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Abstract

Many engineering problems have multiple objectives, and the overall aim is to optimize
a non-linear function of these objectives. In this paper, we formulate the problem of max-
imizing a non-linear concave function of multiple long-term objectives. A policy-gradient
based model-free algorithm is proposed for the problem. To compute an estimate of the
gradient, an asymptotically biased estimator is proposed. The proposed algorithm is shown

to achieve convergence to within an ε of the global optima after sampling O( M4σ2

(1−γ)8ε4 ) tra-

jectories where γ is the discount factor and M is the number of the agents, thus achieving
the same dependence on ε as the policy gradient algorithm for the standard reinforcement
learning.

1. Introduction

The standard formulation of reinforcement learning (RL), which aims to find the optimal
policy to optimize the cumulative reward, has been well studied in the recent years. Com-
pared with the model-based algorithms, model-free algorithms do not require the estimation
of the transition dynamics and can be extended to the continuous space. Value function
based algorithms such as Q-learning (Watkins & Dayan, 1992; Jin, Allen-Zhu, Bubeck, &
Jordan, 2018), SARSA (Rummery & Niranjan, 1994), Temporal Difference (TD) (Sutton,
1988) and policy based algorithms such as policy gradient (Sutton, McAllester, Singh, &
Mansour, 2000) and natural policy gradient (Kakade, 2001) have been proposed based on
the Bellman Equation, which is a result of the additive structure for the standard RL.

However, many applications require more general non-linear reward functions. As an
example, risk-sensitive objectives have been considered in (Mihatsch & Neuneier, 2002).
(Hazan, Kakade, Singh, & Van Soest, 2019) studies the problem of maximizing the entropy
of state-action distribution. Further, many realistic applications have multiple objectives,
e.g., capacity and power usage in the communication system (Aggarwal, Bell, Elgabli, Wang,
& Zhong, 2017), latency and energy consumption in queueing systems (Badita, Parag, &
Aggarwal, 2020), efficiency and safety in robotic systems (Nishimura & Yonetani, 2020).
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In this paper, we consider a setting that jointly optimizes a general concave function of
the cumulative reward from multiple objectives.

max
π

f(Jπ1 , · · · , JπM ) (1)

where Jπm is the value function following policy π for mth objective and f is the general
concave function. The detailed formulation can be found in Section 3. With this definition,
a non-linear concave function of single objective becomes a special case. Further, fair
allocation of resources among multiple users require a non-linear function of the rewards to
each user (which correspond to the multiple objectives) (Lan, Kao, Chiang, & Sabharwal,
2010), and is thus a special case of this formulation. In the following, we provide two
examples to better motivate our formulation.

Example 1. (Communication System) In the communication system, there is a wireless
scheduler to which M users are connected. Each user can exist in two states, good or
bad. The action is the user to which the scheduler allocates the resource. This system has
2M states with M actions. At time t, each user m achieves different rates rm,t based on
their states and resource allocation. The joint objective function is proportional fairness or
sum-logarithmic utility defined as:

f(Jπ1 , J
π
2 , · · · , JπM ) =

∑M

m=1
log (Jπm) (2)

where Jπm is the value function of user m using policy π.

Example 2. (Queuing System) There is a server serving M queues with Poisson arrivals
with different arrival rates. The system state is M dimensional vector of the length of the
M queues. The action at each time is the queue which the server serves. At time t, each
queue m achieves a reward of 1 unit if a customer from this queue is served. The joint
objective function is α fairness utility (with α = 2) defined as:

f(Jπ1 , J
π
2 , · · · , JπM ) = −

∑M

m=1

1

Jπm
(3)

where Jπm is the value function of queue m using policy π.

Note that in both the examples, the value of the function cannot be calculated using
reward at time t (or f(r1,t, · · · , rM,t) cannot be used for these problems), as the users which
are not allocated wireless resource or the queues which are not served receive 0 reward and
the function value is −∞ .

Such a setup was first considered in (Agarwal, Aggarwal, & Lan, 2022), where a model-
based algorithm was proposed for the problem with provable regret guarantees. However,
guarantees for model-free algorithm have not been studied to the best of our knowledge,
which we focus on.

We note that the non-linear objective function looses the additive structure, and thus the
Bellman’s Equation does not work anymore in this setting (Agarwal et al., 2022; Zhang,
Koppel, Bedi, Szepesvari, & Wang, 2020). Thus, the value function based algorithm do
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not directly work in this setup. This paper considers a policy-gradient approach and aim
to show the global convergence of such policies. Recently, the authors of (Zhang et al.,
2020; Zhang, Ni, Szepesvari, & Wang, 2021) considered the problem for a single-objective
over finite state-action space. However, such a problem is open for continuous state action
spaces, and for multiple objectives, which is the focus of this paper. In this paper, we
consider a fundamental policy based algorithm, the vanilla policy gradient, and show the
global convergence of this policy based on an efficient estimator of the gradient proposed in
this paper.

We note that in standard reinforcement learning, Policy Gradient Theorem (Sutton
et al., 2000) is used to propose an unbiased gradient estimator such as REINFORCE.
However, such an approach can not directly give an unbiased estimator in our setting due
to the presence of non-linear function (See Lemma 10). In this paper, we provide a biased
estimator for the policy gradient. This biased estimator is then used to prove the global
convergence of the policy gradient algorithm.

Our contribution can be summarized as follows.

• We consider a new problem statement in reinforcement learning, which aims to jointly
optimize a multi-objective problem with concave utility. Such formulation has rarely been
considered before.

• Due to the existence of concave utility, it is impossible to give an unbiased estimator.
Thus, we propose a general biased gradient estimator, which can be applied to both
tabular and continuous state-action spaces prove that the bias of the estimator decays at
order O(1/

√
n), where n is the number of trajectories sampled (See Remark 4).

• We prove the policy gradient algorithm with the proposed estimator converges to the
global optimal with error ε using O( M4σ2

(1−γ)8ε4
) samples, where M is the number of ob-

jectives, σ2 is the variance defined in Assumption 5 and γ is the discount factor. As
compared to the number of samples for standard RL with policy gradient algorithm (Liu,
Zhang, Basar, & Yin, 2020), our result has the same dependence on ε.

• We also study our algorithm empirically. We observe that the proposed method performs
better than a naive implementation of RL algorithms where reward at each time step is
the value of the concave function of the individual rewards.

Further, even for the case when there is a non-linear function of a single objective,
the approach and results are novel, and have not been considered in the prior works for
continuous state-action spaces.

2. Related Work

Table 1 summarizes the key related works. The problem has been studied in the tabular
model-based setup (Agarwal et al., 2022; Cheung, 2019). For the model-free approach, this
is the first paper on guarantees on concave scalarized multi-objective infinite horizon rein-
forcement learning with large state-action space. As compared to the linear scalarization,
biased estimator complicates the analysis, and the approach of finite state-action spaces do
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Works Sample Complexity Objective-Function Multi-Objective State Action Space

Model-Based (Agarwal et al., 2022) Õ(M2/ε2) Concave Scalarization Yes Finite

(Cheung, 2019) Õ(1/ε2) Special Concave Scalarization 1 Yes Finite

Model-Free (Zhang et al., 2020) N/A 2 Concave Utility3 No Finite

(Zhang et al., 2021) Õ(1/ε2) Concave Utility3 No Finite

This Work Õ(M4/ε4) Concave Scalarization Yes Infinite

(Liu et al., 2020) Õ(1/ε4) Reinforce No Infinite

Table 1: Overview of key related works for the problem in this paper. M is the number of
objectives and ε is the gap between optimal objective and the objective function
following the policy in the proposed algorithm.

not directly extend to our problem. Detailed comparison to the approaches is also provided
in the following.

Policy Gradient with Cumulative Return: As the core result for policy based al-
gorithms, Policy Gradient Theorem (Sutton et al., 2000) provides a method to obtain the
gradient ascent direction for standard reinforcement learning with the policy parameteriza-
tion. However, in general, the objective in the reinforcement learning is non-convex with
respective to the parameters (Agarwal, Kakade, Lee, & Mahajan, 2020). Thus, the research
on policy gradient algorithm focuses on the first order stationary point guarantees for a long
time (Papini, Binaghi, Canonaco, Pirotta, & Restelli, 2018; Xu, Gao, & Gu, 2020a, 2020b).
Recently, there is a line of interest on the global convergence result for reinforcement learn-
ing. (Zhang, Koppel, Zhu, & Basar, 2020) utilizes the idea of escaping saddle points in
policy gradient and shows the convergence to the second order stationary points. (Agar-
wal et al., 2020) provides provable global convergence result for direct parameterization
and softmax parameterization in the tabular case. For the restrictive parameterization,
they propose a variant of NPG, Q-NPG and analyze the global convergence result with
the function approximation error for both NPG and Q-NPG. (Mei, Xiao, Szepesvari, &
Schuurmans, 2020) improves the convergence rate for policy gradient with softmax param-

1. (Cheung, 2019) defines a specialized concave scalarization function, where f(J) = 1
M
·
[∑M

m=1 LmJm−

L0
2

minu∈U

{∑M
m=1(Jm−um)2

}]
, where L0, · · · , LM are parameters and U ∈ [0, 1]M is a convex compact

set. The proposed algorithm and the achieved sample complexity is limited to above function and whether
it can be extended to the general concave scalarization function is unknown.

2. (Zhang et al., 2020) proposed the Varational Policy Gradient Algorithm to solve the problem. (Zhang
et al., 2020)[Theorem 4.5] stated the algorithm requires O(ε−1) iterations to achieve ε-optimal policy.
However, in each iteration, it needs to solve a min-max problem, which is costly even for estimating a
single policy gradient.

3. (Zhang et al., 2020, 2021) considered the concave utility function, where the objective is to maximize
g(λ), and λ is a cumulative discounted state-action occupancy measure. Setting hm(λ) = 〈rm,λ〉 and
defining g(λ) = f(h1(λ), · · · , hM (λ)) = f(J), their problem reduces to our formulation. Despite the
formulation in (Zhang et al., 2020, 2021) is more general, the definition of the occupancy measure limits
the state and action space to be finite.
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eterization from O(1/
√
t) to O(1/t) and shows a significantly faster linear convergence rate

O(exp(−t)) for the entropy regularized policy gradient. With actor-critic method (Konda &
Tsitsiklis, 2000), (Wang, Cai, Yang, & Wang, 2020) establishes the global optimal result for
neural policy gradient method. (Bhandari & Russo, 2019) identifies the structure proper-
ties which shows that there are no sub-optimal stationary points for reinforcement learning.
(Liu et al., 2020) proposes a general framework of the analysis for policy gradient type of
algorithms and gives the sample complexity for PG, NPG and the variance reduced version
of them. However, all of the above research have been done on the standard reinforcement
learning, where the objective function is the direct summation of the reward. This paper
focuses on a joint optimization of multi-objective problem, where multiple objectives are
combined with a concave function.

Policy Gradient with General Objective Function: Even though standard rein-
forcement learning has been widely studied, there are few results on the policy gradient
algorithm with a general objective function. Some special examples are variance-penalty
(Huang & Kallenberg, 1994) and maximizing entropy (Hazan et al., 2019). Very recently,
(Zhang et al., 2020, 2021) study the global convergence result of the policy gradient with
general utilities. They consider the setting that the objective is a concave function of the
state-action occupancy measure, which is similar to our setting. By the method of convex
conjugate, (Zhang et al., 2020) proposed a variational policy gradient theorem to obtain
the gradient ascent direction and gives the global convergences result of PG with general
utilities. Despite enjoying a rate of O(1/t) in terms of iterations, their algorithm requires
an additional saddle point problem to fulfill the gradient update and thus introduce extra
computation complexity. (Zhang et al., 2021) further proposes the SIVR-PG algorithm
and improves the convergence rate in the same setting. However, the SIVR-PG algorithm
requires the estimation of state-action occupancy measure, which means that the algorithm
can only be applied to the tabular setting. We note that our method does not have such
limitation and thus can be applied even if the state and action space is large or continuous.
Finally, note that (Zhang et al., 2020, 2021) improve the previous convergence rate for pol-
icy gradient by exploring the hidden convexity of the proposed problem. However, in order
to utilize such convexity, they require the assumption that the inverse mapping of visitation
measure λ : Θ→ λ(Θ) exists and the Lipschitz property of such inverse mapping is assumed.
It has been shown that such assumption holds for direct parameterization. However, such
assumptions for continuous state-action space or other types of parameterization may not
be valid.

3. Formulation

We consider an infinite horizon discounted Markov Decision Process (MDP) M defined by
the tuple (S,A,P, r1, r2, · · · , rM , γ, ρ), where S and A denote the state and action space,
respectively. P : S × A → ∆S (where ∆S is a probability simplex over S) denotes the
transition probability distribution from a state-action pair to another state. M denotes
the number of objectives and rm : S × A → R denotes the reward for the mth objective.
γ ∈ (0, 1) is the discounted factor and ρ : S → ∆S is the distribution for initial state. In
this paper, we make following assumption.
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Assumption 1. The absolute value of the reward functions rm,m ∈ [M ] is bounded by
some constant. Without loss of generality, we assume rm ∈ [0, 1], ∀m ∈ [M ].

Define a joint stationary policy π : S → ∆A that maps a state s ∈ S to a probability
distribution of actions with a probability assigned to each action a ∈ A. At the beginning
of the MDP, an initial state s0 ∼ ρ is given and the agent makes a decision a0 ∼ π(·|s0).
The agent receives M reward rm(s0, a0) and then transits to a new state s1 ∼ P(·|s0, a0).
We define the value function Jπm for the mth objective following policy π as a discounted
sum of reward over infinite horizon.

Jπm = Eρ,π,P

[ ∞∑
t=0

γtrm(st, at)

]
(4)

where s0 ∼ ρ, at ∼ π(·|st) and st+1 ∼ P(·|st, at). Similarly, we define the state value
function V π

m(s) and state-action value function Qπm(s, a)

V π
m(s) = Eπ,P

[ ∞∑
t=0

γtrm(st, at)

∣∣∣∣s0 = s

]

Qπm(s, a) = Eπ,P

[ ∞∑
t=0

γtrm(st, at)

∣∣∣∣s0 = s, a0 = a

] (5)

The agent aims to maximize the joint objective function f : RM → R, which is a function
of the long-term discounted reward of each objective. Formally, the problem is written as

max
π

f(Jπ1 , J
π
2 , · · · , JπM ) (6)

We consider a policy-gradient based algorithm on this problem and parameterize the policy
π as πθ for some parameter θ ∈ Θ such as softmax parameterization or a deep neural
network. Commonly, the log-policy function log πθ(a|s) is called log-likelihood function and
we make the following assumption.

Assumption 2. The log-likelihood function is G-Lipschitz and B-smooth. Formally,

‖∇θ log πθ(a|s)‖ ≤ G ∀θ ∈ Θ, ∀(s, a) ∈ S ×A
‖∇θ log πθ1(a|s)−∇θ log πθ2(a|s)‖ ≤ B‖θ1 − θ2‖ ∀θ1, θ2 ∈ Θ,∀(s, a) ∈ S ×A

(7)

We consider all norms in this paper, unless explicitly mentioned, as L2-norm.

Remark 1. The Lipschitz and smoothness properties for the log-likelihood are quite common
in the field of policy gradient algorithm (Agarwal et al., 2020; Zhang et al., 2021; Liu et al.,
2020). Such properties can also be verified for simple parameterization such as Gaussian
policy.

Define the value function vector Jπθ = (Jπθ1 , · · · , JπθM ). The original problem, Eq. (6),
can be rewritten as

max
θ∈Θ

f(Jπθ) (8)

We make the following assumptions on the objective function f :
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Assumption 3. The objective function f is jointly concave. Hence for any arbitrary dis-
tribution D, the following holds.

f(Ex∼D[x]) ≥ Ex∼D[f(x)]) ∀x ∈ RM (9)

Remark 2. (Non-Concave Optimization) It is worth noticing that the above problem is a
non-concave optimization problem despite the above joint-concave assumption on the ob-
jective function. This is because the parameterized value function Jπθm is non-concave with
respect to θ (See Lemma 3.1 in (Agarwal et al., 2020)). Thus, the standard theory from
convex optimization can’t be directly applied to this problem.

Assumption 4. All partial derivatives of function f are assumed to be locally Lf -Lipschitz
functions. Formally,

| ∂f
∂xi

(y1)− ∂f

∂xi
(y2)| ≤ Lf‖y1 − y2‖

∀y1,y2 ∈ [0,
1

1− γ
]M ,∀i ∈ [M ]

(10)

Remark 3. By Assumption 1, Jπθm is bounded in [0, 1
1−γ ]. Thus, it is enough to assume the

locally Lipschitiz property for the partial derivatives of the objective. Such an assumption
has also been adopted widely for the general objective function (Zhang et al., 2020, 2021).

Finally, based on the Assumption. 4, we derive the following result for the objective func-
tion.

Lemma 1. All partial derivative functions of f are locally bounded by a constant. Formally,∣∣∣∣ ∂f∂xi (y)

∣∣∣∣ ≤ C ∀y ∈ [0,
1

1− γ
]M ,∀i ∈ [M ] (11)

Proof. By Assumption 4, the partial derivative function is locally Lipschitz and thus is
continuous on the set [0, 1

1−γ ]M , which is compact. Since a continuous function with a
compact set is bounded, the result follows.

Further discussions on the assumptions are provided in Appendix J.

4. Policy Gradient Method for Joint Optimization

Policy gradient algorithm aims to update the parameter with the iteration

θk+1 = θk + η∇θf(Jπθk ) (12)

where η is the step size. However, it is impossible to compute the true gradient because
the transition dynamics is unknown in practice. Thus, an estimator for the true gradient
is necessary. From the Chain Rule, the gradient for the objective function is (the detailed
computation is in appendix B)

∇θf(Jπθ) = Eτ∼p(τ |θ)

[( ∞∑
t=0

∇θ log πθ(at|st)
)( M∑

m=1

∂f

∂Jπm

( ∞∑
t=0

γtrm(st, at)
))]

(13)

In this section, we firstly propose a biased estimator and bound the bias. The policy-
gradient algorithm is also formally described based on the estimator. Finally, we analyze
some properties of the objective function, which will be used in the proof of the main result.
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4.1 Proposed Estimator

The REINFORCE estimator of Eq. (13) for ∇θf(Jπθ) can be considered as a sampled
version of it, and it can be directly derived as

g(τi, τj=1:N2 |θ) =
∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm

)
·
( ∞∑
h=0

γhrm(sih, a
i
h)
))

(14)

where

Ĵπm =
1

N2

N2∑
j=1

∞∑
t=0

γtrm(sjt , a
j
t ) (15)

and N2 is the number of trajectories of τj that we need to sample to estimate ∂f
∂Jπm

. No-

tice that the trajectories τi = (si0, a
i
0, s

i
1, a

i
1, · · · ) and τj = (sj0, a

j
0, s

j
1, a

j
1, · · · ) are sampled

independently from the distribution p(τ |θ). However, notice that in general the proposed
estimator is not unbiased due to the concavity of the function f (See Lemma 10 in Appendix
D for detail). Moreover, the estimator in Eq. (14) is unachievable because it requires a sum
over infinite range of t. Thus, we define a truncated version of Eq. (14) as

g(τHi , τ
H
j=1:N2

|θ) =
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)
·
(H−1∑
h=0

γhrm(sih, a
i
h)
))

(16)

where

Ĵπm,H =
1

N2

N2∑
j=1

H−1∑
t=0

γtrm(sjt , a
j
t ) (17)

Notice that removing the past reward from the return doesn’t change the expectation value
(Peters & Schaal, 2008). Thus, we can rewrite Eq. (16) as a PGT estimator.

g(τHi , τ
H
j=1:N2

|θ) =

H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)
·
(H−1∑
h=t

γhrm(sih, a
i
h)
))

(18)

We provide a lemma of equivalence for completeness and the proof is in Appendix C.

Lemma 2. The expectation of PGT (18) and REINFORCE (16) are the same.

In the remaining part of this paper, we denote g(τHi , τ
H
j=1:N2

|θ) as g(τHi , τ
H
j |θ) for sim-

plicity. With this truncated estimator, the proposed algorithm is in Algorithm 1. In each
iteration of policy gradient ascent, N2 trajectories are sampled in line 3 and used to estimate
the value function for each agent. Line 4 samples another N1 trajectories independent of
N2 and uses Eq. (16) to calculate the gradient estimator. Line 5 and 6 perform one-step
gradient descent using the gradient estimator.
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Algorithm 1 Policy Gradient for Joint Optimization of Multi-Objective RL

1: Initialize θ0 and step size η = 1
4LJ

2: for episode k = 0, ...,K − 1 do
3: Sample N2 trajectories τj under policy θk of length H and compute Ĵπm,H by Eq.

(17).
4: Sample N1 trajectories τi under policy θk of length H and for each trajectory compute

the gradient estimator g(τHi , τ
H
j |θk) by Eq. (16)

5: Compute the gradient update direction ωk = 1
N1

∑N1
i=1 g(τHi , τ

H
j |θk)

6: Update the parameter θk+1 = θk + ηωk

7: end for

4.2 Bounding the Bias of the Truncated Estimator

To bound the bias of the proposed truncated estimator, we define three auxiliary functions.

g̃(τi, τj |θ) =

∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

)
·
( ∞∑
h=t

γhrm(sih, a
i
h)
))

(19)

g̃(τHi , τj |θ) =

H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

)
·
(H−1∑
h=t

γhrm(sih, a
i
h)
))

(20)

g̃(τHi , τ
H
j |θ) =

H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Jπm,H

)
·
(H−1∑
h=t

γhrm(sih, a
i
h)
))

(21)

where Jπm,H = E

[∑H−1
t=0 γtrm(st, at)

]
.

It should be noticed that Eq. (20) and (21) are different because the value function
used in the partial derivatives are truncated in (21) but not in (20). Moreover, Eq. (21)
and the proposed estimator in Eq. (16) are also different because (16) uses the empirical
value for trajectories τHj while Eq. (21) uses the expected value. We note that g̃(τi, τj |θ)
is an unbiased estimator for ∇θf(Jπθ). Thus, the bias of the truncated estimator Eq. (16)
can be decomposed as

E[g(τHi , τ
H
j |θ)]−∇θf(Jπθ) = E [g(τHi , τ

H
j |θ)− g̃(τHi , τ

H
j |θ)]︸ ︷︷ ︸

(I)

+ E [g̃(τHi , τ
H
j |θ)− g̃(τHi , τj |θ)]︸ ︷︷ ︸

(II)

+E [g̃(τHi , τj |θ)− g̃(τi, τj |θ)]︸ ︷︷ ︸
(III)

(22)

which means the bias includes three parts: (I) denotes the bias coming from the finite
samples of trajectories τj . (II) and (III) denote the bias due to the truncation of trajectories
τj and τi, respectively. In the following, we give three lemmas to bound each of them. The
detailed proofs are provided in Appendix E.
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Lemma 3. For any ε′ > 0 and p ∈ (0, 1), with probability at least 1 − p, if the number of
samples for τj satisfies,

N2 ≥
M(1− γH)2

2(1− γ)2ε′2
log(

2MH

p
) (23)

then for each trajectory τi, the first part of bias for the proposed truncated estimator, Eq.
(16), is bounded by

‖g(τHi , τ
H
j |θ)− g̃(τHi , τ

H
j |θ)‖ ≤MGLf

1− γH −HγH(1− γ)

(1− γ)2
ε′ (24)

Lemma 4. For each trajectory τi, the second part of bias for the proposed truncated esti-
mator, Eq. (16), is bounded by

‖g̃(τHi , τ
H
j |θ)− g̃(τHi , τj |θ)‖ ≤M3/2GLf

1− γH −HγH(1− γ)

(1− γ)3
γH (25)

Lemma 5. For each trajectory τi, the third part of bias for the proposed truncated estimator,
Eq. (16), is bounded by

‖g̃(τHi , τj |θ)− g̃(τi, τj |θ)‖ ≤MGC
γH(1 +H(1− γ))

(1− γ)2
(26)

Remark 4. Combining the Lemmas 3, 4, and 5, it is found that if the length of sampled
trajectories is long enough, the bias of the proposed estimator decays as O( 1√

N2
).

Further, note that the proposed estimator is asymptotically unbiased with respect to
N2 and H, as the bias reduces with increasing N2 and H.

4.3 Properties of the Objective Function

Similar to the truncated estimator, we define a truncated version for the objective function
as follows

f(JπθH ) = f(E[

H−1∑
t=0

γtr1(st, at)], · · · ,E[

H−1∑
t=0

γtrM (st, at)])

In this subsection, we will give some properties of f(Jπθ) and f(JπθH ). The detailed proofs
are provided in Appendix F. The following lemma shows the smoothness property for
f(Jπθ) and f(JπθH ).

Lemma 6. Both the objective function f(Jπθ) and the truncated version f(JπθH ) are LJ -
smooth w.r.t. θ, where

LJ =
MCB

(1− γ)2

It is reasonable to expect that the truncated objective function and the original one can
be arbitrary close when the length of horizon is long enough, and the next lemma bounds
the gap between original and truncated objective function.
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Lemma 7. The difference between the gradient of objective function and that of truncated
version is bounded by

‖∇θf(Jπθ)−∇θf(JπθH )‖ ≤ MGγH

(1− γ)2

[√
MLf

1− γH −HγH(1− γ)

1− γ
+C[1+H(1−γ)]

]
(27)

In order to introduce the following result, it is helpful to define the state visitation
measure

dπρ := (1− γ)Es0∼ρ

[ ∞∑
t=0

γtPrπ(st = s|s0)

]
(28)

where Prπ(st = s|s0) denotes the probability that st = s with policy π starting from s0. In
the theoretical analysis of policy gradient for standard reinforcement learning, one key result
is the performance difference lemma. In the multi-objective setting, a similar performance
lemma is derived as follows.

Lemma 8. The difference in the performance for any policies πθ and πθ′is bounded as
follows

(1− γ)[f(Jπθ)− f(Jπθ′ )] ≤
M∑
m=1

∂f(Jπθ′ )

∂J
πθ′
m

Es∼dπθρ Ea∼πθ(·|s)
[
A
πθ′
m (s, a)

]
(29)

where Aπm(s, a) = V π
m(s)−Qπm(s, a) is the advantage function.

5. Main Result

Before stating the convergence result for the policy gradient algorithm, we describe the
following assumptions which will be needed for the main result.

Assumption 5. The auxiliary estimator g̃(τHi , τ
H
j |θ) defined in Eq. (21) has bounded

variance. Formally,

V ar(g̃(τHi , τ
H
j |θ)) := E[‖g̃(τHi , τ

H
j |θ)−E[g̃(τHi , τ

H
j |θ)]‖2] ≤ σ2 (30)

for any θ and τHi , τ
H
j ∼ pH(·|θ), where pH(·|θ) is a truncated version of p(·|θ) defined in

Eq. (40).

Remark 5. In the standard reinforcement learning problem, it is common to assume that
variance of the estimator is bounded (Liu et al., 2020), (Xu et al., 2020a) and (Xu et al.,
2020b). Such assumption has been verified for Gaussian policy (Zhao, Hachiya, Niu, &
Sugiyama, 2011) and (Pirotta, Restelli, & Bascetta, 2013). By Lemma 1, it can be verified
similarly in the multi-objective setting.

Assumption 6. For all θ ∈ Rd, the Fisher information matrix induced by policy πθ and
initial state distribution ρ satisfies

Fρ(θ) = Es∼dπθρ Ea∼πθ [∇θ log πθ(a|s)∇θ log πθ(a|s)T ]

� µF · Id
(31)

for some constant µF > 0
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Remark 6. The positive definiteness assumption is standard in the field of policy gradient
based algorithms (Kakade, 2001; Peters & Schaal, 2008; Liu et al., 2020; Zhang et al.,
2020). A common example which satisfies such assumption is Gaussian policy with mean
parameterized linearly (See Appendix B.2 in (Liu et al., 2020)).

Assumption 7. Define the transferred function approximation error as below

Ldπ∗ρ ,π∗(ω
θ
∗, θ) = Es∼dπ∗ρ Ea∼π∗(·|s)

[(
∇θ log πθ(a|s) · (1− γ)ωθ∗ −

M∑
m=1

∂f(Jπθ)

∂Jπθm
Aπθm (s, a)

)2]
(32)

We assume that this error satisfies Ldπ∗ρ ,π∗(ω
θ
∗, θ) ≤ εbias for any θ ∈ Θ, where π∗ is the

optimal policy and ωθ∗ is given as

ωθ∗ = arg min
ω

Es∼dπθρ Ea∼πθ(·|s)

[
[∇θ log πθ(a|s) · (1− γ)ω −

M∑
m=1

∂f(Jπθ)

∂Jπθm
Aπθm (s, a)]2

]
(33)

It can be shown that ωθ∗ is the exact Natural Policy Gradient (NPG) update direction.

Remark 7. By Eq. (32) and (33), the transferred function approximation error expresses
an approximation error with distribution shifted to (dπ

∗
ρ , π

∗). With the softmax parameteri-
zation or linear MDP structure (Jin, Yang, Wang, & Jordan, 2020), it has been shown that
εbias = 0 (Agarwal et al., 2020). When parameterized by the restricted policy class, εbias > 0
due to πθ not containing all policies. However, for a rich neural network parameterization,
the εbias is small (Wang et al., 2020). Similar assumption has been adopted in (Liu et al.,
2020) and (Agarwal et al., 2020).

Remark 8. Due to there existing 7 assumption in the paper, we give a further discussion
on all assumptions in Appendix J

5.1 Global Convergence in Multi-Objective Setting

Inspired by the global convergence analysis framework for policy gradient in (Liu et al.,
2020), we present a general framework for convergence analysis of non-linear multi-objective
policy gradient in the following.

Lemma 9. (Generalization of Proposition 4.5 in (Liu et al., 2020)) Suppose a general
gradient ascent algorithm updates the parameter in the way

θk+1 = θk + ηωk (34)

When Assumptions 2 and 7 hold, we have

f(Jπ
∗
)− 1

K

K−1∑
k=0

f(Jπθk ) ≤
√
εbias

1− γ
+
G

K

K−1∑
k=0

‖(ωk − ωk∗ )‖2

+
Bη

2K

K−1∑
k=0

‖ωk‖2 +
1

ηK
Es∼dπ∗ρ [KL(π∗(·|s)‖πθ0(·|s))]

(35)

where ωk∗ := ωθ
k

∗ and is defined in Eq. (33)
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Proof. We generalize the Proposition 4.5 in (Liu et al., 2020) by using the Lemma 8 and
propose the framework of global convergence analysis in the joint optimization for multi-
objective setting. Thus, the framework proposed in the Proposition 4.5 in (Liu et al., 2020)
can be considered as a special case. The detailed proof is provided in Appendix G.

Now, we provide the main result of global convergence for the policy gradient algorithm
with multi-objective setting (with detailed proof in Appendix H).

Theorem 1. For any ε > 0, in the Policy Gradient Algorithm 1 with the proposed estimator
in Eq. (16), if step-size η = 1

4LJ
, the number of iteration K = O( M

(1−γ)2ε
), the length of each

trajectory H = O
(

log M
(1−γ)ε

)
, the number of samples N1 = O(σ

2

ε ) and N2 = O( M3

(1−γ)6ε
)

achieves the following bound

f(Jπ
∗
)− 1

K

K−1∑
k=0

f(Jπθk ) ≤
√
εbias

1− γ
+ ε (36)

In other words, policy gradient algorithm needs O
(

M4σ2

(1−γ)8ε4

)
trajectories.

6. Evaluations

6.1 Simulation Environment

To validate the understanding of our analysis, we perform evaluations using a queuing
environment with multiple objectives and a concave utility combining the objectives. The
environment is a server serving M queues with Poisson arrivals with different arrival rates.
The system state is M dimensional vector of the length of the M queues. The action at
each time is the queue which the server serves. At time t, each queue m achieves a reward
of 1 unit if a customer from this queue is served. The joint objective function is α-fairness
defined as:

f(
∑
t

r1,t, · · · ,
∑
t

rK,t) = −
∑M

m=1

H∑H
t=1 γ

t−1rm,t
, (37)

where H is the length of the episode set to 500 steps.
For our queuing environment, we consider a server serving customers coming from M

queues. Each queue follows Poisson arrivals with different arrival rates given in Table 2.
The server has access to the length of the queues. On observing the length of the queue,
the server selects a queue to process. If the a customer from a queue is served, the queue
gets a reward of 1 unit.

M λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

2 0.16 0.64 − − − − − −
4 0.08 0.16 0.24 0.32 − − − −
8 0.0125 0.0375 0.0625 0.0875 0.1125 0.1375 0.1625 0.1875

Table 2: Arrival rates of the multiple queues for Queuing system environment
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6.2 Simulation Setup

We use softmax parameterization for implementing our policies. Further, we use PyTorch
version 1.0.1 to implement the policies and perform gradient ascent. The experiments are
run on a machine with Intel i9 processor with 36 logical cores running at 3.00 GHz each. The
machines are equipped with Nvidia GeForce RTX 2080 GPU. Each of the 10 independent
runs for both environment took about 500 seconds to finish. For the gradient ascent of
objective, we used PyTorch’s Adam (Kingma & Ba, 2015) optimization with learning rate
of 0.005. Finally, we use the value of γ to be 0.9999.

6.3 Simulation Results

We study the impact of the number of trajectories used for gradient estimation. We keep
the number of trajectories N1 = N2 = N and vary N from 4, 16, 64, and 256. We also vary
the number of objectives M as 2, 4, and 8. We observe the convergence rates for a softmax
policy parameterization. We also compare our algorithm with a policy gradient algorithm
which trains the actor using reward function rtrain(t) at each time t defined as,

rtrain(t) = −
M∑
m=1

t∑t
τ=1 γ

τ−1rk,τ
. (38)

To implement the policy gradient, we use the REINFORCE algorithm (Williams, 1992).
We plot the behavior of the policy gradient for joint optimization for different values

of N in Figure 1. We run 10 independent iterations and plot the mean in solid lines and
the shaded region is ± standard deviation. In Figure 1, for all values of M , we find that
increasing N , the number of trajectories used for sampling gradient of the function, leads
to faster convergence of the joint reward objective. We note that the objective value are in
different scales, and hence we cannot directly compare the objective values for different M .

For M = 2 (Figure 1(a)), we note that the performance of N = 256, 64, and N = 16 are
almost similar; but as compared to N = 4, the performance is significantly better. When
M is increased to 4 (in Figure 1(b)), we observe that N = 256 and N = 64 are similar
and N = 256 performs only marginally better as compared to N = 64. However, now
N = 16 does not perform as well as N = 256 and N = 64 but the algorithm is still able
to converge to the optimal policy with N = 16. Finally, for M = 8, we note that N = 256
again performs better than N = 64 and N = 16 with a lesser variance in the performance.
However, for M = 8, the algorithm with N = 16 is not able to converge to the optimal
policy. We infer that for joint optimization of multiple objectives, it is necessary to increase
the number of trajectories as the number of objectives increase.

We now compare the performance of our proposed algorithm with the REINFORCE al-
gorithm. We present the results in Figure 2, where we compare the REINFORCE algorithm
with varying values for N to compute gradient estimate. We note that the REINFORCE
algorithm does not learn a policy which maximizes the objective because the reward at
each time step does not provide correct gradient estimate. The performance of the REIN-
FORCE gradient estimate improves with increase in the number of trajectories N , but for
same number of trajectories, the proposed Algorithm 1 performs significantly better. Based
on the comparisons, we infer that using the proposed gradient estimator enables learning
optimal policy which maximizes the function f .
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(a) M = 2 (b) M = 4

(c) M = 8

Figure 1: Convergence plots for the joint objective policy gradient algorithms for increasing
number of queues M . As the number of trajectories N used for sampling gradient
of the function increase, the convergence becomes steeper. Further, as the number
of queues M increase, number of trajectories N is also required to increase to
achieve similar performance of levels.
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(a) M = 2 (b) M = 4

(c) M = 8

Figure 2: Comparison plots for the joint objective policy gradient algorithms and the RE-
INFORCE algorithm for increasing number of queues M and varied number of
samples N to compute gradient estimates. The REINFORCE algorithm is able
to learn policies which improves the function value, but it does not achieves the
policies as good as policies which our algorithm learns.
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7. Conclusion

In this paper, we formulate a problem which optimizes a general concave function of mul-
tiple objectives. We propose a policy-gradient based approach for the problem, where an
estimator for the gradient is used. We analyze the bias of the policy gradient estimator
and show the global convergence result with a vanilla policy gradient algorithm. However,
there are several limitations in the paper. Firstly, the local Lipschitz assumption for partial
derivative of f is a bit strong. Secondly, the convergence rates w.r.t the number of objec-
tive is O(M4), while a model-based algorithm (Agarwal et al., 2022) can achieve O(M2).
Further, extension of the proposed approach to evaluate the convergence rate guarantees
of the Natural Policy Gradient and the variance reduced algorithms is an important fu-
ture direction to reduce the sample complexity. Finally, the analysis of concave function
of objectives with constraints is open for parametrized model-free setup, while has been
studied for model-based setup (Agarwal, Bai, & Aggarwal, 2021), for model-free tabular
setup (Bai, Bedi, Agarwal, Koppel, & Aggarwal, 2021), and for parametrized model-free
setup with linear function of objectives (Bai, Bedi, Agarwal, Koppel, & Aggarwal, 2022).
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Appendix A. Symbol Summary

Symbol Definition Reference

S,A State and Action space Section 3

P transition dynamics Section 3

rm reward function for mth objective Section 3

M Number of objectives Section 3

γ discounted factor Section 3

ρ distribution for initial state Section 3

Jπm Expected value function for mth objective Eq. (4)

V π
m(s) State value function for mth objective Eq. (5)

Qπm(s, a) State-action value function for mth objective Eq. (5)

Aπm(s, a) Advantage function for mth objective Lemma 8

G Lipschitz constant for log-likelihood function Assumption 2

B smooth constant for log-likelihood function Assumption 2

Lf Lipschitz constant for partial derivatives of function f Assumption 4

C Bound on partial derivatives of function f Lemma 1

H truncation on proposed estimator Section 4

LJ smooth constant for objective function Lemma 6

σ2 bound on variance of auxiliary estimator Assumption 5

µF positive definitive constant for Fisher information matrix Assumption 6

εbias bias of transferred function approximation error Assumption 7

η learning rate of policy gradient Algorithm 1

N1, N2 Number of samples for estimator Algorithm 1

K number of iterations of policy gradient Algorithm 1

Table 3: Overview of symbols defined in the paper

Appendix B. Computation of the Gradient of Objective

∇θf(Jπθ) =
M∑
m=1

∂f(Jπθ)

∂Jπθm
∇θJπθm (39)

Define τ = (s0, a1, s1, a1, s2, a2 · · · ) as a trajectory, whose distribution induced by policy πθ
is p(τ |θ) that can be expressed as

p(τ |θ) = ρ(s0)
∞∏
t=0

πθ(at|st)P (st+1|st, at) (40)

Define Rm(τ) =
∑∞

t=0 γ
trm(st, at) as the cumulative reward for mth objective following the

trajectory τ . Then, the expected return Jπm(θ) can also be expressed as

Jπθm = Eτ∼p(τ |θ)[Rm(τ)]
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and the gradient can be calculated as

∇θJπm(θ) =

∫
τ
Rm(τ)p(τ |θ)dτ =

∫
τ
Rm(τ)

∇θp(τ |θ)
p(τ |θ)

p(τ |θ)dτ

= Eτ∼p(τ |θ)
[
∇θ log p(τ |θ)Rm(τ)

]
Notice that ∇θ log p(τ |θ) is independent of the transition dynamics and thus

∇θf(Jπθ) = Eτ∼p(τ |θ)

[( ∞∑
t=0

∇θ log πθ(at|st)
)( M∑

m=1

∂f

∂Jπm

( ∞∑
t=0

γtrm(st, at)
))]

(41)

Appendix C. Proof of Equivalence between PGT and REINFORCE
Estimator in Lemma 2

Proof. Notice that the difference between PGT and REINFORCE can be expressed as below

H∑
t=0

∇θ log(πθ(a
i
t|sit))

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)( t−1∑
h=0

γhrm(sih, a
i
h)
))

(42)

Thus, it is sufficient to show the expectation of above equation is 0. Divide the trajectory
τi into two parts τi,1 = (si0, a

i
0, · · · , sit−1, a

i
t−1) and τi,2 = (sit, a

i
t, · · · ). Then,

Eτi,τj∼p(τ |θ)

[ H∑
t=0

∇θ log(πθ(a
i
t|sit))

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)( t−1∑
h=0

γhrm(sih, a
i
h)
))]

=
H∑
t=0

Eτi,1

{
Eτi,2

[
∇θ log(πθ(a

i
t|sit))

( M∑
m=1

Eτj

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)( t−1∑
h=0

γhrm(sih, a
i
h)
))]∣∣∣∣τi,1}

=
H∑
t=0

Eτi,1

{
Eτi,2

[
∇θ log(πθ(a

i
t|sit))

]( M∑
m=1

Eτj

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)( t−1∑
h=0

γhrm(sih, a
i
h)
))∣∣∣∣τi,1}

=
H∑
t=0

Eτi,1

{
0 ·
( M∑
m=1

Eτj

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

)( t−1∑
h=0

γhrm(sih, a
i
h)
))∣∣∣∣τi,1} = 0

(43)
where the first step holds because τi, τj are dependent and the law of total expectation.
The second equality holds because the summation of reward is a constant conditioned on
τi,1. The last step is true because

Eτi,2

[
∇θ log(πθ(a

i
t|sit))

]
= Esit

[ ∫
A
∇θ log(πθ(a

i
t|sit))πθ(ait|sit)da

]
(44)

= Esit

[ ∫
A
∇θπθ(ait|sit)da

]
= Esit

[∇θ1] = 0 (45)
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Appendix D. Proof for the Bias of Estimator in Eq. (14)

Lemma 10. In general, the proposed estimator, Eq. (14), is biased w.r.t. ∇θf(Jπθ). The
only exception is when the partial derivatives ∂f

∂Jπm
are linear w.r.t. each variable Jπn for all

m,n ∈ [M ].

Proof. By the law of total expectation

Eτi,τj=1:N2
[g(τi|θ)] = Eτi,τj=1:N2

[ ∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm

)( ∞∑
h=t

γhrm(sih, a
i
h)
))]

= Eτi

{
Eτj=1:N2

[ ∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm

)( ∞∑
h=t

γhrm(sih, a
i
h)
))]∣∣∣∣τi}

= Eτi

{ ∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

Eτj=1:N2

[
∂f

∂Jπm

∣∣∣∣
Jπm=Ĵπm

]( ∞∑
h=t

γhrm(sih, a
i
h)
))∣∣∣∣τi}

(∗)
6= Eτi

{ ∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sih, a
i
h)
))}

= ∇θf(Jπ1 (s), Jπ2 (s), · · · , JπM (s))
(46)

Notice that the key step (*) holds because

Eτj=1:N2

[
∂f

∂Jπm

∣∣∣∣
Jπm=Ĵπm

]
= Eτj=1:N2

[
∂f

∂Jπm
(

1

N2

N2∑
j=1

∞∑
t=0

γtr1(sjt , a
j
t ), · · · ,

1

N2

N2∑
j=1

∞∑
t=0

γtrM (sjt , a
j
t ))

]

6= ∂f

∂Jπm
(Eτj=1:N2

[
1

N2

N2∑
j=1

∞∑
t=0

γtr1(sjt , a
j
t )

]
, · · · ,Eτj=1:N2

[
1

N2

N2∑
j=1

∞∑
t=0

γtrM (sjt , a
j
t )

]
)

=
∂f

∂Jπm
(Jπ1 , · · · , JπM )

(47)
Eq. 39 cannot hold with an equality except when the partial derivatives are linear. However,
this doesn’t hold for any general concave function.
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Appendix E. Bounding the Bias for the Proposed Estimator

E.1 Proof for Lemma 3

Proof. By the triangle inequality, Assumptions 1 and 2, we have

‖g(τHi , τ
H
j |θ)− g̃(τHi , τ

H
j |θ)‖ =

∥∥∥∥H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

− ∂f

∂Jπm

∣∣∣∣
Jπm=Jπm,H

)
(H−1∑
h=t

γhrm(sih, a
i
h)
))∥∥∥∥

≤ G

1− γ

∣∣∣∣H−1∑
t=0

(γt − γH)

( M∑
m=1

( ∂f
∂Jπm

∣∣∣∣
Jπm=Ĵπm,H

− ∂f

∂Jπm

∣∣∣∣
Jπm=Jπm,H

))∣∣∣∣
≤ G1− γH −HγH(1− γ)

(1− γ)2

M∑
m=1

∣∣∣∣∂f(Ĵπm,H)

∂Jπm
−
∂f(Jπm,H)

∂Jπm

∣∣∣∣
≤ GMLf

1− γH −HγH(1− γ)

(1− γ)2
‖ĴπH − JπH‖

(48)

where the last step follows from Assumption 4. Moreover, an entry in the difference ĴπH−JπH
can be bounded as

|Ĵπm,H − Jπm,H | =
∣∣∣∣ 1

N2

N2∑
j=1

H−1∑
t=0

γtrm(st, at)−E
[H−1∑
t=0

γtrm(st, at)
]∣∣∣∣

≤
H−1∑
t=0

γt
∣∣∣∣ 1

N2

N2∑
j=1

rm(st, at)−E[rm(st, at)]

∣∣∣∣
(49)

By Hoeffding Lemma, if we have N2 ≥ M(1−γH)2

2(1−γ)2ε′2 log(2MH
p ), then

P

(∣∣∣∣ 1

N2

N2∑
j=1

rm(st, at)−E[rm(st, at)]

∣∣∣∣ ≥ (1− γ)ε′

(1− γH)
√
M

)
≤ 2 exp(−

2N2
2

(1−γ)2ε′2

(1−γH)2M∑N2
j=1(1− 0)2

) ≤ p

MH

(50)

Finally, by using an union bound, with probability at least 1− p, we have

∣∣∣∣ 1

N2

N2∑
j=1

rm(st, at)−E[rm(st, at)]

∣∣∣∣ ≤ (1− γ)ε′

(1− γH)
√
M

∀m ∈ [M ],∀t ∈ [0, H − 1] (51)

Substituting Eq. (51) back into (49), we have |Ĵπm,H −Jπm,H | ≤
ε′√
M

and thus ‖JπH − ĴπH‖2 ≤
ε′, which gives the result in the statement of the Lemma.
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E.2 Proof for Lemma 4

Proof. Similar to Eq. (48), we have

‖g̃(τHi , τ
H
j |θ)− g̃(τHi , τj |θ)‖ ≤ GMLf

1− γH −HγH(1− γ)

(1− γ)2
‖JπH − Jπ‖ (52)

By triangle inequality, the element of JπH − Jπ can be bounded by

|Jπm,H − Jπm| ≤
∣∣∣∣E[ ∞∑

t=0

γtrm(st, at)
]
−E

[H−1∑
t=0

γtrm(st, at)
]∣∣∣∣

≤
∞∑
t=H

γt
∣∣∣∣E[rm(st, at)]

∣∣∣∣ ≤ γH

1− γ

(53)

where the last step holds by Assumption 1. Substituting Eq (53) back into (52) gives the
result in the statement of the Lemma.

E.3 Proof for Lemma 5

Proof. By the triangle inequality,

‖g̃(τHi , τj |θ)− g(τi, τj |θ)‖

= ‖
∞∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sih, a
i
h)
))

−
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sih, a
i
h)
))

+
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sih, a
i
h)
))

−
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

(H−1∑
h=t

γhrm(sih, a
i
h)
))
‖

≤ ‖
∞∑
t=H

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sih, a
i
h)
))
‖

+ ‖
H−1∑
t=0

∇θ log πθ(a
i
t|sit)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=H

γhrm(sih, a
i
h)
))
‖

≤ MGCγH

(1− γ)2
+
MGCHγH

(1− γ)
= MGC

γH(1 +H(1− γ))

(1− γ)2

where the last inequality holds by Lemma 1 and Assumption 2.
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Appendix F. Proof for Properties of the Objective Function

F.1 Proof for Lemma 6

Proof. In order to show the smoothness, it is sufficient to bound ‖∇2
θf(Jπθ)‖ and ‖∇2

θf(JπθH )‖.
By Eq. (13), we have

‖∇2
θf(Jπθ)‖ = ‖Eτ∼p(τ |θ)

[ ∞∑
t=0

∇2
θ log πθ(at|st)

( M∑
m=1

∂f

∂Jπm

( ∞∑
h=t

γhrm(sh, ah)
))]
‖

≤ MC

(1− γ)

∞∑
t=0

γt‖∇2
θ log πθ(at|st)‖ ≤

MCB

(1− γ)2

(54)

where the last inequality holds by the Assumption 2. The smoothness property for the
truncated version f(JπθH ) can be proved similarly.

F.2 Proof for Lemma 7

Proof. Notice that g̃(τi, τj |θ) is an unbiased estimator for ∇θf(Jπθ). Moreover, g̃(τHi , τ
H
j )

is an unbiased estimator for ∇θf(JπθH ). Thus,

‖∇θf(Jπθ)−∇θf(JπθH )‖ (a)
= ‖E[g̃(τi, τj |θ)− g̃(τHi , τ

H
j |θ)]‖ ≤ E‖g̃(τi, τj |θ)− g̃(τHi , τ

H
j |θ)‖

(b)

≤ E‖g̃(τi, τj |θ)− g̃(τHi , τj |θ)‖+ E‖g̃(τHi , τj |θ)− g̃(τHi , τ
H
j |θ)‖

(c)

≤ M3/2GLf
1− γH −HγH(1− γ)

(1− γ)3
γH +MGC

γH [1 +H(1− γ)]

(1− γ)2

(55)

where the step (a) and (b) hold by the triangle inequality. Step (c) holds by the Lemma 4
and 5

F.3 Proof for Lemma 8

Proof. By the concavity of the function f , we have

f(Jπθ) ≤ f(Jπθ′ ) +∇Jπθ′ f(Jπθ′ )T (Jπθ − Jπθ′ )

= f(Jπθ′ ) +

M∑
m=1

∂f(Jπθ′ )

∂J
πθ′
m

(Jπθm − J
πθ′
m )

= f(Jπθ′ ) +

M∑
m=1

∂f(Jπθ′ )

∂J
πθ′
m

1

1− γ
Es∼dπθρ Ea∼πθ(·|s)

[
A
πθ′
m (s, a)

] (56)

where the last step comes from the policy gradient theorem (Sutton et al., 2000) for the
standard reinforcement learning. Finally, we get the desired result by rearranging terms.
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Appendix G. Proof of Lemma 9

Proof. Starting with the definition of KL divergence,

Es∼dπ∗ρ [KL(π∗(·|s)‖πθk(·|s))−KL(π∗(·|s)‖πθk+1(·|s))]

=Es∼dπ∗ρ Ea∼π∗(·|s)

[
log

πθk+1(a|s)

πθk(a|s)

]
(a)

≥Es∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (θk+1 − θk)]− B

2
‖θk+1 − θk‖2

=ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ωk]− Bη2

2
‖ωk‖2

=ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ωk∗ ] + ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ωk∗ )]−
Bη2

2
‖ωk‖2

=η[f(Jπ
∗
)− f(Jπθk )] + ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · ωk∗ ]− η[f(Jπ

∗
)− f(Jπθk )]

+ ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ωk∗ )]−
Bη2

2
‖ωk‖2

(b)
=η[f(Jπ

∗
)− f(Jπθk )] +

η

1− γ
Es∼dπ∗ρ Ea∼π∗(·|s)

[
∇θ log πθk(a|s) · (1− γ)ωk∗ −

B∑
m=1

∂f(Jπθk )

∂J
π
θk

m

A
π
θk
m (s, a)

]
+ ηEs∼dπ∗ρ Ea∼π∗(·|s)[∇θ log πθk(a|s) · (ωk − ωk∗ )]−

Bη2

2
‖ωk‖2

(c)

≥η[f(Jπ
∗
)− f(Jπθk )]

− η

1− γ

√√√√Es∼dπ∗ρ Ea∼π∗(·|s)

[(
∇θ log πθk(a|s) · (1− γ)ωk∗ −

B∑
m=1

∂f(Jπθk )

∂J
π
θk

m

A
π
θk
m (s, a)

)2]

− ηEs∼dπ∗ρ Ea∼π∗(·|s)‖∇θ log πθk(a|s)‖2‖(ωk − ωk∗ )‖ −
Bη2

2
‖ωk‖2

(d)

≥η[f(Jπ
∗
)− f(Jπθk )]−

η
√
εbias

1− γ
− ηG‖(ωk − ωk∗ )‖ −

Bη2

2
‖ωk‖2

(57)
where the step (a) holds by Assumption 2 and step (b) holds by Lemma 8. Step (c) uses
the convexity of the function f(x) = x2. Finally, step (d) comes from the Assumption 7.
Rearranging items, we have

f(Jπ
∗
)− f(Jπθk ) ≤

√
εbias

1− γ
+G‖(ωk − ωk∗ )‖+

Bη

2
‖ωk‖2

+
1

η
Es∼dπ∗ρ [KL(π∗(·|s)‖πθk(·|s))−KL(π∗(·|s)‖πθk+1(·|s))]

(58)

Summing from k = 0 to K − 1 and dividing by K, we get the desired result.

Appendix H. Proof for Theorem 1

In this part, we prove the Theorem 1 by bounding the three terms on the right hand side
of Eq. (35). These terms are: the difference between the update direction G

K

∑K−1
k=0 ‖(ωk −
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ωk∗ )‖, norm of estimated gradient Mη
2K

∑K−1
k=0 ‖ωk‖2, and the term about KL divergence

1
ηKEs∼dπ∗ρ [KL(π∗(·|s)‖πθ0(·|s))]

H.1 Bounding the Difference Between the Update Directions

Recall the estimated policy gradient update direction is

ωk =
1

N1

N1∑
i=1

g(τHi , τ
H
j |θ) (59)

and the true natural policy gradient update direction is

ωk∗ = Fρ(θk)
†∇θf(Jπθ) (60)

We define an auxiliary update direction as

ω̃k =
1

N1

N1∑
i=1

g̃(τHi , τ
H
j |θ) (61)

Thus, we can decompose the difference as(
1

K

K−1∑
k=0

E‖ωk − ωk∗‖
)2

≤ 1

K

K−1∑
k=0

(
E‖ωk − ωk∗‖

)2

≤ 1

K

K−1∑
k=0

E

[
‖ωk − ωk∗‖2

]

=
1

K

K−1∑
k=0

E

[
‖(ωk − ω̃k) + (ω̃k −∇θf(JπθH )) + (∇θf(JπθH )−∇θf(Jπθ)) + (∇θf(Jπθ)− Fρ(θk)†∇θf(Jπθ))‖2

]

≤ 4

K

K−1∑
k=0

E

[
‖ωk − ω̃k‖2

]
+

4

K

K−1∑
k=0

E

[
‖ω̃k −∇θf(JπθH )‖2

]
+

4

K

K−1∑
k=0

E

[
‖∇θf(Jπθ)−∇θf(JπθH )‖2

]

+
4

K

K−1∑
k=0

E

[
‖∇θf(Jπθ)− Fρ(θk)†∇θf(Jπθ)‖2

]
(62)

The different terms in the above are bounded as follows:

• Bounding E

[
‖ωk − ω̃k‖2

]
: By Lemma 3, with N2 large enough, for any τi and θ, we

have

‖g(τHi |θ)− g̃(τHi |θ)‖ ≤MGLf
1− γH −HγH(1− γ)

(1− γ)2
ε′ (63)

Thus,

‖ωk − ω̃k‖ = ‖ 1

N1

N1∑
i=1

(g(τHi |θk)− g̃(τHi |θk))‖ ≤
1

N1

N1∑
i=1

‖(g(τHi |θk)− g̃(τHi |θk))‖

≤MGLf
1− γH −HγH(1− γ)

(1− γ)2
ε′ ≤

MGLf
(1− γ)2

ε′

(64)
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Thus,

E

[
‖ωk − ω̃k‖2

]
≤
M2G2L2

f

(1− γ)4
ε′2 (65)

• Bounding E

[
‖ω̃k − ∇θf(JπθH )‖2

]
: Notice that g̃(τH |θ) is an unbiased estimator for

∇θf(JπθH ) and thus by Assumption 5, we have E

[
‖ωk − ω̃k‖2

]
≤ σ2

N1

• Bounding E

[
‖∇θf(Jπθ)−∇θf(JπθH )‖2

]
: By Lemma 7, we have

E

[
‖∇θf(Jπθ)−∇θf(JπθH )‖2

]
≤ M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2

(66)

• Bounding E

[
‖∇θf(Jπθ)− Fρ(θk)†∇θf(Jπθ)‖2

]
: By Assumption 6, we have

E

[
‖∇θf(Jπθ)− Fρ(θk)†∇θf(Jπθ)‖2

]
≤ (1 +

1

µF
)2E[‖∇θf(Jπk)‖2]

≤ (1 +
1

µF
)2

(
2E[‖∇θf(JπkH )‖2] + 2E[‖∇θf(Jπk)−∇θf(JπkH )‖2]

)
≤ (1 +

1

µF
)2

(
2E[‖∇θf(Jπk)] +

2M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2) (67)

Finally, we obtain the bound(
1

K

K−1∑
k=0

E‖ωk − ωk∗‖
)2

≤ 4
M2G2L2

f

(1− γ)4
ε′2 + 4

σ2

N1
+ 4

M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2

+ 4(1 +
1

µF
)2

(
2

K

K−1∑
k=0

E[‖∇θf(Jπk)] +
2M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2)
(a)
= (1 + 2(1 +

1

µF
)2)4

M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2

+ 4
M2G2L2

f

(1− γ)4
ε′2 + 4

σ2

N1

+ 8(1 +
1

µF
)2

E[f(JH(θK))−f(JH(θ0))]
K + (η + 2LJη

2)[
M2G2L2

f

(1−γ)4
ε′2 + σ2

N1
]

η
2 − LJη2

= (1 + 2(1 +
1

µF
)2)4

M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2

+ (1 + 6(1 +
1

µF
)2)4

M2G2L2
f

(1− γ)4
ε′2

+ (1 + 6(1 +
1

µF
)2)4

σ2

N1
+ 128(1 +

1

µF
)2LJ

E[f(JH(θK))− f(JH(θ0))]

K
(68)

where the step (a) requires the first-order stationary property Eq. (88) and it is proved in
the Lemma 11 in the Appendix I. Given the fixed ε, choose the value for H, ε′, N1,K as
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follows,

1

4

(
ε2

3G2

)
≥ (1 + 2(1 +

1

µF
)2)

4M2G2γ2H

(1− γ)4

[√
MLf + C[1 +H(1− γ)]

]2

(69)

ε′2 ≤ 1

4(1 + 6(1 + 1
µF

)2)

(1− γ)4

M2G2L2
f

· 1

4

(
ε2

3G2

)
(70)

N1 ≥
(1 + 6(1 + 1

µF
)2)4σ2

1
4

(
ε2

3G2

) (71)

K ≥
128(1 + 1

µF
)2LJE[f(JH(θK))− f(JH(θ0))]

1
4

(
ε2

3G2

) (72)

then we have

G

K

K−1∑
k=0

E[‖ωk − ωk∗ ]‖ ≤
ε

3
(73)

Given the choice of H,N1, ε
′,K, the dependence of N1, N2,K and H on σ, ε, 1 − γ are as

follows.

N1 = O(
σ2

ε2
) N2 = O(

M3

(1− γ)6ε2
) K = O(

M

(1− γ)2ε2
) H = O(log

M

(1− γ)ε
) (74)

H.2 Bounding the Norm of Estimated Gradient

Bη

2K

K−1∑
k=0

‖ωk‖2 ≤ Bη

2

[
3

K

K−1∑
k=0

‖ωk − ω̃k‖2 +
3

K

K−1∑
k=0

‖ω̃k −∇θf(JπθH )‖2 +
3

K

K−1∑
k=0

‖∇θf(JπθH ))‖2
]

≤ Bη

2

[
3
M2G2L2

f

(1− γ)4
ε′2 + 3

σ2

N1
+ 3

E[f(JH(θK))−f(JH(θ0))]
K + (η + 2LJη

2)[
M2G2L2

f

(1−γ)4
ε′2 + σ2

N1
]

η
2 − LJη2

]
= Bη

[
6
M2G2L2

f

(1− γ)4
ε′2 + 6

σ2

N1
+ 24LJ

E[f(JH(θK))− f(JH(θ0))]

K

]
(75)

Given the fixed ε, choose the value for ε′, N1,K as follows,

ε′2 ≤ (1− γ)4

M2G2L2
f

· 1

6Bη

(
ε

9

)
(76)

N1 ≥
54σ2

ε
(77)

K ≥ 216LJE[f(JH(θK))− f(JH(θ0))]

ε
(78)
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then we have

1

K

K−1∑
k=0

E[‖ωk]‖2 ≤ ε

3
(79)

Given the choice of ε′, N1,K, the dependence of N1, N2,K and H on σ, ε, 1−γ are as follows.

N1 = O(
σ2

ε
) N2 = O(

M3

(1− γ)6ε
) K = O(

M

(1− γ)2ε
) H = O(log

M

(1− γ)ε
) (80)

H.3 Bounding the KL Divergence

It is obvious if we choose

K ≥
3Es∼dπ∗ρ [KL(π∗(·|s)‖πθ0)]

ηε(·|s)
(81)

then

1

ηK
Es∼dπ∗ρ [KL(π∗(·|s)‖πθ0)] ≤ ε

3
(82)

In other word, the dependence of K on ε is

K = O(
B

ε
) (83)

Appendix I. First Order Stationary Result for Policy Gradient

Lemma 11. The policy gradient algorithm can achieve first-order stationary. More for-
mally, if we choose the step size η = 1

4LJ
and

N1 = O(
σ2

ε
) N2 = O(

M3

(1− γ)6ε
) K = O(

M

(1− γ)2ε
) (84)

then,

1

K

K−1∑
k=0

E[‖∇θf(JH(θk))‖2] ≤ ε (85)

1592



Joint Optimization of Concave Scalarized Multi-Objective Reinforcement Learning

Proof. Recall the definition of ωk and ω̃k in Eq. (59) and (61), respectively. By Lemma 6,
we have

f(JH(θk+1)) ≥ f(JH(θk)) +
〈
∇θf(JH(θk)), θk+1 − θk

〉
− LJ

2
‖θk+1 − θk‖2

= f(JH(θk)) + η
〈
∇θf(JH(θk)), ωk

〉
− LJη

2

2
‖ωk‖2

(a)
= f(JH(θk)) + η

〈
∇θf(JH(θk)), ωk −∇θf(JH(θk)) +∇θf(JH(θk))

〉
− LJη

2

2
‖ωk −∇θf(JH(θk)) +∇θf(JH(θk))‖2

(b)

≥ f(JH(θk)) + η‖∇θf(JH(θk))‖2 − η|
〈
∇θf(JH(θk)), ωk −∇θf(JH(θk))

〉
|

− LJη2

(
‖ωk −∇θf(JH(θk))‖2 + ‖∇θf(JH(θk))‖2

)
≥ f(JH(θk)) + η‖∇θf(JH(θk))‖2 − η

2
‖∇θf(JH(θk))‖2 − η

2
‖ωk −∇θf(JH(θk))‖2

− LJη2

(
‖ωk −∇θf(JH(θk))‖2 + ‖∇θf(JH(θk))‖2

)
= f(JH(θk)) + (

η

2
− LJη2)‖∇θf(JH(θk))‖2 − (

η

2
+ LJη

2)‖ωk −∇θf(JH(θk))‖2

(c)

≥ f(JH(θk)) + (
η

2
− LJη2)‖∇θf(JH(θk))‖2 − (η + 2LJη

2)‖ωk − ω̃k‖2

− (η + 2LJη
2)‖ω̃k −∇θf(JH(θk))‖2

(d)

≥ f(JH(θk)) + (
η

2
− LJη2)‖∇θf(JH(θk))‖2 − (η + 2LJη

2)
M2G2L2

f

(1− γ)4
ε′2

− (η + 2LJη
2)‖ω̃k −∇θf(JH(θk))‖2

(86)

where the step (a) holds by θk+1 = θk + ηωk. Step (b) and (c) holds by Cauchy-Schwarz
Inequality. Step (d) holds by Lemma 3. Then, take expectation with respect to the trajec-
tories τi, τj (Recall that θk, θk+1 is a function of τi, τj), we have

E[f(JH(θk+1))] ≥ E[f(JH(θk))] + (
η

2
− LJη2)E[‖∇θf(JH(θk))‖2]− (η + 2LJη

2)
M2G2L2

f

(1− γ)4
ε′2

− (η + 2LJη
2)E[‖g̃k −∇θf(JH(θk))‖2]

≥ E[f(JH(θk))] + (
η

2
− LJη2)E[‖∇θf(JH(θk))‖2]− (η + 2LJη

2)
M2G2L2

f

(1− γ)4
ε′2

− (η + 2LJη
2)
σ2

N1

(87)
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where the last step holds by Assumption 5. Notice that in Eq. (87), E[f(JH(θk+1))] and
E[f(JH(θk))] give a recursive form. Thus, telescoping from k = 0 to k = K − 1, we have

E[f(JH(θK))− f(JH(θ0))]

K
≥ (

η

2
−LJη2)

1

K

K−1∑
k=0

E[‖∇θf(JH(θk))‖2]−(η+2LJη
2)[
M2G2L2

f

(1− γ)4
ε′2+

σ2

N1
]

(88)
and thus

1

K

K−1∑
k=0

E[‖∇θf(JH(θk))‖2] ≤
E[f(JH(θK))−f(JH(θ0))]

K + (η + 2LJη
2)[

M2G2L2
f

(1−γ)4
ε′2 + σ2

N1
]

η
2 − LJη2

(89)

Taking η = 1
4LJ

and letting N1 = 18σ2

ε , K = 48LJE[‖∇θf(JH(θK))−∇θf(JH(θ0))‖2]
ε and ε′ =

(1−γ)2

MGLf

√
ε
6 , we have

1

K

K−1∑
k=0

E[‖∇θf(JH(θk))‖2] ≤ ε (90)

Recalling the definition of N2 in the statement of Lemma 3, we have

N2 =
6M3G2L2

f (1− γH)2

(1− γ)6ε
log(

2MH

p
) (91)

Also, by the definition of LJ in the lemma 6

K =
48MCB

(1− γ)2ε
E[‖∇θf(JH(θk))‖2] (92)

Appendix J. Further Discussion on all Asumptions

• Assumption 1 is related to the bound for reward and it can always be satisfied by
scalarization or shifting.

• Assumptions 3 and 4 are about the function class. They require a concave function
with local-Lipschitz partial derivatives. As we discussed in the limitation, many func-
tion with regularization such as log(x),−x2,

√
x, sin(x) will satisfy these conditions.

• The remaining 4 assumptions limit the policy parameterization

– We would like to say assumption 5 can be implied by assumption 2. This is
because g̃(τHi , τ

H
j |θ) is bounded under assumption 2 and thus the variance is

also bounded.

– The property that the likelihood is smooth and the gradient of it is bounded
can be satisfied by Gaussian policy (Appendix C in (Papini et al., 2018)) and
log-linear policy class (Remark 6.7 in (Agarwal et al., 2020)).
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– The positive definite property of Fisher matrix can also be satisfied by Gaussian
Policy (Appendix B.2 in (Liu et al., 2020)) and log-linear policy class (Assump-
tion 6.5 part 3 in (Agarwal et al., 2020)).

– For the last assumption, the intuition for εbias = 0 is that the difference between
Eq. 31 and 32 is only the distribution of state and action. What we want here is
that Eq. 31 is equal to 0 for any distribution. Using any policy parameterizations
with θ ∈ Rd, we have |S|× |A| equations (one corresponding to each state-action
pair) with d variables. If d = |S| × |A|, we will have εbias = 0. Thus, any
complete parameterization for tabular case will have εbias = 0. For the general
case, a linear MDP (Jin et al., 2020) will also give εbias = 0 as long as we use
the features of the linear MDP (Remark 6.4 in (Agarwal et al., 2020)) and both
Gaussian policy and log-linear policy can be used.

– Above all, Gaussian policy and log-linear policy satisfy the above 4 assumptions.
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