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Abstract

This paper investigates the asymptotic distribution of the K-fold cross validation error
in an i.i.d. setting. As the number of observations n goes to infinity while keeping the
number of folds K fixed, the K-fold cross validation error is

√
n-consistent for the expected

out-of-sample error and has an asymptotically normal distribution. A consistent estimate
of the asymptotic variance is derived and used to construct asymptotically valid confidence
intervals for the expected out-of-sample error. A hypothesis test is developed for comparing
two estimators’ expected out-of-sample errors and a subsampling procedure is used to
obtain critical values. Monte Carlo simulations demonstrate the asymptotic validity of our
confidence intervals for the expected out-of-sample error and investigate the size and power
properties of our test. In our empirical application, we use our estimator selection test to
compare the out-of-sample predictive performance of OLS, Neural Networks, and Random
Forests for predicting the sale price of a domain name in a GoDaddy expiry auction.

1. Introduction

This paper studies the asymptotics of K-fold cross validation in an i.i.d. setting as a way to
approximate an estimator’s expected out-of-sample error, which is the expected predictive
loss evaluated at a new observation drawn independently but from the same distribution
as the data. We first derive the asymptotic distribution of the K-fold cross validation error
centered around the expected out-of-sample error as the number of observations n goes to
infinity but the number of folds K is fixed. The assumption of fixed K is reasonable given
that researchers typically use K = 5 or K = 10 in practice. We note that the assumption
of fixed K rules out leave-one-out cross validation, which effectively sets K = n. We find
that the asymptotic distribution of the K-fold cross validation error does not depend on
K, so for sufficiently large n, the choice of K should not be a first order concern. We
also provide a consistent estimate of the asymptotic variance, which gives researchers a
simple way to construct asymptotically valid standard errors for the K-fold cross validation
error. The researcher can use these standard errors to form confidence intervals for the
expected out-of-sample error. Our results are derived for estimators with asymptotically
linear representations and well-defined probability limits. The cross validation loss functions
are three times continuously differentiable at this probability limit with derivatives having
bounded second moments. Additionally, we allow for the objective function used to compute
the estimators to be nondifferentiable; for example, we allow for quantile regression and `2-
norm Support Vector Machine regression.

It is sometimes the case that researchers would like to have a formal statistical test for
comparing the predictive performance of two different estimators. To aid them on this front,
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we formulate a hypothesis test where the null hypothesis is that the two estimators have
the same expected out-of-sample error. Our null hypothesis is different from traditional
model selection tests because we are not trying to discern the true functional form of the
conditional mean function or some other feature of interest. Instead, we are comparing the
out-of-sample predictive performance of different estimators. One motivation for doing such
an exercise is that sometimes different estimators can be consistent for the same underlying
conditional mean function; so traditional model selection tests would view them as equally
good, and yet they can still differ in how well they predict the outcome out-of-sample.
For instance, we can compare a kernel regression estimator to a local linear regression
estimator using the same set of covariates, even if both estimators are consistent for the
same underlying conditional mean function. Our test also allows for our estimators to be
consistent for different conditional mean functions and the estimators can have different
rates of convergence. For example, in the empirical application, we compare the predictive
performance of OLS, Neural Networks, and Random Forests for predicting the sale price of
a domain name in a GoDaddy expiry auction.

Section 2 provides a literature review. Section 3 contains the theoretical results on the
asymptotic normality of the K-fold cross validation error and consistent estimation of the
asymptotic variance. Section 4 contains the theoretical results of the hypothesis testing
procedure. Section 5 contains Monte Carlo simulations examining the empirical coverage
frequencies and rejection frequencies for a class of linear models. Section 6 contains an
empirical application of our estimator selection test conducted pairwise and size-adjusted
for multiple testing using a Bonferroni correction. Section 7 concludes. The appendix
contains proofs of the main results. Some notation that will be used in this paper are as
follows: Xn = Op(1) means for any ε > 0, there exists a finite M > 0 and a finite N > 0 such
that P (|Xn| > M) < ε ∀n > N , Xn = op(1) means for any ε > 0, lim

n→∞
P (|Xn| ≥ ε) = 0,

and plim denotes probability limit.

2. Literature Review

An early paper that discusses K-fold cross validation is (Burman, 1989), which examines
the bias and variance of K-fold cross validation as an estimator for the expected prediction
error (measured using squared error loss) conditional on the data. (Zhang, 1993) derives the
probabilities of selecting each model when performing K-fold cross validation using linear
models. (Shao, 1993) provides necessary and sufficient conditions for variable selection
consistency for linear models using leave-nv-out cross validation, where nt observations
are used for estimating the models using linear regression and nv observations are used
for validating the accuracy of the models’ predictions. He demonstrates that necessary
and sufficient conditions for variable selection consistency are nv/nt → ∞ and nt → ∞.
(Yang, 2007) considers an extension of (Shao, 1993)’s consistency results to nonparametric

regression. If at least one model is estimated at a rate slower than O(n
−1/2
t ), then leave-nv-

out cross validation is consistent for the best model when nt/nv → O(1) and sometimes even
when nt/nv →∞. In the econometrics literature, (Li & Racine, 2004) and (Hall, Racine, &
Li, 2004) examine the optimality properties of using cross validation to select the bandwidth
for local linear regression and conditional probability density estimation, respectively, in the
i.i.d. setting. (Racine, 2000) proposes an improved version of (Burman, Chow, & Nolan,
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1994)’s h-block cross validation method for dependent data, and he demonstrates that the
probability of selecting the model with the best predictive ability converges to 1 as the total
number of observations approaches infinity. An excellent survey article on cross validation
is (Arlot & Celisse, 2010), which is the paper that first motivated work on our paper and
therefore contains similar notation as ours.

None of the above papers consider constructing confidence intervals for the expected
out-of-sample errors or testing whether two models have the same expected out-of-sample
error. A recent paper (Lei, 2019) considers testing whether a linear model has the lowest
average predictive risk among a fixed number of candidate models in the classical linear
regression setting. However, their notion of predictive risk (also called the conditional test
error) is different from our notion of expected out-of-sample error because they condition on
the training data when taking the expectation over the new observations, whereas we take
the expectation over both the new observations and the training data. This distinction is
important to consider because as noted in section 7.12 of (Hastie, Tibshirani, & Friedman,
2009) and also more recently, (Zhu & Timmermann, 2020) and (Bates, Hastie, & Tibshirani,
2023), K-fold cross validation only estimates well the expected out-of-sample error (also
called the expected test error) rather than the conditional test error. Although (Bates et al.,
2023) propose a resampling procedure to obtain confidence intervals for the expected out-of-
sample error, they do not derive the asymptotic distribution of the K-fold cross validation
error. Their procedure (called nested CV) is also more computationally intensive than our
analytic standard errors because it involves performing cross validation repeatedly for many
iterations. An important recent paper (Wager, 2020) derives the asymptotic distribution
of K-fold cross validation for nonparametric estimators; we will show that our result is
consistent with their result in the case of nonparametric estimators while also noting that
our more general results allow for both parametric and nonparametric estimators. Another
important recent paper (Bayle, Bayle, Janson, & Mackey, 2020) also derives the asymptotic
distribution of K-fold cross validation but centered around the fold error rather than the
expected out-of-sample error. They note at the end that further work could be done to
extend their results to center around the expected-out-of-sample error. Another important
recent paper (Austern & Zhou, 2020) does derive the asymptotic distribution centered
around the expected out-of-sample error using different proof techniques based on Stein’s
method. However, they do not consider the problem of testing whether two estimators
have the same expected out-of-sample error. Additionally, in their discussion of parametric
M-estimators (see their Proposition 3 on page 12), they require the objective function to
be strictly convex and twice differentiable in the parameter everywhere. We do not need
the objective function to be differentiable or convex, which handles quantile regression and
nonconvex maximum likelihood problems.

The literature on model selection tests also has many important papers; for example an
early paper on model specification testing is (Bierens, 1982). He is testing the null hypoth-
esis that the conditional expectation function can be specified as a parametric function,
which is different from our null hypothesis comparing the expected out-of-sample errors of
the two estimators. (Vuong, 1989) develops a likelihood ratio test for comparing models es-
timated by maximum likelihood. Later, (Rivers & Vuong, 2002) generalizes the framework
to allow for models specified by moment conditions, but they require the estimator to be√
n consistent. (Lavergne & Vuong, 1996) propose a model selection test comparing two
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non-nested nonparametric models with different sets of regressors. (Lavergne, 2001) con-
siders a test of the equality of two conditional expectation functions estimated using kernel
regression. (Lavergne & Vuong, 2000) consider testing for the joint significance of a sub-
set of continuous explanatory variables in nonparametric regression using kernel methods.
(Chen, Hong, & Shum, 2007) use a likelihood ratio test to compare parametric likelihood
models with moment-based models. (Hong & Preston, 2012) examine a more general class
of estimators that include many non-likelihood based and semi-parametric estimators, but
their procedure uses the Bayesian Information Criterion (BIC), which relies on knowing the
effective model dimension, which can be difficult to determine for nonparametric estima-
tors. More recently, (Shi, 2015) has developed a non-degenerate version of (Vuong, 1989)’s
likelihood ratio test which exhibits uniform size control. (Liao & Shi, 2020) extend (Shi,
2015) to semi-parametric and nonparametric models estimated using a sieve M-estimator.
Another parametric likelihood based model selection test that controls size uniformly over
a large class of data generating processes is (Schennach & Wilhelm, 2017). The null hy-
potheses in these aforementioned papers are different than ours because they are testing
properties about the true underlying model whereas we are interested in evaluating the out-
of-sample predictive performance of our estimators. In this regard, our test might be more
similar to tests of predictive ability, such as the Diebold-Mariano-West tests ((Diebold &
Mariano, 1995), (Diebold, 2015), and (West, 1996)), the (Giacomini & White, 2006) test of
conditional predictive ability, and the (Clark & McCracken, 2015) bootstrap-based test of
out-of-sample forecast accuracy. However, in contrast to these papers, we allow for a wider
class of estimators with different convergence rates and our focus is on i.i.d. cross-sectional
data. The focus on i.i.d. cross-sectional data is because K-fold cross validation is primarily
used in this context; however, it is not difficult to extend our method to balanced panel
data.

3. Theoretical Properties of K-Fold Cross Validation

Consider an i.i.d. sample of data Ξ ≡ {ξi}ni=1 ≡ {(xi, yi)}ni=1 from some unknown dis-
tribution P . Let X ⊆ Rd be the support of xi. The criterion for comparing a set
of candidate estimators {ŝM : X 7→ R, for M ∈M} is the expected out-of-sample error
EPEOUT,n(M) ≡ E[γ(ŝM ; ξ̃i)], which is the expected loss if we were to apply estimator
M ’s ŝM (·) computed over n observations on a new ξ̃i drawn independently from the same
distribution as Ξ ∼ P . The expectation E[γ(ŝM ; ξ̃i)] is taken with respect to both the train-
ing data Ξ used to form ŝM (·) and the new observation ξ̃i. For this reason, EPEOUT,n(M)
can be viewed as a measure of unconditional expected predictive accuracy.

We will use K-fold cross validation to estimate the expected out-of-sample error. For-
mally, the K-fold cross validation procedure selects the estimator among the set of candidate
estimators M which minimizes the average prediction error for observations ξi in the kth

validation fold, averaged over k = 1, ...,K.

L̂CVn (M) ≡ 1

K

K∑
k=1

1

nv

∑
i∈I(v)k

γ(ŝ
(−k)
M ; ξi)
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I
(v)
k are the indices of the observations in the kth validation fold and nv ≡ n

K is the number
of observations in each validation fold, assuming WLOG that n is divisible by K. Later,

we will use nt ≡ K−1
K n to denote the number of observations in each training fold. ŝ

(−k)
M (·)

is estimator M ’s estimator computed using the observations not in the kth validation fold.
γ(·; ·) is a loss function such as the squared error loss γ(ŝM ; ξi) = (yi − ŝM (xi))

2.
While we do not discuss the details in this paper, it is not difficult to extend our results

to balanced panel data where we have data on n individuals over a fixed time period T by
redefining the K-fold Cross Validation error as

L̂CVn,T (M) ≡ 1

K

K∑
k=1

1

nv

∑
i∈I(v)k

1

T

T∑
t=1

γ(ŝ
(−k)
M ; ξit)

where I
(v)
k are the indices of the individuals in the kth validation fold, nv ≡

⌈
n
K

⌉
is the

number of individuals in each validation fold, and ŝ
(−k)
M (·) is model M ’s estimator computed

using the individuals not in the kth validation fold.
We now present the assumptions that we will need throughout the paper. The first

assumption says that s∗M (xi) is the probability limit of ŝM (xi) for all observations xi and all
estimators M in a finite setM. We emphasize that different estimators may have different
s∗M ’s, and all of the s∗M ’s can be different from the true feature s0 corresponding to the
underlying data generating process. Therefore, our first assumption allows for estimators
that are inconsistent for the true conditional mean function or other features of the data
generating process.

Assumption 3.1 The set of candidate estimators M is finite, and

max
M∈M

max
1≤i≤n

|ŝM (xi)− s∗M (xi)| = op(1)

The next assumption says the loss function is three times continuously differentiable with
zero third derivative.

Assumption 3.2 γ(s; ξi) is a three times continuously differentiable function of s (xi) with

E
[(

∂γ(s;ξi)
∂s

)2
]
<∞, E

[(
∂2γ(s;ξi)
∂s2

)2
]
<∞, and zero third derivative ∂3γ(s;ξi)

∂s3
= 0 for all i.

We will use ∂γ(s;ξi)
∂s to denote the derivative. Although the notation may suggest otherwise,

we are taking the derivative with respect to a particular point s (xi) rather than the whole
function s (·) itself. An example of a loss function that satisfies Assumption 3.2 is the
squared error loss. Note that even though our loss function is three times continuously
differentiable, the objective function used when computing the estimator ŝM (xi) does not
need to be differentiable.

The next assumption says the estimators have an asymptotically linear representation.

Assumption 3.3 For each estimator M ∈ M, there exists τn → ∞ satisfying τn/n
1/4 →

∞ and τn/
√
n = O(1), and there exists a function φM (ξj , xi; s

∗
M ) satisfying

E [φM (ξj , xi; s
∗
M )|xi] = 0 and E

[(
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

)2
]
<∞ when τn =

√
n, and
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V ar
[
E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξi]] → 0 and V ar
[
E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξj]] → 0

when τn �
√
n, such that for each xi ∈ X ,

ŝM (xi)− s∗M (xi) =
1

n

n∑
j=1

φM (ξj , xi; s
∗
M ) +Rn,i

where max
1≤i≤n

Rn,i = op

(
1
τn

)
.

Assumption 3.3 states that the difference between ŝM (xi) and its probability limit s∗M (xi)
at each validation data point xi is asymptotically equivalent to a scaled average of terms
φM (ξj , xi; s

∗
M ) that depend only on the individual training observation ξj , the fixed point of

evaluation xi, the function s∗M , and possibly some other nonrandom quantities. For
√
n con-

sistent estimators where E [φM (ξj , xi; s
∗
M )|xi] = 0, the function φM (·, ·; ·) is called the influ-

ence function (see e.g. (Van der Vaart, 2000) or (Newey & McFadden, 1994)). For example,
OLS regression has an influence function φM (ξj , xi;β

∗
M ) = x′iE[xjx

′
j ]
−1xj(yj−x′jβ∗M ) which

satisfies Assumption 3.3 under the weak exogeneity assumption E
[
xj(yj − x′jβ∗M )

]
= 0.

For nonparametric estimators, typically E [φM (ξj , xi; s
∗
M )|xi] 6= 0 because of the bias, but

V ar
[
E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξi]] → 0 and V ar
[
E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξj]] → 0.

For nonparametric kernel estimators, the bias is of order h2 (where h is the bandwidth),

so E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξi] = h2λ(xi) and E
[
φM (ξj , xi; s

∗
M )

∂γ(s∗M ;ξi)
∂s∗M

∣∣∣ ξj] = h2ν(xj),

where h → 0 as n → ∞. Under weak regularity conditions, it is possible to show that
V ar

[
h2λ(xi)

]
→ 0 and V ar

[
h2ν(xi)

]
→ 0.

The φM (·, ·; ·) function can be obtained from the first order Taylor expansion of the first
order condition. For example, if ŝM (xi) = F (xi, β̂M ), s∗M (xi) = F (xi, β

∗
M ), where F (·, ·) is

known, β̂M = arg min
β

{
QMn (β) = 1

n

∑n
j=1 q

M
j (β)

}
, and β∗M = arg min

β

{
QM (β) = E

[
qMj (β)

]}
,

then the first order Taylor expansion of the first order condition for β̂M is 0 = ∂QMn (β̂M )
∂β =

∂QMn (β∗M )
∂β +

(
β̂M − β∗M

)′ ∂2QMn (β∗M )
∂β∂β′ +Op

(∥∥∥β̂M − β∗M∥∥∥2
)

, which implies

ŝM (xi)− s∗M (xi) = F (xi, β̂M )− F (xi, β
∗
M )

=
∂F (xi, β

∗
M )

∂β′

(
β̂M − β∗M

)
+Op

(∥∥∥β̂M − β∗M∥∥∥2
)

=
1

n

n∑
j=1

−
∂F (xi, β

∗
M )

∂β′
plim

(
∂2QMn (β∗M )

∂β∂β′

)−1 ∂qMj (β∗M )

∂β︸ ︷︷ ︸
φM(ξj ,xi;β∗M)

+Rn,i

For nonparametric estimators where ŝM (xi) = arg min
s
{QMn (s, xi) = 1

n

∑n
j=1 q

M
j (s, xi)},

the first order Taylor expansion of the first order condition is 0 = ∂QMn (ŝM )
∂s =

∂QMn (s∗M )
∂s +
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(ŝM (xi)− s∗M (xi))
∂2QMn (s∗M )

∂s2
+OP

(
|ŝM (xi)− s∗M (xi)|2

)
, which implies

ŝM (xi)− s∗M (xi) = −
(
∂2QMn (s∗M )

∂s2

)−1
1

n

n∑
j=1

∂qMj (s∗M , xi)

∂s
+OP

(
|ŝM (xi)− s∗M (xi)|2

)
=

1

n

n∑
j=1

−plim

(
∂2QMn (s∗M )

∂s2

)−1 ∂qMj (s∗M , xi)

∂s︸ ︷︷ ︸
φM(ξj ,xi;s∗M)

+Rn,i

Examples of φM (·, ·; ·) for some well known estimators are the following:

1. Ordinary Least Squares: For ŝM (xi) = x′iβ̂M ,

ŝM (xi) = x′iβ̂M = x′i(X
′X)−1X ′Y

β∗M = E[xjx
′
j ]
−1E[xjy

′
j ]

φM (ξj , xi;β
∗
M ) = x′iE[xjx

′
j ]
−1xj(yj − x′jβ∗M )

2. Nonlinear Least Squares: For known F (·, ·), ŝM (xi) = F (xi, β̂M ),

β̂M = arg min
β

1

n

n∑
j=1

(yj − F (xj , β))2

β∗M = arg min
β

E
[
(yj − F (xj , β))2

]
φM (ξj , xi;β

∗
M )

=
∂F (xi, β

∗
M )

∂β′
E
[
∂F (xj , β

∗
M )

∂β

∂F (xj , β
∗
M )

∂β′

]−1 ∂F (xj , β
∗
M )

∂β
(yj − F (xj , β

∗
M ))

3. Ridge Regression: For ŝM (xi) = x′iβ̂M ,

β̂M = arg min
β

1

n

n∑
i=1

(
yi − x′iβ

)2
+ λβ′β

β∗M = arg min
β

E
[(
yi − x′iβ

)2]
+ λβ′β

ŝM (xi) = x′i(X
′X + λI)−1X ′Y

φM (ξj , xi;β
∗
M ) = x′iE

[
xjx
′
j + λI

]−1 (
xj(yj − x′jβ∗M )− λβ∗M

)
4. Kernel Regression: For h → 0, nhd → ∞, Kh(xi − xj) = 1

hd
K
(
xi−xj
h

)
, f(·) the

density function of xi, and s∗M (xi) = E[yi|xi],

ŝM (xi) = arg min
s

1

n

n∑
j=1

(yj − s)2Kh(xi − xj) =

∑n
j=1Kh(xi − xj)yj∑n
j=1Kh(xi − xj)

φM (ξj , xi; s
∗
M ) = f(xi)

−1Kh(xi − xj)(yj − s∗M (xi))
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5. Local Linear Regression: For h→ 0, nhd →∞, Kh(xi − xj) = 1
hd
K
(
xi−xj
h

)
, f(·) the

density function of xi, and s∗M (xi) = E[yi|xi],

(ŝM (xi), β̂M ) = arg min
s,β

1

n

n∑
j=1

(yj − s− (xi − xj)′β)2Kh(xi − xj)

φM (ξj , xi; s
∗
M , β

∗
M ) = f(xi)

−1Kh(xi − xj)(yj − s∗M (xi)− (xi − xj)′β∗M )

6. Quantile Regression: For ŝM (xi) = x′iβ̂M , ρτ (u) = {(1− τ) 1 (u ≤ 0) + τ1 (u > 0)} |u|,
and fyj |xj (·) the conditional density function of yj given xj ,

β̂M = arg min
β

1

n

n∑
i=1

ρτ (yi − x′iβ)

β∗M = arg min
β

E
[
ρτ (yi − x′iβ)

]
φM (ξj , xi;β

∗
M ) = x′iE

[
xjx
′
jfyj |xj

(
x′jβ

∗
M

)]−1
xj
(
τ − 1

(
yj ≤ x′jβ∗M

))
7. Local Linear Quantile Regression: For h→ 0, nhd →∞, and s∗M (xi) = Qτ [yi|xi] the

conditional τth quantile of yi given xi,

(ŝM (xi), β̂M ) = arg min
s,β

1

n

n∑
j=1

ρτ (yj − s− (xi − xj)′β)Kh(xi − xj)

φM (ξj , xi; s
∗
M , β

∗
M ) =

plim
1

n

n∑
j=1

Kh(xi − xj)
(
fyj |xj

(
s∗M (xi) + (xi − xj)′β∗M

))−1

Kh(xi − xj)
(
τ − 1

(
yj ≤ s∗M (xi) + (xi − xj)′β∗M

))
8. `2-norm SVM regression: For x+ ≡ max(x, 0),

β̂M = arg min
β

1

n

n∑
i=1

(
ρτ
(
yi − x′iβ

)
− κ
)+

+ λβ′β

β∗M = arg min
β

E
[(
ρτ
(
yi − x′iβ

)
− κ
)+

+ λβ′β
]

φM (ξj , xi;β
∗
M )

= x′iH
−1

(
xj

(
τ1
(
yj ≥ x′jβ∗M +

κ

τ

)
− (1− τ) 1

(
yj ≤ x′jβ∗M −

κ

1− τ

))
− λβ∗M

)
H = E

[
xjx
′
j

(
τfyj |xj

(
x′jβ

∗
M +

κ

τ

)
+ (1− τ) fyj |xj

(
x′jβ

∗
M −

κ

1− τ

))]

9. Generalized Method of Moments: For known F (·, ·), ŝM (xi) = F (xi, β̂M ), s∗M (xi) =
F (xi, β

∗
M ), moment functions E [g(·, β)] which might not equal zero at β∗M , andG(β∗M ) ≡
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E
[
∂g(ξj ,β

∗
M )

∂β

]
,

β̂M = arg min
β

 1

n

n∑
j=1

g(ξj , β)

′W
 1

n

n∑
j=1

g(ξj , β)


β∗M = arg min

β
E [g(ξj , β)]′WE [g(ξj , β)]

φM (ξj , xi;β
∗
M ) = −

∂F (xi, β
∗
M )

∂β′
(
G(β∗M )′WG(β∗M )

)−1
G(β∗M )′Wg(ξj , β

∗
M )

10. Maximum Likelihood Estimation: For known F (·, ·), ŝM (xi) = F (xi, β̂M ), s∗M (xi) =
F (xi, β

∗
M ), and a density function f(·, ·) which might not be the true density of ξi,

β̂M = arg max
β

1

n

n∑
j=1

log f(ξj , β)

β∗M = arg max
β

E [log f(ξj , β)]

φM (ξj , xi;β
∗
M ) = −

∂F (xi, β
∗
M )

∂β′
E
[
∂2 log f(ξj , β

∗
M )

∂β∂β′

]−1
∂ log f(ξj , β

∗
M )

∂β

Remark 3.1 We would like to note that several other well-known machine learning esti-
mators besides Ridge and `2-norm SVM regression also have an influence function repre-
sentation. For example, (Wager & Athey, 2018) derived the asymptotic normality of honest
Random Forest estimators using Hajek projections, which indicates the existence of an in-
fluence function representation (see Lemma 3.3 in (Wager & Athey, 2018) for details).
Similarly, (White, 1989), (Chen & White, 1999), and (White & Racine, 2001) demon-
strated asymptotic normality of single-hidden layer Neural Networks by formulating them

as nonlinear least squares estimators β̂n = arg min 1
n

∑n
i=1

(
yi − Λ

(∑q
j=1 ψ (x′iγj) θj

))2
,

where Λ(·) is a smooth increasing output function, ψ (·) is a smooth increasing activation
function such as the sigmoidal function and β ≡ (γ′, θ′) are the network parameters such
as the weights on the inputs and hidden units. The influence function is given by example

2 above after replacing F (xi, β) with Λ
(∑q

j=1 ψ (x′iγj) θj

)
.

However, there are also estimators that do not have an influence function representation
generally. For example, Lasso typically does not have an influence function representation
unless additional assumptions are imposed to guarantee asymptotic normality. In the finite-
dimensional case, if

√
nλn → 0, then β̂M = arg min

β

1
n

∑n
i=1 (yi − x′iβ)2+λn‖β‖1 will have an

influence function representation equal to that for least squares because Lasso’s non-standard
asymptotic distribution will reduce down to a normal distribution. For more details, see the
last line of the proof of Theorem 2 of (Knight & Fu, 2000).

3.1 Asymptotic Normality of K-Fold Cross Validation Criterion

In this section, we derive the asymptotic normality of
√
n times the difference between the

K-Fold cross validation criterion and the expected out-of-sample error for each estimator M
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in a set of candidate estimatorM. Recall that nt ≡ K−1
K n is the number of observations in

each training fold. We will use τnt to denote the analog of τn evaluated using nt observations.

Theorem 3.1 Asymptotic Normality: Suppose Assumptions 3.1-3.3 are satisfied. Define
for each estimator M ∈M

ψ(ξj , ξi) ≡ φM (ξj , xi; s
∗
M )

∂γ(s∗M ; ξi)

∂s∗M
σ2
γ ≡ V ar [γ(s∗M ; ξi)]

σ2
01,ψ ≡ V ar [E [ψ(ξj , ξi)| ξj ]]
λ ≡ Cov [γ(s∗M ; ξj),E [ψ(ξj , ξi)|ξj ]]

As n→∞ while keeping K fixed,

√
n
(
L̂CVn (M)− EPEOUT,n(M)

)
d→ N

(
0, σ2

)
σ2 =

{
σ2
γ , τn �

√
n

σ2
γ + σ2

01,ψ + 2λ , τn =
√
n

Remark 3.2 Note that for estimators that converge at a slower than
√
n rate (i.e. nonpara-

metric estimators), the K-fold cross validation error still converges at the
√
n rate because

the residual variance E[γ(s∗M ; ξi)] component of the expected out-of-sample error can be con-
sistently estimated at the

√
n rate. This result for nonparametric estimators is consistent

with proposition 1 of (Wager, 2020).

Remark 3.3 Note that the rate of convergence and asymptotic variance of the K-fold cross
validation error do not depend on the number of folds K, assuming that K is fixed. This
suggests that the choice of which fixed K to use is not first-order important in large samples.

3.2 Consistent Estimate of Asymptotic Variance

The benefit of deriving the asymptotic distribution of the K-fold cross validation error is
that we can use a consistent estimate of the asymptotic variance to construct confidence
intervals for the expected out-of-sample error. For nonparametric estimators, we will need
to compute our estimator once at each data point ŝM (xi) for i = 1...n when forming
our estimate of σ̂2

γ . For parametric estimators, we will need to compute β̂M once and

then estimate the influence functions φ̂M (ξj , xi; ŝM ) and first derivatives of γ (ŝM ; ξi) at
each data point. The following theorem demonstrates consistency of our estimate of the
asymptotic variance.

Theorem 3.2 Consistent Estimate of Asymptotic Variance: Define

σ̂2
n =

{
σ̂2
γ , τn �

√
n

σ̂2
γ + σ̂2

01,ψ + 2λ̂ , τn =
√
n

where

ψ̂ (ξj , ξi; ŝM ) = φ̂M (ξj , xi; ŝM )
∂γ (ŝM ; ξi)

∂ŝM
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σ̂2
γ =

1

n

n∑
i=1

(
γ(ŝM ; ξi)−

1

n

n∑
k=1

γ(ŝM ; ξk)

)2

σ̂2
01,ψ =

1

n

n∑
j=1

(
ĥM (ξj)−

1

n

n∑
k=1

ĥM (ξk)

)2

ĥM (ξj) =
1

n− 1

∑
{i|1≤i≤n,i6=j}

ψ̂ (ξj , ξi; ŝM )

λ̂ =
1

n

n∑
i=1

(
ĥM (ξi)−

1

n

n∑
k=1

ĥM (ξk)

)(
γ(ŝM ; ξi)−

1

n

n∑
k=1

γ(ŝM ; ξk)

)

Suppose Assumptions 3.1-3.3 are satisfied in addition to

1

n

n∑
j=1

∣∣∣∣∣∣ 1

n− 1

∑
{i|1≤i≤n,i 6=j}

ψ̂ (ξj , ξi; ŝM )− 1

n− 1

∑
{i|1≤i≤n,i 6=j}

ψ (ξj , ξi; s
∗
M )

∣∣∣∣∣∣
2

p→ 0

1

n

n∑
i=1

|γ (ŝM ; ξi)− γ (s∗M ; ξi)|2
p→ 0

Then σ̂2
n converges in probability to σ2.

The additional two assumptions at the end are necessary to ensure that using the es-
timated influence function ψ̂ (·, ·; ·) and estimated feature ŝM instead of their probability
limits does not impact the consistency of our estimates σ̂2

γ , σ̂2
01,ψ, and λ̂. Similar assump-

tions are assumed in Lemma 8.3 of (Newey & McFadden, 1994) when showing consistency
of estimators of the asymptotic variance of two step estimators.

4. Estimator Selection Test

We now formulate a hypothesis test to compare the predictive performance of two estima-

tors using their expected out-of-sample errors EPEOUT,n(M) ≡ E
[
γ(ŝM ; ξ̃i)

]
, where the

expectation is taken with respect to both the data used to estimate ŝM and the new ob-
servation ξ̃i. The two estimators could be estimating either the same feature s∗M1

= s∗M2
or

different features s∗M1
6= s∗M2

. The null hypothesis states that the expected out-of-sample
errors of the two estimators are the same and the alternatives are that one is higher than
the other:

H0 : EPEOUT,n(M2)− EPEOUT,n(M1) = 0

H1 : EPEOUT,n(M2)− EPEOUT,n(M1) > 0

H2 : EPEOUT,n(M2)− EPEOUT,n(M1) < 0
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4.1 Asymptotic Distribution of Test Statistic in the Absence of First Order
Degeneracy

When the difference between the expected out-of-sample errors of the two estimators can
be consistently estimated at the

√
n rate, we can use the following test statistic:

Tn =

√
n

ˆ̃σn

(
L̂CVn (M2)− L̂CVn (M1)

)
ˆ̃σ2
n is a consistent estimate of the difference in the K-fold cross validation errors’ asymptotic

variances, which differs for parametric and nonparametric estimators:

σ̃2 =


σ̃2
γ + σ2

01,ψM1
+ 2λM1 , τn,2 � τn,1 =

√
n

σ̃2
γ + σ2

01,ψM2
+ 2λM2 , τn,1 � τn,2 =

√
n

σ̃2
γ , τn,2, τn,1 �

√
n

σ̃2
γ + σ̃2

01,ψ + 2λ̃ , τn,2 = τn,1 =
√
n

ψ̃(ξj , ξi) ≡

(
φM2

(
ξj , xi; s

∗
M2

) ∂γ (s∗M2
; ξi
)

∂s∗M2

− φM1

(
ξj , xi; s

∗
M1

) ∂γ (s∗M1
; ξi
)

∂s∗M1

)
γ̃(ξi) ≡ γ

(
s∗M2

; ξi
)
− γ

(
s∗M1

; ξi
)
, σ̃2

γ ≡ V ar [γ̃(ξi)]

σ̃2
01,ψ ≡ V ar

[
E
[
ψ̃(ξj , ξi)

∣∣∣ ξj]] , λ̃ ≡ Cov
[
γ̃(ξj),E

[
ψ̃(ξj , ξi)|ξj

]]
The following theorem shows that when 0 < σ̃2 <∞, Tn has a standard normal asymp-

totic distribution under H0. It follows that the test which rejects H0 when |Tn| > Z1−α/2,
where Zα is the α-th percentile of the standard normal, is pointwise consistent in level.

Theorem 4.1 Suppose Assumptions 3.1-3.3 are satisfied for M1 and M2, and 0 < σ̃2 <∞.

Then Tn
d→ N(0, 1) under H0 and under alternatives of the form

√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → 0. Tn

d→ N(c/σ̃, 1) under alternatives of the

form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → c, for some constant c. Tn

p→ ∞ under

alternatives of the form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → ∞. Tn

p→ −∞ under
alternatives of the form

√
n (EPEOUT,n(M2)− EPEOUT,n(M1))→ −∞.

4.2 Consistent Estimation of Asymptotic Variance

We now provide a consistent estimate of σ̃2.

Theorem 4.2 Consistent Estimate of Asymptotic Variance: Define

ˆ̃σ2
n =


ˆ̃σ2
γ + σ̂2

01,ψM1
+ 2λ̂M1 , τn,2 � τn,1 =

√
n

ˆ̃σ2
γ + σ̂2

01,ψM2
+ 2λ̂M2 , τn,1 � τn,2 =

√
n

ˆ̃σ2
γ , τn,2, τn,1 �

√
n

ˆ̃σ2
γ + ˆ̃σ2

01,ψ + 2
ˆ̃
λ , τn,2 = τn,1 =

√
n
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where

ˆ̃σ2
γ =

1

n

n∑
i=1

(
ˆ̃γ(ξi)−

1

n

n∑
k=1

ˆ̃γ(ξk)

)2

ˆ̃γ(ξi) ≡ γ (ŝM2 ; ξi)− γ (ŝM1 ; ξi)

ˆ̃
ψ (ξj , ξi; ŝM1 , ŝM2) = φ̂M2 (ξj , xi; ŝM2)

∂γ (ŝM2 ; ξi)

∂ŝM2

− φ̂M1 (ξj , xi; ŝM1)
∂γ (ŝM1 ; ξi)

∂ŝM1

ˆ̃σ2
01 =

1

n

n∑
j=1

(
ˆ̃
h(ξj)−

1

n

n∑
k=1

ˆ̃
h(ξk)

)2

ˆ̃
h(ξj) =

1

n− 1

∑
{i|1≤i≤n,i6=j}

ˆ̃
ψ (ξj , ξi; ŝM1 , ŝM2)

ˆ̃
λ =

1

n

n∑
i=1

(
ˆ̃γ(ξi)−

1

n

n∑
k=1

ˆ̃γ(ξk)

)(
ˆ̃
h(ξi)−

1

n

n∑
k=1

ˆ̃
h(ξk)

)

If all of the conditions in theorem 3.2 are satisfied for M1 and M2, then ˆ̃σ2
n converges in

probability to σ̃2.

4.3 Testing Procedure Accounting for First Order Degeneracy

If σ̃2 = 0, which can arise for example when two nonparametric estimators are estimating
the same conditional mean function in which case V ar [γ̃ (ξ)] = 0, then the asymptotic
distribution of Tn under H0 becomes degenerate. In order to have a nondegenerate test
statistic, we need to scale by n instead of

√
n (see the last part of the proof of Theorem 4.1

for an explanation of this result). Although we do not explicitly characterize the asymptotic
distribution of our test statistic under first order degeneracy, we can consistently estimate
this distribution using subsampling. If we knew first order degeneracy were present, we

could use n
(
L̂CVn (M2)− L̂CVn (M1)

)
as the test statistic. However, it is often very difficult

to know if first order degeneracy is present, so instead, we first obtain an estimate nδ̂ of
the rate of convergence of L̂CVn (M2) − L̂CVn (M1) using the following algorithm (described
in Theorem 8.2.2 in (Politis, Romano, & Wolf, 1999)).

1. For r = 1...R replications, draw I different subsamples of sizes bi for i = 1...I
where bi → ∞ and bi/n → 0 and compute ∆∗bi,r ≡ L̂

CV,∗
b,i (M2) − L̂CV,∗b,i (M1) −(

L̂CVn (M2)− L̂CVn (M1)
)

.

2. For each i = 1...I and j = 1...J , define cτij and cρij as the τjth and ρjth percentiles
of ∆∗bi,r for i = 1...I, where τj and ρj are the jth elements of

τ =
{

70, 70 + 20
J−1 , 70 + 40

J−1 , ..., 90
}

and ρ =
{

10, 10 + 20
J−1 , 10 + 40

J−1 , ..., 30
}

.

3. Define yij = log
(
cτij − cρij

)
, ȳi = 1

J

∑J
j=1 yij , ȳ = 1

I

∑I
i=1 ȳi, log (b) = 1

I

∑I
i=1 log (bi).
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4. The estimated rate of convergence is nδ̂ for

δ̂ ≡ −

∑I
i=1 (ȳi − ȳ)

(
log (bi)− log (b)

)
∑I

i=1

(
log (bi)− log (b)

)2

We then use the test statistic T̃n ≡ nδ̂
(
L̂CVn (M2)− L̂CVn (M1)

)
, and the percentiles

of
˜̂
Ln,b (x) = 1

B

∑B
i=1 1

(
bδ̂
(
L̂CV,∗b,i (M2)− L̂CV,∗b,i (M1)−

(
L̂CVn (M2)− L̂CVn (M1)

))
≤ x

)
as

the critical values, where the subsample size b satisfies b→∞ and b/n→ 0, and i = 1...B
indexes a random sample of the

(
n
b

)
possible subsets of size b.

This procedure requires computing the difference in the cross validation errors (I +
1)B + 1 times, where I is the number of different subsample sizes we use to estimate the
rate of convergence δ using the procedure in Theorem 8.2.2 of (Politis et al., 1999). We
acknowledge that the computational cost of this procedure can be high due to the repeated
computation of the cross validation errors, but we cannot avoid this cost unless we knew
what the rate of convergence of our test statistic is, which is difficult in practice. The next
theorem states that our test using the subsampling procedure is pointwise consistent in
level.

Theorem 4.3 Pointwise Consistency in Level: Suppose Assumptions 3.1-3.3 are satisfied.

Let c̃∗α be the α-th percentile of
˜̂
Ln,b (x). For φ̃n = 1

(
T̃n > c̃∗1−α/2

⋃
T̃n < c̃∗α/2

)
,

lim sup
n→∞

EH0

[
φ̃n

]
≤ α

Proof: Result follows from the consistency of subsampling for statistics with an estimated
rate of convergence (e.g. Theorem 8.3.1 in (Politis et al., 1999)).

Remark 4.1 In order to illustrate when first order degeneracy may arise, take the simple
example of linear regression with nested regressors:

M1 :Yi = α1Wi + ηi

M2 :Yi = α2Wi + β2Xi + εi

Define Z ′i = [Wi, Xi]. The influence functions for the OLS estimates are

φM1 (ξj ,Wi;α1) = W ′iE
[
WjW

′
j

]−1
Wj (Yj − α1Wj)

φM2 (ξj , Zi;α2, β2) = Z ′iE
[
ZjZ

′
j

]−1
Zj (Yj − α2Wj − β2Xj)
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The loss function is squared error loss.

γ
(
s∗M1

; ξi
)

= (Yi − α1Wi)
2

γ
(
s∗M2

; ξi
)

= (Yi − α2Wi − β2Xi)
2

ψ̃(ξj , ξi) ≡

(
φM2 (ξj , Zi;α2, β2)′

∂γ
(
s∗M2

; ξi
)

∂s∗M2

− φM1 (ξj ,Wi;α1)′
∂γ
(
s∗M1

; ξi
)

∂s∗M1

)
=− 2 (Yj − α2Wj − β2Xj)Z

′
jE
[
ZjZ

′
j

]−1
Zi (Yi − α2Wi − β2Xi)

+ 2 (Yj − α1Wj)W
′
jE
[
WjW

′
j

]−1
Wi (Yi − α1Wi)

E
[
ψ̃ (ξj , ξi)

∣∣∣ ξj] =− 2 (Yj − α2Wj − β2Xj)Z
′
jE
[
ZjZ

′
j

]−1 E [Zi (Yi − α2Wi − β2Xi)]

+ 2 (Yj − α1Wj)W
′
jE
[
WjW

′
j

]−1 E [Wi (Yi − α1Wi)]

If it were the case that E [Zi (Yi − α2Wi − β2Xi)] = 0, E [Wi (Yi − α1Wi)] = 0, and
V ar

[
ε2i − η2

i

]
= 0, then we have first order degeneracy since σ̃2 ≡ σ̃2

γ + σ̃2
01,ψ +2λ̃ = 0. This

can happen if model 1 were the true model with E [Wi (Yi − α1Wi)] = 0, which would imply
that β2 = 0.

Remark 4.2 For multiple model comparisons, if we are interested in constructing a data-
dependent set of estimators that contain the best estimator(s) with a certain probability,
we can construct a confidence set using a procedure similar to Definition 2 of (Hansen,
Lunde, & Nason, 2011) which does not require a benchmark model to be selected as in
(White, 2000). To construct the model confidence set, we first test the null hypotheses
H0,M : EPEOUT,n (Mi) − EPEOUT,n (Mj) = 0 for all Mi,Mj ∈ M using the test statistic

TM,n = max
i,j

∣∣∣L̂CVn (Mi)− L̂CVn (Mj)
∣∣∣, which is the maximum of the absolute difference of

the K-fold cross validation errors for all pairs of estimators in M. If H0,M is rejected, an
elimination rule is used to eliminate from M an estimator with worst performance. We
repeat the test using the smaller model set until it is accepted and the model confidence
set is defined as the set of remaining models. Since the asymptotics of the test statistic
TM,n are nonstandard, we will have to resort to subsampling or other consistent resampling
methods to obtain critical values. If we are instead interested in obtaining pairwise rankings,
then we can use the multiple testing procedures discussed in (Lehmann & Romano, 2005)
and (Romano, Shaikh, & Wolf, 2010) and references therein. For example, we can use the
Bonferroni correction, as we do in our empirical application.

5. Monte Carlo

In this section, we use Monte Carlo simulations to study the coverage of our K-fold cross
validation confidence intervals and the rejection frequencies of our estimator selection test.

5.1 Confidence Intervals for expected out-of-sample error

We demonstrate how we can use the asymptotic distribution of the K-fold cross validation
error to construct confidence intervals for the expected out-of-sample error. We investigate
the empirical coverage frequencies for these confidence intervals for three data generating
processes (DGPs).
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5.1.1 Linear DGP

For each Monte Carlo simulation r = 1...R, we generate the test data (x̃ri, z̃ri, ỹri)
nTest
i=1 and

the training data (xri, zri, yri)
n
i=1 independently of each other using the linear DGP:

yi = β0xi + z′iγ0 + εi, εi ∼ N(0, 1), εi ⊥ xi, zi(
xi
zi

)
∼MVN

((
1
µ

)
, 0.5

(
I10 + ι10ι

′
10

))
where µ′ =

(
2 3 4 5 4 5 6 7 8

)
, I10 is the 10×10 identity matrix, and ι10 is the

10× 1 vector of all ones.

Define w′i ≡ [xi, z
′
i]. Our candidate models include linear models for different values of

p ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}:

yi =

p∑
j=1

θjwij + ηi

We also look at two additional linear models with group effects αg, which are 50 dummy
variables generated independently of ε, x, and z.

yi = θ1xi + αg + νi, yi = w′iθ + αg + ζi

All of our linear models are estimated using OLS. In addition, we also consider a univariate
nonparametric model that is estimated using kernel (local-constant) regression of y on x

using a Gaussian kernel Khn (x) = K (x/hn), K (x) = (2π)−1/2 e−x
2/2, and bandwidth

hn = (4/3)1/5n−1/5. The 5-fold cross validation error using squared error loss is

L̂CVn =
1

5

5∑
k=1

1

nv

∑
i∈I(v)k

(
yi − ŝ(−k)

nt (wi)
)2

where ŝ
(−k)
nt is the estimate of the conditional mean of y given w computed using the nt

training observations, which are the observations not in the k-th fold. For OLS, ŝ
(−k)
nt (wi) =

w′i

(
1
nt

∑
j /∈I(v)k

wjw
′
j

)−1 (
1
nt

∑
j /∈I(v)k

wjyj

)
. For the kernel estimator,

ŝ
(−k)
nt (xi) =

∑
j /∈I(v)

k

Khnt
(xi−xj)yj∑

j /∈I(v)
k

Khnt
(xi−xj) .

We estimate the expected out-of-sample error using the test error averaged across R
Monte Carlo simulations:

ÊPEOUT,n =
1

R

R∑
r=1

1

nTest

nTest∑
i=1

(ỹri − ŝn,r (w̃ri))
2

where ŝn,r is the estimate of the conditional mean of y given w computed using the training

data on the r-th simulation. For OLS, ŝn,r (w̃ri) = w̃′ri

(
1
n

∑n
j=1wrjw

′
rj

)−1 (
1
n

∑n
j=1wrjyrj

)
.

For the kernel estimator, ŝn,r (x̃ri) =
∑n
j=1Khn (x̃ri−xrj)yj∑n
j=1Khn (x̃ri−xrj) .
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Table 1 shows the empirical coverage frequencies for ÊPEOUT,n of the nominal 95%

equal-tailed two-sided confidence intervals
[
L̂CVn ± 1.96 σ̂n√

n

]
, where σ̂n is given in Theorem

3.2. Note that we do not need to compute the influence function for our nonparametric es-
timator because σ̂2

n = σ̂2
γ = 1

n

∑n
i=1

(
γ̂(ξi)− 1

n

∑n
k=1 γ̂(ξk)

)2
, where γ̂(ξi) = (yi − ŝn (xi))

2.

For the OLS estimators, we use φ̂M

(
ξj , wi; θ̂

)
= w′i

(
1
n

∑n
j=1wjw

′
j

)−1
wj

(
yj − w′j θ̂

)
as our

estimated influence functions. We consider three different values for γ0 while keeping β0 at
0.5. p refers to the number of right hand size variables, so the p = 51 and p = 60 columns
refer to the models with group effects.

p 1 2 3 4 5 6 7 8 9 10 51 60 kernel

γ0i = 0.5 0.950 0.948 0.952 0.951 0.954 0.949 0.947 0.947 0.959 0.956 0.950 0.954 0.948

γ0i = 1√
n

0.956 0.950 0.956 0.951 0.952 0.952 0.954 0.956 0.957 0.958 0.954 0.956 0.948

γ0i = 1
n 0.958 0.956 0.956 0.958 0.957 0.957 0.958 0.958 0.959 0.958 0.952 0.949 0.953

Table 1: Empirical Coverage Frequencies, Linear DGP, n = 2000, nTest = 4000, R = 2000

The empirical coverage frequencies for all estimators are close to the nominal level, which
supports the use of our asymptotic theory to construct asymptotically valid confidence
intervals for the expected out-of-sample error. Note that the probability limits of our
estimators ŝM , except for the one with p = 10, are all different from the true conditional
mean function of the underlying data generating process. We do not require our estimators
to be consistent for some true feature of the underlying DGP when deriving the asymptotic
distribution of the K-fold cross validation error.

5.1.2 Nonlinear DGP

We now repeat the same exercise as in the main text, but with a nonlinear DGP:

yi =
exp(β0xi)

1 + exp(β0xi)
+ z′iγ0 + εi, εi ∼ N(0, σ2

ε ), εi ⊥ xi, zi

Table 2 shows the empirical coverage frequencies for ÊPEOUT,n of the nominal 95% equal-

tailed two-sided confidence intervals
[
L̂CVn ± 1.96 σ̂n√

n

]
, where σ̂n is given in Theorem 3.2.

We see again that the coverage is close to the nominal level, even though our estimators are
not consistent for the true underlying conditional mean function.

p 1 2 3 4 5 6 7 8 9 10 51 60 kernel

γ0i = 0.5 0.950 0.945 0.952 0.952 0.951 0.949 0.949 0.939 0.959 0.951 0.948 0.951 0.946

γ0i = 1√
n

0.943 0.949 0.953 0.953 0.951 0.954 0.956 0.952 0.955 0.953 0.946 0.948 0.951

γ0i = 1
n 0.952 0.949 0.952 0.950 0.953 0.952 0.951 0.954 0.952 0.953 0.953 0.954 0.947

Table 2: Empirical Coverage Frequencies, Nonlinear DGP, n = 2000, nTest = 4000, R =
2000
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5.1.3 Gaussian Mixture Model

We generate data according to the following model: for x ∼ N (1, 1),

y1|x ∼ N
(
x′µ1, σ1

)
, y2|x ∼ N

(
x′µ2, σ2

)
, d|x ∼ Bernoulli (π) , y = (1− d) y1 + dy2

For β0 = (π, µ1, µ2, σ1, σ2), the density of Y is

f (y|x;β0) = (1− π)
1

σ1
φ

(
y − x′µ1

σ1

)
+ π

1

σ2
φ

(
y − x′µ2

σ2

)
and the conditional mean function is F (x, β0) ≡ E [y|x] = (1− π)x′µ1 + πx′µ2. Using the
information matrix equality, the influence function is given by

φM (ξj , xi;β0) = −∂F (xi, β0)

∂β′
E
[
∂2 log f (yj |xj ;β0)

∂β∂β′

]−1
∂ log f (yj |xj ;β0)

∂β

=
∂F (xi, β0)

∂β′
E
[
∂ log f (yj |xj ;β0)

∂β

∂ log f (yj |xj ;β0)

∂β′

]−1 ∂ log f (yj |xj ;β0)

∂β

∂F (xi, β0)

∂β′
=
[
x′ (µ2 − µ1) (1− π)x′ πx′ 0 0

]

∂ log f (y|x;β0)

∂β
=



1
f(y|x;β0)

(
1
σ2
φ
(
y−x′µ2
σ2

)
− 1

σ1
φ
(
y−x′µ1
σ1

))
− 1
f(y|x;β0) (1− π) x

σ2
1
φ′
(
y−x′µ1
σ1

)
− 1
f(y|x;β0)π

x
σ2
2
φ′
(
y−x′µ2
σ2

)
− 1
f(y|x;β0) (1− π)

{(
y−x′µ1
σ3
1

)
φ′
(
y−x′µ1
σ1

)
+ 1

σ2
1
φ
(
y−x′µ1
σ1

)}
− 1
f(y|x;β0)π

{(
y−x′µ2
σ3
2

)
φ′
(
y−x′µ2
σ2

)
+ 1

σ2
2
φ
(
y−x′µ2
σ2

)}



=



1
f(y|x;β0)

(
1
σ2
φ
(
y−x′µ2
σ2

)
− 1

σ1
φ
(
y−x′µ1
σ1

))
1

f(y|x;β0) (1− π) x
σ2
1

(
y−x′µ1
σ1

)
φ
(
y−x′µ1
σ1

)
1

f(y|x;β0)π
x
σ2
2

(
y−x′µ2
σ2

)
φ
(
y−x′µ2
σ2

)
1

f(y|x;β0)
1−π
σ2
1

((
y−x′µ1
σ1

)2
− 1

)
φ
(
y−x′µ1
σ1

)
1

f(y|x;β0)
π
σ2
2

((
y−x′µ2
σ2

)2
− 1

)
φ
(
y−x′µ2
σ2

)


We set the true values of the mean parameters to µ1 = 1, µ2 = 2, σ1 = σ2 = 1. We estimate
9 different Gaussian mixture regression models corresponding to π ∈ {0.1, 0.2, 0.3, ...., 0.9}.
The K-fold cross validation error is

L̂CVn =
1

K

K∑
k=1

1

nv

∑
i∈I(k)v

(
yi − F

(
xi, β̂

(−k)
))2

We estimate the expected out-of-sample error using the test error averaged across R Monte
Carlo simulations:

ÊPEOUT,n =
1

R

R∑
r=1

1

nTest

nTest∑
i=1

(
ỹri − F

(
x̃ri, β̂n,r

))2
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We construct nominal 95% equal-tailed two-sided confidence intervals
[
L̂CVn ± 1.96 σ̂n√

n

]
,

where σ̂n is given in Theorem 3.2, using two different ways of estimating the influence
function. The first way uses the information matrix equality formulation of the influence
function.

φ̂M

(
ξj , xi; β̂

)
=
∂F
(
xi, β̂

)
∂β′

 1

n

n∑
j=1

∂ log f
(
yj |xj ; β̂

)
∂β

∂ log f
(
yj |xj ; β̂

)
∂β′

−1
∂ log f

(
yj |xj ; β̂

)
∂β

The second way uses the estimated Hessian given as an output of the fmincon solver.

φ̂M

(
ξj , xi; β̂

)
= −

∂F
(
xi, β̂

)
∂β′

Ĥ−1
∂ log f

(
yj |xj ; β̂

)
∂β

The empirical coverage frequencies for ÊPEOUT,n are in Table 3, and we can see that they
are all close to 95%.

π = 0.1 π = 0.2 π = 0.3 π = 0.4 π = 0.5 π = 0.6 π = 0.7 π = 0.8 π = 0.9

Info. Matrix Eq. 0.948 0.951 0.950 0.952 0.954 0.952 0.951 0.950 0.946

Est. Hessian 0.948 0.951 0.949 0.952 0.954 0.952 0.950 0.950 0.946

Table 3: Empirical Coverage Frequencies, Gaussian Mixture Model DGP, n = 2000, nTest =
4000, R = 5000

5.2 Estimator Selection Test

We examine the rejection frequencies of our estimator selection test for testing the equiva-
lence of the expected out-of-sample errors. Consider the following simple data generating
process:

Yi = α0Wi + β0Xi + εi, εi
i.i.d.∼ N(0, 1), εi ⊥

(
Wi

Xi

)
i.i.d.∼ N

((
1
1

)
,

(
1 0.1

0.1 1

))
.

We compare two linear models estimated by OLS, one of which is nested inside the other:

M1 : Yi = α1Wi + ηi

M2 : Yi = α2Wi + β2Xi + εi

We examine the empirical frequencies of failing to reject the null that both models are
equally good in terms of out-of-sample predictive accuracy, rejecting in favor of model 1, and

rejecting in favor of model 2 under six different choices of β0 ∈
{

0, 1
n ,

1√
n
, n−1/4, n−1/6, 1

}
.

Table 4 shows the empirical rejection frequencies for nominal 5% and 10% tests using
n = 5000 observations, R = 5000 Monte Carlo simulations, and B = 5000 subsampling
replications with a subsample size of b =

√
n. In all cases we use 5-fold cross validation

to form the test statistic T̃n ≡ nδ̂
(
L̂CVn (M2)− L̂CVn (M1)

)
, and estimate δ̂ using I =
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10 different values of the subsample size n(0.5:0.05:0.95). We also report the δ̂ estimates
averaged over the R = 5000 Monte Carlo simulations. The average δ̂ is fairly close to 1 for

β0 ∈
{

0, 1
n ,

1√
n

}
and close to 0.5 for β0 ∈

{
n−1/4, n−1/6, 1

}
. This suggests that first order

degeneracy is a problem for values of β0 drifting very quickly to zero, but not an issue for

the slower drifting values. For β0 ∈
{

0, 1
n ,

1√
n

}
, the two models are sufficiently similar such

that our test fails to reject the null of equal expected out-of-sample error for a majority of
the simulations. For β0 ∈

{
n−1/4, n−1/6, 1

}
, the two models are different enough so that

the probability of rejecting the null in favor of model M2 is very close to 1.

β0 = 0 β0 = n−1 β0 = n−1/2 β0 = n−1/4 β0 = n−1/6 β0 = 1

nominal 5%

Fail to Reject 0.9852 0.9852 0.9922 0.0004 0 0

Favor M1 0.0148 0.0148 0.0078 0 0 0

Favor M2 0 0 0 0.9996 1 1

nominal 10%

Fail to Reject 0.9626 0.9624 0.9602 0 0 0

Favor M1 0.0344 0.0344 0.0214 0 0 0

Favor M2 0.0030 0.0032 0.0184 1 1 1

Average δ̂ 0.972 0.972 0.925 0.527 0.513 0.506

Table 4: Empirical Rejection/Non-rejection Frequencies, n = 5000, B = 5000, R = 5000

6. Empirical Application

The data come from GoDaddy, a domain name registrar responsible for managing sales of
internet domain names. Each observation is a particular domain name listed on a GoDaddy
expiry auction between May 12th, 2017 and July 11th, 2017. The domains are auctioned off
in an open-bid English auction with a minimum bid of $12 and a duration of approximately
10 days. If the domain is still not sold after the 10 days are over, there is a 5 day closeout
Dutch auction. One interesting fact about these auctions is that the majority of participants
are speculators who have no intrinsic use of the domain except turning a profit when they
resell the name in an aftermarket. Another interesting fact is that very few of the English
auctions result in sale, partly due to the sheer volume of domains that are listed for sale.
For example, of the 2178187 auctions with a start time on or after May 12th, 2017 and
before July 11th, 2017, only 28448 auctions met the minimum bid requirement. Starting
on May 12th, 2017, GoDaddy implemented a simple randomized experiment where some
domain names would receive a valuation metric provided by a machine learning algorithm
using deep learning. The idea was to provide auction participants with a better sense of
the value of a domain name.

Our goal is to compare three different estimators for predicting the sale price for those
28448 auctions which met the minimum bid requirement using the following nine features:
dummy for whether the domain has a valuation assigned by the deep learning algorithm, the
domain valuation assigned by the deep learning algorithm (coded as 0 for those domains
without a valuation), the number of characters in the domain name, three dummies for
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whether the domain is a .com, .org, or .net, and three dummies for whether the domain
contains a word in the English dictionary, a number, or a vowel.

The first estimator is OLS using all independent variables. The second estimator is
an honest Random Forest estimator using all independent variables and computed using
the grf R package’s regression forest command with the default options. The third
estimator is a single-hidden layer Neural Network with a sigmoidal activation function and
5 hidden units using all independent variables and computed using the nn.train command
in the deepnet R package.

We perform three pairwise nominal (5/3)%-level 5-fold cross validation with squared
error loss estimator selection tests using B = 1000 subsampling iterations. We divide by
3 because we are using the Bonferroni correction to control the Family Wise Error Rate
at 5%; this is just one of many ways that we could have corrected the multiple testing
issue. The 5-fold cross validation errors are 68323.73 for Random Forests, 94291.50 for
Neural Networks, and 94444.18 for OLS. For all three tests, we reject the null of equal
expected out-of-sample error for the two estimators. When we compare Random Forests
to Neural Networks, we find Random Forests has greater predictive accuracy than Neural
Networks. When we compare Random Forests to OLS, we find Random Forests has greater
predictive accuracy than OLS. When we compare Neural Networks to OLS, we find Neural
Networks has greater predictive accuracy than OLS. The results are the same across a range
of different values of the subsample size b = bnκc, where κ ∈ {0.4, 0.5, 0.6, 0.7, 0.8}.

7. Conclusion

We have demonstrated asymptotic normality of the K-fold cross validation error as the
number of observations n goes to infinity keeping the number of folds K fixed. The rate of
convergence of the K-fold cross validation error to the expected out-of-sample error is

√
n

for both parametric and nonparametric estimators, and the asymptotic variance does not
depend on K. We have constructed an analytic estimate of the asymptotic variance, which
can be used to construct confidence intervals for the expected out-of-sample error. We
have also developed a hypothesis test for comparing two estimators’ expected out-of-sample
errors by looking at the difference in their K-fold cross validation errors. In the absence
of first-order degeneracy, the test statistic is asymptotically normal under the null and can
be benchmarked against the standard normal critical values. In the presence of first-order
degeneracy, the test statistic is not asymptotically normal but its distribution under the
null is consistently estimable using subsampling.
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Appendix A. Appendix

A.1 Proof of Theorem 3.1

Denote τnt as the analog of τn using nt = n(K − 1)/K observations, and I
(t)
k as the indices

of the observations in the kth training fold. Taking second order Taylor expansions of

γ(ŝ
(−k)
M ; ξi) and γ(ŝM ; ξ̃i) around γ(s∗M ; ξi) and γ(s∗M ; ξ̃i),

√
n(L̂CVn (M)− EPEOUT,n(M))

=
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{
γ(ŝ

(−k)
M ; ξi)− E[γ(s∗M ; ξ̃i)]− E

[
(ŝM (x̃i)− s∗M (x̃i))

∂γ(s∗M ; ξ̃i)

∂s∗M

]

− E
[
(ŝM (x̃i)− s∗M (x̃i))

2 1

2

∂2γ(s∗M ; ξ̃i)

∂s∗M
2

]}
=

1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{
γ(s∗M ; ξi)− E[γ(s∗M ; ξ̃i)]

}

+
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{(
ŝ
(−k)
M (xi)− s∗M (xi)

) ∂γ(s∗M ; ξi)

∂s∗M
− E

[
(ŝM (x̃i)− s∗M (x̃i))

∂γ(s∗M ; ξ̃i)

∂s∗M

]}

+
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{(
ŝ
(−k)
M (xi)− s∗M (xi)

)2 ∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
(ŝM (x̃i)− s∗M (x̃i))

2 ∂
2γ(s∗M ; ξ̃i)

∂s∗M
2

]}

Using Assumption 3.3 and the fact that x̃i is drawn from the same distribution as xi,

1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{
(ŝ

(−k)
M (xi)− s∗M (xi))

∂γ(s∗M ; ξi)

∂s∗M
− E

[
(ŝM,nt(x̃i)− s

∗
M (x̃i))

∂γ(s∗M ; ξ̃i)

∂s∗M

]}

=
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

1

nt

∑
j∈I(t)

k

{
φM (ξj , xi)

∂γ(s∗M ; ξi)

∂s∗M
− E

[
φM (ξj , xi)

∂γ(s∗M ; ξi)

∂s∗M

]}

+op

(
1

τnt

)
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

(
∂γ(s∗M ; ξi)

∂s∗M
− E

[
∂γ(s∗M ; ξi)

∂s∗M

])

=
1√
K

K∑
k=1

√
nv

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

{
φM (ξj , xi)

∂γ(s∗M ; ξi)

∂s∗M
− E

[
φM (ξj , xi)

∂γ(s∗M ; ξi)

∂s∗M

]}
︸ ︷︷ ︸

ψ(ξj ,ξi)−E[ψ(ξj ,ξi)]

+ op

(
1

τnt

)
OP (1)

≡ 1√
K

K∑
k=1

√
nv

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

{ψ(ξj , ξi)− E [ψ(ξj , ξi)]}

︸ ︷︷ ︸
U1k

+ op

(
1

τnt

)
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Furthermore,

1

2

1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{(
ŝ
(−k)
M (xi)− s∗M (xi)

)2 ∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
(ŝM,nt(x̃i)− s

∗
M (x̃i))

2 ∂
2γ(s∗M ; ξ̃i)

∂s∗M
2

]}

=
1

2

1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

 1

n2
t

∑
j1∈I

(t)
k

∑
j2∈I

(t)
k

φM (ξj1 , xi)φM (ξj2 , xi)
∂2γ(s∗M ; ξi)

∂s∗M
2

− 1

nt
E
[
φM (ξj , xi)

2 ∂
2γ(s∗M ; ξi)

∂s∗M
2

]
− nt − 1

nt
E
[
φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

]}
+ op

(
1

τnt

)
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

1

nt

∑
j∈I(t)

k

(
φM (ξj , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
φM (ξj , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

])

+ op

(
1

τ2nt

)
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

(
∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
∂2γ(s∗M ; ξi)

∂s∗M
2

])

=
1

2

1√
K

K∑
k=1

√
nv

nt

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

{
φM (ξj , xi)

2 ∂
2γ(s∗M ; ξi)

∂s∗M
2

− E
[
φM (ξj , xi)

2 ∂
2γ(s∗M ; ξi)

∂s∗M
2

]}
︸ ︷︷ ︸

R1k

+

√
nv√
K

K∑
k=1

2

nvnt(nt − 1)

∑
i∈I(v)

k

∑
j1∈I

(t)
k

∑
j2>j1


1

2
φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2︸ ︷︷ ︸

ν(ξj1 ,ξj2 ,ξi)

− E [ν(ξj1 , ξj2 , ξi)]

︸ ︷︷ ︸
U2k

− 1

nt

1√
K

K∑
k=1

√
nvU2k

+ op

(
1

τnt

)
1√
K

K∑
k=1

√
nv

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

(
φM (ξj , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
φM (ξj , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

])
︸ ︷︷ ︸

R2k

+ op

(
1

τ2nt

)
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

(
∂2γ(s∗M ; ξi)

∂s∗M
2

− E
[
∂2γ(s∗M ; ξi)

∂s∗M
2

])

For each k = 1...K, U1k is a two-sample U-statistic of degree (1,1) with kernel ψ(ξj , ξi) =

φM (ξj , xi)
∂γ(s∗M ;ξi)
∂s∗M

, U2k is a two-sample U-statistic of degree (2,1) with kernel ν(ξj1 , ξj2 , ξi) =

1
2φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ;ξi)

∂s∗M
2 , R1k is a two-sample U-statistic of degree (1,1) with kernel

κ(ξj , ξi) = φM (ξj , xi)
2 ∂

2γ(s∗M ;ξi)

∂s∗M
2 , and R2k is a two-sample U-statistic of degree (1,1) with

kernel η(ξj , ξi) = φM (ξj , xi)
∂2γ(s∗M ;ξi)

∂s∗M
2 . Results for two-sample U-statistics in e.g. (Van der

Vaart, 2000) show that R1k and R2k are Op

(
1√

nv+nt

)
for all k, which imply they do not

contribute to the asymptotic distribution of L̂CVn (M).

For
√
n-consistent estimators, E [φM (ξj , xi)|xi] = 0 implies E [ψ(ξj , ξi)| ξi] = 0,
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E [ν(ξj1 , ξj2 , ξi)| ξi] = 0, E [ν(ξj1 , ξh, ξi)| ξh] = 0, and E [ν(ξh, ξj2 , ξi)| ξh] = 0 because

E
[
φM (ξj , xi)

∂γ(s∗M ; ξi)

∂s∗M

∣∣∣∣ ξi] = E [φM (ξj , xi)|xi]
∂γ(s∗M ; ξi)

∂s∗M
= 0

E
[
φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

∣∣∣∣ ξi] = E [φM (ξj1 , xi)|xi]E [φM (ξj2 , xi)|xi]
∂2γ(s∗M ; ξi)

∂s∗M
2

= 0

E
[
φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

∣∣∣∣ ξj1] = E
[
φM (ξj1 , xi)E [φM (ξj2 , xi)|xi]

∂2γ(s∗M ; ξi)

∂s∗M
2

∣∣∣∣ ξj1] = 0

E
[
φM (ξj1 , xi)φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

∣∣∣∣ ξj2] = E
[
E [φM (ξj1 , xi)|xi]φM (ξj2 , xi)

∂2γ(s∗M ; ξi)

∂s∗M
2

∣∣∣∣ ξj2] = 0

This implies that U2k is a degenerate two-sample U-statistic of order Op

(
1√
nvnt

)
, and only

U1k contributes to the asymptotic distribution. Additionally, E [ψ(ξj , ξi)| ξi] = 0 implies
that one of the projection terms disappears in the Hoeffding decomposition for U1k (see e.g.
(Lehmann, 1951), (Van der Vaart, 2000), or (Neumeyer, 2004)).

√
nvU1k =

√
nv√
nt

1
√
nt

∑
j∈I(t)k

E [ψ(ξj , ξi)− E [ψ(ξj , ξi)]| ξj ]

+

√
nv√
nv

1
√
nv

∑
i∈I(v)k

E [ψ(ξj , ξi)− E [ψ(ξj , ξi)]| ξi]

︸ ︷︷ ︸
=0

+
√
nv∆1k

where ∆1k is a degenerate two-sample U-statistic of order Op

(
1√
nvnt

)
.

Because each observation ξj appears in K − 1 training sets,

K∑
k=1

∑
j∈I(t)k

E [ψ(ξj , ξi)− E [ψ(ξj , ξi)]| ξj ] = (K − 1)
n∑
j=1

E [ψ(ξj , ξi)− E [ψ(ξj , ξi)]| ξj ]

Since nt = (K − 1)nv and nt = n(K − 1)/K,

1√
K

K∑
k=1

√
nvU1k =

1√
n

n∑
j=1

E [ψ(ξj , ξi)− E [ψ(ξj , ξi)]| ξj ] +
1√
K

K∑
k=1

√
nv∆1k

√
n
(
L̂CVn (M)− EPEOUT,n(M)

)
=

1√
K

K∑
k=1

1
√
nv

∑
i∈I(v)k

{γ(s∗M ; ξi)− E[γ(s∗M ; ξi)]}

+
1√
K

K∑
k=1

√
nvU1k + op(1)

By the Lindeberg-Levy Central Limit Theorem,

√
n
(
L̂CVn (M)− EPEOUT,n(M)

)
d→ N

(
0, σ2

γ + σ2
01,ψ + 2λ

)
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where σ2
γ ≡ V ar [γ(s∗M ; ξi)], σ

2
01,ψ ≡ V ar [E [ψ(ξj , ξi)| ξj ]], and λ ≡ Cov [γ(s∗M ; ξj),E [ψ(ξj , ξi)|ξj ]].

For nonparametric estimators, note that our assumptions of V ar [E [ψ (ξj , ξi)| ξi]] → 0
and V ar [E [ψ (ξj , ξi)| ξj ]]→ 0 imply U1k is a degenerate two-sample U-statistic, so only the
first term contributes to the asymptotic distribution:

√
n
(
L̂CVn (M)− EPEOUT,n(M)

)
=

1√
K

K∑
k=1

1
√
nv

∑
i∈I(v)k

{γ(s∗M ; ξi)− E[γ(s∗M ; ξi)]}+ op(1)

The asymptotic variance will be σ2 = σ2
γ .

�

A.2 Proof of Theorem 3.2

Define γ̂M (ξi) = γ (ŝM ; ξi) and γ0M (ξi) = γ (s∗M ; ξi). We assumed 1
n

∑n
i=1 |γ̂M (ξi)− γ0M (ξi)|2 =

op(1), and by the law of large numbers, 1
n

∑n
i=1 γ0M (ξi)

p→ E [γ0M (ξi)]. Therefore,∣∣∣∣∣ 1n
n∑
i=1

γ̂M (ξi)− E [γ0M (ξi)]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|+

∣∣∣∣∣ 1n
n∑
i=1

γ0M (ξi)− E [γ0M (ξi)]

∣∣∣∣∣ p→ 0∣∣∣∣∣ 1n
n∑
i=1

γ̂2
M (ξi)− E

[
γ2

0M (ξi)
]∣∣∣∣∣

≤ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|2 + 2
1

n

n∑
i=1

|γ0M (ξi)| |γ̂M (ξi)− γ0M (ξi)|

+

∣∣∣∣∣ 1n
n∑
i=1

γ2
0M (ξi)− E

[
γ2

0M (ξi)
]∣∣∣∣∣

≤ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|2 + 2

√√√√ 1

n

n∑
i=1

|γ0M (ξi)|2
√√√√ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|2 + op(1)
p→ 0

Therefore, σ̂2
γ = 1

n

∑n
i=1 γ̂

2
M (ξi)−

(
1
n

∑n
i=1 γ̂M (ξi)

)2 p→ V ar [γ0M (ξi)]. We have shown that
we can consistently estimate the asymptotic variance of the K-fold cross validation error for
nonparametric estimators.

Now we consider the case of
√
n-consistent estimators. Define h0M (ξj) = E [ψ(ξj , ξi; s

∗
M )| ξj ],

h̃M (ξj) = 1
n−1

∑
i 6=j ψ (ξj , ξi; s

∗
M ), and ĥM (ξj) = 1

n−1

∑
i 6=j ψ̂ (ξj , ξi; ŝM ). Notice that

1
n

∑n
j=1 h̃M (ξj) = 1

n−1
1
n

∑n
j=1

∑
i 6=j ψ (ξj , ξi; s

∗
M ) is a U-statistic of order 2. Notice that

1
n

∑n
j=1 h0M (ξj) is one of the projection terms in the Hoeffding decomposition for U-

statistics, and the other projection term is zero since E [ψ (ξj , ξi; s
∗
M )| ξi] = 0. Since the

remainder term in the Hoeffding decomposition must converge in probability to zero,∣∣∣∣∣∣ 1n
n∑
j=1

h̃M (ξj)−
1

n

n∑
j=1

h0M (ξj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

n− 1

1

n

n∑
j=1

∑
i 6=j

ψ (ξj , ξi; s
∗
M )− 1

n

n∑
j=1

E [ψ (ξj , ξi; s
∗
M )| ξj ]

∣∣∣∣∣∣ p→ 0
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Similarly, notice that 1
n

∑n
j=1 h̃M (ξj)

2 = 1
(n−1)2

1
n

∑n
j=1

∑
i1 6=j

∑
i2 6=j ψ (ξj , ξi1 ; s∗M )ψ (ξj , ξi2 ; s∗M )

is asymptotically equivalent to a U-statistic of order 3. Using the Hoeffding decomposition
and E [ψ (ξj , ξi1 ; s∗M )ψ (ξj , ξi2 ; s∗M )| ξj ] = E [ψ (ξj , ξi; s

∗
M )| ξj ]2,∣∣∣∣∣∣ 1n

n∑
j=1

h̃M (ξj)
2 − 1

n

n∑
j=1

h0M (ξj)
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n (n− 1) (n− 2)

n∑
j=1

∑
i1 6=j

∑
i2 6=i1

ψ (ξj , ξi1 ; s∗M )ψ (ξj , ξi2 ; s∗M )− 1

n

n∑
j=1

E [ψ (ξj , ξi; s
∗
M )| ξj ]2

∣∣∣∣∣∣+ op(1)

=op(1)

Since we assumed 1
n

∑n
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣2 p→ 0, it follows that

∣∣∣∣∣∣ 1n
n∑
j=1

ĥM (ξj)
2 − 1

n

n∑
j=1

h0M (ξj)
2

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣2 + 2

1

n

n∑
j=1

∣∣∣h̃M (ξj)
∣∣∣ ∣∣∣ĥM (ξj)− h̃M (ξj)

∣∣∣
+

∣∣∣∣∣∣ 1n
n∑
j=1

h̃M (ξj)
2 − 1

n

n∑
j=1

h0M (ξj)
2

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣2 + 2

√√√√ 1

n

n∑
j=1

∣∣∣h̃M (ξj)
∣∣∣2
√√√√ 1

n

n∑
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣2 + op(1)

p→ 0

∣∣∣∣∣∣ 1n
n∑
j=1

ĥM (ξj)−
1

n

n∑
j=1

h0M (ξj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
j=1

h̃M (ξj)−
1

n

n∑
j=1

h0M (ξj)

∣∣∣∣∣∣+
1

n

n∑
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣

p→ 0

which implies that 1

n

n∑
j=1

ĥM (ξj)

2

−

 1

n

n∑
j=1

h0M (ξj)

2

≤

∣∣∣∣∣∣ 1n
n∑
j=1

ĥM (ξj) +
1

n

n∑
j=1

h0M (ξj)

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
j=1

ĥM (ξj)−
1

n

n∑
j=1

h0M (ξj)

∣∣∣∣∣∣
= Op(1)op(1) = op(1)

516



Asymptotics of K-Fold Cross Validation

and therefore,

1

n

n∑
j=1

ĥM (ξj)
2 −

 1

n

n∑
j=1

ĥM (ξj)

2

−

 1

n

n∑
j=1

h0M (ξj)
2 −

 1

n

n∑
j=1

h0M (ξj)

2 p→ 0

Since 1
n

∑n
j=1 h0M (ξj)

2 −
(

1
n

∑n
j=1 h0M (ξj)

)2 p→ V ar (h0M (ξj)), it follows that σ̂2
01,ψ =

1
n

∑n
j=1 ĥM (ξj)

2 −
(

1
n

∑n
j=1 ĥM (ξj)

)2 p→ V ar (h0M (ξj)).

Note that 1
n

∑n
j=1 γ0M (ξj) h̃M (ξj) is a U-statistic of order 2. By the Hoeffding decom-

position,∣∣∣∣∣∣ 1n
n∑
j=1

γ0M (ξj) h̃M (ξj)−
1

n

n∑
j=1

γ0M (ξj)h0M (ξj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n− 1

1

n

n∑
j=1

∑
i 6=j

γ (s∗M ; ξj)ψ (ξj , ξi; s
∗
M )− 1

n

n∑
j=1

E [γ (s∗M ; ξj)ψ (ξj , ξi; s
∗
M )| ξj ]

∣∣∣∣∣∣
p→ 0

Our assumptions and results so far imply∣∣∣∣∣ 1n
n∑
i=1

γ̂M (ξi) ĥM (ξi)−
1

n

n∑
i=1

γ0M (ξi)h0M (ξi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(γ̂M (ξi)− γ0M (ξi)) ĥM (ξi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(
ĥM (ξi)− h̃M (ξi)

)
γ0M (ξi)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

γ0M (ξi) h̃M (ξi)−
1

n

n∑
i=1

γ0M (ξi)h0M (ξi)

∣∣∣∣∣
≤ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|
∣∣∣ĥM (ξi)

∣∣∣+
1

n

n∑
i=1

∣∣∣ĥM (ξi)− h̃M (ξi)
∣∣∣ |γ0M (ξi)|+ op(1)

≤

√√√√ 1

n

n∑
i=1

|γ̂M (ξi)− γ0M (ξi)|2
√√√√ 1

n

n∑
i=1

∣∣∣ĥM (ξi)
∣∣∣2

+

√√√√ 1

n

n∑
i=1

∣∣∣ĥM (ξi)− h̃M (ξi)
∣∣∣2
√√√√ 1

n

n∑
i=1

|γ0M (ξi)|2 + op(1)

= op (1)Op (1) + op (1)Op (1) = op (1)

Since 1
n

∑n
i=1 (γ0M (ξi)h0M (ξi)− E [γ0M (ξi)h0M (ξi)])

p→ 0,

1

n

n∑
i=1

(
γ̂M (ξi)ĥM (ξi)− E [γ0M (ξi)h0M (ξi)]

)
p→ 0
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Since also 1
n

∑n
i=1 (γ̂M (ξi)− E [γ0M (ξi)])

p→ 0 and 1
n

∑n
i=1

(
ĥM (ξi)− E [h0M (ξi)]

)
p→ 0,

λ̂
p→ λ ≡ Cov [γ0M (ξi), h0M (ξi)]

�

A.3 Proof of Theorem 4.1

The arguments are similar to the Proof of Theorem 3.1, except that we now have to ac-
count for the possibly different rates of convergence of the two estimators. Taking Taylor

expansions of γ(ŝ
(−k)
M ; ξi) and γ(ŝM ; ξ̃i) around γ(s∗M ; ξi) and γ(s∗M ; ξ̃i) for M ∈ {M1,M2},

√
n
(
L̂CVn (M2)− L̂CVn (M1)−

(
E[γ(ŝM2 ; ξ̃i)]− E[γ(ŝM1 ; ξ̃i)]

))
=

1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{
γ(s∗M2

; ξi)− γ(s∗M1
; ξi)−

(
E[γ(s∗M2

; ξ̃i)]− E[γ(s∗M1
; ξ̃i)]

)}

+
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{(
ŝ
(−k)
M2

(xi)− s∗M2
(xi)

) ∂γ(s∗M2
; ξi)

∂s∗M2

−
(
ŝ
(−k)
M1

(xi)− s∗M1
(xi)

) ∂γ(s∗M1
; ξi)

∂s∗M1

−

(
E

[
(ŝM2(x̃i)− s

∗
M2

(x̃i))
∂γ(s∗M2

; ξ̃i)

∂s∗M2

]
− E

[
(ŝM1(x̃i)− s

∗
M1

(x̃i))
∂γ(s∗M1

; ξ̃i)

∂s∗M1

])}

+
1√
n

K∑
k=1

∑
i∈I(v)

k

{
(ŝ

(−k)
M2

(xi)− s∗M2
(xi))

2 ∂
2γ(s∗M2

; ξi)

∂s∗M2

2
− E

[
(ŝM2(x̃i)− s

∗
M2

(x̃i))
2 ∂

2γ(s∗M2
; ξ̃i)

∂s∗M2

2

]}

− 1√
n

K∑
k=1

∑
i∈I(v)

k

{
(ŝ

(−k)
M1

(xi)− s∗M1
(xi))

2 ∂
2γ(s∗M1

; ξi)

∂s∗M1

2
− E

[
(ŝM1(x̃i)− s

∗
M1

(x̃i))
2 ∂

2γ(s∗M1
; ξ̃i)

∂s∗M1

2

]}

=
1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{γ(s∗M2
; ξi)− γ(s∗M1

; ξi)− (E[γ(s∗M2
; ξi)]− E[γ(s∗M1

; ξi)])}︸ ︷︷ ︸
γ̃(ξi)−E[γ̃(ξi)]

+
1√
K

K∑
k=1

√
nv

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

φM2(ξj , xi)
∂γ(s∗M2

; ξi)

∂s∗M2︸ ︷︷ ︸
ψM2

(ξj ,ξi)

− E [ψM2(ξj , ξi)]



− 1√
K

K∑
k=1

√
nv

1

nv

1

nt

∑
i∈I(v)

k

∑
j∈I(t)

k

φM1(ξj , xi)
∂γ(s∗M1

; ξi)

∂s∗M1︸ ︷︷ ︸
ψM1

(ξj ,ξi)

− E [ψM1(ξj , ξi)]

+ op (1)

≡ 1√
K

K∑
k=1

1√
nv

∑
i∈I(v)

k

{γ̃(ξi)− E[γ̃(ξi)]}+

{
1√
K

K∑
k=1

√
nvU1,M2,k −

1√
K

K∑
k=1

√
nvU1,M1,k

}
+ op(1)

Note that Ũ1k ≡ U1,M2,k−U1,M1,k is a two-sample U-statistic with kernel function ψ̃(ξj , ξi) ≡
ψM2(ξj , ξi)−ψM1(ξj , ξi). For

√
n-consistent estimators τn,1 = τn,2 =

√
n, E [φM (ξj , xi)|xi] =

0 for M ∈ {M1,M2} implies E
[
ψ̃(ξj , ξi)

∣∣∣ ξi] = 0. Using similar Hoeffding decomposition
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arguments as in the proof of Theorem 3.1,

√
n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
=

1√
n

n∑
i=1

{γ̃(ξi)− E[γ̃(ξi)]}+
1√
n

n∑
j=1

E
[
ψ̃(ξj , ξi)− E

[
ψ̃(ξj , ξi)

]∣∣∣ ξj]+ op(1)

The asymptotic variance is
σ̃2 = σ̃2

γ + σ̃2
01,ψ + 2λ̃

If τn,1 � τn,2 =
√
n, since V ar [E [ψM1(ξj , ξi)| ξi]] → 0 and V ar [E [ψM1(ξj , ξi)| ξj ]] → 0,

U1,M1,k is a degenerate two-sample U-statistic, so

√
n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
=

1√
n

n∑
i=1

{γ̃(ξi)− E[γ̃(ξi)]}+
1√
n

n∑
j=1

E [ψM2(ξj , ξi)− E [ψM2(ξj , ξi)]| ξj ] + op(1)

The asymptotic variance is
σ̃2 = σ̃2

γ + σ2
01,ψM2

+ 2λM2

If τn,2 � τn,1 =
√
n, since V ar [E [ψM2(ξj , ξi)| ξi]] → 0 and V ar [E [ψM2(ξj , ξi)| ξj ]] → 0,

U1,M2,k is a degenerate two-sample U-statistic, so

√
n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
=

1√
n

n∑
i=1

{γ̃(ξi)− E[γ̃(ξi)]} −
1√
n

n∑
j=1

E [ψM1(ξj , ξi)− E [ψM1(ξj , ξi)]| ξj ] + op(1)

The asymptotic variance is
σ̃2 = σ̃2

γ + σ2
01,ψM1

+ 2λM1

If τn,1, τn,2 �
√
n, V ar [E [ψM1(ξj , ξi)| ξi]]→ 0, V ar [E [ψM1(ξj , ξi)| ξj ]]→ 0,

V ar [E [ψM2(ξj , ξi)| ξi]]→ 0, and V ar [E [ψM2(ξj , ξi)| ξj ]]→ 0 imply U1,M1,k and U1,M2,k are
degenerate two-sample U-statistics. Then only the residual variance term contributes to
the asymptotic distribution:

√
n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
=

1√
n

n∑
i=1

{
γ̃(ξi)− E[γ̃(ξ̃i)]

}
+ op(1)

The asymptotic variance will be σ̃2 = σ̃2
γ .

Under H0 and alternatives of the form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → 0,

√
n
(
L̂CVn (M2)− L̂CVn (M1)

)
has the same asymptotic distribution as

√
n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
. Since ˆ̃σ2

n
p→ σ̃2,

Tn =

√
n

ˆ̃σn

(
L̂CVn (M2)− L̂CVn (M1)

)
d→ N(0, 1)
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Under alternatives of the form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1))→ c, we have

Tn =

√
n

ˆ̃σn

(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
︸ ︷︷ ︸

d→N(0,1)

+

√
n

ˆ̃σn
(EPEOUT,n(M2)− EPEOUT,n(M1))︸ ︷︷ ︸

→c/σ̃

d→ N(c/σ̃, 1).

Under alternatives of the form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → ∞, it follows

that

Tn =

√
n

ˆ̃σn

(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
︸ ︷︷ ︸

d→N(0,1)

+

√
n

ˆ̃σn
(EPEOUT,n(M2)− EPEOUT,n(M1))︸ ︷︷ ︸

→∞

→∞.

Under alternatives of the form
√
n (EPEOUT,n(M2)− EPEOUT,n(M1)) → −∞, it follows

that

Tn =

√
n

ˆ̃σn

(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
︸ ︷︷ ︸

d→N(0,1)

+

√
n

ˆ̃σn
(EPEOUT,n(M2)− EPEOUT,n(M1))︸ ︷︷ ︸

→−∞

→ −∞.

Up to this point we have examined the case when the rate of convergence of L̂CVn (M2)−
L̂CVn (M1) is

√
n, but it can happen that the rate is n when σ̃2 = 0, which can occur when

V ar [γ̃ (ξ)] = 0 and Ũ1k is a degenerate two-sample U-statistic of degree (1,1). There are
results in the literature that characterize the asymptotic distribution of degenerate two-
sample U-statistics of degree (1,1) (see e.g. (Neuhaus, 1977), (Eagleson, 1979), (Dewan &
Rao, 2001)). They show that the rate of convergence is the square root of the product of

the two sample sizes. In our case, this would mean that Ũ1k = OP

(
1√
nvnt

)
.

n
(
L̂CVn (M2)− L̂CVn (M1)− (EPEOUT,n(M2)− EPEOUT,n(M1))

)
=

K∑
k=1

nvŨ1k + op(1) =
K∑
k=1

OP

(
nv√
nvnt

)
+ op(1) = OP (1)

Although there are results in the literature that characterize the asymptotic distribution
of a single degenerate two-sample U-statistic of degree (1,1) (see e.g. (Neuhaus, 1977),
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(Eagleson, 1979), (Dewan & Rao, 2001)), deriving the asymptotic distribution of a sum
of K degenerate two-sample U-statistics which are not independent of each other is still
fairly complicated. We leave the details for future research and instead use subsampling to
estimate the distribution in practice. �

A.4 Proof of Theorem 4.2

First, note that 1
n

∑n
i=1 |γ̂M (ξi)− γ0M (ξi)|2

p→ 0 for M ∈ {M1,M2} implies

1
n

∑n
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣2 p→ 0 and therefore 1

n

∑n
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣ p→ 0 for ˆ̃γ (ξi) ≡ γ̂M2 (ξi)−

γ̂M1 (ξi) and γ̃0 (ξi) ≡ γ0M2 (ξi) − γ0M1 (ξi). Additionally, by the law of large numbers
1
n

∑n
i=1 γ̃0 (ξi)

p→ E [γ̃0 (ξi)]. Therefore,

∣∣∣∣∣ 1n
n∑
i=1

ˆ̃γ (ξi)− E [γ̃0 (ξi)]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

γ̃0 (ξi)− E [γ̃0 (ξi)]

∣∣∣∣∣ p→ 0∣∣∣∣∣ 1n
n∑
i=1

ˆ̃γ2 (ξi)− E
[
γ̃2

0 (ξi)
]∣∣∣∣∣

≤ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣2 + 2

1

n

n∑
i=1

|γ̃0 (ξi)|
∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)

∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

γ̃2
0 (ξi)− E

[
γ̃2

0 (ξi)
]∣∣∣∣∣

≤ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣2 + 2

√√√√ 1

n

n∑
i=1

|γ̃0 (ξi)|2
√√√√ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣2 + op(1)

p→ 0

Therefore, ˆ̃σ2
γ = 1

n

∑n
i=1

ˆ̃γ2 (ξi) −
(

1
n

∑n
i=1

ˆ̃γ (ξi)
)2 p→ V ar [γ̃0(ξi)]. Our assumption of

1
n

∑n
j=1

∣∣∣ĥM (ξj)− h̃M (ξj)
∣∣∣2 p→ 0 for M ∈ {M1,M2} implies

1

n

n∑
j=1

∣∣∣ˆ̃h (ξj)− ˜̃
h (ξj)

∣∣∣2 =
1

n

n∑
j=1

∣∣∣ĥM2 (ξj)− h̃M2 (ξj)−
(
ĥM1 (ξj)− h̃M1 (ξj)

)∣∣∣2
≤ 1

n

n∑
j=1

∣∣∣ĥM2 (ξj)− h̃M2 (ξj)
∣∣∣2 +

1

n

n∑
j=1

∣∣∣ĥM1 (ξj)− h̃M1 (ξj)
∣∣∣2

= op(1)

For
˜̃
h (ξj) ≡ h̃M2 (ξj)−h̃M1 (ξj),

1
n

∑n
j=1

˜̃
h (ξj)

2 = 1
(n−1)2

1
n

∑n
j=1

∑
i1 6=j

∑
i2 6=j ψ̃ (ξj , ξi1) ψ̃ (ξj , ξi2)

is asymptotically equivalent to a U-statistic of order 3. Using the Hoeffding decomposi-

tion and E
[
ψ̃ (ξj , ξi1) ψ̃ (ξj , ξi2)

∣∣∣ ξj] = E
[
ψ̃ (ξj , ξi)

∣∣∣ ξj]2
= h̃0 (ξj) for h̃0 (ξj) ≡ h0M2 (ξj) −
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h0M1 (ξj),

∣∣∣∣∣∣ 1n
n∑
j=1

˜̃
h (ξj)

2 − 1

n

n∑
j=1

h̃0 (ξj)
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

n (n− 1) (n− 2)

n∑
j=1

∑
i1 6=j

∑
i2 6=i1

ψ̃ (ξj , ξi1) ψ̃ (ξj , ξi2)− 1

n

n∑
j=1

E
[
ψ̃ (ξj , ξi)

∣∣∣ ξj]2

∣∣∣∣∣∣+ op(1)

=op(1)

∣∣∣∣∣∣ 1n
n∑
j=1

ˆ̃
h (ξj)

2 − 1

n

n∑
j=1

h̃0 (ξj)
2

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣ˆ̃h (ξj)− ˜̃
h (ξj)

∣∣∣2 + 2
1

n

n∑
j=1

∣∣∣˜̃h (ξj)
∣∣∣ ∣∣∣ˆ̃h (ξj)− ˜̃

h (ξj)
∣∣∣+

∣∣∣∣∣∣ 1n
n∑
j=1

˜̃
h (ξj)

2 − 1

n

n∑
j=1

h̃0 (ξj)
2

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

∣∣∣ˆ̃h (ξj)− ˜̃
h (ξj)

∣∣∣2 + 2

√√√√ 1

n

n∑
j=1

∣∣∣˜̃h (ξj)
∣∣∣2
√√√√ 1

n

n∑
j=1

∣∣∣ˆ̃h (ξj)− ˜̃
h (ξj)

∣∣∣2 + op(1)

p→ 0

Since we showed in Theorem 3.2 that
∣∣∣ 1
n

∑n
j=1 ĥM (ξj)− 1

n

∑n
j=1 h0M (ξj)

∣∣∣ = op(1) for M ∈
{M1,M2},

∣∣∣∣∣∣ 1n
n∑
j=1

ˆ̃
h (ξj)−

1

n

n∑
j=1

h̃0 (ξj)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1n

n∑
j=1

ĥM2 (ξj)−
1

n

n∑
j=1

h0M2 (ξj)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1n
n∑
j=1

ĥM1 (ξj)−
1

n

n∑
j=1

h0M1 (ξj)

∣∣∣∣∣∣
p→ 0

Since 1
n

∑n
j=1 h̃0 (ξj)

2−
(

1
n

∑n
j=1 h̃0 (ξj)

)2 p→ V ar
(
h̃0 (ξj)

)
, it follows that ˆ̃σ2

01,ψ = 1
n

∑n
j=1

ˆ̃
h (ξj)

2−(
1
n

∑n
j=1

ˆ̃
h (ξj)

)2 p→ V ar
(
h̃0 (ξj)

)
.

Next,
∣∣∣ 1
n

∑n
i=1 γ̃0 (ξi)

˜̃
h (ξi)− 1

n

∑n
i=1 γ̃0 (ξi) h̃0 (ξi)

∣∣∣ p→ 0 since for M,M ′ ∈ {M1,M2},∣∣∣ 1
n

∑n
i=1 γ0M (ξi) h̃M ′ (ξi)− 1

n

∑n
i=1 γ0M (ξi)h0M ′ (ξi)

∣∣∣ p→ 0. Since also 1
n

∑n
i=1

∣∣∣ˆ̃h (ξi)− ˜̃
h (ξi)

∣∣∣ p→

522



Asymptotics of K-Fold Cross Validation

0 and 1
n

∑n
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣ p→ 0,∣∣∣∣∣ 1n

n∑
i=1

ˆ̃γ (ξi)
ˆ̃
h (ξi)−

1

n

n∑
i=1

γ̃0 (ξi) h̃0 (ξi)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
ˆ̃γ (ξi)− γ̃0 (ξi)

)
ˆ̃
h (ξi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(
ˆ̃
h (ξi)− ˜̃

h (ξi)
)
γ̃0 (ξi)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

γ̃0 (ξi)
˜̃
h (ξi)−

1

n

n∑
i=1

γ̃0 (ξi) h̃0 (ξi)

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣ ∣∣∣ˆ̃h (ξi)

∣∣∣+
1

n

n∑
i=1

∣∣∣ˆ̃h (ξi)− ˜̃
h (ξi)

∣∣∣ |γ̃0 (ξi)|+ op(1)

≤

√√√√ 1

n

n∑
i=1

∣∣∣ˆ̃γ (ξi)− γ̃0 (ξi)
∣∣∣2
√√√√ 1

n

n∑
i=1

∣∣∣ˆ̃h (ξi)
∣∣∣2

+

√√√√ 1

n

n∑
i=1

∣∣∣ˆ̃h (ξi)− ˜̃
h (ξi)

∣∣∣2
√√√√ 1

n

n∑
i=1

|γ̃0 (ξi)|2 + op(1)

= op (1)Op (1) + op (1)Op (1) = op (1)

Since 1
n

∑n
i=1

(
γ̃0(ξi)h̃0(ξi)− E

[
γ̃0(ξi)h̃0(ξi)

])
p→ 0,

1

n

n∑
i=1

(
ˆ̃γ(ξi)

ˆ̃
h(ξi)− E

[
γ̃0(ξi)h̃0(ξi)

])
p→ 0

Since also 1
n

∑n
i=1

(
ˆ̃γ(ξi)− E [γ̃0(ξi)]

)
p→ 0 and 1

n

∑n
i=1

(
ˆ̃
h(ξi)− E

[
h̃0(ξi)

])
p→ 0,

ˆ̃
λ

p→ λ̃ ≡ Cov
[
γ̃0(ξi), h̃0(ξi)

]
�
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