 
has been important to several areas, from clinical medicine (Benazzouz and Slimane 2021; Parisi 
and RaviChandran 2020) and sports, for example,  improving the performance of high-performance 
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athletes (Fronso et al. 2017; Judge et al. 2003) to biomedical engineering (Cene et al. 2019a; 
Schweisfurth et al. 2020; Trigili et al. 2019). 

The raw surface electromyography (sEMG) signal has a strong stochastic nature as it is 
constituted by the synergy of several muscles (Anam et al. 2019; Reaz et al. 2006). Nevertheless, 
the sEMG signal provides valuable information related to upper limb kinematics, which can be 
extracted using appropriate processing techniques. Hence, the use of sEMG has intensified 
especially in biomedical engineering, with several researches  related to the development of sEMG 
based Human Machine Interface (HMI) aiming the design of myo-controlled prosthesis (Atzori et 
al. 2012; Cene et al. 2019a; Krasoulis et al. 2020; Mantilla-Brito et al. 2020; Schweisfurth et al. 
2020; Yamanoi et al. 2020), exoskeleton (Lu et al. 2019; Ma et al. 2019; Trigili et al. 2019), virtual 
reality environments for rehabilitation (Bouteraa et al. 2019; van Dijk et al. 2016; Yang et al. 2017), 
orthosis (Bos et al. 2020), teleoperation systems (Ye et al. 2019; Zhou et al. 2019), among others. 
All the research lines that are associated with the development of EMG based HMI systems are 
based on algorithms to translate the motion intention, usually using machine learning techniques to 
perform the device control. 

Despite achieving hand-arm gesture recognition accuracy rates of over 90% in laboratory 
environments with state-of-the-art classifiers, there are still challenges for myoelectric devices to 
perform equally well in everyday environmental conditions. Currently, the difficulties that guide the 
search for solutions to increase the robustness of current systems in real situations can be categorized 
into five factors: 

Limb position: it is associated with the muscle activation necessary to keep the limb at rest due 
to the action of gravitational force. Furthermore, depending on the arm spatial position, a 
displacement between the electrode-skin interface and muscle can occur. Both situations could cause 
artifacts in the sEMG signal, leading to misclassification due alteration in the signal pattern 
compared to the signal used to train the motion classifier (Campbell et al. 2020); 

Intensity of the muscle contraction: the muscle contraction intensity is unconsciously controlled 
according to the expected effort to perform a specific action and it has been verified that there is a 
direct relationship between the intensity of contraction and the amplitude of the EMG signal (De 
Luca 1997). The change in muscle action intensity can even lead to changes in signal frequency 
characteristics (Campbell et al. 2020); 

Electrodes displacement: consists of the electrode position displacement. When this occurs, the 
underlying musculature changes in relation to the sensor and even if the same muscle fibers are 
under the scope of the electrode, with the displacement there is a change in the biological tissue 
impedance, implying changes in the signal properties (Campbell et al. 2020); 

Temporal factor: the sEMG signal is influenced by several biochemical, physiological or 
anatomical mechanisms that are time-varying (e.g. blood flow). The electrode placement variation 
due removal and replacement of the prosthesis between sessions can also be included, as well 
changes in the contraction intensity between different uses of the device (Campbell et al. 2020); 

Signal contamination: there are intrinsic and extrinsic factors in the acquisition process that could 
change the characteristics of the sEMG signal. They can be related to motion artifact, environmental 
electromagnetic interference, electronic components noise, interference of other biological signals 
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as electrocardiography (ECG), among others. The contaminants might induce variations in time, 
frequency, morphological and statistical properties of the sEMG signal (Ijaz & Choi 2018; De Luca 
et al. 2010; McCool et al. 2014). 

Considering this, there are currently no commercial applications utilizing interfaces based on 
sEMG, with the exception of neuroprosthesis (Kaczmarek et al. 2019). However, successful EMG-
controlled prosthesis still employ only 2 bipolar electrodes located in the forearm extensor and flexor 
muscles (Wang et al. 2019), which limits the number of predicted movements, typically enabling 
sequential control of 2 or less degrees of freedom (DOF) (Dewald et al. 2019),and, consequently, 
the use  of the artificial arm. In addition, sequential control strategies are still far from providing 
natural movements to the user, requiring a high level of practice and training (Atzori & Muller 2015), 
which configures one of the major obstacles to the full acceptance of the device. 

However, researchers have been working in the search for solutions to obtain a system that is, at 
the same time, capable of recognizing a high number of movements and that is robust in relation to 
the aforementioned issues. Therefore, the problem could be analyzed from different points of view, 
and new approaches are proposed for each stage of the movement classification process. Thus, this 
paper aims to present a literature review focused on works related to the development of sEMG 
based upper limb movement classifiers. In this way, the main goal of this review is to expose the 
latest in terms of strategies in each block of the system, thus enabling a global view of the current 
state of academic research and guiding new researchers by presenting the roles that still need to be 
fulfilled in the area. 

The review is structured into nine sections. The section “EMG based movement classification 
task” presents the block diagram of the motion classification system. The subsections “Signal 
Acquisition”, “Pre-Processing”, “Feature Extraction”, “Feature Selection”, “Classification / 
Regression” and “Robotic Arm” present a review of the most recent works proposed for the 
respective stages of the system, aiming to contribute with the description of innovative approaches 
for, but not limited to minimizing the effect of issues concerning Limb Position, Intensity of the 
Muscle Contraction, Electrode Displacement and Temporal Factor. The review of the works related 
to the effect of Signal Contamination is presented in a separated subsection named “Analysis of the 
presence of contaminants in the sEMG signal”, due to this factor being a generic problem, covering 
all sEMG applications, and, consequently, covering works associated with not just motion 
classification tasks. The contaminant effect is often neglected in reviews focused in sEMG based 
motion classifier and myo-controlled devices, so this subsection is a contribution of this paper to the 
academic research. Closing the review, a “Conclusion” section presents the conclusions and future 
trends into development of myo-controlled devices for upper limb 
assistance/rehabilitation/substitution. 

2. EMG-based Movement Classification Task 

The upper limb movement classification task can be divided into 6 blocks, as the diagram in Figure 
1 show. In the first step, the EMG signal is acquired from the volunteer through a non-invasive 
method, with surface electrodes  or invasively, through electrodes inserted percutaneously, that are 
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connect to a proper conditioning circuit which includes, at least, a filtering stage for noise removal, 
followed by an amplification stage for further digitization. Next, the digitized signal goes through a 
pre-processing stage in which additional filters, normalization, rectification, segmentation, among 
other procedures, could be applied. Once pre-processed, features can be extracted, in time, frequency 
or time-frequency domain, in order to highlight the useful information present in the signal. After 
this phase, the signal, now represented by the features calculated in the previous step, is submitted 
to a Feature Selection stage where the more relevant and informative for the classification task are 
selected, while the others are discarded. The remaining attributes from the Feature Selection step are 
then used to train a predictive model of motion, motion trajectory, or force depending on the 
application. Finally, the classifier output is used to control the robotic arm (prosthesis, orthosis, 
exoskeleton, virtual limb) making it perform the movement required by the user. 

 

Figure 1: Typical block diagram of an EMG-based motion identification system. 

In recent years, many works have been conducted in this area, exploring each of the steps 
described above and all with the common goal of advancing a step further towards the development 
of a robust and naturally controlled myoelectric system for an artificial limb. To present the current 
state of academic production, the next subsections will bring a description of the most recent works 
published, organized by stage of the classification task explored, according to Figure 1. 

2.1. EMG Signal Acquisition 

The EMG signal acquisition plays an important role in the movement classification process, since it 
is extremely important to perform the measurement in the proper limb location and with sufficient 
signal-to-noise ratio (SNR). Ensuring the quality of the EMG signal allows the necessary 
information to be extracted for model training and it is also necessary to have an adequate amount 
of signal samples, volunteers, movements, test conditions, among other controllable factors, and 
make the data publicly available. Thus, statistical robustness is obtained in the validation of the 
proposed algorithm, and, at the same time, allows others researches to use the same data to perform 
a fair comparison between methods. 

In this context, many works have been conducted recently with this purpose. They can be divided 
into: creation and availability of sEMG database (Cene et al. 2019a; Cognolato et al. 2020; Du et al. 
2017; Kaczmarek et al. 2019; Palermo et al. 2017; Pizzolato et al. 2017), development of hybrid 
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acquisition systems (sEMG combined with a signal of another nature) (Jiang et al. 2020; Xia et al. 
2019), proposal of low-cost acquisition systems (Besma et al. 2019; Islam et al. 2019; Prakash et al. 
2019; Shaabana et al. 2019), development of wearable sEMG measurement devices (Abass et al. 
2019; Lee et al. 2020) and related to the method used in the signal acquisition, which covers both 
the choice of the type of electrode (Dewald et al. 2019) and the way which they are fixed (Fonseca 
et al. 2019; Tamura et al. 2020). 

Table 1 shows a description of the works that focused in provide publicly available sEMG 
datasets of hand gestures. The works conducted by Palermo et al. (2017), Du et al. (2017), Cene et 
al. (2019) and Kaczmarek et al. (2019) stand out for performing acquisitions with the same volunteer 
on different days. Thus, all temporal variability sources present in the sEMG signal, already 
mentioned, are included in the available data. Hence, it is possible for a confounding factor to be 
considered in the development and evaluation of classification systems designed by other 
researchers, enabling the creation of more robust algorithms. 

 

Authors 
N° 

channels 
Conf. 

Additional 
input 

#Mov. 
Repetitions 
per session / 

sessions 

Acquisitions 
in different 

days? 
I. Vol. A. Vol 

Issue 
considered 

(Cognolato et 
al. 2020) 12 LD 

Accelerometer 
Gaze tracking 

10 8 / 1 No 
3 (F) 

27 (M) 
2 (F) 

13 (M) 
Limb position 

(Kaczmarek et 
al. 2019) 

24 LD No 8 20 / 2 Yes 
8 (F) 

36 (M) 
No 

Temporal 
variability 

(Cene et al. 
2019a) 

12 LD + MT No 17 
6 / 6 
10 / 6 

Yes 
1 (F) 
3 (M) 

No 
Temporal 
variability 

(Pizzolato et 
al. 2017) 

12 LD + MT No 52 6 / 1 No 
4 (F) 
6 (M) 

No 
Acquisition 

setup (Pizzolato et 
al. 2017) 

16 LD No 52 6 / 1 No 
2 (F) 
8 (M) 

No 

(Palermo et al. 
2017) 

14 LD 
Accelerometer 
Gaze tracking 

7 12 / 10 Yes 
3 (F) 
7 (M) 

No 
Temporal 
variability 

(Du et al. 
2017) 

128 HD No 8 10 / 1 No 18 No 

Temporal 
variability 

(Du et al. 
2017) 

128 HD No 8 10 / 2 Yes 10 No 

(Du et al. 
2017) 

128 HD No 12 10 / 1 No 10 No 

Table 1: A summary of the papers associated with providing databases. 
In the table: “Conf.” refers to the configuration of the fixation of the electrode, LD is low densisty, HD is high density, 
MT is muscle-targeted, “#Mov.” is number of movements, “I. Vol.” is Intact Volunteers, “A. Vol.” is Amputee 
Volunteers, (F) is female, and (M) is male. For the work conducted by Du et al. (2017) it was informed the total number 
of volunteers as no genre information was provided. 

In (Palermo et al. 2017), sEMG signals acquired from 10 intact subjects are made publicly 
available. The experiment consisted of performing seven squeezing movements on 14 different 
objects. Each volunteer performed 2 sessions per day, one in the morning and one in the afternoon, 
on five different days. A single session consists of 12 repetitions of each movement. These data form 
Dataset #6 of the NinaPro project. Du et al. (2017) recruited 23 non-amputated volunteers to perform 
trials of 8 or 12 basic hand movements, forming three different datasets. Ten of the 23 recruited 
subjects performed 2 sessions with 10 repetitions of eight distinct movements, on two different days 
spaced at least 1 week apart. 
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In contrast, in (Cene et al. 2019a) the objective was to create a dataset with a greater number of 
sessions per volunteer and with variations in their respective protocols.  Four different 
methodologies were applied in the experiments: Type A - 6 repetitions and sequential execution 
order; Type B – 10 repetitions and sequential execution order; Type C - 6 repetitions and randomized 
order of each motion execution; Type D – 10 repetitions and random order of each motion execution. 
All protocols comprise the same 17 hand and forearm movements, each being performed 3 times by 
the 4 recruited subjects, i.e., a single volunteer runs 12 trials. During data collection, a maximum 
limit of four sections per day for the same volunteer was respected. Thus, it allows the analysis of 
both effects: the movement execution randomization that is something little explored in the available 
databases, and the temporal factor, since there are trials performed on different days by the same 
subject. 

The confounding factor associated with limb position was considered in the database proposed 
by Cognolato et al. (2020). Each volunteer executed four of the eight repetitions while seated and 
four while standing, including the position limb variability in the acquired data.  

Pizzolato et al. (2017) evaluated the influence of the acquisition set up on the data quality by 
creating two databases with two different acquisition hardware. In one of them, the device from 
Cometa manufacturer Mini Wave model (wireless sEMG measurement system) was used along with 
12 gelled electrodes, while in the other, 2 Myo Armband units were considered, totaling 16 dry 
electrodes. Both datasets are constituted by 10 intact subjects performing the same 52 movements 
repeated 6 times, forming NinaPro dataset #4 (Cometa) and #5 (Myo Armband). The two acquisition 
systems were compared in terms of the accuracy of the movement classifier. Through the 
classification results obtained it was found that the accuracy achieved with Myo Armband hardware 
is comparable to that obtained with the Cometa (69.04 and 69.13% respectively), despite the price 
of the first being lower than 1/30 of the second. 

Myo Armband is a sEMG acquisition device that also incorporates a hand movement 
classification system. Created by Thalmic Labs, it comprises eight differential dry electrodes, as well 
as inertial sensors such as 3-axes gyroscopes, magnetometers, and accelerometers (Zea & 
Benalcázar 2020). The favorable vote for the use of the Myo Armband acquisition system 
corroborates its intense use in recent researches in the area. In fact, numerous works have reported 
satisfactory results with the use of this device. To cite some examples, (Xu et al. 2020) obtained a 
94.7% assertiveness rate in the identification of 6 movements with Artificial Neural Networks 
(ANN), (Zea and Benalcázar 2020) proposed a classification method based on an LSTM (Long 
Short-Term Memory) neural network, achieving an accuracy of 95.79% in the recognition of 5 
movements and the work by Mantilla-Brito et al. (2020) which reached 88.02% of accuracy in the 
identification of 3 motions with Naive Bayes (NB) method in an online experiment. 

However, despite the positive emphasis given to Myo Armband in (Pizzolato et al. 2017), the 
device suffers some criticism in (Shaabana et al. 2019). According to the authors, the 200 Hz 
sampling frequency is insufficient, since it limits the frequency band of the measured signal to a 
range from zero to 100 Hz and it is known that the sEMG has components between 6 and 500 Hz, 
leading information loss Another negative point raised was the fact that it is not possible to place the 
electrodes in the ventral region of specific muscles, since the 8 available channels are equally spaced 
along the circumference of the band. Through an experiment, it was verified an increase of 4%, in 
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absolute value, in the classification accuracy of 6 finger movements with a method based on the 
Hidden Markov Model (HMM) when 8 electrodes were fixed in specific muscle regions of the 
forearm in relation to the use of the same 8 sensors placed equally spaced along its circumference. 

As well as recommending the use of the Myo Armband system, the issue of the electrode fixation 
setup is also an open topic. According to (Wang et al. 2019) the electrode placement strategy can be 
divided into 3 groups: muscle-targeted layout with sensor placed in the ventral region, low density 
layout, that is typically formed by sets of 2 to 16 electrodes, and disregards the exact location of the 
muscular ventral region, being normally evenly distributed on the skin surface, and high density 
layout, that is a non-invasive technique that collects signals through several electrodes with inter-
electrode distances smaller than 5 to 10 mm. This is observed in the variety of the channel number 
and placement configurations in the works listed in Table 1. 

Despite the recommendation to measure the sEMG signal always in the ventral region of the 
muscle in order to ensure maximum amplitude (de Luca 1997), many researchers have adopted the 
high density configuration, using matrices with 128 (Chen et al. 2020b; Du et al. 2017; Jaber et al. 
2020; Olsson et al. 2019b), 168 (Martinez et al. 2020) and up to 192 electrodes (Chen et al. 2020a). 
The main advantage of using this form of electrode placement is to obtain a greater spatial resolution 
of muscle activation, enabling the use of well-established techniques for image processing, as 
Convolutional Neural Networks (CNN) (Chen et al. 2020b; Olsson et al. 2020; Olsson et al. 2019b; 
Yang et al. 2019a). In this case, typically the sEMG signal is converted into a grayscale image, where 
the amplitude of each electrode in the array indicates the pixel intensity, before feed the network. 
Another advantage is that make the system less sensitive to the lack of an electrode, unlike what 
occurs in the muscle-targeted layout (Chen et al. 2020b). The main disadvantage of this strategy is 
the high cost and complexity, in addition to being interesting to reduce the number of electrodes in 
order to simplify the system and reduce the computational cost (Wang et al. 2019). 

Finally, there is still a discussion regarding the nature of the signal to be used in the movements 
characterization, with  researchers betting on hybrid systems, i.e., with  other types of signal besides 
sEMG (DelPreto & Rus 2020; Jiang et al. 2020; Krasoulis et al. 2020; Xia et al. 2019). In the work 
by Krasoulis et al. (2020), promising success rates (86.5%) were achieved in the identification of 6 
movements with a Regularized Discriminant Analysis (RDA) based classifier and sEMG signal 
acquired from only two channels combined with inertial measurements such as acceleration, angular 
velocity and orientation, performed by 3-axes accelerometers, magnetometers, and gyroscopes, 
respectively. 

Jiang et al. (2020) propose a customized acquisition system, that is wearable and integrate sEMG 
and Force Myography (FMG), a pressure sensor that characterizes muscle strength. This system 
makes it possible to measure both sEMG and FMG at the same point, and a 91.6% accuracy result 
was achieved in 10 movement classification using Linear Discriminant Analysis (LDA) classifier. 

In (Xia et al. 2019), a hybrid sEMG and ultrasonography acquisition system was developed, also 
in a compact and wearable form, enabling measurements of both signals in the same location of the 
limb. One of the advantages raised was the possibility to analyze the activity of deeper muscles 
located several centimeters under the skin, through ultrasound. Reported results showed a 20% 
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increase in the accuracy associated with the recognition of 20 wrist and finger movements when 
considering both signals (sEMG and ultrasound) than in relation to just sEMG (89.2% a 68.59%). 

In this way, it was demonstrated that the information present in the sEMG signal can be 
complemented with the measurement of other parameters of the limb and muscles, to increase its 
ability to discriminate movements and improve the performance of the system. Thus, the acquisition 
of signals of another nature in addition to EMG appears as a promising alternative to increase the 
robustness of myoelectric control systems. 

According to the data shown in Table 1, there are many sEMG databases with a large number of 
volunteers and movements covering different electrode arrangement configurations. All of them 
were generated under ideal laboratory conditions with the volunteer following a pre-defined protocol 
for executing movements and with minimal noise. Although these bases are essential for the 
development of motion classification algorithms, they do not provide subsidies to verify the 
performance of such systems in real situations. Considering this, there is a need to create EMG 
databases acquired under non-ideal conditions, closer to the user's reality. Here we can mention the 
execution of tests with the user in motion (walking on a treadmill for example) while performing the 
gestures, in environments contaminated with electromagnetic radiation, among other factors. In this 
way, it would make it possible for algorithms to be developed already taking into account these non-
idealities, reducing the gap between the laboratory environment and the actual application of the 
device. 

2.2. Pre-Processing 

After the acquisition and conditioning of the EMG signal, a pre-processing stage can be applied 
before the feature extraction. At this stage, the signal is conditioned by applying additional filters. A 
fault detection stage can be used, to analyze if the some of the channels are corrupted by intrinsic or 
extrinsic sources, and if possible, mitigate using signal reconstruction, contaminant removal, 
elimination of contaminated channel, among others strategies. Others pre-processing stages can be 
normalization, segmentation, transformation to highlight certain signal properties, to name a few. 
Thus, it is important to guarantee a proper signal conditioning to achieve maximum information 
related to the task in subsequent processing phases. Therefore, studies have been published in recent 
years with new proposals for pre-processing stage that appears as alternatives to improve the 
classifiers performance (Chen et al. 2020a; He et al. 2019; Machado et al. 2020; Sezgin 2019; Tam 
et al. 2020; Wahid et al. 2020; Xu et al. 2020; Zhou et al. 2020). Among the gains brought by these 
works, we can mention the improvement in the quality of the acquired signal, minimization of the 
effects of electrode displacement, temporal variation, and inter-subject variation in the 
characteristics of the EMG signal, to cite a few, which induce an increase in the performance of the 
movement classification system. 

This subsection is dedicated to the analysis of the most recent works associated with pre-
processing stage of the EMG-based movement classification process. However, those related to 
contaminant analysis will not be covered here, as they are described in a specific section. The others 
are summarized in Table 2.
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Authors Strategy Method #CH #Mov. I. Vol. Classifier 
AvAcc 

[%] 
Issue considered 

(Tam et al. 
2020) 

Data 
transformation 

Frequency-time-
space cross-domain 

32 8 1 CNN 98.2 Data quality improvement. 

(Wahid et al. 
2020) 

Segmentation 
Multi-Window 

Majority Voting 
8 6 40 RF 80.7 

Effect of the window length 
and overlap size. 

(Xu et al. 
2020) 

Electrodes position 
verification 

Interpolated Peak 
Location 

8 6 10 ANN 94.7 Electrode shift. 

(Zhou et al. 
2020) 

Measure of 
fingertips 

position/direction 

Hk-medoids 
clustering 

8 10 10 LDA 81.5 
Automatic motion label 

assign. 

(Chen et al. 
2020a) 

sEMG 
decomposition 

(MUST) 

Convoloution kernel 
compensation 

192 11 11 SVM 96.1 
General classifier 

performance improvement. 

(Jia et al. 
2020) 

Segmentation 
Multi-Window 

Majority Voting 
2 10 8 CNN 99.4 

Effect of the window length 
and overlap size. 

(He et al. 
2019) 

Electrodes position 
verification 

Mahalanobis 
distance (similarity) 

6 10 9 MD 95.8 Electrode shift. 

(Powar & 
Chemmangat 

2019) 
Digital filtering 

Butterworth, Wiener 
Spectral subtraction  

2 8 7 kNN 73.3 Data quality improvement. 

(Sheng et al. 
2019) 

Data 
transformation 

Common Spatial-
Spectral Analysis 

4 13 8 LDA 90.1 Temporal variability. 

(Sezgin 2019) 
Data 

transformation 
Bicoherence 

Analysis 
2 5 42 ELM 97.8 Inter subject variability. 

(Amezquita-
Garcia et al. 

2019) 

Data 
transformation 

Scatter Matrix 
Projection 

8 15 8 LDA 93.8 Data quality improvement. 

(Phukan et al. 
2019) 

Digital filtering Wavelet Transform 2 10 4 SVM 96.5 Data quality improvement. 

(Tsinganos et 
al. 2019a) 

Data 
transformation 

Hilbert space-filling 
curve 

10 52 27 CNN 79.1 
General classifier 

performance improvement. 

Table 2: A summary of works associated with pre-processing stage. 
In the table: “#CH” is the number of channels, “AvAcc” term refers to the average accuracy reported in the respective 
paper in the best scenario, CNN is Convolutional Neural Network, RF is Random Forest, ANN is Artificial Neural 
Network, LDA is Linear Discriminant Analysis, SVM is Support Vector Machine, MD is Mahalanobis Distance, kNN 
is k-Nearest Neighbor, and MUST is Motor Unit Spike Train. 

The most frequently problem addressed from pre-processing stage is data quality improvement. 
The strategies range from digital filters to data transformation methods. Digital filtering of the sEMG 
signal is an almost mandatory step in the motion classification process, being used in most works. 
However, there is no definition of which filter topology is the most suitable, and to contribute to the 
clarification, Powar and Chemmangat (2019) performed an experiment comparing the performance 
of three filter topologies in terms of the accuracy of identification of 8 hand and wrist gestures with 
kNN (k-Nearest Neighbor): Butterworth, Spectrum Subtraction (SS) and Wiener. The first was 
marginally superior to the others with an assertive rate of 73.3%, against 67.2% (SS) and 65.0% 
(Wiener). However, SS provided lower computational cost, while Wiener was the most efficient in 
noise removal among the three. The last was the most indicated by the authors for muscle activation 
detection tasks. 

Also exploring signal filtering, Phukan et al. (2019) proposed a methodology to remove high-
frequency noise based on the Wavelet Transform. The algorithm is based on the maintenance of 
low-frequency coefficients and the application of a filter on the high-frequency components, in 
which all those that are less than a pre-defined threshold value are zeroed. The threshold is 
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determined from the statistical properties of the high-frequency coefficients. Afterward, the inverse 
transform procedure is applied, resulting the representation of the low frequency. Then, the resultant 
signal is summed to the modified high-frequency components to obtain the filtered signal. Promising 
results were achieved in the identification of 10 finger movements with only two measurement 
channels and SVM (Support Vector Machine) classifier (accuracy of 96.5%), confirming the 
proposed algorithm as a good strategy for suppression of unwanted artifacts in the sEMG signal. 

Sheng et al. (2019) and Sezgin (2019) proposed new pre-processing strategies to address the 
issues related to the temporal and inter-subject variability of the sEMG signal. First, the authors 
presented an algorithm called Comom Spatial-Spectral Analysis (CSSA) to find what they defined 
as “common mode” in the sEMG signal. The method, which includes the application of the Wavelet 
Transform, is based on the premise that multivariate time series, as the sEMG signal, with spatial 
and temporal resolution, can be decomposed into a stationary and a non-stationary portion. Thus, 
the "common mode” of the signal is defined through its stationary portion. Sezgin (2019), in turn, 
considered bispectral analysis, which comprises a statistical method used to find non-linear 
relationships between signal components (Sezgin 2019). The representation of the signal 
bicoherence is determined based on the bispectral analysis, through bispectrum normalization, which 
is used in the feature extraction step. 

Both pre-processing approaches mentioned above showed promising results in the classification 
of 13 movements with LDA (Sheng et al. 2019) and 5 gestures with ELM (Extreme Learning 
Machine) (Sezgin 2019). However, the CSSA method proved to be more efficient in minimizing the 
signal temporal variability factor, while the algorithm based on the bicoherence analysis obtained 
interesting hit rates in an experiment where the classifier was trained with data acquired from 
multiple volunteers. So, they propose an algorithm  called Interpolated Peak Location (IPL)  that 
consists of verifying the location of the muscle activation peak in the sensor array for a given 
reference movement, and then this value is compared with the one obtained after the electrodes 
replacement to evaluate a possible change in positioning 

The issue associated with electrode displacement was the focus of research by Xu et al. (2020) 
and He et al. (2019). In the first, it was proposed a technique to identify angular displacement in the 
position of electrodes arranged in armbands, an issue that typically occurs in wearable devices when 
the electrodes are evenly spaced along the circumference of the arm, and an algorithm based on the 
IPL method was used. In this way, it is possible that the placement of the electrodes can be corrected 
before using the device. With the same purpose, He et al. (2019) considered the verification of the 
similarity, calculated from the Mahalanobis distance, in relation to the activation pattern of the 
electrode set for a given reference movement, allowing to correct the electrode placement before 
using the device. Both approaches present themselves as interesting pre-processing methods to 
correct a problem that is very common in this type of procedure, which is electrode displacement. 

Finally, the issue of the time window size used for signal segmentation and subsequent feature 
extraction is also an open point in the literature. According to the results of (Smith et al. 2011), the 
ideal window size varies between 150 and 250 ms. Furthermore, according to (Riillo et al. 2014), a 
maximum time segment of 300 ms is allowed between two consecutive classifier outputs to meet 
the requirements of a real-time system. Considering that very small windows hamper the extraction 
of useful information from the sEMG signal, choosing the ideal size consists of a compromise 
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between the classifier's hit rate and meeting the minimum requirements for real-time 
implementation. 

Aiming to clarify this issue, Wahid et al. (2020) tested various combinations of temporal window 
sizes (50, 100, 150, 200, 250, 300, 400, and 500 ms) and percent overlap (0, 30, 50, 70, and 80%) 
over an extensive range database (Ninapro Database #2 which has 40 volunteers). For the first time, 
according to the authors' knowledge, this issue was addressed by considering such an extensive 
database. The results presented indicated that both the size and the percentage of overlapping 
windows influence the classifier's hit rates. The larger the signal and superposition segment, the 
greater the accuracy obtained. From this, it is suggested the application of overlap of at least 80% 
since it would allow the use of windows with a size greater than 300 ms, and that at the same time 
would meet the requirements of real-time application. 

In summary, there are several recent works with promising strategies to address a variety of issues 
as automatic label assign (very important for database generation), the effect of window size in data 
segmentation (relevant for real-time applications as a myo-controlled prosthesis), and for general 
classifier performance improvement. Therefore, they complement each other and appear as options 
for the future of academic research supported by the promising results presented in Table 2. 

2.3. Feature Extraction 

The raw sEMG signal has a strong stochastic nature as it consists of the synergy of several muscles 
and  it is not very informative in this form (Anam et al. 2019; Reaz et al. 2006). To extract useful 
information regarding muscle electrical activity, it is necessary to apply processing techniques that 
make it quantifiable and handleable. There are several methods for processing the sEMG signal, 
being the most used those based on the exploration of its statistical metrics. Currently, there are 
several classical metrics used for this purpose. They can be calculated in the time domain (Root 
Mean Square value, absolute mean, waveform length, standard deviation, power, etc.), frequency 
domain (average frequency, median, the wavelength of the frequency response, etc.), and time-
frequency domain (Wavelet Transform, Short Time Fourier Transform – STFT, etc.), and are widely 
used (Arteaga et al. 2020; Batayneh et al. 2020; Cognolato et al. 2020; Wang et al. 2020; Yamanoi 
et al. 2020). 

However, innovative approaches have been proposed as alternatives to classical features, that  
can be grouped according to the improvement they bring to the classification process: reduction of 
the impact associated with the muscle contraction intensity variation (Asogbon et al. 2020; Nougarou 
et al. 2019; Onay & Mert 2020; Tuncer et al. 2020), electrode displacement (Lv et al. 2018), inter-
subject variation (Shivam et al. 2019; Tong et al. 2019), temporal variation (Jaber et al. 2020; Jaber 
et al. 2019), classifier general performance improvement  in terms of computational cost 
minimization (Toledo-Perez et al. 2020) and accuracy increase (She et al. 2019; Sravani et al. 2020). 
Table 3 summarizes the most recent feature extraction strategies. 

According to Table 3, several works explore muscle activation spatial resolution to design new 
features as an alternative to the classical features extracted on time and frequency domain. Onay and 
Mert (2020) used the arrangement of eight electrodes uniformly spaced along the limb circumference 
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to propose a method of phasor representation from the features extracted in each channel, i.e., each 
sEMG measurement point has a specific phase angle. Thus, spatial resolution was introduced in the 
representation of two classical metrics (RMS and waveform length), and the approach effectiveness 
was verified through an experiment based on the recognition of six movements performed by nine 
volunteers with transradial amputation under three different strength levels.  The classifier used was 
kNN (k-Nearest Neighbor), and the training was conducted with data from one strength intensity 
level and the tested with the others. The phasor-based feature extraction method showed an 8.3% 
improvement in the average accuracy compared to TD-PSD features (Time-Dependent Power 
Spectrum Descriptors), a strategy presented in (Khushaba 2014) aiming to improve the classifier 
performance in the presence of data extracted under strength variation. 

 

Authors Domain Method #CH #Mov. I. Vol. A. Vol. Classifier 
AvAcc 

[%] 
Issue considered 

(Onay & Mert 
2020) 

Time-
spatial 

Phasor 
representation 

8 6 - 9 kNN 78.3 
Intensity of the muscle 

contraction. 

(Tuncer et al. 
2020) 

Time-
frequency 

Ternary Pattern-
DWT (TP-DWT) 

12 6 - 9 kNN 99.1 
Intensity of the muscle 

contraction. 

(Jaber et al. 2020) Spatial 
Average Intensity- 

HOG (AIH) 
128 8 18 - SVM 96.4 Temporal variation. 

(Asogbon et al. 
2020) 

Time 
invTDD (invariant 

time-domain 
descriptor) 

8 7 6 2 LDA 
89.9 (I) 
86.6 (A) 

Intensity of the muscle 
contraction. 

(Lv et al. 2018) Time 
Autoencoder 

Neural Network 
64 10 9 1 ANN 

90.3 (I) 
85.4 (A) 

Electrode shift. 

(Li et al. 2019) Spatial 
Active Muscle 

Regions 
16 4 9 - SVM 87.0 

General classifier 
performance 
improvement. 

(Shivam et al. 
2019) 

Spatial Muscle Sinergy 4 5 5 - SVM 97.0 Inter subject variability. 

(She et al. 2019) 
Time-

frequency 
Stockwell 
Transform 

2 6 5 3 ANN 
98.4 (I) 
97.7 (A) 

General classifier 
performance 
improvement. 

(Tong et al. 2019) 
Time-
spatial 

LSTM-CNN 16 5 8 - ANN 78.3 Inter subject variability. 

(Nougarou et al. 
2019) 

Spatial 
RMS HD-sEMG 

Maps 
64 10 10 - LDA 94.2 

Intensity of the muscle 
contraction. 

(Pancholi & Joshi 
2019) 

Time 
Time Derivative 

Moments 
12 8 8 - SVM 96.2 

General classifier 
performance 
improvement. 

(Toledo-Perez et 
al. 2020) 

Time 
Modified Zero-

Crossing 
2 6 5 - SVM 94.8 Computational cost. 

Table 3: A summary of works associated with feature extraction stage. 
In the table: DWT is Discrete Wavelet Transform, HOG is Histogram of Oriented Gradients, and LSTM is Long Short-
Term Memory. 

Following in the same line, Nougarou et al. (2019) proposed a new way of extracting information 
of the sEMG signal, taking advantage of the spatial resolution provided by a matrix formed by 64 
electrodes (8x8). Through the application of three spatial filters (Monopolar Filter, Bipolar Filter, 
and Inverse Binomial Filter) on the signal obtained by the sensor array, three new 6x6 dimension 
maps are obtained. Each map is divided into 9 sub-regions of which 3 features are extracted: center 
of gravity coordinates (indicating 2 attributes) and the influence percentage from the segment in 
relation to the entire image. Results showed the superiority of this signal representation in relation 
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to classical time-domain metrics, including in situations where there was variation in the contraction 
intensity applied in the movements execution. 

Both strategies described above are promising alternatives for the features extraction that are 
more robust to the muscle strength variation. Thus, it is demonstrated the importance of considering 
the spatial resolution of the muscle activation pattern in the signal representation for the model 
training stage. 

Aiming to provide a solution to the variability of the sEMG signal acquired from different 
subjects and allowing development of a multiuser system, Shivam et al. (2019) and Tong et al. 
(2019) presented two different feature extraction methods. The first extracts information from the 
synergy present in muscle activation through the application of Non-Negative Matrix Factorization 
(NMF). In the research by Tong et al. (2019), it was achieved both spatial and temporal information 
from the sEMG signal through the application of a hybrid algorithm relying on the combination of 
Convolutive Neural Networks and LSTM. Each of the networks generates a 256 elements vector in 
the output, containing both spatial representation, obtained with CNN, and temporal) information, 
obtained with the LSTM network. 

Both forms of transformation applied to the electromyography signal proved to be effective to 
train a multiuser classifier. In the strategy based on the synergy of the different channels, a 97% 
success rate was achieved in five fingers movement recognition, performed by five volunteers 
through an SVM classifier. The hybrid system CNN-LSTM provided a hit rate of 78.3% in five 
gestures identification performed by eight subjects. In both experiments, the leave-one-subject-out 
cross-validation technique was considered, that is, the results consist of n-classifiers hit rate average 
trained with data from n-1 volunteers and tested with the remaining subject, where n corresponds to 
the number of participants. Despite the lower accuracy, the algorithm structured in neural networks 
should be highlighted due to the greater number of volunteers and because the signal processing was 
conducted in 300 ms windows, allowing real-time applications. 

Jaber et al. (2020) developed an innovative feature extraction methodology that is robust to the 
signal intrinsic temporal variations. First, the signal acquired through an array of 8x16 electrodes, 
was represented as an image, where each electrode is treated as a pixel, and then metrics were 
calculated based on the intensity of each pixel and on the Histogram of Oriented Gradients (HOG). 
Using the spatial information with a SVM classifier, it were achieved hit rates above 90% in an eight 
movements classification for 9 of the 10 volunteers considered. However, the data used were 
acquired in sections performed on different days, highlighting the capability of extracting time-
invariant information of the proposed algorithm, showing its robustness. 

Finally, the issue of electrode displacement was the topic addressed in (Lv et al. 2018) and (Tong 
et al. 2019), with similar methods where in the latter, neural networks were also used for the feature 
extraction. An Autoencoder topology was used, which consists of a neural network whose objective 
is to represent the input pattern in a coded form, and are structured in two parts, an encoder, and a 
decoder, consisted in three layers of neurons: input, hidden, and output. The encoder, composed of 
the hidden and input layers and whose neurons are fully connected, determines an encoding for the 
pattern inserted into the network input. This coded representation is given by the output of each one 
of the hidden layer nodes, which are connected to the output layer neurons that, in turn, decode the 
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signal to the original representation, i.e., they provide again the pattern inserted in the network input. 
Evidently, the number of nodes in the output layer is the same as in the input. Thus, the features 
considered by the presented strategy are the outputs of hidden layer neurons, that is, the encoder. 
The training of an LDA-based classifier fed by the features was carried out in order to validate the 
proposed algorithm. As a result, accuracy above 90% was achieved in the prediction of 10 
movements considering displacements of -1 to 1 cm in the electrodes positioning, in relation to the 
reference. Supported on the above, the effectiveness of the proposed signal representation method 
was evidenced in presence of sensor positioning deviations. 

2.4. Feature Selection 

After the feature extraction step, the sEMG signal is represented by a vector formed by the number 
of channels used in the acquisition times the number of features considered. When considering the 
use of the low or high-density configuration, for example, the vector size easily goes beyond 100 
elements. However, not all attributes provide useful or new information for the classification stage, 
and the greater the amount of data provided to train the model, the higher the computational cost 
and, consequently, the time required to learn and classify. 

Therefore, the feature selection stage plays a fundamental role in the motion recognition system. 
Through it, the attributes formed by the channel/feature pairs are filtered, removing all those that are 
redundant and/or irrelevant to teach the model. Hence, a better performance of the classifier is 
achieved, both in terms of accuracy and processing time, as it has already been verified in previous 
works that a high number of features and the presence of redundant attributes can affect system 
performance (Jair et al. 2020; Tosin et al. 2020b). 

Although still little explored by researchers compared to the classification stage, there is a 
considerable amount of work published in recent years focusing on the feature selection step. They 
can be grouped into the search for the best channels set (Batayneh et al. 2020; Hua et al. 2019; 
Krasoulis et al. 2020; Sun et al. 2020; Wang et al. 2019; Yu et al. 2019), features set (Luo et al. 2020; 
Phukan et al. 2019; Yang et al. 2020; Ye et al. 2019; Zhang et al. 2019; Zhou et al. 2019) and 
individual pairs formed by channels and features (Castiblanco et al. 2020; Jair et al. 2020; Jitaree & 
Phukpattaranont 2019; Tosin et al. 2020b; Tosin et al. 2020a; Tosin et al. 2017; Wu et al. 2019). 
Table 4 summarizes the most recent strategies for feature selection stage and the average accuracy 
presented refer to the best scenario reported by the authors in terms of feature selection method and 
classifier. 

The feature selection methods can be divided according to the strategy adopted in wrapper, filter-
based, and embedded. Filter-based methods perform the selection without the influence of a 
classifier. The feature relevance is evaluated through some statistical metrics, which might include 
distance index, dependence, consistency, information, and correlation (Tang et al. 2015). The 
wrapper strategy uses classification accuracy to assign importance to the features and is 
computationally more expensive than the filter-based one, as it performs the selection through 
multiple training and classifications, using different features sets. Filling the gap between the 
wrapper and filter-based algorithms, there are the embedded methods that combine the advantages 
of the wrapper and filter-based, as they also make use of a classifier model and are computationally 
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less costly than the wrapper. Such algorithms evaluate features during the classifier training stage 
(Tang et al. 2015) and usually, a rank is assigned to each feature, proportional to its relevance for 
the training process. 

As shown in Table 4, the wrapper method was the most preferred, followed by filter and 
embedded, in this order. Typically, wrapper algorithms are associated with higher classifier 
accuracies (Aggarwal & Reddy 2013), which can explain the significant recent preference by 
researchers. 

According to (Farina et al. 2014), the ability to achieve high performance in decoding movements 
with a minimum number of electrodes is the main challenge for the development of machine learning 
techniques based on myoelectric control. Given this, several researchers have dedicated their efforts 
to find a method for selecting the most relevant channels for the classification task. 

In (Krasoulis et al. 2020; Wang et al. 2019; Yu et al. 2019) the wrapper strategy was used to 
select the ideal number of electrodes. Krasoulis et al. (2020) considered the accuracy of a LDA-
based classifier to determine the most relevant channels in identifying six movements represented 
by seven time domain features. As a result, it was concluded that only two sEMG channels (of the 
16 available) and inertial measurements (acceleration, angular velocity, and orientation) were 
sufficient to obtain 86.5% and 84.7% hit rate (for intact and amputee volunteers respectively) with 
RDA classifier. 

To optimize the search for the best group of electrodes, Wang et al. (2019) proposed a genetic 
algorithm based on chromosome chains formed by binary words where each bit represents the use 
or not of a channel, 1 for yes and 0 for no. The fitness, in turn, was defined as the hit rate of an LDA-
based classifier. Here, it was concluded that with 12 channels it is possible to reach 97% of the 
maximum accuracy (obtained using all 16 available signals) in the recognition of 13 movements 
with eight temporal features. 

As an alternative to the wrapper methods, the works (Batayneh et al. 2020; Hua et al. 2019; Sun 
et al. 2020) invested in filter-based channel selection strategies, with  Hua et al. (2019) and Sun et 
al. (2020) standing out. The first considered the signal-to-noise ratio analysis of each channel, 
eliminating those that are less informative, i.e., with smaller SNR. In the second, a similar analysis 
was performed, but considering the variance of the signal to estimate its activation level and, 
consequently, its relevance to the classification process. In both studies, 13 out of 16 available 
channels were selected, reaching accuracies of 95.5% (Sun et al. 2020) and 94.3% (Hua et al. 2019) 
in the recognition of 5 movements with SVM and ANN, respectively. 

Some researchers adhered to the use of a smaller number of electrodes, focusing on finding the 
best set of features for the movement identification process (Luo et al. 2020; Phukan et al. 2019; 
Yang et al. 2020; Zhang et al. 2019). The work of Yang et al. (2020) and Phukan et al. (2019) stand 
out here, who achieved promising results in the 6 and 10 movements identification, respectively, 
with only 2 electrodes. 
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Authors Strategy Method #CH #Feat. 
N° Sel. 

F/C pairs 
#Mov. Vol. Classifier AvAcc [%] 

Issue 
considered 

(Jair et al. 
2020) 

Wrapper/ 
Filter 

LMNN 8 
21 TD 
9 FD 

40 6 13 (I) SVM 94.0 
Feature/Channel 

selection 

(Castiblanco et 
al. 2020) 

Filter 
Separability 
Index (BD) 

8 
10 TD 
7 FD 

40 (I) 
47 (S) 

12 
6 (I) 
4 (S) 

kNN 
82.8 (I) 
78.8 (S) 

Feature/Channel 
selection 

(Krasoulis et 
al. 2020) 

Wrapper 
Forward with 

LDA 

16 (I) 
12/13 
(A) 

7 TD 14 6 
12 (I) 
2 (A) 

RDA 
86.5 (I) 
84.7 (A) 

Channel 
selection 

(Yang et al. 
2020) 

Filter 
Separability 
Index (ED) 

2 
3 TD 
3 FD 

4 6 9 (I) ANN 95.5 Feature selection 

(Wu et al. 
2020) 

Wrapper 
Grid search 
with ANN 

4 4 TD 12 6 6 (I) ANN 94.8 
Feature/Channel 

selection 

(Sun et al. 
2020) 

Filter 
Variance 
Analysis 

16 3 TD 39 5 9 (I) SVM 95.5 
Channel 
selection 

(Luo et al. 
2020) Wrapper 

Grid search 
with LDA 8 3 TD 8 4 2 (I) LDA 79.3 Feature selection 

(Yu et al. 
2019) 

Wrapper 
Backward 
with ANN 

8 5 TD 35 11 5 (I) ANN 90.5 
Channel 
selection 

(Wu et al. 
2019) 

Embedded LDA 4 
63* TD, 
FD, TFD 

5 6 15 (I) DA 98.2 
Feature/Channel 

selection 

(Zhou et al. 
2019) 

Wrapper 
Grid search 

with RF 
12 9 TD 36 12 10 (I) RF 84.1 Feature selection 

(Zhang et al. 
2019) 

Wrapper 
Grid search 
with DBN 

8 4 TD 16 4 4 (I) DBN 96.5 Feature selection 

(Hua et al. 
2019) 

Filter SNR Analysis 16 1 TD 13 5 10 (I) ANN 94.3 
Channel 
selection 

(Wang et al. 
2019) 

Wrapper 
GA-based 
with LDA 

16 8 TD 96 13 6 (I) LDA 76.2 
Channel 
selection 

(Ding et al. 
2019) 

Embedded 
Generalized-

MKL 
4 

12 TD 
2 FD 

44 10 15 (I) SVM 93.0 Feature selection 

(Phukan et al. 
2019) 

Filter 
Mutual 

Information 
2 

20 TD 
11 FD 

10 10 4 (I) SVM 96.5 Feature selection 

(Yoo et al. 
2019) 

Wrapper 
Grid search 
with DFDL 

6 1 TFD 2 4 22 DFDL >95.0 
Channel 
selection 

(Tosin et al. 
2020b) 

Wrapper/ 
Embedded 

SVM-RFE 12 
11 TD 
2 FD 

41 17 
40 (I) 
10 (A) 

RELM 
84.9 (I) 
74.8 (A) 

Feature/Channel 
selection 

Table 4: A summary of works associated with feature selection stage. 
In the table: the term “N° Sel. F/C pairs” refers to the number of selected feature/channel pairs, LMNN is Large Margin 
Nearest Neighbor, BD is Bhattacharyya Distance, RDA is Regularized Discriminant Analysis, ED is Euclidean Distance, 
DBN is Deep Belief Network, GA is Genetic Algorithm, MKL is Multiple Kernel Learning, DFDL is Discriminative 
Feature-Oriented Dictionary Learning, SVM-RFE is Support Vector Machine Recursive Feature Elimination, DA is 
Discriminant Analysis, RELM is Regularized Extreme Learning Machine, TD is Time Domain, FD is Frequency 
Domain, TFD is Time-Frequency Domain, (I) is intact, (S) is stroke, (A) is amputee. 

*The authors did not specify the exact number of features extracted in each domain. 

In (Yang et al. 2020) an algorithm for a 2 electrode system was proposed to assess the importance 
of each feature considered, among 6 different metrics calculated in the time and frequency domains, 
through the Euclidean distance, represented by a two-dimensional vector in a plane, where each axis 
represent an electrode. Thus, a numerical index was assigned to each of them according to the 
average distance between all samples associated with a specific gesture (direct relationship) and the 
average distance between the geometric centers of each movement (inverse relationship). Hence, the 
lower the value of this index, the more discriminating the feature. With the use of such methodology, 
2 time-domain metrics were selected, reaching 95.5% of assertiveness with ANN. 
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Similarly, an approach based on the evaluation of mutual information for choosing the best group 
of features to represent the signal was presented in the research by (Phukan et al. 2019). Thus, 5 out 
of 31 different features were selected from the time and frequency domains, reaching a 96.5% hit 
rate in a SVM model. 

Finally, there is still a research niche within the feature selection stage that considers both the 
channels and features  simultaneously, analyzing the relevance of each pair formed by both 
individually (Castiblanco et al. 2020; Jitaree & Phukpattaranont 2019; Tosin et al. 2020b; Tosin et 
al. 2020a; Wu et al. 2020). Here, the researches by Tosin et al. (2020) and by Castiblanco et al. 
(2020) stand out. Their algorithms include the formation of a ranking of feature/channel pairs 
according to their importance for the classification stage, and then the best group is determined based 
on this ranking. 

In (Castiblanco et al. 2020), 4 different methods were applied to sort the feature/channel pairs: t-
test calculated between the distributions associated with each class (in pairs) for the same attribute 
(the lower the probability of two sets of samples from different classes being part of the same 
distribution, the higher the value assigned to the attribute relevance), Separability index determined 
by the distance function through Mahalanobis and Bhattacharyya methods, and the Davies-Boulding 
Index, commonly used to characterize the separation of clusters prioritizing greater concentration of 
data from the same group and greater spacing between geometric centers of different clusters. As a 
result, it was found (in most of the tests carried out) that less than 50 elements are needed for the 
sEMG signal representation out of the 136 (17 features x 8 channels) to obtain stability in the 
classifier accuracy. Also noteworthy is the promising assertiveness index in the classification of 12 
movements with kNN (80.9% on average among the 4 selection methods and 4 volunteers) based 
on signals acquired from patients with motor dysfunction due to stroke. 

The Support Vector Machine Recursive Feature Elimination (SVM-RFE), Monte Carlo Feature 
Selection, and Singular Value Decomposition (SVD) Entropy methods were applied in (Tosin et al. 
2020b) to determine a ranking of the 156 attributes considered (12 channels x 13 features). Here, the 
ordering obtained was used as a guide for the execution of a wrapper-type algorithm with a 
Regularized Extreme Learning Machine (RELM) classifier. After implementing the proposed 
algorithm to identify 17 movements of the hand-arm segment, it was concluded that the inclusion of 
the feature selection step increased the hit rate from 80.6% to 84.3% compared to training 
considering all feature/channel pairs. The results correspond to the average of the 40 volunteers and 
the 3 strategies for creating the ranking). In addition to reducing the average number of attributes to 
41, the authors also demonstrate that choosing the best set of values to represent the signal is more 
effective when considering, simultaneously, the channel and feature effect  than when one is fixed. 

However, considering that the approaches last described in this section generally comprise a 
broader field of search for the most relevant set of attributes, these tend to be more effective in terms 
of improving the assertiveness of the predictor model. Nonetheless, methods based on individual 
analysis of features or channels can be an interesting option when prioritizing the minimization of 
computational cost against the classifier accuracy. 

2.5. Classification / Regression 
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The classification stage is the core of the human-machine interface system. All the acquired learning 
is concentrated in this step. Therefore, it is responsible for decoding the sEMG signal patterns 
(represented by the set of attributes determined in the feature selection stage or just by the pre-
processed signal, depending on the learning strategy) into motion intentions. Therefore, naturally, 
this block concentrates the greatest amount of works promoting innovative and promising 
methodologies. 

There are currently two main approaches to the HMI control task: the classic pattern recognition 
method and proportional control. The first is based on the recognition of a limited number of discrete 
movements, being associated with the vast majority of the strategies offered (Ameri et al. 2020; 
Cene et al. 2019b; Chen et al. 2020b; Zanghieri et al. 2020). However, such implementations do not 
provide smooth hand control (or at least not as much as the human hand) (Wang et al. 2020) and are 
not adequate to explore all trajectory possibilities offered by robotic prostheses, since only one 
gesture class is activated at a time (Anam et al. 2019). Therefore, the continuous movement 
estimation by sEMG has become a popular research field (Wang et al. 2020), emerging as an 
alternative to the previous one. In proportional control, individual predictions are required in each 
of the joints (Anam et al. 2019), which may be associated with the angular position (Yang et al. 
2019b), force (Martinez et al. 2020), torque (Yu et al. 2020b), among other measurements. Thus, the 
aim is to make the myoelectric control more intuitive (Pan et al. 2019), facilitating user adaptation. 

While the control strategy based on the identification of specific gestures depends on the training 
of a classifier, in proportional control the task consists of determining a regressor model, since, 
unlike the first one, here the output possibilities are unlimited. In this context, many works have 
been conducted in recent years with new and auspicious strategies for both functions (classification 
and regression). They can be divided into: propositions for proportional control (Anam et al. 2019; 
Belyea et al. 2019; Martinez et al. 2020; Wang et al. 2020; Yang et al. 2019b; Yu et al. 2020b), 
strategies designed around classical classification methodologies (Belyea et al. 2019; Cene and 
Balbinot 2019; DelPreto & Rus 2020; Donati et al. 2019; Gong et al. 2019; Guo et al. 2019; Mantilla-
Brito et al. 2020; Moin et al. 2019; Shin et al. 2020; Vasanthi & Jayasree 2020), deep learning 
methods (Ameri et al. 2020; Asif et al. 2020; Chen et al. 2020b; Côté-Allard et al. 2020; Huang & 
Chen 2019; Kim et al. 2020; Liu et al. 2019; Mukhopadhyay & Samui 2020; Olsson et al. 2019a; 
Olsson et al. 2020; Olsson et al. 2019b; Rahimian et al. 2019; Shao et al. 2020; Yamanoi et al. 2020; 
Yang et al. 2019a; Zanghieri et al. 2020) and research associated to the refinement of the classifier 
output also called post-processing (Ahmed et al. 2019; Cene et al. 2019b; Jafarzadeh et al. 2019; Yu 
et al. 2020a).  

Table 5 summarizes the works which present new and promising strategies for proportional 
control. The results described corresponding to the best scenario reported by authors. Here, the 
metrics considered to evaluate the performance of the works are Normalized Root Mean Square 
Error, Root Mean Square Error, Relative Error, Pearson Correlation Index, and Determination 
Coefficient. The determination coefficient represents how explanatory a model is to data variance. 
It varies between 0 and 1, and the closer it is to 1, the more the regressor model fits the sample. 
According to Table 5, there is an evident preference by deep learning algorithms for regression, 
being considered in most of the works covered by this review through the methods CNN, DNN, and 
LSTM. 
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In general, aiming at the development of regression algorithms for the prediction of continuous 
hand movement, stand out the studies by Pan et al. (2019), Wang et al. (2020), and Yang et al. 
(2020). Wang et al. (2020) proposed an LSTM-based model to estimate the angular position in 20 
hand fingers joints, during the execution of six grasping motions through sEMG acquired by 12 
channels and represented by one TD feature. The data used in the training of the regressor were the 
inertial measurements performed in five volunteers using a CyberGlove. These data were extracted 
from NinaPro database 2 and were used as ground truth in the generation of the model. A Root Mean 
Square Error value of 5.89° was reported for all 20 predictors, which can be considered promising 
given the high number of estimated joins. 

Angle prediction was also considered in (Yang et al. 2019b). The target was the characterization 
of three DOF of the wrist (flexion/extension, supination/pronation, radial/ulnar deviation). 
Therefore, a Convolutive Neural Network topology fed with raw 8-channel sEMG signal (no feature 
was extracted) was proposed for the training of a single regressor for the three DOF. Through 
experiments carried out with 8 volunteers, it was observed high adaptability of the system to 
variations caused by electrode displacement and differences between subjects, reaching coefficients 
of determination (R²) of 0.74 and 0.56, respectively, in each of the tests (with sensor deviations and 
multiuser). 

 

Authors Control 
variable 

N° DOF/ 
joints 

Joint or 
limb 

#CH #Vol. Regression 
method 

DC 
(R²) 

Corr. (R) Error –  
NRMSE 

Issue considered 

(Wang et al. 
2020) 

Angular 
position 

20/20 
Fingers 
joints 

12 5 (I) LSTM - 0.84 
5.9° 

(RMSE) 
Continuous grasp 
motion prediction. 

(Yu et al. 
2020b) 

Torque 3/1 Wrist 16 
8 (I) 
1 (A) 

SAE-DNN 0.74 (I) 0.68 (A) - 
Continuous wrist torque 

prediction. 

(Martinez et 
al. 2020) 

Force 
4 (Force 

level) 
Hand 168 12 (I) ENR-RLR 0.82 - - 

Continuous grasp force 
prediction. 

(Anam et al. 
2019) 

Angular 
position 

8/8 
Fingers 
joints 

16 4 (I) DNN 0.96 - - 
Continuous grasp 
motion prediction. 

(Yang et al. 
2019b) 

Angular 
position 

3/1 Wrist 8 8 (I) CNN 0.74 - - 
Electrode displacement; 
Inter subject variability. 

(Pan et al. 
2019) 

Angular 
position 

2/2 
Wrist 

Metac. 
4* 

6 (I) 
1 (A) 

MM - 
0.88 (I) 
0.80 (A) 

0.13 (I) 
0.15 (A) 

Limb position. 

(Ameri et al. 
2019) 

Angular 
velocity 

2/1 Wrist 8 10 (I) CNN - - 
5.8% 
(RE) 

Continuous wrist 
motion prediction. 

(Lei 2019) 
Angular 
position 

1/1 Elbow 1 4 (I) ANN - - 
8.4% 
(RE) 

Real-time application; 
Embedded system. 

Table 5: A summary of works associated with proportional control strategies. 
In the table: the term “DC” is Determination Coefficient, “Corr.” refers to Pearson Correlation index, “Metac.” is 
Metacarpophalangeal, SAE-DNN is Stacked Autoencoder-based Deep Neural Network, ENR-RLR is Elastic Nets Ridge-
Regularized Linear Regression, DNN is Deep Neural Network, MM is Musculoskeletal Model, NRMSE is Normalized 
Root Mean Square Error, RMSE is Root Mean Square Error, and RE is Relative Error. *For the amputee subject, the 
EMG acquisition was made percutaneously. For the intact ones, it was used surface electrodes. 

However, Pan et al. (2019) addressed the issue of variability caused by limb positioning to 
propose a proportional control algorithm in two joints (wrist and metacarpophalangeal). It was 
developed through the creation of a Musculoskeletal Model (MM), obtained from the measurement 
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of the electrical activity of 4 muscles of the forearm (extensor digitorum, flexor digitorum, extensor 
carpi radialis longus, and flexor carpi radialis) performed superficially in 6 intact subjects and 
percutaneously in a volunteer with transradial amputation. The results demonstrated the superiority 
of the proposed strategy to classical regression methods (ANN and linear regression) both in terms 
of correlation (identification of movement variation tendency) and in the normalized RMS error 
(indication of strength) calculated from the ground truth. Likewise, through an experiment 
performed with nine different positions of the arm, MM demonstrated better performance to this 
confounding factor. According to the authors, this result can be explained due to the Musculoskeletal 
Model consider physiological properties of the limb, such as muscle limitations and detection of 
passive strength, which other methods neglect. Consequently, this presents itself as a good 
alternative for increasing robustness in HMI systems. 

Despite the emerging works related to proportional control, the research around the classification 
of discrete movements is still a tendency. Table 6 summarizes the works that present new strategies 
for movement recognition using classical machine learning approaches. Here, the term “classical 
machine learning approaches” is related to those algorithms that are not associated with deep 
learning methods. These will be described posteriorly. 

 

Authors Strategy #CH #Feat. Emb. #Mov. Vol. Classifier 
AvAcc 

[%] 
Issue considered 

(DelPreto & Rus 
2020) 

Online clustering 10 No No 8 6 (I) GMM-ANN 97.6 Online training. 

(Powar & 
Chemmangat 

2020) 

Similarity 
measurement 

6 1 TD No 6 10 (I) DTW 93.3 Wrist orientation variability. 

(Mantilla-Brito 
et al. 2020) 

Window-length 
reduction 

8 4 TD Yes 3 4 (I) NB 88.0 
Real-time application; 

Computational cost 
reduction. 

(Marcheix et al. 
2019) 

Similarity 
measurement 8 No No 5 5 (I) Matching Score 98.8 Training time reduction. 

(Gong et al. 
2019) 

Hyperparameter 
optimization 

16 4 TD No 6 10 (I) GA-SVM 94.4 
General classifier 

performance improvement. 

(Moin et al. 
2019) 

Similarity 
measurement 

64 1 TD No 9 5 (I) 
Hyperdimensional 

Computing 
88.2 

Intensity of the muscle 
contraction. 

(Donati et al. 
2019) 

Spike train signal 
encoding 

4 No Yes 3 10 (I) SNN 74.0 Low-power consumption. 

(Guo et al. 2019) 
Wavelet-based 

activation function 
4 1 TD No 6 10 (I) WNN 93.7 

General classifier 
performance improvement. 

(Cene & 
Balbinot 2019) 

Non-iterative 
method use 

12 1 TD Yes 17 
10 (I) 

10 
(A) 

ELM 
77.2 (I) 

55.4 
(A) 

Real-time application; 
Computational cost 

reduction. 

(Hameed et al. 
2018) 

Amp. independent 
metrics extraction 

1 2 TD No 2 1 (I) 
FLA and MSE 
thresholding 

95.0 
Weak sEMG recording (arm 

impairment volunteers) 

Table 6 A summary of works associated with classical classification approaches. 
In the table: the term “Emb.” is embedded, “Amp.” is amplitude, GMM is Gaussian Mixture Model, DTW is Dynamic 
Time Warping, GA-SVM is Genetic Algorithm Support Vector Machine, SNN is Spiking Neural Network, WNN is 
Wavelet Neural Network, FLA is First Lag Autocorrelation, and MSE is Modified Sample Entropy. 

Among approaches developed around classical classification methodologies, stand out the 
researches (Cene & Balbinot 2019; Donati et al. 2019; Mantilla-Brito et al. 2020; Moin et al. 2019; 
Powar & Chemmangat 2020). The issue of the variability of muscle activity intensity was addressed 
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in (Moin et al. 2019), where an algorithm based on Hyperdimensional Computation was developed 
in which the signal, acquired by 64 channels, is represented by hypervectors with 10000 dimensions. 
Thus, the class is chosen according to the similarity between the tested sample and a hypervector 
that represents each of the movements. An assertiveness index greater than 88.2% in identifying 9 
movements performed at 3 different strength levels was achieved. The relative simplicity and 
computational efficiency and its stability against variations in the intensity of muscle contraction 
configure the main contribution of the method. 

Powar and Chemmangat (2020) proposed a classification methodology based on Dynamic Time 
Warping (DTW) to increase the performance of recognizing six hand movements when performed 
with the wrist under different orientations. The algorithm of the DTW consists of obtaining the 
optimal nonlinear alignment of two-time series and, based on it, determining the distance between 
them. Thus, for each class, there is a set of training data (signal segment used as training templates 
associated with each movement) that is applied in the computation of the distance to a given test 
sample. Therefore, the winning motion for a test template corresponds to the one associated with the 
training template with the shortest distance. A 60% accuracy was achieved in an experiment where 
signals measured under a pulse orientation and tested under two other configurations were 
considered, and 93.3% when part of the data from all three positions of the joint was included in the 
training. Here, the low computational cost of the method also stands out. 

However, the search for an algorithm that is computationally efficient is justified not only by the 
reduction in processing time, which impacts the system response delay, but also by the reduction in 
the amount of memory and energy consumption required from the available hardware. Considering 
that, in a real application, the controller must be embedded in a portable device, the works of 
Mantilla-Brito et al. (2020) and Donati et al. (2019) present classification strategies implemented in 
an STM32 microcontroller (STMicroelectronics) and FPGA (Field Programmable Gate Array), 
respectively. In the first, the NB method was adopted for the recognition of three gestures (including 
opening and closing the hand) using four different time-domain features extracted from eight 
channels. In an online trial, an 88.0% hit rate and a processing time of only 39.9 ms were achieved. 

In (Donati et al. 2019) an energy-efficient classifier strategy based on the neuromorphic 
implementation (circuits that mimic the functioning of the nervous system) of a Spiking Neural 
Network (SNN) was proposed. The algorithm consists of decoding the sEMG signal in a train of 
impulses for submission to the SNN, which, in turn, stimulates the synaptic connections of the brain 
(excitation or inhibition of the neuron). Therefore, neurons will only transmit information when 
activated, unlike classical Artificial Neural Networks. The aforementioned decoding was performed 
in an FPGA while the neural network was implemented in a Dynamic Neuromorphic Asynchronous 
Processor (DYNAP). It was achieved a 74% accuracy in the identification of three movements 
consuming 0.05 mW on average. 

Still treating the type of training required by the classifier, Cene and Balbinot (2019) compared 
the performance of iterative (SVM and Regularized Logistic Regression – RLR) and non-iterative 
methods (ELM, Random Vector Functional-Link Networks – RVFL, and its regularized versions 
RELM and R-RVFL) in motion recognition. The non-iterative methods showed superiority in 
general, both in classification and testing time. Thus, it demonstrated that non-iterative algorithms 
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are good options among the classical classification approaches for obtaining systems with high 
assertiveness indices and low computational cost. 

However, despite the new and promising proposals for classifiers following the classical learning 
methodology, several researchers have focused their efforts on deep learning, as shown in Table 7. 
The ability to extract deeper features from the EMG signal allows the exploration of information 
that is practically unreachable by classical classification methods. This is reflected in the superiority 
of those to these in terms of success rates, verified in some researches (Du et al. 2017; Jia et al. 
2020). However, the main disadvantage of this approach lies in the high computational cost 
commonly required in training such models, which can take a few hours (Olsson et al. 2019b) since 
the number of weights to be learned can easily exceed 1 million (Chen et al. 2020b). In contrast, the 
deep representations of the EMG signal can dispense the feature extraction step (as observed in most 
works listed in Table 7), which generates a significant reduction in processing time, especially when 
considering those extracted in the frequency or time-frequency domain. Furthermore, it also reduces 
the complexity of the system since the feature selection significantly influences the performance of 
the predictor model (Phinyomark et al. 2013; Tosin et al. 2020b). 

Deep learning networks require a considerable amount of time for training, which can make its 
application in a real system unfeasible when recalibrations are necessary for each new use (both in 
the case of different days and for new volunteers). Therefore, Ameri et al. (2020) and Kim et al. 
(2020) proposed strategies based on transfer learning to minimize system recalibration disorders. 
Both considered Convolutional Neural Networks as a classifier. 

In (Ameri et al. 2020), the aim was to minimize the effect of electrode displacement. To do so, 
they proposed a methodology for recalibrating the system that requires little additional training data. 
The algorithm uses the parameters of the already trained classifier as an initial approximation for 
retraining the model with a small number of new data. The efficiency of the method was verified in 
an experiment where the system was pre-trained with signals from five electrodes. Then, 25% (one 
of the 4 repetitions) of the data acquired through the five channels displaced to the original position 
were used to refine the model already obtained (simulating a recalibration). A 93.4% accuracy was 
achieved in identifying nine movements, higher than that achieved when considering only 25% of 
the data with the electrodes displaced in the training of a new classifier through CNN and SVM. 

Kim et al. (2020) presented a transfer learning strategy to address the inter-volunteer variability 
issue. Firstly, a CNN model is trained with data from 10 subjects. Then, the sEMG signal of one 
repetition of each movement of the target volunteer is used to refine the classifier parameters. The 
results showed the superiority of this method to traditional training (with the same number of 
samples, i.e., only one repetition of each gesture and without transfer learning) and other forms of 
transfer learning. 

The confounding factor of inter-subject variability was also the theme of the work by Côté-Allard 
et al. (2020), where a new method based on deep learning called Adaptive Domain Adversarial 
Neural Network (ADANN) was presented. Roughly speaking, it consists of forcing the network to 
learn domain-independent (domain here refers to volunteer) features by inserting data associated 
with a single subject at each training period. The response of the proposed methodology in multiuser 
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experiments was promising, indicating an increase of 19.4% in the average hit rate in the 
classification of 11 movements compared to a typical CNN. 

According to Table 7, several researchers have adopted strategies based on time-series 
approaches, taking advantage of the properties of classifiers such as LSTM (Huang & Chen 2019; 
Zea & Benalcázar 2020) and TCN (Tsinganos et al. 2019b; Zanghieri et al. 2020) or features as 
cTDD (Mukhopadhyay & Samui 2020) to include temporal resolution of the sEMG signal in the 
learning of the model. Within this context, it is worth citing Zanghieri et al. (2020), that developed 
an innovative classification algorithm, robust to the variation of the sEMG signal over time, called 
TEMPONet (Temporal Embedded Muscular Processing Online Network). This method is structured 
in a topology based on Temporal Convolutive Networks, which consist of convolutional neural 
networks of only one dimension where the convolution process is causal (the filter response depends 
only on the present and past values of the signal) and it maintains the output of the same length as 
the sequence inserted in the input (Yan et al. 2020). An accuracy of 93.7% was achieved with data 
from different sections in the recognition of eight gestures. It is noteworthy that TEMPONet's 
training and testing were performed with data from different days. 

The temporal variation issue was also considered in the CNN topology proposed in (Chen et al. 
2020b). In the presented Convolutive Neural Network, the input is represented in three dimensions 
(two of them associated with the location of 128 electrodes, organized in a matrix form (8x16), and 
the third indicating the time). As a result, both spatial and temporal resolution was achieved in the 
insertion of the signal into the network, including the time factor in learning the model's parameters. 
Three-dimensional CNN proved superior to a typical two-dimensional implementation in identifying 
eight movements, hitting 98.6% of the samples tested against 96.8% of its opponent. 

Finally, there is still a niche of researchers who invest in post-processing algorithms to improve 
classifier accuracy. The purpose is to refine the classifier output to increase the robustness of the 
system. In this context, Cene et al. (2019b) proposed a filter called Exponential Smoothing Filter at 
the end of the classification stage of an ELM. Results showed efficiency in reducing ripple in 
recognizing a specific movement, making the system control more stable. 

Also aiming to reduce the incidence of false positives, Yu et al. (2020) presented a strategy for 
refining the classifier output based on the similarity between two consecutive windows of the signal 
(here represented by a 6x8 matrix, respecting the electrode placement). The goal is to detect changes 
in the pattern of muscle activation in subsequent windows by using the Pattern Distance Index (PDI) 
metric. Hence, a success rate of 86.6% was achieved in the recognition of 12 gestures with LDA, 
which means an increase of 8.2% to the use of the same classifier without the post-processing step, 
demonstrating the effectiveness of the proposed algorithm. 
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Authors Strategy #CH FE #Feat. #Mov. Vol. Classifier AvAcc [%] Issue considered 

(Olsson et al. 
2020) 

EA-based topology 
optimization 

128 No N/A 8 18 (I) CNN 99.3 
Hardware requirement; 

Embedded system. 

(Zanghieri et al. 
2020) 

Time series 
approach 

8 No N/A 8 3 (I) TEMPONet 93.7 Temporal variation. 

(Côté-Allard et al. 
2020) 

Multi-Domain 
Learning approach 

10 No N/A 11 22 (I) ADANN 84.4 Inter subject variability. 

(Asif et al. 2020) 
Hyperparameter 

evaluation 
6 No N/A 10 18 (I) CNN 92.0 

General classifier 
performance improvement. 

(Shao et al. 2020) 
Wavelet-based 

activation function 
6 No* N/A 12 8 (I) 

SVD-
WDBN 

97.1 
General classifier 

performance improvement. 

(Chen et al. 2020b) 
3D-input (spatial 

and temporal 
resolution) 

128 No N/A 8 18 (I) 3D-CNN 98.6 
General classifier 

performance improvement. 

(Ameri et al. 2020) Transfer learning 5 No N/A 9 13 (I) CNN-TL 93.4 Electrode shift. 

(Zea & Benalcázar 
2020) 

Time series 
approach 8 Yes 5 TD 5 

120 
(I) 

LSTM 95.8 Real-time application. 

(Mukhopadhyay & 
Samui 2020) 

Time series 
approach 

7 Yes 6 cTDD 8 5 (I) DNN 98.9 Limb position. 

(Yamanoi et al. 
2020) 

Time-frequency 
mapping 

5 Yes 1 TFD 25 
3 (I) 
1 (A) 

CNN 
84.0 (I) 
30.0 (A) 

Temporal variation. 

(Kim et al. 2020) Transfer learning 12 Yes 1 TFD 50 
40 (I) 
9 (A) 

CNN 
52.5 (I) 
35.0 (A) 

Inter subject variability. 

(Liu et al. 2019) 
Topology 
evaluation 

8 No N/A 8 10 (I) CNN 93.8 
General classifier 

performance improvement. 

(Olsson et al. 
2019b) 

Multi-labelled 
movement 
approach 

128 No N/A 65 14 (I) CNN 78.7 
General classifier 

performance improvement. 

(Rahimian et al. 
2019) 

Time series 
approach 

12 No N/A 17 40 (I) DCNN 92.5 
General classifier 

performance improvement. 

(Huang & Chen 
2019) 

Time series 
approach 

12 Yes 1 TFD 49 40 (I) 
CNN-
LSTM 

79.3 
General classifier 

performance improvement. 

(Tsinganos et al. 
2019b) 

Time series 
approach 

10 No N/A 53 27 (I) TCN 89.8 
General classifier 

performance improvement. 

(Wei et al. 2019) 
Divide-and-

conquer (input 
segmentation) 

128 No N/A 8 18 (I) MS-CNN 99.7 
General classifier 

performance improvement. 

Table 7: A summary of works associated with deep learning approaches. 
In the table: FE is Feature Extraction, EA is Evolutionary Algorithm, TEMPONet is Temporal Embedded Muscular 
Processing Online Network, ADANN is Adaptive Domain Adversarial Neural Network, WDBN is Wavelet Deep Belief 
Networks, CNN-TL is Convolutional Neural Network Transfer Learning, DNN is Deep Neural Network, DCNN is 
Dilated Convolutional Neural Network, TCN is Temporal Convolutional Network, cTDD is correlated Time Domain 
Descriptors, and MS-CNN is Multi-Stream Convolutional Neural Network. 

*The model input was the FFT components of the sEMG signal. 

2.6. Robotic Arm 

Closing the loop of the movement identification system is the robotic arm that will perform the 
gesture predicted by the trained model. This step has considerable relevance, as it allows the 
execution of online tests of the HMI and the evaluation of the applicability of the designed algorithm 
in a situation close to the real one. Recently, some researches have been conducted aiming at the 
proposition of an artificial limb. Here, are included the development of robotic hand prototypes 
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(Feng et al. 2019; Sánchez-Velasco et al. 2020) and exoskeletons for rehabilitation purposes 
(Bouteraa et al. 2019; Ma et al. 2019). 

In (Sánchez-Velasco et al. 2020) a low-cost prototype of a robotic hand with six degrees of 
freedom was presented. It has eleven joints, which guarantees the possibility of a great variability of 
gestures, with emphasis on the inclusion of a junction between the proximal and distal phalanx of 
the thumb, increasing the naturalness of its movement. The gears were made of acrylic as an 
alternative to metal, which considerably reduced member costs. 

In the work by (Feng et al. 2019), it was proposed a prototype robotic manipulator constructed 
from polymer with fiberglass reinforcement. With pneumatic control of the joints, it was developed 
to perform different gripping movements. The artificial hand was validated through the relationship 
between the angles obtained through simulation and those derived from a model of the distribution 
of static forces that act on it. 

Finally, the development of an exoskeleton from 3D printing was the work by Ma et al. (2019), 
where they presented a control system based on ADRC (Active Disturbance Rejection Controller) 
which proved to be superior to a typical PID (Proportional Derivative Integrator) in reference 
tracking and disturbance rejection. The proposed control method rejected the disturbance faster than 
the PID and presented a lower Root Mean Square Error (RMSE) in the reference tracking test (0.992 
against 1.2409 for the PID). 

2.7. Analysis of the Presence of Contaminants in the sEMG Signal 

There are intrinsic and extrinsic factors in the acquisition process that influence the proprieties of 
the EMG signal, manifesting in the form of contaminants. According to literature, these can be 
categorized into seven categories. 

Inherent noise from electronic equipment and instrumentation: all electronic devices generate 
noise that cannot be eliminated, only minimized through the use of high-quality components (Reaz 
et al. 2006). Here, are included the thermal noise present in the electronic elements of the 
amplification system, being present in the form of baseline noise (De Luca et al. 2010), operational-
amplifier saturation, quantization error, weak contact between the electrode and the skin including 
its detachment (Fraser et al. 2014), as examples; 

Environmental noise: this factor is associated with electromagnetic interference. The human 
body is constantly submitted to electromagnetic radiation, being practically impossible to avoid such 
exposure (Reaz et al. 2006). In this context, contamination by radio frequency (RF) and that 
associated with the power line (Fraser et al. 2014) are included, manifesting in high frequencies (RF) 
and the frequencies of 50 and 60Hz (in power line case, depending on the region) and its harmonics; 

Motion artifact: it manifests itself through the distortion of information, causing irregularities in 
the measured signal (Reaz et al. 2006). This contaminant can occur under two circumstances: due to 
the movement of the electrode cabling and due to the interface between the electrode and the skin 
(Ijaz & Choi 2018; De Luca et al. 2010). The last, in turn, presents itself in two different situations. 
One of them is due to the displacement of the muscle to the skin, causing a variation in the load 
distribution and, consequently, inducing a change in the potential difference of the electrode-skin 
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interface (De Luca et al. 2010; Pozzo et al. 2004). It can also appear when a force impulse travels 
through the muscle to the skin, causing a displacement in the sensor-skin interface (De Luca et al. 
2010). The motion artifact is present in the low-frequency region, with a spectral range that generally 
extends from the DC level to 20 Hz (Ijaz & Choi 2018; Pozzo et al. 2004); 

Inherent instability of the EMG signal: signal amplitude is stochastic in nature and depends on 
the firing rate of the motor units, which typically ranges from 0 to 20Hz (Reaz et al. 2006). Thus, 
the energy between the frequencies of 10 and 20 Hz contains peaks whose amplitude depends on the 
activation rate of the motor units. These values fluctuate mainly in the occurrence of small magnitude 
contractions, making the energy in this low-frequency range unstable and, consequently, not 
providing reliable information about muscle activity (De Luca et al. 2010); 

Temporal anomalous muscle activity and inactivity: the first occurs in the presence of muscle 
action at a given moment of unexpected time and the second, on the other hand, occurs when muscle 
inactivity is detected at a given time when an action was expected (Ijaz & Choi 2018); 

Interference by other unwanted biological signals: are included in this factor the cross talk 
(measured signal from an inactive muscle and generated by an active one (Pozzo et al. 2004)), 
interference by electrocardiography (ECG) signal, among others; 

Noise related to the electrode-skin interface: this interference is also named electrochemical 
noise. It forms the baseline noise with the thermal noise present in the electronic components of the 
amplification system. It is detected whenever a sensor is connected to the skin (De Luca et al. 2010). 

The presence of these factors in the EMG signal is unwanted and may make it impossible to 
extract the information depending on the level of contamination. Thereby, many researchers have 
been working on methods for detection, EMG signal recovery, identification of the type of 
interference, as well as classification strategies robust to the presence of contaminants (Favieiro & 
Balbinot 2019; Fraser et al. 2014; Fraser et al. 2012a; Ijaz & Choi 2018; De Luca et al. 2010; 
Machado et al. 2020; Machado et al. 2019; McCool et al. 2014; De Moura & Balbinot 2018; 
Stachaczyk et al. 2020). Table 8 summarizes some of these works, where the abbreviations “Cont.” 
is Contaminant, “Mov.” is Movements, “Feat.” is features, MI is Movement Identification, CI is 
Contaminant Identification, CD is Contaminant Detection, “Class.” is classifier, TVARMA is Time-
Varying Autoregressive Moving Average, rPCA is robust Principal Component Analysis, SOM is 
Self-Organizing Map, LSAA is Least Squares Adaptive Algorithm, CMMV is Consecutive 
Minimum or Maximum Values, SQNR is Signal-to-Quantization Noise Ratio, PCC is Pearson 
Correlation Coefficient, TS is Template Subtraction, ATS is Adaptive Template Subtraction, MBF 
is Model Based Filtering, WD is Wavelet Denoising, EMD is Empirical Mode Decomposition, 
MYOPm is Modified Myopulse Percentage rate, IMCRA is Improved Minima Controlled Recursive 
Averaging, VAE is Variational Autoencoder, MA is Motion Artifact, AS is Amplifier Saturation, 
AWGN is Additive White Gaussian Noise, PLI is Power Line, CN is Correlated Noise, MixA is Mix 
Anomalies, QN is Quantization Noise, ADC-C is Analog-to-Digital Converter Clipping.  
  



sEMG BASED UPPER LIMB MOVEMENT CLASSIFIER: CURRENT SCENARIO AND UPCOMING CHALLENGES 

109 
 

 

Authors Stage  Strategy Method Feat. Mov. 
Cont. 
type  

Cont. 
level [dB] 

Class. 
AvAcc 

[%] 
Issue considered 

(De Moura & 
Balbinot 2018) 

Pre-
processing 

Virtual sensor 
estimation 

TVARMA 
5 TD 
(MI) 17 

MA 
AS 

AWGN 
PLI 

ECG 

Not 
informed 

SVM 
69.2 (I) 
47.5 (A) 

(MI) 

EMG signal 
recovering. 

(McCool et al. 
2014) 

Pre-
processing 

Handcrafted 
features analysis 

SVM 
3 TD 
4 FD 
(CI) 

N/A 

MA 
AS 

AWGN 
PLI 

ECG 

-20 to 20 N/A 
99.6 to 

20.4 
(CI) 

Contaminant type 
identification. 

(Ijaz & Choi 
2018) 

Pre-
processing 

Clustering rPCA-SOM 
1 

TFD 
(CI) 

N/A 

AWGN 
PLI 

ECG 
CN 

MixA 

Not 
informed 

N/A 
88.2 
(CI) 

Contaminant 
detection; 

Contaminant type 
identification. 

(Fraser et al. 
2014) 

Pre-
processing 

Handcrafted 
features analysis 

SVM 
4 TD 
2 FD 
(CD) 

N/A 

MA 
AS 
PLI 

ECG 
QN 

ADC-C 

-20 to 45 N/A N/A 
Contaminant 

detection. 

(Fraser et al. 
2011) 

Pre-
processing 

Contaminant 
signal estimation 

LSAA No N/A PLI -10 to 40 N/A N/A 
Contaminant 

removal. 

(Fraser et al. 
2012a) 

Pre-
processing 

Contaminant 
signal estimation 

Moving 
Average filter 

No N/A ECG -8 to 8 N/A N/A 
Contaminant 

removal. 

(Fraser et al. 
2012b) 

Pre-
processing 

Handcrafted 
features analysis 

CMMV (AS) 
SQNR (QN), 

PCC (ADC-C) 

3 TD 
(CD) 

N/A 
AS 
QN 

ADC-C 

Not 
informed 

N/A N/A 
Contaminant 

detection. 

(Machado et al. 
2019) 

Pre-
processing 

Virtual sensor 
estimation 

RNN-LSTM 
1 TD 
(MI) 

17 AS 
Not 

informed 
SVM 

66.5 
(MI) 

EMG signal 
recovering. 

(Machado et al. 
2020) 

Pre-
processing 

Time series 
approach 

RNN-LSTM No N/A 

MA 
AWGN 

PLI 
ECG 

-20 to 20 N/A 
87.8 to 

20.0 
(CI) 

Contaminant 
detection; 

Contaminant type 
identification 

(De Luca et al. 
2010) 

Pre-
processing 

Cutoff frequency 
determination 

Butterworth 
HP-filter 

No N/A MA 
Not 

informed 
N/A N/A 

Contaminant 
removal. 

(Stachaczyk et 
al. 2020) 

Pre-
processing 

Spectro-temporal 
similarity 

Adaptive 
Spatial Filter 

No 4 
AWGN 

PLI 
Not 

informed 
LDA 

84.5 
(MI) 

Contaminant 
detection and 
attenuation. 

(Oo and 
Phukpattaranont 

2020) 

Pre-
processing 

ANN-based 
regressor 

ANN 1 TD N/A ECG -20 to 0 N/A 0.966* 
SNR estimation of 
the contaminated 

sEMG. 

(Petersen et al. 
2020) 

Pre-
processing 

Several 
TS, ATS, MBF, 

WD, EMD, 
HP-Filter 

No N/A ECG 
-42.6 to 

9.7 
N/A N/A 

Contaminant 
removal. 

(Triwiyanto et 
al. 2018) 

Feature 
extraction 

Adaptive feature 
thresholding  

MYOPm 
1 TD 
(MI) 

1 
DOF 

AWGN 0 to 60 
Kalman 

Filter 
9°** 

Improvement of the 
system robustness to 

contamination. 

(Thongpanja et 
al. 2016) 

Pre-
processing 

Statistical metrics 
analysis 

Kurtosis, 
Negentropy, L-

Kurtosis, 
Robust 

Kurtosis 

7 TD 
(CD) 

N/A 

MA 
AWGN 

PLI 
ECG 

Spikes 

-20 to 20 N/A N/A 
Contaminant 

detection. 

(McCool et al. 
2015) 

Pre-
processing 

Spectral 
subtraction 

IMCRA-based 
Spectral 

Enhancement 
5 TD 7 AWGN -10 to 0 SVM 

59.9 to 
82.4 
(MI) 

Improvement of the 
system robustness to 

contamination 

(Fraser et al. 
2013) 

Pre-
processing 

Statistical metrics 
analysis 

PCC No N/A 
MA 
PLI 

ECG 
-20 to 30 N/A N/A 

Contaminant 
detection. 

(Teh & 
Hargrove 2021) 

Feature 
extraction 

EMG signal 
projection 

VAE 
4 TD 
(MI) 

7 
Flatlined 

signal 
Not 

informed 
LDA 

>90.0 
(MI) 

Improvement of the 
system robustness to 

contamination 

Table 8: A summary of works associated with the treatment of contaminants in EMG recordings. 

* The result is the average correlation coefficient between predicted and actual SNR. **The result is the lowest median 
RMSE of the predicted elbow angle. 
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It is noteworthy that, despite the majority of works listed on Table 8 was not performed aiming 
the motion recognition task, all apply to it. Thereby, most of them are related to pre-processing stage 
and propose methods for contaminant detection (it identifies the interference but not the type) or 
removal. The strategies adopted to contaminant detection generally relies on extracting statistical 
metrics (Fraser et al. 2013; Thongpanja et al. 2016) and handcrafted features of sEMG signal (Fraser 
et al. 2014; Fraser et al. 2012b). For contaminant removal, it is commonly employed filters (De Luca 
et al. 2010; Petersen et al. 2020) or techniques to estimate the interference parameters (Fraser et al. 
2012a; Fraser et al. 2011). 

However, despite the importance of contamination detection for data quality assessment, 
knowing the type of interference is also desirable for eliminating its source by correcting the 
acquisition procedure. Within this context are the works (Ijaz & Choi 2018; Machado et al. 2020; 
McCool et al. 2014). McCool et al. (2014) implemented an SVM-based classifier to recognize five 
different sources of contamination (ECG, motion artifact, amplifier saturation, power line 
interference, and baseline noise, represented by additive white Gaussian noise). Through an 
experiment with signal contamination ranging from -20 to 20 dB, hit rates of 100% and 97.79% for 
-20 and -10 dB were achieved. However, as the interference intensity decreased, the algorithm 
performance was reduced, registering an accuracy of only 20% to 20 dB. 

In contrast, Ijaz and Choi (2018) presented an unsupervised algorithm for detecting and 
identifying the contaminant type. It includes a pre-processing stage composed of filtering (Wavelet 
Transform) and dimensionality reduction (rPCA). Thus, the principal components are considered 
for determining a Self-Organizing Map (SOM) that clusters the data. By implementing this 
methodology, it was achieved success rates of 88.2% in the separation of five different anomalies 
(baseline noise, ECG, correlated noise, electrical network, and mixture of different contaminants) 
and clean signal. The method's main contribution is to perform the recognition in an unsupervised 
way. However, the SNR of the contamination was not reported. 

Dispensing with a pre-processing and feature extraction step was the innovation introduced by 
Machado et al. (2020). In their work, the identification of four contaminant types (power line, motion 
artifact, white noise characterizing baseline noise, and ECG) plus clean signal was assigned to a 
classifier based on Recurrent Neural Networks (RNR) and LSTM. An accuracy of 97.72% was 
achieved by processing data contaminated with -20 dB SNR. 

Aiming at recovering the contaminated sEMG signal, Fraser et al. (2011, 2012a) and De Luca et 
al. (2010) proposed strategies for removing power line, ECG, and low-frequency noise caused by 
motion artifact, respectively. Fraser et al. presented two algorithms to estimate the parameters of 
interference by power line and ECG. In the first work by Fraser et al. (2011), a Least Squares 
Adaptive Algorithm (LSAA) estimated the amplitude, phase, and frequency of a sinusoidal signal 
superimposed to the sEMG (power line interference). In the more recent work, Fraser et al. (2012a) 
used a moving-average filter for obtaining the ECG signal from sEMG recording. In both methods, 
the obtained contaminant estimation was subtracted from the sEMG signal. The LSAA proved to be 
efficient to remove power line interference with SNR of 15 dB or less. The RMSE of the Moving-
Average filter was compared with that of a classic method (measurement of a standard ECG signal 
for later use in removing the interference present in the signal). The new approach outperformed the 
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classic one in more severe contaminations. It was reported a 15.5% reduction in the RMSE for the 
interference with SNR of 2 dB. 

In (De Luca et al. 2010), a study was carried out on the best choice for the cutoff frequency of a 
high-pass filter in removing noise caused by motion artifact. By performing some tests ranging the 
cutoff frequency from 1 to 30 Hz of a Butterworth filter with a transition zone inclination of 12 
dB/octave, it was concluded that the choice of the value depends on the type of muscle and of the 
intended analysis. For the study of isometric movements or common and natural gestures, 20 Hz 
was recommended. However, if the goal is to evaluate more vigorous movements, such as those 
associated with sports, it is suggested to increase the frequency beyond 20 Hz, for greater attenuation 
of movement artifact interference, but at the cost of inducing deformations and additional attenuation 
in the EMG signal spectrum. 

However, as an alternative to the pre-processing algorithms for contaminant type identification 
and interference removal, some researchers aim to propose techniques for EMG signal recovering 
(Machado et al. 2019; De Moura & Balbinot 2018) and system robustness improvement to 
contaminants (McCool et al. 2015; Teh & Hargrove 2021; Triwiyanto et al. 2018). Machado et al. 
(2019) and De Moura and Balbinot (2018) presented virtual sensor-based strategies to recover the 
information of a contaminated channel. De Moura and Balbinot (2018) used cross-correlation 
between acquisition channels (considering multichannel configuration) to estimate a model for the 
output of a contaminated electrode. Hence, the generated data is independent of the physically 
measured signal. For that, they proposed a strategy based on the Time-Varying Autoregressive 
Moving Average (TVARMA) and another based on the Time-Varying Kalman filter (TVK). To 
detect the presence of contamination in the signal and enable the use of the sensor, a one-class SVM-
based model was used. The method performance assessment was made by recognizing 17 
movements through 12 sEMG channels and an SVM classifier. The contaminants considered were 
ECG, white Gaussian noise, motion artifact, power line, and amplifier saturation. The algorithm 
efficiency was verified by comparing the classifier performance with and without contamination. 
Applying the virtual sensor model developed from TVARMA, it was obtained a reduction (on 
average) of only 5.6% in the accuracy of the classifier to the test without contamination, 
outperforming its opponent (TVK). 

In contrast, the proposal by Machado et al. (2019) is based on the estimation of the signal of a 
corrupted channel from a regression model obtained from the other (clean) channels. A hybrid 
system was implemented for the regression step, comprising a Recurrent Neural Network and 
LSTM. Reported results showed an increase from 9 to 66% in the classifier's assertiveness by 
reconstructing a channel contaminated with noise from amplifier saturation compared to using the 
corrupted signal (without applying the method). Here, SVM was considered for identifying 17 
movements of the hand-arm segment. 

The promising results of the virtual sensor strategy indicate it as a good option for EMG signal 
recovery. However, if a great number of channels are contaminated, the data reconstruction will be 
impaired. Thereby, McCool et al. (2015) presented a pre-processing algorithm called Improved 
Minima Controlled Recursive Averaging (IMCRA)-based Spectral Enhancement to attenuate the 
white Gaussian noise in the sEMG signal. The algorithm computes the STFT to estimate the noise 
present in the signal recursively in each time/frequency segment. After noise estimation, it is 
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subtracted from the contaminated signal. Average accuracies of 59.4 and 82.4 were achieved in 
classifying seven movements through data contaminated with SNR of -10 and 0 dB, respectively, 
demonstrating the method efficiency. 

Therefore, contaminants in the sEMG signal are one of the factors that lead to the reduced 
performance of classification systems when tested outside the laboratory. Consequently, for a myo-
controlled device to be effective also in non-ideal situations, it is essential that it includes the 
treatment of contaminants in its control system, either by a specific method in the signal pre-
processing step or built into the motion classifier. This section summarized some promising and 
innovative strategies to solve this issue. However, most of them were not considered in the motion 
recognition context hence their applicability in the real-time scenario is not guaranteed. Thereby, 
there are still some steps to be addressed to improve current and future myo-controlled devices. 
Besides the real-time issue, the inherent temporal variability of the sEMG signal properties and the 
occurrence of simultaneous contaminants should also be considered in the algorithms for detecting 
and removing interferences. These factors will probably guide the research's next steps. 

Furthermore, all the works cited in Table 8 used artificially contaminated EMG signals to validate 
the proposed models. Although this procedure is acceptable in the literature and widely used, it can 
be a problem when applied to motion classification systems since it may not faithfully represent the 
way it is presented in practice during the use of the myo-controlled device. Therefore, the need to 
generate a database with EMG signals in non-ideal situations is identified, reproducing possible 
contamination, similar to those considered in current research. Thus, for example, tests with 
volunteers performing movements with poorly glued electrodes, with movement artifacts, in 
environments with excessive electromagnetic interference, and with muscle fatigue, among other 
factors, would be fundamental to observe how the contaminants would appear in practice. In this 
way, they will guide the development of algorithms for the treatment of contaminants that will have 
a better performance during the use of the device by the user and possibly will help to increase the 
accuracy of the classifiers outside the laboratory environment. 

3. Conclusion 

This paper presents a review of the most recent works related to sEMG movement recognition. Thus, 
the current scenario and trends associated with each stage of the system were summarized. For signal 
acquisition, there are some open topics such as the electrodes number and placement setup, 
acquisition hardware, mixed signals, to name a few. Moreover, some databases are indicated to 
support future researches to address these issues. Among the pre-processing strategies listed in the 
respective section, the majority are mainly based on data transformation for inter-subject/temporal 
variability addressing, data quality improvement, and general classifier performance increasing. 
Aiming to propose new and innovative approaches to extract sEMG signal information, several 
authors presented techniques exploring the spatial domain enabled by electrodes arrangement as an 
alternative to the traditional features computed on time and frequency domains. The promising 
results showed in Table 3 indicate it as a relevant option to the feature extraction stage for solving 
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the confounding factors related to temporal/inter-subject variability and changing in the intensity of 
muscle activation. 

In the sequence, it was presented several works aiming at finding the best set of features. The 
approaches are mainly related to wrapper strategies (according to Table 4) and can be grouped in 
feature, channel, or combined feature/channel pairs selection. Using the last form may lead the 
classifier to reach higher accuracies by expanding the search field. However, individual analysis of 
features or channels is an interesting option when computational cost reduction is a priority. 

The motion recognition step can be executed by a classifier (control based on a finite set of 
movements) or by a regressor (proportional control). Aiming at proportional control, the works 
covered by this review are often related to strategies for angular position prediction of finger or wrist 
joints. The methods adopted ranging from classical machine learning algorithms (ANN, RLR) to 
deep learning (CNN, DNN, LSTM), both with promising results. The same distinction can be made 
between the propositions for the movement classification stage. Despite the increasing tendency of 
using deep learning techniques (Table 7), the approaches around classical machine learning theory 
are still quite considered (Table 6). Among the deep learning strategies, it is noteworthy the time-
series approaches. The promising results (Table 7) indicate the inclusion of temporal resolution in 
the model training as a good option to address the issues related to limb position and temporal 
variation. Furthermore, the transfer-learning technique appears as a promising solution for electrode 
displacement and inter-subject variability. 

Finally, the contaminant issue was considered in a separate section in the paper. The approaches 
are mainly related to pre-processing step and are not directed to the motion recognition task (in the 
most part). Despite the promising strategies presented for interference detection, identification, and 
removal, there are still some factors to be considered, such as the application in real-time systems, 
the inherent temporal variability of the sEMG signal properties, and the occurrence of simultaneous 
contaminants. 

In summary, this review exposes the current scenario of the movement classification system, 
providing valuable information for new researchers and guide future works towards myo-controlled 
devices. 
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