
Journal of Artificial Intelligence Research 76 (2023) 115-162 Submitted 05/2022; published 01/2023

A Practical Approach to Discretised PDDL+ Problems by
Translation to Numeric Planning

Francesco Percassi f.percassi@hud.ac.uk
School of Computing and Engineering
University of Huddersfield, UK

Enrico Scala enrico.scala@unibs.it
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Brescia, Italy

Mauro Vallati m.vallati@hud.ac.uk

School of Computing and Engineering

University of Huddersfield, UK

Abstract

pddl+ models are advanced models of hybrid systems and the resulting problems are
notoriously difficult for planning engines to cope with. An additional limiting factor for
the exploitation of pddl+ approaches in real-world applications is the restricted number
of domain-independent planning engines that can reason upon those models.

With the aim of deepening the understanding of pddl+ models, in this work, we study
a novel mapping between a time discretisation of pddl+ and numeric planning as for
pddl2.1 (level 2). The proposed mapping not only clarifies the relationship between these
two formalisms but also enables the use of a wider pool of engines, thus fostering the use of
hybrid planning in real-world applications. Our experimental analysis shows the usefulness
of the proposed translation and demonstrates the potential of the approach for improving
the solvability of complex pddl+ instances.

1. Introduction

The availability of domain-independent planning engines is fostering the use of automated
planning in a wide range of applications. This is despite the complexity issues inherent
in plan generation, which are exacerbated by the separation of planning logic from domain
knowledge (McCluskey & Porteous, 1997). A major advantage of the separation of planning
logic from domain knowledge lies in the fact that, given a standard language to be used
for input and output, the two components can be interchanged in a modular way, without
affecting the other component, and with no negative repercussions on the overall application
framework where the planning system is usually embedded (McCluskey, Vaquero, & Vallati,
2017; Vallati, Chrpa, McCluskey, & Hutter, 2021).

This modular approach promotes the use of reformulation techniques, which can auto-
matically re-formulate or re-represent the domain knowledge and/or the problem instance
in order to increase the effectiveness of the planning logic component and increase the
scope of problems solved. The general idea is to develop reformulation techniques that
are agnostic about the domain knowledge and the planning logic and use them to form a
wrapper around the planning engine, improving its performance for the domain in which
it is applied. The transformation is then reversed after a solution has been found, such

©2023 AI Access Foundation. All rights reserved.



Percassi, Scala & Vallati

that the solution is rephrased in the original formulation language. A well-known class of
reformulation approaches aims at translating a model from the original input language to a
different one. The idea is usually to remove the use of some poorly supported features of the
language (Helmert, 2009; Percassi & Gerevini, 2019; Bonassi, Gerevini, Percassi, & Scala,
2021) or to re-represent the problem in a less expressive language. The latter strategy has
the advantage of increasing the number of planning engines that are able to reason upon
the planning problem, and leverage existing robust technologies devised for solving more
restricted cases. Well-known examples of this approach include the translation of confor-
mant planning problems into classical problems (Taig & Brafman, 2013; Grastien & Scala,
2020), the re-representation of uncertainty in conformant planning problems (Palacios &
Geffner, 2009), and the translation of complex temporal aspects in pddl2.1 (Cooper, Maris,
& Régnier, 2010).

In this paper, we introduce a reformulation approach for translating discretised pddl+
planning problem instances into pddl2.1 instances. pddl+ models are advanced models of
hybrid systems and the resulting problems are notoriously difficult to cope with. Further, a
limited number of planning engines are able to parse pddl+ models, therefore translating
into pddl2.1 can significantly extend the pool of planning engines that can be used to solve
a given instance.

More precisely we study two translations. The first translation leads to a numeric plan-
ning problem that is exponentially larger than the input pddl+ but preserves the number
of discrete transitions. The second one keeps the resulting formulation polynomial but
requires also a polynomial number of additional transitions to generate a solution. We
start off by revisiting the formalisation provided by Shin and Davis (2005), which lets us
formalise the problem without the need to depend on the hybrid automaton interpreta-
tion proposed by Fox and Long (2003), and also crisply formalises the connection between
the continuous-time representation, and its discretisation. We formally present the two
translations and show how these can be extended to encode a cascade of events emulated
by actions. Further, we introduce two approaches for optimising the operationality of the
translated models; this makes the resulting pddl2.1 models more effective. Indeed, our op-
timisations let us reduce the number of necessary checks along with a plan whilst preserving
soundness and completeness with a pre-processing phase that looks at the structure of our
problem instance and applies the optimisations only when it is possible. We validate the
resulting formulations against a set of challenging benchmark domains, including real-world
applications, and well-known planning engines, and we assess the impact of the introduced
optimisations. Our results indicate that the proposed translations can unlock the use of
pddl2.1 planning engines for tackling hybrid pddl+ problems, with the clear advantage of
expanding the number of approaches that can be used to solve a problem.

This paper significantly extends our conference paper on the topic (Percassi, Scala, &
Vallati, 2021). This extended version advances our previous work along several dimensions.
Firstly, we revise the formalisation of pddl+ and its discretisation that are not fully spelt
out in the conference paper. We enrich our discussion with examples and more formal
definitions. This reformulation does not change the meaning of our previous formalisation
but makes things more precise and less ambiguous. Secondly, we provide full proofs for
all the translations that we have presented and also enrich the discussion with a concrete
full example that is an extension of the well-known car domain by Fox and Long (2006).

116



An Approach to Discretised PDDL+ by Translation to Numeric Planning

To these proofs, we also add new theorems on the size of our translated output. Thirdly,
we formalise and study theoretically two optimisations that we apply to our translation
schemata. Such optimisations are meant to reduce the length of the plans obtained on the
translated output. Last but not least, we substantially extend our experimental analysis to
evaluate our contribution, pros and cons, in greater detail.

This paper is organised as follows. Section 2 formalises the problem of pddl+. The
proposed translations are then presented in detail in Section 3. Section 4 focuses on different
ways for optimising the models generated by the introduced translations. An extensive
experimental analysis is provided in Section 5. Related works are discussed in Section 6.
Finally, Section 7 frames the scope of the proposed approach, highlighting its advantages and
discussing some limitations of the general discretisation-based approach, and conclusions
are given in Section 8.

2. Problem Formalisation

In this section we formalise the problem of pddl+ (Fox & Long, 2006) without durative
actions, thus focusing on the core features of this formalism, and the problem of numeric
planning as the one that can be specified in pddl2.1, Level 2 (Fox & Long, 2003), hereinafter
simply referred to as pddl2.1. We first describe the syntax of our problems and then detail
the semantics. Our discussion follows the formalisation and terminology provided by Shin
and Davis (2005) in a way that is instrumental for our work.

Let F be a set of Boolean variables, and X be a set of numeric variables taking values
from R⊥ = R ∪ {⊥}; ⊥ represents an undefined numeric value. A pddl+ state s is a full
assignment to all variables in F and in X. Given a state s and a variable v ∈ F ∪ X,
we make use of s[v] to indicate the value assumed by v in s. This value can either be a
numeric value or a Boolean value depending on whether v is in X or in F , respectively.
A numeric expression is defined inductively as follows: x ∈ X, and k ∈ Q are numeric
expressions; let ξ and ξ′ be two numeric expressions, ξ op ξ′ with op ∈ {+,−,÷,×} is a
numeric expression. For instance, x+5+ y is a numeric expression while x++5 is not. Let
ξ be a numeric expression, we denote as s[ξ] the evaluation of ξ in s. A division between two
numeric expressions ξ and ξ′, i.e., ξ/ξ′, is undefined in s if s[ξ′] = 0, i.e., division by zero
is undefined. Moreover, let x be a variable involved in an expression ξ. If x is undefined in
state s, then ξ is undefined too.

Boolean and numeric assignments both have the form ⟨f := b⟩. For Boolean as-
signments, f is a Boolean variable and b ∈ B = {⊤,⊥}. For numeric assignments,
⟨{asgn, inc, dec}, x, ξ⟩, where {asgn, inc, dec} are the contractions of the keywords assign,
increase and decrease, respectively, x is a numeric variable and ξ is a numeric expression,
respectively. A Boolean condition has the form ⟨f = b⟩, where f is a Boolean variable and
b ∈ B. A numeric condition has the form ⟨ξ ▷◁ 0⟩ where ξ is a numeric expression and
▷◁ ∈ {≤, <,=, >,≥}. We detail our problems using formulas expressed in Negation Normal
Form (NNF). The terms of our formulas contain both propositional and numeric conditions.

Definition 1 (pddl+ Problem). A pddl+ planning problem Π is a tuple ⟨F,X, I,G,A,E, P ⟩
where:

• F and X are sets of Boolean and numeric variables, respectively;

117



Percassi, Scala & Vallati

• I is the description of the initial state expressed as a full assignment to all variables
in X and F ;

• G is the description of the goal expressed as a formula;

• A and E are the sets of actions and events, respectively. Actions and events are pairs
⟨p, e⟩ where p is a formula and e is a set of conditional effects of the form c ▷ e where
(i) c is a formula and (ii) e is a set of Boolean or numeric assignments;

• P is a set of processes. A process is a pair ⟨p, e′⟩ where p is a formula and e′ is a
set of numeric continuous effects expressed as pairs ⟨x, ξ⟩ where x ∈ X and ξ is a
numeric expression.1

Let a = ⟨p, e⟩ be an action or an event or a process, we use pre(a) to denote the
precondition p of a, and eff(a) the effect e of a. In what follows we generally use the symbols
a, ρ and ε for denoting an action, a process, and an event, respectively. Given a pddl+

problem Π we denote the whole state space as states(Π) = {B|F | × R|X|
⊥ } ∪ {undefined},

where undefined denotes a special state that represents the notion of inconsistency within
our semantic (this aspect will be dealt with in detail later). Note that, although X takes
values in R, it is not possible to use real values in pddl+ in the problem specification.

For ease of exposition and following pddl common practice, in our examples and en-
codings we will, when convenient, represent the state and the effects using a set-theoretic
representation. Boolean conditions and assignments having the extended form ⟨f = ⊤⟩
(⟨f := ⊤⟩) and ⟨f = ⊥⟩ (⟨f := ⊥⟩) are shortened, by abuse of notation, to f and ¬f , and
a conditional effect where the left-hand side is always satisfied i.e., ⊤ ▷ e, is rewritten as
e. For example, formula ⟨a = ⊤⟩ ∧ ⟨b = ⊥⟩ is contracted into a ∧ ¬b, and an assignment
having the form {⟨a := ⊤⟩, ⟨b := ⊥⟩} is contracted into {a,¬b}. In the set-theoretic repre-
sentation, a state is expressed as a pair encompassing a set of facts and a set of assignments
to numeric variables: if a fact is not mentioned in the state, the Boolean variable associ-
ated with that fact is false (closed world assumption); similarly, if a numeric variable is
not given any assignment in the state, such a variable is undefined. For example, a state
s = {⟨a = ⊤⟩, ⟨b = ⊥⟩}, where a and b are Boolean variables, can be expressed more
succinctly by s = {a}.

A plan for a pddl+ problem is an ordered set of timed actions plus a time envelope,
organised formally as the following.

Definition 2 (pddl+ Plan). A pddl+ plan πt for a pddl+ problem Π is a pair ⟨π, ⟨ts, te⟩⟩
where π = ⟨⟨a0, t0⟩, ⟨a1, t1⟩, ..., ⟨an−1, tn−1⟩⟩ is a finite sequence of pairs such that for each
i ∈ [0..n−1]2 we have that ai ∈ A and ts ≤ ti ≤ te; ⟨ts, te⟩, with ts, te ∈ Q and ts ≤ te, is the
envelope within which π is performed. πt is a well-formed plan if ∀ i, j ∈ [0..n−1] and i < j,
then ti ≤ tj holds.

Hereinafter, we consider just well-formed plans. Let πt = ⟨π, ⟨ts, te⟩⟩ be a pddl+ plan
and let ⟨ai, ti⟩ and ⟨aj , tj⟩ be two pairs appearing in π. We write ⟨ai, ti⟩ ≺ ⟨aj , tj⟩ (ai ≺ aj)

1. We will see that under continuous time interpretation, ξ denotes the net derivative of x.
2. [1..n] is the integer interval {1, ..., n}.

118



An Approach to Discretised PDDL+ by Translation to Numeric Planning

iff ⟨ai, ti⟩ (ai) appears strictly before ⟨aj , tj⟩ (aj) in π. Furthermore, given a sequence of
objects A we denote its set representation as set(A), e.g., set(π) is the set of all time-stamped
actions in π.

Having formally defined the pddl+ problem, we now see how a pddl2.1 one is defined.

Definition 3 (pddl2.1 Problem). A pddl2.1 planning problem Π is a tuple ⟨F,X, I,G,A, c⟩
where all elements are as for pddl+, yet there are neither processes nor events, and c is a
function that associates to each action a rational non-negative cost.

We clarify that our definition of pddl2.1 slightly differs from that provided by Fox and
Long (2003) in which action costs are not included.

For a pddl2.1 problem Π, the state space is defined as states(Π) = {B|F | × Q|X|
⊥ } ∪

{undefined}.

Definition 4 (pddl2.1 Plan). A pddl2.1 plan for a pddl2.1 problem Π is simply a finite
sequence of actions from A.

Again, let π be a pddl2.1 plan and let ai and aj be two actions appearing in π. We
write ai ≺ aj iff ai appears strictly before aj in π.

Before going into the formal details of the semantics of pddl+ and pddl2.1, let us
briefly explain intuitively what these problems actually entail. Roughly speaking, a pddl+
problem consists in finding a number of actions along a potentially infinite timeline, whilst
conforming to a number of processes and events that may change the state of the world in
a continuous or instantaneous manner as time goes by. A solution for a pddl+ problem
is such iff all actions are applicable when they are scheduled and the goal is met at time
te. In technical terms, pddl+ prescribes events and processes to be interpreted as must
discrete and continuous transitions along a potentially infinite timeline, while actions are
may transitions. A pddl2.1 problem is a variant where there is no explicit management of
time and exogenous changes, and we only seek a sequence of actions that starts from some
initial state and yields a state satisfying the goal.

We start with the simpler semantics of pddl2.1 and then delve into the details of pddl+
by stressing, in particular, its temporal aspect.

The satisfiability of a formula follows the usual semantics of propositional logic extended
with numeric conditions. In particular, let ⟨ξ ▷◁ 0⟩ be a numeric condition, s |= ⟨ξ ▷◁ 0⟩
iff s[ξ] ▷◁ 0 evaluates to true. A formula containing a numeric expression that is undefined
in the state s is treated as unsatisfiable in s by default reasoning. For instance, if we have
α = ⟨x ≥ 0⟩ ∨ ⟨x ≤ 10⟩ with x undefined in s, then α is not satified in s; similarly, let
β = ⟨x ≥ 0⟩ ∨ ⟨y = 1⟩ we have that s |= β iff s[y] = 1.

The application of a in s yields the state s′ = Γ(s, a) in a way that, for each v ∈ F ∪X,
the following holds:

Γ(s, a) =



s′[v] = b if ∃ α ▷ {..., ⟨v := b⟩} ∈ eff(a) and s |= α, where b ∈ B;
s′[v] = s[ξ] if ∃ α ▷ {..., ⟨asgn, v, ξ⟩} ∈ eff(a) and s |= α;

s′[v] = s[v] + s[ξ] if ∃ α ▷ {..., ⟨inc, v, ξ⟩} ∈ eff(a) and s |= α;

s′[v] = s[v]− s[ξ] if ∃ α ▷ {..., ⟨dec, v, ξ⟩} ∈ eff(a) and s |= α;

undefined if there exists at least a pair of conflicting assignments in eff(a);

s′[v] = s[v] otherwise.

119



Percassi, Scala & Vallati

Case (i) of Γ(s, a) deals with the propositional assignment, (ii) the simple numeric
assignment, (iii) and (iv) the additive numeric assignments. Case (v) handles the possibility
that two contradicting effects exist, either Boolean or numeric. For a given state s and an
action a, two Boolean effects α ▷ {..., ⟨f := ⊤⟩}, β ▷ {..., ⟨f := ⊥⟩} ∈ eff(a), where α and
β are two formulae and f ∈ F , are conflicting if s |= α ∧ β, and two numeric effects
α ▷ {..., ⟨op, x, ξ⟩}, β ▷ {..., ⟨op′, x, ξ′⟩} ∈ eff(a) with x ∈ X and op, op′ ∈ {asgn, inc, dec}, are
conflicting if s |= α∧β; in other words, two numeric effects are conflicting if they contextually
affect the same variable in different ways. Finally, case (vi) is the frame-axiom, so the value
of v persists if no effect of a affects v.

Let ⟨a0, ..., an−1⟩ be a sequence of actions, we say that it is applicable in s iff s |= pre(a0),
Γ(s, a0) |= pre(a1), ..., Γ(... Γ(s, a0)), an−2) |= pre(an−1). We use γ(s, ·) for the state
resulting by applying either an action, i.e., γ(s, a), or a sequence of (applicable) actions,
i.e., γ(s, ⟨a0, . . . , an−1⟩), in state s. Since actions and events have the same structure, we
use the same notation for denoting the state resulting from the application of an event, i.e.,
γ(s, ε), or a sequence of (applicable) events, i.e., γ(s, ⟨ε0, ..., εn−1⟩).

Definition 5 (Valid and Optimal pddl2.1 Plan). Let Π = ⟨F,X, I,G,A, c⟩ be a pddl2.1
problem, a plan π = ⟨a0, ..., an−1⟩ is said to be a valid plan for Π if it is applicable and
γ(I, π) |= G. The plan π is said to be optimal if among all valid plans for Π, it is the one
that minimises the total cost, π = argmin

π′ valid for Π

∑
a∈set(π′) c(a).

The semantics of pddl+ can be specified through the notion of time points, intervals,
and histories over intervals. We use these to characterise the projection of a plan and
conclude with the formalisation of the validity of a pddl+ plan which we interpret both
on a continuous and a discrete timeline. We start with the continuous version and then
introduce its discretisation. Note that all our translations that we present from Section 3
are all assuming a discrete model.

Definition 6 (Time Point). A time point T is a pair ⟨t, n⟩ where t ∈ R and n ∈ N.

Given a time point T = ⟨t, n⟩, in the rest of the paper we will refer to t as the clock and
n as the step of T .

Time points over R×N are ordered lexicographically, i.e., let ⟨t1, n1⟩ and ⟨t2, n2⟩ be two
time points, ⟨t1, n1⟩ < ⟨t2, n2⟩ iff either t1 < t2 or t1 = t2 and n1 < n2. Let T1 and T2 be
two time points, a closed (open) time interval I = [T1, T2] ((T1, T2)) is the non-empty set
I = {T | T1 ≤ T ≤ T2}({T | T1 < T < T2}).

Intuitively, a time point allows us to order situations along time and impose an ordering,
by using a natural number n, among two different situations whenever such situations share
the same clock. This representation idealises the execution of actions and events to be truly
instantaneous as long as an order is imposed among transitions sharing the same clock as
done in the work of Shin and Davis (2005). Note that pddl+ (Fox & Long, 2006) supports
such a temporal model for events only; mutexes actions instead are still required to be
temporally separated by at least a small quantity of time ϵ (ϵ-separation requirement).3

3. For a deeper analysis on the temporal implications of ϵ vs non ϵ-separation requirement in the context
of temporal pddl2.1, the interested reader can look at the paper by Gigante, Micheli, Montanari, and
Scala (2022).

120



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Definition 7 (History). A history H for a pddl+ problem Π over I = [Ts, Te] maps
each time point in I into a situation. A “situation at time point T” is the tuple H(T ) =
⟨HA(T ),Hs(T )⟩, where HA(T ) is a sequence of actions executed at time point T and Hs(T )
is a state, i.e., the assignment to all variables in X and F at time point T .

An event ε is active (triggered) in a state s iff s |= pre(ε). Given a history H over
I = [Ts, Te] and a time point T ∈ I, multiple events can be triggered.

Hereinafter, given a set S, we denote with seq(S) any possible sequencing of its elements.

Definition 8 (Triggered Events). Let H be a history for a pddl+ problem Π over I and let
T ∈ I. The sequence of events triggered at time point T is defined as Etrigg(T ) = seq({ε ∈
E | Hs(T ) |= pre(ε)}).

A time point is said to be significant if something meaningful happens, such as the
execution of an action, the triggering of a sequence of events, or a change in the set of
active processes.

Definition 9 (Significant Time Point). T = ⟨t, n⟩ is a significant time point (hereinafter
STP) of a history H for Π over I = [Ts = ⟨ts, ns⟩, Te = ⟨te, ne⟩], iff T ∈ I and at least one
of the following holds:

1. T = Ts or T = Te; the time points associated with the extremes of the time envelope
are always STPs;

2. HA(T ) ̸= ⟨⟩;

3. Etrigg(T ) ̸= ⟨⟩, i.e., there exists at least an event ε ∈ E such that Hπ
s (T ) |= pre(ε);

4. there has been a discrete change just before; formally it has to hold that n > 0 and
there exists a T ′ = ⟨t, n− 1⟩ such that HA(T

′) ̸= ⟨⟩ or Etrigg(T
′) ̸= ⟨⟩;

5. a process has started (stopped) in T ; formally HA(T ) = ⟨⟩, Etrigg(T ) = ⟨⟩ and there
exists ρ ∈ P for which Hs(T ) |= pre(ρ) (Hs(T ) ̸|= pre(ρ)), there exists T ′ < T
such that T ′ ∈ I and for each T ′′ such that T ′ ≤ T ′′ < T then Hs(T

′′) ̸|= pre(ρ)
(Hs(T

′′) |= pre(ρ)).

We remark that Point 5 of the previous definition, i.e. the condition that determines
the starting (stopping) of a process, is to be interpreted as a high-level definition and not
an operational one. Specifically, in the case of continuous semantics discussed therein,
identifying the exact point where a context switch occurs can be pointless even in simple
cases. For example, consider the case in which the precondition of a process requires ⟨x > 0⟩
to be activated and x is linearly incremented starting from 0. For handling cases like this, it
is necessary to specialise the provided condition by considering the case in which the context
switch involves a closed or open condition. Specifically, in the second case, for providing an
operational definition it is necessary to exploit the concept of mathematical limit. As this
work focuses primarily on discrete semantics, such a level of detail is outside its scope.

Within an interval, we can also identify a number of sub-intervals where nothing mean-
ingful happens. This is the notion of a monotonous interval. Formally:

121



Percassi, Scala & Vallati

Definition 10 (Monotonous interval). A history H of Π over I = [Ts = ⟨ts, ns⟩, Te =
⟨te, ne⟩] is monotonous over It = (t1, t2) ⊆ (ts, te), where t1, t2 ∈ R, if for each t ∈ It and
for any given n, ⟨t, n⟩ is not a STP of H.

Note that, for each ⟨t, n⟩ such that t ∈ (t1, t2), the set of active processes does not
change and the sequence of triggered events is empty. We denote the set of active processes
over It as the context C(It) = {ρ ∈ P | Hs(⟨t1, n1⟩) |= pre(ρ)}, where n1 is a sufficiently
large natural number beyond which the state is stable, i.e., for each step n ≥ n1 then
HA(⟨t1, n⟩) = ⟨⟩ and Etrigg(⟨t1, n⟩) = ⟨⟩. A context switch happens when the set of active
processes changes.

In order to guarantee that there is only a unique and finite set of significant time points
given a history, it is necessary to impose some restrictions on its structure. In what follows
we will go over the issues caused by events and context switches, and conclude with a
number of assumptions that are needed to have a meaningful and manageable notion of
plan projection, which is what we use to infer whether a plan is valid or not. Similar
restrictions have been used also in other works on pddl+ (Fox, Howey, & Long, 2005; Shin
& Davis, 2005; Cashmore, Magazzeni, & Zehtabi, 2020).

We start off this discussion with an example showing how the general formulation of
pddl+ can induce non-deterministic spontaneous transitions.

Example 2.1 (Non-deterministic Events). Let ε1 = ⟨⟨x = 0⟩, {⟨asgn, y, 1⟩, ⟨asgn, x, 1⟩}⟩
and ε2 = ⟨⟨x = 0⟩, {⟨asgn, y,−1⟩, ⟨asgn, x, 1⟩}⟩ be two events and let s be a state such that
s |= ⟨x = 0⟩. The set of triggered events in s is {ε1, ε2}, since s |= pre(ε1) ∧ pre(ε2). Such
a set can be sequenced into ⟨ε1, ε2⟩ or ⟨ε2, ε1⟩ and, depending on the chosen ordering, two
different outcomes can be obtained, i.e., s′ = γ(s, ⟨ε1, ε2⟩) = γ(γ(s, ε1), ε2) |= ⟨y = 1⟩ and
s′′ = γ(s, ⟨ε1, ε2⟩) = γ(γ(s, ε2), ε1) |= ⟨y = −1⟩. A problem including these events is said to
be non-deterministic as different sequences of triggered events can produce different resulting
states.

To avoid this possibility, Fox and Long (2006) provided the definition of an event-
deterministic pddl+ problem. This definition requires that in any state where more than
one event is triggered, the outcome resulting from their sequential execution is independent
of their ordering.

Definition 11 (Event-deterministic pddl+ Problem (Fox & Long, 2006)). A pddl+ prob-
lem Π is said to be event-deterministic if, for each state where two events ε1 and ε2 are
triggered, then the transition sequences induced by ⟨ε1, ε2⟩ and ⟨ε2, ε1⟩ are both valid and
reach the same state. In this case, ε1 and ε2 are said to commute.

Determining whether a pddl+ problem is event-deterministic or not may be expensive,
but it is possible to establish a sufficient criterion that ensures that this always holds. For
example, two non-mutex events always commute. Indeed, if every pair of events that are
triggered in any state commute, then the problem is event-deterministic. In the following,
we assume that pddl+ problems are event-deterministic, which implies the guarantee that
any order of evaluation chosen from the triggered events in a state leads to the same state.

Another source of complexity comes with a potentially infinite cascade of events. A
cascade of events occurs when a stateHs(⟨t, n⟩) triggers at least an event, i.e., Etrigg(⟨t, n⟩) =

122



An Approach to Discretised PDDL+ by Translation to Numeric Planning

⟨ε1⟩, such that the resulting state obtained by the application of ε, i.e., Hs(⟨t, n + 1⟩) =
γ(Hs(⟨t, n⟩), ⟨ε1⟩), triggers again at least an event, i.e., Hs(⟨t, n+ 1⟩) |= pre(ε2).

Hereinafter, given two sequences of elements V and V ′, we denote as V⊕V ′ the sequential
merging of V and V ′. For example, given V = ⟨1, 2⟩ and V ′ = ⟨2, 3⟩, then V ⊕ V ′ =
⟨⟨1, 2⟩, ⟨2, 3⟩⟩. The ⊕ operator is associative and the identity element is the empty sequence,
so V ⊕ ⟨⟩ = V .

Definition 12 (Cascade of Events). Let Π be a pddl+ problem, H be a history for Π over
I and let T = ⟨t, n⟩ ∈ I. The cascade of events triggered in T is defined recursively as a
sequence of sequences as follows:

ES(T ) =

{
⟨⟩ if Etrigg(T ) = ⟨⟩
Etrigg(⟨t, n⟩)⊕ ES(⟨t, n+ 1⟩) otherwise

To give an intuition of the definition, look at the following small example.

Example 2.2 (Cascade of Events). Let Π be a pddl+ problem encompassing three events,
E = {ε1, ε2, ε3}, and ε1 = ⟨⟨x = 0⟩, {⟨asgn, x, 1⟩}⟩, ε2 = ⟨⟨x = 1⟩, {⟨asgn, x, 2⟩}⟩ and
ε3 = ⟨⟨x = 2⟩, {⟨asgn, x, 3⟩}⟩. Let H be a history for Π over I and let T = ⟨t, n⟩ ∈ I be a
STP such that Hs(⟨t, n⟩) |= ⟨x = 0⟩. Then, by iterating recursively over the states obtained
executing the events, we get that:

• Hs(⟨t, n⟩) |= ⟨x = 0⟩ |= pre(ε1) ∧ ¬pre(ε2) ∧ ¬pre(ε3), then Etrigg(⟨t, n⟩) = ⟨ε1⟩;

• Hs(⟨t, n + 1)⟩ = γ(Hs(⟨t, n⟩), Etrigg(⟨t, n⟩) = ⟨ε1⟩) |= ⟨x = 1⟩ |= ¬pre(ε1) ∧ pre(ε2) ∧
¬pre(ε3), then Etrigg(⟨t, n+ 1⟩) = ⟨ε2⟩;

• Hs(⟨t, n + 2)⟩ = γ(Hs(⟨t, n + 1⟩), Etrigg(⟨t, n + 1⟩) = ⟨ε2⟩) |= ⟨x = 2⟩ |= ¬pre(ε1) ∧
¬pre(ε2) ∧ ¬pre(ε3), then Etrigg(⟨t, n+ 1⟩) = ⟨ε3⟩;

• Hs(⟨t, n + 3)⟩ = γ(Hs(⟨t, n + 2⟩), Etrigg(⟨t, n + 2⟩) = ⟨ε3⟩) |= ⟨x = 3⟩ |= ¬pre(ε1) ∧
¬pre(ε2) ∧ ¬pre(ε3), then Etrigg(⟨t, n+ 3⟩) = ⟨⟩.

The cascade of events triggered in T is defined as ES(T ) = Etrigg(⟨t, n⟩) ⊕ ES(⟨t, n +
1⟩) = Etrigg(⟨t, n⟩)⊕ Etrigg(⟨t, n+ 1⟩)⊕ ES(⟨t, n+ 2⟩) = Etrigg(⟨t, n⟩)⊕ Etrigg(⟨t, n+ 1⟩)⊕
Etrigg(⟨t, n+ 2⟩)⊕ ES(⟨t, n+ 3⟩) = ⟨ε1⟩ ⊕ ⟨ε2⟩ ⊕ ⟨ε3⟩ ⊕ ⟨⟩ = ⟨⟨ε1⟩, ⟨ε2⟩, ⟨ε3⟩⟩.

As hinted at above, Definition 12 allows the characterisation of an infinite cascade of
events. Fox et al. (2005) discusses limitations to be imposed on the structure of events, in
addition to those described above concerning the non-determinism, in order to prevent such
an infinite cascade of events from actually happening. The rule is that every event has to
be self-deactivating. An event is self-deactivating if it falsifies its preconditions when it is
applied, i.e., for each state s |= pre(ε) then γ(s, ε) |= ¬pre(ε). This is necessary to prevent
a triggered event from continuing to trigger indefinitely. It should be noted that there can
also be more complex cyclic-triggering situations involving more than a single event. For
this reason, it is assumed that an event is triggered at most once in a timestamp (Fox et al.,
2005).

Our assumptions construct on the above notions and can be then summarised as follows:

123



Percassi, Scala & Vallati

Assumption 1 (Event-determinism). The pddl+ problem Π has to be event-deterministic
(see Definition 11).

Assumption 2 (Finite Complexity). The pddl+ problem Π has to induce a finite number
of spontaneous changes over an interval It. This finiteness is imposed both on the number
of events that can be triggered, and the number of times the starting and the stopping of a
process causes a change of context.

It is easy to see that the above assumptions lead us to get a unique and finite number
of STPs over an interval It.

We are now ready to define the projection of a pddl+ plan. Intuitively, we define
the plan projection around a number of rules that specify how history evolves over time.
The first (second) rule states that if an action (event) is executed (triggered) in an STP
T = ⟨t, n⟩, then there necessarily exists a successor of T , i.e., T ′ = ⟨t, n+1⟩ having the same
clock t and the step increased by one unit, i.e., n+1; the successor state associated to T ′ is
calculated by simply applying the discrete effects of the actions (events). The third rule is
used to enforce how actions of a pddl+ plan π are projected over a history, preserving their
original ordering in case they share the same timestamp in π. Then, the fourth rule is used
to enforce how a numeric variable changes continuously over time according to the active
processes in those “monotonous” temporal intervals in which “nothing happens” (there is no
action/event executed/triggered and there is no process which starts/ends). The following
definition formalises this intuition, assuming Π = ⟨F,X, I,G,A,E, P ⟩, and πt = ⟨π, ⟨ts, te⟩⟩
implicit.

Definition 13 (pddl+ Plan Projection). Let Hπ be a history for Π over I, let I be an
initial state and let πt be a pddl+ plan for Π. We say that Hπ is a projection of πt which
starts in I iff Hπ induces a finite sequence of STPs TH = ⟨T0 = ⟨ts, 0⟩, ..., Tm = ⟨te, nm⟩⟩
such that Hπ is defined over I = [T0, Tm] with Hπ

s (T0) = I, Hπ
A(Tm) = ⟨⟩, Etrigg(Tm) = ⟨⟩

and, for all i ∈ [0..m], the following rules hold:

R1 Etrigg(Ti) ̸= ⟨⟩ iff Hπ
s (Ti+1) = γ(Hπ

s (Ti), Etrigg(Ti)), Hπ
A(Ti) = ⟨⟩, ti+1 = ti and

ni+1 = ni + 1;

R2 Hπ
A(Ti) ̸= ⟨⟩ iff Hπ

s (Ti+1) = γ(Hπ
s (Ti),Hπ

A(Ti)), Etrigg(Ti) = ⟨⟩, ti+1 = ti and
ni+1 = ni + 1;

R3 for each ⟨ai, ti⟩, ⟨aj , tj⟩ in π, with i < j and ti = tj there exists Tk, Tz in TH such
that ai in Hπ

A(Tk) and aj in Hπ
A(Tz) where tk = tz = ti and nk < nz;

R4 Hπ is monotonous over It = (ti, ti+1), with ti < ti+1 and for each x ∈ X, we have
that:

– Hπ
s (⟨t, 0⟩)[x] is continuous and differentiable over It;

– ∀t ∈ It it holds that

dHπ
s (⟨t, 0⟩)[x]

dt
=

∑
⟨x′,ξ⟩∈eff(ρ), x′=x

ρ∈C(It)

Hπ
s (⟨t, 0⟩)[ξ]

124



An Approach to Discretised PDDL+ by Translation to Numeric Planning

– Hπ
s (⟨ti+1, 0⟩)[x] = limt→t−i+1

Hπ
s (⟨t, 0⟩)[x], and values of unaffected variables per-

sist up to ti+1 (frame-axiom).

To better understand Definitions 6–13, the example of Figure 1 shows how a numeric
variable, in this case, the velocity of a car, changes continuously over time according to a
pddl+ plan. It is remarkable how the pddl+ problems can induce dynamics on numeric
variables having piece-wise defined dynamics with points of discontinuity, as shown for
instance in Figure 1. This is why monotonous intervals must necessarily be defined as open
intervals and the numeric variable must be continuous and time-differentiable only within
them (R4 of Definition 13).

Finally, we remark that, as R3 is defined, for each T ∈ I then |HA(T )| ≤ 1.

Definition 14 (Valid pddl+ Plan). Let Π be a pddl+ problem. Let πt be a pddl+ plan for
Π and let Hπ be the plan projection of πt; πt is said to be a valid plan for Π iff Hπ

s (Tm) |= G
and the sequence of actions Hπ

A(T ) is applicable in Hπ
s (T ) for each T in TH.

Having clarified the continuous semantics for pddl+, we proceed by adapting the pro-
posed definitions to the discrete case. In the following, as a convention, we distinguish a
history generated according to continuous and discrete semantics using H and H, respec-
tively. Furthermore, we use δ ∈ Q>0 (where Q>0 = {q ∈ Q | q > 0}) as discretisation
step.

The following definition of the discrete STP inherits Conditions 1–4 from Definition 9,
while Condition 5 is reshaped for detecting when a process has started or stopped in the
discrete setting.

Definition 15 (Discrete Significant Time Point). Let δ ∈ Q>0. T = ⟨t, n⟩ is a STP of
a history H for Π over I = [Ts, Te], iff T ∈ I and at least one Condition of Definition 9
holds, with Condition 5 reshaped as follows:

5 a process has started (stopped) in T ; formally HA(T ) = ⟨⟩ and Etrigg(T ) = ⟨⟩ and
there exists ρ ∈ P such that Hs(T ) |= pre(ρ) (Hs(T ) ̸|= pre(ρ)) and there exists a
T ′ = ⟨t′, n′⟩ ∈ I with t′ = t − δ such that HA(T ) = ⟨⟩ and Etrigg(T ) = ⟨⟩ and
Hs(T ) ̸|= pre(ρ) (Hs(T ) |= pre(ρ))

Let ξ be the numeric expression that denotes the contribution to the time derivative of
some numeric variable, and let δ ∈ Q>0, ∆(ξ, δ) = ξ · δ represents the discretisation of ξ
according to δ. For example, let ⟨x, 1.5 · y⟩ (ẋ = 1.5 · y) and δ = 2 be a continuous effect
and a discretisation parameter, the discretised expression is ∆(1.5 · y, δ) = 3 · y.

The following definition of the discrete pddl+ plan projection inherits Rules 1–3 from
Definition 13, while Rule 4 is reshaped to enforce how numeric variables change when time
advances by a discrete quantity.

Definition 16 (Discrete pddl+ Plan Projection). Let δ ∈ Q>0, let H
π be a history for Π

over I, let I be an initial state and let πt be a pddl+ plan for Π. We say that Hπ is a discrete
projection of πt which starts in I iff Hπ induces the STPs TH = ⟨T0 = ⟨ts, 0⟩, ..., Tm =
⟨te, nm⟩⟩ where either ti+1 = ti + δ or ti+1 = ti, and all rules as for Definition 13 apply,
except for R4 that becomes:

125



Percassi, Scala & Vallati

Figure 1: History H of the plan πt = ⟨π = ⟨⟨accelerate, 0⟩, ⟨accelerate, 30⟩⟩, ⟨ts = 0, te =
90⟩⟩ for a variant of the Car domain (Fox & Long, 2006). The history generates
7 STPs, i.e., TH = ⟨Ts = T0, T1, T2, T3, T4, T5, Te = T6⟩, yielding a piece-wise
function consisting of three different monotonous intervals, i.e., (0, 30), (30, 50)
and (50, 90). The execution of the action accelerate in T0 = ⟨0, 0⟩ activates
the process moving in T1 (C(T1) = {moving}) and then the car increases its
speed linearly in (0, 30) (according to v̇ = a = 1 an consequently to v(t) = t).
In (30, 0), after the second acceleration is performed in T2 = ⟨30, 0⟩, the car
increases its speed linearly but with a greater slope (according to v̇ = a = 2 and
consequently to v(t) = 2 · t − 30). In T4 = ⟨50, 0⟩ an event is triggered, i.e.,
the event which models the explosion of the engine when a critical velocity of
70 is reached. The event resets the acceleration activating the process drag in
T5 = ⟨50, 1⟩ (C(T5) = {moving, drag}) and deactivating the effect of moving on
v, which in turns makes the speed decrease exponentially in the interval (50, 90)

due to the drag (v̇ = −1
5 · v and then v(t) = 70 · e

1
5
(t−50)).

126



An Approach to Discretised PDDL+ by Translation to Numeric Planning

R4 for each pair of contiguous STPs Ti = ⟨ti, ni⟩, Ti+1 = ⟨ti+1, 0⟩ such that ti+1 =
ti + δ, the value of each numeric variable x ∈ X is updated as:

Hπ
s (Ti+1)[x] = H

π
s (Ti)[x] +

∑
⟨x′,ξ⟩∈eff(ρ), x′=x

ρ∈P such that Hπ
s (Ti)|=pre(ρ)

Hπ
s (Ti)[∆(ξ, δ)]

and values of unaffected variables remain unchanged (frame-axiom).

Note that plans featuring actions at non-discrete time points do not admit any projection,
and are therefore ill-defined under discrete interpretation.4 Furthermore, we remark that
the discretisation step δ ∈ Q>0 is a given parameter (see discussion in Section 7).

Definition 17 (Discrete Valid pddl+ Plan). Let πt be a pddl+ plan and let Hπ be the
plan discrete projection of πt for δ ∈ Q>0; πt is said to be a valid plan for Π under δ
discretisation iff Hπ

s (Tm) |= G and the sequence of actions Hπ
A(T ) is applicable in Hπ

s (T )
for each T in TH.

2.1 Example: The Overtaking-Car Problem

In order to explain our approach, in the remaining of this paper we will make use of a variant
of the well-known Linear-Car pddl+ problem (Fox & Long, 2006), namely Overtaking-
Car.

Example 2.3 (Overtaking-Car Problem). The Overtaking-Car domain models a
number of cars that can move across two lanes, a fast and a slow lane. The position of each
car changes over time when the speed is different from 0; the speed in turn changes for the
effect of the acceleration. Each car needs to reach a given distance from the origin while
avoiding collisions with other cars; to do so a car can switch from one lane to the other.
Let cars denote a finite set of vehicles, a pddl+ planning problem Π = ⟨F,X, I,G,A,E, P ⟩
of Overtaking-Car can be defined as the following:

• F = {crashed} ∪
⋃

car∈cars
{otcar, eng-oncar}, where

– crashed models whether a collision among any vehicle has occurred or not. When
the variable is set to true, the goal cannot be achieved anymore;

– otcar models whether a “car” is or not in the fast lane. If otcar holds the car is
overtaking; otherwise it means that the car is moving on the slow lane;

– eng-oncar models whether the engine is on or off;

• X =
⋃

car∈cars
{dcar, vcar, acar}, where the variables dcar, vcar and acar express the dis-

tance from the origin, the velocity and the acceleration of “car”, respectively;

4. We remark that the plan discrete projection does not model any transient state between two consecutive
discrete time points.

127



Percassi, Scala & Vallati

• I =
⋃

car∈cars
{⟨dcar := DI

car⟩, ⟨vcar := 0⟩, ⟨acar := 0⟩}, where DI
car ∈ Q; for each

car ∈ cars, the speed and the distance are specified in the initial state; by closed
world assumption the initial state sets to off all engines’ cars, constrains all cars to
be positioned in the slow lane and crashed is set to false;

• G = ¬crashed ∧
∧

car∈cars
⟨vcar = 0⟩ ∧ ⟨dcar = DG

car⟩ ∧ ¬eng-oncar, where DG
car ∈ Q; G

requires that (i) all cars have stopped (ii) no collisions have occurred (iii) all cars are
at a given distance DG

car from the origin;

• A =
⋃

car∈cars
{acceleratecar, deceleratecar, overtakecar, returncar, startcar, stopcar} where,

for each car ∈ cars, such actions are defined as:

– acceleratecar = ⟨eng-oncar ∧ ⟨acar < Amax⟩, {⟨increase, acar, 1⟩}⟩;
– deceleratecar = ⟨eng-oncar ∧ ⟨acar > Amin⟩, {⟨decrease, acar, 1⟩}⟩;
– overtakecar = ⟨eng-oncar ∧ ⟨vcar > 0⟩ ∧ ¬otcar, {otcar}⟩;
– returncar = ⟨eng-oncar ∧ ⟨vcar > 0⟩ ∧ otcar, {¬otcar}⟩;
– startcar = ⟨¬eng-oncar, {eng-oncar}⟩;
– stopcar = ⟨eng-on ∧ ⟨vcar = 0⟩ ∧ ⟨acar = 0⟩, {¬eng-oncar}⟩.

The actions overtakecar and returncar, are used to model the movement of “car” from
the slow lane to the fast lane and vice versa, respectively.

• E =
⋃

car,car′∈cars
car ̸=car′

{crash-fastcar,car′ , crash-slowcar,car′}; these events model the possible

collisions that can occur between two moving cars, i.e., car and car′, if those are
moving in the same lane at a distance less than a critical distance DT ∈ Q>0. They
are defined as follows:

– crash-fastcar,car′ = ⟨⟨dcar − dcar′ < DT ⟩ ∧ ⟨dcar − dcar′ ≥ 0⟩ ∧ otcar ∧ otcar′ ∧
¬crashed, {crashed}⟩;

– crash-slowcar,car′ = ⟨⟨dcar − dcar′ < DT ⟩ ∧ ⟨dcar − dcar′ ≥ 0⟩ ∧ ¬otcar ∧ ¬otcar′ ∧
¬crashed, {crashed}⟩;

• P =
⋃

car∈cars
{movingcar} where, for each car ∈ cars, such processes are defined as:

– movingcar = ⟨eng-oncar, {⟨vcar, acar⟩, ⟨dcar, vcar⟩}⟩, this process models the dy-
namics of the car: the time derivative of the displacement is the speed (i.e.,
ḋcar = vcar), whereas the time derivative of the speed is the acceleration (i.e.,
v̇car = acar);

The numeric constants involved in the definition of I and G are specified such that:

• for each pair of cars, i.e., car, car′ ∈ cars with car ̸= car′, then |DI
car −DI

car′ | < DT ;
this constraint prevents a collision event from being triggered in the initial state

128



An Approach to Discretised PDDL+ by Translation to Numeric Planning

• for each car ∈ cars then DG
car > DI

car;

• for each pair of cars, i.e., car, car′ ∈ cars with car ̸= car′ and then DG
car < DG

car′

(DG
car > DG

car′); this implies that to achieve the goal, it is necessary to use the fast
lane;

• the maximum acceleration and deceleration are bounded by two quantities, i.e., Amax

and Amin, respectively.

In Overtaking-Car, the actions to be sought and scheduled are the accelerations and
decelerations to reach the goal, while the actions to handle overtaking are used to avoid
collisions. Accelerate and decelerate actions have an impact on the speed and therefore
on the actual positions of the cars. Such aspects are directly modelled through processes.
Each process indeed models how the distance from the origin is affected; this is given as a
function of speed that in turn is controlled by the current acceleration.

3. Translating PDDL+ to PDDL2.1

pddl+ problems differ from pddl2.1 ones for the presence of processes and events. In this
and the following sections, we devise translations that transform all processes and events
into regular actions enriched with additional predicates so that every valid plan that is found
in the process and event-free translation, retains its validity on the discretised version of
the pddl+ problem it has been generated from. We do so by explicitly formulating a
simulation action that lets the planning engine wait and observe the state of the world for
a given amount of time. Instead, when the planner picks some action, time does not flow;
rather the state is instantaneously modified by the planning engine.

To make this operational, there are a number of challenges to pursue: (i) we need to
capture what processes are active in a given state so that the time-discretised continuous
update of the state consistently reflects what the dynamical specification of the system
prescribes; (ii) we need to take care of the potentially complex cascade of events that may
be triggered for each encountered state.

We proceed in a modular fashion. In what follows we firstly present a solution to
point (i) with a (straightforward) exponential encoding, and then with a more sophisticated
polynomial translation. Both are guaranteed to work for event-free pddl+ problems. Then
we face point (ii) by showing how also events can be translated into actions with conditional
effects with a translation step that is modular to how we tackle point (i).

3.1 Exponential Translation

Given an event-free pddl+ problem Π = ⟨F,X, I,G,A, ∅, P ⟩, we define a discrete context C,
hereinafter simply referred to as context, to be a non-empty subset of processes, and denote
with P+(P ) the set of non-empty subsets of P , that is the set of all possible contexts.

For an event-free pddl+ problem Π, the exponential translation generates a pddl2.1
problem Πexp = ⟨F,X, I,G,A ∪ {SIM}, c⟩, discretised in δ. Πexp is almost identical to Π
but for the absence of processes and the presence of the special action SIM playing the role
of the simulator, i.e., what changes when time goes forward. SIM is defined as follows:

129



Percassi, Scala & Vallati

pre(SIM) =⊤

eff(SIM) =
⋃

C∈P+(P )

{contpre(C) ▷ conteff(C)}

where

contpre(C) =
∧

ρ∈P\C

¬pre(ρ) ∧
∧

ρ∈P∩C
pre(ρ)

conteff(C) =
⋃
x∈X

{⟨inc, x,
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈C

∆(ξ, δ)⟩}

Intuitively, the action SIM organises all possible contexts within a unique action, dele-
gating to each conditional effect (i) the conditions under which a context is triggered and (ii)
the consequences that such a context has on the state after some time δ has passed. Point
(i) is formalised by conjoining two conjunctions: the first ensures that no other process of
some other context has its precondition satisfied (

∧
ρ∈P\C

¬pre(ρ)); the second ensures that

all the preconditions of a given context are satisfied (
∧

ρ∈P∩C
pre(ρ)). Let x be some numeric

variable of our problem, point (ii) is obtained by summing the contribution of each process
within the context.

Ultimately, we reflect the effect of the time-passing action on the overall makespan of
the plan directly in the cost function of our problem, differentiating therefore whether the
planning engine chooses some action, or lets time go for some δ time: c(a) = 0 if a ∈ A
while c(a) = δ if a = SIM.

Example 3.1 (exp Translation - Continuing on Example 2.3). Let Π = ⟨F,X, I,G,A,E, P ⟩
be an Overtaking-Car planning instance for the domain reported in Example 2.3 in which
cars = {car1, car2}. In this example, we compile Π omitting the events (therefore as if it
were E = ∅); events will be dealt with later in the paper. The components of the tuple Π
are therefore:

F ={eng-oncar1, eng-oncar2, otcar1, otcar2, crashed}
X ={dcar1, dcar2, vcar1, vcar2, acar1, acar2};
I ={⟨dcar1 := DI

car1⟩, ⟨dcar2 := DI
car2⟩, ⟨vcar1 := 0⟩, ⟨vcar2 := 0⟩, ⟨acar1 := 0⟩, ⟨acar2 := 0⟩};

G =¬crashed ∧ ⟨dcar1 = DG
car1⟩ ∧ ⟨dcar2 = DG

car2⟩ ∧ ⟨vcar1 = 0⟩ ∧ ⟨vcar2 = 0⟩ ∧ ¬eng-oncar1∧
¬eng-oncar2;

A ={acceleratecar1, acceleratecar2, overtakecar1, overtakecar2, returncar1, returncar2,

startcar1, startcar2, stopcar1, stopcar2};
E =∅;
P ={movingcar1,movingcar2}.

The exp reformulation of Π discretised in δ is Πexp = ⟨F,X, I,G,A ∪ {SIM}, c⟩ where
SIM is the simulation action as for exp specification. Let WC be the single conditional effect

130



An Approach to Discretised PDDL+ by Translation to Numeric Planning

of SIM such that C ∈ P+(P ) is a context, and let “m1” and “m2” be short for processes
“movingcar1” and “movingcar2”. The SIM action is as follows:

pre(SIM) =⊤
eff(SIM) ={W{m1},W{m2},W{m1,m2}}

where

W{m1} =eng-oncar1 ∧ ¬eng-oncar2 ▷ {⟨inc, dcar1, vcar1 · δ⟩, ⟨inc, vcar1, acar1 · δ⟩}
W{m2} =¬eng-oncar1 ∧ eng-oncar2 ▷ {⟨inc, dcar2, vcar2 · δ⟩, ⟨inc, vcar2, acar2 · δ⟩}

W{m1,m2} =eng-oncar1 ∧ eng-oncar2 ▷ {⟨inc, dcar1, vcar1 · δ⟩, ⟨inc, vcar1, acar1 · δ⟩,
⟨inc, dcar2, vcar2 · δ⟩, ⟨inc, vcar2, acar2 · δ⟩}.

In the following lemma, we show the soundness and completeness properties of the exp
translation for a pddl+ event-free problem. By completeness and soundness, we mean that
if Π admits a valid solution then the corresponding problem Πexp admits one solution too,
and vice-versa.

Lemma 1 (Soundness and Completeness of exp for an Event-free pddl+ Problem). Let
Π = ⟨F,X, I,G,A, ∅, P ⟩ be a pddl+ problem, and let Πexp = ⟨F,X, I,G,A ∪ {SIM}, c⟩ be
the pddl2.1 problem obtained by using the exp translation discretised in δ. Π admits a
solution under δ discretisation iff so does Πexp.

Proof. (⇒) Let πt = ⟨π, ⟨0, te⟩⟩ be a valid solution for Π (assume w.l.o.g. ts = 0) under
δ discretisation and let πexp be a pddl2.1 plan constructed in such a way that: (i) for
each ⟨a, t⟩ in π then a′ is in πexp (where a′ is the compiled version of a); (ii) for each
⟨ai, ti⟩, ⟨aj , tj⟩ with ai ≺ aj in π then a′i ≺ a′j holds in πexp and (iii) a sequence, possibly
empty, of SIM actions has to be placed before each action a′i ∈ πexp and at the end of πexp
according to the following structure

πexp = ⟨⟨SIM⟩ × t0
δ
, a′0, ⟨SIM⟩ × t1 − t0

δ
, ..., a′n−1, ⟨SIM⟩ × te − tn−1

δ
⟩

where ⟨SIM⟩ × k, with k ∈ N, indicates k repetitions of SIM.
In order to prove that πexp is a valid solution for Πexp, it suffices to show that, let

τ = ⟨Hπ
s (T0), ...,H

π
s (Tm)⟩ be the sequence of states associated to each STP of Hπ, and

τ ′ = ⟨s0, ..., sm⟩ be the sequence of states generated by iteratively executing πexp, H
π
s (Ti)

and si are equivalent (agree on all values for F ∪X) for each i ∈ [0..m]. We prove this by
induction on τ (τ ′).

Firstly, we have to show how n = |π| and m = |τ |−1 are related and then that |τ | = |τ ′|
holds. Given π, according to R1 of Definition 16, we have n instantaneous transitions
and, according to R4, we have te−ts

δ = te
δ temporal transitions, i.e., the number of discrete

advancements of time. It follows that m = n+ te−ts
δ . As shown in πexp definition, there is

an action a′i ∈ πexp for each action ai ∈ π with i ∈ [0..n − 1], and a SIM action for each

131



Percassi, Scala & Vallati

discrete advancement of time, i.e., te
δ . Then |πexp| = n + te

δ = m. Then πexp induces m
transitions from I, i.e., |τ ′| = m+ 1, and finally we got that |τ | = |τ ′|.

The base case (i = 0) trivially proves true as Hπ
s (T0) = I and s0 = I. For the induction

step, we assume truly the statement for some i < |τ |, and prove this for i+1 by considering
the two types of transitions occurring between two contiguous STPs in Hπ.
Instantaneous transition. Let Ti = ⟨ti, ni⟩ and Ti+1 = ⟨ti, ni + 1⟩ be two STPs of Hπ. Rule
2 of Definitions 13-16 implies that Hπ

A = ⟨ai⟩ ̸= ⟨⟩. Since πt is a valid solution for Π, we
know that Hπ

s (Ti) |= pre(ai) therefore, by inductive hypothesis, si |= pre(a′i). Since ai and
a′i are the same operator, it is easy to see that the outcomes of the transitions γ(Hπ

s (Ti), ai)
and γ(s, a′i) are equivalent.
Temporal transition. Let i be an index such that Ti = ⟨ti, ni⟩ and Ti+1 = ⟨ti + δ, 0⟩ are two
STPs of Hπ.

Note that the SIM action features a conditional effect for each possible context C ∈
P+(P ). By definition of P+(P ), contexts differ from one another for at least one process.
It follows that, by definition of contpre(·), for each C, C′ ∈ P+ with C ̸= C′, contpre(C) and
contpre(C′) are mutually exclusive. Therefore, for each application of the SIM action, at
most one conditional effect is activated.

We denote with SIMi the application of SIM in the i-th state of τ ′. State si induces the
context C(si) = {ρ ∈ P, si |= pre(ρ)} and then SIMi = ⟨⊤, contpre(C(si))▷conteff(C(si))⟩ =
⟨contpre(C(si), conteff(C(si)⟩ = ⟨⊤, conteff(C(si))⟩; indeed, we can remove each conditional
effect that does not hold in si. To show that the state produced by the application of SIMi

in si is equivalent to that produced according to the semantics of the discrete projection of
πt, when a quantum of δ time passes, it is sufficient to focus on a single variable x ∈ X that
is affected by the process, and then generalise to all the numeric variables.5 In particular,
action SIMi modifies x according to:

⟨inc, x,
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈C(si)

∆(ξ, δ)⟩

which corresponds to enforcing the transition as follows:

si+1[x] = si[x] +
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈C(si)

si[∆(ξ, δ)] (1)

According to Rule 4 of Definition 16, each numeric variable x ∈ X changes over δ by
using the active processes in C(Hπ

s (Ti)) = {ρ ∈ P, Hπ
s (Ti) |= pre(ρ)} according to:

Hπ
s (Ti+1)[x] = H

π
s (Ti)[x] +

∑
⟨x′,ξ⟩∈eff(ρ), x′=x

ρ∈C(Hπ
s (Ti))

Hπ
s (Ti)[∆(ξ, δ)] (2)

Since Hπ
s (Ti) is equivalent to si, by the inductive hypothesis, then the induced contexts

are the same, i.e., C(si) = C(Hπ
s (Ti)). It follows that the right-hand side expressions of

Formulae 1-2 are equivalent. Thus, Hπ
s (Ti+1) and si+1 = γ(si,SIM) are equivalent.

5. Note that, the study of the equivalence of si+1 and Hπ
s (Ti+1) can be circumscribed to studying the

numeric variables X and ignoring the propositional ones, since the P processes of Π can only affect
numeric variables. Same for the conditional effects of SIM they are built from.

132



An Approach to Discretised PDDL+ by Translation to Numeric Planning

(⇐) Note that every plan solving Πexp is structured alternating an agent’s action
and a sequence (possibly empty) of SIM actions. Let πexp = ⟨⟨SIM⟩ × t0

δ , a
′
0, ⟨SIM⟩ ×

t1−t0
δ , ..., a′n−1, ⟨SIM⟩ × te−tn−1

δ ⟩ be such a plan. We can construct a valid pddl+ plan
πt = ⟨π, ⟨0, te⟩⟩ as follows: (i) for each action a′i in πexp such that a′i ̸= SIM then ⟨ai, ti⟩ is
in π, where ti is equal to δ multiplied for the occurrences of SIM in πexp before a′i; (ii) for
each a′i, a

′
j such that a′i ≺ a′j in πexp then holds ⟨ai, ti⟩ ≺ ⟨aj , tj⟩ in π and iii) te is equal to

δ multiplied by the number of SIM in πexp. The plan we get by using this construction is:

πt = ⟨⟨π = ⟨a0, t0⟩, ⟨a1, t1⟩, ..., ⟨an−1, tn−1⟩⟩, ⟨0, te⟩⟩

In order to show the validity of πt, we reason on the discrete projection Hπ of πt that,
using Definition 16, is determined as follows. Every action ⟨ai, ti⟩ in π is associated with a
STP T = ⟨ai, ni⟩ such thatHπ

A(T ) = ⟨ai⟩. This implies, by using Rule 1 of Definitions 13-16,
the existence of a STP following T , i.e., T ′ = ⟨ti, ni + 1⟩, such that Hπ

s (T
′) = γ(Hπ

s (T ), ai).
Any pair of contiguous actions, having the form ⟨ai, ti⟩ and ⟨ai+1, ti+1⟩, induces k = ti+1−ti

δ
STPs of the form ⟨ti + j · δ, 0⟩ with j ∈ [1..k]. The number of STPs so induced equates
the number of SIM actions between a′i and a′i+1. Overall Hπ encompasses the following
sequence of STPs:

TH = ⟨

t0
δ

STPs︷ ︸︸ ︷
T0, ..., T t0

δ
, T t0

δ
+1︸ ︷︷ ︸

a0

, ...,

ti+1−ti
δ

STPs︷ ︸︸ ︷
T
i+

ti
δ

, ..., T
i+

ti+1
δ

, T
i+1+

ti+1
δ︸ ︷︷ ︸

ai

, ..., ︸ ︷︷ ︸
an−1

T
n−1+

tn−1
δ

,

te−tn−1
δ

STPs︷ ︸︸ ︷
T
n+

tn−1
δ

, ..., Tn+ te
δ
⟩

We have obtained that the number of STPs of Hπ equates the number of actions of
πexp, i.e., |TH| = |π| + te

δ , where |π| is the number of non SIM action in πexp and te
δ is

the number of SIM actions in πexp; therefore |TH| = |πexp|. To prove that πt is a valid
plan for Π it suffices to observe that the state where an action from A is applied in Hπ is
equivalent to the state where the same action is applied in the sequence of states induced by
πexp. Therefore, because πexp achieves the goal in Πexp so does π in Π; this can be proved
formally in a way that is very similar to what is done for the opposite direction.

3.2 Polynomial Translation

The translation that we present in this section relies on the idea to keep the factored
processes-based representation and to reflect this into a number of actions (in the next
organised in set AP ), each devoted to model whether one particular process is active, and
what its effects on the state of the world are. Instead of evaluating which context holds
by exploiting an exponentially large set of possible alternatives, we let the planning engine
develop the applications of actions from AP in depth, i.e., by sequencing their execution
one after the other. This sequencing gets activated when the planning engine switches into
simulation modality, activated by the so-called action start and ends once all actions from
AP are executed.

Since the AP actions could influence each other by affecting the numeric variables, start
also makes a full copy of the numeric state values before starting the simulation. It does so
by assigning the current value of all variables into a new set of variables, i.e., Xcp, before

133



Percassi, Scala & Vallati

any process starts operating. This lets the planning engine safely evaluate all variables each
process effect depends on. In order to achieve this last point, each numeric effect in some
process is rewritten before being transformed into an action. The rewriting manipulates each
formula in a way to substitute every occurrence of a variable from X with its compilation
image in Xcp.6 Let ξ be a formula, we denote with σ(ξ,Xcp) the result of such a rewriting.

This translation trades the exponential blow-up caused by the context-switching opera-
tion of exp, with an increase in the length of the plan. The resulting formulation is sound,
complete and, more interestingly, is polynomial on the size of the input. For this reason, we
call this translation poly and detail in what follows its precise definition and functioning.

Let Π = ⟨F,X, I,G,A, ∅, P ⟩ and δ ∈ Q>0 be an event-free pddl+ problem and a discreti-
sation parameter. poly generates a new pddl2.1 problem Πpoly = ⟨F ∪D ∪ {pause}, X ∪
Xcp, I, G ∧ ¬pause, Ac ∪AP ∪ {start, end}, c⟩ such that:

Xcp = {xcopy | x ∈ X}

D =
⋃

ne∈eff(ρ)
ρ∈P

{donene}

Ac = {⟨pre(a) ∧ ¬pause, eff(a)⟩ | a ∈ A}

start = ⟨¬pause, {pause} ∪
⋃
x∈X

{⟨asgn, xcopy, x⟩}⟩

end = ⟨
∧

done∈D

done ∧ pause, {¬pause} ∪
⋃

done∈D

{¬done}⟩

AP =
⋃

ne:⟨x, ξ⟩∈eff(ρ)
ρ∈P

{⟨pause ∧ ¬donene, {σ(pre(ρ), Xcp) ▷ {⟨inc, x,∆(δ, σ(ξ,Xcp)⟩}} ∪ {donene}⟩}

As it is possible to observe, at any discrete time step, the planning engine can decide to
let time pass by an amount of δ and does so by deciding to execute action start . From that
moment onward, no action from Ac can be executed, and only when all conditional process
effects are applied, the planning engine can come back into actual planning mode (¬pause).
AP encompasses all such processes effects, and delegates to a conditional effect the check
and the consequent update of the variables according to their past value (σ(pre(ρ), Xcp)
for the precondition of the process, and σ(ξ,Xcp) for the right-hand side of the numeric
effect) under the proper ∆ discretisation. Note that, action start also ensures that all the
variables are copied through an assignment operation, which is responsible for iterating
over all numeric variables of the problem and updating their value for the next round of
simulation (the snippet

⋃
x∈X{⟨asgn, xcopy, x⟩}).

Similarly to the exponential translation, also in this case we make the planning engine
aware of the passage of time through the cost function. As, however, we do not have only
one action that reflects such a passage of time, we attribute a non-zero cost only to action
start . That is: c(a) = δ if a = start, 0 otherwise.

Example 3.2 (poly Translation - Continuing on Example 2.3). Let Π = ⟨F,X, I,G,A,E, P ⟩
be an Overtaking-Car planning instance for the domain reported in Example 2.3 in which
cars = {car1, car2}. Again, let us assume for now that E = ∅.

6. Recall that every numeric expression is a formula.

134



An Approach to Discretised PDDL+ by Translation to Numeric Planning

The process labels are shortened using the same convention provided in Example 3.1.
However, if a process admits more than one continuous numeric effect, another convention
is introduced. For example, consider the grounded process movingcar1 having two numeric
continuous effects, i.e., ⟨dcar1, vcar1⟩ and ⟨vcar1, acar1⟩. Such effects are labelled as “md1”
and “mv1”, respectively. That is, “md1” is the numeric continuous effects of movingcar1
affecting d1 whereas “mv1” is the numeric continuous effects of movingcar1 affecting v1.

The polynomial reformulation of Π discretised in δ is Πpoly = ⟨F ∪ D ∪ {pause}, X ∪
Xcp, I, G ∪ {¬pause}, Ac ∪AP ∪ {start, end}⟩ where:

D =
⋃

ne∈eff(ρ)
ρ∈{m1,m2}

{donene} = {donemd1
, donemv1 , donemd2

, donemv2 , }

Xcp =
⋃

car∈{car1,car2}

{dcopycar , vcopycar acopycar } = {dcopycar1, d
copy
car2, v

copy
car1, v

copy
car2, a

copy
car1, a

copy
car2}

start =⟨¬pause, {pause} ∪ {⟨asgn, dcopycar1, dcar1⟩, ⟨asgn, d
copy
car2, dcar2⟩, ⟨asgn, v

copy
car1, vcar1⟩,

⟨asgn, vcopycar2, vcar2⟩, ⟨asgn, a
copy
car1, acar1⟩, ⟨asgn, a

copy
car2, acar2⟩}⟩

end =⟨donemd1
∧ donemv1 ∧ donemd2

∧ donemv2 ∧ pause,

{¬donemd1
∧ ¬donemv1 ∧ ¬donemd2

∧ ¬donemv2 ∧ ¬pause}⟩
AP ={amd1

, amv1 , amd2
, amv2}

amd1
=⟨pause ∧ ¬donemd1

, {engine-oncar1 ▷ {⟨inc, dcar1, vcopycar1 · δ⟩}} ∪ {donemv1}⟩
amv1 =⟨pause ∧ ¬donemv1 , {engine-oncar1 ▷ {⟨inc, vcar1, acopycar1 · δ⟩}} ∪ {donemd1

}⟩
amd2

=⟨pause ∧ ¬donemd2
, {engine-oncar2 ▷ {⟨inc, dcar2, vcopycar2 · δ⟩}} ∪ {donemd2

}⟩
amv2 =⟨pause ∧ ¬donemv2 , {engine-oncar2 ▷ {⟨inc, vcar2, acopycar2 · δ⟩}} ∪ {donemv2}⟩

Note that the use of Xcp variables is crucial to make deterministic the outcome of
the time-passage simulation sequence, i.e., ⟨start, seq(AP ), end ⟩, regardless of the chosen
ordering in seq(AP ).

In the following lemma, we show that poly is sound and complete for a pddl+ event-free
problem.

Lemma 2 (Soundness and Completeness of poly for an Event-free pddl+ Problem). Let
Π = ⟨F,X, I,G,A, ∅, P ⟩ be a pddl+ problem, and let Πpoly = ⟨F ∪ D ∪ {pause}, X ∪
Xcp, I, G∪ {¬pause}, Ac ∪AP ∪ {start, end}⟩ be the pddl2.1 problem obtained by using the
poly translation discretised in δ. Π admits a solution under δ discretisation iff so does
Πpoly.

Proof. (⇒) Let πt = ⟨π, ⟨0, te⟩⟩ be a valid solution for Π (assume w.l.o.g. ts = 0) under
δ discretisation, and let πpoly be a pddl2.1 plan constructed in such a way that: (i) for
each ⟨a, t⟩ in π then a′ is in πpoly (where a′ is the compiled version of a); (ii) for each
⟨ai, ti⟩, ⟨aj , tj⟩ with ai ≺ aj in π then a′i ≺ a′j holds in πpoly (iii) a sequence, possibly empty,
of sequences having the form wait = ⟨start, seq(AP ), end ⟩ (where seq(AP ) is any sequencing
of all AP operators) has to be placed before each action a′i in πpoly and at the end of πpoly
according to the following structure:

135



Percassi, Scala & Vallati

πpoly = ⟨⟨wait⟩ × t0
δ
, a′0, ⟨wait⟩ ×

t1 − t0
δ

, ..., a′n−1, ⟨wait⟩ ×
te − tn−1

δ
⟩

Much as we do for Lemma 1, we proceed by induction over the states τ and τ ′, noticing
that τ ′ can be constructed using wait as if it was a single transition, therefore leading us
to have |τ | = |τ ′|. Differently from Lemma 1, Π and Πpoly have different variables, i.e., the
set of variables of Πpoly contains the set of variables of Π. Hence, given two elements of τ
and τ ′, i.e., si and H

π
s (Ti), we say that they are equivalent if they match over the variables

of Π, i.e., F ∪X and Hπ
s (Ti) |= ¬pause.

The base case (i = 0) trivially proves true as Hπ
s (T0) = I |= ¬pause and s0 = I. The

instantaneous transition is similar to what has been discussed in Lemma 1 since ai and its
counterpart a′i are the same operator except for the ¬pause precondition of a′i.

The non-trivial aspect to prove is the inductive case when there is a temporal transition.
Starting from two equivalent states in τ and τ ′, i.e., Hπ

s (Ti) and si, we need to prove that
Hπ

s (Ti+1), with Ti = ⟨ti, ni⟩ and Ti+1 = ⟨ti + δ, 0⟩, is equivalent to si+1 = γ(si,wait). First,
we discuss the applicability of the sequence wait . The first action start has ¬pause as a
precondition, so, since the inductive hypothesis holds, it is applicable in si making pause
true; after start has been applied, the only executable operators are those belonging to AP .
Then, any sequencing of AP generates a state in which

∧
done∈D done holds, thus making

end applicable, too.
Now we proceed to show that the two compared states are equivalent under variables

F ∪X. Note that each operator in AP only modifies the X variables. Thus both variables
in Xcp and in F persist during and after the application of any sequencing of AP . The only
thing left to prove is to show the equivalence of the states w.r.t. variables from X.

Recall that the start operator makes a copy of all the X variables in the corresponding
duplicates in Xcp, therefore the set of active processes does not change starting from si.
Indeed, all compiled processes’ preconditions only involve variables from Xcp.

Each operator a = ⟨pause ∧ ¬done, {c ▷ e, done}⟩ ∈ AP has a conditional effect that
refers to a process ρ, i.e., c ▷ e with c = σ(pre(ρ), Xcp) and e = ⟨inc, x,∆(δ, σ(ξ,Xcp)⟩,
which increases x if a formula defined over Xcp, i.e., σ(pre(ρ), Xcp), holds in the state where
a is applied. Note moreover that the activation of the conditional effects is independent
of the order in which actions from AP are evaluated. In fact, the preconditions of the
conditional effects of AP are expressed in Xcp variables which, as noticed above, remain
constant throughout the execution of AP .

To see why Hπ
s (Ti+1) and si+1 are equivalent, note that, given a variable x ∈ X, the

effects on x is given by a subset of AP , i.e., AP (x), defined as the following:

AP (x) =
⋃

ne:⟨x′, ξ⟩∈eff(ρ)
x′=x, ρ∈P,

{⟨pause ∧ ¬donene, {σ(pre(ρ), Xcp) ▷ {⟨inc, x′,∆(σ(ξ,Xcp), δ))⟩}} ∪ {donene}⟩}

which can be redefined in AP (x, si) by substituting the right-hand side of the numeric
effects with all the variables from si:

AP (x, si) =
⋃

ne:⟨x′, ξ⟩∈eff(ρ)
x′=x, ρ∈P

{⟨pause ∧ ¬donene, {σ(pre(ρ), Xcp) ▷ {⟨inc, x′, si[∆(ξ, δ)]⟩}} ∪ {donene}⟩}

136



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Now, observe that the conditional effects modifying the value of x during wait are those
created from process ρ where si |= pre(ρ), i.e., those processes belonging to the context
C(si). So we can express si+1[x] as the following summation:

si+1[x] = γ(si,wait)[x] = si[x] +
∑

⟨x′, ξ⟩∈eff(ρ), x′=x
ρ∈C(si)

si[∆(ξ, δ)] (3)

According to Rule 4 of Definition 16, each numeric variable x ∈ X changes over δ by
the active processes in C(Hπ

s (Ti)) = {ρ ∈ P, Hπ
s (Ti) |= pre(ρ)}:

Hπ
s (Ti+1)[x] = H

π
s (Ti)[x] +

∑
⟨x′,ξ⟩∈eff(ρ), x′=x

ρ∈C(Hπ
s (Ti))

Hπ
s (Ti)[∆(ξ, δ))] (4)

.
Since Hπ

s (Ti) is equivalent to si, by the inductive hypothesis, then the induced contexts
are the same, i.e., C(si) = C(Hπ

s (Ti)). It follows that the right-hand side expressions of
Formulae 3-4 are equivalent. Thus, Hπ

s (Ti+1) and si+1 = γ(si,wait) are equivalent.
Therefore, by induction, si ≡ Hπ

s (Ti) for all i.
(⇐) Note that every plan solving Πpoly is structured alternating an agent’s action

and a sequence (possibly empty) of wait sequences. Let πpoly = ⟨wait × t0
δ , a

′
0,wait ×

t1−t0
δ , ..., a′n−1,wait ×

te−tn−1

δ ⟩ be such a plan. The mapping from πpoly to πt = ⟨π, ⟨0, te⟩⟩
is similar to what was done for Lemma 1. All the occurrences of the sequence wait in πpoly
have to be ignored in building π. Starting from πpoly we can build a valid pddl+ plan
πt = ⟨π, ⟨0, te⟩⟩ as follows: (i) for each action a′i in πpoly such that a′i ̸∈ {start, end} ∪ AP ,
then ⟨ai, ti⟩ is in π, where ti is equal to δ multiplied for the occurrences of start in πpoly
before a′i; (ii) for each a′i, a

′
j such that a′i ≺ a′j in πpoly then ⟨ai, ti⟩ ≺ ⟨aj , tj⟩ holds in π and

(iii) te is equal to δ multiplied by the number of start in πpoly. The plan we get by using
this transformation is:

πt = ⟨⟨π = ⟨a0, t0⟩, ⟨a1, t1⟩, ..., ⟨an−1, tn−1⟩⟩, ⟨0, te⟩⟩

In order to show the validity of πt, we reason on the discrete projection Hπ of πt that is
determined as shown in Lemma 1 by using Definition 13. That gives us that the number of
STPs of Hπ equates the number of wait sequence plus the number of non simulating actions
of πpoly, i.e., |TH| = |π| + te

δ , where |π| is the number of non simulating action in πpoly
and te

δ is the number of wait sequence in πpoly and then |TH| = |πpoly|. It is easy to see
that, given that πpoly is valid, and proceeding by reasoning by induction over the induced
sequences of states τ and τ ′ as done for the opposite direction, πt can be proved valid for
the problem Π under δ discretisation.

3.3 Handling Events

An event in pddl+ models can be triggered at any time during the execution of a plan, and
it is necessary to track whether and how such an event changes the state. More importantly,
the semantics of pddl+ prescribes that a cascade of events may also occur.

137



Percassi, Scala & Vallati

In order to handle this behaviour, we devise a new action, namely SIMEV, that is
responsible for keeping track of the arisen events, and their impacts on the state. This
action does so by encoding in one single unit the potentially repeated check and execution
of several events via a sophisticated usage of conditional effects that are evaluated in rounds.
SIMEV makes use of 4 sets of conditional effects:

1. Wtrig that is responsible for actually updating the state with all events having their
precondition satisfied;

2. Wfired that is responsible for keeping track of whether there is some event triggered;

3. Wsatu that is responsible for capturing whether no event is triggered in the previous
round;

4. W⊥ that captures the situation where there is some inconsistency caused by either
a set of mutex events active at the same time or a cyclic sequence of events being
triggered.

The formalisation of such conditional effects in pddl2.1 makes use of a number of
additional fresh predicates that are accumulated in set FE . We have a fact sim-ev that
signals the beginning of the event simulation; then we have a fact firedε for each event in
ε ∈ E.

The SIMEV action is formalised in such a way that:

pre(SIMEV) =sim-ev

eff(SIMEV) =Wtrig ∪Wfired ∪Wsatu ∪W⊥

where:

Wtrig =
⋃

c▷e∈eff(ε)
ε∈E

{pre(ε) ∧ c ▷ e}

Wfired =
⋃
ε∈E

{pre(ε) ▷ firedε}

Wsatu =
{ ∧

ε∈E
(¬pre(ε) ∨ firedε) ▷ {¬sim-ev} ∪

⋃
ε∈E

{¬firedε}
}

W⊥ =
{( ∨

ε,ε′∈E:
ε ̸=ε′∧

mutex(ε,ε′)

pre(ε) ∧ pre(ε′)
)
∨

∨
ε∈E

pre(ε) ∧ firedε ▷ {undefined}
}

As it is possible to observe from the snippet above, SIMEV captures which events
have been triggered and, on the one hand, applies their effects, and on the other hand,
memorises whether at least one event has been executed. If that is the case, the action
needs to re-evaluate the conditional effects; indeed, a cascade of events can be triggered. It
is easy to see that the triggering of events is blocked whenever the action detects a cycle,
i.e., an event that is deemed to be executed more than once. For this reason, SIMEV can

138



An Approach to Discretised PDDL+ by Translation to Numeric Planning

be performed up to |E| times, that is, after the termination condition induced by Wsatu is
reached. Observe that effect ({¬sim-ev} ∪

⋃
ε∈E{¬firedε}) not only interrupts the execution

of the simulation of the events but also resets all fired facts; this way, we keep the memory
ready for the next round of simulation of events.

The very last set of conditional effects ensures that the reached state does not contain
cycles or mutexes events that can be executed at the same time. If either of these two
situations arises, SIMEV generates an inconsistent state, thereby denoted by the special
state undefined. This check guarantees to prune states where interfering events leading to
non-deterministic outcomes or an infinite cascade of events arise. This complies with the
semantics restrictions imposed by previous works in pddl+ (Shin & Davis, 2005; Fox &
Long, 2006; Fox et al., 2005).

Note that if the pddl+ problem to be discretised satisfies the required assumptions
about the events, that is: (i) events have to deactivate themselves, (ii) events have to be
fired at most once for a given time and (iii) the pddl+ task is event-deterministic; then
W⊥ is not necessary. Moreover, in some cases, W⊥ may be redundant; suppose to have
a state where only a single event ε is triggered, and this does not self-deactivate. In such
a case SIMEV would have two conflicting conditional effects, i.e., Wtrig and Wsatu, which
make firedε true and false at the same time. According to the state transition function, this
leads to an undefined state and so W⊥ is redundant. We have however included W⊥ in the
conditional effects of SIMEV, making the failure to generate a successor state more explicit.
This choice makes the encoding more robust w.r.t. violations of the pddl+ assumptions.

The presented exponential and polynomial translations can be extended to address
pddl+ planning problems with events. This is done by enforcing the action SIMEV to
be applied in the initial state and switching back to event simulating modality (sim-ev)
after any occurrence of an instantaneous action (in both translations), and after the ex-
ecution of the action SIM and end in exp and poly, respectively. Let a be an action,
we denote with ev-check(a) the new action a′ such that: pre(a′) = pre(a) ∧ ¬sim-ev and
eff(a′) = eff(a) ∪ {sim-ev}.

We are now ready to summarise the further translation that is needed in order to make
the resulting pddl2.1 formulation aware of the presence of events, for both cases.

Event-aware exp Translation. Let Π = ⟨F,X, I,G,A,E, P ⟩ be a pddl+ problem, and
let Πexp = ⟨F,X, I,G,A∪ {SIM}, c⟩ the pddl2.1 problem obtained using exp ignoring set
E, respectively. The handling of events E can be achieved by a further translation into
Πevents

exp = ⟨F ∪ FE , X, I ∪ {sim-ev}, G ∧ ¬sim-ev, A′ ∪ {ev-check(SIM)} ∪ {SIMEV}, c⟩ with
A′ =

⋃
a∈A ev-check(a).

Event-aware poly Translation. Let Π = ⟨F,X, I,G,A,E, P ⟩ be a pddl+ problem,
and let Πpoly = ⟨F ∪ D ∪ {pause}, X ∪ Xcp, I, G ∧ ¬pause, Ac ∪ AP ∪ {start, end}, c⟩ the
pddl2.1 problem obtained using poly ignoring set E, respectively. The handling of events
E can be achieved by a further translation into Πevents

poly = ⟨F ∪ D ∪ {pause} ∪ FE , X ∪
Xcp, I∪{sim-ev}, G∧¬pause∧¬sim-ev, A′

c∪AP ∪{start′, ev-check(end)}∪{SIMEV}, c⟩ with
A′

c =
⋃

a∈Ac
ev-check(a) and pre(start′) = pre(start) ∧ ¬sim-ev and eff(start′) = eff(start).

Example 3.3 (exp Translation with Events - Continuing on Example 3.1). In the following
we show how the problem obtained using exp in Example 3.1, i.e., Πexp, can be extended
to take also the events modelling cars’ collisions into account, i.e.,

139



Percassi, Scala & Vallati

E =
⋃

car,car′∈cars
car ̸=car′

{crash-fastcar,car′ , crash-slowcar,car′}. For the sake of conciseness, event

aliases are shortened, too. For example, the crash-fastcar1,car2 event is shortened to f1-2.
The pddl2.1 task we get taking events into account is Πevents

exp = ⟨F∪FE , X, I∪{sim-ev}, G∧
¬sim-ev, A′ ∪ {ev-check(SIM),SIMEV}, c⟩ where:

FE ={firedf1-2 ,firedf2-1 ,fireds1-2 ,fireds2-1}

A′ =
⋃

car∈{car1,car2}

{ev-check(acceleratecar), ev-check(deceleratecar), ev-check(overtakecar),

ev-check(returncar), ev-check(startcar), ev-check(stopcar)}.

In the following we show how actions in A are modified by using function ev-check(·) over
cars:

ev-check(acceleratecar) =⟨eng-oncar ∧ ⟨acar < Amax⟩ ∧ ¬sim-ev, {⟨increase, acar, 1⟩, sim-ev}⟩
ev-check(deceleratecar) =⟨eng-oncar ∧ ⟨acar > Amin⟩ ∧ ¬sim-ev, {⟨decrease, acar, 1⟩, sim-ev}⟩
ev-check(overtakecar) =⟨eng-oncar ∧ ⟨vcar > 0⟩ ∧ ¬otcar ∧ ¬sim-ev, {otcar, sim-ev}⟩
ev-check(returncar) =⟨eng-oncar ∧ ⟨vcar > 0⟩ ∧ otcar ∧ ¬sim-ev, {¬otcar, sim-ev}⟩
ev-check(startcar) =⟨¬eng-oncar ∧ ¬sim-ev, {eng-oncar, sim-ev}⟩
ev-check(stopcar) =⟨eng-on ∧ ⟨vcar = 0⟩ ∧ ⟨acar = 0⟩ ∧ ¬sim-ev, {¬eng-oncar, sim-ev}⟩.

The same for SIM:

pre(ev-check(SIM)) =¬sim-ev

eff(ev-check(SIM)) ={W{m1},W{m2},W{m1,m2}, sim-ev}.

In both cases, the ev-check (·) function is used to make sure that whenever an a ∈ A or
SIM is performed then event testing has to necessarily be performed by executing at least
one SIMEV.

Finally, the operator SIMEV is defined as follows:

pre(SIMEV) =sim-ev

eff(SIMEV) =

Wtrig︷ ︸︸ ︷
{Wf1-2

trig ,W
f2-1
trig ,W

s1-2
trig ,W

s2-1
trig }∪

Wfired︷ ︸︸ ︷
{Wf1-2

fired,W
f2-1
fired,W

s1-2
fired,W

s2-1
fired}∪Wsatu ∪W⊥

140



An Approach to Discretised PDDL+ by Translation to Numeric Planning

where the conditional effects are defined as follows:

Wf1-2
trig =⟨dcar1 − dcar2 < DT ⟩ ∧ ⟨dcar1 − dcar2 ≥ 0⟩ ∧ otcar1 ∧ otcar2 ∧ ¬crashed ▷ {crashed}

Wf2-1
trig ,=⟨dcar2 − dcar1 < DT ⟩ ∧ ⟨dcar2 − dcar1 ≥ 0⟩ ∧ otcar2 ∧ otcar1 ∧ ¬crashed ▷ {crashed}

Ws1-2
trig =⟨dcar1 − dcar2 < DT ⟩ ∧ ⟨dcar1 − dcar2 ≥ 0⟩ ∧ ¬otcar1 ∧ ¬otcar2 ∧ ¬crashed ▷ {crashed}

Ws2-1
trig =⟨dcar2 − dcar1 < DT ⟩ ∧ ⟨dcar2 − dcar1 ≥ 0⟩ ∧ ¬otcar2 ∧ ¬otcar1 ∧ ¬crashed ▷ {crashed}

Wf1-2
fired =⟨dcar1 − dcar2 < DT ⟩ ∧ ⟨dcar1 − dcar2 ≥ 0⟩ ∧ otcar1 ∧ otcar2 ∧ ¬crashed ▷ {firedf1-2}

Wf2-1
fired =⟨dcar2 − dcar1 < DT ⟩ ∧ ⟨dcar2 − dcar1 ≥ 0⟩ ∧ otcar2 ∧ otcar1 ∧ ¬crashed ▷ {firedf2-1}

Ws1-2
fired =⟨dcar1 − dcar2 < DT ⟩ ∧ ⟨dcar1 − dcar2 ≥ 0⟩ ∧ ¬otcar1 ∧ ¬otcar2 ∧ ¬crashed ▷ {fireds1-2}

Ws2-1
fired =⟨dcar2 − dcar1 < DT ⟩ ∧ ⟨dcar2 − dcar1 ≥ 0⟩ ∧ ¬otcar2 ∧ ¬otcar1 ∧ ¬crashed ▷ {fireds2-1}

Wsatu =(pre(f1-2) ∨ firedf1-2) ∧ (pre(f2-1) ∨ firedf2-1) ∧ (pre(s1-2) ∨ fireds1-2)∧
(pre(s2-1) ∨ fireds2-1) ▷ {¬sim-ev,¬firedf1-2 ,¬firedf2-1 ,¬fireds1-2 ,¬firedf2-1}.

3.4 Properties

In the following theorem, we prove the soundness and completeness for poly and exp
translations in the general case for pddl+ problems with events by using Lemmas 1 and 2.

Theorem 1 (Soundness and Completeness of poly and exp). Let Π = ⟨F,X, I,G,A,E, P ⟩
be a pddl+ planning instance, and let Πevents

exp (Πevents
poly ) be the pddl2.1 planning instance

obtained by using the exp (poly) translation. Π admits a solution under δ discretisation
iff so does Πevents

exp (Πevents
poly ).

Proof. We focus on Πevents
exp (the proof for Πevents

poly is similar) and prove the two directions
largely exploiting the constructions devised for the event-free translations.

(⇒) Let ES(Ti) = ⟨Etrigg(Ti), ..., Etrigg(Ti+k−1)⟩ be the unique and finite7 cascade of
events from an STP Ti of the discrete projection Hπ of πt solving Π.

We show that it is possible to construct a plan πexp from πt such that πexp is valid for
Πexp. Differently from an event-free planning task where we can define a mapping from πt
to πexp, in this case we have to resort to Hπ to build a valid πexp. Let TH = ⟨T0, ..., Tm⟩ be
the m+ 1 STPs of Hπ, we define πexp in two steps. As a first step, we define the sequence
π′
exp = ⟨a′0, ..., a′m−1⟩ such that for all i ∈ [0..m− 1]

a′i =


ai if Hπ

A(Ti) = ⟨ai⟩ ≠ ⟨⟩
SIMEV if Etrigg(Ti) ̸= ⟨⟩
SIM otherwise

Then we obtain πexp from π′
exp by inserting a SIMEV action just before any action

a ∈ π′
exp such that a ̸= SIMEV, and just before the end of the plan. Let τ ′ = ⟨s0, ..., sm⟩

7. Note that, under the restriction imposed over pddl+, for each E,E′ ∈ set(ES) with E ̸= E′, set(E) ∩
set(E′) = ∅ and, for each ε, ε′ ∈ set(E) with E ∈ set(ES), ε and ε′ are not mutex, as long as ε ̸= ε′.

141



Percassi, Scala & Vallati

be the sequence of states obtained by applying iteratively actions from πexp and filtering
out those states produced by any last SIMEV of a series, the difficult bit is to show that
τ ′ is equivalent to τ = ⟨Hπ

s (T0), ...,H
π
s (Tm)⟩ under variables F ∪X. The first observation

is that |τ | = |τ ′|; and this follows directly from the fact that the number of states we are
filtering out is exactly the number of SIMEV that we have added to the plan. Then, in
order to prove that Hπ

s (Ti) and si are equivalent for all i ∈ [0..m], we can use the same
arguments of Lemma 1 extended to account for the case where the transition is due to a
cascade of events. More precisely, let Ti = ⟨ti, ni⟩ be a STP in which a cascade of events
ES(Ti) with |ES(Ti)| = k is triggered. By using R1 of Definitions 13-16 we know that,
for each j ∈ [i..i + k] Hπ

s (Tj) |=
∧

ε∈Etrigg(Tj)
pre(ε), Hπ

s (Tj+1) = γ(Hπ
s (Tj), Etrigg(Tj)) and

Tj+1 = ⟨ti, nj + 1⟩.
In order to prove Hπ

s (Ti+k) = si+k with si+k = γ(si,SIMEV× k) we need to show that,
for every j such that j ∈ [i..i + k], Hπ

s (Tj) = sj ; we do so, again, by induction. The base
case (j = i) is trivially proved (inherited by Lemma 2). For the inductive step it suffices to
observe that SIMEV exhibits a behaviour that is equivalent to ⟨⊤,

⋃
c▷e∈eff(ε)

with ε∈Etrigg(Tj)

c ▷ e⟩ and

then it follows that Hπ
s (Tj+1) and sj+1 = γ(sj ,SIMEV) are equivalent. The only thing that

is missing is to show that when each action is applied in πexp the variable sim-ev is false.
But this directly follows from the fact that the last SIMEV is applied when all events have
been triggered. Indeed, we have that Etrigg(Ti+k) = ⟨⟩, and Hπ

s (Ti+k) = si+k. So SIMEV
will make sim-ev false and get ready for the next round of execution by resetting all the
monitoring variables fired to false.

(⇐) The mapping from πexp to πt is identical to what was done for Lemma 1, but for
the fact that all occurrences of SIMEV are ignored. Then, the πt plan can be proved valid
against the discretised pddl+ model by observing that, for each series of SIMEV of length
k the projection Hπ encompasses k − 1 STPs, one for each SIMEV that triggers a change
on variables in F ∪X. Each STP generates a set of events whose effects are those that arise
from the active conditional effects of the associated SIMEV. This is due to the fact that the
SIMEV conditional effect’s condition subsumes the precondition of each event associated
with it.

In the following theorems, we show how the translations exp and poly impact the size
of the compiled problems Πexp and Πpoly.

Theorem 2 (Size of Πexp). Let Π = ⟨F,X, I,G,A, ∅, P ⟩ be a pddl+ planning instance the
reformulation poly produces a pddl2.1 planning instance Πexp = ⟨F,X, I,G,A∪{SIM}, c⟩
that increases the size of Π exponentially.

Proof. In the compiled problem Πexp the set of actions is extended with the SIM action
which has a number of conditional effects equal to |P+(P )| = |P(P ) \ ∅| = 2P − 1.

Theorem 3 (Size of Πpoly). Let Π = ⟨F,X, I,G,A, ∅, P ⟩ be a pddl+ planning instance the
reformulation exp produces a pddl2.1 planning instance Πpoly = ⟨F ∪D ∪ {pause}, X ∪
Xcp, I, G∪{¬pause}, Ac∪AP ∪{start, end}, c⟩ that increases the size of Π only polynomially.

142



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Proof. The propositional variables increase by |D| + 1 where, in the worst case, |D| =
|P | · |X|. Numeric variables are doubled; indeed |Xcp| = |X|. Finally, since |Ac| = |A|, the
actions increase by |AP |+ 2 therefore, in the worst case, |AP | = |P | · |X|.

In his study, Nebel (2000) considered the effects of the translations between planning
formalisms on the size of the plans solving the reformulated instances, besides the needed
temporal and spatial resources.

In our context, given a pddl+ problem Π and a reformulation Z ∈ {poly,exp}, we
say that Z preserves the plan size exactly, up to additive constants, iff for each plan πt =
⟨π, ⟨ts, te⟩⟩ which solves Π there exists a pddl2.1 plan πZ such that |πZ | ≤ |π| + k where
k ∈ N≥0; Z preserves the plan linearly iff for each plan πt = ⟨π, ⟨ts, te⟩⟩ which solves Π
there exists a pddl2.1 plan πZ such that |πZ | ≤ c · |π| + k where c, k ∈ N≥0; finally, Z
preserves the plan polynomially iff for each plan πt = ⟨π, ⟨ts, te⟩⟩ which solves Π there exists
a pddl2.1 plan πZ such that |πZ | ≤ p(|Π|, |π|) where p(·) is a polynomial expression that
depends on the size of Π, i.e., |Π|, and on the size of π, i.e., |π|.

Theorem 4 (Size of Plans for Πexp and Πpoly). Let Π = ⟨F,X, I,G,A, ∅, P ⟩ be an event-
free pddl+ planning instance, and let Πpoly and Πexp be the pddl2.1 obtained by using
the poly and exp translations, respectively. The reformulations poly and exp preserve
the plan size polynomially and linearly, respectively.

Proof. Let πt = ⟨π, ⟨ts, te⟩⟩ be a solution for Π under δ discretisation and let πpoly and πexp
be the corresponding plan for Πpoly and Πexp, respectively. Using the rules provided in
Lemmas 1-2 for mapping πt into πexp and πpoly respectively, we get that for each discrete
advance of time in the original plan, i.e., te−ts

δ , we have to execute the action SIM in πexp
and the sequence of actions wait in πpoly. Then, for exp we obtain:

|πexp| ≤ |π|+ te − ts
δ

Each wait in πpoly consists of two delimiting actions, i.e., start and end , plus an action
for each numeric effect of each process; in the worst case, each process has a numeric effect
for each variable of the problem. By adding these contributions we obtain:

|πpoly| ≤ |π|+ te − ts
δ

+ (|P | · |X|+ 2)

Theorem 5 (Size of Plans for Πevents
exp and Πevents

poly ). Let Π = ⟨F,X, I,G,A,E, P ⟩ be a
pddl+ planning instance, and let Πevents

exp and Πevents
poly be the pddl2.1 obtained by using the

poly and exp translations, respectively. The reformulation poly and exp preserves plan
size polynomially.

Proof. Let πt = ⟨π, ⟨ts, te⟩⟩ be a solution for Π under δ discretisation and let πpoly and πexp
be the corresponding plan for Πevents

poly and Πevents
exp , respectively.

Using the rules outlined in Lemma 2 and Theorem 1 to map πt into πpoly we can prove
the upper-bound on |πpoly| as follows: (i) each action of πpoly has to be followed by at least
one SIMEV action up to a maximum of |E|+1 and such sequence has to be executed also at

143



Percassi, Scala & Vallati

the beginning of πpoly since I ′ |= sim-ev; (ii) possible event triggers must be checked after
each block of actions simulating the passage of time, i.e., the wait sequence; therefore the
term |E|+1 has to be multiplied by the number of time steps occurred within the envelope
⟨ts, te⟩, i.e., te−ts

δ ; (iii) each wait in πpoly consists of two delimiting actions, i.e., start and
end , plus an action for each numeric effect of each process; in the worst case, each process
has a numeric effect for each variable of the problem. By adding these contributions we
obtain:

|πpoly| ≤ (|π|+ 1) ·

(i)︷ ︸︸ ︷
(|E|+ 1)+

te − ts
δ

· (

(ii)︷ ︸︸ ︷
(|E|+ 1)+

(iii)︷ ︸︸ ︷
(|P | · |X|+ 2))

The only difference for πexp is that instead of the wait sequence for the contribute iii) we
apply the single action SIM ; then, we obtain:

|πexp| ≤ (|π|+ 1) ·

(i)︷ ︸︸ ︷
(|E|+ 1)+

te − ts
δ

· (

(ii)︷ ︸︸ ︷
(|E|+ 1)+

(iii)︷︸︸︷
1 )

4. Optimising poly and exp

This section presents two optimisations for our translation schemata, both aimed at reducing
the length of valid plans needed to solve the translated problem. Our optimisations preserve
both the soundness and the completeness of the approach; the basic idea is to exploit
conditions obtained by looking at the structure of our problem. Such conditions intercept
whether some action or an event does not trigger any other event. Our first optimisation
allows us to prune the SIMEV action in case an action cannot be followed by some event.
Thanks to this optimisation our translated problem can potentially chain a sequence of
actions before synchronising their effects with exogenous events. The second optimisation
is aimed at simplifying the SIMEV definition through an analysis of the structure of all
events. Both optimisations are constructed by introducing the notion of Trigger-Free action
(or event), which is under-approximated, by intercepting a sufficient condition obtained
through reasoning by regression.

4.1 Avoiding Events Checking

In Section 3.3 we have seen that each action is modified in order to ensure that after its
execution, a SIMEV sequence is forced to be executed. This is obtained by using the
function ev-check(·) that takes as input an action a, and returns another action a′ where
pre(a′) = pre(a) ∧ ¬sim-ev and eff(a′) = eff(a) ∪ {sim-ev}.

The rationale behind the first optimisation we present consists of studying conditions
under which an action does not need to be followed by the potentially expensive SIMEV
sequence. To do so, we introduce the notions of Trigger-Free and Universally Trigger-Free
actions.

Definition 18 (Trigger-Free and Universally Trigger-Free action). Given a pddl+ problem
Π, let a ∈ A and let ε ∈ E, we say that a is Trigger-Free w.r.t. ε, denoted with TF(a, ε),
iff for each state s such that for all ε′ ∈ E, s ̸|= pre(ε′), then γ(s, a) |= ¬pre(ε). Moreover,

144



An Approach to Discretised PDDL+ by Translation to Numeric Planning

we say that a is Universally Trigger-Free, denoted with UTF(a), iff a is Trigger-Free w.r.t.
all events in E, i.e., UTF(a) ⇔ ∀ε ∈ E, TF(a, ε).

Intuitively, this notion captures all those actions that do not change the state in a way
that some event can be triggered. The UTF definition can be used to slightly modify either
poly or exp to disallow the application of function ev-check(·) to all UTF actions. For
example, for the event-aware variant of exp, the definition of A′ =

⋃
a∈A ev-check(a) is

replaced with:

A′ = {ev-check(a) | a ∈ A ∧ ¬UTF(a)} ∪ {a | a ∈ A,UTF(a)}

The optimised variant of the event-aware variant of poly is straightforward.
It is worth noting that, considering our very expressive language for modelling actions,

the computation of an exact Trigger-Free relation is complicated. Firstly, because we have
numeric effects and propositional effects. Secondly, because any such effect can depend
on the state in which the action is applied. Thirdly, because we allow the combination of
any NNF formula in the precondition of the events. For these reasons, in what follows we
propose an under-approximation of such a relation.

We under-approximate the Trigger-Free relationship through Algorithm 1, which works
by sequencing two checks. The first check (Line 2) is a neutrality test that evaluates
whether a does not affect anything that is involved in the preconditions of ε. If that is
the case, then there is no way ε can be triggered. This check is done by inspecting if the
action affects any variable in some necessary condition for the precondition of ε; formally
vars(eff(a)) ∩ vars(necessary(pre(ε)) ̸= ∅, where:

• given a precondition expressed as a formula φ, the function necessary(φ) returns
those terms that have to necessarily be true in order to ensure that φ is true. We
restrict the attention to top-level conjuncts. For example, consider the case in which
φ = p ∧ ¬q ∧ ⟨x > 10⟩ ∧ (c ∨ (b ∧ ⟨y + z < 10⟩), the necessary conditions are that p
and ¬q hold true, and x is greater than 10, i.e., necessary(φ) = {p,¬q, ⟨x > 10⟩};

• vars(·) is a function that returns the set of all variables, whether propositional or
numeric, involved in its parameter; to be specific, if the parameter is a formula φ
then vars(φ) returns all the variables exploring recursively the formula, e.g., given
φ = p ∧ ⟨x > 10⟩, then vars(φ) = {p, x}; if the parameter is an effect e then vars(e)
returns all the affected variables, e.g., if e = {⊤ ▷ {p},⊤ ▷ {⟨inc, x, 20 + y⟩}}, then
vars(e) = {p, x}.

The second check is performed by using a sufficient condition that checks whether action
a always makes the preconditions of ε unsatisfied (Lines 4-6). The procedure seeks if there
exists a necessary conjunct g of pre(ε) such that the logical conjunction of the formula
resulting by applying operator R (see below) on g and some necessary preconditions of
the action generates a contradiction (Line 5). For example, if there is an operator R that
results in ⟨x > 0⟩, and the action has one precondition which states that ⟨x > 0⟩, then the
conjunction ⟨x > 0⟩ ∧ ⟨x < 0⟩ is not satisfiable and therefore the procedure returns true.8.
The operator R is similar to a regression function; it takes as an input an action and a

8. For this check we rely on an external solver; in our experiment, we used SimPy (Meurer et al., 2017).

145



Percassi, Scala & Vallati

condition (propositional or numeric condition) and returns a formula, i.e., R : A× Λ → Λ,
where Λ is the set of conditions (propositional and numeric) that can be expressed in pddl+.
It is formally defined as follows:

R(a, g) =



g if vars(g) ∩ vars(eff(a)) = ∅
⊤ if g = ⟨f = b⟩ and ∃ c ▷ {..., ⟨f := b⟩} ∈ eff(a)

⊥ if g = ⟨f = b⟩ and ∃ ⊤ ▷ {..., ⟨f := b′⟩} ∈ eff(a) and b ̸= b′

NR(a, g) if g = ⟨ξ ▷◁ 0⟩ and direct(a, g)

⊤ if g = ⟨ξ ▷◁ 0⟩ and not direct(a, g)

(5)

In the formula, the function direct returns true for all actions whose numeric effects
on g are unconditionally triggered, i.e., the left-hand side of all numeric conditional effects
onto g is ⊤. Formally: direct(a, g) ⇔ ∀ c ▷ e ∈ eff(a) ∧ g ∈ e, c = ⊤.

NR is the effect regressor as for Scala, Haslum, Thiébaux, and Ramı́rez (2020), slightly
reformulated to consider conditional effects as an input.9 More precisely, NR transforms
any numeric condition ξ ▷◁ 0 in ξ[x1/τ(a, x1), ..., xk/τ(a, xk)]▷◁0 where

τ(a, xi) =


ξ′ if ∃ ⊤ ▷ {..., ⟨asgn, xi, ξ′⟩} ∈ eff(a)

xi + ξ′ if ∃ ⊤ ▷ {..., ⟨inc, xi, ξ′⟩} ∈ eff(a)

xi − ξ′ if ∃ ⊤ ▷ {..., ⟨dec, xi, ξ′⟩} ∈ eff(a)

xi Otherwise

(6)

and x1, ..., xk are the k numeric variables affected by a. The / operator denotes a substi-
tution operator for manipulating numeric conditions, e.g., for ⟨a + b > 0⟩ then ξ[a/(a +
1), b/(b+ 1)] = ⟨(a+ 1) + (b+ 1) > 0⟩.

Intuitively, Equation 5 distinguishes whether the given input is a propositional condition
or a numeric one, and regresses failure (i.e., ⊥) when the action makes unsatisfied the
condition independently on the state in which the action is applied. In order to be sure
that the action always makes a condition violated (for instance deletes it), operator R
conservatively excludes all cases where the action may achieve the condition. In this latter
case, the function safely returns ⊤. If the action is however not affecting the condition in
any sensible manner, i.e., the first case of the equation, the condition is left unaltered.

Lemma 3. Let a be an action and ε be an event. If Algorithm 1 returns true the relation
TF(a, ε) holds.

Proof. Algorithm 1 returns true if the condition at Line 2 holds or if at least one necessary
condition within the precondition of ε will not hold after the execution a. If the action does
not interact with any of the variables in the precondition of ε, then the action is Trigger-
Free w.r.t. ε in that if ε is not triggered in some state, it is certainly not a that will make
it active. Regarding the second condition, it suffices to observe that if a makes certainly
false at least one of its necessary preconditions, or modifies them in a way that when used

9. Note that conditional effects here are considered only syntactically, but are basically ignored. How to
extend regression with conditional effects with numeric effects in order to handle them in a sensible
manner is out of the scope of this work.

146



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Algorithm 1: Algorithm for under approximating when a is Trigger-Free w.r.t.
an event ε
Input: an action or an event a and an event ε
Output: a Boolean value

1 Function TF(a, ε):
2 if vars(eff(a)) ∩ vars(necessary(pre(ε)) = ∅ then
3 return true
4 for g ∈ necessary(pre(ε)) do
5 if R(a, g) ∧

∧
g′∈necessary(pre(a))

g′ |= ⊥ then

6 return true

end
7 return false

in conjunction with the precondition of a the arising satisfiability problem is unsatisfiable,
then there is no way event ε could be triggered after executing a. Therefore, also in this
case, returning true implies that action a is Trigger-Free w.r.t. ε.

Theorem 6. The optimisation variants of exp and poly using Algorithm 1 to under-
approximate the Trigger-Free relation preserves the soundness and the completeness of both
translations.

Proof. The proof for this theorem follows directly from Definition 18. Indeed, we are basi-
cally only avoiding the execution of events that can never be applied after a Trigger-Free
action, and moreover, by Lemma 3 we know that Algorithm 1 only returns true if the
Trigger-Free relation holds.

In the following example, we detail how Trigger-Free relations are evaluated in practice.

Example 4.1 (Trigger-free Operators). Let ε = ⟨⟨x = 10⟩∧⟨y+z > 20⟩∧⟨w = ⊤⟩,⊤▷{⟨a :=
⊥⟩}⟩ be an event and let a1, a2 and a3 be three actions such that:

a1 =⟨⊤, {⊤ ▷ {⟨a := ⊤⟩},⊤ ▷ {⟨inc, b, 10⟩}}⟩
a2 =⟨⊤, {⊤ ▷ {⟨w := ⊥⟩}}⟩
a3 =⟨⟨y < 10⟩, {⊤ ▷ {⟨inc, y, 10⟩},⊤ ▷ {⟨asgn, z, 0⟩}}⟩

We study if the property TF(a, ε) holds for each a ∈ {a1, a2, a3} by using step by step
Algorithm 1.

To establish that a1 is Trigger-Free w.r.t. ε, it suffices the first check of Algorithm 1
(Line 2). Since vars(eff(a1)) = vars({⊤ ▷ {⟨a := ⊤⟩},⊤ ▷ {⟨inc, b, 10⟩}}) = {a, b} and
vars(necessary(pre(ε))) = vars(pre(ε)) = vars(⟨x = 10⟩ ∧ ⟨y + z > 20⟩ ∧ ⟨w = ⊤⟩) =
{x, y, w, z}, then TF(a1, ε) holds. Indeed, the action is neutral w.r.t. the event.

Concerning a2, since vars(eff(a2)) = {w}, then vars(eff(a2)) ∩ vars(pre(ε)) = {w} ∩
{x, y, w, z} = {w} ≠ ∅ and therefore a2 is not neutral w.r.t. ε. It is necessary to investigate
further what kind of relationship between a2 and ε exists. Let pre(ε) = g1 ∧ g2 ∧ g3 where
g1 = ⟨x = 10⟩, g2 = ⟨y + z > 20⟩ and g3 = ⟨w := ⊥⟩, then necessary(pre(ε)) = {g1, g2, g3}.

147



Percassi, Scala & Vallati

Before proceeding, note that for a2 we have
∧

g′∈necessary(pre(a2))
g′ = pre(a2) = ⊤. We iterate

over the necessary conditions {g1, g2, g3}:

• g1 = ⟨x = 10⟩; since vars(g1) = {x} and vars(eff(a2)) = {w} then vars(g1) ∩
vars(eff(a2)) = ∅; therefore we fall into case (i) of Formula 5. Therefore R(a1, g1) ∧
pre(a2) = g1 ∧ ⊤ = ⟨x = 10⟩ ∧ ⊤ ̸|= ⊥;

• g2 = ⟨y + z > 20⟩; analogously to what seen for g1, we get that: R(a2, g2) ∧ pre(a2) =
⟨y + z > 20⟩ ∧ ⊤ ̸|= ⊥;

• g3 = ⟨w = ⊤⟩; since g3 is a propositional condition involving w and there exists a
propositional assignment ⊤ ▷ {⟨w := ⊥⟩} ∈ eff(a2) such that the two Boolean values
are in opposition, we fall into the case (iii) of Formula 5. Therefore R(a2, g3) ∧
necessary(pre(a2)) = ⊥ ∧⊤ |= ⊥;

We have shown that there is at least one necessary condition of pre(ε), i.e., g3, which is
always falsified by a2, therefore we have proved that TF(a2, ε) holds.

As far as it is concerned by a3, since vars(eff(a3)) = vars({⊤ ▷ {⟨inc, y, 10⟩},⊤ ▷
{⟨asgn, z, 0⟩}}) = {y, z}, then vars(eff(a3)) ∩ vars(pre(ε)) = {y, z} ̸= ∅ and therefore
a3 is not neutral with respect to ε. Before proceeding, note that for a3 we have that∧
g′∈necessary(pre(a3))

g′ = pre(a3) = ⟨y < 10⟩. Again, we iterate over the necessary condi-

tions of pre(ε):

• g1 = ⟨x = 10⟩; for g1, following the same steps above for a2, we obtain R(a3, g1) ∧
pre(a3) = ⟨x = 10⟩ ∧ ⟨y < 10⟩ ̸|= ⊥;

• g2 = ⟨y + z > 20⟩; since vars(g2) ∩ vars(eff(a3))) ̸= ∅, direct(a3, g2) holds and g2 is
a numeric condition, we fall into the case (iv) of Formula 5; we get that R(a3, g2) =
NR(a3, ⟨y+z > 0⟩) = ⟨(y+z−20)[y/y+10, z/0] > 0⟩ = ⟨y+10−20 > 0⟩ = ⟨y−10 > 0⟩;
finally, we get that R(a3, g2) ∧ pre(a3) = ⟨y > 10⟩ ∧ ⟨y < 10⟩ |= ⊥;

We can stop the iteration, ignoring the evaluation of g3, as we have shown that there is a
necessary condition of pre(ε) which is always falsified by the execution of a3 and therefore
TF(a3, ε) holds.

4.2 Avoiding Cascade of Events Handling

Another optimisation can also be applied to the SIMEV action. The idea is to detect if a
set of events can not yield a cascade of events. We achieve this by slightly reinterpreting the
Trigger-Free relation among events instead of that between an action and an event. That
is:

Definition 19 (Trigger-Free and Universally Trigger-Free Event). Given a pddl+ problem,
let ε, ε′ ∈ E and let ε ∈ E, we say that ε is Trigger-Free w.r.t. ε′, namely TF(ε, ε′) iff for
each state s where all ε′′ ∈ E are such that s ̸|= pre(ε′′), we have that γ(s, ε) |= ¬pre(ε′).
Moreover, we say that ε is Universally Trigger-Free, denoted with UTF(ε), iff ε is Trigger-
Free w.r.t. all events in E, i.e., UTF(ε) ⇔ ∀ε′ ∈ E, TF(ε, ε′).

148



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Note that under our assumptions, TF(ε, ε) always holds since events have to self-
deactivate.

We use the Trigger-Free notion to prevent the application of the expensive conditional
effects Wfired and Wsatu within SIMEV used for handling the cascade of events. More
precisely, these conditional effects can be avoided if for each ε ∈ E then UTF (ε) holds.

Therefore SIMEV can be formulated by adding a switch that controls the relationship
between each pair of events:

pre(SIMEV) =sim-ev

eff(SIMEV) =

{
Wtrig ∪W⊥ ∪ {⊤ ▷ {¬sim-ev}} if ∀ε ∈ E, UTF (ε) holds

Wtrig ∪Wfired ∪Wsatu ∪W⊥ otherwise.

The Trigger-Free relation can be under-approximated using Algorithm 1, pretty much
verbatim.

Theorem 7. The optimisation of exp and poly using the generalised SIMEV preserves
the soundness and the completeness of both of the translations.

Proof. It suffices to observe that Wfired and Wsatu only serve the purpose of tracking which
event has been already triggered and whether all events have been triggered. As none of
the events triggers any other event, this is not necessary, so we can stop after exactly one
execution of SIMEV.

4.3 Translations Notation

In this section, we clarify the notation used in the translation presented in this work and
its relationship with the translations presented in our previous work (Percassi et al., 2021).
Given a translation Z ∈ {exp,poly}, we denote with:

• Z0 the plain translation without any optimisation;

• Z1 the translation using the optimisation described in Section 4.2;

• Z2 the translation using the optimisation described in Section 4.1;

• Z3 the translation jointly using the optimisations described in Sections 4.1 and 4.2.

In our previous work (Percassi et al., 2021), exp and poly used in the experiments corre-
spond to exp1 and poly1.

5. Experimental Analysis

Our experimental analysis aims at assessing the extent to which the introduced translations
allow to reformulate pddl+ instances into instances amenable for pddl2.1 planning engines,
and investigating the impact of the described optimisations.

149



Percassi, Scala & Vallati

5.1 Experimental Settings

We consider three engines at the state of the art for pddl+ planning: Enhsp version 20
(Scala et al., 2020) with the additive interval-based relaxation heuristic (Scala, Haslum,
Thiébaux, & Ramı́rez, 2016), SMTPlan (Cashmore et al., 2020), DiNo (Piotrowski, Fox,
Long, Magazzeni, & Mercorio, 2016) and UPMurphi (Penna, Magazzeni, & Mercorio,
2012). As a pddl2.1 planning engine we use the well-known Metric-FF (Hoffmann,
2003). None of the considered systems requires the user to provide a bound on the length
of valid plans. We did not consider other numeric planning systems such as lpg (Gerevini,
Saetti, & Serina, 2008), Optic (Benton, Coles, & Coles, 2012) or the same Enhsp because
none of them provides effective support for conditional effects and negative preconditions.
All the planning engines have been run using default parameters. Numeric planners are
used on numeric instances obtained using the proposed translations with δ = 1. pddl+
planners which reason over a discrete timeline are used with δ = 1. Finally, to study how the
translations affect the makespan w.r.t. a reference, we compared the makespan of the plans
found with Enhsp used with the A∗(hblind) heuristic and those found with Metric-FF on
all numeric tasks.

Our experiments were run on an Intel Xeon Gold 6140M CPU with 2.30 GHz. For each
instance, we set a cutoff time of 900 seconds, and memory was limited to 8 GB.

For our experimental evaluation, we consider six benchmark domains. Three of them,
Linear-Car (Lin-Car), Linear-Generator (Lin-Gen), and Solar-Rover (Rover),
are well-known pddl+ benchmarks. Overtaking-Car (OT-Car) is a version of Linear-
Car that extends the original domain by considering multiple lanes, and the need for the car
to move between lanes in order to avoid obstacles (see Example 2.3 for a description of the
model of this domain). Baxter (Bertolucci, Capitanelli, Maratea, Mastrogiovanni, & Val-
lati, 2019) and Urban-Traffic-Control (UTC) (Vallati, Magazzeni, Schutter, Chrpa, &
McCluskey, 2016; McCluskey & Vallati, 2017) are taken from real-world applications. The
Baxter domain exploits planning for supporting robots in dealing with articulated object
manipulation tasks. The UTC domain models the use of planning for generating traffic
light signal plans in order to de-congest an area of an urban region.

Our implementation of the translator is written in Python 3 and makes use of the
SymPy library (Meurer et al., 2017) for solving the system of equations that arises for
establishing Trigger-Free actions. The benchmark suite and the tool for translating pddl+
instances are available at https://bit.ly/30gMyNW.

5.2 Size of the Translated Instances

First, we turn our attention to the size increase that can result from the use of the proposed
translations. A direct comparison is not possible, as the original models and the translated
models are encoded using different languages. For this reason, we introduce a notion of size
increase ratio as follows. Let Π = ⟨F,X, I,G,A, P,E⟩ be a pddl+ problem and let ΠT =
⟨F ′, X ′, I ′, G′, A′, c⟩ the corresponding pddl2.1 problem obtained by using translation T ∈
{poly,exp}, we define the size increase ratio, denoted with r, introduced by T as:

r(T ) =
|A′|+ |W ′|

|A|+ |P |+ |E|+ |W|

150



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Domain µ(P )µ(E)
poly exp

poly3 poly2 poly1 poly0 exp3 exp2 exp1 exp0

Rover (20) 4.0 5.0 1.9 1.9 1.9 1.9 1.8 1.8 1.8 1.8
Lin-Car (10) 2.0 0.0 1.7 1.7 1.7 1.7 1.3 1.3 1.3 1.3
Lin-Gen (10) 6.1 8.3 2.0 2.0 2.5 2.5 16.0 16.0 16.5 16.5
UTC (10) 34.1 15.8 2.5 2.5 2.8 2.8 16384.4• 16384.4• 16384.8• 16384.8•

Baxter (10) 56.0 22.0 1.5 1.5 1.7 1.7 — — — —
OT-Car (20) 4.1 5.4 1.3 1.3 1.6 1.6 2.1 2.1 2.4 2.4

Table 1: For each domain, µ(|P |) and µ(|E|) denote the average number of grounded pro-
cesses and events, respectively, while r(poly) and r(exp) denote the average size
increase ratio of the instances. Between brackets, the number of problem instances
considered for each benchmark domain. Symbol “—” indicates a translation fail-
ure due to memory limits. “•” indicates that in the UTC domain we only consider
4 instances out of 10; the translation failed due to memory limits in the remaining
instances.

where W and W ′ denote the set of conditional effects of of Π and ΠT , respectively. In
other words, we measure the size of the pddl+ model in terms of actions, processes, and
events, and we measure the size of the corresponding pddl2.1 model in terms of actions and
the number of conditional effects introduced by the compilation. This is because conditional
effects play a major role in the proposed translations, and can be challenging to deal with
by planners.

Table 1 provides an overview of the average number of processes and events of the
considered benchmark domains, and the increased ratio obtained by using the proposed
translations with/without the optimisations. The exp translations are significantly larger
than the poly translations, regardless of the optimisation. This is not the case in domains
where the number of processes and events is very limited, such as Linear-Car and Solar-
Rover, where the exp models are smaller than the poly ones. Intuitively, this is due to
the fact that when the number of processes is very small, the additional actions needed by
the poly translation can lead to a larger model. The use of such actions is instead beneficial
in large instances, where the exp approach can sometimes blow up the memory budget.

Considering the size increase ratio, the poly2 optimisation can usually lead to smaller
instances for both the considered translations.

5.3 Assessment of Performance

Table 2 shows the performance achieved by our translations, and optimisation on the con-
sidered benchmark domains when run using the Metric-FF planning system. Results
are shown in terms of coverage (number of solved instances), CPU-Time, quality of the
generated plans (makespan), and number of nodes evaluates during the planning process.
CPU-Time, quality, and evaluated nodes are presented as average over the instances solved
by all the encodings under evaluation. Drawing a parallel with Table 1, it is easy to notice
that in domains where there is a large number of processes and events, poly translation
delivers the best performance. The exp translations are extremely large and hard to be
dealt with by the planning engine. Conversely, the exp translation seems to be more suit-
able for compact problems where the number of processes and events is limited. It is worth

151



Percassi, Scala & Vallati

Domain
Coverage

poly exp
poly0 poly1 poly2 poly3 exp0 exp1 exp2 exp3

Rover (20) 20 19 20 19 20 20 20 20
Lin-Car (10) 10 10 10 10 10 10 10 10
Lin-Gen (10) 6 10 5 10 3 3 5 5
UTC (10) 0 7 0 7 0 0 0 0
Baxter (20) 1 19 1 17 0 0 0 0
OT-Car (20) 14 18 14 17 14 19 14 19

Σ 51 83 50 80 47 52 49 54

Domain
CPU-Time (seconds)

poly exp
poly0 poly1 poly2 poly3 exp0 exp1 exp2 exp3

Rover (20) 64.7 64.6 69.1 60.5 15.0 15.6 13.7 12.8
Lin-Car (10) 10.7 7.0 7.2 8.3 8.8 7.5 5.0 8.1
Lin-Gen (10) 114.8 28.7 107.7 35.0 87.3 76.3 97.1 82.1
UTC (10) — 90.6 — 73.0 — — — —
Baxter (20) 894.1 17.9 637.0 2.9 — — — —
OT-Car (20) 61.4 15.8 56.8 12.6 7.3 5.8 5.6 4.5

Domain
Makespan

poly exp
poly0 poly1 poly2 poly3 exp0 exp1 exp2 exp3

Rover (20) 522.2 522.2 522.2 522.2 522.2 522.2 522.2 522.2
Lin-Car (10) 16.1 16.1 16.1 16.1 14.9 14.9 14.9 14.9
Lin-Gen (10) 1006.0 1006.0 1006.0 1006.0 1010.0 1010.0 1010.0 1010.0
UTC (10) — 54.6 — 54.6 — — — —
Baxter (20) 5.0 5.0 5.0 5.0 — — — —
OT-Car (20) 42.1 42.1 41.2 41.2 24.5 24.5 23.8 23.8

Domain
Evaluated Nodes (×1000)

poly exp
poly0 poly1 poly2 poly3 exp0 exp1 exp2 exp3

Rover (20) 14.7 14.7 14.7 14.7 8.7 8.7 8.7 8.7
Lin-Car (10) 2.6 2.6 2.6 2.6 0.4 0.4 0.4 0.4
Lin-Gen (10) 11.1 11.1 11.1 11.1 2.1 2.1 2.0 2.0
UTC (10) — 131.1 — 131.1 — — — —
Baxter (20) 0.2 0.1 0.2 0.1 — — — —
OT-Car (20) 122.1 122.1 92.0 92.0 4.9 4.9 5.6 5.6

Table 2: Domain by domain performance achieved by Metric-FF when run with the pre-
sented translations, with δ = 1, and optimisations. Results are presented in terms
of coverage (number of solved instances), average CPU-Time, average quality
(makespan), and average number of nodes expanded during the search process.
Averages are calculated considering instances solved by all approaches. “—” indi-
cates that no instances can be considered for the average calculation.

noticing that these domains are not necessarily leading to instances that are easier to be
solved than those domains that include a larger number of processes and events – in fact,
there is no direct relationship between the size and complexity of a problem to be solved.

On compact instances, the results presented in Table 2 indicate that the use of the exp
translation can generally lead to the best performance in terms of the number of evaluated
nodes, CPU-Time, and quality of the generated solutions. Overall, the quality of computed
plans tends to be similar, regardless of the translation used. The only notable exception

152



An Approach to Discretised PDDL+ by Translation to Numeric Planning

is Overtaking-Car, where the exp translations better support the planning process of
Metric-FF.

With regards to the optimisations, results in Table 2 suggest that poly1 is the best
optimisation for poly and that exp3 is the best combination for the exp translation. Those
optimisations are adopted for the remainder of the experimental analysis.

5.4 Results Contextualisation

We are now in the best position to contextualise the results achieved by the proposed trans-
lations using the selected planning engine, Metric-FF, with the direct pddl+ representa-
tion using different pddl+ planning engines. Table 3 shows the achieved results in terms of
the number of solved problems, by the considered planning approaches on the benchmark
domains. It is also worth remarking that some of the pddl+ planning engines required the
models to be modified in order to generate a solution: those are indicated using “+”. The
presented results highlight that the proposed translations are effective in supporting the use
of pddl2.1 planning engines for solving complex hybrid planning problems. In fact, the use
of the proposed translations allows a pddl2.1 planning engine to even outperform native
pddl+ engines. This suggests that the proposed translations can foster the exploitation of
pddl+ in real-world applications, by extending the pool of domain-independent planning
engines.

Figure 2 gives some insights into the CPU-Time needed by the considered systems to
solve the benchmark problems. All the approaches are able to quickly solve a large number
of considered instances. When using the poly translation, the pddl2.1 planning engine is
able to solve approximately 80 instances in less than 100 CPU-Time seconds. Notably, the
curve of Metric-FF with poly does not flatten as quickly as others, suggesting that the
combination of models and planning engine can effectively tackle also challenging instances,
that require a significant amount of CPU-Time to be devoted to the search space exploration.

With regards to the quality of the generated plans, measured as makespan, we did
not observe any significant overall difference between plans generated using the pddl+ or
the pddl2.1 models. For a more extensive comparison, we used Enhsp with A∗(hblind)
heuristics (to ensure systematic exploration), which is equivalent to UPMurphi in terms
of quality of generated solutions. In particular, the comparison between the makespans
of the plans found with A∗(hblind) and Metric-FF, used with different encodings and
all optimisations, shows that there are some domains, such as Solar-Rover and UTC,
where plans with the same makespan are found. In a few other domains, such as Baxter,
Linear-Car and Overtaking-Car, Metric-FF finds plans with longer makespans w.r.t.
A∗(hblind). For instance, in Linear-Car, A∗(hblind) finds solutions of average quality 11,
compared to 14.9 of the best combination of Metric-FF. In Linear-Generator, both
poly and exp find plans slightly longer (less than 0.1%) than A∗(hblind). In general, it
emerges that poly, although it allows obtaining the best coverage, produces in some cases
plans with longer makespan when compared with those obtainable with exp. However,
when comparing the plans generated using translated and original pddl+ models, quality
seems to be more affected by the planning approach exploited by the engine, rather than
by the use of a specific formulation.

153



Percassi, Scala & Vallati

Domain
Metric-FF

DiNo Enhsp20 SMTPlan UPMurphi
poly1 exp3

Rover (20) 19 20 20+ 5 19 4
Lin-Car (10) 10 10 10+ 10 10+ 10
Lin-Gen (10) 10 5 10+ 10 10+ 1
UTC (10) 7 0 0 7 0 1
Baxter (20) 19 0 7 17 8 12
OT-Car (20) 18 19 0 19 0 5
Σ 83 54 47 68 47 33

Table 3: Number of problems solved by the considered planning approaches. Between
brackets, we indicate the number of problem instances considered for each do-
main. poly and exp are used to indicate that, respectively, the polynomial or
the exponential translation has been used, in both cases with δ = 1. “+” denotes
that the reported result refers to a variant of the domain model we considered,
modified to allow the specific engine to reason upon it. Bold indicates the best
results.

Figure 2: Total number of instances solved by each of the considered planning approaches,
over time.

6. Related Work

A range of techniques have been introduced to support the reasoning on pddl+ instances
employing a translation. Balduccini, Magazzeni, Maratea, and Leblanc (2017) proposed an
approach for translating a given pddl+ instance in a Constraint ASP instance (Baselice,
Bonatti, & Gelfond, 2005), but the process has to be done manually by an expert of the
field. A number of approaches have been introduced to translate pddl+ instances into
Satisfiability Modulo Theories (SMT) (Barrett & Tinelli, 2018) problems (Bryce, Gao,

154



An Approach to Discretised PDDL+ by Translation to Numeric Planning

Musliner, & Goldman, 2015; Scala, Ramı́rez, Haslum, & Thiébaux, 2016; Cashmore et al.,
2020) or a mix of linear programming and SAT instances (Shin & Davis, 2005). These
translations differ from each other in the way the compilation is carried on; some of them
make use of an intermediate translation step into hybrid automata (Bryce et al., 2015; Heinz,
Wehrle, Bogomolov, Magazzeni, Greitschus, & Podelski, 2019; Cashmore et al., 2020), other
ones perform a more direct translation (Shin & Davis, 2005). We follow on these lines, yet, as
we map the problem into another planning problem, we are not required to provide an upper
limit on the plan length as these approaches do. It is indeed the planning engine that needs
to figure out the length of the plan complying with the problem constraints. Conversely,
all the above translations require the ability to anticipate a maximum number of time
points, which is a difficulty shared with simpler forms of planning too, such as SAT-based
planning (Kautz & Selman, 1992; Rintanen, Heljanko, & Niemelä, 2006). Moreover, as we
build pddl2.1 formulations, we can in principle exploit all heuristics and search guidance
mechanisms developed for pddl2.1 problems (Hoffmann, 2003; Scala et al., 2016, 2020).
We indeed do so indirectly by experimenting with all those planners that do implement
such heuristics. Yet, as the number of planning engines that supports conditional effects
effectively is very limited, we could only exploit Metric-FF to a large extent. We highlight
that this is not a limit of our translations, and believe that with the addition of newer and
more expressive planning engines our translations can benefit the solving of pddl+ even
more.

Related to some extent is also the work by Coles and Coles (2014), which introduced
a translation between a non-discretised pddl+ problem instance and a pddl2.1 temporal
continuous instance, but showed that such way does not lead to models that are suitable
for pddl2.1 planning engines. Our approach is instead aiming at level 2 of the pddl2.1
language. The language that we are targeting does not have a notion of time, with the
result that constructing a planning engine supporting it is much easier than one that needs
to provide native support for temporal reasoning.

A different line of work in automated planning focuses on reformulating models, to
make them more amenable for planning engines, but without involving a translation to a
different language or formalism. With regards to pddl+ models, Franco, Vallati, Lindsay,
and McCluskey (2019) introduced a technique for minimising the ground size of pddl+
planning instances by reducing the arity of sparse predicates, i.e., predicates with a very
large number of possible groundings, out of which very few are actually exploited in the
planning problems.

There is an interesting parallel with compilations devised for classical planning models
(Nebel, 2000; Gazen & Knoblock, 1997). In particular, our exponential translation antic-
ipates the possible contexts a system is in much as the exponential encoding by (Gazen
& Knoblock, 1997) compiles away conditional effects, while our polynomial translation
captures the semantics of processes unrolling them into several actions, much as (Nebel,
2000) proposes to simulate the execution of conditional effects. As these two approaches
have contributed to the discovery of several techniques and heuristics for classical planning
(Haslum, 2013; Röger, Pommerening, & Helmert, 2014), we believe that our schemata can
do the same for the much more involved case of pddl+.

Finally, it is worth noting that our work provides a slightly alternative, more direct
formalisation of the pddl+ semantics. In fact, in the article presenting pddl+ (Fox & Long,

155



Percassi, Scala & Vallati

2006), the authors resorted to a well-established formalism, known as Hybrid Automata
(HA) (Henzinger, 1996), to explain the semantics of the proposed planning language. HAs
are typically used for modelling systems having both a logical and a physical part where
the latter is characterised by continuous dynamics. Bogomolov, Magazzeni, Podelski, and
Wehrle (2014) further refine this translation into HAs by exploiting the more standard
semantics of HA with specific attention devoted to must transitions prescribed by events and
processes (Bogomolov et al., 2015). This line of research enables the use of tools specifically
designed by the model-checking community, such as the SpaceEx model checker (Frehse
et al., 2011).

Within the pddl+ literature there has not been a systematic study of what it means
to find an optimal plan whereas pddl2.1 allows the definition of customised metrics to
characterise the quality of the plans. Chen, Williams, and Fan (2021) address this problem
by providing an encoding for translating a linear hybrid system into a Mixed Integer Linear
Program (MILP), which can be tackled in an optimal way by using a MILP optimiser. Our
work partially addresses this issue in the context of pddl+ under discrete semantics, as the
translation into numeric tasks, combined with a simple cost function that is incremented
by δ when the time advances (in poly when the start action is performed and in exp when
the SIM action is performed), would allow one to find optimal plans in terms of makespan
if they were used in a search scheme that guarantees to demonstrate the optimality of a
solution. Further studies are needed in this direction.

Our work grounds on the seminal paper by Shin and Davis (2005), in particular as
far as it is concerned by the adopted temporal ontology that is based on the notion of
superdense time (Maler, Manna, & Pnueli, 1991). A superdense time model extends the
real-valued timeline with additional information necessary to model the ordering of multiple
simultaneous transitions. The extended timeline model provided by Shin and Davis (2005)
allows us to capture when, informally speaking, something happens, i.e., an action, event
or process starts or ends but time does not flow. Previous usages of this kind of temporal
model can be traced back to TLPlan (Bacchus & Ady, 2001) and Optop (McDermott,
2003).

Batusov and Soutchanski (2019) recently propose an alternative logical semantic of
pddl+ which extends Situation Calculus (SC), i.e., a logical formalism to represent dy-
namic domains, giving it a continuous component inspired by the HA interpretation. The
target formalism of this mapping is an extension of a particular case of SC, namely Basic
Action Theory (Reiter, 2001), which is a convenient representation for addressing reasoning
problems. There is finally an interesting analogy on how hybrid automata are formalised
in terms of timed transition systems (Henzinger, 1996). Indeed, our translations can be
understood as a way to direct reasoning over the timed transition system and therefore
use a simpler planner. In future work, we aim at studying this interpretation in deeper
detail with the hope that this would further a prolific cross-fertilisation between techniques
developed for planning models and hybrid automata.

7. Discussion

In this section, we frame the scope of this work and we discuss potential challenges that
discretisation poses.

156



An Approach to Discretised PDDL+ by Translation to Numeric Planning

One of the main aims of this work is to show that solving a pddl+ problem under a
discrete interpretation of the timeline is equivalent to solving a pddl2.1 problem without
durative actions. This necessitated the formalisation of discrete pddl+ according to a
discretisation step δ ∈ Q>0, which we assume to be an external parameter of the problem.
This contribution, to the best of our knowledge, is the first attempt to formalise a discrete
semantics for pddl+ and we believe it is useful to the extent that it provides us with
a formal framework for evaluating the correctness of those pddl+ planning engines that
natively work on discretised pddl+.

In a wider sense, one may argue about the practical value of discretised models. A
major practical benefit lies in the fact that discretised models allow planning engines to
solve challenging and complicated tasks, otherwise impossible to solve by the current state
of the art. There is of course the open question about the relation between pddl+ and
its discretised version, which however is beyond the scope of this work. We treat the two
problems as two inherently different problems. It shall be noted that not all the possible
discretisations have equal value concerning the problem to be solved. There is a trade-off
to consider between large and small δ values; a very large δ can drastically reduce the
complexity of the planning process, at the cost of an approximation of numeric dynamics
that can lead the model to diverge too much from the ideal one, thus making it of little
interest in practical terms. An extremely small value of δ increases the complexity of the
instance to be solved, not guaranteeing at the same time the validity of solutions in the
continuous settings, but allowing a more accurate approximation of the dynamics of the
problem. The search for a suitable δ can be done by validating the solutions found towards
smaller δ as we did in a recent work (Percassi, Scala, & Vallati, 2022); in this way, it would
be possible to compute solutions with large δs (which stands for search δ) by conducting
a more lightweight search and validate them effectively with an arbitrarily small δv (which
stands for validation δ) which is sufficiently reliable according to the practitioner.

It is also worth noting that the discretisation of a pddl+ problem may cause a tightening
of its solution space because all the plans having actions executed in R \ {δ · i | i ∈ Z} are
expunged from the pool of possible solutions. However, there are problems for which even
admitting arbitrarily small δ, would remain unsolved under discrete semantics. For example,
suppose to have Linear-Car problem in which the car has to raise a flag at the following
distance d = 1

2 and d = 1. In a continuous sense this would mean executing an action,

e.g., raiseF lag, at time t =
√
2 and t = 1. It follows that, since the numeric variables

in pddl2.1 problems take values in Q, and the actions are timestamped in Q, it is not
possible to find a rational δ, even arbitrarily small, to solve this problem continuously. It
is worth mentioning that Fox and Long (2003) discuss this possibility, suggesting that it is
not possible to obtain an arbitrary precision of the plans, or over other numeric quantity,
but it is possible to pragmatically validate them by admitting a numeric tolerance. Such a
problem is known also in the context of HA (Henzinger & Raskin, 2000).

8. Conclusion

Hybrid pddl+ models are amongst the most advanced models of systems and the result-
ing problems are notoriously difficult for planning engines to cope with. To deepen the
understanding of pddl+, and to support the solvability of pddl+ instances, in this paper

157



Percassi, Scala & Vallati

we introduced two translations from time-discretised pddl+ to pddl2.1 (level 2). The
exponential translation leads to a numeric planning problem which is exponentially larger
than the initial pddl+ but preserves the number of discrete transitions. The polynomial
translation instead leads to a smaller formulation but requires more transitions to generate
a solution. We also presented two optimisations for the proposed translation schemata,
that aim at reducing the size of the translated models while preserving the soundness and
completeness of the approach. The optimisations exploit information about the structure
of the considered planning instance to avoid unnecessary checks on actions and events.

Our experimental analysis demonstrated the usefulness of the introduced translations
and optimisations in unlocking the exploitation of pddl2.1 planning engines to solve chal-
lenging pddl+ instances. The introduced optimisations make instances more amenable for
domain-independent pddl2.1 planning engines. In particular, the use of the optimised poly-
nomial translation allows a pddl2.1 planning engine to outperform a state-of-the-art pddl+
planning engine across a wide range of benchmark domains. Summarising, the proposed
translations can unlock the use of pddl2.1 planning engines for tackling hybrid pddl+
problems, with the clear advantage of significantly expanding the number of approaches
that can be used to solve a problem instance.

In future, we plan to explore incomplete translations, where a trade-off can potentially
be found between completeness and the size of the resulting pddl2.1 instances. We are
interested in incorporating the introduced translations into existing planning engines, pos-
sibly targeting the grounding step to minimise overhead (Scala & Vallati, 2021). Finally,
we are interested in investigating potential synergies between the proposed translations and
well-known reformulation approaches such as macro-actions, to generate pddl2.1 models
that are more suitable to domain-independent planning engines.

Acknowledgements

Francesco Percassi and Mauro Vallati are supported by the UKRI Future Leaders Fellowship
[grant number MR/T041196/1]. Enrico Scala has been partially supported by AIPlan4EU,
a project funded by EU Horizon 2020 research and innovation programme under GA n.
101016442.

References

Bacchus, F., & Ady, M. (2001). Planning with Resources and Concurrency: A Forward
Chaining Approach In Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, IJCAI 2001, pp. 417–424.

Balduccini, M., Magazzeni, D., Maratea, M., & Leblanc, E. C. (2017). CASP Solutions
for Planning in Hybrid Domains Theory and Practice of Logic Programming, 17 (4),
591–633.

Barrett, C., & Tinelli, C. (2018). Satisfiability Modulo Theories In Handbook of model
checking, pp. 305–343. Springer.

Baselice, S., Bonatti, P. A., & Gelfond, M. (2005). Towards an Integration of Answer Set
and Constraint Solving In Proocedings of the Twenty-First International Conference

158



An Approach to Discretised PDDL+ by Translation to Numeric Planning

on Logic Programming, ICLP 2005, pp. 52–66.

Batusov, V., & Soutchanski, M. (2019). A Logical Semantics for PDDL+ In Proceedings of
the Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS 2019, pp. 40–48.

Benton, J., Coles, A. J., & Coles, A. (2012). Temporal Planning with Preferences and
Time-Dependent Continuous Costs In Proceedings of the Twenty-Second International
Conference on Automated Planning and Scheduling, ICAPS 2012, pp. 2–10.

Bertolucci, R., Capitanelli, A., Maratea, M., Mastrogiovanni, F., & Vallati, M. (2019).
Automated Planning Encodings for the Manipulation of Articulated Objects in 3D
with Gravity In Proceedings of the Eighteenth International Conference of the Italian
Association for Artificial Intelligence, AI*IA 2019, pp. 135–150.

Bogomolov, S., Magazzeni, D., Minopoli, S., & Wehrle, M. (2015). PDDL+ Planning
with Hybrid Automata: Foundations of Translating Must Behavior In Proceedings
of the Twenty-Fifth International Conference on Automated Planning and Schedul-
ing, ICAPS 2015, pp. 42–46.

Bogomolov, S., Magazzeni, D., Podelski, A., & Wehrle, M. (2014). Planning as Model
Checking in Hybrid Domains In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, AAAI 2014, pp. 2228–2234.

Bonassi, L., Gerevini, A. E., Percassi, F., & Scala, E. (2021). On Planning with Qualitative
State-Trajectory Constraints in PDDL3 by Compiling them Away In Proceedings
of the Thirty-First International Conference on Automated Planning and Scheduling,
ICAPS 2021, pp. 46–50.

Bryce, D., Gao, S., Musliner, D. J., & Goldman, R. P. (2015). SMT-Based Nonlinear
PDDL+ Planning In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI 2015, pp. 3247–3253. AAAI Press.

Cashmore, M., Magazzeni, D., & Zehtabi, P. (2020). Planning for Hybrid Systems via
Satisfiability Modulo Theories Journal of Artificial Intelligence Research, 67, 235–
283.

Chen, J., Williams, B. C., & Fan, C. (2021). Optimal Mixed Discrete-Continuous Plan-
ning for Linear Hybrid Systems In Proceedings of the Twenty-Fourth International
Conference on Hybrid Systems: Computation and Control, HSCC 2021, pp. 1–12.

Coles, A. J., & Coles, A. I. (2014). PDDL+ Planning with Events and Linear Processes In
Proceedings of the Twenty-Fourth International Conference on Automated Planning
and Scheduling, ICAPS 2014, pp. 74–82.

Cooper, M. C., Maris, F., & Régnier, P. (2010). Compilation of a High-level Temporal
Planning Language into PDDL 2.1 In Proceedings of the Twenty-Second IEEE Inter-
national Conference on Tools with Artificial Intelligence, ICTAI 2010, pp. 181–188.

Fox, M., Howey, R., & Long, D. (2005). Validating Plans in the Context of Processes and
Exogenous Events In Proceedings of the Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, pp. 1151–1156.

159



Percassi, Scala & Vallati

Fox, M., & Long, D. (2003). PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains Journal of Artificial Intelligence, 20, 61–124.

Fox, M., & Long, D. (2006). Modelling Mixed Discrete-Continuous Domains for Planning
Journal of Artificial Intelligence Research, 27, 235–297.

Franco, S., Vallati, M., Lindsay, A., & McCluskey, T. L. (2019). Improving Planning Perfor-
mance in PDDL+ Domains via Automated Predicate Reformulation In Proceedings
of the Nineteenth Conference of Computational Science, ICCS 2019, pp. 491–498.

Frehse, G., Guernic, C. L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Gi-
rard, A., Dang, T., & Maler, O. (2011). SpaceEx: Scalable Verification of Hybrid
Systems In Proceedings of the Twenty-Third International Conference on Computer
Aided Verification, CAV 2011, pp. 379–395.

Gazen, B. C., & Knoblock, C. A. (1997). Combining the Expressivity of UCPOP with the
Efficiency of Graphplan In Proceedings of Recent Advances in AI Planning: Fourth
European Conference on Planning, ECP 1997, pp. 221–233.

Gerevini, A., Saetti, A., & Serina, I. (2008). An approach to efficient planning with numerical
fluents and multi-criteria plan quality Artificial Intelligence, 172 (8-9), 899–944.

Gigante, N., Micheli, A., Montanari, A., & Scala, E. (2022). Decidability and complexity of
action-based temporal planning over dense time Artificial Intelligence, 307, 103686.

Grastien, A., & Scala, E. (2020). CPCES: A planning framework to solve conformant
planning problems through a counterexample guided refinement Artificial Intelligence,
284, 103271.

Haslum, P. (2013). Optimal Delete-Relaxed (and Semi-Relaxed) Planning with Conditional
Effects In Proceedings of the Twenty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI 2013, pp. 2291–2297.

Heinz, A., Wehrle, M., Bogomolov, S., Magazzeni, D., Greitschus, M., & Podelski, A.
(2019). Temporal Planning as Refinement-Based Model Checking In Proceedings of
the Twenty-Ninth International Conference on Automated Planning and Scheduling,
ICAPS 2019, pp. 195–199.

Helmert, M. (2009). Concise finite-domain representations for PDDL planning tasks Arti-
ficial Intelligence, 173 (5-6), 503–535.

Henzinger, T. A. (1996). The Theory of Hybrid Automata In Proceedings of the Eleventh
Annual IEEE Symposium on Logic in Computer Science, LICS 1996, pp. 278–292.

Henzinger, T. A., & Raskin, J. (2000). Robust Undecidability of Timed and Hybrid Sys-
tems In Third International Workshop on Hybrid Systems: Computation and Control,
HSCC 2000, Vol. 1790, pp. 145–159.

Hoffmann, J. (2003). The Metric-FF Planning System: Translating “Ignoring Delete Lists”
to Numeric State Variables Journal of Artificial Intelligence Research, 20, 291–341.

Kautz, H. A., & Selman, B. (1992). Planning as Satisfiability In Proceedings of the Tenth
European conference on Artificial intelligence, ECAI 1992, pp. 359–363.

Maler, O., Manna, Z., & Pnueli, A. (1991). From Timed to Hybrid Systems In Proceedings
of the Real-Time: Theory in Practice, REX Workshop, Vol. 600, pp. 447–484.

160



An Approach to Discretised PDDL+ by Translation to Numeric Planning

McCluskey, T. L., & Porteous, J. M. (1997). Engineering and compiling planning domain
models to promote validity and efficiency Artificial Intelligence, 95 (1), 1–65.

McCluskey, T. L., & Vallati, M. (2017). Embedding Automated Planning within Urban
Traffic Management Operations In Proceedings of the Twenty-Seventh International
Conference on Automated Planning and Scheduling, ICAPS 2017, pp. 391–399. AAAI
Press.

McCluskey, T. L., Vaquero, T. S., & Vallati, M. (2017). Engineering Knowledge for Au-
tomated Planning: Towards a Notion of Quality In Proceedings of the Knowledge
Capture Conference, K-CAP 2017, pp. 14:1–14:8. ACM.

McDermott, D. V. (2003). Reasoning about Autonomous Processes in an Estimated-
Regression Planner In Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling, ICAPS 2003, pp. 143–152. AAAI.

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., & Scopatz,
A. (2017). SymPy: symbolic computing in Python PeerJ Computer Science, 3, e103.

Nebel, B. (2000). On the Compilability and Expressive Power of Propositional Planning
Formalisms Journal of Artificial Intelligence Research, 12, 271–315.

Palacios, H., & Geffner, H. (2009). Compiling Uncertainty Away in Conformant Planning
Problems with Bounded Width Journal of Artificial Intelligence Research, 35, 623–
675.

Penna, G. D., Magazzeni, D., & Mercorio, F. (2012). A universal planning system for hybrid
domains Applied Intelligence, 36 (4), 932–959.

Percassi, F., & Gerevini, A. E. (2019). On Compiling Away PDDL3 Soft Trajectory Con-
straints without Using Automata In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2019, pp. 320–328. AAAI
Press.

Percassi, F., Scala, E., & Vallati, M. (2021). Translations from Discretised PDDL+ to
Numeric Planning In Proceedings of the Thirty-First International Conference on
Automated Planning and Scheduling, ICAPS 2021, pp. 252–261. AAAI Press.

Percassi, F., Scala, E., & Vallati, M. (2022). The Power of Reformulation: From Validation
to Planning in PDDL+ In Proceedings of the Thirty-Second International Conference
on Automated Planning and Scheduling, ICAPS 2022, pp. 288–296. AAAI Press.

Piotrowski, W. M., Fox, M., Long, D., Magazzeni, D., & Mercorio, F. (2016). Heuristic
planning for hybrid systems In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pp. 4254–4255. AAAI Press.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. MIT press.

Rintanen, J., Heljanko, K., & Niemelä, I. (2006). Planning as satisfiability: parallel plans
and algorithms for plan search Artificial Intelligence, 170 (12-13), 1031–1080.

161



Percassi, Scala & Vallati

Röger, G., Pommerening, F., & Helmert, M. (2014). Optimal Planning in the Presence of
Conditional Effects: Extending LM-Cut with Context Splitting In Proceedings of the
Twenty-First European Conference on Artificial Intelligence, ECAI 2016, pp. 765–770.

Scala, E., Haslum, P., Thiébaux, S., & Ramı́rez, M. (2016). Interval-Based Relaxation for
General Numeric Planning In Proceedings of the Twenty-Second European Conference
on Artificial Intelligence, ECAI 2016, Vol. 285, pp. 655–663.

Scala, E., Haslum, P., Thiébaux, S., & Ramı́rez, M. (2020). Subgoaling Techniques for
Satisficing and Optimal Numeric Planning Journal Artificial Intelligence Research,
68, 691–752.

Scala, E., Ramı́rez, M., Haslum, P., & Thiébaux, S. (2016). Numeric Planning with Dis-
junctive Global Constraints via SMT In Proceedings of the Twenty-Sixth International
Conference on Automated Planning and Scheduling, ICAPS 2016, pp. 276–284. AAAI
Press.

Scala, E., & Vallati, M. (2021). Effective grounding for hybrid planning problems represented
in PDDL+ The Knowledge Engineering Review, 36.

Shin, J., & Davis, E. (2005). Processes and continuous change in a SAT-based planner
Artificial Intelligence, 166 (1-2), 194–253.

Taig, R., & Brafman, R. I. (2013). Compiling Conformant Probabilistic Planning Problems
into Classical Planning In Proceedings of the Twenty-Third International Conference
on Automated Planning and Scheduling, ICAPS 2013. AAAI Press.

Vallati, M., Chrpa, L., McCluskey, T. L., & Hutter, F. (2021). On the Importance of
Domain Model Configuration for Automated Planning Engines Journal of Automated
Reasoning, 65 (6), 727–773.

Vallati, M., Magazzeni, D., Schutter, B. D., Chrpa, L., & McCluskey, T. L. (2016). Efficient
Macroscopic Urban Traffic Models for Reducing Congestion: A PDDL+ Planning
Approach In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI 2016, pp. 3188–3194. AAAI Press.

162


