
Journal of Artificial Intelligence Research 75 (2022) 1633-1699 Submitted 05/22; published 12/22

Automated Dynamic Algorithm Configuration

Steven Adriaensen adriaens@cs.uni-freiburg.de
André Biedenkapp biedenka@cs.uni-freiburg.de
Gresa Shala shalag@cs.uni-freiburg.de
Noor Awad awad@cs.uni-freiburg.de
University of Freiburg, Machine Learning Lab

Theresa Eimer t.eimer@ai.uni-hannover.de
Marius Lindauer m.lindauer@ai.uni-hannover.de
Leibniz University Hannover, Institute of Artificial Intelligence

Frank Hutter fh@cs.uni-freiburg.de

University of Freiburg, Machine Learning Lab &

Bosch Center for Artificial Intelligence

Abstract

The performance of an algorithm often critically depends on its parameter configura-
tion. While a variety of automated algorithm configuration methods have been proposed
to relieve users from the tedious and error-prone task of manually tuning parameters, there
is still a lot of untapped potential as the learned configuration is static, i.e., parameter
settings remain fixed throughout the run. However, it has been shown that some algo-
rithm parameters are best adjusted dynamically during execution. Thus far, this is most
commonly achieved through hand-crafted heuristics. A promising recent alternative is to
automatically learn such dynamic parameter adaptation policies from data. In this article,
we give the first comprehensive account of this new field of automated dynamic algorithm
configuration (DAC), present a series of recent advances, and provide a solid foundation
for future research in this field. Specifically, we (i) situate DAC in the broader historical
context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the
methods used in prior art to tackle this problem; and (iv) conduct empirical case studies
for using DAC in evolutionary optimization, AI planning, and machine learning.

1. Introduction

Designing robust, state-of-the-art algorithms requires careful design of multiple components.
It is infeasible to know how these components will interact for all possible applications. This
is particularly true in the field of artificial intelligence (AI), pursuing ever more general
problem-solving methods. This generality necessarily comes at the cost of an increased
uncertainty about the problem instances the algorithm will have to solve in practice. To
account for this uncertainty, it is common practice to expose difficult design choices as
parameters of the algorithm, allowing users to customize them to their specific use case.
These algorithm parameters can be numerical (e.g., crossover rate or population size in
evolutionary algorithms, and the learning rate or batch size in deep learning), but also
categorical (e.g., the choice of optimizer in deep learning, or the choice of heuristic or
search operator in classical planning and meta-heuristics).

It is widely recognized that appropriate parameter settings are often instrumental for AI
algorithms to reach a desired performance level (Birattari et al., 2002; Hutter et al., 2010;

©2022 AI Access Foundation. All rights reserved.

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Probst et al., 2019). In this paper, we will use the term algorithm configuration (AC) to
refer to the process of determining a policy for setting algorithm parameters as to maximize
performance across a problem instance distribution. AC has been widely studied, both in
general (Birattari et al., 2002; Hutter et al., 2009; Ansótegui et al., 2009; Hutter et al.,
2011; López-Ibáñez et al., 2016), as well as in specific research communities (Lobo et al.,
2007; Snoek et al., 2012; Feurer & Hutter, 2019). In this work, we focus on a particular kind
of AC that is both (i) automated and (ii) dynamic. This general framework was recently
proposed in a conference paper by Biedenkapp et al. (2020), and in this article we provide
the first comprehensive treatment of the topic.

Dynamic vs. Static AC: In static AC, parameter settings are fixed prior to execution,
using the information available at that time, and remain invariant during execution. For
example, in evolutionary optimization, the population size is commonly set statically, e.g.,
as a function of the input dimensionality. In contrast, in dynamic AC (DAC), parameter
settings are varied during execution using information that becomes available at run time.
For example, in machine learning, while static AC would choose a learning rate, possibly
dependent on meta-data (e.g., size or modality of the dataset), DAC would propose a learn-
ing rate schedule that could additionally be a function of time, alignment of past gradients,
training/validation losses, etc. While not all parameters can be varied dynamically, in prac-
tice many can, and it often makes sense to do so. As a general motivating use case, consider
parameters that (indirectly) control the exploration/exploitation trade-off: Often, it makes
sense to explore more early on, and to exploit this knowledge in later stages. Even if the
optimal configuration happens to be static, predicting it upfront may be very hard, yet
the best static configuration may quickly become apparent while solving the problem. For
instance, if our learning rate is too high, training loss may diverge (Bengio, 2012). Another
use case arises in the context of anytime algorithms, that aim to return an as good as pos-
sible solution, under an unknown termination criterion (Aine et al., 2009; López-Ibánez &
Stützle, 2014). Here, early exploitation to quickly find a good solution, and continual, de-
layed exploration is often desirable. DAC has been an active research area that has produced
various highly practical algorithms leveraging dynamic parameter adaptation mechanisms
to empirically outperform their static counterparts, e.g., Reactive Tabu Search (Battiti &
Tecchiolli, 1994), CMA-ES (Hansen et al., 2003), and Adam (Kingma & Ba, 2015). Beyond
these empirical successes and dedicated case studies (e.g., Senior et al., 2013; van Rijn
et al., 2018), the potential of DAC has also been shown theoretically (Moulines & Bach,
2011; Warwicker, 2019; Doerr & Doerr, 2020; Speck et al., 2021).

Automated vs. Manual AC: The difference between manual and automated AC is
who performs AC : A human or a machine. Over the last two decades, a variety of general-
purpose automated algorithm configurators have been proposed that effectively relieve users
from the tedious and time-consuming task of optimizing parameter settings manually (Hut-
ter et al., 2009; Ansótegui et al., 2009; Kadioglu et al., 2010; Xu et al., 2010; Hutter et al.,
2011; Seipp et al., 2015; López-Ibáñez et al., 2016; Falkner et al., 2018; Pushak & Hoos,
2020). However, there is still a lot of untapped potential, as all of these tools perform
static AC. In contrast, dynamic AC is mostly done manually. Clearly, the human does not
directly adjust the parameters during execution; rather, the mechanisms doing this auto-
matically, e.g., learning rate schedules, are products of human engineering. In this work, we

1634

Automated Dynamic Algorithm Configuration

will consider deriving such dynamic configuration policies in an automated and data-driven
fashion.

Summary of Contributions: In this article, we provide the first comprehensive account
of automated DAC. It subsumes and extends four prior conference papers, in which we

1. established DAC as a new meta-algorithmic framework and proposed solving it using
contextual reinforcement learning (Biedenkapp et al., 2020);

2. applied DAC to evolutionary optimization, tackling the problem of step-size adapta-
tion in CMA-ES (Hansen et al., 2003), and showed that existing manually-designed
heuristics can be used to guide learning of DAC policies (Shala et al., 2020);

3. applied DAC to AI planning, tackling the problem of heuristic selection in FastDown-
ward (Helmert, 2006), and showed how DAC subsumes static algorithm configuration
and can improve upon the best possible algorithm selector (Speck et al., 2021); and

4. presented DACBench, the first benchmark library for DAC, facilitating reproducible
results through a unified interface (Eimer et al., 2021b).

Here, we go well beyond this previous work, by

i more thoroughly discussing and classifying related work in different areas (Section 2),
placing recent work on automated DAC in its scientific and historical context;

ii establishing a formal problem formulation (Section 3), offering a novel theoretical per-
spective on DAC and its relation to existing computational problems;

iii discussing possible methods for solving DAC problems (Section 4), beyond reinforcement
learning, and classifying previous work according to their methodology;

iv extending and using DACBench (Section 5) to perform empirical case studies that

- demonstrate recent successes of automated DAC

- provide empirical validation for the benchmark library, and

- show that DAC presents a practical alternative to static AC, in various areas of
AI: evolutionary optimization (Section 6.1), AI planning (Section 6.2), and machine
learning (Section 6.3); and

v discussing current limitations of DAC (Section 7).

As such, we provide the first comprehensive overview of automated DAC, a standard refer-
ence and a solid foundation for future research in this area.

2. Related Work

Automated DAC is a recent and underexplored research area. However, it did not arise out
of thin air, rather it closely relates to, builds on, and tries to consolidate past research efforts.
In this section, we place recent work on automated DAC in its scientific and historical
context. We start by introducing the terminology we use (Section 2.1). Then, we situate
DAC in the broader context of AI (Section 2.2). Finally, we discuss some specific prior art,
covering historical work as well as the most recent developments (Section 2.3).

1635

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

2.1 Terminology

Algorithm parameters are omnipresent in computer science. Unsurprisingly, no single set of
terms has been consistently used when discussing the problem of how to best set them. In
this section, we briefly clarify some of the terms we use, relating them to known alternatives.

We use the term algorithm configuration (AC) to refer to the process of determining a
policy for setting an algorithm’s parameters as to maximize performance (or equivalently,
minimize cost) across an input distribution. In the classical AC literature (Birattari et al.,
2002; Hutter et al., 2009; Ansótegui et al., 2009), this process results in a single parameter
setting (i.e., a complete assignment of values to parameters) and is called a configuration.
Later work generalized AC to produce configurations that are a function of the context in
which they are used, e.g., the problem instance at hand (Kadioglu et al., 2010; Xu et al.,
2010), and most recently the dynamic execution state (Biedenkapp et al., 2020). We will
use the term configuration policy to refer to the result of AC in general. To disambiguate
the aforementioned AC variants, we add the prefixes per-distribution (or also classical),
per-instance and dynamic, respectively. Finally, while AC terminology was introduced in
the context of attempts to automate this process, the term itself does not imply automation,
i.e., we add prefixes automated and manual to specify whether configuration policies are
determined automatically or through a manual engineering process, respectively.

In this work, we follow a meta-algorithmic approach to automating AC: We will treat
AC as a computational problem to be solved by executing an algorithm. Hence, we have
problem instances and algorithms at two different levels and will use the prefixes (D)AC and
target to disambiguate these: For example, research on automated DAC aims to find a DAC
algorithm for tackling the general DAC problem. In a given DAC problem instance, we aim
to find a policy for configuring the parameters of a given target algorithm as to optimize its
performance across a distribution of target problem instances. We also use DAC method and
DAC scenario as a synonym for DAC algorithm and DAC problem instance, respectively.

In machine learning, the problem of setting the hyperparameters of the learning pipeline
is known as hyperparameter optimization (HPO, Feurer & Hutter, 2019). We consider the
more general problem of setting the parameters of any target algorithm and therefore adopt
a more general terminology (Eggensperger et al., 2018). In meta-learning terms, AC problem
solving corresponds to the outer-loop and target problem solving to the inner-loop. More
generally, assuming the target is optimization, AC can be seen as a bilevel optimization
problem (Bard, 2013), where the target algorithm optimizes the inner objective and the AC
algorithm the outer objective.

When a parameter maps directly onto the use of a certain sub-procedure, AC has also
been called operator selection. In metaheuristics (Glover & Kochenberger, 2006), these
sub-procedures are commonly called heuristics and in hyper-heuristic literature (Pillay
& Qu, 2018) the procedure selecting the (low-level) heuristic called a selection hyper-
heuristic (Drake et al., 2020) corresponding to the configuration policy in our terminology.

In heuristic optimization, the terms parameter tuning and parameter control are com-
monly used to refer to static and dynamic algorithm configuration, respectively (Lobo et al.,
2007). Also, the terms online (during use) and offline (before use) are sometimes used as
synonyms for dynamic and static, respectively. In this work, we refrain from doing so, re-
serving these terms to refer to when (D)AC takes place (see Figure 1). In the offline setting,

1636

Automated Dynamic Algorithm Configuration

AC takes place in a dedicated configuration phase (similar to training in machine learning)
where we determine which configuration to use later to solve the problems of actual interest
to the user (i.e., at use time). In the online setting, AC happens at use time (Fitzgerald,
2021). In that sense, offline and dynamic are not mutually exclusive. In fact, most prior
art does DAC offline, determining a dynamic policy offline by using a training set, and at
use time simply executing that dynamic policy on new problem instances.

Figure 1: Offline vs. online learning of DAC policies.

2.2 Related Research Areas

While automating DAC is a relatively understudied problem, much research has been per-
formed studying related problems. In what follows, we briefly characterize this work and
how it relates to automating DAC. See Appendix B for a more formal treatment of this topic,
where we provide problem definitions, possible reductions, and prove their correctness.

2.2.1 Automated Design of Algorithms / Components

The idea of letting computers, rather than humans, design algorithms has been studied in
many different communities, using a variety of different methods. Some well-known, his-
torical examples are program synthesis, using logical inference (Manna & Waldinger, 1980),
and genetic programming, using evolutionary algorithms (Koza, 1992). Recent advances in
machine learning have prompted a surge in approaches that learn algorithms, e.g., Neural
Turing machines (Graves et al., 2014), learning-to-learn (L2L , Andrychowicz et al., 2016;
Lv et al., 2017; Bello et al., 2017; Metz et al., 2020), and learning-to-optimize (L2O, Li &
Malik, 2017; Kool et al., 2018; Chen et al., 2021).

Generally speaking, algorithm parameters can be seen as “algorithmic design choices”
that are left open at design time. In that sense, automated configuration is naturally
viewed as a way of automating part of the algorithm design process. This approach has
been referred to as “programming by optimization” (PbO, Hoos, 2012). While previous
PbO applications used static AC approaches, the original PbO philosophy envisioned the
possibility of varying design decisions at runtime, something naturally achieved by DAC.1

1. While we are not aware of any work “under the PbO banner” considering the dynamic setting, most prior
art automating DAC (Section 2.3) could be viewed as PbO when taking an algorithm design perspective.

1637

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

A key difference between PbO and the aforementioned design automation approaches is
that in PbO algorithms are not designed “from scratch”, instead only design choices that are
“difficult” for the human designer are made automatically by the configurator. For instance,
DAC aims to design learning rate schedules (e.g., Daniel et al., 2016), but not entire
optimizers as in L2L/L2O. In summary, DAC can be viewed as automatically designing
parameter controlling components, and “DAC powered PbO” as a general semi-automated
algorithm design approach that enables the human designer to bias the design process
by embedding prior knowledge (e.g., obtained through decades of algorithmic research),
thereby reducing the computational requirements and improving generalization.

It is worth noting that other semi-automated algorithm design approaches exist. For
instance, genetic programming is nowadays often used to design specific algorithm com-
ponents, e.g., in the hyper-heuristic literature (Pillay & Qu, 2018), as a procedure for
automatically designing heuristics, referred to as a generation hyper-heuristic (Burke et al.,
2009). Finally, if the designed components are reusable and control parameters (e.g., are
reusable selection hyper-heuristics as in Fontoura et al., 2017), we view this approach as
automated DAC.

2.2.2 Meta-Algorithmic Frameworks

Algorithm Selection Problems can be solved using a variety of different algorithms.
For example, if we want to sort a sequence of numbers, we could do so using insertion
sort, merge sort, quick sort, etc. In algorithm selection, we determine a mapping from
features of the problem instance (e.g., sequence length) to the algorithm best suited to
solve it (e.g., that sorts the sequence fastest). While first formalized by Rice (1976), this
computational problem only received wide-spread attention two decades later, when it was
independently rediscovered by Fink (1998), and Leyton-Brown et al. (2003) proposed to
solve it using machine learning methods. This approach has resulted in various successful
applications, e.g., SATzilla (Xu et al., 2008), a portfolio solver selecting between state-of-
the-art SAT solvers to win multiple (gold) medals at the 2007 and 2009 SAT competitions.
We refer to Kotthoff (2014) and Kerschke et al. (2019) for surveys on this topic.

Algorithm Scheduling It is often difficult to efficiently predict which algorithm will
perform best on a given problem instance. In many settings, poor choices may require orders
of magnitude longer than optimal choices, and tend to dominate average performance. In
algorithm scheduling, instead of selecting a single algorithm, we aim to find an optimal time
allocation. Automated algorithm scheduling was first extensively studied in seminal work
by Huberman et al. (1997) and Gomes and Selman (2001), and follow-up work, e.g., by Hoos
et al. (2015), typically focuses on finding a fixed time allocation that works best on average
across instances (i.e., per-distribution). These kind of algorithm schedules are also very
popular in the AI planning community, e.g., in Fast Downward Stonesoup (Helmert et al.,
2011). Scheduling has also been combined with algorithm selection to find instance-specific
schedules (Kadioglu et al., 2011; Lindauer et al., 2016). Dynamic scheduling approaches
allocate resources to the algorithms based on runtime information (e.g., Carchrae & Beck,
2004; Gagliolo & Schmidhuber, 2006; Kadioglu et al., 2017; Nguyen et al., 2021). This
allows them to exploit the fact that, while it may be difficult to predict which algorithm
performs best in advance, their relative performance may become apparent early-on in their

1638

Automated Dynamic Algorithm Configuration

executions. DAC also takes advantage of this property. However, unlike DAC, dynamic
scheduling is restricted to allocating resources to independent processes; i.e., in scheduling,
no information is exchanged between algorithm runs, and resources allocated to all but the
one producing the eventual solution are effectively wasted.

Algorithm Configuration While algorithm selection chooses between multiple target
algorithms on a per-instance basis, classical per-distribution algorithm configuration (AC)
is concerned with finding the parameter setting of a single algorithm that performs best
across all given instances. As the space of possible configurations grows exponentially in
terms of the number of parameters, research on AC has traditionally focused on (i) efficient
search methods, e.g., local search (Hutter et al., 2009), genetic algorithms (Ansótegui et al.,
2009) and Bayesian optimization (Hutter et al., 2011); and (ii) efficient evaluation of con-
figurations, e.g., using racing (Birattari et al., 2002), adaptive capping (Hutter et al., 2009),
structured procrastination (Kleinberg et al., 2017) and multi-fidelity optimization (Li et al.,
2018). This line of work has resulted in a variety of automated tools known as configura-
tors that for any given target algorithm quickly find a configuration that performs well
on average across a set of target problem instances, e.g., ParamILS (Hutter et al., 2009),
GGA (Ansótegui et al., 2009, 2015, 2021), SMAC (Hutter et al., 2011), iRace (López-
Ibáñez et al., 2016), and Golden Parameter Search (Pushak & Hoos, 2020); as well as
various theoretical insights (Kleinberg et al., 2017; Weisz et al., 2019; Hall et al., 2019,
2020). Configuration has further been combined with algorithm selection (Kadioglu et al.,
2010; Xu et al., 2010), and algorithm scheduling (Seipp et al., 2015). However, all of these
consider determining a static configuration policy, and the pursuit of similar automated
tools and theory for DAC is a natural extension of this line of work. That being said, other
works have previously explored tackling the dynamic setting (see Section 2.3) some even
using the aforementioned static AC tools (see Section 4.2).

2.2.3 Adaptive Operator Selection and Parameter Control

Heuristic Approaches The potential of varying parameters during execution time is
widely recognized and has been extensively studied in various areas of AI. For instance, in
heuristic optimization, this problem has been studied in the context of parameter control for
evolutionary algorithms (Aleti & Moser, 2016), reactive search (Battiti et al., 2008), and se-
lection hyper-heuristics (Drake et al., 2020). In machine learning, one hyperparameter that
is typically varied is the learning rate, e.g., using global learning rate schedules (Loshchilov
& Hutter, 2017; Smith, 2017) or adaptive gradient methods (Kingma & Ba, 2015) adopting
weight-specific step-sizes. These works typically consider the dynamic configuration policy
as a given and present an empirical/theoretical analysis thereof. Furthermore, the policies
themselves were designed by human experts. In contrast, automated DAC is concerned
with finding such policies automatically in a data-driven fashion. That being said, prior art
automating DAC does exist and is discussed in Section 2.3. Before doing so, we will briefly
discuss a broad class of methods that rely less on human expert knowledge, but that we
nonetheless do not generally regard as automated DAC.

Online Learning Approaches Many parameter control mechanisms integrate complex
feedback loops, learning and optimization mechanisms, creating the potential that the DAC
policy is not entirely predetermined by the human, but is rather learned online, while solving

1639

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

the problem instance at hand. All depends on the relative contribution to performance due
to (i) the exploration of the hand-crafted DAC algorithm, and (ii) the exploitation of the
DAC policy it learns. In an offline setting, distinguishing between (i) and (ii) is easy, as
(i) does not occur at test/use time. In online settings, both are intertwined by nature.
Note that this does not rule out “online DAC”, but rather necessitates dedicated analysis
that learning indeed takes place. Furthermore, in Section 3.2, we will define DAC as the
problem of finding dynamic configuration policies “that generalize across a distribution of
target problem instances”. Therefore, in our nomenclature, in order to qualify as automated
DAC, an approach must demonstrate the ability to successfully transfer experience across
runs of the target algorithm on target problem instances drawn from the same distribution.
In machine learning terms, automated DAC does not only require learning, but also meta-
learning. Please note that most previous online learning approaches to parameter control
(e.g., Müller et al., 2002; Carchrae & Beck, 2004; Chen et al., 2005; Eiben et al., 2006;
Prestwich, 2008; Sakurai et al., 2010; Wessing et al., 2011; Gaspero & Urli, 2012; Sabar
et al., 2013; Schaul et al., 2013; Karafotias et al., 2014; Baydin et al., 2018) trivially do
not meet this criterion, as no information is transferred across runs on different instances.
Note that massive parallel online HPO methods such as Population Based Training (PBT,
Jaderberg et al., 2017) also fall into this category.

2.3 Prior Art: Automated Dynamic Algorithm Configuration

The term dynamic algorithm configuration (DAC) was only recently introduced by
Biedenkapp et al. (2020). However, various authors had previously (or, in a few cases,
concurrently) investigated the possibility of automatically determining policies for varying
the configuration of an algorithm on-the-fly. In what follows, we give a brief overview of
literature on automated DAC (“avant-la-lettre”).2 Here, we discuss these by application
domain, a methodological overview is presented in Section 4.

Pioneering work by Lagoudakis and Littman (2000, 2001) explored this setting in the
context of recursive algorithm selection, observing that sub-problems are better solved using
different algorithms (e.g., sorting sub-sequences using different sorting algorithms). While
initial results were promising, their approach was limited to recursive target algorithms.
Pettinger and Everson (2002) considered a more general setting, learning a policy jointly
selecting mutation and crossover operators in a genetic algorithm, per generation, based on
statistics of the current population.3 Various other works have explored automating DAC
in the context of genetic algorithms (Fialho et al., 2010; Andersson et al., 2016), evolution
strategies (López-Ibáñez et al., 2012; Sharma et al., 2019), and heuristic optimization in
general (Battiti & Campigotto, 2012; López-Ibánez & Stützle, 2014; Ansótegui et al., 2017;
Fontoura et al., 2017; Sae-Dan et al., 2020). Similar investigations were also conducted in
various other communities, e.g., machine learning (Daniel et al., 2016; Hansen, 2016; Fu,
2016; Xu et al., 2019; Almeida et al., 2021), AI planning (Gomoluch et al., 2019, 2020),
exact search (Bhatia et al., 2021), and quadratic programming (Getzelman & Balaprakash,
2021; Ichnowski et al., 2021).

2. Appendix A provides a more detailed description. We also maintain a list of work on automated DAC:
https://www.automl.org/automated-algorithm-design/dac/literature-overview/

3. Notably, direct follow-up works (Chen et al., 2005; Sakurai et al., 2010), no longer transferred experience
across runs and is therefore not considered prior art automating DAC (see Section 2.2.3).

1640

Automated Dynamic Algorithm Configuration

Biedenkapp et al. (2020) introduced DAC in an attempt to consolidate these isolated
efforts and to raise the level of generality in pursuit of algorithms similar to those that exist
for static AC. Direct follow-up work has provided additional evidence for the practicality
of DAC by learning step-size adaptation in CMA-ES (Shala et al., 2020), and by learning
to select heuristics in the FastDownward planner (Speck et al., 2021). These application
domains, together with the learning rate control setting from (Daniel et al., 2016), have later
been released as part of a benchmark suite, called DACbench (Eimer et al., 2021b), offering a
unified interface that facilitates comparisons between different DAC methods across different
DAC scenarios. In this article, we extend this initial discussion of Biedenkapp et al. (2020)
and present a thorough empirical comparison of AC and DAC on these three different real-
world DAC applications (Daniel et al., 2016; Shala et al., 2020; Speck et al., 2021) using
the unified DACbench interface.

3. Problem Definition

In this section, we formalize the computational problem underlying DAC. Here, we first
introduce formulations for static AC variants (Section 3.1), and then define the dynamic
AC problem (Section 3.2).

3.1 Static Algorithm Configuration

In algorithm configuration, we have some target algorithm A with parameters p1, p2, . . . , pk
that we would like to configure, i.e., assign a value in the domains Θ1,Θ2, . . . ,Θk, respec-
tively. Furthermore, we may wish to exclude certain invalid combinations, giving rise to the
space of candidate configurations Θ ⊆ Θ1 × Θ2 × · · · × Θk, called the configuration space
of A. In classical per-distribution algorithm configuration, we aim to determine a single
θ∗ ∈ Θ that minimizes a given cost metric c in expectation across instances i ∈ I of our
target problem distribution D. This problem can be formalized as follows:

Definition 1: Classical / Per-distribution Algorithm Configuration (AC)

Given 〈A,Θ,D, c〉:

– A target algorithm A with configuration space Θ

– A distribution D over target problem instances with domain I

– A cost metric c : Θ× I → R assessing the cost of using A with θ ∈ Θ on i ∈ I

Find a θ∗ ∈ arg minθ∈Θ Ei∼D [c(θ, i)].

In practice, A, D, and c are not given in closed form. Instead, c is typically a black-box
procedure that executes A with configuration θ on a problem instance i and quantifies
cost as a function of the desirability of this execution, e.g., how long the execution took,
the quality of the solution it found, or a measure of anytime performance (López-Ibánez &
Stützle, 2014). Note that D is our true target distribution, i.e., the likelihood A is presented
with an instance i at use time. In the online setting, we are given a sequence of samples from
the actual distribution in real time (Fitzgerald, 2021). In the offline setting, we typically

1641

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

do not have access to i ∼ D, and are given a set of instances I ′ sampled i.i.d. from some
representative training distribution D′ ≈ D instead.

Note that unless a single configuration is non-dominated on all instances, better perfor-
mance may be achieved by making the choice of θ dependent on the problem instance i at
hand. This extension is known as:

Definition 2: Per-instance Algorithm Configuration (PIAC)

Given 〈A,Θ,D,Ψ, c〉:

– A target algorithm A with configuration space Θ

– A distribution D over target problem instances with domain I

– A space of per-instance configuration policies ψ ∈ Ψ with ψ : I → Θ that
choose a configuration θ ∈ Θ for each instance i ∈ I.

– A cost metric c : Ψ× I → R assessing the cost of using A with ψ ∈ Ψ on i ∈ I

Find a ψ∗ ∈ arg minψ∈Ψ Ei∼D [c(ψ, i)]

Note that the definition above is highly general. For example, by specifying Ψ accordingly
PIAC can put arbitrary hard constraints on the configuration policies of interest. As a
consequence, classical per-distribution AC can be seen as a special case of PIAC only con-
sidering constant ψ, i.e., Ψ = {ψ |ψ(i) = ψ(i′), ∀ i, i′ ∈ I}. More generally, configuration
policies could be restricted to be a function of specific features of i, or to belong to a spe-
cific (e.g., linear) function class. Note that this definition is also strictly more general than
unconstrained PIAC, which is itself a special case. Also worth noting is that the cost metric
c in this definition can be any function of ψ (and i), allowing PIAC to put arbitrary soft
constraints on Ψ. In particular, we do not constrain c to be a function of ψ(i), but allow it to
quantify non-functional aspects of ψ, e.g., its minimal description length or computational
complexity. That being said, most practical PIAC approaches are limited to minimizing
Ei∼D [c′(ψ(i), i)], given some c′ : Θ× I → R (∼ pure functional PIAC).

Algorithm 1 Stepwise execution of a dynamically configured target algorithm A
Input: Dynamic configuration policy π ∈ Π; target problem instance i ∈ I
Output: Solution for i found by A (following π)

1: procedure A(π, i)
2: s← init(i) . Initial state by starting the execution of A on i
3: while ¬ is final(s, i) do
4: θ ← π(s, i) . Reconfiguration point: Use π to choose next θ
5: s← step(s, i,θ) . Continue executing A using θ

6: return s . Execution terminated: Return solution

1642

Automated Dynamic Algorithm Configuration

3.2 Dynamic Algorithm Configuration

In dynamic AC, we aim to optimally vary θ ∈ Θ while executing A. In order to formalize
this problem, we need to define points of interaction where A can be reconfigured. To this
end, we decompose the execution of A with dynamic configuration policy π ∈ Π on problem
instance i ∈ I as shown in Algorithm 1. Here, we start executing an “init” sub-routine
bringing A in some initial state s ∈ S only depending on i. Subsequently, we iteratively
execute “step” to determine the next state s′ ∈ S of A as a function the current state s, in-
stance i, and configuration π(s, i) ∈ Θ. This process continues until is final(s, i) signalling
termination and s is returned as solution. When such decomposition 〈init, step, is final〉
is given, we will call A stepwise reconfigurable and define DAC as follows:

Definition 3: Dynamic Algorithm Configuration (DAC)

Given 〈A,Θ,D,Π, c〉:

– A stepwise reconfigurable target algorithm A with configuration space Θ.

– A distribution D over target problem instances with domain I

– A space of dynamic configuration policies π ∈ Π with π : S × I → Θ that
choose a configuration θ ∈ Θ for each instance i ∈ I and state s ∈ S of A

– A cost metric c : Π× I → R assessing the cost of using π ∈ Π on i ∈ I.

Find a π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]

Here, we define DAC as a generalization of PIAC, considering configuration policies that
do not only depend on i, but also the dynamically changing state s ∈ S of the target
algorithm A, i.e., Ψ ⊆ {π |π(i, s) = π(i, s′), ∀ s, s′ ∈ S,∀ i ∈ I}. This dynamic state, by
definition, provides all information required for continuing the execution of A, however can
additionally contain arbitrary features of the execution thus far. As in PIAC, c can be an
arbitrary function of π (and i). However, often the total cost of executing A with π on i
can be decomposed and attributed to the T individual execution steps. Formally: In DAC
with stepwise decomposable cost, we are given functions 〈cinit, cstep〉, such that

c(π, i) = cinit(i) +
T−1∑
t=0

cstep(st, i, π(st, i))

where st =

{
init(i) t = 0

step(st−1, i, π(st−1, i)) t > 0
∧ is final(st, i)⇔ t = T.

Note that, by this definition, a stepwise decomposable cost metric can, but does not have
to be dense, e.g., attributing the full cost (e.g., final solution quality) to the final step (zero
otherwise) is a valid decomposition. However, since cinit and cstep only depend on i and
π(st, i), a stepwise decomposable cost metric cannot measure non-functional aspects of π.
Rather, it captures the notion of pure functional DAC and subsumes pure functional PIAC,
but not PIAC in general.

1643

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

4. Solution Methods

In this section, we discuss methods for solving DAC. As discussed in Section 2.2.3, DAC has
so far been primarily solved manually, i.e., dynamic configuration policies have been deter-
mined by humans and not in an automatic and data-driven way. In Section 2.3, we discussed
previous work exploring automated DAC, and in what follows we will give an overview of
the methods they used for doing so. Please note that no dedicated, general DAC solvers
exist to date. Instead, prior art can be viewed as solving DAC by reduction to some other
well-studied computational problem.4 Considering the fact that most of this work has been
performed in isolation and tackles very different DAC scenarios, the high-level solution ap-
proaches followed are remarkably similar. In particular, we will roughly distinguish between
two approaches: “DAC by reinforcement learning” (Section 4.1) and “DAC by optimiza-
tion” (Section 4.2), and discuss their relative strengths and weaknesses (Section 4.3).

4.1 DAC by Reinforcement Learning

In reinforcement learning (RL, Sutton & Barto, 2018), an agent learns to optimize an
unknown reward signal by means of interaction with an unknown environment. The RL
agent takes actions a ∈ A, observes a transition T from the current state s ∈ S of the
environment to T (s, a) ∈ S, receives a reward R(s, a) ∈ R, and learns for any state the
action maximizing its expected future reward. Formally, the RL agent solves a Markov
decision problem 〈S,A, T,R〉 (MDP, Definition 10 in Appendix B.3.5). Here, the transition
T and reward R are given in the form of a black box method. Also, the state space S is
typically not given explicitly; instead, we are given a procedure for generating initial states
and can generate further states using T .

The RL problem described above is closely related to DAC, and prior art has commonly
solved DAC using reinforcement learning methods. In DAC by RL, the environment consists
of the target algorithm A solving some target problem instance i ∈ I. The state of this envi-
ronment is s = (s′, i) ∈ S with s′ ∈ S the state of the algorithm, and initial states (init(i), i)
with i ∼ D. At every reconfiguration point, the RL agent interacts with this algorithm
choosing a configuration θ ∈ Θ as action. The transition dynamics of the environment are
fully determined by stepwise algorithm execution, i.e., T ((s′, i), θ) = (step(s′, i, θ), i), and
the reward is R((s′, i), θ) = − cstep(s′, i, θ). See Figure 2 for an illustration of this approach.
The power of this reduction lies in the fact that the resulting MDP can be solved using the
full gamut of existing reinforcement learning methods.

Traditional RL Early DAC by RL work (e.g., Lagoudakis & Littman, 2000, 2001; Pet-
tinger & Everson, 2002; Battiti & Campigotto, 2012) used traditional value-based RL
methods that learn the optimal state-action value function Q∗(s, a) and return the pol-
icy π(s) ∈ arg maxa∈AQ

∗(s, a). These methods work well when S × A is small enough to
be represented explicitly by a table, but do not scale up. Note that both S and A = Θ are
typically too large in DAC to be modelled in tables.

Modern RL Over the last decade, a series of methodological advances have given rise
to a new generation of RL methods that can tackle complex real-world problems (Mnih

4. In Appendix B, we define these related computational problems and discuss reductions more formally.

1644

Automated Dynamic Algorithm Configuration

Figure 2: Illustration of DAC by Reinforcement Learning (DAC components in blue)

et al., 2015; Silver et al., 2016; Barozet et al., 2020; Lee et al., 2020), and that have also
been successfully applied to DAC. In particular, modern RL methods based on deep neural
networks can effectively learn useful representations that allow them to handle complex state
and action spaces, using, e.g., (double) deep Q-learning (DDQN, Hansen, 2016; Sharma
et al., 2019; Speck et al., 2021; Bhatia et al., 2021), modern actor critic (Ichnowski et al.,
2021), and policy gradient methods (Daniel et al., 2016; Xu et al., 2019; Gomoluch et al.,
2019; Shala et al., 2020; Getzelman & Balaprakash, 2021; Almeida et al., 2021).

Contextual RL It is worth noting that standard RL methods are not instance-aware
and will generally not choose their initial state (see Figure 2, where i is hidden inside the
environment). This is one of the reasons Biedenkapp et al. (2020) proposed to model DAC
as a contextual MDP (cMDP, Hallak et al., 2015), which consists of a collection of MDPs,
one for each instance i (see Definition 11 in Appendix B.3.5). Each MDP M(i) shares a
common action space S and state space A as in traditional RL, but possesses an instance-
specific transition function Ti and reward function Ri. This more general formulation
allows DAC practitioners to explicitly model variation between instances: Variations in
transition dynamics model the differences in target algorithm behaviour between instances
(i.e., how the target algorithm progresses in solving an instance) while different reward
functions reflect the instance-specific objectives. Although a single MDP can capture these
dependencies implicitly, the explicit model allows the contextual RL agent to directly exploit
this knowledge. For example, instances may vary in difficulty. A contextual RL agent, being
aware of different instances and their characteristics, can more easily learn this, allowing
the agent to more accurately assign credit for high/low rewards to (i) following a good/poor

1645

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

policy or (ii) solving easy/hard instances. Furthermore, the agent can choose which MDP
M(i) it interacts with, e.g., to gather more experience on harder instances (Klink et al.,
2020; Eimer et al., 2021a).

4.2 DAC by Optimization

Not all prior art automating DAC has done so using reinforcement learning. Instead,
some previous works can be viewed as reformulating DAC as a (non-sequential) optimiza-
tion problem: Given a search space Π and an objective function f(π) = Ei∼D [c(π, i)], find
π∗ ∈ arg minπ∈Π f(π). This approach is illustrated in Figure 3. Optimization covers a wide
variety of different methods. In what follows, we give an overview of those used in prior
art for “DAC by optimization”, and distinguish between different variants of optimization
depending on (i) search space representation, and (ii) what information about f is used.

Figure 3: Illustration of DAC by Optimization (DAC components in blue)

Noisy Black Box Optimization In black box optimization (BBO), the only interaction
between f and the optimizer is through an evaluation procedure e that returns f(π) for any
given π ∈ Π. A wide variety of black box optimizers exist, specialized for particular kinds
of representations. In the reduction, dynamic configuration policies can be represented in
a variety of different ways. For example, prior art (Gomoluch et al., 2020) represents poli-
cies as real-valued vectors that correspond to the weights of a neural network policy, and
optimizes these using evolution strategies. It is worth noting that a similar approach is cur-
rently state-of-the-art in learning-to-learn (Metz et al., 2020) (see Section 2.2.1). However,
one could go further and also vary the architecture and optimize directly in the space of
neural networks, e.g., using methods from neuroevolution (Stanley & Miikkulainen, 2002;
Stanley et al., 2021). Alternatively, one could follow a symbolic approach, like Fontoura
et al. (2017), representing policies as programs and use genetic programming (Koza, 1992).
Remark that this freedom comes with responsibility, i.e., making an appropriate choice of
representation may be crucial to achieve satisfactory performance. Next to representation,
another difficult choice in this reduction is the evaluation procedure. Since D is unknown, e
cannot evaluate f exactly in general. Instead, we typically evaluate the cost on some finite
sample of target problem instances I ′ ⊆ I with ∀i ∈ I ′ : i ∼ D, and e(π) = 1

|I′|
∑

i∈I′ c(π, i).

However, the choice of |I ′| still poses a trade-off between accuracy and cost of evaluation to
the DAC by BBO practitioner.

Static Algorithm Configuration We can also solve DAC using classical static algorithm
configurators (e.g., SMAC and irace). Assuming we choose a parametric representation Λ
for the policy space, i.e., Π = {πλ |λ ∈ Λ}, the DAC problem can be reformulated as

1646

Automated Dynamic Algorithm Configuration

classical AC, where we configure the parameters λ of the dynamic configuration policy
πλ, instead of configuring the parameters θ of the target algorithm.5 While solving DAC
using static AC may at first sight seem contradictory, this reduction gives rise to a highly
practical solution approach that has been explored extensively in prior art (Fialho et al.,
2010; López-Ibáñez et al., 2012; López-Ibánez & Stützle, 2014; Andersson et al., 2016;
Ansótegui et al., 2017; Sae-Dan et al., 2020). An important benefit specific to this approach
is that algorithm configurators are instance-aware and therefore automate the trade-off
between the accuracy/cost of evaluation (using so-called racing mechanisms), and can even
vary I ′ ⊂ I dynamically to focus evaluation on those instances providing the most useful
information.

Gradient-based Optimization In AC, we typically use gradient-free optimization. The
motivation is that we cannot generally compute analytical gradients. While this is true in
general, we would like to argue that the specific cases where we can actually compute them
are more prominent than one might expect. Assuming a stepwise decomposable cost, we can
compute the derivative ∇λci = ∂c(πλ,i)

∂λ from the derivatives of the stepwise cost, the step,
and the policy, using the chain rule (see Appendix B.3.6). When cstep, step, and π can be
implemented using the operations in an automated differentiation framework (e.g., autograd
in Pytorch, Paszke et al., 2017), these gradients can be calculated efficiently, reliably,
without requiring any additional mathematical knowledge from the DAC practitioner. In
fact, in the machine learning community, in particular meta-learning, differentiating through
the entire learning process is almost standard practice (Maclaurin et al., 2015; Andrychowicz
et al., 2016; Finn et al., 2017). The potential benefit of this extra piece of information is not
to be underestimated. DAC policies may have many hyperparameters, e.g., a neural network
with thousands of weights. Gradient-based optimization is an efficient way to navigate
extremely high-dimensional spaces, as is evidenced by deep neural networks with millions of
parameters being trained almost exclusively using simple first order optimization methods.
That being said, gradients for DAC are no silver bullet. Computing them, if possible,
may require too many computational resources. Furthermore, gradients only provide local
information, i.e., an infinitesimal change to every parameter that is guaranteed to reduce
cost. When f is particularly rugged, gradients may not provide information about the effect
of any reasonably sized change. This phenomenon has, in fact, been observed in the context
of learning-to-learn (Metz et al., 2019).

4.3 Reinforcement Learning vs. Optimization?

Now, we discuss the relative strengths and weaknesses, and argue for the potential of com-
bining both approaches.

Why DAC by RL? The sequential nature of the problem is arguably the key feature that
sets DAC apart from static AC: In static AC, we only have to select a single configuration,
while in DAC we must select a sequence of such configurations. RL provides a very general
framework for tackling sequential decision problems and was presented as the method of
choice for DAC by Biedenkapp et al. (2020). DAC by optimization approaches reduce
DAC to a non-sequential optimization problem. In doing so, valuable information about

5. We prove the correctness of this reduction in Appendix B.3.1

1647

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

the problem is lost that may otherwise be used to solve it more efficiently (Adriaensen
& Nowé, 2016). While executing a target algorithm, an RL agent observes at every step
what configurations were used, the (immediate) costs this incurred, and how this affected
the dynamic state of the algorithm. In contrast, the same evaluation provides a black box
optimizer with a single value (i.e., the sum of costs incurred), at the end of the run. This
inherent relative sample-inefficiency of black box optimization is particularly problematic
when target algorithm execution is costly, e.g., takes multiple hours, and/or policy spaces
are extremely large / unconstrained.

Why DAC by Optimization? Previous work has shown that optimization can be a
practical alternative to RL in simulated environments (Mannor et al., 2003; Szita & Lörincz,
2006; Salimans et al., 2017; Chrabaszcz et al., 2018; Majid, 2021). While RL aims to ex-
ploit sequential information, contemporary RL methods do not always do so successfully.
Also, in some scenarios, this information may not add much value, or may even be de-
ceptive (e.g., delayed rewards). Finally, these mechanisms add considerable computational
overhead, and complicate implementation. In contrast, optimization methods tend to be
simpler, have fewer failure modes, and their often-parallel nature makes them well-suited
for modern high-performance computing infrastructure. Adding to these limitations of RL
methods are limitations of the reduction. While DAC is generally reducible to a (noisy)
black box optimization problem, the previously discussed reduction to an MDP implicitly
assumes (i) the cost function c to be stepwise decomposable6 and (ii) the space of policies Π
to be unconstrained.7 As a consequence, it cannot be used when optimizing non-functional
aspects of the policy (e.g., resources it requires to make decisions) or to impose arbitrary
hard constraints on Π (e.g., which of these N policies is best?).

Beyond RL or Optimization Our discussion thus far focused on contrasting both
approaches. In what remains, we look at their relation, and argue for the potential of
combining them. First, our “sequential vs. non-sequential” discussion can be extended to
“a method’s ability to exploit a certain characteristic of DAC”, or not. A good example
of a cross-cutting characteristic is instance-awareness, both contextual RL and static AC
can be viewed as instance-aware extensions of RL and black box optimization, respectively.
Second, the pitfalls of RL also apply to approaches exploiting other characteristics. For
example, gradients in optimization can be similarly deceptive (e.g, exploding/vanishing
gradient problem) as immediate rewards. Therefore, while artificially hiding information is
useless, blindly relying on it introduces failure modes, and general DAC methods should be
carefully designed to only rely on information that is available and useful for the scenario
at hand. In the context of “sequential vs. non-sequential”, this suggests the importance of
combining reinforcement learning and optimization. Further underpinning this conjecture,
is the observation that state-of-the-art static AC methods combine optimization with ma-
chine learning, and reinforcement learning is essentially a dynamic extension of the latter.

6. As defined at the end of Section 3.2 (∼ pure functional DAC). This is not to be confused with a dense
reward signal that, while desirable for RL, is not a requirement for MDP reducibility.

7. MDP extensions exist, e.g., constrained MDPs (CMDPs, Altman, 1999), that support hard constraints.
However, CMDPs conventionally constrain agent behavior (actions taken in encountered states) and still
cannot encode arbitrary non-functional hard constraints in policy space.

1648

Automated Dynamic Algorithm Configuration

5. Benchmark Library

In this section, we present DACBench (Eimer et al., 2021b), a novel benchmark library for
DAC that we will be using in our experiments in Section 6. We have seen related fields like
hyperparameter optimization, static algorithm configuration and algorithm selection profit
greatly from focusing on shared benchmark problems (Eggensperger et al., 2013; Hutter
et al., 2014; Bischl et al., 2016). In these meta-algorithmic domains, standardizing the
target algorithm setup did not only increase the accessibility of the field by reducing some of
the specialized knowledge required to get started in the field, but it also made comparisons
between different methods more reliable and reproducible. DACBench provides such a
standard for DAC. In what follows, we give a brief overview of the interface it provides,
the benchmarks it implements, and prior empirical validation it has undergone. We also
discuss novel developments and highlight extensions that were motivated by and/or made
specifically in the context of this work.8

Interface DACBench builds upon a common RL interface, OpenAI’s gym (Brockman
et al., 2016), as it provides a flexible template for stepwise interaction with the target
algorithm. The target algorithm init is handled in the gym.Env.reset method, with
each stepwise interaction handled by the gym.Env.step method. DACBench extends the
gym.Env.reset method to provide the ability to select the problem instance i to be solved.
Listing 1 shows how DAC components are mapped onto the gym interface in the bench-
marks. These essentially implement the DAC by contextual RL reduction, discussed in
Section 4.1. The result is a simple-to-use interface, allowing DAC researchers to work
across application domains, without requiring domain expertise, and providing an easy-to-
use template for applying DAC to new domains. While the interface is modelled after the
RL formulation of DAC, it can be used with a variety of approaches described in Section 4.2.
That being said, the original DACbench interface strongly focused on conventional RL. In
the scope of this work, we have extended the interface from the first release of DACBench.
In accordance with our proposed definition of DAC, we have taken a broader perspective
beyond standard RL, and made various interface changes to provide better support for
alternative approaches. For example, users can now specify rich structured configuration
spaces as opposed to the simplistic action spaces supported by conventional RL methods.
Directly controlling instance progression is easier now as well, providing a better base for
developing instance-aware solution methods for DAC.

Benchmarks An overview of the benchmarks currently included in DACBench is given
in Table 1. It includes several benchmarks that we have either added in the latest release
or at least improved significantly. The original SGD-DL benchmark (see Section 6.3 for
a thorough description) was extended to mimic the experimental setup from Daniel et al.
(2016) as closely as possible. The CMA-ES benchmarks (CMAStepSize and ModCMA)
are now based on IOHProfiler (Doerr et al., 2018) and thus provide a DAC interface for a
well-known and important tool in the EA community.9 TheoryBench is a completely new
benchmark, published by Biedenkapp et al. (2022), where one is to dynamically configure
the mutation rate of a (1+1) random local search algorithm for the LeadingOnes problem.

8. A new version of https://github.com/automl/DACBench (v. 0.1) was released alongside this article.
9. The original pycma version of CMAStepSize is still supported and used in Section 6.1.

1649

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

This is a particularly interesting setting as the exact runtime distribution is very well under-
stood (Doerr, 2019). In particular, it is possible to compute optimal dynamic configuration
policies for various different problem sizes and configuration spaces. Finally, a continuous

class DACEnv(gym.Env):

def __init__(self , A, Θ, D, Πφ, cstep):

self.A, self.D, self.cstep, self.φ = A, D, cstep, Πφ.φ
self.action_space = Θ

def reset(self , i=sample(self.D)):
s = self.A.init(i)
self.state = (s, i)

return self.φ(s, i)

def step(self , θ):
s, i = self.state

s = self.A.step(s, i, θ)
r = self.cstep(s, i, θ)
done = self.A.is final(s, i)

self.state = (s, i)

return self.φ(s, i), r, done , None

Listing 1: A generic python implementation of a gym environment using components of a
DAC scenario (in blue) with decomposable cost and an input-constrained policy space Πφ.
Practical DACBench benchmarks implement a similar mapping, but DAC components are
typically not strictly separated, e.g., A. step and cstep would typically be calculated jointly.
Note that the gym.Env.step method, despite its name, does far more than merely comput-
ingA. step: It implements the transition dynamics (T) and reward signal (R). Furthermore,
unlike A. step, it is stateful, does not take the state (s, i) as input, and does not necessarily
return the new state. Instead, it more generally returns what is called an observation φ(s, i)
which may abstract arbitrary aspects of the internal state, i.e., DACBench technically re-
duces DAC to a contextual partially observable MDP (cPOMDP). Note that the learned pol-
icy in POMDPs is a function of the observable state, and hence φ can be viewed as modeling
a policy space constraint of the form Πφ = {π |φ(s, i) = φ(s′, i′) =⇒ π(s, i) = π(s′, i′)}.

Benchmark Domain Status Description

Sigmoid Toy Extended Control k parameters to trace a different sigmoids each (Biedenkapp et al., 2020).
Luby Toy Original Select the correct next term in a shifted luby sequence (Biedenkapp et al., 2020).

CMAStepSize EA Extended Control the step size in CMA-ES (Shala et al., 2020).
FastDownward Planning Original Control heuristic selection in FastDownward (Speck et al., 2021).

SGD-DL DL Extended Control the SGD for neural network training (Daniel et al., 2016).
TheoryBench EA New Control the mutation rate of (1+1)RLS for LeadingOnes (Biedenkapp et al., 2022).

ModCMA EA New Control design choices (e.g., base sampler used) of CMA-ES (Vermetten et al., 2019).
ToyGD Toy New Control the learning rate of gradient descent on polynomial functions.

Table 1: DACBench Benchmarks. “Status” compares the current state of each benchmark
to the benchmarks originally introduced by Eimer et al. (2021b).

1650

Automated Dynamic Algorithm Configuration

Sigmoid variation and SGD on polynomials provide additional artificial benchmarks for
efficient evaluation of DAC algorithms.

Empirical Validation DACBench is a very recent library. As a consequence, it has not
yet been used in prior art. Eimer et al. (2021b) focused on providing a unified interface to
a variety of benchmarks and analyzed specific properties of these benchmarks based on the
behavior of static policies and simple hand-crafted dynamic policies. Here, we describe the
first applications of practical DAC methods to these benchmarks, and provide important
empirical validation for DACBench.

6. Empirical Case Studies

In this section, we discuss in more detail three successful applications of automated DAC
in different areas of AI: evolutionary optimization (Shala et al., 2020, Section 6.1), AI plan-
ning (Speck et al., 2021, Section 6.2), and machine learning (Daniel et al., 2016, Section 6.3).
The primary purpose of this section is to complement the general, big picture discussions
in previous sections with some concrete practical examples of automated DAC. Here, we
cover our own work in this area (Shala et al., 2020; Speck et al., 2021), supplemented with
a machine learning application (Daniel et al., 2016) for diversity. In these case studies, we
also conducted additional experiments to answer the following research questions.

RQ1: Can we reproduce the main results of the original papers using DACBench?
Since it is well known that RL results are hard to reproduce (Henderson et al., 2018), in
order to provide a solid foundation for experimental work in the field we believe it to
be important to repeat the original experiments, this time using the publicly available
re-implementations provided by DACBench (i.e., the CMAStepSize, FastDownward, and
SGD-DL benchmarks) and to compare the results obtained to those of the original papers.
Beyond insights into the reproducibility of the prior work, this analysis provides empirical
validation for DACBench: This is the first study investigating whether, and to what extent,
the benchmarks in DACBench permit reproducing the original results. Further, it is worth
noting that the work by Daniel et al. (2016) is closed source, and that this is the first
reproduction of their experiments with open-source code.

RQ2: Does DAC outperform static AC in practice?
Theoretically, an optimal DAC policy will be at least as good as an optimal static AC
policy. In practice, however, the superiority of DAC is not guaranteed, since practical DAC
methods may not be capable of finding an optimal/better DAC policy and/or doing so may
require more computational resources than available. To investigate this, for each scenario
in our case studies, we compare the anytime performance of the DAC method used to that
of static AC baselines: We run SMAC (as a classical AC method, Hutter et al., 2011;
Lindauer et al., 2022) and Hydra10 (as a PIAC method, Xu et al., 2010) on the same
problem, and compare the performance of the best dynamic/static policies found at any
time during the configuration process. We further include the theoretical upper bounds for

10. Hydra combines SMAC with an algorithm selection method of choice. Since most of the considered
benchmarks do not have instance features, we will assume an oracle selecting the best configuration in
the portfolio. We treat the maximum size of the portfolio as a case study dependent hyperparameter
and detail this choice in the respective experimental setups.

1651

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

classical AC (SBS = minθ∈Θ
1
|I′|
∑

i∈I′ c(θ, i)) and PIAC (VBS = 1
|I′|
∑

i∈I′ minθ∈Θ c(θ, i))

as reference, to distinguish practical from inherent limitations of static AC.11

In what follows, we discuss our three case studies, in each case presenting an introduction
to the domain, the problem formulation as an instance of DAC, the solution method, the
experimental setup, the results, and a discussion thereof.12

6.1 Step Size Adaptation in CMA-ES

The first problem we consider is to dynamically set the step-size parameter of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES, Hansen et al., 2003), an evolutionary al-
gorithm for continuous black box optimization. Each generation g, CMA-ES evaluates the

objective value f of λ individuals x
(g+1)
1 , ..., x

(g+1)
λ sampled from a non-stationary multi-

variate Gaussian distribution N (µ(g), σ(g)2 · C(g)). Then, based on the outcome of these
evaluations, CMA-ES heuristically adapts the parameters µ, σ, C of the search distribution
aiming to increase the likelihood of generating better individuals next generation. In partic-
ular, the step-size parameter σ controls the scale of the search distribution and CMA-ES by
default adjusts it using Cumulative Step Length Adaptation (CSA, Hansen & Ostermeier,
1996). Note that variants of CMA-ES, e.g., IPOP-CMA-ES (Auger & Hansen, 2005), exist
that also adapt the population size λ dynamically. While these hand-crafted parameter
control heuristics are arguably key to CMA-ES’s success, they are by no means optimal
and implicitly make assumptions about the task distribution. For instance, these heuristics
have themselves (hyper)parameters, and it has been shown that tuning these can further
improve IPOP-CMA-ES’s performance (Liao et al., 2011; López-Ibáñez et al., 2012). In
Shala et al. (2020), we investigated the possibility of learning step-size adaptation in a
data-driven fashion, optimized for the task distribution at hand, i.e. automated DAC.

Problem Formulation: Below, we briefly detail each of the DAC components:

A, Θ: The target algorithm to configure in this scenario is CMA-ES. As in Shala et al.
(2020), we use the pycma distribution of CMA-ES. Its interface allows for stepwise
execution of CMA-ES. CMA-ES is initialized with a given initial mean µ(0) and step-
size σ(0) (C(0) = 1). Each generation g, we

1. sample λ individuals x
(g+1)
1 , ..., x

(g+1)
λ from N (µ(g), σ(g)2 · C(g))

2. evaluate the objective function values f(x
(g+1)
1), ..., f(x

(g+1)
λ) of these individuals

3. adapt the distribution parameters µ(g+1), σ(g+1), C(g+1) for the next generation.

In this final step, the mean µ and covariance C are adapted as usual in CMA-ES,
while the step-size σ is to be reconfigured dynamically in the range Θ = R+.

11. Note that the acronyms SBS (single best solver) and VBS (virtual best solver) stem from the algorithm
selection literature. More details on how these theoretical bounds were determined can be found in the
experimental setup of the respective case studies.

12. Code for reproducing these experiments is publicly available:
https://github.com/automl/2022_JAIR_DAC_experiments

1652

Automated Dynamic Algorithm Configuration

D, I: Instances correspond to tuples consisting of a black box function f and an initial
search distribution. Here, the latter is isotropic and defined by an initial mean m(0)

and step-size σ(0).

Π : The policies are constrained to be functions of a specific observable state composed of:

(i) the current step-size value σ(g); (ii) the current cumulative path length p
(g)
σ (Hansen

& Ostermeier, 1996); (iii) the history of changes in objective value, i.e., the normalized
differences between successive objective values, from h previous iterations; and (iv) the
history of step-sizes from h previous iterations.

c : The cost metric used is “the likelihood of outperforming CSA”. Assuming we perform
two runs of CMA-ES, one using π, the other CSA, it measures how likely the latter is
to obtain a better final solution than the former. We estimate this probability based
on pairwise comparisons of n = 25 runs varying only the random seed of CMA-ES,
i.e.,

c(π, i) =

∑n
j

∑n
k 1πj<CSAk
n2

where 1πj<CSAk is the function indicating that our policy resulted in a lower final
objective value than the baseline using CSA, when comparing runs j and k. Note
that a benefit of this cost metric is that it is easy to interpret, both conceptually
and in terms of statistical significance. As explained in more detail in the original
publication (Shala et al., 2020, Appendix C), it has a direct correspondence with the
Wilcoxon rank sum statistic. For n = 25, estimates c(π, i) ≥ 0.64 imply π significantly
outperformed CSA (at 95% confidence, one-sided).

Solution Method: In Shala et al. (2020), we proposed to use existing hand-crafted heuris-
tics to warm-start DAC. To this end, we adopted the methodology proposed by Li and Malik
(2017) in the context of L2O and used guided policy search (GPS, Levine & Abbeel, 2014), a
reinforcement learning method originating from the robotics community. In GPS, a teacher
(typically a human) provides some initial sample trajectories that the RL agent first learns
to imitate and then iteratively refines without further interaction with the teacher. To learn
step-size adaptation policies, in Shala et al. (2020), we used CSA as a teacher and extended
GPS with persistent teaching, meaning that at each iteration the GPS agent obtains a fixed
fraction (the sampling rate, a hyperparameter) of its sample trajectories from the teacher,
encouraging it to continually learn from CSA. Following Li and Malik, the area under the
curve (AUC) was used as a reward signal for GPS, instead of negated cost. Here, the re-

ward at step t is −minx∈Xt f(x) where Xt = {x(g)
i | g ≤ t} is the set of individuals evaluated

up until step t. This reward signal, unlike negated cost, is dense and actively encourages
learning policies with good anytime performance.13

Experimental Setup In our experiments, we used the DACBench implementation of the
CMAStepSize benchmark. Replicating the original setup, we set population size λ = 10,
history length h = 40, terminate CMA-ES after 50 generations, and model policies as fully
connected feed-forward neural networks having two hidden layers with 50 hidden units each

13. Taking a multi-objective perspective (López-Ibáñez et al., 2012; López-Ibánez & Stützle, 2014), AUC
can be seen as measuring the hypervolume using fitness 0 and the maximum budget as a reference point.

1653

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 4: Incumbent performance of DAC (GPS), PIAC (Hydra), and classical AC (SMAC)
when determining a step-size configuration policy for CMA-ES. Solid lines depict the mean
of five independent configuration runs and the shaded area the standard deviation. SBS
depicts the single best configuration and VBS the oracle configuration portfolio across all
instances.

and ReLU activations. Note that in Shala et al. (2020), we considered a collection of different
scenarios varying in target distribution: (i) single black box function, different initial search
distributions; (ii) black box functions of the same type, but different dimensionalities and
initial search distributions; and (iii) black box functions of different types and initial search
distributions. In our case study here, we only reproduce and discuss the results for the
third scenario, as it considers learning policies that generalize across different black box
functions. Here, the training setup consists of 100 training instances: 10 different black box
functions, with 10 different initial search distributions each. For testing, 12 other black box
functions were used with a specific initial search distribution. In both cases, the functions
used were taken from the BBOB-2009 competition (Hansen et al., 2009). We perform five
independent GPS training runs using the original hyperparameters, each performing a total
of 40000 CMA-ES runs and taking 8-10 CPU hours on our system. In our comparison of
anytime performance to static AC, the same budget was used for classical AC (SMAC) and
PIAC (Hydra). A maximum portfolio size of 10 was used for Hydra. To determine SBS
and VBS, we discretized Θ (1000 values equidistant in [0.1, 2.0]) and evaluated c(θ, i) for
all (1000 × 100) combinations of θ ∈ Θ and i ∈ I ′.

Results Figure 4 compares the anytime training performance of DAC (GPS) to that
of classical AC (SMAC) and PIAC (Hydra) when learning step-size adaptation. Classi-
cal AC and PIAC initially show similar anytime behavior, where the former reaches SBS
performance after 1000 evaluations, the latter further improves, but does not reach VBS
performance within the given budget of 40000 evaluations. In contrast, DAC (GPS) has
a minimum budget of 5000 evaluations, however, the initial incumbent immediately out-
performs the VBS and further improves to eventually find a DAC policy that on average
outperforms CSA on 87% of the runs on the training setting. Figure 5 shows the likelihood
of the five learned policies outperforming CSA on the 12 unseen test functions. Here, for

1654

Automated Dynamic Algorithm Configuration

Figure 5: Likelihood of the policies learned by GPS (for five runs) outperforming CSA on
12 unseen test functions. The reported values from (Shala et al., 2020) are shown in blue,
whereas the results for the five learned policies are shown in yellow, in a consistent order.

each of five individual seeds, we observe that the learned policies significantly (p(π < CSA)
≥ 0.64, α = 0.05) outperformed CSA on 10, 9, 10, 8, 8 of the 12 unseen test functions, while
being significantly outperformed on 0, 1, 0, 3, 3, respectively. In comparison to the original,
the learned policies performed similarly when averaging costs across all test functions/poli-
cies (0.74 vs 0.75 originally). However, it is worth noting that the average performance
of the individual policies and the performance profile across the test functions varies more
strongly.

Discussion On a high level, we could reproduce our results from Shala et al. (2020),
showing that the learned policies for step-size adaptation can outperform CSA on func-
tions not seen during training. Since the DACBench implementation, to the best of our
knowledge, exactly replicates the original setup, we assume the observed differences to be
a consequence of variability across training runs. This is supported by our observation
that the five different runs of GPS (varying only in random seed) resulted in policies whose
test cost ranged from -0.83 to -0.65 (vs. -0.75 originally). Our analysis of the anytime
performance revealed another weakness of the approach: Its relatively high up-front cost.
It is worth noting that this cost includes the teacher runs (25 × 100 runs using CSA) we
performed to warm-start GPS. Nonetheless, since GPS maintains an independent controller
per instance, its computational cost will generally scale linearly with the number of training
instances. Further, it is difficult to predict in advance how many training instances and
runs per training instance suffice. In comparison, the static approaches in our comparison
follow a more incremental approach resulting in a better anytime performance. That being

1655

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

said, the best static policy did not significantly outperform CSA. As such, independent of
the specific approaches, our results provide further evidence of the importance of dynamic
step-size adaptation, showing that DAC policies (learned, but also CSA) are competitive
with and/or outperform their static counterparts, even on relatively short CMA-ES runs.
Finally, we note that CSA itself has various configurable parameters (e.g., the initial step-
size, backward time horizon, and dampening parameters) and that these were not optimized
for our baseline in Figure 5. While tuning these offline is not standard practice, doing so
may result in a stronger baseline (Liao et al., 2011; López-Ibáñez et al., 2012), potentially
even outperforming our learned policy. In fact, this could itself be seen as an instance of
“DAC by static AC” constrained to the parametric CSA policy space.

6.2 Heuristic Selection in FastDownward

Heuristic search is one of the most widely used and successful approaches to AI planning.
This type of search makes use of heuristics to estimate the distance to some desired goal
state as a cheap proxy of having to directly evaluate the true distance. Over decades of
research, many different heuristics have been developed for a variety of problem domains.
Since no single heuristic works best on all problem instances, the AI planning community has
made use of meta-algorithmic approaches such as algorithm selection, algorithm scheduling
and algorithm configuration (Helmert et al., 2011; Seipp et al., 2014; Fawcett et al., 2014;
Seipp et al., 2015; Sievers et al., 2019). However, one limiting factor of these approaches
is that they do not take the internal dynamics of the planning system into account and
only adapt to a set of problem instances (per-distribution) or individual problem instances
(per-instance). Gomoluch et al. (2019, 2020) first investigated automated dynamic algo-
rithm configuration (DAC) in AI planning, in the context of switching between different
search strategies. However, in our case study below, we will focus on DAC for heuristic
selection problem (Speck et al., 2021). It has been shown that using hand-crafted policies
to switch between heuristics to adapt to changing conditions can greatly improve perfor-
mance (Richter & Helmert, 2009; Röger & Helmert, 2010). Speck et al. (2021) proposed to
use reinforcement learning to automatically determine a policy that selects at each individ-
ual planning step which heuristic to follow, out of a set of heuristics sharing their progress.
That work showed that DAC is in theory able to outperform prior meta-algorithmic ap-
proaches and empirically validated this by outperforming the theoretical best algorithm
selector (a.k.a. virtual best solver) on multiple domains.

Problem Formulation Below, we briefly detail each of the DAC components:

A, Θ: The target algorithm to configure in this scenario is the popular FastDownward
Planner (Helmert, 2006). To make it stepwise executable, and to allow communication
with a dynamic configuration policy, Speck et al. (2021) proposed to set up a socket
communication such that DAC can change heuristics after each node expansion. The
configuration space consists of four heuristics14 (i.e., a single categorical parameter),
commonly used in satisficing planning: (i) the FF heuristic hff (Hoffmann & Nebel,

14. In an additional experiment, Speck et al. (2021) showed that even with an increased action space,
including the landmark-count heuristic (Richter et al., 2008), DAC was still capable of learning better
policies than the considered baselines. Here, we limit ourselves to the original configuration space which
only includes four heuristics.

1656

Automated Dynamic Algorithm Configuration

2001), (ii) the causal graph heuristic hcg (Helmert, 2004), (iii) the context-enhanced
additive heuristic hcea (Helmert & Geffner, 2008), and (iv) the additive heuristic
hadd (Bonet & Geffner, 2001). The planning system is terminated when a solution is
found. Since some runs may fail to find a solution, Speck et al. (2021) also limited
the maximal run length. During the configuration phase (training of the RL agent)
an individual solution attempt can run for at most 7500 steps. During evaluation,
this conservative step-limit of 7500 steps is removed and instead a maximum of five
minutes running time is used.

D, I: The target problems consist of 100 training and 100 disjoint test problem instances
taken from each of six different domains from the international planning competition
(IPC). The instances, however, were not taken from a particular round of the IPC as
some domains only contain few instances. Instead, Speck et al. (2021) used instance
generators to generate instances that resemble those of the IPC tracks.

Π: The policies are constrained to be a function of a specified observable state. The observ-
able state consists of simple statistics about the heuristics in the configuration space.
Specifically, for every heuristic h, it contains the (i) maximum h value; (ii) minimum h
value; (iii) average h value; (iv) variance of h over all possible next states; (v) number
of possible next states as determined by h; and (vi) current expansion step t. In order
to encode progress towards solving a problem instance, Speck et al. (2021) did not
use these state features as is, but rather their change w.r.t. the previous step (i.e.,
the difference between consecutive observations).

c: The considered cost metric is the total number of node expansions, i.e., the number of
planning steps until a solution is found. The decomposed cost metric is +1 for every
step. Thus, configuration policies that minimize the average number of planning steps
are preferential. Note that, given the termination criterion of A, the maximal cost at
configuration time is 7500, corresponding to not finding a solution in time. During
evaluation, coverage is analyzed instead, i.e., the number of instances solved within
the five minute budget.

Solution Method The proposed solution approach by Speck et al. (2021) uses a small
double deep Q-network (DDQN, van Hasselt et al., 2016) to learn a dynamic configuration
policy via reinforcement learning. In our experiments, we use the original reinforcement
learning code with the exact same hyperparameters as provided by the original authors.
Since DACBench offers a standard RL interface (see Section 5), the original RL code could
be reused without modification.

Experimental Setup In our experiments, we make use of the implementation of the
interface as provided via DACBench (FastDownward benchmark). Following Speck et al.
(2021), we learn a separate policy for each domain, however, to reduce the computational
cost, we limit ourselves to a representative set of three out of six domains. Following Speck
et al. (2021), we perform five independent training runs for each domain. In each training
run, an RL agent experiences 106 steps of the planning system, taking 8-12 hours on our
system. Since |Θ| = 4, SBS and VBS could be determined exactly for each domain by
evaluating c(θ, i) for all (4 × 100) combinations. For Hydra, we used a maximum portfolio
size of three which is sufficient to cover the optimal portfolio.

1657

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

(a) barman domain (b) blocksworld domain

(c) visitall domain

Figure 6: Incumbent performance of DAC (DDQN), PIAC (Hydra), and classical AC
(SMAC) when determining a heuristic selection policy for FastDownward on (a) the bar-
man, (b) blocksworld, and (c) visitall domains. Solid lines depict the mean of five
independent configuration runs and the shaded area the standard deviation. SBS depicts
the single best configuration and VBS the oracle configuration portfolio across all instances.
Oracle-DAC is the oracle portfolio of the policies learned by each DAC (DDQN) training
run, i.e., out of the five different learned policies this oracle selects the best performing
policy for each individual instance. Thus, this provides a pessimistic performance estimate
of an optimal dynamic configuration policy.

Results Figure 6 compares the anytime performance of DAC (DDQN) to that of classical
AC (SMAC) and PIAC (Hydra) for all three domains. On the barman domain, DAC finds
policies that on average clearly outperform the best static baseline in less than 10% of
the total budget. On the blocksworld domain, DAC almost needs the full budget, but
eventually finds policies that marginally outperform the VBS. The visitall domain is
even slightly harder and DAC (DDQN) does not confidently find policies outperforming the
static baselines within the limited budget. For lower budgets, classical AC and PIAC obtain
clearly better policies on visitall / blocksworld, and PIAC eventually approaches VBS
performance on both domains. Table 2 compares the coverage results for all learned policies
on the test problem instances with a static baseline. Here, we find that our learned policies
generalize well to the test scenarios and achieve similar coverage as reported in the original
paper. In the barman domain, DAC policies dominate, and while we achieve a slightly
lower coverage on this domain than originally, this can largely be attributed to an individual
training run of ours performing worse than the others, with the individual coverages 85.00,
88.32, 67.00, 84.00, and 84.00. In the other two domains, we achieve slightly higher coverages
than originally, and the DAC policies perform similarly well as the best static policies.

1658

Automated Dynamic Algorithm Configuration

Algorithm dac policy single heuristic as oracle

Domain (# Inst.)
rl

rl† hff hcg hcea hadd single h
Run#1 Run#2 Run#3 Run#4 Run#5

81.7
barman (100)

85.0 88.3 67.0 84.0 84.0
84.4 66.0 17.0 18.0 18.0 67.0

blocksworld (100)
93.6

92.9 75.0 60.0 92.0 92.0 93.0
95.0 95.0 91.0 94.0 93.0

58.6
visitall (100)

58.1 56.1 57.8 60.0 61.0
56.9 37.0 60.0 60.0 60.0 60.0

sum (300) 233.9 234.2 178.0 137.0 170.0 170.0 220.0

Table 2: Number of solved unseen test problem instances averaged over five independently
repeated training runs. Column rl provides the results of our experiment, with the results
of the individual runs given in a smaller font, whereas rl† contains the original coverage
values as reported by Speck et al. (2021). All hi columns contain the number of solved
problem instances when only using the specific heuristic. as oracle reports the coverage
results of the theoretically best algorithm selector.

Discussion Our results confirm the results of Speck et al. (2021) where the DAC policies
(i) obtain slightly lower coverage than the single best heuristic in the visitall domain, (ii)
outperform the single best heuristic and are close in performance to the theoretical best
algorithm selector on the blocksworld domain and (iii) provide the best coverage by far
in the barman domain. Most notably, on average, the learned DAC policies are capable of
solving more problem instances than the theoretical best algorithm selector, which already
provides a significant improvement over using the single best heuristic. Our analysis of the
approach’s anytime performance also revealed that when less time is available, static AC
approaches, in particular PIAC (Hydra), outperform DAC (DDQN) on two of the three
domains. However, on the remaining domain (barman), superior dynamic policies are
easily found. It is worth noting that on all three domains, oracle-DAC is clearly superior,
suggesting the potential to further improve performance by using better DAC methods
and/or more informative state features.

6.3 Learning Rate Control in Neural Network Training

Daniel et al. (2016) investigated meta-learning a controller for the learning rate hyperpa-
rameter η in Stochastic Gradient Descent (SGD) style neural network optimizers. SGD is
the method of choice for optimizing the parameters w of deep neural networks, i.e., solve
arg minw L(w, D), where L is some differentiable measure of loss on the training data D. In
deep learning, it is common to have millions of parameters. To scale up to such extremely
high-dimensional w, SGD exploits the fact that ∇wL(w, D) = ∂L(w,D)

∂w can be computed
exactly, and updates w in the opposite direction of the gradient. As datasets in deep
learning are huge, computing the “full batch” gradient is typically too expensive. Instead,
SGD computes the gradient at every optimization step for a different randomly selected
“mini-batch” B ⊂ D. While this gradient is an unbiased estimate of the actual gradient,
i.e., E[∇wL(w, B)] = ∇wL(w,D), variance can cause gradients to occasionally point in the
wrong direction. Furthermore, gradients only provide local information and do not tell us

1659

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

how far we can move without overshooting. Moreover, the optimal step sizes per dimension
may vary strongly, a problem known as ill-conditioning. Over the last decade a variety
of different variants of SGD, e.g., Momentum (Jacobs, 1988), RMSprop (Tieleman et al.,
2012), and Adam (Kingma & Ba, 2015), have been proposed that aim to address these and
other issues. However, despite their popularity, modern SGD variants are still sensitive to
their hyperparameter settings. In particular, they still have a global/initial learning rate
η, that uniformly scales the step taken in each dimension, and that must typically be op-
timized for the problem at hand (Bengio, 2012). When setting η too low, optimization is
slow, while too high η might even lead to divergence. To the best of our knowledge, Daniel
et al. (2016) was the first work that explored replacing η by a meta-learned controller,
producing more robust SGD methods. Xu et al. (2019) followed up on this idea, and most
recently Almeida et al. (2021) considered meta-learning the control of learning rate and
various other hyperparameters (e.g., weight-decay and gradient clipping).

Problem Formulation The meta-learning approach by Daniel et al. (2016) is readily
seen as automated DAC. Below, we briefly detail each of the DAC components:

A, Θ: Daniel et al. (2016) present a general method for dynamically configuring the learning
rate ηt ∈ R+ at every optimization step of SGD. In their experiments, they do this for
two SGD variants: RMSprop and Momentum.15 Note that in the first optimization
step, a fixed learning rate η0 is used.

D, I: Instances correspond to neural network optimization problems, and are represented
by the quadruple 〈D,L, k, ξ〉, where

• D is the data we want to fit the neural network to. In their experiments, Daniel
et al. (2016) consider image classification, using examples from the MNIST and
CIFAR-10 datasets.

• L is the differentiable loss function to be minimized. Daniel et al. used cross-
entropy loss, i.e., the negative log-likelihood of the data D under the model with
parameters w, where this model can be any parametric model. Daniel et al.
(2016) used small convolutional neural networks (CNNs).

• k is the cutoff: SGD is terminated after k optimization steps.

• ξ is the seed of the pseudo-random number generator used for random neural
network initialisation and mini-batch sampling.

Π : Daniel et al. (2016) considered dynamic configuration policies that are a log-linear
function πλ(φ) = exp(λ0 +

∑4
j=1 λjφj) of four expert features φ that in turn depend

on the previous learning rate ηt−1 and the current loss/gradients for each data point.
See the original paper for a detailed description of φ.

c : Daniel et al. (2016) aim to control the learning rate η as to maximally reduce the training
loss. Specifically, the cost of a run is quantified as min(1

k−1 log(EkE1
), 0), where Et is

the full batch training loss after t optimization steps. Note that we handle divergence
cases by setting the costs of runs that fail to reduce the training loss to 0.

15. In the original paper, Momentum was simply referred to as “SGD”.

1660

Automated Dynamic Algorithm Configuration

A D L k ξ
meta-training RMSprop MNIST-small c-p-c-p-c-r-fc-s (varying # filters) 300-1000 varying

Momentum MNIST-small c-p-c-p-c-r-fc-s (varying # filters) 300-1000 varying

meta-testing RMSprop MNIST c-p-c-p-c-r-fc-s (20-50-200 filters) 2000 fixed
Momentum MNIST c-p-c-p-c-r-fc-s (20-50-200 filters) 2000 fixed
RMSprop CIFAR-10 c-p-r-c-r-p-c-r-p-c-r-fc-s (32-32-64-64 filters) 6000 fixed

Momentum CIFAR-10 c-p-r-c-r-p-c-r-p-c-r-fc-s (32-32-64-64 filters) 12000 fixed

Table 3: A summary of the six different DAC setups used in (Daniel et al., 2016). During
meta-training, 100 target problem instances are considered, generated by randomly varying
D (dataset), L (loss), k (cutoff), and ξ (seed). The meta-testing setups consider a single
instance. MNIST-small: To avoid bias towards specific training examples, a randomly
varied subset of 6K-30K of the 60K MNIST training examples is used during meta-training.
The losses L differ only in the predictive model. All use CNNs, but a different layered
architecture (c: same convolution with 3x3 filter, r: ReLU, fc: fully connected, s: softmax).
To avoid bias towards specific architectures, the number of filters used is varied randomly
in meta-training (in ranges [2-10]-[5-25]-[50-250]).

Solution Method Daniel et al. (2016) solved this DAC problem by directly optimizing
the policy parameters λ using the Relative Entropy Policy Search (REPS) policy gradient
method. In our experiments, we will also optimize λ directly, but instead use Sequential
Model-based Algorithm Configuration (SMAC, Hutter et al., 2011). Note that we follow a
DAC by static AC, instead of a DAC by RL approach (see Section 4.2). This decision was
motivated by the fact that Daniel et al. (2016) provide too little details about the method
and its implementation, to allow us to confidently reproduce the original meta-training
pipeline. On the other hand, SMAC is a popular open source (Lindauer et al., 2022) tool
for Bayesian optimization that we conjecture to be suitable to reliably and globally optimize
λ within a reasonable time frame.

Experimental Setup In our experiments, we used the DACBench implementation of the
DAC scenario described above (SGD-DL). Apart from using SMAC instead of REPS, we
aimed to maximally replicate the setup used in the original paper. Note that Daniel et al.
(2016) actually considered six slightly different scenarios: Two for learning the η-controller
for RMSprop/Momentum, resp., and two for testing each of the meta-learned controllers
on MNIST/CIFAR-10, resp. The differences between these setups are summarized in Ta-
ble 3. As we did not have access to the original code, replication was restricted by the
details disclosed in the original paper.16 The remaining design choices were mostly made
heuristically. Some had to be optimized to obtain similar baseline behavior. Here, we found
the use of a sufficiently large mini-batch size (64 at meta-training, 512 at meta-testing),
and Xavier weight initialisation, to be particularly important. For meta-training the two
η-controllers, we used a meta-training set I ′ ∼ D of 100 instances and the default parameter
settings of SMAC, and optimized λ ∈ [−10, 10]5, using a symmetric log-scale with linear
threshold 10−6, for 5000 inner training runs. Each SMAC run took less than 2 CPU-days
on our system. To assess meta-training variability, we performed five such runs in parallel,

16. We also contacted Chris Daniel, the first author, but he did not have access to the proprietary code
anymore, either, and was thus not able to help us replicate the original setup.

1661

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

(a) Meta-Training RMSprop (b) Meta-Training Momentum

Figure 7: Incumbent performance of DAC (SMAC configuring a parametric DAC policy),
PIAC, and classical AC when meta-learning learning rate configuration for RMSprop (left)
and Momentum (right). Solid lines depict the mean of five independent meta-learning runs
and the shaded area the standard deviation. SBS depicts the single best configuration and
VBS the oracle configuration selection portfolio across all instances.

selecting the configuration with the highest meta-training performance for meta-testing.
For Hydra, we used the same parameters as SMAC, and a maximum portfolio size of 10.
Finally, to determine SBS and VBS, we discretized Θ (1000 values, log-scale in [10−5, 100])
and evaluated c(θ, i) for all (1000 × 100) combinations.

Results Figure 7 compares the anytime performance of DAC (SMAC) to that of PIAC
(Hydra) and classical AC (SMAC) for RMSprop (left) and Momentum (right). In both
cases, DAC’s initial performance is worse than its static counterparts. This difference in
relative performance is most blatant for RMSprop, where DAC takes over 100 evaluations
to find a non-diverging policy (i.e., with negative average cost), while classical AC achieves
near SBS performance in that time. PIAC (Hydra) only marginally improves upon classical
AC (SMAC) and SBS, and does not attain VBS performance. Despite the slow start, all
DAC runs eventually outperform all classical AC and PIAC runs, ultimately attaining a
policy that reduces training loss 0.71% (RMSprop) and 0.46% (Momentum) more per step
than the VBS on average (∼ 58% and 35% after 650 steps). Figure 8 shows the full batch
training loss L(wt, D) at each optimization step using the meta-learned η-controller that
performed best in meta-training, and various static baselines, in each of the four meta-test
setups. Overall, the training curves for our baselines look similar to the original, both in
terms of absolute and relative performance. An exception are high learning rates. For
RMSprop, our curves look quite different, but are similarly chaotic. For momentum, the
highest learning rate performs best for us, while the original diverges. On MNIST, both
meta-learned controllers (π) clearly outperform the best static baseline, even though the
cutoff k is two times higher than the highest cutoff considered during meta-training. This
result is similar to that of the original paper, but our learned controller arguably even does
better. On CIFAR-10, the meta-learned controller (π) performs similar to (RMSprop),
or better than (Momentum) the best baseline in the first 1000 update steps, but fails to
achieve the best final performance. Here, our results differ from the original, where the final
performance was similar (RMSprop) or better (Momentum) than the best static baseline.

1662

Automated Dynamic Algorithm Configuration

Figure 8: Comparison of learning curves for RMSprop/Momentum using the meta-learned
η-controllers (π) vs. several static baselines, on MNIST/CIFAR-10. Each dataset/optimizer
combination appears in its own sub-figure. For ease of comparison, the corresponding figure
in the original paper is shown in the bottom left corner of each sub-figure.

Discussion The “flavour of AC” prevailing on these scenarios depends on the budget
available: For sufficiently large budgets (> 1000 evaluations), DAC confidently outperforms
static AC. However, DAC is clearly outperformed by classical AC for smaller budgets.
While the best DAC policies are better, arbitrary static policies tend to outperform ar-
bitrary DAC policies for this scenario, e.g., the vast majority of DAC policies diverge for
RMSprop. Nonetheless, the poor relative initial performance of DAC is not inherent, and
could, e.g., be addressed by using a different initial design that prioritizes static policies
(πλ : λk = 0,∀ k > 0). Also note that we cannot compare our meta-training results to those
obtained by REPS, since Daniel et al. (2016) did not analyze meta-training. Our meta-
testing results, however, validate that the SGD-DL benchmark considers a highly similar
setup and that it can be used to learn controllers that perform similarly well as in the
original paper. On the other hand, we also observed differences that are unlikely explained
by random noise alone. For example, momentum seems to prefer higher learning rates in
our experiments, and our meta-learned controller does not transfer as well to higher cutoffs
on CIFAR-10. Finally, the configurations λ we found differ strongly from those reported
in the original paper, and using the latter even caused divergence in our experiments. We
currently cannot explain those differences, and lacking the original code, further insight can
only be gained through trial & error. We emphasize that, in contrast to the original code,
our benchmark is publicly available to facilitate future research on DAC.

1663

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

7. Conclusion

To conclude, we again summarize our main insights and results, and discuss possible future
research directions opened up by this work.

7.1 Summary

In this article, we presented the first comprehensive overview of automated Dynamic Algo-
rithm Configuration (DAC), a novel meta-algorithmic framework proposed by Biedenkapp
et al. (2020). To this end, we introduced automated DAC as a natural extension of previous
research efforts in automated static algorithm configuration and manual DAC. Furthermore,
we situated automated DAC in a broader context of AI, discussing how it can be viewed as
a form of “semi-automated” programming, as a generalization of existing meta-algorithmic
frameworks, and as an automated approach to the design of operator selection and param-
eter control mechanisms. After formalizing DAC further, we introduced its methodology
and showed how prior art can be roughly subdivided in two schools, tackling the prob-
lem using reinforcement learning and optimization methods, respectively. On the empirical
side, we presented and extended DACBench, a novel benchmark library for DAC proposed
by Eimer et al. (2021b) and showed that DAC can be successfully applied to evolutionary
optimization, AI planning, and machine learning. As the first paper, we provided thorough
empirical evidence that automated DAC can outperform prior static AC methods. In sum-
mary, we found that on all scenarios considered, automated DAC discovered policies that
were at least as good as, and typically better than, their static counterparts. Depending
on the scenario, this sometimes required less, but usually more (up to 10×) computational
budget than a state-of-the-art static AC method needed to converge on the same scenario,
on average.

7.2 Limitations and Further Research

While these case studies and other previous applications provide a “proof of concept” for
automated DAC, we point out that much remains to be done to unlock its full potential, and
we hope that this work may serve as a stepping stone for further exploring this promising
line of research. In what remains, we will discuss some of the limitations of contemporary
work and provide specific directions for future research.

Jointly configuring many parameters While static approaches are capable of jointly
configuring hundreds of parameters, the configuration space in contemporary DAC is typ-
ically much smaller, often considering only a single parameter. While the configuration
space is smaller, the candidate solution space (i.e., the dynamic configuration policy space)
grows exponentially with the number of reconfiguration points, in the worst case, and is
thus typically drastically larger than static configuration policy spaces. Although modern
techniques from reinforcement learning scale much better than ever before, we still know too
little about the internal structure of DAC problems to handle this exploding space of pos-
sible policies. For example, not much is known regarding interaction effects of parameters
in the DAC setting. If there should be only a few interaction effects between parameters as
in static AC (Hutter et al., 2014; Wang et al., 2016), learning several independent policies
might be a way forward.

1664

Automated Dynamic Algorithm Configuration

Temporally sparse DAC Note that not all parameters can/must be reconfigured at
every time step. Also, our results suggest that an initial bias towards static configuration
policies could improve the anytime performance of DAC in various scenarios. Mixed static
and dynamic configuration, and learning “when to reconfigure” (Biedenkapp et al., 2021)
therefore present one opportunity to scaling up DAC. Furthermore, we plan to extend the
DAC formalism with partial reconfiguration to capture intrinsic temporal conditionalities,
e.g., a parameter not being used in some execution steps.

Warm-starting DAC Most prior art derives dynamic configuration policies from scratch,
while in many cases good default parameter control mechanisms are known. Beyond strong
baselines, these existing policies could also be used to warm-start the automated process.
This idea has already been explored by Shala et al. (2020) (see also Section 6.1), but could
be extended in various ways. For example, we could learn from an ensemble of teachers to
exploit their complementary strengths.

Online DAC Most prior art performs algorithm configuration offline, i.e., the optimal
static/dynamic configuration policy is derived in a dedicated configuration phase proceeding
use/test time (see Figure 1).17 However, when using the target algorithm, more information
about the target problem distribution and relative performance of candidate policies be-
comes available, and online algorithm configuration approaches (Fitzgerald, 2021) capable
of exploiting this information and transferring experience across test instances, continually
refining the policy, are an interesting direction of future research.

Better DAC methods Successful DAC requires more than just computational resources.
To apply DAC, a practitioner must make many choices that critically affect not just its ef-
ficiency, but also its effectiveness. As a consequence, key ingredients for successful DAC
are currently (i) target domain expertise, (ii) DAC methodology expertise, and (iii) trial
and error. Note that this conflicts with the main objective of automated DAC, i.e., reduc-
ing reliance on human effort and expertise. To address this shortcoming, we need better
methods. In particular, as discussed in Section 4.3, we believe that there is a need for
dedicated dynamic algorithm configuration packages capable of combining the strengths of
the contemporary DAC by reinforcement learning and optimization approaches.

Domain-Expert driven DAC From working on static AC for more than a decade, we
know that a challenge AC poses to users is to specify the inputs, including questions such as:
(i) Which instances will reflect future real-world use cases well? (ii) Which parameters are
important and should be configured, and using which domain (upper & lower bounds, etc)?
(iii) Which metric will accurately quantify the true desirability of a configuration or policy?
This hinders the adoption of such meta-algorithmic approaches in practice. To tackle this
problem, we envision a new paradigm which is driven by the domain expert and allows
for monitoring of the training and deployment performance, and for live adjustments of
training distributions, configuration spaces and performance metrics by the domain expert.
Likewise, we would like to enable experts to express priors over the policies they would
expect to work well, extending similar work in static AC (Hvarfner et al., 2022). Finally,
we would like domain experts to not only be able to steer DAC, but to also gain new and

17. As discussed in Section 2.2.3, we do not regard the majority of previous “online learning approaches” to
parameter control as prior art in automating DAC.

1665

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

deeper insights from the automated search process, similar to various existing methods that
capture the importance of hyperparameters in static AC (Hutter et al., 2014; Biedenkapp
et al., 2017, 2018; van Rijn & Hutter, 2018; Probst et al., 2019).

Extending DAC Benchmarks To stay relevant, these future directions will also have
to be reflected in a set of contemporary DAC benchmarks, such as in DACBench, alongside
continuing work on further expanding the scope of existing benchmarks. While DACBench
covers a range of domains, some like SAT or MIP, which are commonly used in AC, are
absent at the moment. Partnering with domain experts could help broaden the scope of
DACBench and thus DAC in general. Beyond real-world benchmarks, there is also a need for
additional “toy” benchmarks that permit efficient evaluation of DAC methods, something
especially crucial in (i) the early stages of developing new methods and (ii) enabling meta-
algoritmics to be applied to DAC itself. Finally, prior art, our own work included, rarely
compares different DAC methods. To facilitate this, we need more than just benchmarks,
we need a library of DAC methods and standard protocols to compare them.

Acknowledgments

All authors acknowledge funding by the Robert Bosch GmbH. Theresa Eimer and Mar-
ius Lindauer acknowledge funding by the German Research Foundation (DFG) under LI
2801/4-1. We thank Maximilian Reimer, Rishan Senanayake, Göktuğ Karakaşlı, Nguyen
Dang, Diederick Vermetten, Jacob de Nobel and Carolin Benjamins for their contributions
to DACBench, and Carola Doerr for the many discussions on related work and problem
formulation.

1666

Automated Dynamic Algorithm Configuration

Appendix A. History of Automated Dynamic Algorithm Configuration

As discussed in Section 2.3, the story of automating dynamic algorithm configuration (DAC)
did not start when Biedenkapp et al. first introduced the DAC meta-algorithmic framework
in 2020. Instead, various works have over the last decade explored automated dynamic
algorithm configuration, under different names, in more specific contexts, often in isolation,
and pioneering work can be traced at least 20 years back. In the main text, we reference
the relevant works and characterize the field both in terms of application areas (Section 2.3)
and methodology (Section 4). In what follows we complement this high-level perspective,
briefly summarizing and highlighting the contributions of each individual work to the field,
in chronological order.18

June 2000 Lagoudakis and Littman consider algorithm selection for recursive algorithms.
In particular, motivated by the observation that every subproblem may be best solved
using a different algorithm, formulate algorithm selection in this context as a sequen-
tial decision problem and propose the use of reinforcement learning to derive dynamic
algorithm selection policies that generalize across target problem instances. They il-
lustrate this approach on classic problems of order statistic selection and sorting. This
is the first work extending a general meta-algorithmic framework to the dynamic set-
ting and following a solution approach that, in many ways, resembles current “DAC
by reinforcement learning” practice (see Section 4.1). The work is limited in its focus
on algorithm selection (∼ single categorical parameter) and the recursive setting. In
particular, their methodology exploits the tree structure of the computational graph
and that optimal decisions in different branches are independent.

June 2001 Lagoudakis and Littman apply their aforementioned approach to learn a policy
that dynamically selects amongst seven possible branching rules for DPLL, a complete
SAT solver. It is worth noting that DPLL is not a recursive algorithm, but that
backtracking algorithms produce a similar computational graph.

July 2002 Pettinger and Everson present, in a single page extended abstract, what we
regard to be the first general instance of automated dynamic algorithm configuration.
They describe a study using Q(λ) reinforcement learning to determine a policy that
jointly selects mutation and crossover operators (|Θ| = 20) in a genetic algorithm,
per generation, based on statistics of the current population (not further specified)
and show that the learned policy generalizes to a single unseen 40-city TSP prob-
lem. Notably, direct follow-up work by Chen et al. (2005), no longer transferred
experience across runs and is therefore not considered prior art automating DAC (see
Section 2.2.3). Similarly, Sakurai et al. (2010) propose further extensions to this line
of work, without discussing generalization or presenting empirical results.

18. Disclaimer : This is the result of an extensive literature review we performed in the context of this article,
but should by no means be regarded as being complete. Given the wide applicability, the lack of consistent
terminology, and the sometimes subtle distinction between manual/automated and static/dynamic AC,
we can unfortunately not guarantee completeness of this overview.

1667

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Automated DAC winter? Interestingly, following aforementioned pioneering work, we
did not find published work exploring automated DAC in a period spanning more
than eight years. At the same time, manual DAC and automated static AC were
booming. One possible explanation is that the DAC methodology and computational
resources available at the time were insufficient to achieve performance competitive
with optimized static configurations and/or hand-crafted parameter control policies.

September 2010 Fialho et al. present an analysis of different multi-armed bandit (MAB)
approaches for adaptive operator selection in evolutionary algorithms. Note that since
none of the MAB approaches transfer experience across runs, we do not regard these as
automated DAC. However, these MAB strategies themselves have (hyper)parameters
and for the sake of fair comparison, the authors tune these using F-race (Birattari
et al., 2002), a methodology that can be regarded as the first account of “DAC by
static AC” (see Section 4.2).

January 2012 Battiti and Campigotto present the first extensive investigation using re-
inforcement learning for parameter adaptation in the context of reactive optimiza-
tion. In particular, they present case studies using Least Squares Policy Iteration
to learn to adapt a single real-valued parameter in a variety of (reactive) stochas-
tic local search methods for the MAX-SAT problem: Prohibition value of Reactive
Tabu Search (RTS), noise value of Adaptive Walksat, and the smoothing probabil-
ity of Reactive Scaling and Probabilistic Smoothing (RSAPS). Unlike earlier work,
their study includes learning curves and generalization experiments show that learn-
ing takes place for two of the three methods (RTS and RSAPS) and improves upon
the default configuration, however, improvements compared to statically configured
variants were inconsistent.

May 2012 López-Ibánez and Stützle, in a technical report that was later published as
a journal article (López-Ibánez & Stützle, 2014), propose a multi-objective perspec-
tive on anytime performance, viewing an algorithm’s performance profile as a pareto
front. The authors argue for the importance of dynamic parameter adaptation in this
context, and suggest the use of static algorithm configurators and the hypervolume
metric to automatically design parameter adaptation strategies optimized for anytime
performance. They present a case study, using irace (López-Ibáñez et al., 2016) to
develop parameter adaptation strategies for four parameters of the MAX-MIN Ant
System on the Traveling Salesman Problem. This is the first work explicitly advo-
cating what we call the “DAC by static AC” approach. The case study is limited in
that each parameter was controlled independently as a simple function (linear decay,
or single switch, 5 (hyper)parameters per parameter) of time.

September 2012 López-Ibáñez et al. use irace to optimize several parameters of IPOP-
CMA-ES for anytime performance. While this work could also be regarded as static
AC, the fact that the authors explicitly chose parameters that indirectly dynamically
control internal parameters of IPOP-CMA-ES (e.g., population size) we view it as
another instance of “DAC by static AC”.

1668

Automated Dynamic Algorithm Configuration

February 2016a Daniel et al. propose meta-learning a controller for the learning rate hy-
perparameter in Stochastic Gradient Descent (SGD) style neural network optimizers.
Here, they use Relative Entropy Policy Search (REPS) to train a simple log-linear
controller using four dynamic expert features. We reproduce the main results of this
case study in Section 6.3, but use SMAC (Hutter et al., 2011) to optimize the five
parameters of this policy, instead of REPS.

February 2016b Hansen, concurrently, considered a setup similar to Daniel et al.’s. How-
ever, they use Deep Q-learning (DQN) to train a neural network controller that per-
forms a line search in full batch gradient descent. Their policy network has three
outputs, corresponding to trying a twice as small, double as large, or accepting, the
current learning rate.

June 2016 Fu, like Hansen (2016), explore using DQN to meta-learn learning rate control
in neural networks. The work differs in that it considers stochastic gradient descent,
without line search, training larger networks (wide ResNets), and a policy network
mapping lower level input features (elementary weight statistics) to two outputs, ei-
ther decreasing the current learning rate with 3%, or resetting to the initial learning
rate, to facilitate meta-learning SGDR-like (Loshchilov & Hutter, 2017) warm restart
schedules.

July 2016a Adriaensen and Nowé propose to view semi-automated algorithm design as a
sequential decision problem, and argue for the potential benefits of solving it using
white box methods (exploiting this sequential nature), e.g., reinforcement learning. In
this perspective, an algorithm is executed with open design choices (e.g., an unassigned
parameter) until the next instruction executed depends on the decisions made, and
an agent must choose between possible continuations. This concept is formalized as
a non-deterministic Turing machine, where non-deterministic transitions correspond
to choice points induced by design decisions left open at design time, and a formal
reduction to the MDP is presented. Despite the abstract nature of this work, its focus
on algorithm design, the problem formalized is closely related to DAC, and the work
provides important motivation for DAC by RL, and DAC in general.

July 2016b Andersson et al. propose a temporally sparse approach to dynamically config-
ure multiple parameters. Here, the DAC policies switch between a limited number of k
parameter sets (i.e., configurations) and the dynamic switching policy
S → {θ1, . . . , θk} is itself a parametric function whose parameters are jointly op-
timized with each parameter set (∼ static algorithm configuration). The authors
illustrate this approach using it to jointly control six parameters of NSGA-II, consid-
ering policies switching once/twice (k = 2/k = 3) when a specific tuned threshold of
solution quality is reached (tuned, one per switch). The resulting DAC policies have
13/20 (hyper)parameters and were optimized using a custom evolutionary optimiza-
tion method.

1669

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

February 2017 Ansótegui et al. first explore a per-instance algorithm configuration (PIAC)
approach to DAC. The authors consider the problem of dynamically controlling seven
parameters of the dialectic search metaheuristic applied to the MAX-SAT domain. In
particular, they use ISAC (Kadioglu et al., 2010) to learn a per-instance configuration
policy selecting the best configuration of a DAC policy, based on the static features of
the problem instance at hand. Each DAC policy in the portfolio has 84 configurable
(hyper)parameters, 12 per parameter, corresponding to the weights (and bias) of a
logistic regression map determining the value of each individual parameter, as a linear
combination of 11 dynamic state features, followed by a logistic sigmoid output acti-
vation. Kadioglu et al. (2017) later followed a similar methodology to learn a reactive
restart portfolio, which can be viewed as an instance of automated dynamic algorithm
scheduling, where independent algorithm runs differ in random seed only.

June 2017 Fontoura et al. use genetic programming, more specifically grammatical evolu-
tion, as a generation hyper-heuristic to design a selection hyper-heuristic for protein
structure prediction. Unlike related work by Sabar et al. (2013), Fontoura et al. apply
this approach offline and validate the generality of this selection hyper-heuristic. The
learned selection heuristic is shown to be competitive with, but does not outperform,
a state-of-the-art cross-domain hyper-heuristic.

July 2019a Sharma et al. use Double Deep Q-learning (DDQN) to learn a dynamic con-
figuration policy controlling the choice of the mutation strategy in the Differential
Evolution (DE) algorithm. Here, the policy network learns to select, at each DE
generation, and for each individual, between four frequently used mutation strategies,
based on 99 dynamic state features.

July 2019b Gomoluch et al. use the classical REINFORCE (Williams, 1992) algorithm,
a policy gradient method, to learn policies that switch between discrete choices of
forward search algorithms. As part of this work, they discuss the influence the choice
of reward function has on RL-based solution approaches for DAC. Their experiments
show this RL-based approach to be capable of learning domain specific search policies
that improve over simple static baselines.

September 2019 Xu et al. present another study meta-learning learning rate control for
SGD using reinforcement learning. Novelty, compared to previous works (Daniel et al.,
2016; Hansen, 2016; Fu, 2016), is the use Proximal Policy Optimization (PPO), as
opposed to REPS or DQN. Also, they first explore meta-training a recurrent learning
rate controller network (LSTM), enabling the learned policy to use the full history of
state features. Finally, they meta-train to minimize the validation loss (as opposed
to training loss) to avoid meta-learning controllers that “learn to overfit”.

July 2020 Sae-Dan et al. propose an approach similar to Andersson et al. (2016)’s and
demonstrate its effectiveness in deriving a dynamic configuration policy for four pa-
rameters of an iterated local search metaheuristic, for three different combinatorial
optimization problems (TSP, PFSP, QAP). Unlike Andersson et al. (2016), the switch-
ing criterion is time, and irace is used to optimize parameter sets and switching points.

1670

Automated Dynamic Algorithm Configuration

August 2020 Biedenkapp et al. establish DAC as a new meta-algorithmic framework,
extending classical and per-instance algorithm configuration. In doing so, they aim
to consolidate aforementioned efforts and raise the level of generality in pursuit of
algorithms similar to those that exist for static AC, and a deeper understanding of
the problem itself. Biedenkapp et al. (2020) also propose a concrete solution approach,
using contextual reinforcement learning, and demonstrate its effectiveness empirically.
However, experiments were limited to two toy scenarios, and the paper’s focus on
“DAC by RL”, left alternative solution approaches somewhat underrepresented. Note
that we address both limitations of the original work in this journal paper.

September 2020 Shala et al. consider the problem of learning to adapt the global step-
size parameter of CMA-ES, a popular continuous black box optimizer. Here, they use
guided policy search (GPS, Levine & Abbeel, 2014) and compare the learned policies
to CMA-ES’s default, hand-crafted step-size adaption heuristic (CSA) on functions
taken from the BBOB benchmark (Hansen et al., 2009). Results show that the learned
policies generalize to longer runs, and to different function families, as those seen
during training. We reproduce the main results of this case study in Section 6.1

October 2020 Gomoluch et al. extend the idea from their previous work (Gomoluch et al.,
2019). Instead of discrete choices, they construct a parametrized search algorithm,
such that different configurations correspond to (and interpolate between) various
different search techniques. They continue to learn to control these parameters dy-
namically, this time using the cross-entropy black box optimization method (CEM)
to optimize the parameters of a simple neural controller. Next to this “DAC by op-
timization” approach, they also consider a static AC baseline, where CEM is used to
optimize the parametrized search algorithm directly (per-distribution). Their experi-
ments show both approaches to be capable of outperforming fixed search techniques,
without a clear winner between the two AC variants.

June 2021 Almeida et al. revisit the problem of meta-learning hyperparameter control for
training deep neural networks. Like Xu et al. (2019), they train an LSTM using PPO
for relative multiplicative control. Unlike previous work (Daniel et al., 2016; Hansen,
2016; Fu, 2016; Xu et al., 2019), they present a case study controlling eight different
hyperparameters jointly (including the learning rate). In addition, an adaptive check-
pointing strategy is learned that also controls backtracking. Finally, the potential
of the approach is shown, training larger models and on a wider range of datasets.
Apart from its extended scope and scale, a key insight of this work is the importance
of feature normalization. In particular, the work normalizes features as to factor out
problem-specific info, to avoid overfitting the meta-training set.

August 2021a Bhatia et al. propose to use DQN to dynamically tune the weighting of
the anytime weighted A* method. Their experiments show that DQN can serve as
an effective controller, switching between five discrete weights and thereby producing
plans of higher solution quality when compared to five typically considered static
weights for anytime weighted A*. Their analysis shows that the learned policies are
dynamic and make use of most available choices. Further, the authors provide insights
into which features were most important for learning the final policies.

1671

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

August 2021b Speck et al. (first published as preprint in June 2020 and as workshop
version in October 2020) make use of RL to learn policies that can switch between
different heuristics when searching for satisficing plans. As such, it is a direct follow
up to the earlier work by Biedenkapp et al. (2020) and discusses how to design the
components needed to be able to use RL as a solution method. Further, this work
provides theoretical analysis on the potential gains of using DAC when switching be-
tween heuristics. For example, the work proves that, for a particular family of planning
problems, optimal DAC policies drastically reduce the number of required planning
steps when compared to static counter parts. Finally, their empirical analysis shows
that RL based DAC policies are capable of outperforming even the theoretical best
algorithm selector. We reproduce the main results of this case study in Section 6.2.

August 2021c Eimer et al. present DACBench, the first benchmark library for DAC pro-
viding unified interface to a collection of open source implementations replicating sce-
narios considered in literature (Daniel et al., 2016; Vermetten et al., 2019; Biedenkapp
et al., 2020; Shala et al., 2020; Speck et al., 2021; Biedenkapp et al., 2022). We discuss
DACBench in Section 5 and our case studies in Section 6 provide important empirical
validation for DACBench.

November 2021 Getzelman and Balaprakash use reinforcement learning (PPO) to learn
a stochastic policy to dynamically switch between three pre-existing optimization
algorithms (Adam, gradient descent, random search) to solve quadratic programming
problem instances. While this work profiles itself as learning-to-optimize (L2O, Li
& Malik, 2017), it is also readily seen as automated DAC for a single parameter
determining the optimizer used in each iteration.

December 2021 Ichnowski et al., like Getzelman and Balaprakash (2021), explore auto-
mated DAC, using reinforcement learning, in the context of quadratic programming.
They use Twin Delayed DDPG (TD3) to learn a policy controlling the step-size pa-
rameter (vector) ρ of the Alternating Direction Method of Multipliers (ADMM).

July 2022 Biedenkapp et al. present a new benchmark (extending DACBench), where
one is to dynamically configure the mutation rate of a (1+1) random local search
algorithm for the LeadingOnes problem. This is a particularly interesting setting
as the exact runtime distribution is very well understood (Doerr, 2019) and optimal
dynamic configuration policies can be derived efficiently for various different problem
sizes and configuration spaces. Experiments show that DDQN can reliably derive
near-optimal policies for smaller problems/configuration spaces, but fails to scale up.

These are all the works we are aware of being published at the time of submitting this
manuscript (May 2022). Despite this prior art, many open research challenges still remain
(see Section 7.2) and we hope this article may provide a standard reference and a solid
foundation for future research in this area.

1672

Automated Dynamic Algorithm Configuration

Appendix B. Problem-Theoretical Perspective on DAC

In this Appendix, we present a theoretical motivation of why DAC (Definition 3) is a
problem worth studying. In doing so, we provide grounding for many of the higher-level
discussions in the main text. Since this kind of analysis is hardly standard, we start by
introducing some fundamental concepts (Section B.1), then discuss the main results (Sec-
tion B.2), and end with the formal justification (Section B.3).

B.1 Fundamental Concepts

B.1.1 Computational Problems

In this work, we formalized dynamic algorithm configuration (DAC) and related computa-
tional problems as follows:

Definition 4: Computational Problem

In a computational problem (X ,R), given any input x ∈ X, we are to compute an
output y satisfying (x, y) ∈ R.

Conceptually, each (x, y) ∈ R represents a problem instance x and a solution y thereof.
Note that instances may have more than one admissible solution, or even none at all. We
will also use R(x) = {y|(x, y) ∈ R} to denote the solution set for x. All problem definitions
in this paper are structured syntactically as “Given x find a y ∈ R(x)”.

Digression on Problem Classes: Problems of this form are also known as “search
problems”. To avoid confusion, problem classes group problems (e.g., DAC), not problem
instances (e.g., DAC scenarios), i.e., when viewing DAC as a search problem (as in Defini-
tion 3), X would correspond to the set of all possible DAC scenarios and R(x) the set of
optimal policies for some DAC scenario x. The choice to restrict ourselves to search prob-
lems was a trade-off between (i) theoretical convenience / simplicity and (ii) expressiveness,
i.e., alternative formulations exist that better model many of the problems we consider:

Optimization: Can express that not every solution is equally good. For instance, in
this work we use (i) “find x satisfying x ∈ arg maxx f(x)” rather than (ii) “find x
maximizing f(x)”. Note that this difference, while subtle, is important for problem
theory: For instance, if arg maxx f(x) = ∅, in (i) we should return that no solution
exists, while in (ii) we should return an as good as possible solution.

Distributional: Can express that all inputs are not equally likely, by modelling inputs as
a distribution D rather than a set X . Note that while we do not use distributional
problems on the meta-level, we do use them as target problems.

However, for these problem classes, standard definitions for theoretical concepts such as
reducibility do not exist and any satisfactory definition would significantly complicate the
reduction proofs in this appendix.

1673

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

B.1.2 Reducibility

Problem formalization enables formal reasoning about the relationship between problems.
In this appendix, we focus on a specific kind of relationship: Reducibility, as defined by
Papadimitriou (1994, p. 506):

Definition 5: Many-one Reducibility (m-reducibility)

Let (X,R) and (X ′, R′) be two computational problems, withR : X×Y andR′ : X ′ × Y ′.
We say that (X,R) is many-one reducible to (X ′, R′), or also m-reducible, which we
denote (X,R) ≤m (X ′, R′), if and only if computable functions

formulate: X → X ′

interpret: X × Y ′ → Y

exist such that ∀ x ∈ X holds:

1. (formulate(x), y′) ∈ R′ =⇒ (x, interpret(x, y′)) ∈ R

2. R′(formulate(x)) = ∅ =⇒ R(x) = ∅

Conceptually, (1) all solutions of the reformulated problem instance can be interpreted as
a solution to the original problem instance, and (2) if the reformulated problem instance
does not have any solutions, the original problem instance should neither.

When a problem R is m-reducible to another R′, R can be solved by reduction to R′, i.e.,
given an algorithm a′ for R′, a(x) = interpret(x, a′(formulate(x))) is an algorithm for R.
It is worth noting that the existence of a many-one reduction does not necessarily render R
irrelevant: Solving R by reduction to R′ may inherently increase computational complexity
since (i) the reduction itself (i.e., formulate, interpret) may be costly (ii) the reduction
may abstract relevant info, making the reduced problem harder to solve. The practical
relevance of a reduction is further limited by the performance of known algorithms for R′.

Note that sometimes, even though one problem is not generally reducible to another, a
special case is. We define this notion as

Definition 6: Conditional Reducibility

Let (X,R) and (X ′, R′) be two computational problems, withR : X × Y andR′ : X ′ × Y ′.
We say that (X,R) is conditionally many-one reducible to (X ′, R′) under precondi-
tions c, which we denote (X,R) ≤cm (X ′, R′), if and only if ({x ∈ X | c(x)}, R) ≤m (X ′, R′),
where c is a Boolean function on X.

The practical relevance of a conditional reduction additionally depends on how commonly
its preconditions are satisfied. It is worth noting that many-one reducibility is transitive,
while conditional reducibility is not. However, the following holds:

(X,R) ≤cm (X ′, R′) ∧ (X ′, R′) ≤m (X ′′, R′′) =⇒ (X,R) ≤cm (X ′′, R′′)

1674

Automated Dynamic Algorithm Configuration

B.2 Reducibility Results

Figure 9 shows an overview of the reducibility relationships between DAC and all the other
computational problems we discussed in the main text.

Reducibility to DAC: We observe that all problems in meta-algorithmics, discussed in
Section 2.2.2, can be shown to be generally reducible to DAC. This suggests that research
towards solving DAC in general, will indirectly find applications in solving many of these
problems. Note that the conditional reduction from algorithm design corresponds to the
“DAC powered PbO”, discussed in Section 2.2.1, despite being conditional (i.e., not general),
presents a highly practical approach to automating algorithm design.

Reducibility from DAC: We observe that DAC is generally reducible to “algorithm
design” (as in Definition 7). However, this reduction is not practical since no general
solvers for this problem are known. DAC is also generally reducible to “noisy black box
optimization”. While this reduction is more practical (see Section 4.2), a lot of information is
lost in the process. Beyond these two problems, DAC is conditionally reducible. While many
of these conditional reductions give rise to practical solution approaches (see Section 4), they
are nonetheless limited both in terms of generality and the information they can exploit.

Conclusion: While a general DAC solver would allow us to solve many well-known com-
putational problems, no such solver exists to date, and is therefore a research direction
worth exploring. Note that various existing solvers can solve special cases of DAC, sug-
gesting that another line of research would be to identify further special cases that can be
solved more efficiently.

B.3 Reducibility Proofs

In this subsection, we formalize the reducibility relationships between DAC (Definition 3)
and all problems discussed in the main text. Here, we first formally define each problem
and then show reducibility by describing one possible reduction, i.e., defining formulate

and interpret functions. Finally, we present a formal argument (proof sketch) for the
correctness of each reduction.19

B.3.1 Algorithm Configuration

All discussed algorithm configuration variants were already defined in the main text:

• classical / per-distribution algorithm configuration (AC, Definition 1)

• per-instance algorithm configuration (PIAC, Definition 2)

• dynamic algorithm configuration (DAC, Definition 3)

In what follows, we formalize their relation.

19. For brevity, we generally prove (1) in Definition 5, but not corner case (2).

1675

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Figure 9: An overview of the reducibility relations between DAC and problems previously
studied in the meta-algorithmics, reinforcement learning, and optimization communities;
that we prove to exist in Section B.3. Note that arrows implied by the transitive/reflexive
property of m-reducibility are not shown. Conditional reducibility indicates that a problem
is only reducible to another, under specific conditions (i.e., not generally).

1676

Automated Dynamic Algorithm Configuration

AC ≤m PIAC:

formulate(〈A,Θ,D, c〉) = 〈A,Θ,D,Ψ, c′〉 with

• Ψ = {ψθ |ψθ(i) = θ,∀θ ∈ Θ}
• c′(ψθ, i) = c(θ, i)

interpret(〈A,Θ,D, c〉, ψθ∗) = θ∗

Proof Sketch: θ∗ ∈ arg minθ∈Θ Ei∼D [c(θ, i)]
By contradiction, assume θ∗ /∈ arg minθ∈Θ Ei∼D [c(θ, i)]. This implies that there
exists θ′ : Ei∼D [c(θ′, i)] < Ei∼D [c(θ∗, i)]. Since θ′ ∈ Θ and c(θ, i) = c′(ψθ, i), there
must exist ψθ′ ∈ Ψ having Ei∼D [c′(ψθ′ , i)] < Ei∼D [c′(ψθ∗ , i)], contradicting ψθ∗ ∈
arg minψ∈Ψ Ei∼D [c′(ψ, i)]. �

PIAC ≤m DAC:

formulate(〈A,Θ,D,Ψ, c〉) = 〈A′,Θ,D,Π, c′〉 with

• A′. step(s, i,θ) = A(i,θ) and A′. init(i) = υ and A′. is final(s, i) ⇐⇒ s 6= υ
(for some υ not being an output of A, i.e., we perform exactly one step)

• Π = {πψ|πψ(s, i) = ψ(i), ∀ψ ∈ Ψ}
• c′(πψ, i) = c(ψ, i)

interpret(〈A,Θ,D,Ψ, c〉, πψ∗) = ψ∗

Proof Sketch: ψ∗ ∈ arg minψ∈Ψ Ei∼D [c(ψ, i)].
By contradiction, assume ψ∗ /∈ arg minψ∈Ψ Ei∼D [c(ψ, i)]. This implies that there
exists ψ′ : Ei∼D [c(ψ′, i)] < Ei∼D [c(ψ∗, i)]. Since ψ′ ∈ Ψ, and c(ψ, i) = c′(πψ, i),
there must exist a πψ′ ∈ Π having Ei∼D [c′(πψ′ , i)] < Ei∼D [c′(πψ∗ , i)], contradicting
πψ∗ ∈ arg minπ∈Π Ei∼D [c′(π, i)]. �

DAC ≤cm AC:

Preconditions: We assume to be given a parametric representation Λ of the policy space,
i.e., Π = {πλ |λ ∈ Λ}.

formulate(〈A,Θ,D,Π, c〉) = 〈A′,Λ,D, c′〉 with

• A′(i,λ) = A(i, πλ).

• c′(λ, i) = c(πλ, i)

interpret(〈A,Θ,D,Π, c〉,λ∗) = πλ∗

Proof Sketch: πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]

λ∗ ∈ arg min
λ∈Λ

Ei∼D [c′(λ, i)] =⇒

λ∗ ∈ arg min
λ∈Λ

Ei∼D [c(πλ, i)] =⇒

πλ∗ ∈ arg min
πλ∈Π

Ei∼D [c(πλ, i)]

�

1677

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

B.3.2 Algorithm Design

We formalize algorithm design as in previous work (Adriaensen, 2018):

Definition 7: Algorithm Design

Let AU be the space of all algorithms.a Given a preference relation over �b over AU ,
find a a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU .

a. AU is a universal set containing “any procedure that solves some problem”. Further formalization
of this notion is hindered by the lack of a generally accepted, formal definition of “an algorithm”.

b. � is assumed to be a preorder, i.e., a binary relation that is reflexive and transitive.

algorithm design ≤cm DAC:

Preconditions: We assume we are given init, step, is final, and a set of Π sub-routines
such that algorithms aπ ∈ AΠ ⊂ AU that can be decompose in 〈init, step, is final, π〉
as in Algorithm 1 are at least as preferable as any other: ∀aπ ∈ AΠ : a � aπ, ∀a ∈ AU \AΠ.

formulate(〈�, init, step, is final,Π〉) = 〈A,Θ,D,Π, c〉 with

• A. step = step and A. init = init and A. is final = is final

• Any choice of D and c such that aπ′ ≺ aπ =⇒ Ei∼D [c(π, i)] < Ei∼D [c(π′, i)].
This can always be achieved, as a c that is solely a function of π can impose an
arbitrary total order on Π and therefore also one consistent with �.

interpret(〈�, init, step, is final,Π〉, π∗) = aπ∗

Proof Sketch: aπ∗ ⊀ a,∀a ∈ AU
By contradiction, assume there exists a′ ∈ AU : a′ � aπ∗ . Given our pre-condition, we
have a′ = aπ′ ∈ AΠ. From our choice of c follows that Ei∼D [c(π′, i)] < Ei∼D [c(π∗, i)],
contradicting π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]. �

DAC ≤m algorithm design:

formulate(〈A,Θ,D,Π, c〉) =�
satisfying

1. ∀π ∈ Π : a ≺ π,∀a ∈ AU \Π and

2. ∀π, π′ ∈ Π : Ei∼D [c(π, i)] < Ei∼D [c(π′, i)] =⇒ π′ ≺ π.

interpret(〈A,Θ,D,Π, c〉, a∗) = a∗

Proof Sketch: a∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]
By contradiction, assume a∗ /∈ arg minπ∈Π Ei∼D [c(π, i)]. First, note that a∗ ∈ AU \Π
and (1) would contradict a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU . This implies there exists
π′ ∈ Π : Ei∼D [c(π′, i)] < Ei∼D [c(a∗, i)], implying a∗ ≺ π′ by (2) and contradicting
a∗ ∈ AU : a∗ ⊀ a,∀a ∈ AU . �

1678

Automated Dynamic Algorithm Configuration

B.3.3 Algorithm Selection

For algorithm selection, we adopt the classical definition by Rice (1976):20

Definition 8: Algorithm Selection

Given 〈A, I, c〉:

– A finite set A of target algorithms

– A target problem space I

– A cost metric c : A× I → R assessing the cost of solving i ∈ I using a ∈ A.a

Find a selection mapping S∗ : I → A satisfying S∗(i) ∈ arg mina∈A c(a, i), ∀i ∈ I.

a. The original definition uses a performance metric p (to be maximized).

The reducability algorithm selection to DAC follows by transitive property from its redu-
cability to PIAC.

algorithm selection ≤m PIAC:

formulate(〈A, I, c〉) = 〈A′,Θ,D,Ψ, c′〉 with

• A′(i, k) = ak(i)

• Θ = {k | ak ∈ A} (single categorical parameter)

• D = U(I)

• Ψ : I → Θ (unconstrained)

• c′(ψ, i) = c(ψ(i), i)

interpret(〈A, I, c〉, ψ∗) = S∗ with S∗(i) = aψ∗(i)

Proof Sketch: S∗(i) ∈ arg mina∈A c(a, i),∀i ∈ I
By contradiction, assume ∃j ∈ I : S∗(j) /∈ arg mina∈A c(a, j). This implies there
exists S′ : S′(j) ∈ arg mina∈A c(a, j) ∧ S′(i′) = S(i′), ∀i′ ∈ I \ {j}. Since Ψ is uncon-
strained every selection mapping S has its corresponding ψ ∈ Ψ : S(i) = aψ(i) and
therefore ∃ψ′ ∈ Ψ : c(ψ′(j), j) < c(ψ∗(j), j) ∧ c(ψ′(i′), i′) = c(ψ∗(i), i′), ∀i′ ∈ I \ {j}.
From c′(ψ, i) = c(ψ(i), i) and D(j) > 0 follows that Ei∼D [c′(ψ′, i)] < Ei∼D [c′(ψ∗, i)],
contradicting ψ∗ ∈ arg minψ∈Ψ Ei∼D [c′(ψ, i)]. �

B.3.4 Algorithm Scheduling

We define a variant of algorithm scheduling that considers allocating a fixed time budget
to a finite set of target algorithms in an instance-aware and dynamic fashion:

20. Rice (1976) defines many different more general variants of the problem. However, we will restrict
ourselves to a canonical variant, i.e., selecting the best algorithm, per-instance, from finite alternatives,
without constraints on the selection mappings.

1679

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Definition 9: Algorithm Scheduling

Given 〈A,B, I,∆, c〉:

– A finite set A of stepwise executable target algorithms such that the execution
of the kth algorithm ak ∈ A can be decomposed as a consecutive application of a
sub-routine ak. tstep such that the state of algorithm ak when solving a problem
instance i, after t time steps, is given by sk,i,t = ak. tstep(sk,i,t−1) with sk,i,0 = i.

– A finite budget B of time steps to be allocated to algorithms in A.

– A target problem space I

– A space of dynamic scheduling policies δ ∈ ∆ with δ : S |A|×I×N→ A choosing
which algorithm ak ∈ A to resume executing in the next time step, as a function
of the total time T ∈ N elapsed thus far, the instance i ∈ I being solved and the
vector of states sm,i,tm of each algorithm am ∈ A.

– A cost metric c : A× I ×N→ R assessing the cost of solving i ∈ I using a ∈ A
for t ∈ N time steps.

Find a dynamic scheduling policy δ∗ ∈ arg minδ∈∆

∑
i∈I(minak∈A c(ak, i, t

B,δ,i
k)) where

tT,δ,ik is the total time allocated to ak by δ after T scheduling steps on instance i, and
is given by

tT,δ,ik =

0 T = 0

tT−1,δ,i
k T > 0 ∧ ak 6= δ(sT−1,δ,i, i, T − 1)

tT−1,δ,i
k + 1 T > 0 ∧ ak = δ(sT−1,δ,i, i, T − 1)

with

sT,δ,ik =

i T = 0

sT−1,δ,i
k T > 0 ∧ ak 6= δ(sT−1,δ,i, i, T − 1)

ak. tstep(sT−1,δ,i
k) T > 0 ∧ ak = δ(sT−1,δ,i, i, T − 1)

algorithm scheduling ≤m DAC:

formulate(〈A,B, I,∆, c〉) = 〈A,Θ,D,Π, c′〉 with

• A. step((s, i, T), i, θ) = (s′, i, T + 1) with s′k =

{
sk θ 6= k

ak. tstep(sk) θ = k

A. init(i) = (s, i, 0) with sk = i
A. is final((s, i, T), i)⇔ T = B.

• Θ = {k | ak ∈ A}
• D = U(I)

• Π = {πδ | δ ∈ ∆} with πδ((s, i, T), i) = k ⇔ δ(s, i, T) = ak

• c′(πδ, i) = minak∈A c(ak, i, t
B,δ,i
k)

interpret(〈A,B, I,∆, c〉, πδ∗) = δ∗

1680

Automated Dynamic Algorithm Configuration

Proof Sketch: δ∗ ∈ arg minδ∈∆

∑
i∈I(minak∈A c(ak, i, t

B,δ,i
k))

πδ∗ ∈ arg min
πδ∈Π

Ei∼D [c′(πδ, i)] =⇒

δ∗ ∈ arg min
δ∈∆

Ei∼D [min
ak∈A

c(ak, i, t
B,δ,i
k)] =⇒

δ∗ ∈ arg min
δ∈∆

1

|I|
∑
i∈I

[min
ak∈A

c(ak, i, t
B,δ,i
k)] =⇒

δ∗ ∈ arg min
δ∈∆

∑
i∈I

(min
ak∈A

c(ak, i, t
B,δ,i
k))

�

B.3.5 Reinforcement Learning

In Section 4.1, we discussed the relation between DAC and the

Definition 10: Markov Decision Problem (MDP)

Given 〈S,A, T,R〉:

– A state space S.

– An action space A

– A transition function T : S ×A→ S

– A reward function R : S ×A→ R

Find a policy π : S → A satisfying π∗(s) ∈ arg maxa∈AR(s, a) + V ∗(T (s, a)) with V ∗

being the optimal value-state function, i.e., V ∗(s) = maxa∈AR(s, a) + V ∗(T (s, a)).

Note that we will restrict ourselves to episodic MDPs, where we have absorbing states
SH = {s |T (s, a) = s, ∀a ∈ A} having R(s, a) = 0, ∀s ∈ SH that are reached within an
arbitrarily large, but finite horizon H and therefore V ∗(s) = maxπ

∑H−1
t=0 R(sπ,t, π(sπ,t))

where sπ,t = T (sπ,t−1, π(sπ,t−1)) is the tth state encountered when following π starting in
sπ,0 = s.

1681

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Since standard RL methods are not instance-aware, Biedenkapp et al. (2020) proposed
to model DAC as a

Definition 11: Contextual Markov Decision Problem (cMDP, Hallak et al.,
2015)

Given 〈C, S,A,M〉:

– A context space C

– A shared state space S

– A shared action space A

– A function M mapping any c ∈ C to an MDP M(c) = 〈S,A, Tc, Rc〉 with

– a context-dependent transition function Tc : S ×A→ S

– a context-dependent reward function Rc : S ×A→ R

Find a policy π : S × C → A satisfying π∗(s, c) ∈ arg maxa∈A Rc(s, a) + V ∗c (Tc(s, a))
with V ∗c (s) = maxa∈ARc(s, a) + V ∗c (Tc(s, a)).

Please remark that we assume the context to be observable and our objective to be
finding an optimal context-dependent policy. We will also assume MDPM(i) to be episodic.
As a consequence, this formulation is m-equivalent to that of an ordinary episodic MDP.
The cMDP formulation is nonetheless interesting in that it can capture various aspects of
DAC abstracted in the MDP reduction: DAC ≤m MDP ≤m cMDP.

DAC ≤cm cMDP:

Preconditions:

1. The cost function c is stepwise decomposable, i.e., we are given functions 〈cinit, cstep〉,
such that

c(π, i) = cinit(i) +
T−1∑
t=0

cstep(st, i, π(st, i))

where

s0 = init(i) ∧ st = step(st−1, i, π(st−1, i)) ∧ is final(st, i)⇔ t = T

2. The policy space is unconstrained, i.e., Π = {π |π(s, i) ∈ Θ, ∀ s ∈ S ∧ i ∈ I}

formulate(〈A,Θ,D,Π, c〉) = 〈C, S,A,M〉 with

• C = I the domain of D.

• S = S the set of algorithm states.

• A = Θ

• M(i) = 〈S,A, Ti, Ri〉 with

1682

Automated Dynamic Algorithm Configuration

– Ti(s,θ) =

{
s is final(s, i)

step(s, i,θ) ¬ is final(s, i)

– Ri(s,θ) =

{
0 is final(s, i)

cstep(s, i,θ) ¬ is final(s, i)

interpret(〈A,Θ,D,Π, c〉, π∗) = π∗

Proof Sketch: π∗ ∈ arg maxπ Ei∼D c(π, i)
We first note that since S = S ∧ A = Θ ∧ C = I and given precondition (2), it
follows that both problems have the exact same policy space Π. It remains to show
that optimality in the resulting cMDP implies optimality in the original DAC:

π∗(s, i) ∈ arg max
θ∈Θ

Ri(s,θ) + V ∗i (Ti(s,θ)) (∀s ∈ S, ∀i ∈ I) =⇒

π∗(init(i), i) ∈ arg max
θ∈Θ

Ri(init(i),θ) + V ∗i (Ti(init(i),θ)) (∀i ∈ I) =⇒

π∗ ∈ arg max
π

Ei∼D Ri(init(i), π(init(i), i)) + V ∗i (Ti(init(i), π(init(i), i)))

Since each M(i) is episodic, this objective can be rewritten as:

π∗ ∈ arg max
π

Ei∼D

H−1∑
t=0

Ri(sπ,t,i, π(sπ,t,i)) where sπ,t,i =

{
init(i) t = 0

Ti(sπ,t−1,i, π(sπ,t−1,i)) t > 0

π∗ ∈ arg max
π

Ei∼D

T−1∑
t=0

cstep(sπ,t,i, i, π(sπ,t,i)) where sπ,t,i =

{
init(i) t = 0

step(sπ,t−1,i, i, π(sπ,t−1,i)) t > 0

π∗ ∈ arg max
π

Ei∼D c(π, i)

�

It is worth noting that the optimality of π∗ does not depend on D, init, or cinit.

Conditional reducability to an ordinary MDP follows from the transitive property and

cMDP ≤m MDP:

formulate(〈C, S,A,M〉) = 〈S′, A, T,R〉 with

• S′ = S × C

• T ((s, c), a) = Tc(s, a)

• R((s, c), a) = Rc(s, a)

where M(c) = 〈S,A, Tc, Rc〉.

interpret(〈C, S,A,M〉, π∗) = π′∗ with π′∗(s, c) = π∗((s, c))

1683

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Proof Sketch: π′∗(s, c) ∈ arg maxa∈ARc(s, a) + V ∗c (s)

π∗((s, c)) ∈ arg max
a∈A

R((s, c), a) + V ∗(T ((s, c), a)) =⇒

π′∗(s, c) ∈ arg max
a∈A

Rc(s, a) + V ∗(Tc(s, a))

It remains to show that V ∗((s, c)) = V ∗c (s). We can prove this by induction on
the maximum number of steps Hs,c before reaching an absorbing state following any
policy starting from state s in context c. The base case Hs,c = 0 follows from
T ((s, c), a) = (s, c) ⇐⇒ Tc(s, a) = s. Now, for the recursive case, assuming this
holds for Hs,c ≤ n− 1, it also holds for Hs,c = n

V ∗((s, c)) = max
a∈A

R((s, c), a) + V ∗(T ((s, c), a))

= max
a∈A

Rc(s, a) + V ∗(Tc(s, a))

= max
a∈A

Rc(s, a) + V ∗c (Tc(s, a)) = V ∗c (s)

since HTc(s,a),c ≤ n− 1. �

and both are m-equivalent since

MDP ≤m cMDP:

formulate(〈S,A, T,R〉) = 〈C, S,A,M〉 with

• C = {0}

• T0(s, a) = T (s, a)

• R0(s, a) = R(s, a)

where M(0) = 〈S,A, T0, R0〉.

interpret(〈S,A, T,R〉, π∗) = π′∗ with π′∗(s) = π∗(s, 0)

Proof Sketch: π′∗(s) ∈ arg maxa∈A R(s, a) + V ∗(s)

π∗(s, 0) ∈ arg max
a∈A

R0(s, a) + V ∗0 (T0(s, a)) =⇒

π′∗(s) ∈ arg max
a∈A

R(s, a) + V ∗0 (T (s, a))

1684

Automated Dynamic Algorithm Configuration

It remains to show that V ∗(s) = V ∗0 (s). We can prove this by induction on the
maximum number of steps Hs before reaching an absorbing state following any policy
starting from state s. The base case Hs = 0 follows from T (s, a) = s⇔ T0(s, a) = s.
Now the recursive case, assuming this holds for Hs ≤ n− 1, it also holds for Hs = n

V ∗(s) = max
a∈A

R(s, a) + V ∗(T (s, a))

= max
a∈A

R0(s, a) + V ∗(T0(s, a))

= max
a∈A

R0(s, a) + V ∗0 (T0(s, a)) = V ∗0 (s)

since HT0(s,a) ≤ n− 1. �

B.3.6 Optimization

In Section 4.2, we discussed the relation between DAC and

Definition 12: Noisy Black Box Optimization

Given 〈X, e〉:

– A search space X

– A noisy evaluation sub-routine e

Find a x∗ ∈ arg minx∈X E[e(x)].

DAC ≤m noisy black box optimization:

formulate(〈A,Θ,D,Π, c〉) = 〈Π, e〉 where e(π) = c(π, i) with i ∼ D.

interpret(〈A,Θ,D,Π, c〉), π∗) = π∗

Proof Sketch: π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)]
We have π∗ ∈ arg minπ∈Π E[e(π)], since π∗ is a solution for noisy black box optimiza-
tion problem. Since e(π) = c(π, i) and i ∼ D, this is equivalent to π∗ ∈ arg minπ∈Π Ei∼D [c(π, i)].
�

Also in Section 4.2, we discussed the possibility of solving DAC using

Definition 13: Stochastic Gradient-Based Optimization

Given 〈X, e, e′〉:

– X and e as in Definition 12.

– A stochastic differentiation sub-routine e′ satisfying E[e′(x)] = E[∂e(x)
∂x].

Find a x∗ ∈ arg minx∈X E[e(x)].

1685

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

DAC ≤cm stochastic gradient-based optimization:

Preconditions:

1. We assume to be given a parametric representation Λ of the policy space, i.e.,
Π = {πλ |λ ∈ Λ}.

2. We assume c(πλ, i) to be piece-wise differentiable w.r.t. λ and a sub-routine for

calculating ∂c(πλ,i)
∂λ to be given.

formulate(〈A,Θ,D,Π, c〉) = 〈Λ, e, e′〉 with

• e(λ) = c(πλ, i) with i ∼ D.

• e′(λ) = ∂c(πλ,i)
∂λ with i ∼ D.

interpret(〈A,Θ,D,Π, c〉,λ∗) = πλ∗

Proof Sketch: πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]
We have λ∗ ∈ arg minλ∈Λ E[e(λ)], since λ∗ is a solution for black box optimization
problem. Since e(λ) = c(πλ, i) and i ∼ D, this is equivalent to λ∗ ∈ arg minλ∈Λ Ei∼D [c(πλ, i)].
Substituting every λ by its corresponding policy πλ, we get πλ∗ ∈ arg minπλ∈Π Ei∼D [c(πλ, i)]
�

At first sight, precondition (2) may seem very strong. In what follows, we show a sufficient
condition that is arguably not so strong.

Sufficient Conditions: Next to the precondition (1), we assume

3. to be given a parametric representation of the state space.

4. the cost function c to be stepwise decomposable in 〈cinit, cstep〉 such that

c(πλ, i) = cinit(i) +
T−1∑
t=0

cstep(st, i, πλ(st, i))

where

s0 = init(i) ∧ st = step(st−1, i, πλ(st−1, i)) ∧ is final(st, i)⇔ t = T

5. to be given sub-routines for calculating the following partial derivatives: ∂πλ(s,i)
∂λ ,

∂ cstep(s,i,θ)
∂θ ,

∂ cstep(s,i,θ)
∂s , ∂ step(s,i,θ)

∂θ , and ∂ step(s,i,θ)
∂s .

Proof Sketch: Under these conditions precondition 2 also holds.
The piece-wise derivative of c w.r.t. λ can be calculated as follows

∂c(πλ, i)

∂λ
=
∂
(

cinit(i) +
∑T−1

t=0 cstep(st, i, πλ(st, i))
)

∂λ

=
∂ cinit(i)

∂λ
+
T−1∑
t=0

∂ cstep(st, i, πλ(st, i))

∂λ

=
T−1∑
t=0

∂ cstep(st, i, πλ(st, i))

∂λ

1686

Automated Dynamic Algorithm Configuration

where

∂ cstep(st, i, πλ(st, i))

∂λ
=
∂ cstep(st, i, πλ(st, i))

∂πλ(st, i)
· ∂πλ(st, i)

∂λ

+
∂st
∂λ
·
(
∂ cstep(st, i, πλ(st, i))

∂st
+
∂ cstep(st, i, πλ(st, i))

∂πλ(st, i)
· ∂πλ(st, i)

∂st

)
with

∂st
∂λ

=
∂ step(st−1, i, πλ(st−1, i))

πλ(st−1, i)
· ∂πλ(st−1, i)

∂λ

+
∂st−1

∂λ
·
(
∂ step(st−1, i, πλ(st−1, i))

∂st−1
+
∂ step(st−1, i, πλ(st−1, i))

∂πλ(st−1, i)
· ∂πλ(st−1, i)

∂st−1

)
if t > 0 and ∂s0

∂λ = 0

Note that we can reuse the quantities calculated in the previous step, resulting in
a procedure known as forward-mode differentiation. While we will not derive the
formulas here, ∂c(πλ,i)

∂λ can also be calculated using reverse-mode differentiation, a
procedure also known as backpropagation in the context of neural networks. �

References

Adriaensen, S., & Nowé, A. (2016). Towards a white box approach to automated algo-
rithm design.. In Kambhampati, S. (Ed.), Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI’16), pp. 554–560.

Adriaensen, S. (2018). On the Semi-automated Design of Reusable Heuristics. Ph.D. thesis,
Vrije Universiteit Brussel.

Aine, S., Kumar, R., & Chakrabarti, P. (2009). Adaptive parameter control of evolutionary
algorithms to improve quality-time trade-off. Applied Soft Computing, 9 (2), 527–540.

Aleti, A., & Moser, I. (2016). A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv., 49 (3), 1–35.

Almeida, D., Winter, C., Tang, J., & Zaremba, W. (2021). A generalizable approach to
learning optimizers. arXiv preprint arXiv:2106.00958, [cs.LG].

Altman, E. (1999). Constrained Markov decision processes: stochastic modeling. Routledge.

Andersson, M., Bandaru, S., & Ng, A. H. (2016). Tuning of multiple parameter sets in
evolutionary algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016, pp. 533–540.

Andrychowicz, M., Denil, M., Colmenarejo, S. G., Hoffman, M., Pfau, D., Schaul, T., &
de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In
Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., & Garnett, R. (Eds.), Proceedings
of the 29th International Conference on Advances in Neural Information Processing
Systems (NeurIPS’16), pp. 3981–3989. Curran Associates.

1687

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Ansótegui, C., Malitsky, Y., Sellmann, M., & Tierney, K. (2015). Model-based genetic algo-
rithms for algorithm configuration. In Yang, Q., & Wooldridge, M. (Eds.), Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), pp.
733–739.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2021). PyDGGA: Distributed GGA
for automatic configuration. In Li, C., & Manyà, F. (Eds.), Theory and Applications
of Satisfiability Testing - SAT, Vol. 12831 of Lecture Notes in Computer Science, pp.
11–20. Springer.

Ansótegui, C., Sellmann, M., & Tierney, K. (2009). A gender-based genetic algorithm
for the automatic configuration of algorithms. In Gent, I. (Ed.), Proceedings of the
Fifteenth International Conference on Principles and Practice of Constraint Program-
ming (CP’09), Vol. 5732 of Lecture Notes in Computer Science, pp. 142–157. Springer.

Ansótegui, C., Pon, J., Sellmann, M., & Tierney, K. (2017). Reactive dialectic search
portfolios for MaxSAT. In S.Singh, & Markovitch, S. (Eds.), Proceedings of the Thirty-
First Conference on Artificial Intelligence (AAAI’17), pp. 765–772. AAAI Press.

Auger, A., & Hansen, N. (2005). A restart CMA evolution strategy with increasing popula-
tion size. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC,
pp. 1769–1776. IEEE.

Bard, J. F. (2013). Practical bilevel optimization: algorithms and applications, Vol. 30.
Springer Science & Business Media.

Barozet, A., Molloy, K., Vaisset, M., Siméon, T., & Cortés, J. (2020). A reinforcement-
learning-based approach to enhance exhaustive protein loop sampling. Bioinform.,
36 (4), 1099–1106.

Battiti, R., & Campigotto, P. (2012). An investigation of reinforcement learning for reactive
search optimization. In Hamadi, Y., Monfroy, E., & Saubion, F. (Eds.), Autonomous
Search, pp. 131–160. Springer.

Battiti, R., Brunato, M., & Mascia, F. (2008). Reactive search and intelligent optimization,
Vol. 45. Springer Science & Business Media.

Battiti, R., & Tecchiolli, G. (1994). The reactive tabu search. ORSA journal on computing,
6 (2), 126–140.

Baydin, A., Cornish, R., Rubio, D., Schmidt, M., & Wood, F. (2018). Online learning rate
adaption with hypergradient descent. In Proceedings of the International Conference
on Learning Representations (ICLR’18). Published online: iclr.cc.

Bello, I., Zoph, B., Vasudevan, V., & Le, Q. V. (2017). Neural optimizer search with
reinforcement learning. In International Conference on Machine Learning, pp. 459–
468. PMLR.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architec-
tures. In Neural networks: Tricks of the trade, pp. 437–478. Springer.

Bhatia, A., Svegliato, J., & Zilberstein, S. (2021). Tuning the hyperparameters of anytime
planning: A deep reinforcement learning approach. In ICAPS 2021 Workshop on
Heuristics and Search for Domain-independent Planning.

1688

Automated Dynamic Algorithm Configuration

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. (2020). Dynamic
algorithm configuration: Foundation of a new meta-algorithmic framework. In Lang,
J., Giacomo, G. D., Dilkina, B., & Milano, M. (Eds.), Proceedings of the Twenty-fourth
European Conference on Artificial Intelligence (ECAI’20), pp. 427–434.

Biedenkapp, A., Dang, N., Krejca, M. S., Hutter, F., & Doerr, C. (2022). Theory-
inspired parameter control benchmarks for dynamic algorithm configuration. In Field-
send, J. (Ed.), Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’22). ACM Press.

Biedenkapp, A., Lindauer, M., Eggensperger, K., Fawcett, C., Hoos, H., & Hutter, F. (2017).
Efficient parameter importance analysis via ablation with surrogates. In S.Singh, &
Markovitch, S. (Eds.), Proceedings of the Thirty-First Conference on Artificial Intel-
ligence (AAAI’17), pp. 773–779. AAAI Press.

Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration
assessment, visualization and evaluation. In Battiti, R., Brunato, M., Kotsireas, I.,
& Pardalos, P. (Eds.), Proceedings of the International Conference on Learning and
Intelligent Optimization (LION), Lecture Notes in Computer Science. Springer.

Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning when to
act. In Proceedings of the 38th International Conference on Machine Learning (ICML
2021).

Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for
configuring metaheuristics. In Langdon, W., Cantu-Paz, E., Mathias, K., Roy, R.,
Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull,
L., Potter, M., Schultz, A., Miller, J., Burke, E., & Jonoska, N. (Eds.), Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO’02), pp. 11–18.
Morgan Kaufmann Publishers.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Frechétte, A., Hoos,
H., Hutter, F., Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2016). ASlib: A
benchmark library for algorithm selection. Artificial Intelligence, 237, 41–58.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1),
5–33.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). OpenAI Gym. arXiv preprint arXiv:1606.01540, [cs.LG].

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., & Woodward, J. R. (2009).
Exploring hyper-heuristic methodologies with genetic programming. In Computational
intelligence, pp. 177–201. Springer.

Carchrae, T., & Beck, J. (2004). Low-knowledge algorithm control. In Proceedings of the
19th National Conference on Artifical Intelligence, AAAI’04, p. 49–54. AAAI Press.

Chen, F., Gao, Y., qian Chen, Z., & fu Chen, S. (2005). SCGA: Controlling genetic al-
gorithms with sarsa(0). In International Conference on Computational Intelligence
for Modelling, Control and Automation and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), Vol. 1, pp.
1177–1183.

1689

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang, Z., & Yin, W. (2021). Learning
to optimize: A primer and a benchmark. arXiv preprint arXiv:2103.12828, [cs.LG].

Chrabaszcz, P., Loshchilov, I., & Hutter, F. (2018). Back to basics: Benchmarking canon-
ical evolution strategies for playing atari. In Lang, J. (Ed.), Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI’18), pp. 1419–1426.

Daniel, C., Taylor, J., & Nowozin, S. (2016). Learning step size controllers for robust
neural network training. In Schuurmans, D., & Wellman, M. (Eds.), Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press.

Doerr, B. (2019). Analyzing randomized search heuristics via stochastic domination. The-
oretical Computer Science, 773, 115–137.

Doerr, B., & Doerr, C. (2020). Theory of parameter control for discrete black-box optimiza-
tion: Provable performance gains through dynamic parameter choices. In Doerr, B.,
& Neumann, F. (Eds.), Theory of Evolutionary Computation, pp. 271–321. Springer.

Doerr, C., Wang, H., Ye, F., van Rijn, S., & Bäck, T. (2018). IOHprofiler: A bench-
marking and profiling tool for iterative optimization heuristics. arXiv preprint
arXiv:1810.05281, [cs.NE].

Drake, J. H., Kheiri, A., Özcan, E., & Burke, E. K. (2020). Recent advances in selection
hyper-heuristics. European Journal of Operational Research, 285 (2), 405–428.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., & Leyton-Brown,
K. (2013). Towards an empirical foundation for assessing Bayesian optimization of
hyperparameters. In NeurIPS Workshop on Bayesian Optimization in Theory and
Practice (BayesOpt’13).

Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018). Effi-
cient benchmarking of algorithm configurators via model-based surrogates. Machine
Learning, 107 (1), 15–41.

Eiben, A., Horvath, M., Kowalczyk, W., & Schut, M. (2006). Reinforcement learning for
online control of evolutionary algorithms. In International Workshop on Engineering
Self-Organising Applications, pp. 151–160. Springer.

Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. (2021a). Self-paced context evalu-
ation for contextual reinforcement learning. In Meila, M., & Zhang, T. (Eds.), Pro-
ceedings of the 38th International Conference on Machine Learning (ICML’21), Vol.
139 of Proceedings of Machine Learning Research, pp. 2948–2958. PMLR.

Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., & Lindauer, M. (2021b).
DACBench: A benchmark library for dynamic algorithm configuration. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI’21).
ijcai.org.

Falkner, S., Klein, A., & Hutter, F. (2018). BOHB: Robust and efficient hyperparame-
ter optimization at scale. In Dy, J., & Krause, A. (Eds.), Proceedings of the 35th
International Conference on Machine Learning (ICML’18), Vol. 80, pp. 1437–1446.
Proceedings of Machine Learning Research.

1690

Automated Dynamic Algorithm Configuration

Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., & Leyton-Brown, K. (2014).
Improved features for runtime prediction of domain-independent planners. In Chien,
S., Minh, D., Fern, A., & Ruml, W. (Eds.), Proceedings of the Twenty-Fourth Interna-
tional Conference on Automated Planning and Scheduling (ICAPS-14), pp. 355–359.
AAAI.

Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. In Hutter, F., Kotthoff, L.,
& Vanschoren, J. (Eds.), Automated Machine Learning: Methods, Systems, Challenges,
pp. 3–38. Springer. Available for free at http://automl.org/book.

Fialho, A., Da Costa, L., Schoenauer, M., & Sebag, M. (2010). Analyzing bandit-based
adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intel-
ligence, 60 (1), 25–64.

Fink, E. (1998). How to solve it automatically: Selection among problem solving methods..
In AIPS, pp. 128–136.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adaptation
of deep networks. In Precup, D., & Teh, Y. W. (Eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, Vol. 70 of Proceedings of Machine Learning
Research, pp. 1126–1135. PMLR.

Fitzgerald, T. (2021). Real-time algorithm configuration. Ph.D. thesis, University College
Cork.

Fontoura, V. D., Pozo, A. T. R., & Santana, R. (2017). Automated design of hyper-heuristics
components to solve the PSP problem with HP model. In Proceedings of the IEEE
Congress on Evolutionary Computation, CEC, pp. 1848–1855. IEEE.

Fu, J. (2016). Deep q-networks for accelerating the training of deep neural networks. arXiv
preprint arXiv:1606.01467, [cs.LG].

Gagliolo, M., & Schmidhuber, J. (2006). Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence, 47 (3-4), 295–328.

Gaspero, L. D., & Urli, T. (2012). Evaluation of a family of reinforcement learning cross-
domain optimization heuristics. In Hamadi, Y., & Schoenauer, M. (Eds.), Proceed-
ings of the Sixth International Conference on Learning and Intelligent Optimization
(LION’12), Vol. 7219 of Lecture Notes in Computer Science, pp. 384–389. Springer.

Getzelman, G., & Balaprakash, P. (2021). Learning to switch optimizers for quadratic
programming. In Asian Conference on Machine Learning, pp. 1553–1568. PMLR.

Glover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics, Vol. 57. Springer
Science & Business Media.

Gomes, C., & Selman, B. (2001). Algorithm portfolios. Artificial Intelligence, 126 (1-2),
43–62.

Gomoluch, P., Alrajeh, D., & Russo, A. (2019). Learning classical planning strategies
with policy gradient. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 29, pp. 637–645.

1691

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Gomoluch, P., Alrajeh, D., Russo, A., & Bucchiarone, A. (2020). Learning neural search
policies for classical planning. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, Vol. 30, pp. 522–530.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401, [cs.NE].

Hall, G. T., Oliveto, P. S., & Sudholt, D. (2019). On the impact of the cutoff time on the per-
formance of algorithm configurators. In Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 907–915.

Hall, G. T., Oliveto, P. S., & Sudholt, D. (2020). Fast perturbative algorithm configura-
tors. In International Conference on Parallel Problem Solving from Nature, pp. 19–32.
Springer.

Hallak, A., Di Castro, D., & Mannor, S. (2015). Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, [stat.ML].

Hansen, N., Finck, S., Ros, R., & Auger, A. (2009). Real-Parameter Black-Box Optimiza-
tion Benchmarking 2009: Noiseless Functions Definitions. Research report RR-6829,
INRIA.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computing, 11 (1), 1–18.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions
in evolution strategies: The covariance matrix adaptation. In Proceedings of IEEE
international conference on evolutionary computation, pp. 312–317. IEEE.

Hansen, S. (2016). Using deep q-learning to control optimization hyperparameters. arXiv
preprint arXiv:1602.04062, [math.OC].

Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

Helmert, M., Röger, G., & Karpas, E. (2011). Fast downward stone soup: A baseline for
building planner portfolios. In ICAPS-2011 Workshop on Planning and Learning
(PAL), pp. 28–35.

Helmert, M. (2004). A planning heuristic based on causal graph analysis. In Zilberstein, S.,
Koehler, J., & Koenig, S. (Eds.), Proceedings of the Fourteenth International Confer-
ence on Automated Planning and Scheduling (ICAPS-04), pp. 161–170. AAAI Press.

Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics. In
Rintanen, J., Nebel, B., Beck, J. C., & Hansen, E. (Eds.), Proceedings of the Eighteenth
International Conference on Automated Planning and Scheduling (ICAPS-08), pp.
140–147. AAAI Press.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2018). Deep
reinforcement learning that matters. In McIlraith, S., & Weinberger, K. (Eds.), Pro-
ceedings of the Conference on Artificial Intelligence (AAAI’18). AAAI Press.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

1692

Automated Dynamic Algorithm Configuration

Hoos, H. (2012). Programming by optimization. Communications of the ACM, 55 (2),
70–80.

Hoos, H., Kaminski, R., Lindauer, M., & Schaub, T. (2015). aspeed: Solver scheduling via
answer set programming. Theory and Practice of Logic Programming, 15, 117–142.

Huberman, B., Lukose, R., & Hogg, T. (1997). An economic approach to hard computational
problems. Science, 275, 51–54.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2010). Automated configuration of mixed integer
programming solvers. In Lodi, A., Milano, M., & Toth, P. (Eds.), Proceedings of the
Seventh International Conference on Integration of AI and OR Techniques in Con-
straint Programming (CPAIOR’10), Vol. 6140 of Lecture Notes in Computer Science,
pp. 186–202. Springer.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Sequential model-based optimization
for general algorithm configuration. In Coello, C. (Ed.), Proceedings of the Fifth
International Conference on Learning and Intelligent Optimization (LION’11), Vol.
6683 of Lecture Notes in Computer Science, pp. 507–523. Springer.

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance. In Xing, E., & Jebara, T. (Eds.), Proceedings of the 31th
International Conference on Machine Learning, (ICML’14), pp. 754–762. Omnipress.

Hutter, F., Hoos, H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An automatic
algorithm configuration framework. Journal of Artificial Intelligence Research, 36,
267–306.

Hutter, F., López-Ibánez, M., Fawcett, C., Lindauer, M., Hoos, H., Leyton-Brown, K., &
Stützle, T. (2014). AClib: a benchmark library for algorithm configuration. In Parda-
los, P., & Resende, M. (Eds.), Proceedings of the Eighth International Conference on
Learning and Intelligent Optimization (LION’14), Lecture Notes in Computer Science,
pp. 36–40. Springer.

Hvarfner, C., Stoll, D., Souza, A., Nardi, L., Lindauer, M., & Hutter, F. (2022). PiBO:
Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In
International Conference on Learning Representations.

Ichnowski, J., Jain, P., Stellato, B., Banjac, G., Luo, M., Borrelli, F., Gonzalez, J. E., Stoica,
I., & Goldberg, K. (2021). Accelerating quadratic optimization with reinforcement
learning. In Thirty-Fifth Conference on Neural Information Processing Systems.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation.
Neural networks, 1 (4), 295–307.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W., Donahue, J., Razavi, A., Vinyals,
O., Green, T., Dunning, I., Simonyan, K., Fernando, C., & Kavukcuoglu, K. (2017).
Population based training of neural networks. arXiv preprint arXiv:1711.09846,
[cs.LG].

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algo-
rithm selection and scheduling. In Lee, J. (Ed.), Proceedings of the Seventeenth Inter-
national Conference on Principles and Practice of Constraint Programming (CP’11),
Vol. 6876 of Lecture Notes in Computer Science, pp. 454–469. Springer.

1693

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC - instance-specific
algorithm configuration. In Coelho, H., Studer, R., & Wooldridge, M. (Eds.), Pro-
ceedings of the Nineteenth European Conference on Artificial Intelligence (ECAI’10),
pp. 751–756. IOS Press.

Kadioglu, S., Sellmann, M., & Wagner, M. (2017). Learning a reactive restart strategy to
improve stochastic search. In International Conference on Learning and Intelligent
Optimization, pp. 109–123. Springer.

Karafotias, G., Eiben, A. E., & Hoogendoorn, M. (2014). Generic parameter control with
reinforcement learning. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 1319–1326.

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm
selection: Survey and perspectives. Evolutionary computation, 27 (1), 3–45.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR’15). Published
online: iclr.cc.

Kleinberg, R., Leyton-Brown, K., & Lucier, B. (2017). Efficiency through procrastination:
Approximately optimal algorithm configuration with runtime guarantees.. In Sierra,
C. (Ed.), Proceedings of the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI’17), pp. 2023–2031.

Klink, P., D’Eramo, C., Peters, J., & Pajarinen, J. (2020). Self-paced deep reinforcement
learning. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS.

Kool, W., van Hoof, H., & Welling, M. (2018). Attention, learn to solve routing problems!.
In International Conference on Learning Representations.

Kotthoff, L. (2014). Algorithm selection for combinatorial search problems: A survey. AI
Magazine, 35 (3), 48–60.

Koza, J. R. (1992). Genetic programming, Vol. 4. MIT Press.

Lagoudakis, M., & Littman, M. (2001). Learning to select branching rules in the DPLL
procedure for satisfiability. Electronic Notes in Discrete Mathematics, 9, 344–359.

Lagoudakis, M. G., & Littman, M. L. (2000). Algorithm selection using reinforcement
learning.. In ICML, pp. 511–518.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., & Hutter, M. (2020). Learning
quadrupedal locomotion over challenging terrain. Science in Robotics, 5.

Levine, S., & Abbeel, P. (2014). Learning neural network policies with guided policy search
under unknown dynamics. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., & Weinberger, K. (Eds.), Proceedings of the 27th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’14), pp. 1071–1079.
Curran Associates.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham, Y. (2003). A
portfolio approach to algorithm selection. In IJCAI, Vol. 3, pp. 1542–1543.

1694

Automated Dynamic Algorithm Configuration

Li, K., & Malik, J. (2017). Learning to optimize. In Proceedings of the International
Conference on Learning Representations (ICLR’17).

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2018). Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18 (185), 1–52.

Liao, T., de Oca, M. A. M., & Stützle, T. (2011). Computational results for an automatically
tuned IPOP-CMA-ES on the CEC’05 benchmark set. Tech. rep., TR/IRIDIA/2011-
022, IRIDIA, Université Libre de Bruxelles, Belgium.

Lindauer, M., Bergdoll, D., & Hutter, F. (2016). An empirical study of per-instance al-
gorithm scheduling. In Festa, P., Sellmann, M., & Vanschoren, J. (Eds.), Proceed-
ings of the Tenth International Conference on Learning and Intelligent Optimization
(LION’16), Lecture Notes in Computer Science. Springer. to appear.

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C.,
Ruhkopf, T., Sass, R., & Hutter, F. (2022). SMAC3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research
(JMLR) – MLOSS, 23 (54), 1–9.

Lobo, F., Lima, C. F., & Michalewicz, Z. (2007). Parameter setting in evolutionary algo-
rithms, Vol. 54. Springer Science & Business Media.

López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L. P., Birattari, M., & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3, 43–58.

López-Ibáñez, M., Liao, T., & Stützle, T. (2012). On the anytime behavior of IPOP-
CMA-ES. In International Conference on Parallel Problem Solving from Nature, pp.
357–366. Springer.

López-Ibánez, M., & Stützle, T. (2014). Automatically improving the anytime behaviour of
optimisation algorithms. European Journal of Operational Research, 235 (3), 569–582.

Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm
restarts. In Proceedings of the International Conference on Learning Representations
(ICLR’17).

Lv, K., Jiang, S., & Li, J. (2017). Learning gradient descent: Better generalization and
longer horizons. In International Conference on Machine Learning, pp. 2247–2255.
PMLR.

Maclaurin, D., Duvenaud, D., & Adams, R. (2015). Gradient-based Hyperparameter Op-
timization through Reversible Learning. In Bach, F., & Blei, D. (Eds.), Proceedings
of the 32nd International Conference on Machine Learning (ICML’15), Vol. 37, pp.
2113–2122. Omnipress.

Majid, A. (2021). Deep reinforcement learning versus evolution strategies: A comparative
survey. arXiv preprint arXiv:2110.01411, [cs.LG].

Manna, Z., & Waldinger, R. (1980). A deductive approach to program synthesis. ACM
Transactions on Programming Languages and Systems (TOPLAS), 2 (1), 90–121.

1695

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003). The cross entropy method for fast policy
search. In Proceedings of the 20th International Conference on Machine Learning
(ICML-03), pp. 512–519.

Metz, L., Maheswaranathan, N., Freeman, C., Poole, B., & Sohl-Dickstein, J. (2020). Tasks,
stability, architecture, and compute: Training more effective learned optimizers, and
using them to train themselves. arXiv preprint arXiv:2009.11243, [cs.LG].

Metz, L., Maheswaranathan, N., Nixon, J., Freeman, D., & Sohl-Dickstein, J. (2019). Under-
standing and correcting pathologies in the training of learned optimizers. In Chaud-
huri, K., & Salakhutdinov, R. (Eds.), Proceedings of the 36th International Conference
on Machine Learning (ICML’19), Vol. 97. Proceedings of Machine Learning Research.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D.
(2015). Human-level control through deep reinforcement learning. Nature, 518 (7540),
529–533.

Moulines, E., & Bach, F. R. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira,
F., & Weinberger, K. (Eds.), Proceedings of the 24th International Conference on Ad-
vances in Neural Information Processing Systems (NeurIPS’11), pp. 451–459. Curran
Associates.

Müller, S. D., Schraudolph, N. N., & Koumoutsakos, P. D. (2002). Step size adaptation in
evolution strategies using reinforcement learning. In Proceedings of the 2002 Congress
on Evolutionary Computation, CEC, pp. 151–156. IEEE.

Nguyen, M. H., Grinsztajn, N., Guyon, I., & Sun-Hosoya, L. (2021). MetaREVEAL: RL-
based meta-learning from learning curves. In Workshop on Interactive Adaptive Learn-
ing.

Papadimitriou, C. H. (1994). On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and system Sciences, 48 (3), 498–532.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett,
R. (Eds.), Proceedings of the 30th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’17). Curran Associates.

Pettinger, J., & Everson, R. (2002). Controlling genetic algorithms with reinforcement
learning. In Proceedings of the 4th Annual Conference on Genetic and Evolutionary
Computation, pp. 692–692.

Pillay, N., & Qu, R. (2018). Hyper-heuristics: theory and applications. Springer.

Prestwich, S. (2008). Tuning local search by average-reward reinforcement learning. In
Maniezzo, V., Battiti, R., & Watson, J. (Eds.), Proceedings of the International Con-
ference on Learning and Intelligent Optimization (LION), Vol. 5313 of Lecture Notes
in Computer Science, pp. 192–205. Springer.

1696

Automated Dynamic Algorithm Configuration

Probst, P., Boulesteix, A., & Bischl, B. (2019). Tunability: Importance of hyperparameters
of machine learning algorithms. Journal of Machine Learning Research, 20 (53), 1–32.

Pushak, Y., & Hoos, H. (2020). Golden parameter search: exploiting structure to quickly
configure parameters in parallel. In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 245–253.

Rice, J. (1976). The algorithm selection problem. Advances in Computers, 15, 65–118.

Richter, S., & Helmert, M. (2009). Preferred operators and deferred evaluation in satisficing
planning. In Gerevini, A., Howe, A., Cesta, A., & Refanidis, I. (Eds.), Proceedings
of the Nineteenth International Conference on Automated Planning and Scheduling
(ICAPS-09), pp. 273–280. AAAI Press.

Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Fox, D., & Gomes,
C. P. (Eds.), Proceedings of the Twenty-third Conference on Artificial Intelligence
(AAAI’08), pp. 975–982. AAAI Press.

Röger, G., & Helmert, M. (2010). The more, the merrier: Combining heuristic estimators for
satisficing planning. In Brafman, R., Geffner, H., Hoffmann, J., & Kautz, H. (Eds.),
Working notes of the Twenty-first International Conference on Automated Planning
and Scheduling (ICAPS-10), Workshop on Planning and Learning., pp. 246–249.

Sabar, N. R., Ayob, M., Kendall, G., & Qu, R. (2013). Grammatical evolution hyper-
heuristic for combinatorial optimization problems. IEEE Transactions on Evolution-
ary Computation, 17 (6), 840–861.

Sae-Dan, W., Kessaci, M.-E., Veerapen, N., & Jourdan, L. (2020). Time-dependent au-
tomatic parameter configuration of a local search algorithm. In Proceedings of the
2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20, p.
1898–1905.

Sakurai, Y., Takada, K., Kawabe, T., & Tsuruta, S. (2010). A method to control pa-
rameters of evolutionary algorithms by using reinforcement learning. In Yétongnon,
K., Dipanda, A., & Chbeir, R. (Eds.), Proceedings of Sixth International Conference
on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 74–79. IEEE
Computer Society.

Salimans, T., Ho, J., Chen, X., & Sutskever, I. (2017). Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, [stat.ML].

Schaul, T., Zhang, S., & LeCun, Y. (2013). No More Pesky Learning Rates. In Dasgupta, S.,
& McAllester, D. (Eds.), Proceedings of the 30th International Conference on Machine
Learning (ICML’13). Omnipress.

Seipp, J., Sievers, S., Helmert, M., & Hutter, F. (2015). Automatic configuration of se-
quential planning portfolios. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the
Twenty-ninth AAAI Conference on Artificial Intelligence (AAAI’15). AAAI Press.

Seipp, J., Sievers, S., & Hutter, F. (2014). Fast downward SMAC.. Planner abstract, IPC
2014 Planning and Learning Track.

Senior, A., Heigold, G., Ranzato, M., & Yang, K. (2013). An empirical study of learning
rates in deep neural networks for speech recognition. In Proc. of ICASSP.

1697

Adriaensen, Biedenkapp, Shala, Awad, Eimer, Lindauer, & Hutter

Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020).
Learning step-size adaptation in CMA-ES. In Bäck, T., Preuss, M., Deutz, A., Wang,
H., Doerr, C., Emmerich, M., & Trautmann, H. (Eds.), Proceedings of the Sixteenth
International Conference on Parallel Problem Solving from Nature (PPSN’20), Lec-
ture Notes in Computer Science, pp. 691–706. Springer.

Sharma, M., Komninos, A., López-Ibáñez, M., & Kazakov, D. (2019). Deep reinforcement
learning based parameter control in differential evolution. In López-Ibáñez, M. (Ed.),
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 709–717.
ACM Press.

Sievers, S., Katz, M., Sohrabi, S., Samulowitz, H., & Ferber, P. (2019). Deep learning for
cost-optimal planning: Task-dependent planner selection. In Hentenryck, P. V., &
Zhou, Z. (Eds.), Proceedings of the Thirty-Third Conference on Artificial Intelligence
(AAAI’19), pp. 7715–7723. AAAI Press.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., & Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529 (7587), 484–489.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE
winter conference on applications of computer vision (WACV), pp. 464–472. IEEE.

Snoek, J., Larochelle, H., & Adams, R. (2012). Practical Bayesian optimization of machine
learning algorithms. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., & Weinberger,
K. (Eds.), Proceedings of the 25th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’12), pp. 2960–2968. Curran Associates.

Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., & Lindauer, M. (2021). Learning
heuristic selection with dynamic algorithm configuration. In Proceedings of the 31st
International Conference on Automated Planning and Scheduling (ICAPS’21).

Stanley, K. O., Clune, J., Lehman, J., & Miikkulainen, R. (2021). Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1, 24–35.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting
topologies. Evolutionary Computation, 10, 99–127.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Szita, I., & Lörincz, A. (2006). Learning tetris using the noisy cross-entropy method. Neural
computation, 18 (12), 2936–2941.

Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for machine
learning, 4 (2), 26–31.

van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Schuurmans, D., & Wellman, M. (Eds.), Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press.

1698

Automated Dynamic Algorithm Configuration

van Rijn, J., & Hutter, F. (2018). Hyperparameter importance across datasets. In Guo, Y.,
& Farooq, F. (Eds.), Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’18), pp. 2367–2376. ACM Press.

van Rijn, S., Doerr, C., & Bäck, T. (2018). Towards an adaptive CMA-ES configurator. In
Auger, A., Fonseca, C. M., Lourenço, N., Machado, P., Paquete, L., & Whitley, L. D.
(Eds.), Proceedings of the 15th International Conference on Parallel Problem Solving
from Nature (PPSN’18), Vol. 11101 of Lecture Notes in Computer Science, pp. 54–65.
Springer.

Vermetten, D., van Rijn, S., Bäck, T., & Doerr, C. (2019). Online selection of CMA-ES
variants. In Proc. of GECCO, pp. 951–959. ACM.

Wang, Z., Hutter, F., Zoghi, M., Matheson, D., & de Feitas, N. (2016). Bayesian optimiza-
tion in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55, 361–387.

Warwicker, J. A. (2019). On the Runtime Analysis of Selection Hyper-heuristics for Pseudo-
Boolean Optimisation. Ph.D. thesis, University of Sheffield.

Weisz, G., György, A., & Szepesvári, C. (2019). CapsAndRuns: An improved method for
approximately optimal algorithm configuration. In Chaudhuri, K., & Salakhutdinov,
R. (Eds.), Proceedings of the 36th International Conference on Machine Learning
(ICML’19), Vol. 97, pp. 6707–6715. Proceedings of Machine Learning Research.

Wessing, S., Preuss, M., & Rudolph, G. (2011). When parameter tuning actually is parame-
ter control. In Proceedings of the 13th annual conference on Genetic and evolutionary
computation, pp. 821–828.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8, 229–256.

Xu, L., Hoos, H., & Leyton-Brown, K. (2010). Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In Fox, M., & Poole, D. (Eds.), Proceedings of the
Twenty-fourth AAAI Conference on Artificial Intelligence (AAAI’10), pp. 210–216.
AAAI Press.

Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2008). SATzilla: Portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research, 32, 565–606.

Xu, Z., Dai, A. M., Kemp, J., & Metz, L. (2019). Learning an adaptive learning rate
schedule. arXiv preprint arXiv:1909.09712, [cs.LG].

1699

