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Abstract

Transformer benefits from the high parallelization of attention networks in fast training,
but it still suffers from slow decoding partially due to the linear dependency O(m) of the
decoder self-attention on previous target words at inference. In this paper, we propose a
generalized average attention network (AAN+) aiming at speeding up decoding by reducing
the dependency from O(m) to O(1). We find that the learned self-attention weights in the
decoder follow some patterns which can be approximated via a dynamic structure. Based on
this insight, we develop AAN+, extending our previously proposed average attention (Zhang
et al., 2018a, AAN) to support more general position- and content-based attention patterns.
AAN+ only requires to maintain a small constant number of hidden states during decoding,
ensuring its O(1) dependency. We apply AAN+ as a drop-in replacement of the decoder self-
attention and conduct experiments on machine translation (with diverse language pairs),
table-to-text generation and document summarization. With masking tricks and dynamic
programming, AAN+ enables Transformer to decode sentences around 20% faster without
largely compromising in the training speed and the generation performance. Our results
further reveal the importance of the localness (neighboring words) in AAN+ and its capability
in modeling long-range dependency.

1. Introduction

In recent years, Transformer (Vaswani et al., 2017) has become the dominant model in ma-
chine translation and achieved state-of-the-art results on various language pairs (Barrault
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𝐬𝐬j−1 yj （a）RNN

𝐬𝐬j−1 yj𝐬𝐬j−𝑘𝑘 （b）CNN

𝐬𝐬j−1 yj𝐬𝐬2𝐬𝐬1 （c）SAN

𝐬𝐬j−1 yj （d）AAN+

Figure 1: Illustration of the decoding procedure for different neural architectures. We show
which previous target hidden states s∗ are used to predict the current target word yj . k
denotes the filter size of the convolution layer. AAN+ reduces the decoding dependency from
O(m) (SAN) to O(1). Note that s∗ might have different meanings across different models,
here only used for intuitive illustration.

et al., 2019). Under the encoder-decoder framework (Bahdanau et al., 2015), it uses atten-
tion networks as its backbone to summarize source and target sentence semantics and to
induce source-target translation correspondence. The attention network is highly paralleliz-
able and capable of handling long-range dependency within a short path. These advantages
ensure the superiority of Transformer in training speed and translation quality against its
alternatives, including recurrent neural network (RNN) based NMT (Sutskever et al., 2014;
Bahdanau et al., 2015; Luong et al., 2015; Zhang et al., 2018b) and convolutional neural
network (CNN) based NMT (Gehring et al., 2017a, 2017b).

However, despite its training efficiency, Transformer suffers from slow decoding. Figure
1 illustrates the problem, contrasting the decoding procedure of SAN, RNN and CNN. To
capture the dependency on previously generated target words, SAN requires to calculate
adaptive attention weights with all previous hidden states in the decoder (Figure 1c), leading
to a linear decoding dependency, i.e. O(m).1 Instead, CNN depends on only previous k
target states (Figure 1b) and RNN relies on just one (Figure 1a), both of which show a
constant decoding dependency. Under the dominant autoregressive schema, the prediction
of the current word must wait until all previous words are generated; thus, the model with
more complex decoding dependency will inevitably suffer from worse inference efficiency.
Empirically, our breakdown analysis shows that the decoder-side SAN alone takes about
41.42% of the decoding time (Zhang et al., 2019), which forms a significant inference barrier.

In this paper, we explore ways to reduce such dependency for SAN, aiming at accel-
erating the inference of Transformer but without degrading its performance. One pioneer
study is average attention network (AAN) proposed in our previous conference paper (Zhang
et al., 2018a), where we heuristically assign an equal weight to each previous hidden state.

1. In this paper, we use the term decoding dependency to denote the number of previous hidden states re-
quired for predicting the next target word in one-step translation. Notice that models with short decoding
dependency, like RNN and AAN+, can also handle long-range dependency because distant information can
be encoded into one compact hidden state.

678



AAN+: Generalized Average Attention Network

0 1 2 3 4 5 6 7

# Head

0
1

2
3

4
5

#
L

ay
er

Near Far In-between

Figure 2: Position-based analysis for the learned self-attention weights in the decoder on
the WMT14 En-De test set. Results are for Transformer base: 6 layers (y-axis) and 8 heads
(x-axis). We mainly analyze attention weights for query words starting from position 10 to
reduce noises, and focus on the attended position that has the largest attention probability.
If over 90% of the attended positions correspond to neighbouring/previous 3 words (the
first 3 words), we mark the attention head as Near (Far); if a head focuses on the other
words in over 20% cases, we mark it as In-between. Heads without labels are likely input
or content-dependent, and can hardly be interpreted by position alone.

However, our inspection on the learned self-attention weights in the decoder shows richer
patterns beyond the simple average (Voita et al., 2019): some attention heads favor neigh-
bouring inputs, some favor distant inputs while some might be content-dependent as in
Figure 2.2 Based on this insight, we further extend AAN to generalized average attention
network (AAN+), expecting to facilitate the modeling of different attention patterns.

Specially, AAN+ formalizes the philosophy behind AAN via a dynamic structure and sup-
ports both position-based and content-based patterns. During training, these patterns can
be pre-calculated using masking tricks to enable high parallelization like SAN; during de-
coding, AAN+ leverages dynamic programming that decomposes each pattern into a few
recurrent hidden states so as to reduce the decoding dependency to O(1) like RNN. Figure
3 shows the high-level architecture of AAN+, which involves two modules: an average at-
tention module and a gating network module. The former is used to handle intra-sentence
dependency, and the latter improves the model’s expressiveness in describing its inputs.

The average attention network was first presented in our previous conference paper (Zhang
et al., 2018a). In this paper, we make the following significant extensions:

• We extend AAN to AAN+, an average attention family that is parallelizable in training
and has a decoding dependency of O(1). Apart from the average pattern, AAN+ allows
us to study richer attention patterns for translation, including position-based and
content-based attention patterns. We provide a theoretical analysis on the decoding
acceleration achieved by this attention family.

2. In this work, we formulate the Far pattern based on our empirical observation: many self-attention
heads in the decoder just attend to the first few words of a sentence. We used 3 for illustration.
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Figure 3: Visualization of the architecture of AAN+.

• We discover the importance of localness (neighboring words) for generation: the cor-
responding pattern delivers better generalization ability and comparable decoding
efficiency against the vanilla AAN across different tasks. Also, different patterns are
complementary to each other with a varying degree, whose combination could outper-
form SAN in terms of BLEU.

• We conduct experiments not only on machine translation following our previous paper
but also additionally on table-to-text generation and document summarization. On all
tasks, our model speeds up the generation by around 20% yet still achieves competitive
performance against the standard Transformer baseline.

Our proposed model has been applied to several online translation services and has been
adopted in Marian (Junczys-Dowmunt et al., 2018).

2. Related Work

The design of AAN+ is inspired by RNN (Chung et al., 2014; Hochreiter & Schmidhuber,
1997). RNNs have been widely used for NMT to deal with long-range dependency (Bah-
danau et al., 2015; Sutskever et al., 2014). By summarizing all previous target information
into one hidden state, RNN benefits NMT with a short decoding dependency of O(1). Un-
fortunately, RNN performs sequential modeling which almost kills its parallel computation
even at training. To facilitate large-scale training, researchers thereby resort to feed-forward
networks. Gehring et al. (2017a) used CNN-based encoder as an alternative to RNN, and
Gehring et al. (2017b) further developed a pure CNN-based NMT model with deep archi-
tectures modeling distant context. Instead of following the recurrence or the convolution,
Vaswani et al. (2017) introduced Transformer, a neural architecture that relies solely on
attention networks for translation. However, as we discussed in Section 1, Transformer
suffers from decoding inefficiency despite its fast training speed and great performance.

The average attention family behind AAN+ is a new type of attention network. Each hid-
den state in AAN+ is a weight-sum of previous inputs, with attention weights defined by some
heuristic rules. This property resonates with the recent findings on simplified RNNs (Lee
et al., 2017; Zhang et al., 2018b; Lei et al., 2018; Zhang & Sennrich, 2019) and hard-coded
attentions (You et al., 2020; Raganato et al., 2020). The attention network was originally
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proposed to capture source-target alignment relationship (Bahdanau et al., 2015). Recent
efforts further improved its accuracy and capability, and extended its usage to more sce-
narios. Luong et al. (2015) explored several formulations for attention, distinguishing local
attention from the global one. Zhang et al. (2020) proposed to update attention outputs
with a GRU-gated network, which enhances the discrimination ability of context vectors for
predicting the next target word. Kim et al. (2017) further studied intrinsic structures inside
attention through graphical models. Shen et al. (2018) introduced a directional structure
into SAN to integrate long-range dependency and temporal order information. Zhang et al.
(2019) developed a merged attention network to shorten the decoder depth. Mi et al. (2016)
and Liu et al. (2016) leveraged standard word alignments to supervise the automatically
generated attention weights. Different from these studies, we aim to accelerate the decod-
ing procedure by simplifying SAN. Note that the design of our model partially follows the
highway network (Srivastava et al., 2015) and the residual network (He et al., 2015).

Our work falls into the category of speeding up the decoding of Transformer. In this
aspect, Gu et al. (2018) proposed non-autoregressive NMT, which speeds up translation by
directly generating target words without relying on previous predictions. However, their
model achieves the improvement in decoding speed at the cost of worse translation quality.
Our model, instead, not only achieves a remarkable gain in terms of decoding speed, but
also preserves the translation performance. Wang et al. (2018), Stern et al. (2018) and
Zhang et al. (2020) proposed to generate multiple target words at one time with the aim of
shortening sequential decoding steps, which is orthogonal to our work. By contrast, Chelba
et al. (2020) explored a window-based approach for the decoder SAN, only allowing access
to previous k target words. Although this method shows superiority to the vanilla SAN, its
decoding dependency relies on the window size, making it inferior to AAN+ theoretically.

There is another line of research focusing on reducing the quadratic complexity of the
(encoder) SAN for Transformer to improve its computational and memory efficiency, includ-
ing Reformer (Kitaev et al., 2020), Performer (Choromanski et al., 2021), Longformer (Belt-
agy et al., 2020), Poolingformer (Zhang et al., 2021), and so on. Despite their success, these
studies mainly improve the encoding of long documents and can hardly be adapted to sim-
plify the decoding dependency. Among them, Katharopoulos et al. (2020) proposed linear
attention and Peng et al. (2021) proposed random feature attention, which can decompose
the attention over target words and were reported to achieve encouraging decoding speedup.
Unfortunately, they both rely on a matrix-based recurrent state for decoding rather than a
vector-based state, limiting their efficiency.

3. Background

In this section, we briefly review the vanilla self-attention network in Transformer (Vaswani
et al., 2017, SAN), followed by an elaboration on our published pioneer study, average
attention network (Zhang et al., 2018a, AAN).

3.1 Self-Attention Network

Transformer relies on SAN to handle intra-sentence dependencies by directly estimating the
correlation of each word pair. Given a sequence of word representations Z = (z1, z2, . . . , zm) ∈
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Rm×d, SAN compares all word pairs through a scaled dot-product function:

Q,K,V = f (Z) ,

Self-Attention (Q,K,V) = softmax

(
QKT

√
d

)
V,

(1)

where f (·) is a linear mapping function, d is the model dimension, and Q,K,V ∈ Rm×d

are the corresponding queries, keys and values. The output of softmax(·) denotes the
attention weights (a matrix of shape m × m), which measures the degree of dependency
between each word pair.3 Often, we adopt the multi-head variant for SAN to enhance its
expressivity (Vaswani et al., 2017).

When applying SAN to the decoder, we include a masking matrix into the above formu-
lation, which disables the attention to future target words as required by the autoregressive
schema. During training, Transformer with SAN is fully parallelizable; during inference,
nevertheless, the autoregressiveness hinders the full parallelization since predicting the cur-
rent target word must wait for the generation of all previous words. Our timing analysis
shows that it is the decoder that dominates the running time (96.95%), of which SAN alone
consumes about 41.42% – a significant decoding bottleneck. We thus explore how to make
the decoder SAN computationally efficient.

3.2 Average Attention Network

As shown in Figure 1, the decoding of Transformer is inefficient partially due to its linear
decoding dependency of the decoder SAN. This inspires researchers to develop efficient al-
ternatives to SAN with simplified decoding dependency (Zhang et al., 2018a; Katharopoulos
et al., 2020; Peng et al., 2021). In this paper, we focus on average attention network (AAN).
Different from SAN, AAN functions at the j-th decoding step as follows:4

gj = FFN

(
1

j

j∑
k=1

zk

)
, (2)

ij , fj = σ (W [zj ;gj ]) , oj = ij � zj + fj � gj , (3)

where FFN (·) denotes the position-wise feed-forward network (Vaswani et al., 2017), zk, gj ,
and oj have a dimension of d, [·; ·] denotes vector concatenation, � indicates element-wise
multiplication, and σ(·) is the sigmoid activation function.

The first part of AAN, as shown in Equation (2), employs a cumulative-average operation
to generate a context-sensitive representation gj for each target word. It replaces the
dynamically calculated attention weights in SAN with the simple and fixed average weights
{1
j }. The second part of AAN, as shown in Equation (3), fuses the previous context gj

and the word representation zj to enrich the expressiveness of the model. Via a gating
mechanism, AAN controls how much past information can be preserved from the context gj
and how much new information can be captured from the current word zj . In this way, AAN
is allowed to detect dependencies inside the target sequence.

3. While attention weights could reflect the dependency, we also acknowledge that their interpretability is
still debated in the literature (Kobayashi et al., 2020).

4. Note that AAN aims to replace SAN in the decoder and is uni-directional.
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(a) Average Pattern
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(b) Neighboring Pattern
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(c) Distant Pattern

Figure 4: Visualization of the induced weights for different attention patterns. Deeper
color indicates larger attention weights. Best viewed in color.

By decomposing Equation (2), AAN could compress all previous target information into
one recurrent vector at inference, reducing the decoding dependency to O(1) compared to
SAN. However, enforcing equal weights inevitably suffers from misleading and uninformative
contexts, leading to suboptimal model representations. Recent studies show that local
context is very useful for SAN in improving translation quality (Yang et al., 2018a), and
our analysis on the learned attention weights of the decoder SAN also reveals attention
patterns beyond the average as in Figure 2. It is thus preferable to improve the flexibility
of AAN and extend it to support more diverse attention patterns. We explain how AAN+

achieves this in the next section. To ease the description, we use oj = Gate(zj ,gj) for short
to denote Equation (3).

4. Generalized Average Attention Network

At the core of AAN that enables the constant decoding dependency is its cumulative-style
weight-sum structure. We discover that this structure can be further abstracted, according
to which we propose generalized average attention network, AAN+. In particular, given a
partial sequence (z1, z2, . . . , zj), AAN+ decomposes the weight-sum formulation as follows:

gj =

j∑
k=1

wkzk =

j∑
k=1

ak∑j
i=1 ai

zk, (4)

oj = Gate(zj ,gj), (5)

where each previous word representation zk is associated with a weight wk to reflect the
dependency strength of the j-th word on the k-th word, and ak is an unnormalized and
positive score. Formally, ak is regularized by the cumulative score up to j, such that,

wk =
ak∑j
i=1 ai

, and

j∑
k=1

wk = 1.
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We abandon the FFN(·) part in Equation (2) because FFN brings in a large number of
model parameters while contributing little to the final translation quality, as demonstrated
in (Zhang et al., 2018a).

This decomposition opens the possibility to support more diverse attention patterns
beyond the average one. To retain the decoding dependency of AAN, AAN+ requires each
score ak to be estimated independently from the information at other positions, i.e.

ak = δ(k, zk). (6)

Equation (6) describes the high-level structure of the attention supported by AAN+. On one
hand, δ(·) avoids the dependency of zk on any previous word representation such that the
decoding dependency can still be reduced to O(1) (see Section 4.2). On the other hand, δ(·)
provides the flexibility in manipulating the attention distribution, allowing us to consider
different information and heuristic rules.

Inspired by the analysis in Figure 2, we mainly study the following four patterns, taking
into account either content or position (shown in Figure 4) information:

Average Pattern (Avg) Treating each word equally (i.e., following a uniform prior) has
benefited various NLP tasks, such as word embedding (Mikolov et al., 2013), sentence
classification (Zhang et al., 2015) and machine translation (Sutskever et al., 2014;
Zhang et al., 2018a). This pattern adopts a position- and content-agnostic scoring
function that shares the same spirit as AAN:

δAvg(k, zk) = 1. (7)

This definition also reveals that AAN can be regarded a special case of AAN+.5

Neighboring Pattern (Ner) Figure 2 shows that some attention heads in the decoder
SAN tend to focus on neighboring words. Also, recent studies show the importance of
local context or nearby words in machine translation (Yang et al., 2018a; Luong et al.,
2015). We thus develop Ner, which is position sensitive and puts more distribution
mass on neighboring words:

δNer(k, zk) = exp(αk), (8)

where α ∈ (0, 1) is a hyperparameter used to control the sharpness of the distribution,
which also improves the training stability by avoiding value explosion.

Distant Pattern (Far) We observe that a large proportion of attention heads in the de-
coder SAN prefer to fuse information from the beginning or distant words, particularly
at upper layers as in Figure 2. We argue that distant words might have larger im-
pact on the current word representation, especially when a long-distance dependency
structure occurs. Based on this insight, we exploit Far which operates in the opposite
of Ner as follows:

δFar(k, zk) = exp(−βk), (9)

where the negative sign inside the exponential function endows a larger position with
a smaller score, and β ∈ (0, 1) behaves similarly to α in Ner.

5. Note that AAN+ w/ Avg is not the same as AAN due to the drop of the FFN(·) layer. But they are
equivalent in the sense that they share the same equal-weight assumption.
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Figure 5: Illustration of the parallel implementation for the cumulative-sum operation by
applying a mask matrix M to four word representations E = [e1; e2; e3; e4].

Weighted Pattern (Wet) One appealing property SAN possesses is that the attention
weights are learned automatically via neural networks. This gives the model the
capability of adjusting weights to make them suitable for different inputs. In fact,
many attention heads in the decoder SAN show no clear position-related patterns in
Figure 2, which are likely content-dependent. Following this spirit, we develop Wet
as follows:

δWet(k, zk) = exp(γUzk), (10)

where U ∈ Rd×d is the weight parameter that projects word representations into a
fine-grained scoring space, and γ performs similarly to α and β. We expect that this
linear mapping can strengthen AAN+’s capacity in modeling token-wise dependency.

Note that the above-mentioned hyperparameters α, β and γ are optimized by grid
search based on the performance on development set.6 Figure 4 visualizes different patterns
except for Wet because it relies on inputs.7 Different patterns reflect different modeling
considerations, which are carefully compared via experiments. In the following sections, we
use AAN+(·) to refer to the whole procedure formulated in Equation (4-5).

4.1 Parallelization in Training

One computational bottleneck of AAN+ is that its cumulative-sum operation in Equation (4)
can only be performed sequentially. In other words, this operation is not parallelizable. We
solve this problem by using a masking trick as shown in Figure 5, where the word represen-
tations are directly converted into their corresponding cumulative-sum outputs through a
masking matrix. Accordingly, the formulation in Equation (4) can be rewritten as follows:

G =
M(A� Z)

MA
, (11)

where Z ∈ Rm×d is the word representation matrix. A denotes the score matrix, which
can be a coarse-grained score matrix of shape Rm×1 or a fine-grained score matrix of shape
Rm×d, depending on the choice of the scoring function. M ∈ Rm×m is a lower triangular

6. We also attempted to automatically learn α and β, i.e. let the model induce different patterns on its
own. Unfortunately, optimization is non-trivial and is hindered by the NaN issue.

7. When drawing the figure, we set α and β to 0.35 to improve the clarity and contrast.

685



Zhang, Xiong, Ge, Yao, Yue, & Su

Model SAN Sequential AAN+ Masked AAN+

Complexity O
(
m2 · d+m · d2

)
O
(
m · d2

)
O
(
m2 · d+m · d2

)
Sequential Operations O (1) O (n) O (1)

Maximum Path Length O (1) O (1) O (1)
Decoding Dependency O (m) O (1) O (1)

Table 1: Maximum path length, model complexity, decoding dependency, and minimum
number of sequential operations for different models. m is the sentence length and d is
the model size. Model complexity is an indicator of the training-time complexity; decoding
dependency, by contrast, corresponds to the decoding-time complexity.

masking matrix.8 In this way, all components inside AAN+ can yield full parallelization,
assuring its computational efficiency particularly on GPU. We refer to this AAN+ as masked
AAN+, and the original AAN+ as sequential AAN+.

4.2 Decoding Acceleration

When applying to the decoder of Transformer, AAN+ can be accelerated during decoding
via dynamic programming because of the independence constraint of δ(·). We decompose
Equation (4) into the following three steps:

g̃j = g̃j−1 + ajzj , (12)

ãj = ãj−1 + aj , (13)

gj =
g̃j
ãj
, (14)

where g̃0 = 0, ã0 = 0. In doing so, our model computes the j-th word representation based
on only one recurrent state g̃j−1, instead of relying on all previous states as SAN does.
Therefore, our model can be substantially accelerated at the decoding phase.

4.3 Model Analysis

In this subsection, we provide a thorough analysis for AAN+ in comparison to SAN. Follow-
ing Vaswani et al. (2017), we compare both models in terms of computational complexity,
the minimum number of sequential operations required and the maximum path length
between any two input and output positions that forward and backward signals have to
traverse in the network.

Table 1 summarizes the comparison results. AAN+ has a maximum path length of O (1),
because each output representation is directly connected with each previous input repre-
sentation. For sequential AAN+, its computation avoids the position-wise masked projection
which reduces its computational complexity to O

(
m · d2

)
, but enlarges its minimum num-

ber of sequential operations to O (m). By contrast, both SAN and masked AAN+ have a

8. This masking matrix also applies to the vanilla decoder SAN to disable the access to future target words.
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Figure 6: The new Transformer architecture with the proposed AAN+

computational complexity of O
(
m2 · d+m · d2

)
, and require only O (1) sequential opera-

tion. Theoretically, masked AAN+ performs very similarly to SAN according to Table 1, but
with the superiority of short decoding dependency of O (1). We therefore use masked AAN+

for training throughout all our experiments.

5. Neural Transformer with AAN+

We apply our masked AAN+ to Transformer – the state-of-the-art encoder-decoder model
for sequence-to-sequence tasks (Vaswani et al., 2017). We retain the overall structure of
Transformer and only replace its decoder SAN with AAN+ as shown in Figure 6.

Given a source sequence X = (x1,x2, . . . ,xn), Transformer leverages its encoder to learn
source-side semantics and dependencies, and output contextualized word representations to
offer clues for its decoder. The encoder is composed of a stack of L = 6 identical layers,
each of which has two sub-layers:

H̃l = LayerNorm
(
Hl−1 + MHAtt

(
Hl−1,Hl−1,Hl−1

))
,

Hl = LayerNorm
(
H̃l + FFN

(
H̃l
))

, (15)
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where the superscript l indicates the layer depth, and MHAtt(·, ·, ·) denotes the multi-head
attention mechanism proposed by Vaswani et al. (2017).

Based on the contextualized representations HL ∈ Rn×d, Transformer uses its decoder to
generate the corresponding target sequence Y = (y1,y2, . . . ,ym). The decoder also consists
of a stack of L = 6 identical layers, each of which involves three sub-layers. The first sub-
layer aims at capturing target-side dependency on previously predicted words. Rather than
using SAN (MHAtt denotes the masked variant that disables future attention)

S̃l = LayerNorm
(
Sl−1 + MHAtt

(
Sl−1,Sl−1,Sl−1

))
, (16)

we adopt the proposed AAN+ to improve inference efficiency:

S̃l = LayerNorm
(
Sl−1 + AAN+

(
Sl−1

))
. (17)

With the learned dependency, the decoder further stacks an encoder-decoder attention sub-
layer to detect prediction-relevant source information, followed by a feed-forward sub-layer:

Sl
c = LayerNorm

(
S̃l + MHAtt

(
S̃l,HL,HL

))
,

Sl = LayerNorm
(
Sl
c + FFN

(
Sl
c

))
.

(18)

We use the subscript c to denote the source-informed target representation. The generation
is performed upon the top decoder layer, where a linear transformation and the softmax
activation are applied to get the probability of the next token based on SL ∈ Rm×d.

To make the learned representations position-sensitive, Transformer augments its input
layer H0 = X,S0 = Y with frequency-based positional encodings. The whole model is a
large, single neural network, and can be optimized end-to-end with the maximum likelihood
objective. We refer readers to (Vaswani et al., 2017) for more details.

5.1 Decoding Acceleration Analysis

AAN+ has a shorter decoding dependency (O(1)) than SAN (O(m)). However, this doesn’t
imply that AAN+ translates m times faster. The reason lies at that AAN+ or SAN is just one
component of the decoder as shown in Figure 6. In this subsection, we show theoretical
analysis explaining how reducing the decoding dependency on previously generated words
accelerates the generation.

We mainly analyze the one-step decoding in Transformer, and consider the use of cache
where the keys and the values in attention networks are pre-calculated or maintained during
decoding. AAN+ and SAN share the same encoder-decoder attention sub-layer and feed-
forward sub-layer, with a decoding complexity of O(n · d+ d2) and O(d2), respectively. In
total, the decoder with SAN has a decoding complexity of O(m · d+ n · d+ d2), while AAN+

reduces it to O(n · d+ d2). This result suggests that a longer target sequence compared to
its source counterpart leads to a larger decoding speedup with a ratio of around m

n+d + 1.
That is, the acceleration effect highly depends on the target-source length ratio and the
model size.

As the model size (such as 512 or 1024 in Transformer) is often larger than the sequence
length, the acceleration of AAN+ is marginal in theory. Nevertheless, in practice, AAN+
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avoids not only maintaining all previous target hidden states (the so-called cache) but also
performing the softmax and concatenation operations. These operations often hinder the
modern hardware from fully parallelizable computation. For example, the computations
after the SAN softmax operation will be blocked until it is finished, causing delay. In this
respect, AAN+ improves decoding parallelization and saves running memory, which works
even for large models (Junczys-Dowmunt et al., 2018).

6. Experiments

To examine the effectiveness of our model, we conduct experiments on machine translation
with several language pairs. We also work on the table-to-text generation task and the
document summarization task, aiming at examining the generality of AAN+ and its ability in
modeling long-range dependency. Unless otherwise specified, all experiments are performed
with GeForce GTX 1080 Ti and all models are implemented in Tensorflow.

6.1 Data

We choose three translation tasks, including WMT14 English-German translation (En-
De, Bojar et al., 2014), WMT14 English-French translation (En-Fr) and NIST Chinese-
English translation (Zh-En, Zhang et al., 2020). These translation tasks cover high-resource,
medium-resource and relatively low-resource settings, as well as language pairs with diverse
dependency orders. We select WMT14 En-De as our benchmark for analysis, and use the
same WMT14 dataset as in (Vaswani et al., 2017). The training data have 4.5M/36M/1.25M
sentence pairs, involving ∼116M/1045M/28M source words and 110M/1189M/35M target
words for WMT14 En-De/WMT14 En-Fr/NIST Zh-En, respectively.

We use newstest2013, newstest2012+2013 and NIST2005 as the development set for
WMT14 En-De, WMT14 En-Fr and NIST Zh-En, respectively. We report test results on
newstest2014 for WMT14 En-De and WMT14 En-Fr, and NIST2002, NIST2003, NIST2004,
NIST2006, NIST2008 for NIST Zh-En. We apply the byte pair encoding (BPE) algo-
rithm (Sennrich et al., 2016) with 32K merging operations to handle out-of-vocabulary
tokens for all these tasks. We employ tokenized case-sensitive BLEU (Papineni et al., 2002)
calculated using multi-bleu.perl9 as well as METEOR (Denkowski & Lavie, 2014)10 to eval-
uate translation quality.

We adopt the WIKIBIO dataset (Lebret et al., 2016) for table-to-text generation. This
dataset contains 728,321 articles from English Wikipedia (Sep, 2015), with each article
containing the first paragraph and an infobox. The infobox follows a key-value structure,
such as “Born: 12 November 1914 ” (from Figure 1 in (Lebret et al., 2016)). We convert
each infobox into a sequence with the format of key1 value1 key2 value2 . . . keyn valuen,
regardless of its structure, and generate the first paragraph from this sequential infobox.
We obtain 582,659 articles for training, 72,831 articles for validation, and another 72,831
articles for testing. We pre-process these articles using BPE with 20K merging operations,
and measure the generation quality with BLEU-4 and ROUGE-4 (F1 score).11

9. https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

10. We used the METEOR library at https://www.cs.cmu.edu/~alavie/METEOR/download/meteor-1.5.

tar.gz. Models are evaluated via “java -Xmx2G -jar meteor-1.5.jar test reference -l lang -lower”.
11. Following previous work, we use NIST mteval-v13a.pl for BLEU and MSR rouge-1.5.5 for ROUGE.
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We use the CNN/Daily Mail dataset (Hermann et al., 2015) for document summariza-
tion. This dataset includes summaries that are bullet points for the articles from their
corresponding websites. Following Gehrmann et al. (2018), we use the non-anonymized
version of this corpus and truncate each source document to 400 tokens and each target sum-
mary to 100 tokens in the training and validation sets. We have 287,227 document-summary
pairs in the training set, 13,368 pairs and 11,490 pairs in the validation set and test set,
respectively. Sequences are processed via BPE with 32K merging operations. We employ
neither copy mechanism nor pointer network, because Transformer with BPE alone works
well, delivering comparable or even better performance than previously reported results.
We report ROUGE (ROUGE-1, ROUGE-2, Rouge-L) for summarization evaluation.

6.2 Model Setup

By default, we adopt the base setting (Vaswani et al., 2017): the model size d is 512, the
middle layer size of FFN(·) is 2048, and the head number is 8. We use Adam (Kingma &
Ba, 2015) (β1 = 0.9, β2 = 0.98, and ε = 10−8) to train model parameters, with a batch size
of roughly 25000 target tokens.12 We schedule the learning rate using the inverse square
root of running steps, with a warmup step of 4000. To avoid over-fitting, we employ label
smoothing with εls = 0.1, attention dropout and residual dropout with a rate of p = 0.1.
We use the beam search algorithm for decoding and set the beam size to 4 and the length
penalty to 0.6. We set α, β and γ in AAN+ to 0.1 according to our preliminary experiments,
and study their impact on translation performance in Section 6.3.1. We train the models for
around 300K steps (more or less for different training datasets of diverse scales), and average
the last five checkpoints saved with an interval of 5000 training steps for evaluation.13

Apart from the vanilla Transformer, we further compare our method with two other
baselines:

SSRU This is a Simplified simple recurrent unit (SSRU) that reduces the amount of matrix
computations and contains just a simple gating function in its recurrent transition,
which gains inference efficiency significantly compared to SAN (Kim et al., 2019).

Linear Attention This model reduces the complexity of SAN from O(m2) to O(m) by
leveraging the associativity property of matrix products. Katharopoulos et al. (2020)
reported up to 4000x speedup on autoregressive prediction of very long sequences.

Note we re-implement all these baselines in Tensorflow based on our in-house codebase,
and set their model dimension to 512 by default in our experiments.

6.3 WMT14 English-German Translation

Table 2 summarizes the results. Our Transformer baseline achieves a BLEU score of 27.59 on
Test14, slightly better than the reported BLEU in (Vaswani et al., 2017) (+0.29). Replacing
SAN in the decoder with AAN+ results in very marginal decrease in the overall translation
quality, where the maximum drop is around 0.24 BLEU and 0.20 METEOR delivered by

12. For each batch, we add sentence pairs until the next sentence pair would exceed 25000 target tokens.
13. We set the number of training steps for each task based on our experience, and stabilize the model

evaluation via checkpoint averaging.
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Model #Params 4Train 4Decode BLEU METEOR

Transformer 72.31M 1.00× 1.00× 27.59 47.93

SSRU 69.16M 0.85× 1.35× 27.55 47.56
Linear Attention 72.31M 0.51× 0.22× 27.62 47.65

AAN+ w/ Avg 72.30M 1.03× 1.32× 27.50 47.80
AAN+ w/ Far 72.30M 1.02× 1.28× 27.35 47.73
AAN+ w/ Ner 72.30M 1.02× 1.30× 27.56 47.81
AAN+ w/ Wet 73.88M 0.97× 1.16× 27.49 48.01

Table 2: Case-sensitive tokenized BLEU and METEOR on WMT14 En-De. “#Params”:
the number of trainable parameters. “4Train”: training speedup evaluated on 0.2K steps
with a batch size of 25K target tokens. “4Decode”: decoding speedup on Test14 with a
batch size of 32. We perform 5 different runs and report the average results. “M ”: million.
Higher BLEU↑ and METEOR↑ indicate better translation quality. The best results are
highlighted in bold.

Far. Besides, Wet even matches SAN in METEOR (+0.08). This suggests the structure
redundancy of the decoder SAN in Transformer and the feasibility of simplifying it.

Different variants of AAN+ show different properties: the position-based patterns (Ner,
Avg) perform slightly better than the content-based one (Wet) in BLEU; while this rela-
tion is reversed when considering METEOR, a metric more consistent with human judge-
ment (Barrault et al., 2019). In terms of BLEU, Ner performs the best (27.56) among
them, followed by Avg (27.50) and Wet (27.49). Far performs the worst (-0.24 BLEU
and -0.20 METEOR compared to the baseline). The preference for neighboring tokens over
distant in AAN+ (+0.21 BLEU and +0.08 METEOR, Ner vs. Far) shows the usefulness
of local information to sequence generation, resonating with previous findings (Yang et al.,
2018a; You et al., 2020; Raganato et al., 2020).

Although the adaptive weighting schema endows Wet with higher freedom in describing
token-wise dependencies, Wet fails to improve the translation quality against the baseline
under different metrics (+0.08 METEOR but -0.10 BLEU). In addition, Wet even performs
slightly worse than Avg by 0.01 BLEU. The JS-divergence curve in Figure 7 suggests that
Wet fails to mimic the behavior of SAN, particularly at the top and bottom decoder layers.
Inspired by this observation, we performed a further experiment that replaces Wet with
the vanilla SAN in the first decoder layer. This narrows the BLEU reduction against the
baseline to 0.03 and retains the gain in METEOR (+0.05). Thus, we ascribe the inferior
performance of Wet to its insufficient modeling capability resulted from the cumulative
operation which cannot fully capture word-pair correlations as in the dot-product attention.

AAN+ marginally reduces the amount of parameters (-0.01M) and improves the train-
ing speed (∼1.02× faster), except Wet which adds a linear mapping to generate input-
dependent scores. Overall, no significant computational overhead is brought in by AAN+ at
the training phase. Regarding translation, AAN+ accelerates the decoding with a speedup of

691



Zhang, Xiong, Ge, Yao, Yue, & Su

1 2 3 4 5 6

Decoder Layer Index

0.050

0.075

0.100

0.125

0.150

0.175

0.200

J
S

D
iv

er
ge

n
ce

Wet vs. Baseline

Figure 7: Jensen-Shannon (JS) divergence (y-axis) of the decoder-side self-attention weights
between Wet and Baseline across layers (x-axis). For each layer, we average the weights
over either dimensions (Wet) or heads (Baseline) before computing this divergence. We
report the average score over all target tokens on WMT14 En-De (newstest2014).

1.16× ∼ 1.32×.14 Note that Far and Ner translate slower than Avg, though they all are
position-based and follow a similar structure. We conjecture that the denominator

∑j
i ai in

Equation (4), which has to be explicitly maintained in Far and Ner during translation, in-
creases the memory usage and hinders model parallelization. This leads to slower decoding,
and also resonates with our analysis in Section 5.1 that simplified recurrent computation is
beneficial for reducing running time.

Table 2 also shows the results for SSRU and Linear Attention. SSRU contains fewer
model parameters with reduced computations, and Linear Attention simplifies the computa-
tional complexity of SAN to O(m). Despite these advantages, they run significantly slower
at training. The linear computational complexity of Linear Attention comes at the cost of
sacrificing its space complexity O(md2), which demands substantially higher running mem-
ory; SSRU is basically a recurrent model that requires dedicated CUDA kernels to reach
decent training efficiency. In contrast, AAN+ is simple to implement and fast to train; some
operations like cumsum are often well supported by popular computational frameworks.

Although Linear Attention matches the baseline in BLEU, it delivers significantly worse
inference speed (0.22×) different from the findings in (Katharopoulos et al., 2020). The
reason behind, we argue, is that Linear Attention relies on O(d) recurrent vectors during
translation that only improves decoding speed when the target sequence is extremely long.
By contrast, SSRU yields an encouraging decoding speedup of 1.35× thanks to its reduced
computation (Kim et al., 2019). However, the translation quality of SSRU is inferior to
AAN+ and the baseline as measured by METEOR.

6.3.1 Impact of AAN+ Hyperparameters

AAN+ uses the hyperparameters α, β and γ to control the shape of its attentional distri-
bution for generation. Figure 8 shows their impact on translation. We observe that these

14. We reported roughly 4× speedup in our conference paper (Zhang et al., 2018a), which is because we
didn’t apply the cache-based decoding to the Transformer baseline. Nowadays, using cache for decoding
has already been a standard practice. The numbers reported in this paper are more fair and accurate.

692



AAN+: Generalized Average Attention Network

0.1 0.2 0.3 0.4 0.5

Hyperparameter Values

24.50

24.75

25.00

25.25

25.50

25.75

26.00

D
ev

B
L

E
U

Far, β

Ner, α

Wet, γ

Figure 8: Translation performance as a function of α (Ner), β (Far) and γ (Wet) on
the WMT14 En-De dev set (newstest2013). We vary these hyperparameters from 0.1 to
0.5 with a step size of 0.1. Each model is trained for 100K running steps. Note we didn’t
report results for Ner with α = 0.4/0.5 because of the NaN issue at training.
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Figure 9: Case-sensitive tokenized BLEU (y-axis, vs. the baseline) of different models on
WMT14 En-De (newstest2014) with different encoder depths (x-axis). Dashed gray line
illustrates the SAN baseline. Note that all AAN+ models suffer from a larger performance
drop when reducing the encoder depth compared to the baseline, among which Ner shows
the best robustness.

hyperparameters greatly affect the translation quality, where larger values often lead to
worse performance. Importantly, setting these hyperparameters properly also stabilizes
model training, avoiding the NaN issue for Ner. Based on the above results, we set these
hyperparameters to 0.1 for all other experiments in this paper.

6.3.2 Why Does AAN+ Work?

Table 2 shows that AAN+ yields roughly comparable performance against the multi-head
dot-product attention in spite of its simplicity. One assumption is that the success of AAN+
is supported by Transformer through shifting more modeling burden to the encoder. To
examine this, we vary the encoder depth for both AAN+ and the SAN baseline and report
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Figure 10: Case-sensitive tokenized BLEU (y-axis) of different models on the WMT14
En-De dev set (newstest2013) over training steps (x-axis). AAN+ converges similarly to the
Transformer baseline.
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Figure 11: Impact of beam size (left) and batch size (right) on decoding acceleration
(4Decode, y-axis). Statistics are collected from one run on the WMT14 En-De test set.
AAN+ achieves higher decoding speedups with larger beam sizes and/or larger batch sizes,
and position-based patterns perform better than Wet.

their relative BLEU scores in Figure 9. The results partially confirm our assumption,
where decreasing the encoder depth to 1 causes ∼0.65 extra BLEU reduction (on average).
Nevertheless, this performance drop is not that aggressive, further suggesting that the intra-
sentence dependency in the decoder requires less modeling capacity, allowing for simplified
alternatives (You et al., 2020; Kasai et al., 2021). Also note that Ner dominates the
performance of AAN+. Modeling local context is crucial to the decoder for generation (Luong
et al., 2015; Yang et al., 2018a).

6.3.3 Analysis on Model Convergency

One potential drawback of model simplification, like AAN+, is delaying the model conver-
gence. Figure 10 compares the convergence of different models with respect to BLEU on
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Device Baseline Avg Far Ner Wet

GPU
61.60

(1.00×)
46.62

(1.32×)
48.18

(1.28×)
47.34

(1.30×)
53.12

(1.16×)

CPU
663.87
(1.00×)

474.97
(1.40×)

520.10
(1.28×)

508.33
(1.31×)

535.39
(1.24×)

Table 3: Decoding time in seconds (speedup) on Test14 with different devices (CPU vs.
GPU). Our CPU is Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz supporting 32 processors.

the development set. AAN+ and the baseline show highly similar convergence behaviour and
achieve almost the same BLEU score, although the performance of AAN+ increases a little
bit slower than Transformer at the beginning (Far in particular).

6.3.4 Analysis on Decoding Speed

We provide a theoretical analysis in Section 5.1 on decoding acceleration. In practice,
however, many factors could affect the running speed. In this subsection, we further explore
the effect of beam size, batch size and GPU/CPU on the decoding speed.

Beam size determines how many top-scored hypothesises coexist for one source sen-
tence during translation. Decoding with a larger beam size under proper regularization
can enhance translation quality but also bring in non-negligible computational overheads.
Figure 11a shows that AAN+ results in better acceleration when using larger beam sizes
(1.16× → 1.36× with beam size 1 → 20 on average). The increase of recurrent computa-
tions under larger beams enhances the strength of AAN+.

Batch size denotes the number of source sentences translated simultaneously. In our ex-
periments, we group sentences of similar length into one batch for decoding. This maximizes
the utilization of those modern hardware devices, like GPU, and saves the overall translation
time. Results in Figure 11b indicate that AAN+ favours larger batch sizes (1.11× → 1.35×
with batch size 1 → 128 on average). Particularly, AAN+ accelerates the translation with a
batch size of 1, showing its potential of improving online translation services in industries.

In addition, Figure 11 also shows that position-based patterns outperform the content-
based one (Wet) in decoding speed. Far and Ner run slightly slower than Avg.

Device also affects the decoding process. Although CPU performs worse than GPU on
large-matrix multiplication, it supports some operations like discrete softmax and memory
copying better. Table 3 shows that AAN+ is capable of accelerating decoding regardless of
the device types, where Avg yields the best speedup, followed by Ner. We also observe
that AAN+ is more CPU-friendly: its speedup on CPU is often larger than that on GPU
across different patterns.

6.3.5 Effects of Sentence Length

NMT often struggles with long sentence translation as handling long-distance dependency
and under-translation issues becomes more difficult for longer sentences. In this section, we
investigate whether all patterns in AAN+ are capable of dealing with long-range dependency.
We experiment on newstest2014, where we first sort sentence pairs according to their source
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Figure 12: Analysis of translations on WMT14 En-De (newstest2014) with respect to the
length of source sentences (x-axis). (a) shows the tokenized BLEU, (b) shows the average
length of translations, (c) shows the decoding speedup over the baseline, (d) shows the ratio
between the average translation length and the average source length, and (e) shows the
case-sensitive tokenized UTEM, all visa-vis source sentence length. The number in x-axis
denotes the average source sentence length in its corresponding evaluation subset. Lower
UTEM↓ and higher BLEU↑ indicate better translation.

sentence lengths, and then split the dataset into 10 disjoint subsets of roughly equal size
(about 274 sentence pairs each).15 We re-evaluate different measures on these subsets.

Figure 12 shows the results. Although the adaptive dot-product based SAN is often
deemed more effective than the average or rule-based attentions (AAN+) in generating (long)
sentences, our results suggest that simple attentions (AAN+) are able to produce translations
of similar BLEU score (Figure 12a) and length (Figure 12b) compared to SAN. Besides,
Transformer fails to outperform AAN+ over all different source sentence lengths (Figure 12a),
which partially verifies the ability of average patterns in capturing long-range dependency.
Note that Ner matches the performance of Transformer on the longest sentence group,
though this pattern schedules more distribution masses to local (neighbouring) context.

Generally, translating longer sentences consumes more decoding time: when it comes to
Transformer, this issue becomes notably severe since all previous predicted words must be
considered to estimate the self-attention weights. As an important factor, source sentence
length deeply affects the acceleration of AAN+ as discussed in Section 5.1. Here, we further

15. Note that this differs from what we did in our conference paper, where we collected sentence pairs based
on certain length range. The problem is that the obtained subsets are highly imbalanced. Evaluation on
subsets including only a few sentence pairs can be very inaccurate and misleading.
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Settings Model #Params 4Decode BLEU METEOR

Deep Transformer

Transformer 116.45M 1.00× 28.27 48.49

SSRU 110.14M 1.38× 27.87 48.06
Linear Attention 116.45M 0.19× 28.22 48.41

AAN+ w/ Avg 116.44M 1.40× 28.29 48.39
AAN+ w/ Far 116.44M 1.39× 28.17 48.35
AAN+ w/ Ner 116.44M 1.39× 28.35 48.29
AAN+ w/ Wet 119.59M 1.22× 28.31 48.21

Big Transformer

Transformer 232.70M 1.00× 29.09 48.95

SSRU 220.10M 1.30× 28.63 48.65
Linear Attention 232.70M 0.21× 28.85 48.86

AAN+ w/ Avg 232.69M 1.30× 28.79 48.58
AAN+ w/ Far 232.69M 1.29× 28.76 48.55
AAN+ w/ Ner 232.69M 1.29× 28.94 48.77
AAN+ w/ Wet 238.99M 1.38× 28.87 48.64

Table 4: Case-sensitive tokenized BLEU and METEOR for different models on WMT14 En-
De (newstest2014). Deep Transformer : 12-layer Transformer base model; Big Transformer :
6-layer Transformer with d = 1024, 16 heads and FFN size of 4096. Decoding time is
averaged over five runs; the time for Big Transformer is measured on GeForce GTX 1080.

offer empirical results. Figure 12c suggests that AAN+ accelerates translation regardless of
source sentence lengths with a special peak at the shortest sentence group.16 Figure 12d
tells the reason, where the shortest sentence group has the largest target-source length ratio,
confirming our analysis in Section 5.1.

In addition, NMT models often suffer from the under-translation issue (Zhang et al.,
2018a), where important source tokens or phrases are totally ignored during translation.
This could become worse if the model can’t properly handle long-distance context. We
employ the under-translation evaluation metric (Yang et al., 2018b, Utem) to measure this
issue, which counts how many n-grams are missed in the translation compared with its
reference. Figure 12e shows that AAN+ yields comparable performance against Transformer.
On long sentences, however, AAN+ obtains worse Utem scores. We argue that AAN+ is capable
of capturing long-range dependency, but its capacity is still weaker than SAN. Especially,
despite of its localness, Ner performs better than Avg on the longest sentence group.

6.3.6 Results for Deep and Big Models

We also extend our experiments to deep and big settings. For deep Transformer, we adopt
the depth-scaled initialization method (Zhang et al., 2019) to handle gradient vanishing and

16. This differs from our previous finding (Zhang et al., 2018a) where the decoding time of Transformer grows
near exponentially with the increase of source sentence length due to the lack of the cache implementation.
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Activation Model #Params BLEU METEOR

Transformer 72.31M 27.59 47.93

exp
AAN+ w/ Ner 72.30M 27.56 47.81
AAN+ w/ Wet 73.88M 27.49 48.01

Relu
AAN+ w/ Ner 72.30M 27.50 47.75
AAN+ w/ Wet† 73.88M 17.38 37.88

Square
AAN+ w/ Ner 72.30M 27.35 47.64
AAN+ w/ Wet† 73.88M 27.54 47.78

Table 5: Case-sensitive tokenized BLEU and METEOR for different activation functions
on WMT14 En-De (newstest2014). Relu: Relu(z) = max {z, 0}; Square: Square(z) = z2.
†: we apply gradient norm clipping of value 1.0 to stabilize the training. Note that Far is
not well-defined with these activations.

train a 12-layer Transformer base model. For big Transformer, we increase the model di-
mension, the number of attention heads and the FFN size to 1024, 16 and 4096, respectively,
and we set the warmup step size to 16K and (β1 = 0.9, β2 = 0.998) for Adam.

Table 4 summarizes the translation results on WMT14 En-De. Regardless of evaluation
metrics and model settings, AAN+ yields competitive performance compared to the baseline.
Ner performs the best among different patterns with respect to BLEU, slightly surpassing
the baseline by 0.08 in the deep setting. All AAN+ models accelerate decoding, and enlarges
the decoding speedup from 1.16× ∼ 1.32× to 1.22× ∼ 1.40× (base→deep/big). Note
Wet performs better in the big setting in inference speed, which based on our analysis
is caused by producing significantly shorter translations. By contrast, the acceleration of
Linear Attention deteriorates when scaling from base to deep and big; SSRU performs
slightly worse in the big setting. In short, AAN+ generalizes to larger Transformer models
with higher decoding speedup, showing its superiority.

6.3.7 Alternatives to exp(·)

Following the dot-product attention (Vaswani et al., 2017), we employ the exponential
activation function exp(·) to produce attention weights for AAN+, as shown in Equation
(8-10). This function satisfies two constraints: 1) its output is positive, ensuring that its
normalization follows the categorical distribution; and 2) it is a monotone function such
that Ner and Far are well-defined. In this section, we study its alternatives (Relu and
Square) by relaxing the second constraint.

Table 5 shows the results. We observe that neither Relu nor Square beats the original exp
function except for Wet with Square which achieves a gain of 0.05 BLEU. Unfortunately,
Wet with these alternatives becomes very unstable during training, relying on gradient
normalization to converge. Thus, it’s still favorable to use exp as the activation function,
which offers flexibility, ensures training stability and delivers promising translation quality.
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Settings
#Params 4Decode BLEU METEOR

Avg Far Ner Wet

Transformer Baseline 72.31M 1.00× 27.59 47.93

3 72.30M 1.24× 27.50 47.80
3 72.30M 1.16× 27.35 47.73

3 72.30M 1.15× 27.56 47.81
3 73.88M 1.13× 27.49 48.01

3 3 72.30M 1.21× 27.71 47.92
3 3 72.30M 1.24× 27.34 47.81

3 3 73.88M 1.11× 27.77 47.89

3 3 3 73.88M 1.13× 27.27 47.65
3 3 3 72.30M 1.20× 27.46 47.76
3 3 3 3 73.88M 1.10× 27.49 47.68

Table 6: Case-sensitive tokenized BLEU and METEOR on WMT14 En-De (newstest2014).
The patterns are complementary to some degree.

6.3.8 Results on Pattern Complementarity

Different patterns endow AAN+ with different inductive biases in handling the contextual
information. We next analyze whether their combination could result in better translation
performance. We feed the input to different AAN+ models and then adopt an average pooling
layer to get the final output.

Table 6 shows that most combinations, unfortunately, hurt the translation quality. Di-
verse contexts are not always complementary, which might result in negative interference
degenerating token representations. However, one exception we notice is to inject the
neighboring information into the weighting schema (Wet+Ner) or the distant schema
(Far+Ner), which yield a BLEU score of 27.71 and 27.77, surpassing the baseline by 0.12
and 0.18, respectively, albeit with lower METEOR and smaller decoding speedup. This
suggests that different patterns are complementary with a varying degree.

6.4 Results on Other Translation tasks

We also report results on other translation tasks. Table 7 and Table 8 list the translation
results on WMT14 En-Fr and NIST Zh-En, respectively. Our baseline achieves a BLEU
score of 39.09 on WMT14 En-Fr, surpassing the value reported in (Vaswani et al., 2017)
by around 1.0 BLEU. Overall, AAN+ performs competitively against Transformer across
different language pairs in terms of BLEU and METEOR, with a decoding speedup of
1.15× ∼ 1.31×. This demonstrates that AAN+ generalizes to different language pairs and
training data sizes.

On some language pairs, AAN+ even surpasses Transformer: +1.05/+0.9 BLEU/METEOR
on WMT14 En-Fr and +0.28 BLEU on NIST Zh-En. Compared to SSRU, AAN+ delivers sim-
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Model #Params 4Train 4Decode BLEU METEOR

Transformer 76.34M 1.00× 1.00× 39.09 60.58

SSRU 73.18M 0.82× 1.33× 38.74 60.56
Linear Attention 76.34M 0.51× 0.23× 39.40 60.95

AAN+ w/ Avg 76.33M 1.03× 1.30× 38.61 60.46
AAN+ w/ Far 76.33M 1.01× 1.30× 38.06 60.16
AAN+ w/ Ner 76.33M 1.01× 1.31× 40.14 61.48
AAN+ w/ Wet 77.90M 0.97× 1.19× 38.46 60.35

Table 7: Case-sensitive tokenized BLEU and METEOR for different models on WMT14
En-Fr. The decoding time is obtained on the test set and averaged over 5 different runs.

Model #Params 4Train 4Decode TAVG

Transformer 69.26M 1.00× 1.00× 46.23 (34.75)

SSRU 66.10M 0.86× 1.32× 45.80 (34.45)
Linear Attention 69.26M 0.49× 0.24× 46.05 (34.70)

AAN+ w/ Avg 69.25M 1.04× 1.28× 46.27 (34.55)
AAN+ w/ Far 69.25M 1.03× 1.27× 45.77 (34.07)
AAN+ w/ Ner 69.25M 1.03× 1.28× 46.38 (34.52)
AAN+ w/ Wet 70.83M 0.98× 1.15× 46.51 (34.67)

Table 8: Case-sensitive tokenized BLEU (METEOR) on NIST Zh-En. TAVG denotes the
average score over NIST02, NIST03, NIST04, NIST06 and NIST08. The decoding time is
collected on all test sets with a batch size of 32.

ilar decoding speeds but with significant quality improvement; AAN+ also outperforms Linear
Attention in both translation performance and running efficiency. In terms of BLEU, Ner
shows the best generalization ability and decoding efficiency among all patterns, though
Wet obtains the best quality on NIST Zh-En. These results further confirm the advantage
of AAN+ (Ner in particular) in accelerating decoding and also its capability of handling
diverse linguistic and syntactic structures as well as different data conditions.

6.5 Results on Table-to-Text Generation

Different from machine translation, table-to-text generation requires to deal with the rela-
tion of different entries in the table-style data (Liu et al., 2018). Table 9 shows the ability
of Transformer in handling sequential table data, surpassing previous structural model (Liu
et al., 2018) by 4.43 ROUGE. Compared to Transformer, AAN+ achieves comparable per-
formance with marginal improvement when using Ner (+0.16 BLEU and +0.08 ROUGE),
and yields a decoding speedup of 1.02× ∼ 1.26 ×. The average pattern Avg operates fastest
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Model #Params 4Train 4Decode BLEU-4 R-4

Structure-aware Seq2Seq? - - - 44.89 41.65

Transformer 67.56M 1.00× 1.00× 44.67 46.08

SSRU 64.41M 0.68× 1.15× 44.84 45.82
Linear Attention 67.56M 0.64× 0.60× 44.80 46.14

AAN+ w/ Avg 67.56M 1.03× 1.26× 44.41 45.88
AAN+ w/ Far 67.56M 1.03× 1.06× 44.10 45.89
AAN+ w/ Ner 67.56M 1.03× 1.10× 44.83 46.16
AAN+ w/ Wet 69.13M 1.00× 1.02× 44.63 46.06

Table 9: BLEU-4 and ROUGE-4 (R-4) of different models on WIKIBIO. ?: results reported
by Liu et al. (2018). Decoding time is measured with a batch size of 10.

Model #Params 4Train 4Decode R-1 R-2 R-L

Pointer-Generator† - - - 39.12 17.35 36.12
CopyTransformer† - - - 39.25 17.54 36.45
Bottom-Up† - - - 41.22 18.68 38.34

Transformer 60.31M 1.00× 1.00× 39.50 17.97 36.88

SSRU 57.15M 0.54× 1.19× 36.27 16.09 33.81
Linear Attention 60.31M 0.79× 0.75× 38.35 17.22 35.77

AAN+ w/ Avg 60.30M 1.02× 1.48× 37.44 16.72 34.93
AAN+ w/ Far 60.30M 1.01× 1.50× 36.18 16.31 33.90
AAN+ w/ Ner 60.30M 1.01× 1.26× 37.58 16.74 35.01
AAN+ w/ Wet 61.88M 1.00× 1.25× 37.69 16.76 35.19

Table 10: ROUGE scores (F-Measure) of neural abstractive document summarization
models on CNN/Daily Mail. †: results reported by Gehrmann et al. (2018). R-1, R-2 and
R-L denote ROUGE-1, ROUGE-2, and ROUGE-L, respectively. Decoding time is measured
with a batch size of 10.

(1.03× for training and 1.26 × for decoding) outperforming SSRU and Linear Attention,
albeit slightly underperforming Transformer in BLEU (-0.26) and ROUGE (0.20). AAN+ is
compatible with structural inputs.

6.6 Results on Document Summarization

Compared with other generation tasks, document summarization stands out with its lengthy
target sequence, which offers an ideal testbed to examine the model’s ability of handling
long-range dependency. Table 10 summarizes the results for different models.
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Reference
david lynch says he wo n’t be directing new episodes of twin peaks .
showtime “ saddened ” over decision , which involved a dispute over
money .

Transformer

director david lynch has confirmed he will no longer direct the revival
of “ twin peaks ” . the offbeat tv series was set to return in 2016 . the
groundbreaking series is considered one of the most influential shows
in television history .

AAN+ w/ Avg
film director david lynch has confirmed he will no longer direct the
revival of ‘ twin peaks ’ . the offbeat tv series was set to return in 2016
. lynch broke the news about his departure in a series of tweets .

AAN+ w/ Far

david lynch has confirmed he will no longer direct the revival of ‘ twin
peaks ’ . the series is considered one of the most influential tv shows
in tv history . lynch broke the news about his departure in a series of
tweets .

AAN+ w/ Ner

david lynch confirms he will no longer direct the revival of ‘ twin peaks
’ . the offbeat tv series , created by lynch and mark frost , featured a
quirky fbi agent . the groundbreaking series is considered one of the
most influential shows in television history .

AAN+ w/ Wet

david lynch has confirmed he will no longer direct the revival of ‘ twin
peaks ’ . the series is considered one of the most influential tv shows
in tv history . lynch broke the news about his departure in a series of
tweets .

Table 11: Case study on document summarization. Although Transformer outperforms
AAN+ in ROUGE, we observe no significant difference from the model outputs.

We didn’t apply the pointer-generator method and the coverage penalty (Gehrmann
et al., 2018), but our Transformer baseline matches the performance of existing models17.
We observe that AAN+ achieves significantly better decoding acceleration, 1.48×/1.25× faster
with Avg/Wet at the cost of 1.95/1.69 ROUGE-L, and that Ner outperforms Avg in
ROUGE. Although SSRU performs well on translation tasks, it generalizes poorly to sum-
marization, yielding worse quality and decoding speedup compared to AAN+. By contrast,
Linear Attention outperforms AAN+ in ROUGE and shows better decoding efficiency but
it’s still significantly slower than AAN+.

We also show a case study in Table 11. Unlike translation or table-to-text generation,
document summarization lacks a strictly defined semantic correspondence between the input
document and its summary. Thus, it is more difficult for abstractive neural models to
generate hypotheses that match the given reference very well. In practice, we find that
neural models prefer to copy sentences near the beginning of the document, while fails to
summarize information over the whole passage. Results in Table 11 suggest that AAN+ is

17. We find that Transformer can automatically handle the copying and repeation problem with subwords.
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capable of generating reasonable summarizations that are on par with those of Transformer,
although AAN+ prefers generating relatively shorter sequences.

7. Conclusion

In this paper, we have presented the generalized average attention network (AAN+), which
formulates average attention network (Zhang et al., 2018a) in a more principle way that
enables us to explore richer heuristic attention patterns for generation, including position-
based patterns and content-based patterns. We studied four attention patterns inspired by
the analysis on the learned self-attention weights in the Transformer decoder, among which
the neighboring pattern (Ner) generalizes the best over different tasks while performs on par
with the average pattern in decoding efficiency. Different patterns show complementarity
to a varying degree.

Our work shows the feasibility of simplifying the decoder SAN, as well as the impor-
tance of local context to generation. Extensive experiments on machine translation with
three language pairs, table-to-text generation and document summarization demonstrate
the superiority of AAN+ in accelerating decoding with little or no loss in generation quality
(except for summarization). Our analysis on long sentence generation reveals that atten-
tions defined by AAN+ are capable of handling long-range dependency, albeit being slightly
weaker than SAN.
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Barrault, L., Bojar, O., Costa-jussà, M. R., Federmann, C., Fishel, M., Graham, Y., Had-
dow, B., Huck, M., Koehn, P., Malmasi, S., Monz, C., Müller, M., Pal, S., Post,
M., & Zampieri, M. (2019). Findings of the 2019 conference on machine translation
(WMT19). In Proceedings of the Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pp. 1–61, Florence, Italy. Association for Computa-
tional Linguistics.

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The long-document trans-
former..

Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Leveling, J., Monz, C., Pecina,
P., Post, M., Saint-Amand, H., et al. (2014). Findings of the 2014 workshop on

703



Zhang, Xiong, Ge, Yao, Yue, & Su

statistical machine translation. In Proceedings of the ninth workshop on statistical
machine translation, pp. 12–58.

Chelba, C., Chen, M., Bapna, A., & Shazeer, N. (2020). Faster transformer decoding:
N-gram masked self-attention..

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins,
P., Davis, J. Q., Mohiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., & Weller,
A. (2021). Rethinking attention with performers. In International Conference on
Learning Representations.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep
Learning, December 2014.

Denkowski, M., & Lavie, A. (2014). Meteor universal: Language specific translation evalua-
tion for any target language. In Proceedings of the EACL 2014 Workshop on Statistical
Machine Translation.

Gehring, J., Auli, M., Grangier, D., & Dauphin, Y. (2017a). A convolutional encoder model
for neural machine translation. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 123–135,
Vancouver, Canada. Association for Computational Linguistics.

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017b). Convolutional
sequence to sequence learning. In Precup, D., & Teh, Y. W. (Eds.), Proceedings
of the 34th International Conference on Machine Learning, Vol. 70 of Proceedings of
Machine Learning Research, pp. 1243–1252, International Convention Centre, Sydney,
Australia. PMLR.

Gehrmann, S., Deng, Y., & Rush, A. (2018). Bottom-up abstractive summarization. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4098–4109.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., & Socher, R. (2018). Non-autoregressive neural
machine translation. In International Conference on Learning Representations.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition.
CoRR, abs/1512.03385.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., &
Blunsom, P. (2015). Teaching machines to read and comprehend. In Cortes, C.,
Lawrence, N. D., Lee, D. D., Sugiyama, M., & Garnett, R. (Eds.), Advances in Neural
Information Processing Systems 28, pp. 1693–1701. Curran Associates, Inc.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9,
1735–1780.

Junczys-Dowmunt, M., Heafield, K., Hoang, H., Grundkiewicz, R., & Aue, A. (2018). Mar-
ian: Cost-effective high-quality neural machine translation in C++. In Proceedings
of the 2nd Workshop on Neural Machine Translation and Generation, pp. 129–135,
Melbourne, Australia. Association for Computational Linguistics.

704



AAN+: Generalized Average Attention Network

Kasai, J., Pappas, N., Peng, H., Cross, J., & Smith, N. (2021). Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine translation. In International Con-
ference on Learning Representations.

Katharopoulos, A., Vyas, A., Pappas, N., & Fleuret, F. (2020). Transformers are RNNs:
Fast autoregressive transformers with linear attention. In III, H. D., & Singh, A.
(Eds.), Proceedings of the 37th International Conference on Machine Learning, Vol.
119 of Proceedings of Machine Learning Research, pp. 5156–5165. PMLR.

Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2017). Structured attention networks. In
International Conference on Learning Representations.

Kim, Y. J., Junczys-Dowmunt, M., Hassan, H., Fikri Aji, A., Heafield, K., Grundkiewicz,
R., & Bogoychev, N. (2019). From research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the 3rd Workshop on Neural Generation
and Translation, pp. 280–288, Hong Kong. Association for Computational Linguistics.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y., & LeCun, Y. (Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The efficient transformer. In
International Conference on Learning Representations.

Kobayashi, G., Kuribayashi, T., Yokoi, S., & Inui, K. (2020). Attention is not only a weight:
Analyzing transformers with vector norms. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7057–7075, Online.
Association for Computational Linguistics.

Lebret, R., Grangier, D., & Auli, M. (2016). Neural text generation from structured data
with application to the biography domain. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing, pp. 1203–1213, Austin, Texas.
Association for Computational Linguistics.

Lee, K., Levy, O., & Zettlemoyer, L. (2017). Recurrent additive networks. CoRR,
abs/1705.07393.

Lei, T., Zhang, Y., Wang, S. I., Dai, H., & Artzi, Y. (2018). Simple recurrent units for highly
parallelizable recurrence. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 4470–4481, Brussels, Belgium. Association for
Computational Linguistics.

Liu, L., Utiyama, M., Finch, A., & Sumita, E. (2016). Neural machine translation with
supervised attention. In Proc. of COLING 2016, pp. 3093–3102, Osaka, Japan. The
COLING 2016 Organizing Committee.

Liu, T., Wang, K., Sha, L., Chang, B., & Sui, Z. (2018). Table-to-text generation by
structure-aware seq2seq learning. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1412–1421, Lisbon, Portugal. Association for
Computational Linguistics.

705



Zhang, Xiong, Ge, Yao, Yue, & Su

Mi, H., Wang, Z., & Ittycheriah, A. (2016). Supervised attentions for neural machine
translation. In Proc. of EMNLP, pp. 2283–2288, Austin, Texas. Association for Com-
putational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed rep-
resentations of words and phrases and their compositionality. In Burges, C. J. C.,
Bottou, L., Welling, M., Ghahramani, Z., & Weinberger, K. Q. (Eds.), Advances in
Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, ACL ’02, pp. 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational Linguistics.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith, N., & Kong, L. (2021). Random
feature attention. In International Conference on Learning Representations.

Raganato, A., Scherrer, Y., & Tiedemann, J. (2020). Fixed encoder self-attention patterns in
transformer-based machine translation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 556–568, Online. Association for Computational
Linguistics.

Sennrich, R., Haddow, B., & Birch, A. (2016). Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany.
Association for Computational Linguistics.

Shen, T., Jiang, J., Zhou, T., Pan, S., Long, G., & Zhang, C. (2018). Disan: Directional
self-attention network for rnn/cnn-free language understanding. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI
Press.

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway networks. CoRR,
abs/1505.00387.

Stern, M., Shazeer, N., & Uszkoreit, J. (2018). Blockwise parallel decoding for deep au-
toregressive models. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., & Garnett, R. (Eds.), Advances in Neural Information Processing Systems
31, pp. 10086–10095. Curran Associates, Inc.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., & Weinberger,
K. Q. (Eds.), Advances in Neural Information Processing Systems 27, pp. 3104–3112.
Curran Associates, Inc.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u.,
& Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., & Garnett, R. (Eds.), Advances
in Neural Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc.

706



AAN+: Generalized Average Attention Network

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov, I. (2019). Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 5797–5808, Florence, Italy. Association for Computational Linguistics.

Wang, C., Zhang, J., & Chen, H. (2018). Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 479–488, Brussels, Belgium. Association for Computational Linguistics.

Yang, B., Tu, Z., Wong, D. F., Meng, F., Chao, L. S., & Zhang, T. (2018a). Modeling
localness for self-attention networks. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pp. 4449–4458, Brussels, Belgium.
Association for Computational Linguistics.

Yang, J., Zhang, B., Qin, Y., Zhang, X., Lin, Q., & Su, J. (2018b). Otem&utem: Over-and
under-translation evaluation metric for nmt. In CCF International Conference on
Natural Language Processing and Chinese Computing, pp. 291–302. Springer.

You, W., Sun, S., & Iyyer, M. (2020). Hard-coded Gaussian attention for neural machine
translation. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 7689–7700, Online. Association for Computational Linguis-
tics.

Zhang, B., Xiong, D., & Su, J. (2020). Neural machine translation with deep attention.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 42 (01), 154–163.

Zhang, B., & Sennrich, R. (2019). A lightweight recurrent network for sequence model-
ing. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1538–1548, Florence, Italy. Association for Computational Linguistics.

Zhang, B., Su, J., Xiong, D., Lu, Y., Duan, H., & Yao, J. (2015). Shallow convolutional
neural network for implicit discourse relation recognition. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 2230–2235.

Zhang, B., Titov, I., & Sennrich, R. (2019). Improving deep transformer with depth-scaled
initialization and merged attention. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), pp. 898–909, Hong Kong,
China. Association for Computational Linguistics.

Zhang, B., Titov, I., & Sennrich, R. (2020). Fast interleaved bidirectional sequence gener-
ation. In Proceedings of the Fifth Conference on Machine Translation, pp. 503–515,
Online. Association for Computational Linguistics.

Zhang, B., Xiong, D., & Su, J. (2018a). Accelerating neural transformer via an average
attention network. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1789–1798, Melbourne,
Australia. Association for Computational Linguistics.

Zhang, B., Xiong, D., Su, J., Lin, Q., & Zhang, H. (2018b). Simplifying neural machine
translation with addition-subtraction twin-gated recurrent networks. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
4273–4283, Brussels, Belgium. Association for Computational Linguistics.

707



Zhang, Xiong, Ge, Yao, Yue, & Su

Zhang, B., Xiong, D., Xie, J., & Su, J. (2020). Neural machine translation with gru-
gated attention model. IEEE Transactions on Neural Networks and Learning Systems,
31 (11), 4688–4698.

Zhang, H., Gong, Y., Shen, Y., Li, W., Lv, J., Duan, N., & Chen, W. (2021). Poolingformer:
Long document modeling with pooling attention. In International Conference on
Machine Learning, pp. 12437–12446. PMLR.

708


