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Abstract

In the assignment problem, the goal is to assign indivisible items to agents who have or-
dinal preferences, efficiently and fairly, in a strategyproof manner. In practice, first-choice
maximality, i.e., assigning a maximal number of agents their top items, is often identified
as an important efficiency criterion and measure of agents’ satisfaction. In this paper,
we propose a natural and intuitive efficiency property, favoring-eagerness-for-remaining-
items (FERI), which requires that each item is allocated to an agent who ranks it high-
est among remaining items, thereby implying first-choice maximality. Using FERI as a
heuristic, we design mechanisms that satisfy ex-post or ex-ante variants of FERI together
with combinations of other desirable properties of efficiency (Pareto-efficiency), fairness
(strong equal treatment of equals and sd-weak-envy-freeness), and strategyproofness (sd-
weak-strategyproofness). We also explore the limits of FERI mechanisms in providing
stronger efficiency, fairness, or strategyproofness guarantees through impossibility results.

1. Introduction

In the assignment problem (Hylland & Zeckhauser, 1979; Zhou, 1990), n agents have unit
demands and strict ordinal preferences for n items, each with unit supply, and the goal is
to compute an assignment which allocates each agent with one unit of items and (approxi-
mately) maximizes agent satisfaction. This serves as a useful model for a variety of resource
allocation problems involving houses (Shapley & Scarf, 1974), dormitory rooms (Chen &
Sönmez, 2002), school choice without priorities (Miralles, 2009), and computational re-
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sources in cloud computing (Ghodsi et al., 2011, 2012; Grandl et al., 2014). Due to the
wide applicability of the assignment problem, there is a rich literature pursuing the design
of assignment mechanisms satisfying desirable properties of efficiency, fairness, and strat-
egyproofness. However, many of these properties are incompatible with each other, and
trade-offs must be made.

In several practical assignment problems, whether a maximal number of agents are
allocated their respective top items, or first-choice maximality (FCM), is identified as an
important measure of agents’ satisfaction with an assignment. For example, in school
choice programs, the percentage of students admitted to their most preferred school is often
prominently reported in mass media as a measure of student welfare, and is therefore also
an important consideration for school administrators (Dur et al., 2018). Often, additional
efficiency guarantees are also desired such as Pareto-efficiency (PE), which requires that
an assignment cannot be improved upon so that some agents are better off and no agent
is worse off. In light of these considerations, we seek to address the following question in
this paper: Can we design mechanisms that satisfy important efficiency criteria (such as
FCM and PE simultaneously), while also providing desirable fairness and strategyproofness
guarantees?

The desire for efficiency has motivated the design of mechanisms that (approximately)
maximize total satisfaction by a natural heuristic which seeks to allocate each item to
an agent who ranks it as highly as possible. A prominent example is the famous Boston
mechanism, which proceeds iteratively by allocating as many items as possible to agents
who rank it as their first choice, then allocating as many items as possible to agents who
rank the items in the second position, and so on. In fact, Kojima and Ünver (2014) showed
that the Boston mechanism is characterized by a formalization of this natural heuristic,
the favoring-higher-ranks (FHR) efficiency property implying both FCM and PE, which
requires that each item is allocated to an agent that ranks it highest unless every such
agent is allocated an item she ranks higher.

However, the Boston mechanism has long been criticized for failing to provide strat-
egyproofness (Abdulkadiroğlu et al., 2006; Pathak, 2017; Pathak & Sönmez, 2008; Roth
et al., 2005) which is often considered equally important to FCM in practical applications
like school choice and kidney exchange. Several works have attempted to address this failure
by proposing variants of the Boston mechanism. Most notably, Mennle and Seuken (2021)
showed that some members of adaptive Boston mechanisms (ABM, Alcalde, 1996) satisfy
strategyproofness, but they do not consider the question of fairness.

When items are indivisible, even relatively basic fairness notions such as the equal treat-
ment of agents with identical preferences can only be satisfied by a random mechanism, such
as the Boston mechanism where ties between agents are broken using a lottery. Ramezanian
and Feizi (2021) showed that for any lottery, the expected output of the Boston mechanism
satisfies ex-post FHR (ep-FHR). However, they also showed that no ep-FHR mechanism
can satisfy either the fairness property sd-envy-freeness (sd-EF) or the strategyproofness
property sd-strategyproofness (sd-SP). Ep-FHR is also incompatible with a combination of
the weaker strategyproofness property sd-weak-strategyproofness (sd-WSP) and the basic
fairness property of strong equal treatment of equals (SETE). Here, sd-EF is an extension
of envy-freeness (Foley, 1966; Varian, 1973) which requires that no agent considers her al-
location to be dominated by that of another agent when allocations are compared using
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ex-post efficiency ex-ante efficiency ex-ante fairness strategyproofness

ep-FERI ep-FHR ep-PE ea-FERI ea-FHR sd-E sd-EF sd-WEF SETE sd-SP sd-WSP

RP NP12 Na Yc NP12 Nb Nc Nc Yc Yd Yc Yc

PS NP13 Na Ya NP13 Nb Yc Yc Yc Yc,d Nc Yc

BM∗ NP14 Ya Ya NP14 Nb Nb NP14 NP14 YP14 Na Na

ABM∗ YP16 NP16 Ye NP16 NP16 NP16 NP16 ? YT16 Ne Yf

EBM YT1 NP15 Ye NP15 NP15 NP15 NP15 YT1 YT1 NP15 YT1

PR NP17 Ya,b Yb NP17 Yb Yb Nb Nb YP17 Nb Nb

UPRE NP18 NP18 YC2 YT4 NP18 YC2 NP18 YT3 YT3 NP18 NP18

Table 1: Properties of RP, PS, BM, EBM, PR and PRE.

Note: A ‘Y’ indicates that the mechanism at that row satisfies the property at that column, and an ‘N’
indicates that it does not. Results annotated with ‘a’ follow from Ramezanian and Feizi (2021), ‘b’ from Chen
et al. (2021), ‘c’ from Bogomolnaia and Moulin (2001), ‘d’ from Nesterov (2017), ‘e’ from Dur (2019), and
‘f’ from Mennle and Seuken (2021) respectively. A result annotated with T, P or C refers to a Theorem,
Proposition or Corollary in this paper (or Appendix A), respectively. Table 2 and Table 3 summarize the
mechanisms and properties we study in this paper.
*Here, we refer to the expected outputs of the BM and ABM when the priority order over agents is drawn
from a uniform distribution over priority orders.

the notion of stochastic dominance (sd, Bogomolnaia & Moulin, 2001); sd-SP and sd-WSP
require that no agent can manipulate the outcome of the mechanism to her benefit by mis-
reporting her preferences (Bogomolnaia & Moulin, 2001); and SETE requires that agents
who share a common prefix in their rankings of items are allocated the items in the shared
prefix with the equal probability (Nesterov, 2017).

1.1 Our Contributions

We begin by showing that ep-FHR is not compatible with SETE and sd-WEF (a mildly
weaker variant of sd-EF) in Proposition 1, which complements the impossibility results of
the incompatibility of FHR with sd-EF and with SETE and sd-WSP by Ramezanian and
Feizi (2021). Together, this means that mechanisms that satisfy ep-FHR do not provide an
avenue to answer our question (see Section 3).

Our main conceptual contribution is a natural alternative principle for the design of
assignment mechanisms: each item is allocated to an agent most “eager” for it, i.e., ranks it
highest among remaining items. This forms the basis of a novel efficiency property, favoring-
eagerness-for-remaining-items (FERI), which implies both FCM and PE.

We provide an affirmative answer to the question we seek to address in the paper through
our main technical contributions. Using FERI as a heuristic, we design two mechanisms
that satisfy desirable combinations of efficiency, fairness, and strategyproofness properties
(defined formally in Section 2.3, and summarized in Table 3):

An ex-post FERI (ep-FERI), fair, and strategyproof mechanism. The eager
Boston mechanism (EBM, Algorithm 1) we design is efficient, fair, and strategyproof. EBM
satisfies ex-post FERI (ep-FERI), which implies ex-post FCM and ex-post PE, and also sat-
isfies SETE, sd-WEF, and sd-WSP (Theorem 1). EBM bears a close resemblance to the
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ABM family of mechanisms (Algorithm 2), but as we show, EBM is not a member of ABM
(Remark 6), although they are closely related: Every ep-FERI assignment, including the
output of EBM, can be computed by some member of ABM, and every member of ABM
satisfies ep-FERI (Theorem 2).

An ex-ante FERI (ea-FERI) and fair mechanism. We identify the uniform prob-
abilistic respecting eagerness mechanism (UPRE, Definition 4) and show that it satisfies
SETE and sd-WEF (Theorem 3). Besides, UPRE satisfies ex-ante FERI (ea-FERI) which
implies ex-post FCM, ep-PE, and sd-efficiency (the sd version of PE). This is because
UPRE belongs to the family of probabilistic respecting eagerness mechanisms (PRE, Algo-
rithm 3), and as we show that: Every member of PRE satisfies ea-FERI, and every ea-
FERI assignment must be the output of some member of PRE (Theorem 4).

In addition, we explore if ep-FERI or ea-FERI is compatible with stronger notions of
fairness (sd-EF over sd-WEF) and strategyproofness (sd-SP over sd-WSP), and find that no
mechanism can satisfy the following combinations of properties: ep-FERI and sd-EF (Propo-
sition 4); ea-FERI and sd-EF (Proposition 5); ep-FERI, SETE and sd-SP (Proposition 6);
ea-FERI, SETE, and sd-WSP (Proposition 7); and ep-FERI, ea-FERI, and SETE (Propo-
sition 8).

1.2 Related Work

Chen et al. (2021) proposed another extension of FHR, ex-ante FHR (ea-FHR)1 and pro-
vided the probabilistic rank mechanism which satisfies ea-FHR. Since ea-FHR implies ep-
FHR, it suffers the same incompatibility with fairness and strategyproofness as ep-FHR
does. Apart from FHR, rank-maximality (See Definition 6 in Appendix A.2) is a well-
known efficiency property that implies FCM (Irving et al., 2006; Paluch, 2013), which has
been widely studied for assigning schools to students (Abraham, 2009), assigning papers to
referees (Garg et al., 2010), and rental items to customers (Abraham et al., 2006). However,
since rank-maximality is stronger than FHR (Belahcene et al., 2021), once again, the in-
compatibility with fairness and strategyproofness extends to rank-maximality. Popularity
(See Definition 5 in Appendix A.1) is another well-studied efficiency property that implies
FCM (Abraham et al., 2007). However, an assignment satisfying popularity does not always
exist for every instance, and therefore its existence together with other properties cannot
be guaranteed either.

Looking beyond mechanisms that attempt to allocate items to agents who rank them
highest, random priority (RP) mechanism (Abdulkadiroğlu & Sönmez, 1998) and probabilis-
tic serial (PS) mechanism (Bogomolnaia & Moulin, 2001) are famous mechanisms widely
studied in the literature due to their fairness and strategyproofness guarantees (see Table 1).
However, both RP and PS fail to satisfy FCM (See Appendix A.3), and therefore they do
not provide a positive answer to the question we study in the paper.

Table 1 compares the properties of EBM and UPRE to the properties of RP, PS, Boston
mechanism (BM, Abdulkadiroğlu & Sönmez, 2003; Kojima & Ünver, 2014), adaptive Boston
mechanism (ABM, Alcalde, 1996; Dur, 2019), and probabilistic rank mechanism (PR, Chen

1. Chen et al. (2021) named this property sd-rank-fairness. We rename it here to emphasize its connection
with FHR.
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et al., 2021). Figure 5 in Appendix A.1 shows the relationship between efficiency properties
based on FERI to extensions of PE or FHR.

We note that Harless (2018) proposed the immediate division+ mechanism and proved
that it satisfies sd-WEF. This mechanism appears similar to UPRE, although we are unable
to prove or disprove their equivalence. In our paper, we define the family of PRE mechanisms
(of which UPRE is a member) and prove that it is characterized by the newly-proposed
property ea-FERI, which has not been considered earlier to the best of our knowledge. In
addition, with the impossibility results we proved for ea-FERI, we show the limit of the
family of PRE, including UPRE, on guarantees of efficiency, fairness, and strategyproofness.

Abbr. full names

ABM adaptive Boston mechanism (Alcalde, 1996; Dur, 2019)
EBM eager Boston mechanism

BM Boston mechanism (Kojima & Ünver, 2014)
PR probabilistic rank (Chen et al., 2021)
PRE probabilistic respecting eagerness
PS probabilistic serial (Bogomolnaia & Moulin, 2001)
RP random priority (Abdulkadiroğlu & Sönmez, 1998)
UPRE uniform probabilistic respecting eagerness

Table 2: Acronyms for mechanisms studied in this paper.

2. Preliminaries

An instance of the assignment problem is given by a tuple (N,M) and a preference profile
R, where N = {1, . . . , n} is a set of n agents, and M = {o1, . . . , on} is a set of n items with
a single unit of supply of each item.

Preferences. A preference profile R = (�j)j∈N specifies the ordinal preference of each
agent j ∈ N as a strict linear order over M , and �−j denotes the collection of preferences
of agents in N \ {j}. Let R be the set of all the preference profiles. For any j ∈ N , we
use rk(�j , o) to denote the rank of item o in �j , and top(�j , S) to denote the item ranked
highest in �j among S ⊆ M . We also use rk(j, o) and top(j, S) for short if it is clear in
the context. For any linear order � over M and item o, U(�, o) = {o′ ∈M | o′ � o} ∪ {o}
represents the items weakly preferred to o. For any pair of agents j, k ∈ N , the common
prefix of their preferences �j,k is the preference over the first several items which have the
same upper contour set in �j and �k. Formally, �j,k is a strict linear preference over
M ′ ⊆ M such that (i) for any o ∈ M ′, rk(j, o) = rk(k, o) = rk(�j,k, o) ≤ |M ′|, and
(ii) top(j,M \M ′) 6= top(k,M \M ′).

Allocations, Assignments, and Mechanisms. A random allocation is a stochastic n-
vector p = [po]o∈M describing the probabilistic share of each item. Let Π be the set of
all the possible random allocations. A random assignment is a bistochastic n × n matrix
P = [pj,o]j∈N,o∈M . For each agent j ∈ N , the j-th row of P , denoted Pj , is agent j’s
random allocation, and for each item o ∈M , pj,o is j’s probabilistic share of o. We use P to

291



Guo, Sikdar, Xia, Wang, & Cao

denote the set of all possible random assignments. A deterministic assignment A : N →M
is a one-to-one mapping from agents to items, represented by a binary bistochastic n × n
matrix. For each agent j ∈ N , we use A(j) to denote the item allocated to j, and for
each item o ∈ M , A−1(o) to denote the agent allocated o. Let A denote the set of all the
deterministic assignment matrices. By the Birkhoff-Von Neumann theorem, every random
assignment P ∈ P describes at least one probability distribution over A.

A mechanism f : R → P is a mapping from preference profiles to random assignments.
For any profile R ∈ R, we use f(R) to refer to the random assignment output by f . For
every agent j ∈ N , we use f(R)j to denote agent j’s random allocation, and for every item
o ∈M , we use f(R)j,o to denote j’s share of o.

2.1 Economic Efficiency for Deterministic Assignments

We first introduce some notions of efficiency that are commonly used in evaluating deter-
ministic assignments.

Pareto-efficiency (PE). A deterministic assignment A satisfies PE if no agent can be
assigned a better item without assigning any other agent a worse item, i.e., there does not
exist another A′ and a set N ′ ⊆ N with N ′ 6= ∅ such that A′(j) �j A(j) for any j ∈ N ′ and
A′(k) = A(k) for k ∈ N \N ′.

First-choice maximality (FCM). A deterministic assignment A satisfies FCM if it
assigns a maximal number of agents their top ranked items, i.e., there does not exist another
A′ such that |{j ∈ N | rk(j, A′(j)) = 1}| > |{j ∈ N | rk(j, A(j)) = 1}|.

Favoring-higher-ranks (FHR). A deterministic assignment A satisfies FHR if every
item is allocated to an agent that ranks it highest unless every such agent is allocated
an item she ranks higher. Formally, A satisfies FHR if for any agents j and k ∈ N ,
rk(j, A(j)) ≤ rk(k,A(j)) or rk(k,A(k)) < rk(k,A(j)).

Example 1. Consider the preference profile R in Figure 1.

�1: a �1 b �1 c �1 d �1 e �1 f

�2: b �2 a �2 c �2 d �2 e �2 f

�3: c �3 e �3 d �3 f �3 a �3 b

�4: c �4 e �4 d �4 f �4 a �4 b

�5: c �5 e �5 d �5 f �5 a �5 b

�6: c �6 a �6 b �6 d �6 e �6 f

Figure 1: A linear preference profile R.

In any assignment that satisfies FHR, by definition, each item must be assigned to one
of the agents who ranks it on the top if such agents exist. Therefore, a and b go to agents 1
and 2, respectively. Notice that agents 3-6 all rank c on top. If c is allocated to agents 3-5,
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then by FHR, agent 6 cannot be assigned either item d or item e, since for any j ∈ {3, 4, 5},
rk(6, d) > rk(j, d) and rk(6, e) > rk(j, e). The items circled in red represent one such
deterministic assignment that satisfies FHR. �

Remark 1. FHR implies FCM (Dur et al., 2018; Kojima & Ünver, 2014) and PE (Rameza-
nian & Feizi, 2021). FCM and PE do not imply each other.

2.2 Economic Efficiency for Random Assignments

By the Birkhoff-Von Neumann theorem, all of the properties for deterministic assign-
ments can naturally be extended to random assignments: For any property X ∈
{PE, FCM, FHR, . . . } for deterministic assignments, a random assignment satisfies ex-post
X if it is a convex combination of deterministic assignments, each of which satisfies the
property X. In the paper, we also say that a mechanism f satisfies a property Y if f(R)
satisfies Y for every profile R ∈ R.

Besides the efficiency notions above, we also introduce ex-ante notions for random as-
signments. One of the notions is based on stochastic dominance (sd), which extends an
agent’s preference over the single items to the lotteries over items (Segal-Halevi et al.,
2020) and is used in comparing random allocations and assignments.

Definition 1. (Bogomolnaia & Moulin, 2001) Given a preference relation � over M , the
stochastic dominance relation associated with �, denoted by �sd, is a partial ordering
over Π such that for any pair of random allocations p, q ∈ Π, p (weakly) stochastically
dominates q, denoted by p �sd q, if for any o ∈M ,

∑
o′∈U(�,o) po′ ≥

∑
o′∈U(�,o) qo′.

Sd-efficiency (sd-E). A random assignment P satisfies sd-E if P is not stochastically
dominated by other random assignments, i.e., there does not exist a random assignment
Q 6= P such that Qj �sdj Pj for every j ∈ N .

Ex-ante FHR (ea-FHR) A random assignment P satisfies ea-FHR, if the shares of
every item are allocated to agents that rank it highest unless every such agent’s demand is
satisfied. Formally, P satisfies ea-FHR if for every agent j ∈ N and every o ∈M such that
pj,o > 0, it holds that for every k ∈ N such that rk(k, o) < rk(j, o),

∑
o′∈U(k,o) pk,o′ = 1.

Remark 2. Ea-FHR implies sd-E and ep-FHR (Chen et al., 2021), while both sd-E and
ep-FHR implies ep-PE (Bogomolnaia & Moulin, 2001; Ramezanian & Feizi, 2021).

2.3 Fairness and Strategyproofness

Apart from efficiency, fairness and strategyproofness are of great concern in mechanism. In
the following, we introduce fairness properties for random assignments and strategyproof-
ness properties for mechanisms.

Strong equal treatment of equals (SETE). A random assignment P satisfies SETE
if any two agents have the same allocation over items appearing in the common prefix of
their preferences. Formally, for every pair of j and k ∈ N , pj,o = pk,o for any o appearing
in �j,k.

Sd-envy-freeness (sd-EF). A random assignment P is sd-EF, if every agent’s allocation
weakly stochastically dominates the others’, i.e., Pj �sdj Pk for every pair of j and k ∈ N .
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Sd-weak-envy-freeness (sd-WEF). A random assignment P is sd-WEF, if no agent’s
allocation is dominated by others’, i.e., Pk �sdj Pj =⇒ Pj = Pk for every pair of j and
k ∈ N .

Remark 3. Sd-EF implies sd-WEF (Bogomolnaia & Moulin, 2001) and SETE (Nesterov,
2017), while sd-WEF and SETE do not imply each other.

Sd-strategyproofness (sd-SP). When an agent reports the true preference, a mech-
anism f satisfying sd-SP always outputs an allocation which weakly dominates the ones
when she misreports. Formally, for every R ∈ R, it holds that f(R) �sdj f(R′) for every
j ∈ N and R′ = (�′j ,�−j),

Sd-weak-strategyproofness (sd-WSP). A mechanism f satisfying sd-WSP guarantees
that when an agent misreports her preference, she would not receive an allocation domi-
nating the one when she truly reports. Formally, for every R ∈ R, it holds that f(R′) �sdj
f(R) =⇒ f(R′)j = f(R)j for every j ∈ N , and R′ = (�′j ,�−j).

Remark 4. Sd-SP implies sd-WSP (Bogomolnaia & Moulin, 2001).

Abbr. full names category

ea-FERI ex-ante favoring-eagerness-for-remaining-items ex-ante efficiency
ea-FHR ex-ante favoring-higher-ranks ex-ante efficiency
ep-FERI ex-post favoring-eagerness-for-remaining-items ex-post efficiency
ep-FHR ex-post favoring-higher-ranks ex-post efficiency
ep-PE ex-post Pareto-efficiency ex-post efficiency
FCM first-choice maximality efficiency∗

FERI favoring-eagerness-for-remaining-items efficiency∗

FHR favoring-higher-ranks efficiency∗

PE Pareto-efficiency efficiency∗

sd-EF sd-envy-freeness ex-ante fairness
sd-E sd-efficiency ex-ante efficiency
sd-SP sd-strategyproofness strategyproofness
sd-WEF sd-weak-envy-freeness ex-ante fairness
sd-WSP sd-weak-strategyproofness strategyproofness
SETE strong equal treatment of equals ex-ante fairness

Table 3: Acronyms for properties used in this paper.

Note: Properties annotated with ∗ are for deterministic assignments

3. Incompatibility of FHR with Fairness

In this section, we show that FHR mechanisms are unable to satisfy desirable properties of
fairness. In Proposition 1, we show that requiring ep-FHR together with SETE leads to a
violation of sd-WEF, meaning that no FHR mechanisms can satisfy all of these properties
simultaneously. This complements the results by Ramezanian and Feizi (2021) which showed
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that ep-FHR is not compatible with either sd-EF or sd-SP, and that no mechanism satisfies
ep-FHR, SETE, and sd-WSP. Together these negative results demonstrate that ep-FHR
mechanisms cannot provide an answer to the question proposed in Section 1.

Proposition 1. No mechanism simultaneously satisfies ex-post favoring-higher-ranks (ep-
FHR), sd-weak-envy-freeness (sd-WEF), and strong equal treatment of equals (SETE).

Proof. We prove it using the instance with preference R in Figure 1. Let P be the random
assignment satisfying ep-FHR and SETE.

First, we look into the deterministic assignments satisfying FHR. By FHR implying
FCM, if an item is ranked top by some agents, then it should be assigned to one of them.
Therefore, agents 1 and 2 get a and b respectively, which means that p1,a = p2,b = 1, and
one of agents 3-6 gets c. Since agents 3-5 share the same preference, there are two kinds of
assignments satisfying FHR:
(i) if agent 6 gets c, then {d, e, f} can be assigned arbitrarily among agents 3-5;

(ii) if agent 6 does not gets c, then she does not get e or d since rk(6, d) > rk(j, d) and
rk(6, e) > rk(j, e) with j ∈ {3, 4, 5}, which also means that p6,d = p6,e = 0.

Then, by SETE, agents 3-5 have the same allocation, and pj,c = pk,c = 1/4 for any
j, k ∈ {3, 4, 5, 6}. From the observation above, P must be the following assignment.

Assignment P
a b c d e f

1 1 0 0 0 0 0
2 0 1 0 0 0 0

3-5 0 0 1/4 1/3 1/3 1/12
6 0 0 1/4 0 0 3/4

Assignment P is not sd-WEF because
∑

o′∈U(�6,o)
p6,o′ ≤

∑
o′∈U(�6,o)

p1,o′ holds for any
o ∈M , and it is strict when o ∈ {e, d}.

Since ea-FHR implies ep-FHR, we can extend Proposition 1 to ea-FHR (Corollary 1). We
also discuss in Appendix A.2 the compatibility of rank-maximality, which also implies FCM,
with fairness, but the result is still negative.

Corollary 1. No mechanism simultaneously satisfies ex-ante favoring-higher-ranks (ea-
FHR), strong equal treatment of equals (SETE), and sd-weak-envy-freeness (sd-WEF).

4. Ex-post Favoring Eagerness for Remaining Items

Motivated by the desire for FCM mechanisms that are also fair and strategyproof, we
propose favoring-eagerness-for-remaining-items (FERI), an efficiency property which
implies both FCM (Remark 5) and PE (Proposition 2). As we will show in Section 4.1, the
ex-post variant of FERI is compatible simultaneously with fairness (sd-WEF and SETE)
and strategyproofness (sd-WSP).

Informally, a deterministic assignment satisfies FERI (Definition 2) if it can be decom-
posed in a manner that every item ranked highest by some agents is allocated to one such
agent, subject to which, every remaining item is allocated to a remaining agent who ranks
it highest among remaining items if such an agent exists, and so on.
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Definition 2 (FERI). Given any deterministic assignment A, we define for each r ∈
{1, 2, . . . } a set of items TA,r = {o ∈ M : o = top(j,M \

⋃
r′<r TA,r′) for some j ∈

N with A(j) /∈
⋃
r′<r TA,r′}.

The assignment A satisfies favoring-eagerness-for-remaining-items if for every r ∈
{1, 2, . . . } and every item o ∈ TA,r, it holds that the item o is assigned to an agent most
eager for it, i.e, o = top(A−1(o),M \

⋃
r′<r TA,r′).

Definition 2 suggests the following heuristic for designing an FERI mechanism: In each
iteration, first remove all the agents who have already been allocated an item; Then elim-
inate the allocated items from the preference lists of every remaining agent; Now allocate
each remaining item to an agent who ranks it as the top remaining item according to their
preferences over remaining items, if such an agent exists, using a tie-breaking rule if there
are multiple such agents. In this way, every remaining agent has a chance of being allocated
her most preferred remaining item in each iteration. In contrast, in the r-th iteration of the
Boston mechanism (which characterizes FHR assignments), each agent only has a chance
of being allocated an item if that item has not been allocated yet and is ranked at the
r-th position by the agent; if there is no such item, she cannot be allocated any item in
iteration r. This notion of iteratively making decisions based on preferences over remaining
alternatives is similar in spirit to that of single transferable voting rules (Hare, 1861) that
are resistant to strategic manipulation (Bartholdi & Orlin, 1991) in social choice, and the
iterated elimination of dominated strategies for solving strategic games in game theory (Os-
borne, 2004). In this vein, FERI is a natural alternative to FHR since it also implies FCM
and PE.

Remark 5. FERI implies FCM. Specifically, in any FERI assignment A, when r = 1,
it requires that for every item o ranked on the top by some agents, i.e., o ∈ TA,1 =
{o ∈ M : o = top(j,M) for some j ∈ N}, item o is allocated to one such agent, i.e.,
o = top(A−1(o),M).

Although FHR and FERI both imply FCM, they do not imply each other as we show
in Example 2.

Example 2. [FHR6⇒FERI, FERI6⇒FHR] Consider again the profile in Figure 1. Let A be
the FHR assignment indicated by the circled items, and A∗ be the following assignment,
where j ← o means agent j is allocated item o:

A∗ :1← a, 2← b, 3← c, 4← e, 5← f, 6← d.

It is easy to see that A violates FERI because item d ∈ TA,2 due to the fact that TA,1 =
{a, b, c}, d = top(6,M \ TA,1), and A(6) /∈ TA,1; but A−1(d) = 5 and d 6= top(5,M \ TA,1)
= e.

Besides, we show that A∗ satisfies FERI:
- For r = 1, it is easy to see that for every o ∈ TA∗,1 = {a, b, c}, o = top(j,M) for each j

with A∗(j) = o.

- For r = 2, TA∗,2 = {e, d}. Items e and d are allocated to agents most eager for them among
the remaining items M ′ = M \ TA∗,1, i.e., e = top(4,M ′) = A∗(4) and d = top(6,M ′)
= A∗(6).

296



Favoring Eagerness for Remaining Items

- For r = 3, TA∗,3 = {f}. Since M ′′ = M \TA∗,1∪TA∗,2 = {f}, we have that f = top(5,M ′′)
= A∗(5) trivially.

But A∗ violates FHR because A∗(6) = d, rk(6, d) > rk(5, d), and d �5 A
∗(5). �

Proposition 2 shows that FERI is a stronger efficiency property than PE, which means
that ep-FERI implies ep-PE. We also discuss in Appendix A.1 the relation of FERI to
popularity (Abraham et al., 2007) which is also a famous efficiency property.

Proposition 2. [FERI⇒PE, PE 6⇒FERI] A deterministic assignment satisfying favoring-
eagerness-for-remaining-items (FERI) also satisfies Pareto-efficiency (PE), but not vice
versa.

Proof. (FERI ⇒ PE) Consider an arbitrary preference profile R, and let A be any deter-
ministic assignment that satisfies FERI. Suppose for the sake of contradiction that A is
Pareto dominated by another assignment. Then, since agents have strict preferences, there
must exist an assignment A′ that Pareto dominates A and can be obtained from A by agents
in an improving cycle exchanging items along the cycle, while all other agents’ allocations
remain unchanged. More formally, there exists an assignment A′ such that a set of h ≤ n
agents N ′ = {j1, j2, · · · , jh} are involved in an improving cycle where for any i = 1, . . . , h,
A′(ji) = A(ji+1 (mod h)) �i A(ji), and for every agent j ∈ N \N ′, A′(j) = A(j).

For ease of exposition, let the agents in the improving cycle be N ′ = {1, . . . , h}, and for
any i = 1, . . . , n, let oi = A(i). Without loss of generality, let o1 be the item that belongs to
the set TA,r with the smallest possible value of r among {o1, . . . , oh}. Then, by A satisfying
FERI,

o1 = top(1,M \
⋃
r′<r

TA,r′). (1)

By our choice of r, item o2 ∈M \
⋃
r′<r TA,r′ , and Eq (1) implies that o1 �1 o2. However,

by our assumption that A′ Pareto dominates A, we must have that o2 = A′(1) �1 A(1) = o1,
a contradiction. Therefore, any deterministic assignment satisfying FERI is also PE.

(PE 6⇒ FERI) For the instance with the following profile R from Ramezanian and Feizi
(2021), let A be the deterministic assignment indicated by the items circled in red in the
following.

�1: a �1 b �1 c,

�2: a �2 c �2 b,

�3: b �3 a �3 c .

The assignment A is PE since it is an outcome of RP with the priority order 2 B 1 B 3.
We see that b ∈ TA,1 = M since top(3,M) = b. However, A−1(b) = 1 and b 6= top(1,M)
= a, which violates FERI.
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4.1 EBM Satisfies ep-FERI, sd-WEF, SETE, and sd-WSP

In this section, we define the eager Boston mechanism (EBM, Algorithm 1), and prove that
it is efficient (ep-FERI and therefore ex-post FCM and ep-PE), fair (sd-WEF and SETE),
and strategyproof (sd-WSP). EBM proceeds in multiple rounds using FERI as a heuristic
to allocate items. In each round, each unsatisfied agent j applies for the item that she is
most eager for, i.e., her top remaining item o. We use No to refer to the set of agents who
apply for o. Every agent in No gets o with probability 1/|No|, and the winner is determined
by a random lottery winner generator G: Given a set of agents S ⊆ N , G(S) is a single
agent drawn from S uniformly at random. At the end of each round, for every item o with
No 6= ∅, both the item o and the winner G(No) are removed. We illustrate the execution
of EBM in Example 3. The output EBM(R) is a deterministic assignment, which can be
computed in polynomial time if G runs in polynomial time as we show in Appendix A.4.

Algorithm 1 Eager Boston mechanism (EBM)

1: Input: An assignment problem (N,M), a strict linear preference profile R, and a
lottery winner generator G.

2: M ′ ←M . N ′ ← N . A← 0n×n.
3: while M ′ 6= ∅ do
4: for each o ∈M ′ do
5: No ← {j ∈ N ′ | top(j,M ′) = o}.
6: Run a lottery over No 6= ∅ to pick an agent jo = G(No) and allocate o, i.e., Ajo,o ← 1.

7: M ′ ←M ′ \ {o ∈M ′ | No 6= ∅}. N ′ ← N ′ \ ∪o∈M ′{jo}.
8: return A

Example 3. We execute EBM on the instance in Figure 1. The table below shows for each
round, which item each agent applies for, and a ‘/’ represents the fact that an agent does
not apply for any item since she has already been allocated one. The circled items represent
the allocation of an item to the lottery winner.

Round
Agent

1 2 3 4 5 6

1 a b c c c c

2 / / / e e d

3 / / / / f /

- At round 1, agents 1 and 2 apply for a and b, respectively, and win them since they are
the only applicants, while agents 3 - 6 apply for c and enter a lottery with equal chances of
winning.
- If agent 3 wins c at round 1, then at round 2, agents 4 and 5 apply for e, while agent 6
applies for d alone and gets it.
- If agent 4 wins e at round 2, agent 5 applies for and gets f at round 3.

Then, EBM outputs the assignment A∗ in Example 2. �

Notice that Algorithm 1 is a random algorithm that produces as output a deterministic
assignment depending on the outcomes of the lotteries in each round. We use E(EBM(R)) to
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refer to the expected outcome of EBM, which is a random assignment 2. We prove that EBM
satisfies ex-post FERI (ep-FERI), sd-WEF, and sd-WSP in Theorem 1. Here we recall that
a random assignment satisfies ep-FERI (ex-post favoring-eagerness-for-remaining-items) if
it is a convex combination of FERI deterministic assignments. All the missing proofs
can be found in Appendix B.

Theorem 1. EBM satisfies ex-post favoring-eagerness-for-remaining-items (ep-FERI),
sd-weak-envy-freeness (sd-WEF), strong equal treatment of equals (SETE), and sd-weak-
strategyproofness (sd-WSP).

Proof sketch. Given any profile R, let P = E(EBM(R)). For convenience, we refer to
each possible execution of EBM, i.e., each way in which lottery winners are picked, as a
possible world below.

(ep-FERI) Let A = EBM(R). We show that the following two conditions hold for each
r ≥ 1:

(1) the set of items assigned at each round r of Algorithm 1, i.e., {o ∈ M ′|No 6= ∅}, are
exactly those in TA,r, and

(2) the assignment A allocates every item o ∈ TA,r to an agent who ranks o as the top item
in the set of remaining items M ′, i.e. an agent in {j ∈ N ′|top(j,M ′) = o}.

When r = 1, we obtain condition (1) trivially with M ′ = M and N ′ = N . Condition (2)
holds because at the beginning of round 1, we have that for any o ∈ TA,1, o = top(jo, TA,1)
with jo = A−1(o) by Line 6 of Algorithm 1, which means that No 6= ∅ and o is assigned to
jo who ranks o as the top item among M . Before round 2, by Line 7, every such item o and
its winner jo are removed from M ′ and N ′ respectively . With the updated M ′ and N ′, we
can obtain the two conditions hold for r = 2 with a similar analysis. The proof follows by
repeating a similar argument at each subsequent round. In this way we see that A is FERI,
and therefore P is ep-FERI.

(sd-WEF) For any pair of agents j, k with Pk �sdj Pj , we show that the following two
conditions hold at any round r during the execution of Algorithm 1, where k has not been
allocated an item yet:

(1) if j applies for o, then k also applies for o, and

(2) if j gets some item o at round r′ < r, then k applies for the item that j ranks highest
among remaining items.

Condition (1) shows that at any round where both agents are unassigned, they apply for the
same item and therefore have the same chance to win it. Condition (2) shows that if j gets
an item at an earlier round, then k applies to the item j would have applied to had k been
allocated an item in an earlier round. The proof proceeds by comparing the probabilities
of the worlds in which j and k get o respectively, and shows that they are equal for every
item o, considered one by one according to the preference order �j , from which it follows
that Pk = Pj .

2. Here, E(EBM(R)) is not a random variable. It is a bistochastic matrix that may correspond to more
than one distribution over deterministic assignments.
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(SETE). The proof involves comparing the probabilities that agent j and k get each
o ∈ U(�j,k, om).

Case 1: First, for the world w where j gets o at round r while k gets o′ ∈ U(�j,k, om) at
round r′, we can find out another world w′ where only j and k swap their items. It follows
that Pr(w) = Pr(w′) since the other lotteries keep the same as w.

Case 2: Then for the worlds Wj where j gets o at round r and k does not get items in
�j,k, we can also construct another set of worlds Wk such that: k gets o at round r, and j
participates in lotteries instead from round r + 1 to the last round that k applies for items
in �j,k. It follows that Pr(Wj) = Pr(Wk).

With the fact that Pr(w) = Pr(w′) holds for Case 1 and Pr(Wj) = Pr(Wk) for Case
2, it follows that pj,o = pk,o for any o. This completes the proof.

(sd-WSP) Let R′ = (�′j ,�−j) be the profile when agent j misreports her preferences as �′j ,
Q = EBM(R′), and assume that Qj �sdj Pj . The proof proceeds by considering each item o
according to the order �j , and shows that if j applies for o at round r in some world w for
EBM(R), then j also applies for o at round r in any world with the lotteries and winners
before round r identical to those of w for EBM(R′). This means that despite misreporting,
j applies for the same items as she does when truthfully reporting her preferences, and
therefore j has the same probability to win each item. It follows that pj,o = qj,o for each
o ∈M , and therefore, that if Qj �sd Pj , then Qj = Pj . �

4.2 Ep-FERI and Adaptive Boston Mechanism

We now show that not only is every member of adaptive Boston mechanism (ABM, Alcalde,
1996) guaranteed to output an ep-FERI assignment, but also that every ep-FERI assignment
can be computed by some member of ABM, meaning that the output of EBM must also
be the output of some member of ABM which depends on the instance of the assignment
problem. As we show in Remark 6, although EBM appears similar to ABM, EBM does not
belong to the family of ABM mechanisms.

Each algorithm in ABM (Algorithm 2) is specified by a probability distribution π over
the priority orderings of agents, denoted ABMπ, and it computes an assignment as follows.
First, a priority order B, a strict linear order over N is picked according to the probability
distribution π. Then, items are allocated to agents in multiple rounds. In each round, each
unsatisfied agent applies for a remaining item that she is most eager for. Each remaining
item o, if it has applicants, is assigned to the agent jo who is ranked highest in B among
all the applicants. At the end of each round, every such item o and the corresponding jo
are removed from M and N , respectively.

Theorem 2 shows that ep-FERI characterizes the family of ABM algorithms. Through-
out, we will use π(B) to denote the probability of a priority order B according to the
distribution π. If π(B) = 1 for a certain B, we will use ABMB to refer to the corresponding
algorithm for convenience. We also use E(ABMπ(R)) to refer to the expected outcome of
ABMπ.

Theorem 2. Given a profile R, a random assignment P satisfies ex-post favoring-
eagerness-for-remaining-items (ep-FERI) if and only if there exists a probability distribution
π over all the priorities such that P = E(ABMπ(R)).
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Algorithm 2 Adaptive Boston mechanism (ABM, Alcalde, 1996)

1: Input: An assignment problem (N,M), a strict linear preference profile R, a probability
distribution π over all priority orderings of agents.

2: M ′ ←M . N ′ ← N . A← 0n×n.
3: Randomly choose a priority order B according to π.
4: while M ′ 6= ∅ do
5: for each o ∈M ′ do
6: No ← {j ∈ N ′ | top(j,M ′) = o}.
7: Allocate o to agent jo which is ranked highest in B among No, i.e., Ajo,o ← 1.

8: M ′ ←M ′ \ {o ∈M ′ | No 6= ∅}. N ′ ← N ′ \ ∪o∈M ′{jo}.
9: return A

Proof. (Satisfaction) The proof is similar to proving EBM satisfies ep-FERI, and is pro-
vided in Appendix B for the sake of completeness.

(Uniqueness) Consider an arbitrary random assignment P satisfying ep-FERI for a prefer-
ence profile R. Then, P can be decomposed into a set A′ ⊆ A of deterministic assignments
satisfying FERI with positive probability, i.e., P =

∑
Ai∈A′ αi ∗Ai, where αi > 0.

Consider any A ∈ A′. Since A satisfies FERI, by Definition 2, there exist non-empty
sets TA,1, . . . , TA,K , such that for each r ∈ {1, . . . ,K}, TA,r = {o ∈ M : o = top(j,M \⋃
r′<r TA,r′)} for some j ∈ N with A(j) 6∈

⋃
r′<r TA,r′ .

Consider any priority ordering B where for any r′, r ∈ {1, . . . ,K} with r′ < r, and any
pair of items o′ ∈ TA,r′ and o ∈ TA,r, it holds that agent A−1(o′) has higher priority than
A−1(o), denoted as A−1(o′) B A−1(o). It is easy to see that since A is deterministic, and
every agent receives exactly one item, at least one such priority ordering always exists.

Let B = ABMB(R). We claim that at any round r during the execution of ABMB(R),
every item in o ∈ TA,r is allocated to A−1(o), i.e., B−1(o) = A−1(o). It is easy to see that
the claim is true for r = 1. Since A satisfies FERI, for any item o ∈ TA,1, which is the
set of items that are ranked on top by some agent, A−1(o) ranks o as her top item, i.e.,
A−1(o) ∈ No = {j ∈ N | top(j,M) = o}, and therefore she applies for o at round 1. Due to
the construction of B, A−1(o) must have the highest priority among No and obtain item o,
i.e., B−1(o) = A−1(o).

Now, assume that it holds that at any round r′ < r, every o′ ∈ TA,r′ is allocated to
A−1(o′), i.e., B−1(o′) = A−1(o′). We show that at round r, any o′ ∈ TA,r is allocated to
A−1(o), i.e., B−1(o) = A−1(o). Assume for the sake of contradiction that there exists an
item o ∈ TA,r, such that B−1(o) = k 6= j = A−1(o). By our assumption about rounds r′ < r,
both j and k have not been assigned an item in an earlier round by ABMB(R). Notice that
by Line 6 of Algorithm 2, top(k,M \

⋃
r′<r TA,r′) = o, since every item in

⋃
r′<r TA,r′ is

allocated in an earlier round by our assumption. Also, since A is FERI, we also have that
top(j,M \

⋃
r′<r TA,r′) = o. Therefore, both j and k apply for item o during round r of

ABMB(R). Then, it must hold that k B j since k is assigned o in round r of the execution
of ABMB(R).

However, by the construction of B and the assumption that j = A−1(o), k B j implies
that there exists some r∗ ≤ r such that k gets an item in TA,r∗ . Then, there must exist some
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item o∗ ∈ TA,r∗ such that k = A−1(o∗). It also means that o∗ 6= o = B(k), and therefore
B−1(o∗) 6= k = A−1(o∗), a contradiction to our assumption that B−1(o′) = A−1(o′) for
every o′ ∈ TA,r′ with r′ < r. Thus, by induction, it holds that B = A.

We have shown that for every deterministic assignment Ai ∈ A′, there exists a priority
order Bi such that the output of ABMBi(R) = Ai. Then, for the ep-FERI assignment
P =

∑
Ai∈A′ αiAi, is the output of a member of the family of ABM algorithms specified by

the probability distribution π over priority orderings where for any Ai ∈ A′, π(Bi) = αi,
i.e., ABMπ(R) = P . This completes the proof.

Remark 6. Mennle and Seuken (2021) proved that ABMπ is sd-WSP if π(B) > 0 for
every B. However, as we show in Appendix A.5, there is no such a distribution π that
EBM(R) = ABMπ(R) for every preference profile R, meaning that EBM is not a member
of ABM. Therefore, the sufficient condition proposed by Mennle and Seuken (2021) for
checking if a member of ABM satisfies sd-WSP is not applicable for the proof of EBM
satisfying sd-WSP.

5. Ex-ante Favoring Eagerness for Remaining Items

In this section, we design a family of mechanisms that satisfy the ex-ante variant of FERI,
ex-ante favoring-eagerness-for-remaining-items (ea-FERI), which implies ex-post
FCM (Remark 7), ep-PE, and sd-E (Proposition 3). We further prove that a member of
this family of mechanisms satisfies sd-WEF and SETE.

Intuitively, a random assignment satisfies ea-FERI if the shares of every remaining item
are only distributed among the agents who are most eager for it unless every such agent’s
demand has been satisfied by better items.

Definition 3 (ea-FERI). Given a random assignment P , we defined MP,0 = ∅ and for
each item o ∈M , EP,0(o) = ∅. Then, for each r ∈ {1, 2, . . . }, we define

(i) the set of items with positive supply after excluding the shares owned by agents in⋃
r′<r EP,r′(o), MP,r = {o ∈M :

∑
k∈

⋃
r′<r EP,r′ (o)

pk,o < 1}, and

(ii) for each item o ∈MP,r, EP,r(o) = {j ∈ N : o = top(j,MP,r)} to be the set of all agents
eager for it.

A random assignment P satisfies ex-ante favoring-eagerness-for-remaining-items
(ea-FERI) if for every r ∈ {1, 2, . . . } and item o ∈MP,r, it holds for any agent j ∈ N that
if there exists an r′ < r such that j ∈ EP,r′(o), agent j is satisfied by items weakly preferred
to o, i.e.,

∑
o′∈U(�j ,o)

pj,o′ = 1.

Ea-FERI is a natural ex-ante extension of FERI for random assignments. Indeed, it is
easy to see that for deterministic assignments, ea-FERI is equivalent to FERI. We also note
that ea-FERI and ep-FERI do not imply each other. Please see Appendix A.1 for more
details.

Remark 7. Ea-FERI implies ex-post FCM. Specifically, in any ea-FERI assignment P , for
item o ∈ M which is ranked top by some agents, i.e., o ∈ MP,1 and EP,1(o) 6= ∅, we have
that o /∈MP,r with r > 1 by ea-FERI and the fact that

∑
o′∈U(�j ,o)

= 0 for j ∈ EP,1(o), and

it follows that every such o is allocated to one of the agents in EP,1(o) who rank o top among
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all the items in every deterministic assignment that constitutes the convex combination for
P .

Proposition 3 below shows that ea-FERI implies sd-E.

Proposition 3. [ea-FERI⇒sd-E, sd-E 6⇒ea-FERI] A random assignment satisfying ex-ante
favoring-eagerness-for-remaining-items (ea-FERI) also satisfies sd-efficiency (sd-E), but not
vice versa.

Proof. (ea-FERI ⇒ sd-E) Assume for the sake of contradiction that P is ea-FERI, but
not sd-E. By assumption and Lemma 2 (in Appendix A.3), we can find a set of agents
{j1, j2, · · · , jh} and items M∗ = {o1, o2, · · · , oh} such that oi+1 (mod h) �ji oi with pji,oi > 0
with i ≤ h. For each oi, let ri be the round where ji consumes it. We note that ri is unique
for each oi, because if item oi is consumed by ji at round ri, then either item oi is consumed
until it is exhausted, or agent ji is satisfied and therefore does not participate in consuming
items at any subsequent round. Without loss of generality, let oi′ = arg minoi∈M∗ ri. Then
we have that all the items in M∗ are available at round ri′ and ji′ ∈ Noi′ , which means that
top(ji′ ,M

′) = oi′ where M ′ is the set of all the available items at that round in Algorithm 3.
Since M∗ ⊆M ′, we have that oi′ �i′ oi′+1, a contradiction to the assumption.

(sd-E 6⇒ ea-FERI) For the following preference profile R, the assignment P is the outcome
of PS which satisfies sd-E:

�1: a �1 b �1 c,
�2: a �2 c �2 b,
�3: b �3 a �3 c.

Assignment P
a b c

1 1/2 1/4 1/4
2 1/2 0 1/2
3 0 3/4 1/4

We see that EP,1(b) = {3},
∑

o∈U(�3,b)
= 3/4 < 1, and b ∈ MP,2, which violates ea-

FERI.

5.1 UPRE Satisfies ea-FERI, sd-WEF, and SETE

We propose the family of probabilistic respecting eagerness mechanisms (PRE) defined
in Algorithm 3, and show that the uniform probabilistic respecting eagerness mechanism
(UPRE), a member of PRE, satisfies the desirable fairness notions sd-WEF and SETE
(Theorem 3). We also prove that not only does every PRE mechanism satisfy ea-FERI, but
also every ea-FERI assignment must be the output of some member of PRE (Theorem 4).
Therefore, UPRE satisfies ea-FERI, sd-WEF, and SETE.

Each member of the PRE family of mechanisms is specified by a parameter ω = (ωj)j∈N ,
denoted PREω. Each ωj is an eating speed function which maps each time instance t to

a rate of consumption for agent j such that
∫ 1

0 ωj(t)dt = 1, ωj(t) ≥ 0 for t ∈ [0, 1], and
ωj(t) = 0 for t > 1, i.e., agent j consumes exactly one unit of item during one unit of time.
At the beginning of execution, we set s(o) = 1 to refer to the supply of item o, and set
tj = 0 to indicate the elapsed time each agent j has spent on consumption. At each round
r, each agent j determines top(j,M ′), her top item among the set M ′ consisting of every
item o which remains available, i.e., all items with s(o) > 0. For each item o ∈ M ′, No is
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the set of agents for whom o is the top item. All the agents in No consume o together for
γω(No, (tj)j∈N , s(o)) units of time. For any N ′ ⊆ N , elapsed consumption times (tj)j∈N ,
and supply s, we define:

γω(N ′, (tj)j∈N , s) = min({ρ |
∑
k∈N ′

∫ tk+ρ

tk

ωk(t)dt = s}

∪ {ρ ∈ [0, 1] |
∑
k∈N ′

∫ tk+ρ

tk

ωk(t)dt =
∑
k∈N ′

∫ 1

tk

ωk(t)dt}),
(2)

Notice that for any agent j,
∫ 1
tj
ωj(t)dt refers to her remaining demand. In words, Eq (2)

requires that agents in No stop their consumption when either the supply of o is exhausted,
or all of them are satisfied. Then the amount that agent j consumes at this round is the
shares of o she gets in the final outcome, and we update the supply s(o) and the elapsed
time tj .

Algorithm 3 Probabilistic respecting eagerness (PRE)

1: Input: An assignment problem (N,M), a strict linear preference profile R, a collection
of eating functions ω = (ωj)j∈N .

2: M ′ ←M , P ← 0n×n, s(o)← 1 for every o, and tj ← 0 for every j.
3: while M ′ 6= ∅ do
4: No ← {j ∈ N | top(j,M ′) = o}.
5: for each item o ∈M ′ do
6: Agents in No consume o.

6.1: ρo ← γω(No, (tj)j∈N , s(o)).

6.2: For each j ∈ No, pj,o ←
∫ tj+ρo
tj

ωj(t)dt.

7: s(o)← s(o)−
∑

k∈No

∫ tk+ρo
tk

ωk(t)dt.
8: For each j ∈ No, tj ← tj + ρo.
9: M ′ ←M ′ \ {o ∈M ′ | s(o) = 0}.

10: return P

We define the uniform probabilistic respecting eagerness mechanism (UPRE) to be the
member of PRE (defined in Algorithm 3) in which every agent consumes items uniformly at
the same speed during the time period [0, 1]. We prove in Theorem 3 that UPRE satisfies
sd-WEF and SETE. As a member of PRE, UPRE also satisfies ea-FERI by Theorem 4.
We demonstrate the execution of UPRE in Example 4, and also show that UPRE runs in
polynomial time in Appendix A.4.

Definition 4 (UPRE). The uniform probabilistic respecting eagerness mechanism
(UPRE) is a member of PRE, where every agent eats at a uniform eating speed of one unit
of item per one unit of time, i.e., for each j ∈ N ,

ωj(t) =

{
1, t ∈ [0, 1],

0, t > 1.
(3)
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Figure 2: An example of the execution of a member of PRE (UPRE).

Example 4. In Figure 2 and the discussion below, we illustrate the execution of UPRE
applied to the profile in Figure 1.

- At round 1, agents 1 and 2 consume a and b respectively, and other agents consume c.
After consumption, agents 1 and 2 fully get a and b, respectively, and the other four agents
each get 1/4 units of c. The supply of each consumed item is updated as s(a) = s(b) =
s(c) = 0.

- At round 2, agents 3 - 5 consume e and each get 1/3 units such that s(e) = 0, and
agent 6 consumes d till satisfied and gets 3/4 units, leaving s(d) = 1/4.

- At round 3, agents 3 - 5 consume d and each get 1/12 units each such that s(d) = 0.
- At round 4, agents 3 - 5 consume f and get 1/3 units each.
The following assignment is the final output of this procedure:

a b c d e f

1 1 0 0 0 0 0
2 0 1 0 0 0 0

3-5 0 0 1/4 1/12 1/3 1/3
6 0 0 1/4 3/4 0 0

Theorem 3. UPRE satisfies sd-weak-envy-freeness (sd-WEF) and strong equal treatment
of equals (SETE).

Proof sketch. (sd-WEF) Given a profile R, let P = UPRE(R). For agents j and k with
Pk �sdj Pj , we show that at each round r, agent k applies for the same item o as j because
otherwise,
(1) if o is consumed to exhaustion by j and other agents, then agent k can never obtain

shares of o at later rounds, and
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(2) if j is satisfied upon consuming o, i.e., satisfied by shares of items in U(j, o), then agent
k must get shares of an item ranked below o (according to �j).
Both cases above imply that Pj �sdj Pk while Pj 6= Pk, a contradiction. Further, this

means that at the end of each round r, both agents have the same elapsed consumption
time, i.e., tk = tj , and therefore both agents consume the same shares of items since they
have the same eating speeds. Together, this means pj,o = pk,o for any o they have consumed,
and it follows that Pk = Pj .

(SETE) We show that before consuming items not in �j,k, agent j and k consume the
same item o at each round r. If agent k consumes o′ 6= o, then let o � o′ without loss of
generality, which means that k does not consume the top item at round r, a contradiction
to the execution of UPRE. Since the agents consume the same item at a round for the same
length of time, we obtain that pj,o = pk,o for each o appearing in �j,k. �

Theorem 4. Given a profile R, a random assignment P satisfies ex-ante favoring-
eagerness-for-remaining-items (ea-FERI) if and only if there exists an eating speed function
ω such that P = PREω(R).

Proof sketch. (Satisfaction) Let P = PREω(R) where ω is any collection of eating
functions. We show that at every round r,

(1) MP,r and EP,r(o) are exactly the sets of items with remaining shares and agents who
consume o, respectively, and

(2) if o is available for later rounds, then all agents in EP,r(o) are satisfied.

We see that (1) is trivially true for round 1. Agents in EP,1(o) are those in the set No

on Line 4 of Algorithm 3. Also, they consume o, and stop as soon as either o is exhausted,
or they are satisfied according to the consumption process, which means (2) is true for
round 1. By Lines 7 and 9, we see that s(o) is updated to ensure that M ′ does not contain
item o′ with

∑
k∈EP,1(o′) pk,o′ = 0. With the updated M ′, the condition (1) holds for r = 2

trivially, and we can prove condition (2) according to the selection of items to be consumed
at round 2. The proof follows from an inductive argument along similar lines.

(Uniqueness) For any ea-FERI assignment Q, we find out a member of PRE with the
following eating function such that P =PREω(R) coincides with Q.

ωj(t) =

{
n · qj,o, t ∈ [ r−1

n , rn ], where r = min({r̂ | j ∈ EQ,r̂(o)}),
0, others.

Constructing such a eating function is to ensure the following conditions successively
for each round r in the execution of PREω(R):

(1) items with remaining shares are the same, i.e., MQ,r = MP,r, and each agent is eager
for the same item, i.e., EQ,r(o) = EP,r(o);

(2) for any unsatisfied agent j which is going to consume item o at round r, she starts
consumption at time tj = (r − 1)/n, and exactly consumes for ρo = 1/n long; and

(3) after the consumption, for any o ∈ MQ,r, each agent j eager for it obtains qj,o units of
shares of item o, i.e., pj,o = qj,o.
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It is easy to see that condition (1) above holds for r = 1. As for condition (2) when
r = 1, we have tj = (r − 1)/n = 0, which is initially set on Line 2 of Algorithm 3, and
No = EP,1(o) = EQ,1(o) by Line 4. Then

∑
j∈No

pj,o = s(o) = 1 because otherwise, o has
remaining shares for the later round while agents in EQ,1(o) are not satisfied, a violation to

Q satisfying ea-FERI. By construction of ω,
∑

j∈EQ,1(o)

∫ 1/n
0 ωj(t)dt =

∑
j∈EQ,1(o) qj,o = 1,

and we can infer that the consumption time for o ρo = 1/n.

For r = 1, conditions (1) and (2) easily lead to condition (3). Moreover, with conditions
(1) and (2) established for r, we can obtain them for r+ 1 following a similar analysis, and
therefore condition (3) holds for r + 1. In this way, we have pj,o = qj,o for any o ∈ MQ,r

with any r ≥ 1. It implies that Q = P , which completes the proof. �

With Proposition 3 and Theorem 4, we can conclude that every member of PRE also
satisfies sd-E and ep-PE (Corollary 2).

Corollary 2. For any collection of eating speed functions ω, PREω satisfies ex-post Pareto-
efficiency (ep-PE) and sd-efficiency (sd-E).

6. Impossibility Results

A natural question that follows the positive results in Sections 4.1 and 5.1, is whether it is
possible to design ep-FERI or ea-FERI mechanisms which provide a stronger guarantee of
either efficiency, fairness, or strategyproofness. In this section, we show that it is impossible
to design mechanisms that satisfy certain combinations of properties involving stronger
variants of either fairness or strategyproofness. We summarize these results in the form of a
spider graph in Figure 3. Each arm radiating away from the center of the graph represents a
type of efficiency, fairness, or strategyproofness property. Each node represents a property,
and the farther a node is away from the center of the graph, the stronger the property it
represents. The nodes at the corners of an unshaded polygon, whose edges are broken lines,
represent a combination of properties that are impossible to satisfy using any assignment
mechanism. The properties satisfied by a mechanism are represented by the nodes at the
corner of a shaded polygon.

(a) ep-FERI mechanisms (b) ea-FERI mechanisms

Figure 3: The impossibility results for FERI mechanisms.
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Propositions 4 and 5 show that we cannot improve the fairness guarantee of ep-FERI
or ea-FERI mechanisms from sd-WEF to sd-EF.

Proposition 4. No mechanism simultaneously satisfies ex-post favoring-eagerness-for-
remaining-items (ep-FERI) and sd-envy-freeness (sd-EF).

Proof. We prove it with the following preference profile R. By FERI, one of agents in
{1, 2, 3} gets a, and agent 4 must get b. If assignment Q satisfies ep-FERI and SETE which
is implied by sd-EF, then it is in the following form.

Preference Profile R
�1: a �1 c �1 b �1 d,
�2: a �2 c �2 b �2 d,
�3: a �3 b �3 c �3 d,
�4: b �4 a �4 d �4 c.

Assignment Q
a b c d

1 1/3 0 ? ?
2 1/3 0 ? ?
3 1/3 0 ? ?
4 0 1 0 0

Then we do not have Q3 �sd3 Q4 since
∑

o′∈U(�3,b)
q3,o′ <

∑
o′∈U(�3,b)

q4,o′ , a contradic-
tion to sd-EF.

Proposition 5. No mechanism simultaneously satisfies ex-ante favoring-eagerness-for-
remaining-items (ea-FERI) and sd-envy-freeness (sd-EF).

As for strategyproofness, Proposition 6 shows with the weak fairness requirement of
SETE, that sd-WSP cannot be improved to sd-SP for any ep-FERI mechanism, and Propo-
sition 7 shows that even sd-WSP cannot be satisfied by ea-FERI mechanisms.

Proposition 6. No mechanism simultaneously satisfies ex-post favoring-eagerness-for-
remaining-items (ep-FERI), strong equal treatment of equals (SETE), and sd-strategy
proofness (sd-SP).

Proof. We prove it with the preference profile R in Proposition 4. If agent 3 misreports her
preference as agent 4, i.e., R′ = (�′3,�−3) with �′3=�4, then one of agents 1 and 2 gets a,
and one of agents 3 and 4 get b by FERI. For the remaining items M ′ = {c, d}, top(1,M ′)
= top(2,M ′) = c and top(�′3,M ′) = top(4,M ′) = d, which means that agent 1 (or 2) gets
c when she does not get a, and agent 3 (or 4) gets d when she does not get b. Then the
following assignment Q′ is the only one satisfying ep-FERI and SETE for R′.

Preference Profile R′

�1: a �1 c �1 b �1 d,
�2: a �2 c �2 b �2 d,
�′3: b �3 a �3 d �3 c,
�4: b �4 a �4 d �4 c.

Assignment Q′

a b c d

1 1/2 0 1/2 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 1/2 0 1/2

Comparing Q′ with Q in Proposition 4 which is under the true preference R, we see that
Q3 does not dominate Q′3 on U(�3, b), which means that no ep-FERI and SETE mechanism
can be sd-SP.
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Proposition 7. No mechanism simultaneously satisfies ex-ante favoring-eagerness-for-
remaining-items (ea-FERI), strong equal treatment of equals (SETE), and sd-weak-strategy
proofness (sd-WSP).

Proposition 8 shows that the simultaneous satisfaction of ep-FERI and ea-FERI cannot
be achieved given the fairness requirement SETE.

Proposition 8. No mechanism simultaneously satisfies ex-post favoring-eagerness-for-
remaining-items (ep-FERI), ex-ante favoring-eagerness-for-remaining-items (ea-FERI),
and strong equal treatment of equals (SETE).

7. Conclusion and Future Work

In this paper, we provide the first random mechanisms that are guaranteed to output ex-
post FCM assignments simultaneously with other desirable properties of efficiency (ep-PE
and sd-E), fairness (SETE and sd-WEF), and strategyproofness (sd-WSP) properties.

Our positive results expand the envelope for FCM and PE mechanisms along the di-
mensions of both fairness and strategyproofness as we illustrate in Figure 4, while our
impossibility results, summarized in Figure 3, help define the limits of what may be pos-
sible. In Figure 4, similar to Figure 3, each arm radiating away from the center of the
graph represents a type of property and each node represents a property. The nodes of each
shaded polygon represent the properties satisfied by a mechanism. It also highlights an im-
portant open question for future work: Is there a mechanism that satisfies the combination
of properties that are joined by the solid green line?

Figure 4: The properties of FCM mechanisms on PE, envy-freeness, and strategyproofness.

We hope that our results encourage the search for FCM and PE mechanisms which also
satisfy other efficiency, fairness, and strategyproofness desiderata (like the “Open question”
in Figure 4). For example, if FCM is deemed to be an indispensable property, an interesting
open question is whether it is possible to design mechanisms that satisfy relaxations of one
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property, such as Pareto optimality, while satisfying stronger properties of fairness and
strategyproofness, along the lines of similar work on constrained-optimal mechanisms in
the school choice literature (Abdulkadiroğlu & Sönmez, 2003; Abdulkadiroğlu et al., 2017).
Apart from notions of fairness based on the interpersonal comparison like envy-freeness, the
question of how to design mechanisms which satisfy FCM together with alternate fairness
desiderata based on the notions such as egalitarianism (e.g. minimizing the ranking of
the item allocated to the worst-off agent) remains unexplored. Whether our impossibility
results may be circumvented under natural domain restrictions, such as on the domain of
preferences (e.g. approval or dichotomous preferences), is another interesting open question
for future work.

Another natural direction for future work concerns generalizations of the assignment
problem. An immediate question is whether our results may be extended to settings where
ties or incomparability between items are allowed in agents’ preferences (Katta & Sethu-
raman, 2006; Wang et al., 2020). When agents may demand multiple items (Heo, 2014;
Kojima, 2009; Wang et al., 2020; Budish, 2011), the question of whether a mechanism can
satisfy a natural extension of FCM together with other desiderata also remains open.
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Appendix A. Additional Results

A.1 Relationships between Efficiency Properties

We summarize the efficiency properties we discuss in the main body with Figure 5.

Figure 5: Relationship between ep-FERI, ea-FERI, ep-FHR, ea-FHR, ep-PE, and sd-E.

Note: The property X points to another property Y means that X implies Y. An arrow annotated

with a, b, or c refers to a result due to Ramezanian and Feizi (2021), Chen et al. (2021),

and Bogomolnaia and Moulin (2001), respectively, and an edge annotated with P refers to a

Proposition in this paper.
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Proposition 9. A deterministic assignment satisfies favoring-eagerness-for-remaining-
items (FERI) if and if only it satisfies ex-ante favoring-eagerness-for-remaining-items (ea-
FERI).

Proof. In this proof, it will be useful to recall the definitions of the sets TA,r, MA,r, and
EA,r(o) from Definitions 2 and 3: Given any deterministic assignment A, TA,0 = MA,0 =
EA,0(o) = ∅, and for each r ∈ {1, 2, . . . },

TA,r = {o ∈M : o = top(j,M \
⋃
r′<r

TA,r′) for some j ∈ N with A(j) /∈
⋃
r′<r

TA,r′}, (4)

MA,r = {o ∈M :
∑

k∈
⋃

r′<r EA,r′ (o)

Ak,o < 1}, (5)

EA,r(o) = {j ∈ N : o = top(j,MA,r)} where o ∈MA,r. (6)

(FERI⇒ ea-FERI) For any A satisfying FERI, we show that for any r ∈ {1, 2, . . . }, the
following two conditions hold:

Condition (1): MA,r = M \
⋃
r′<r TA,r′ , and

Condition (2): for any item o ∈ MA,r∗ with r∗ > r,
∑

ô∈U(�j ,o)
Aj,ô = 1 for any j ∈

EA,r(o).

The proof proceeds by mathematical induction on the value of r.

Base Case. Condition (1) trivially holds for r = 1. We show that condition (2) holds
by contradiction. Assume that there exist an item o ∈ MA,r∗ with r∗ > 1 and an agent
j ∈ EA,1(o) such that

∑
ô∈U(�j ,o)

Aj,ô = 0. Since j ∈ EA,1(o), we know that o = top(j,MA,1)

= top(j,M) by Eq (6), which also means that o ∈ TA,1 by Eq (4). By o ∈ MA,r∗ , we know
that

∑
j∈

⋃
r′≤r EA,r′ (o)

Aj,o = 0 < 1 by Eq (5), which also means that no agent j′ ∈ EA,1(o) =

{k ∈ N | o = top(k,M)} gets o, a contradiction to A satisfying FERI.

Induction Step. Supposing that conditions (1) and (2) hold for each of r′ = 1, . . . , r− 1,
we prove that they also hold for r.

- Condition (1) holds for r. For any r′ < r and item o′ ∈ TA,r′ , from the fact that A
satisfies FERI, we know that o′ = top(A−1(o′),MA,r′). It means that A−1(o′) ∈ EA,r′(o′)
and

∑
j∈

⋃
r′<r EA,r′ (o

′)Aj,o′ = 1, and therefore o′ /∈ MA,r by Eq (5). It is easy to prove the

opposite direction that o ∈ TA,r for any o /∈ MA,r with a similar argument. Together they
lead to condition (1) for r.

- Condition (2) holds for r. For any item o ∈ MA,r∗ with r∗ > r, we have that∑
j∈

⋃
r′<r∗ EA,r′ (o)

Aj,o < 1 by Eq (5), and it means that Aj′,o = 0 for any j′ ∈ EA,r′(o) with

r′ ≤ r since A is deterministic. Moreover, we have that o /∈ TA,r; otherwise, there exists an
agent j with o = top(j,MA,r) by the fact that A satisfies FERI, and therefore j ∈ EA,r(o)
by Eq (6), which means that

∑
k∈

⋃
r′<r∗ EA,r′ (o)

Ak,o = 1, a contradiction to r < r∗ and

o ∈MA,r∗ which implies that
∑

k∈
⋃

r′<r∗ EA,r′ (o)
Ak,o = 0 by Eq (5). With o /∈ TA,r, for any

j ∈ EA,r(o), i.e., o = top(j,MA,r) by Eq (6), we have that A(j) ∈ TA,r′ with some r′ < r
by Eq (4). Again by condition (1) for r′, we know that A(j) = top(j,MA,r′) �j o since
o ∈MA,r∗ ⊆MA,r′ , and therefore

∑
o′∈U(�j ,o)

Aj,o′ = 1, i.e. condition (2) for r.

311



Guo, Sikdar, Xia, Wang, & Cao

With the mathematical induction above, we obtain that condition (2) holds for any r,
and therefore the FERI assignment A satisfies ea-FERI.

(ea-FERI⇒ FERI) For any A satisfying ea-FERI, we show that for any r ∈ {1, 2, . . . },
the following two conditions hold:

(1) M \
⋃
r′<r TA,r′ = MA,r, and

(2) o = top(A−1(o),MA,r) for every item o ∈ TA,r.

The proof proceeds by mathematical induction on the value of r.

Base Case. Condition (1) trivially holds for r = 1. We show condition (2) holds by con-
tradiction. If top(A−1(o),MA,1) = top(A−1(o),M) 6= o, then A−1(o) /∈ EA,1(o) by Eq (6).
Accordingly, we know that

∑
k∈EA,1(o)Ak,o = 0 < 1, and therefore o ∈ MA,2 by Eq (5),

However, for any j ∈ EP,1(o) 6= ∅,
∑

o′∈(�j ,o)Aj,o′
= Aj,o = 0 < 1, a contradiction to A

satisfying ea-FERI.

Induction Step. Supposing that condition (1) and (2) hold for each of r′ = 1, . . . , r− 1,
we prove that they also hold for r.

- Condition (1) holds for r. For every o ∈MA,r, we have that
∑

j∈
⋃

r′<r EA,r(o)Aj,o < 1

by Eq (6). Since A is deterministic, it also implies that

for any j ∈
⋃
r′<r

EA,r′(o), Aj,o = 0. (7)

It follows that o /∈
⋃
r′<r TA,r′ ; otherwise, we have that o = top(j,MA,r′) where j = A−1(o)

by condition (2) for some r′ < r, which means that
∑

k∈
⋃

r′<r EA,r′ (o)
Ak,o = 1, a contradic-

tion to Eq (7). It is easy to prove the opposite direction that o ∈MA,r for any o /∈
⋃
r′<r TA,r′

with a similar argument. Together they mean that MA,r = M \
⋃
r′<r TA,r′ , i.e., condition

(1) holds for r.

- Condition (2) holds for r. For any item o ∈ TA,r, assume for the sake of contradiction
that o 6= top(A−1(o),MA,r), which means that A(j) 6= o for any j with o = top(j,MA,r)
, i.e., j ∈ EA,r(o) by Eq (6). Since o ∈ TA,r, then by condition (1) for r which we have
just proved, we have that o ∈ MA,r. Since A is deterministic, we also have the following
equation by Eq (5): ∑

j∈
⋃

r′<r EA,r′ (o)

Aj,o = 0 < 1. (8)

With the assumption and Eq (8), we have that
∑

j∈
⋃

r′<r+1 EA,r′ (o)
Aj,o = 0 < 1, which means

that o ∈ MA,r+1 by Eq (5). Again by o ∈ TA,r, we know that there exists j′ ∈ EA,r(o),
i.e., o = top(j′,MA,r), with A(j′) /∈

⋃
r′<r TA,r′ by Eq (4). It also means that A(j′) ∈MA,r

by condition (1) for r. By the assumption, we know that A(j′) 6= o = top(j′,MA,r) and
therefore o �j′ A(j′). Then we obtain that

∑
ô∈U(�j′ ,o)

pj′,ô = 0 with o ∈ MA,r+1 and j′ ∈
EA,r(o), a contradiction to the assumption that A satisfies ea-FERI. By the contradiction,
we have that o = top(A−1(o),MA,r) for every item o ∈ TA,r, i.e., condition (2) holds for r.

With the mathematical induction above, we establish that condition (2) holds for any
r, which means that the ea-FERI assignment A satisfies FERI.
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Corollary 3. [ep-FERI6⇒ ea-FERI, ea-FERI6⇒ ep-FERI] A random assignment satisfying
ex-ante favoring-eagerness-for-remaining-items (ea-FERI) do not need to satisfy ex-post
favoring-eagerness-for-remaining-items (ep-FERI), and vice versa.

Proof. (ep-FERI 6⇒ ea-FERI) It follows from the fact that EBM satisfies ep-FERI (The-
orem 1), but EBM does not satisfy ea-FERI (Proposition 15).

(ea-FERI 6⇒ ep-FERI) It follows from the fact that UPRE satisfies ea-FERI (Theorem 4),
but UPRE does not satisfy ep-FERI (Proposition 18).

Definition 5. (Abraham et al., 2007) Given an instance, a deterministic assignment A
satisfies popularity (POP) if there does not exist another A′ such that |{j ∈ N : A′(j) �j
A(j)}| > |{j ∈ N : A(j) �j A′(j)}|.

Lemma 1. (Abraham et al., 2007) An assignment A is popular if and only if every agent
is assigned (1) her most preferred item, or (2) the most preferred item which is not ranked
first by any agent.

Proposition 10. A popular (POP) deterministic assignment satisfies favoring-eagerness-
for-remaining-items (FERI), but not vice versa.

Proof. (POP⇒ FERI) By Lemma 1, an assignment A is popular if and only if for every
agent j, A(j) = top(j,M) or A(j) = top(j,M ′) where M ′ = {o ∈ M |o = top(k,M)
for any k ∈ N}.

By Definition 2, we observe that:

(i) For r = 1, TA,1 = {top(j,M)|j ∈ N} for any j ∈ N . By the characterization above,
any o ∈ TA,1 is assigned to one of the agents who rank it as their top item in M , i.e.
o = top(A−1(o),M,), which satisfies FERI for r = 1.

(ii) For r = 2, TA,2 = {o ∈ M : o = top(j,M \ TA,1), A(j) /∈ TA,1}. We note that
M ′ = M \ TA,1 because by (i), any o satisfies o ∈ TA,1 if and only if o = top(k,M) for
some agent k. According to the characterization of POP, for any j with A(j) /∈ TA,1, we
trivially have A(j) 6== top(j,M) and therefore A(j) = top(j,M ′). It also means that for
any o ∈ TA,2, o = top(A−1(o),M ′), which satisfies FERI for r = 2.

(iii) for r > 2, TA,r = ∅ because A(j) = top(j,M) ∈ TA,1 or A(j) = top(j,M ′) ∈ TA,2, and
we have that A satisfies FERI trivially.

(FERI 6⇒ POP) Consider the profile in Figure 1 and the assignment A∗ in Example 2
which satisfies FERI. Now, consider the assignment A′ below:

A′ : 1← a, 2← b, 3← f, 4← c, 5← e, 6← d.

Notice that A′ is more popular than A∗: A′(4) �4 A
∗(4), A′(5) �4 A

∗(5), while A∗(3) �4

A′(3), and A′(j) = A∗(j) for j ∈ {1, 2, 6}. Therefore, FERI does not imply POP.
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A.2 Rank-maximality is Not Compatible with Fairness and Strategyproofness

We also consider the compatibility of rank-maximality (RM) with fairness and strate-
gyproofness.

Definition 6. (Irving et al., 2006) Given an instance, a deterministic assignment A satisfies
rank-maximality (RM) if there is no assignment A′ such that its signature dominates A,
where the signature of A is an n-vector x = (xr)r≤n such that for each r ∈ [n], the r-th
component is the number of agents who are allocated their r-th ranked item, and a signature
x dominates signature y if there exists r′ such that xr′ > yr′ and for every r′′ < r′, xr′′ ≥ yr′′.

Since RM implies FHR (Belahcene et al., 2021), it automatically means that ex-post
RM (ep-RM) suffers the same incompatibility with fairness and strategyproofness as FHR.
In fact, ep-RM is incompatible even with sd-WEF alone as we show in Proposition 11.

Proposition 11. No mechanism satisfies ex-post rank-maximality (ep-RM) and sd-weak-
envy-freeness (sd-WEF) simultaneously.

Proof. Let R be the profile in Figure 1. By RM implying FCM, a and b must be assigned to
agents 1 and 2, respectively. Although agents 3-6 all rank c on top, in any RM assignment,
item c can only be allocated to agent 6 and {d, e, f} to agents 3-5, which leads to a signature
y = (3, 1, 1, 1, 0, 0). Otherwise, if c is not assigned to agent 6 in an RM assignment, then by
RM implying FHR, agent 6 can only get f since rk(6, d) > rk(j, d) and rk(6, e) > rk(j, e) for
j ∈ {3, 4, 5}, and agents 3-5 get {c, d, e}, which results in the signature x = (3, 1, 1, 0, 0, 1)
dominated by y, a contradiction. Then, since any random assignment P satisfying ep-RM
is a convex combination over the set of possible RM assignments, we have that for any item
o,

∑
o′∈U(�3,o)

p3,o′ ≤ 1 = p6,c =
∑

o′∈U(�6,o)
p6,o′ , and it is strict for items other than f , a

violation of sd-WEF.

A.3 Properties that RP, PS, BM, ABM, EBM, PR, and UPRE Fail to Satisfy

Propositions 12 and 13 show that RP and PS are not first-choice maximal, and therefore
they do not satisfy ep-FERI since FERI implies first-choice maximality.

Proposition 12. RP does not satisfy ex-post first-choice maximality.

Proof. We show it with the instance with the following profile:

�1: a �1 b �1 c,

�2: a �2 c �2 b,

�3: b �3 a �3 c.

The following A is one possible output of RP when the priority order is 2 B 1 B 3. In A, we
see that only agent 2 gets her first choice. However, there exists another assignment A′ as
shown below where both agents 1 and 3 get their first choices, which means that RP does
not satisfy FCM.
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Assignment A
a b c

1 0 1 0
2 1 0 0
3 0 0 1

Assignment A′

a b c

1 1 0 0
2 0 0 1
3 0 1 0

Proposition 13. PS does not satisfy ex-post first-choice maximality.

Proof. (neither ep-FERI nor FCM) we continue to use the instance with the profile
in Proposition 12. The following P is the outcome of PS. We see that A in Proposition 12
must be among the deterministic assignments which constitute the convex combination for
P , which means that PS does not satisfy FCM, and therefore it is not ep-FERI.

Assignment P
a b c

1 1/2 1/4 1/4
2 1/2 0 1/2
3 0 3/4 1/4

Proposition 14. BM with a uniform probability distribution over all the priority orders of
agents does not satisfy ex-post favoring-eagerness-for-remaining-items (ep-FERI), ex-ante
favoring-eagerness-for-remaining-items (ea-FERI) or sd-weak-envy-freeness (sd-WEF), but
satisfies strong equal treatment of equals (SETE).

Proof. We refer to BM with a uniform probability distribution as BMu.

(not ep-FERI) For the instance with profile in Figure 1, the assignment indicated by
circled item is one possible outcome of BM given the priority 1 B 2 B 3 B 4 B 5 B 6, which
does not satisfy FERI as we discuss in Example 2, and therefore it is not ep-FERI.

(not ea-FERI) This follows from the fact that it is not sd-E (Chen et al., 2021).

(not sd-WEF) This follows from Proposition 1 and the fact that it satisfies SETE (shown
below) and ep-FHR (Ramezanian & Feizi, 2021).

(SETE) Let P = E(BMu(R)) for any given profile R. For any agents j, k and their common
prefix �j,k, given a priority order B with j B k, if j gets an item o appearing in �j,k, then
it is easy to see that k gets o given B′ which just swaps the positions of j and k in B.
Due to the assumption, we know that any such pair of priorities B and B′ have the equal
probability to be drawn, and therefore we have that pj,o = pk,o, which means SETE.

We recall Lemma 2 from Bogomolnaia and Moulin (2001) used in Proposition 15 and
the proof of Proposition 3.
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Lemma 2. (Bogomolnaia & Moulin, 2001) Given a preference profile R and a random
assignment P , let τ(P,R) be the relation over all the items such that: if there exists an
agent j such that oa �j ob and pj,ob > 0, then oaτ(P,R)ob. The random assignment P is
sd-E if and only if τ(P,R) is acyclic.

Proposition 15. EBM with a uniform probability distribution over all the priority or-
ders of agents does not satisfy ex-post favoring-higher-ranks (ep-FHR), sd-efficiency (sd-
E), ex-ante favoring-eagerness-for-remaining-items (ea-FERI), ex-ante favoring-higher-
ranks(ea-FHR), sd-envy-freeness (sd-EF) or sd-strategyproofness (sd-SP).

Proof. (not ep-FHR) For the profile in Figure 1, one of its possible outcome is the as-
signment A∗ in Example 2 which does not satisfy FHR, and therefore EBM is not ep-
FHR.

(not sd-E) We show it by the instance with following R:

�1: a �1 b �1 c �1 others,

�2: a �2 b �2 d �2 others,

�3: a �3 b �3 e �3 others,

�4: a �4 b �4 f �4 others,

�5-7: a � b � g � c � d � x � y � others,

�8-10: a � b � h � e � f � y � x � others.

The following are two possible outcomes of EBM (where j ← o means agent j gets item o):

A :1← a, 2← b, 3← e, 4← f, 5← g,

6← c, 7← d, 8← h, 9← y, 10← x.

A′ :1← c, 2← d, 3← a, 4← b, 5← g,

6← x, 7← y, 8← h, 9← e, 10← f

Let P = E(AM(R)). Then p7,y > 0 and p10,x > 0. With x �7 y and y �10 x and Lemma 2,
we have that xτ(P,R)y and yτ(P,R)x, which means that P is not sd-E.

(neither ea-FERI nor ea-FHR) It follows from the fact that EBM is not sd-E.

(neither sd-EF nor sd-SP) This follows from Propositions 4 and 6 and the fact that it
satisfies ep-FERI and SETE.

Proposition 16. ABM satisfies SETE, but does not satisfy ex-post favoring-higher-ranks
(ep-FHR), sd-efficiency (sd-E), ex-ante favoring-eagerness-for-remaining-items (ea-FERI),
ex-ante favoring-higher-ranks(ea-FHR), or sd-envy-freeness (sd-EF).

Proof. We refer to ABM with a uniform probability distribution as ABMu.

(not ep-FHR) It follows from the fact that no mechanism satisfies ep-FHR with SETE
and sd-WSP (Ramezanian & Feizi, 2021).
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(not sd-E, ea-FERI, or ea-FHR) Consider the preference profile R , and the two
deterministic assignments A, A′ in Proposition 15 which are FERI since EBM satisfies
ep-FERI. According to the proof of Theorem 2, we know that any FERI assignment is a
possible output of ABM with certain priority. Then A and A′ are among the deterministic
assignments that constitute convex combinations for P = E(EBMu(R)) as the priority is
chosen uniformly. From the proof of Proposition 15, we know that P is not sd-E, therefore
not ea-FERI and ea-FHR.

(not sd-EF) It follows from Proposition 4 and the fact that ABM satisfies ep-FERI.

(SETE) Let R be any preference profile. For any two agents j and k and a given priority B
with j B k, let B′ be another priority which only swaps j and k in B, A = ABMB(R), and
A′ = ABMB

′
(R). If A(j) appears in �j,k, it is easy to see that A′(k) = A(j). Furthermore,

if A(k) also appears in �j,k, then A′(j) = A(k). Let P = E(EBMu(R)). Since the pair of
priorities like B and B′ have the same probability to be chosen, we see that for any item o
appearing in �j,k, pj,o = pk,o, which means that P satisfies SETE.

Proposition 17. PR does not satisfy ex-post favoring-eagerness-for-remaining-items (ep-
FERI) or ex-ante favoring-eagerness-for-remaining-items (ea-FERI), but satisfies SETE.

Proof. (not ep-FERI) We show it by the instance with R in Figure 1. Let P = PR(R) is
shown in the following.

Assignment P
a b c d e f

1 1 0 0 0 0 0
2 0 1 0 0 0 0

3-5 0 0 1/4 1/3 1/3 1/12
6 0 0 1/4 0 0 3/4

Let A be the deterministic assignment indicated by circled items in Figure 1, and we see that
A must be among the deterministic assignments which constitute the convex combination
for P . We know that A does not satisfy FERI as shown in Example 2, which means that
P does not satisfy ep-FERI.

(not ea-FERI) We continue to use the instance with R in Figure 1. In the assignment
P above, it is easy to obtain that MP,2 = {d, e, f} since agents in EP,1(o) for o ∈ {a, b, c}
owns all the shares of o. (MP,r and EP,r(o) are defined in Definition 3). Then we have
that EP,2(d) = {6} and

∑
j∈

⋃
r<3 EP,d

pj,d = p6,d = 0 < 1, which means that d ∈MP,3 while∑
o∈U(6,d) p6,o = 1/4 < 1, which violates ea-FERI.

(SETE) PR satisfies equal-rank envy-freeness by (Chen et al., 2021) which requires that
in P = PR(R) for the given preference profile R, for any agents j, k and item o with
rk(j, o) = rk(k, o),

∑
o′�j ,o

pj,o′ + pk,o ≤
∑

o′∈U(�j ,o)
pj,o′ . Then for any item o appearing in

�j,k, rk(j, o) = rk(k, o), and therefore
∑

o′�j ,o
pj,o′+pk,o =

∑
o′∈U(�j ,o)

pj,o′ , i.e., pj,o = pk,o,
which means that PR satisfies SETE.
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Proposition 18. UPRE does not satisfy ex-post favoring-eagerness-for-remaining-items
(ep-FERI), ex-post favoring-higher-ranks (ep-FHR), ex-ante favoring-higher-ranks (ea-
FHR), sd-envy-freeness (sd-EF), or sd-strategyproofness (sd-WSP).

Proof. (not ep-FERI) This follows from Proposition 8 and the fact that it satisfies ea-
FERI by Theorem 4 and SETE by Theorem 3.

(not ep-FHR) For the profile R in Figure 1, the following assignment P is the outcome
of UPRE.

Assignment P
a b c d e f

1 1 0 0 0 0 0
2 0 1 0 0 0 0

3-5 0 0 1/4 1/12 1/3 1/3
6 0 0 1/4 3/4 0 0

The deterministic assignment A∗ in the following, where j ← o means agent j is allocated
item o, is the one in Example 2 which is not FERI. It is easy to see that A∗ must be among
those which constitute the convex combination for P , which means that P does not satisfy
ep-FHR.

A∗ :1← a, 2← b, 3← c, 4← e, 5← f, 6← d

(not ea-FHR) We continue to use the instance with R in Figure 1. In the assignment P
above , where p6,d > 0 but rk(3, d) < rk(2, d) and

∑
o∈U(�3,d) p3,o < 1, which violates ea-

FHR.

(not sd-EF, not sd-WSP) It follows from Propositions 5 and 7 and the fact that it
satisfies ea-FERI and SETE.

A.4 Running Time Analysis for EBM and UPRE

Proposition 19. Given a profile R, the deterministic assignment EBM(R) can be computed
in polynomial time in the number of agents if G is a polynomial time algorithm3.

Proof. In Algorithm 1, Line 2 is the initial setting which takes O(n2) time, and the While
loop is executed at most n times because there is at least one item is allocated in each
round. Below, we analyze the time for each line in the main body of the While loop.

For Line 5, identifying the top item for each agent among M ′ ⊆M , takes O(n ·n) time.

For Line 6, it issues a lottery for each o over No and the implementation runs in poly-
nomial time with respect to n by the condition. Here the range is |No| < n, which means
the implementation of lottery is in polynomial time with respect to n.

Line 7 take O(n′) time where n′ is the number of items being allocated at that round,
and it takes O(n) time in total since at most n items are allocated in one run. Together we
have that Algorithm 1 runs in polynomial time.

3. Such algorithm exists, like Xorshift RNG (Thomson, 1958) and linear congruential generator (Marsaglia,
2003)
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Remark 8. Although it is in polynomial time for EBM to output a deterministic assignment
as shown in Proposition 19, there is no guarantee for the time complexity of computing the
expected results of EBM. We conjecture that it is #P-complete to compute the expected
output of EBM, just as computing the expected result of RP (where the priority order is
generated randomly and uniformly) is #P-complete (Saban & Sethuraman, 2015).

Proposition 20. Given a profile R, the random assignment UPRE(R) can be computed in
polynomial time in the number of agents.

Proof. Recall that UPRE is Algorithm 3 using Eq (3) as eating functions, and then∫ tj+ρ
tj

ωjdt = min(ρ, 1 − tj) when tj < 1, which can be computed in O(1) time. In Al-

gorithm 3, Line 2 is the initial setting which takes O(n2) time. The While loop is executed
at most n times because an agent consumes different items in each round. Below, we analyze
the time for each line in the main body of the While loop.

On Line 4, identifying the top item for each agent among M ′ ⊆M , takes O(n ·n) time.
For Line 6.1, for each o, we can compute ρo with the following steps:

Step 1. Sort agents in No by 1−tj in increasing order and obtain the sequence j1, j2, . . . , jno

where no = |No|, which takes O(n2) time since no ≤ n;

Step 2. For each i ∈ {1, . . . , no}, test if
∑

k∈No

∫ tk+ρ
tk

ωk(t)dt ≤ s(o) with ρ = 1 − tji and
stop when it is not. This takes O(n) time;

Step 3. If i′ < no is the maximum value for which the test in step (2) passes, then ρo ≥ 1−

tji′ and computing ρo = max({ρ | ρ·(no−i′)+
∑i′

1 (1−ti) ≤ s(o)}) =
s(o)−

∑i′
i=1(1−ti)
no

takes O(1) time; if i = no, then ρo = 1− tjno
.

In this way, we have that Line 6.1 runs in O(n2) time.
Line 6.2 needs us to perform one integration for each agent and can also be computed

in polynomial time since each integration can be done in O(1) time.
Line 7 updates the supply of each o ∈M ′, Line 8 updates tj for each agent j, and Line 9

checks if s(o) = 0, each of which needs addition/subtraction for no more than n times.
Together we have that UPRE runs in polynomial time.

A.5 EBM is Not A Member of ABM

We show that EBM is not a member of ABM by proving that there does not exist a
distribution π over all the priority orders such that ABMπ(R) = EBM(R) for any preference
profile R.

For an instance of assignment problems with N = {1, 2, . . . , 5} and M = {a, b, . . . , e},
there are 5P 5 = 120 priority orders in total. For the preference R∗ where all the agents have
an identical preference, we trivially have that there are 5P 5 = 120 possible outcomes of EBM,
each with the same probability. By Theorem 2, we also have that each possible EBM(R)
corresponds to a unique priority order. Then E(EBM(R∗)) coincides with E(ABMu(R∗))
where u is the uniform distribution over all the priority orders.

Now we show that EBM is different from ABMu by comparing the probability of agent
1 obtaining c in the outcomes of EBM and ABM applied to the profile R for 5 agents below:

1-2 : a � c � {others}, 3-5 : b � c � {others}.
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First we consider EBM. Let A = EBM(R) be a possible outcome of EBM and P =
E(EBM(R)). In the first round, EBM issues a lottery for a among agents 1-3 and one for b
among 4, 5. Then Pr(A(1) 6= a) = 1/2. In the second round, EBM issues a lottery for c, and
the number of participants is always 3, which means that Pr(A(1) = c | A(1) 6= a) = 1/3.
It follows that p1,c = Pr(A(1) = c) = 1/6.

Then we consider ABMu. Let Q = E(ABMu(R)). Agent 1 gets c when in the priority
order,

(1) agent 2 is ranked above agent 1,

(2) at least two agents j, k ∈ {3, 4, 5}, i.e., the agents who do not get b, are ranked below
agent 1.

The priority orders satisfying this where j = 4 and k = 5 are the ones corresponding to the
topological orderings inFigure 6, of which there are 6 as listed below:

3 B 2 B 1 B 4 B 5, 3 B 2 B 1 B 5 B 4,

2 B 3 B 1 B 4 B 5, 2 B 3 B 1 B 5 B 4,

2 B 1 B 3 B 4 B 5, 3 B 1 B 3 B 5 B 4.

With fact that j, k are chosen in {3, 4, 5}, there are 6 · 2C3 = 18 priority orders where agent
1 gets c, i.e., q1,c = 18/120 = 3/20.

Figure 6: Possible topological orders of priority orders where agent 1 gets c.

Together we see that q1,c 6= p1,c, which means that Q 6= P . Therefore, while ABMπ

is uniquely equal to EBM for the preference profile R∗ where agents have an identical
preference, ABMπ is not equal to EBM for R above. It follows that EBM is not a member
of ABM.

Appendix B. Omitted Proofs

Theorem 1. EBM satisfies ex-post favoring-eagerness-for-remaining-items (ep-FERI),
sd-weak-envy-freeness (sd-WEF), strong equal treatment of equals (SETE), and sd-weak-
strategyproofness (sd-WSP).

Proof. Consider an arbitrary instance (N,M) and a strict linear preference profile R, and
let P = E(EBM(R)).

Part 1: E(EBM(R)) is ep-FERI.

Let A = EBM(R) be any one of the possible outcomes of EBM applied to R. We prove
by mathematical induction that the items to be assigned at each round r of Algorithm 1 are

320



Favoring Eagerness for Remaining Items

exactly those in TA,r (defined in Definition 2), and that A is FERI by showing that every
item o ∈ TA,r is assigned to an agent most eager for it in round r, i.e.,

o = top(A−1(o),M \
⋃
r∗<r

TA,r∗). (9)

Base case. When r = 1, any o ∈ TA,1 satisfies that o = top(j,M) for some j. In Algo-
rithm 1, all such agents are in No on Line 5, and o is assigned to one of them by Line 6 at
that round. It means that o = top(A−1(o),M), which is equivalent to Eq (9) when r = 1.

Inductive step. Consider the case that r > 1. Suppose that for each r′ < r, EBM(R)
assigns the items in TA,r′ during round r′ and it holds for every item o′ ∈ TA,r′ , that
o′ = top(A−1(o′),M \

⋃
r∗<r′ TA,r∗). We will show that at the end of round r, for every

o ∈ TA,r, o = top(A−1(o),M \
⋃
r∗<r TA,r∗). By the assumption and Line 3, we have that

at the beginning of round r:

• the set of remaining items isM ′ = M\
⋃
r∗<r TA,r∗ , since items in

⋃
r∗<r TA,r∗ are allocated

before round r, and

• for any agent k ∈ N ′ who has not received any item yet, it holds that A(k) /∈ TA,r′ for
any r′ < r.

Therefore, if there exists an agent j ∈ No ⊆ N ′ (i.e., o = top(j,M ′)) on Line 5, then an
agent in No gets o by Line 6, i.e., A−1(o) ∈ No, which implies Eq (9).

By the induction hypothesis we have that Eq (9) holds for any o ∈ TA,r with r ≥ 1,
which means that A satisfies FERI. It follows that E(EBM(R)) is ep-FERI.

Part 2: E(EBM(R)) is sd-WEF.

Before proceeding with the proof we introduce some notation for convenience:

- For ease of exposition, we will refer to each possible execution of EBM as a “world”,
denoted w, and EBMw(R) to be the corresponding deterministic assignment output by
EBM. It is easy to see that if w 6= w′, then EBMw(R) 6= EBMw′(R). Let W (R) be the
set of all possible worlds for the given instance with R, and W for short when R is clearly
given in the context. The probability of w, denoted Pr(w), can be computed according to
the lotteries in each round.

- We use l to refer to a lottery and N(l) be the set of agents who participate in l. Let
L(w, r) denote the set of lotteries in round r of world w (w can be omitted when clear),
and r(w) be the total rounds of w. Specially, lwo refers to the lottery for item o in w. Then
we have that

Pr(w) = Πl∈L(r),r≤r(w)
1

|N(l)|
= Πo∈M

1

|N(lwo )|

since every item can only be allocated once through a lottery. Let Pr(W ′) =
∑

w∈W ′ Pr(w)
for W ′ ⊆ W . If W ′ is the set of all the worlds with the same lotteries and winners for
the first r rounds, then Pr(W ′) = Πl∈L(r′),r′≤r

1
|N(l)| . For P = E(EBM(R)), we have that

pj,o = Pr({w ∈ W | EBMw(R)(j) = o}), i.e., the probability of all the worlds where j gets
items o.
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- For ease of exposition, we use Mw
r , N

w
r , N

w
o,r to refer to the values of variables M ′, N ′, No

at the beginning of each round r during the execution of Algorithm 1 in the world w, and
omit w when it is clear from the context.

Start of proof of Part 2. Consider an arbitrary pair of agents j and k such that Pk �sdj
Pj and Pj 6= Pk. Without loss of generality, let �j be o1 �j o2 �j · · · �j on. We show by
mathematical induction on the rank i = 1, 2, . . . , n with respect to �j , that the following
conditions hold:

Condition (1): if there exits a round r such that j ∈ Noi,r and k ∈ Nr in a certain world
w ∈W , then k ∈ Noi,r,

Condition (2): if in a certain world w ∈ W , j gets some o �j oi at round r′, then for
r > r′ with k ∈ Nr and top(j,Mr) = oi, we have that k ∈ Noi,r, and

Condition (3): pk,oi = pj,oi .

Base case. First we prove conditions (1)-(3) for i = 1. Since no o �j o1, we have condition
(2) trivially true. For every possible world w ∈W , we have that j ∈ No1,1 and k ∈ N1 = N .
If k /∈ No1,1, then k does not participate in the lottery for o1 , and she does not get o1 in
any w, which means that pk,o1 = 0 < pj,o1 , a contradiction to Pk �sdj Pj . Therefore we
have condition (1) for i = 1. It follows that pj,o1 = Pr({w ∈ W | EBMw(R)(j) = o1}) =
Pr({w ∈W | EBMw(R)(k) = o1}) = pk,o1 , i.e., condition (3) holds for i = 1.

Inductive step. Assume that conditions (1)-(3) hold for i′ < i, we show that they also
hold for i. We show that pk,oi ≤ pj,oi by comparing the probabilities of worlds where j gets
oi with those where k gets oi in the following cases (i)-(iii).

Case i: Consider any world w′ ∈ W where agents j do not get items better than oi
according to �j , and agents k do not get items better than oi according to �k.

We first show that we do not need to consider the case that there does not exist a
round r such that j ∈ Noi,r in world w′. If such r does not exist, EBMw′(R)(j) 6= oi, and
there does not exists r∗ with k ∈ Noi,r∗ either. Otherwise, if such r∗ exists, oi ∈ Mr∗ . Let
oi∗ = top(j,Mr∗) �j oi, which means that i > i∗. By condition (1) for i′ < i, when j applies
for oi′ , k does too. It follows that i∗ ≥ i since oi∗ 6= oi, a contradiction. Together we see
that both agents do not get oi in w′, and therefore w′ is out of discussion.

Then we consider the case that there exists a round r such that j ∈ Noi,r. Let W1 be
the set of worlds where lotteries and winners are the same as w′ for any round r′ < r, and
therefore all the worlds in W1 have the same Mr, Nr, No,r as w′ for r. By selection of w′,
we have that j, k ∈ Nr. In the following, we compare the probabilities that j and k get oi
in W1 by cases.

Case i (a): If k ∈ Noi,r, then she participates in the lottery for oi at round r and her
chance to win is equal to j’s, which means that

Pr({w ∈W1 | EBMw(R)(j) = oi})

=Pr(W1) · 1

|N(loi)|
=Pr({w ∈W1 | EBMw(R)(k) = oi}).
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Case i (b): If k /∈ Noi,r, then by j ∈ Noi,r 6= ∅, oi is allocated to some agent in Noi,r and
never appears in later rounds, which means that

Pr({w ∈W1 | EBMw(R)(j) = oi}) > Pr({w ∈W1 | EBMw(R)(k) = oi}) = 0. (10)

Case ii: In this case, we consider the world where one of agents j and k gets an item better
than oi with respect to �j . For any world wk ∈ W in which agent j gets item oh �j oi
at round r′ and k does not get any item better than oi with respect to �k, let r satisfy
oi = top(j,Mr).

First we show that we do not need to consider the case where such an r does not exist
in wk. In that case, we have that k /∈ Noi,r∗ for any r∗. Otherwise, if k ∈ Noi,r∗ for
some r∗, then k ∈ Nr∗ . Let oi∗ = top(j,Mr∗). We have that oi∗ �j oi, i.e, i∗ < i, and
the fact that oi∗ 6= oi contradicts condition (1) for i∗ if j ∈ Nr∗ , and condition (2) for i∗

if j /∈ Nr∗ . Therefore k /∈ Noi,r∗ for any r∗ if such r does not exist, which means that
EBMwk(R)(k) 6= oi and we do not need to consider wk.

Then we consider the case where such r exists. Recall that agent j gets item oh �j oi
at round r′, and r satisfy oi = top(j,Mr). By condition (1) for i′ ≤ h, neither of agents
applies for any o with oh �j o before round r′, and it follows that r > r′. Let Wk be
the set of worlds where lotteries and winners are the same as wk for any round r∗ < r.
Correspondingly, we find a set of worlds Wj such that

• for any round in {1, . . . , r′−1, r′+1, . . . , r−1}, lotteries and winners are the same as wk,

• for round r′, lotteries are the same as wk, and so do winners except the one for item oh,
and

• agent k wins the lottery of oh at round r′.

We have that Wj 6= ∅, because k participates in the lottery for oh at round r′ since k ∈ Noh,r′

by condition (1) for h, which means that k is possible to win oh instead of j, and then j
participates in the same lotteries instead of k does in wk till round r by condition (2) for
h < i′ < i. By construction of Wj and Wk, Pr(Wj) = Pr(Wk). For any w ∈ Wj and
w′ ∈ Wk, we have that Mw

r = Mw′
r , j ∈ Nw

r , k ∈ Nw′
r , and Nw

r \ {j} = Nw′
r \ {k}. By

selection of r such that oi = top(j,Mr), we obtain that j ∈ Nw
o,r. In the following, we

compare the probabilities that j and k get oi in Wj and Wk respectively by cases.

Case ii (a): If oi = top(k,Mr), i.e., k ∈ Nw′
oi,r, then by construction of Wj and Wk,

N(lwoi) \ {j} = N(lw
′

oi ) \ {k}. It follows that |N(lwoi)| = |N(lw
′

oi )| and

Pr({w ∈Wj | EBMw(R)(j) = oi}) = Pr(Wj) ·
1

|N(lwoi)|
= Pr(Wk) ·

1

|N(lw′oi )|
=Pr({w ∈Wk | EBMw(R)(k) = oi}).

Case ii (b): If oi 6= top(k,Mr), i.e., k /∈ Nw′
oi,r, we discuss in case of Nw′

oi,r. When Nw′
oi,r 6= ∅,

then oi is allocated to some agent in Nw′
oi,r, which means that Pr({w ∈Wj | EBMw(R)(j) =

oi}) > Pr({w ∈ Wk | EBMw(R)(k) = oi}) = 0. When Nw′
oi,r = ∅, we have that Nw

oi,r = {j}.
It means that j is the only applicant for oi, i.e., |N(lwoi)| = 1, and therefore gets it in any
w ∈ Wj . As for agent k, she applies for o′ 6= oi at round r in w′ ∈ Wk, and oi �j o′ by the
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selection of oi. It follows that

Pr({w ∈Wj | EBMw(R)(j) = oi}) = Pr(Wj) ·
1

|N(lwoi)|
= Pr(Wj)

>Pr(Wk)− Pr({w ∈Wk | EBMw(R)(k) = o′})
≥Pr({w ∈Wk | EBMw(R)(k) = oi}).

(11)

Concluding the inductive step. From cases i and ii, we have covered all the worlds that
agent k can possibly get item oi, and we obtain that pk,oi ≤ pj,oi . With the assumption
that Pk �sdj Pj and condition (3) holds for i′ < i, it follows that pk,oi ≥ pj,oi . Therefore we
have pk,oi = pj,oi , i.e., condition (3) holds for i. The equality also requires that

• If in the world w, j ∈ Noi,r and k ∈ Nr, then w belongs to case i where agent j do
not get items better than oi according to �j and agents k do not get items better than oi
according to �k. By case i, we have that k ∈ Noi,r, i.e. condition (1) for rank i. Otherwise
if k /∈ Noi,r, then it fits into case i (b), and we have Eq (10) which leads to pk,oi < pj,oi , a
contradiction to assumption that Pk �sdj Pj .

• If in the world w, agent j gets some o �j oi at round r′, and there exists round r such
that k ∈ Nr with oi = top(j,Mr), then w belongs to case ii where agent j gets an item
better than oi according to �j while agents k do not get items better than oi according
to �k. By case ii (b), we have that oi = top(k,Mr), i.e. k ∈ Noi,r, and it follows that
condition (2) holds for rank i. Otherwise if oi 6= top(k,Mr), then it fits into case ii (b), and
we have Eq (11) which leads to pk,oi < pj,oi , a contradiction to assumption that Pk �sdj Pj .

With the induction above, we prove that pk,oi = pj,oi for any i. It follows that if
Pk �j Pj , Pk = Pj .

Part 3: E(EBM(R)) is sd-WSP. We continue to use the new notations introduced at
the beginning of Part 2. Without loss of generality, let �j be o1 �j o2 �j · · · . Let profile
R′ = (�′j ,�−j) where �′j is any preference that agent j misreports, and Q = EBM(R′).

Assume that Qj �sd Pj . We show by mathematical induction on the rank i = 1, 2, . . . with
respect to agent j, that the following conditions hold:

Condition (1): when j ∈ Nw
oi,r in a world w ∈W (R), for any w′ ∈W (R′) where lotteries

and winners are the same as w before round r, we have that j ∈ Nw′
oi,r, and

Condition (2): pj,oi = qj,oi .

Base case. First, we show condition (1) for i = 1. It is easy to see that in any w ∈W (R),
j applies for o1 at round 1, i.e., j ∈ Nw

o1,1
. We claim that j ∈ Nw′

o1,1
for any w′ ∈ W (R′).

Otherwise, if j /∈ Nw′
o1,1

in some w′, we show that both of the possible cases below lead to a

contradiction to our assumption that Qj �sd Pj .

• When Nw′
o1,1
6= ∅, o1 is assigned to some agent in Nw′

o1,1
in w′. It follows that pj,o1 > qj,o1 =

0, a contradiction to the assumption.
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• When Nw′
o1,1

= ∅, i.e., Nw
o1,1

= {j}, o1 is assigned to the only applicant j in w, while she
applies for item o′ 6= o1 in w′ and o1 �j o′ trivially. It follows that

pj,o1 =Pr({w ∈W (R) | EBMw(R)(j) = o1}) = 1

>1− Pr({w ∈W (R′) | EBMw(R′)(j) = o′})
≥Pr({w ∈W (R′) | EBMw(R′)(j) = o1}) = qj,o1 ,

a contradiction to the assumption.

In this way, we have j ∈ Nw′
o1,1

for any w′ ∈ W (R′), i.e., condition (1) for i = 1, which

means that |N(lwo1)| = |N(lw
′

o1 )| and

pj,o1 =Pr({w ∈W (R) | EBMw(R)(j) = o1} =
1

|N(lwo1)|

=
1

|N(lw′o1 )|
= Pr({w ∈W (R′) | EBMw(R′)(j) = o1}) = qj,o1 ,

i.e., condition (2) for i = 1.

Inductive step. Supposing conditions (1) and (2) hold for i′ < i, we show that they
also hold for i. First we show condition (1) for i. For an arbitrary world w∗ ∈ W (R)
with j ∈ Nw∗

oi,r, let W1 ⊆ W (R) and W2 ⊆ W (R′) be the sets of worlds where lotteries
and winners are the same as w∗ before round r with respect to R and R′, respectively. By
construction of W1 and W2, Pr(W1) = Pr(W2). For any w ∈W1 and w′ ∈W2, Mw

r = Mw′
r ,

Nw
r = Nw′

r , and Nw
o,r = Nw′

o,r for any o ∈Mw
r \ {oi}. We have that j ∈ Nw

oi,r by the selection

of w∗, and we claim that j ∈ Nw′
oi,r for any w′ ∈W (R′). Otherwise, if j /∈ Nw′

oi,r in some w′,
we show that both of the possible cases below lead to a contradiction to our assumption
that Qj �sd Pj .
• When Nw′

oi,r 6= ∅, item oi is assigned to some agent in Nw′
oi,r in w′. It follows that

Pr({w ∈W1 | EBMw(R)(j) = oi}) = Pr(W1)

>Pr({w ∈W2 | EBMw(R′)(j) = oi}) = 0.
(12)

With condition (1) for i′ < i, in world w′, agent j can only apply for oi at round r′ ≥ r not
earlier than she does in w, which means that pj,oi > qj,oi = 0 with Eq (12). Together with
condition (2) for i′ < i, we have a contradiction to the assumption that Qj �sd Pj .

• When Nw′
oi,r = ∅, i.e., Nw

oi,r = {j}, item oi is assigned to the only applicant j in w while
she applies for item o′ 6= oi in w′ and oi �j o′ by the selection. It follows that

Pr({w ∈W1 | EBMw(R)(j) = oi}) = Pr(W1)

>Pr(W2)− Pr({w ∈W2 | EBMw(R′)(j) = o′})
≥Pr({w ∈W2 | EBMw(R′)(j) = oi}).

This means that pj,oi > qj,oi , a contradiction to the assumption that condition (2) holds for
i′ < i.
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In this way, we have condition (1) for i, which means that |N(lwoi)| = |N(lw
′

oi )| and

Pr({w ∈W1 | EBMw(R)(j) = oi} = Pr(W1) · 1

|N(lwoi)|

=Pr(W2) · 1

|N(lw′oi )|
= Pr({w ∈W2 | EBMw(R′)(j) = o1}),

which implies pj,oi = qj,oi , i.e., condition (2) for i.

By mathematical induction, we have that pj,o = qj,o for any o, and therefore if Qj �sd
Pj , that Qj = Pj .

Part 4: E(EBM(R)) is SETE.

For agents j and k, we prove that pj,o = pk,o for any item o appearing in �j,k. We
compare probability of possible worlds where agent j gets o ∈ U(�j,k, om) with those where
agent k gets o.

First we consider the world w where j gets o at round r and k gets o′ ∈ U(�j,k, om) at
round r′. Let w′ satisfy j gets o′ at round r, k gets o at round r′, and the results of other
lotteries keep the same as w. In w′, we see that k wins the lottery for o instead of j, and j
participates in lotteries at rounds r+ 1 to r′ instead of k. We also see that for every lottery
lo, |N(lo)| keeps the same in worlds w and w′. Therefore we have that Pr(w) = Pr(w′).

Then we consider the world w where j gets o at round r and k does not get items
appearing in �j,k. Let o′ be the last item k applies for in �j,k at round r′, and Wj be the
set of worlds which are the same as w from rounds 1 to r′. Here the probability of Wj can
also be computed as Pr(Wj) = Πl∈L(r∗),r∗≤r′

1
|N(l)| . We construct another set Wk such that

for any w ∈ Wj , (i) the winners of lotteries are the same as w at round 1 to r − 1, (ii) the
winner of l(o) is k at round r, and any other l ∈ L(r) is the same as w, (iii) j participates
in lotteries at rounds r + 1 to r′ instead of k. Then we see that for every lottery l ∈ L(r∗)
with r∗ ≤ r′, |N(l)| are the same in any world w ∈ Wj and w′ ∈ Wk. Therefore we have
that Pr(Wj) = Pr(Wk).

Together we have that pj,o = pk,o for any o appearing in �j,k.

Theorem 2. Given a profile R, a random assignment P satisfies ex-post favoring-
eagerness-for-remaining-items (ep-FERI) if and only if there exists a probability distribution
π over all the priorities such that P = E(ABMπ(R)).

Proof. We provide the satisfaction part for the sake of completeness.

(Satisfaction) To show ABM satisfies ep-FERI, we first prove by mathematical induction
that given a profile R, A = ABMB(R) satisfies FERI for any B.

Base case. At round 1 of ABMB , every agent applies for their top ranked items. For
any item o, let N1

o = {j : o = top(j,M)}, i.e., the set of agents who rank o highest. We
also note that o with N1

o 6= ∅ satisfies o ∈ TA,1 ⊆ M trivially. According to the priority
order B, item o is assigned to the agent with the highest priority among N1

o . It follows that
o = top(A−1(o),M), which meets the requirement of FERI when r = 1.

Induction Step. Assume that A meets the requirement of FERI for any r′ < r, For round
r, let M r and N r be the set of available items and unsatisfied agents at the beginning of
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that round, respectively. By construction, it follows that M r = M \
⋃
r′<r TA,r′ , and that

for any j ∈ N r, A(j) /∈
⋃
r′<r TA,r′ . In Algorithm 2, every agent in N r applies for their top

ranked items among M r. For any item o, let N r
o = {j : o = top(j,M r)}, i.e., the set of

agents who rank o highest among M r. We note that o with N r
o 6= ∅ satisfies o ∈ TA,r by

the construction. Then o is assigned to the agent ranked highest in B among N r
o . It follows

that o = top(A−1(o),M r), and we see that it meets the requirement of FERI for r.

By induction, we have that the outcome of ABMB(R) satisfies FERI for any profile R,
and therefore ABMπ(R) =

∑
π(B) ∗ABMB(R) satisfies ep-FERI by definition.

To prove Theorems 3 and 4, we show the following claim (where MP,r and EP,r(o) are
defined in Definition 3).

Lemma 3. Given any preference profile R and any member f of PRE, let P = f(R). Then,
for any round r, it holds that:

(i) MP,r = M ′ and EP,r(o) = No for each o ∈ MP,r, where M ′ is the set of items with
remaining supply, and No is the set of agents who are eager for item o at the beginning of
round r during the execution of Algorithm 3.

(ii) for any agent j and item o∗ with top(j,MP,r−1) �j o∗ �j top(j,MP,r), it holds that
pj,o∗ = 0.

(iii) for any round r∗ > r, and any item o ∈MP,r∗, it holds that for any j ∈ EP,r(o),∑
o′∈U(�j ,o)

pj,o′ = 1. (13)

Proof. The proof proceeds by mathematical induction on the value of r.

Base case. When r = 1, we see that s(o) is initially set to 1 with respect to the supply of
item and MP,1 = M which is also the initial value of M ′ on Line 3 of Algorithm 3. Therefore
EP,1(o) = {j | top(j,M ′)} = No by Line 4 for round 1. Together we have (i) for r = 1.

Besides, since no such o∗ �j o = top(j,MP,1) exists for any agent j, we have that (ii)
holds for r = 1 trivially.

Since tj is set to 0 for any j ∈ N and
∑

k∈No

∫ 1
0 ωk(t)dt ≥ s(o) = 1, o is consumed to

exhaustion by agents in No at round 1. It also means that
∑

k∈EP,1(o) pk,o = 1, o /∈ MP,r∗

with r∗ > 1, and therefore (iii) holds trivially.

Inductive step. Supposing that (i)-(iii) holds for any r′ < r, we show that it also holds
for r. In Algorithm 3, at the beginning of round r, M ′ only contains item o with positive
supply, i.e., s(o) > 0, after consumption of previous rounds by Line 8. Because (i) holds
for r′ < r, we have that only agents in

⋃
r′<r EP,r′(o) are able to consume o before round r,

which means that s(o) = 1−
∑

j∈
⋃

r′<r EP,r′ (o)
pj,o, and therefore M ′ = MP,r. Then we have

that No = {j | o = top(j,M ′)} = EP,r(o). Together we have that (i) holds for r.

Then we show that (ii) holds for r. For any agent j and item o∗ such that top(j,MP,r−1)
�j o∗ �j top(j,MP,r), it means that o∗ /∈MP,r and agent j cannot get shares of o∗ at round
r − 1, r or later rounds.

• If top(j,MP,r−1) = top(j,MP,r), we have that (ii) is trivially true.

• If top(j,MP,r−1) 6= top(j,MP,r) and o∗ = top(j,MP,r′) for some r′ < r − 1, we know
that j consumes top(j,MP,r−1) at round r − 1, and o∗ at round r′ because (i) holds for
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r′, which means that top(j,MP,r−1) and o∗ are available at round r′. It follows that
both items o∗, top(j,MP,r−1) ∈ MP,r′ , a contradiction to top(j,MP,r−1) �j o∗. There-
fore o∗ 6= top(j,MP,r′) for any r′ < r− 1, i.e., agent j does not get shares of o∗ before round
r − 1.

Together we have that pj,o∗ = 0, i.e., (ii) holds for r.

Finally, we show (iii) holds for r. For any o ∈M ′, if o ∈MP,r∗ for some r∗ > r, then∑
k∈

⋃
r′′≤r EP,r′′ (o)

pk,o <
∑

k∈
⋃

r′′≤r∗ EP,r′′ (o)

pk,o ≤ 1. (14)

Eq (14) implies that o is still available after the consumption at round r. With ωj(t) = 0
when t > 1 for any j ∈ N , it follows that

pj,o =

{∫ 1
tj
ωj(t)dt, tj < 1

0, tj ≥ 1.
(15)

With (i) for r′, we know that for any o′ = top(j,MP,r′) with j ∈ No and r′ < r, agent
j ∈ EP,r′(o′), which means that o′ is consumed by j if agent j is not satisfied at round r′.
Moreover, o′ ∈ U(�j , o) due to MP,r ⊆ MP,r′ , and we have that items consumed by j in
time period [0, tj ] are not worse than o according to �j . Then with Eq (15) and (ii) for

r′ ≤ r,
∑

ô∈U(�j ,o)
pj,ô =

∫ 1
0 ωj(t)dt=1, i.e., Eq (13), which complete the proof of (iii) for

current r.

Theorem 3. UPRE satisfies sd-weak-envy-freeness (sd-WEF) and strong equal treatment
of equals (SETE).

Proof. Given an instance with R, let P = UPRE(R).

Part 1: UPRE(R) is sd-WEF.

Assume that there exist agents j and j′ such that Pj′ �sdj Pj . Without loss of generality,
let or be the item such that j ∈ Nor at round r, and we have the following claim:

Claim 1. For r′ < r, if or 6= or′, then or �j or′.

The claim holds because by Lemma 3 (i), or = top(j,MP,r) and or′ ∈MP,r′ ⊆MP,r.

We prove by mathematical induction that the following conditions hold for any round
r with tj < 1:

Condition (1): tj′ = tj ,

Condition (2): pj,o′ = pj′,o′ = 0 for any o′ with or−1 �j o′ �j or,
Condition (3): j′ ∈ Nor , and

Condition (4): pj,or = pj′,or .

Base case. With j ∈ No1 at round 1, we know that tk = 0 for every k, i.e., condition (1)
holds for r = 1, and o1 = top(j,M ′) = top(j,M) by Lemma 3 (i).

Condition (2) is trivially true since no item o′ �j o1 exists.

Then, we show that condition (3) holds for r = 1. Item o1 is consumed to exhaustion
at this round by Line 6.1 because

∑
k∈No1

∫ tk+1
tk

ωk(t)dt ≥ s(o1) = 1, which means that no

328



Favoring Eagerness for Remaining Items

agent can get o1 at any round r∗ > 1. Therefore pj,o1 > 0 due to j ∈ No1 . If j′ /∈ No1 ,
then j′ does no consume o1, which means that pj′,o1 = 0 < pj,o1 , a contradiction to the
assumption that Pj′ �sdj Pj . Then we have that j′ ∈ No1 , i.e., condition (3) holds for r = 1.

Because tj = tj′ = 0, pj,o1 =
∫ ρo1

0 ωj(r)dt =
∫ ρo1

0 ωj′(r)dt = pj′,o1 by Eq (3), i.e.,
condition (4) for r = 1.

Inductive step. Supposing that conditions (1)-(4) hold for any r′ < r, we show that they
also hold for r with tj < 1.

We see that condition (1) trivially holds for r, i.e., tj′ = tj due to the fact that by
condition (3) for any r′ < r, both tj′ and tj increase by the same value ρor′ on Line 6.1 in
each round r′.

Then, we prove condition (2) for r. Here or 6= or−1, because otherwise we know that after
the consumption at round r − 1, or−1 is not exhausted, which means that agent j ∈ Nor−1

is satisfied. It follows that tj ≥ 1 at the beginning of round r, which we do not need to
consider.

For any o′ with or−1 �j o′ �j or, pj,o′ = 0 by Lemma 3 (i) and (ii), and we show that
pj′,o′ = 0. We have that o′ /∈ M ′ at round r because j ∈ Nor , i.e., top(j,M ′) = or, which
means that o′ is unavailable for round r∗ ≥ r. With Claim 1, o′ is not consumed by j at
any round r′ < r, and therefore it is also not consumed by j′ according to condition (3)
for r′ < r. Then o′ is never consumed by j or j′, which means that pj,o′ = pj′,o′ = 0, i.e.,
condition (2) for r.

Next, we prove condition (3) for r. We consider the following cases.

• If or ∈ MP,r+1, then by Claim 1 and condition (2) for r′ ≤ r, it must hold that∑
o∗�jor

pj,o∗ =
∫ tj

0 ωj(r)dt = tj < 1. By Lemma 3 (i), j ∈ Nor = EP,r(o). By Lemma 3 (iii)

and or ∈ MP,r+1,
∑

o∗∈U(�j ,or) pj,o∗ = 1. By condition (1) for r that tj′ = tj < 1, j′ is not

satisfied at the beginning of round r. If j′ ∈ No′ with o′ 6= or, it means that j′ consumes o′

at round r and pj′,o′ > 0, and or �j o′ since or = top(j,M ′). By conditions (2) and (4) for
r′ < r, and condition (2) for r which we just prove, we have that

∑
o∗�jor

pj,o∗ =
∑

o∗�jor

pj′,o∗ . (16)

Therefore, ∑
o∗∈U(�j ,or)

pj′,o∗ < 1− pj′,o′ < 1 =
∑

o∗∈U(�j ,or)

pj,o∗ ,

a contradiction to the assumption that Pj′ �sdj Pj .

• If or /∈ MP,r+1, then or is consumed to exhaustion by agents in Nor at round r, and no
agent consumes or after round r. Since j ∈ Nor and tj < 1, pj,or > 0. If j′ /∈ Nor , then j′

does not consume or at round r∗ ≥ r. Moreover, j′ also does not consume or before round
r by condition (3) for r′ < r, which means that pj′,or = 0. With Eq (16), we have that∑

o∗∈U(�j ,or) pj,o∗ >
∑

o∗∈U(�j ,or) pj′,o∗ , a contradiction to the assumption that Pj′ �sdj Pj .

Together we show that j ∈ Nor .
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Finally, condition (4) holds for r trivially because by Eq (3), and conditions (1) and (3)
for r, we have that

pj,or =

∫ tj+ρor

tj

ωj(r)dt =

∫ tj′+ρor

tj′

ωj′(r)dt = pj′,or .

By the induction, we have conditions (2) and (4) for any r, i.e., pj,o = pk,o for any item
o, which means that Pj′ = Pj if Pj′ �sdj Pj .

Part 2: UPRE(R) is SETE.
We show that before consuming items not in �j,k, tj = tk, and j and k consume the

same item in each round by mathematical induction on rounds.

Base case. At round 1, we know that both j and k consume the most preferred item o in
�j,k. We have pj,o = pk,o by Eq (3) and tj = tk = 0 which is set initially at the beginning
of Algorithm 3.

Inductive step. Supposing that j and k consume the same item and get the same shares for
each round r′ < r, we prove that this is also true for round r. By the inductive assumption,
we trivially have that tj = tk at the beginning of r. Let j consume o, and k consume o′.
Here we do not need to consider the case that both o, o′ are not in �j,k. If o 6= o′, we
assume that o � o′ without loss of generality, and therefore o must be in �j,k. It means
that o is available at round r, but k consumes o′, a contradiction to the selection of top
items. Therefore o = o′, and pj,o = pk,o by tj = tk and Eq (3).

By induction, we have that pj,o = pk,o for every o in �j,k.

Lemma 4 below illustrates how shares of items must be allocated in order to satisfy ea-
FERI, which is used in proving the uniqueness part of Theorem 4 and impossibility results
for ea-FERI.

Lemma 4. Given P satisfying ea-FERI, for any r and o ∈MP,r, we define the remaining
shares of item o excluding those owned by agents in EP,r′(o) with any r′ < r,

sP,r(o) = 1−
∑

k∈
⋃

r′<r EP,r′ (o)

pk,o,

and the remaining demand of agent j for items ranked below the item top(j,MP,r−1),

dP,r(j) = 1−
∑

o′∈U(�j ,top(j,MP,r−1))

pj,o′ .

For any j ∈ EP,r(o) 6= ∅,
(i) for any o∗ with top(j,MP,r−1) �j o∗ �j o, it holds that pj,o∗ = 0.

(ii) if the total remaining demand of agents eager for item o surpasses the remaining shares
of o, i.e.

∑
k∈EP,r(o) dP,r(k) ≥ sP,r(o), then o /∈MP,r∗ for any r∗ > r and remaining shares

of o are allocated to these agents, i.e.,
∑

k∈EP,r(o) pk,o = sP,r(o).

(iii) if the total remaining demand of agents eager for item o does not surpass the remaining
shares of o, i.e.,

∑
k∈EP,r(o) dP,r(k) ≤ sP,r(o), then these agents’ demands are satisfied by

shares of o, i.e., pj,o = dP,r(j).
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Proof. (i) By the condition, we have that o∗ /∈ MP,r , i.e.,
∑

k∈
⋃

r′<r EP,r′ (o)
pk,o = 1, which

means that j /∈ EP,∗(o∗) with ∗ ≥ r. We also have that j /∈ EP,r′(o∗) for any r′ < r, since
top(j,MP,r′) �j o∗. Together we have that j does not eager for o∗, which leads to pj,o∗ = 0.

(ii) Assume that o ∈ MP,r∗ with r∗ > r. By (i) for r and
∑

k∈EP,r(o) dP,r(k) ≥ sP,r(o),

there exists agent j′ ∈ EP,r(o) such that
∑

o′∈U(�j′ ,o)
pj′,o′ = dP,r(j

′) + pj′,o < 1, a contra-

diction to P satisfying ea-FERI.

(iii) Assume that there exists j′ ∈ EP,r(o) with pj′,o < dP,r(j
′). Then by sP,r+1(o) >

sP,r(o) −
∑

k∈EP,r(o) dP,r(k) ≥ 0, we have that
∑

o′∈U(�j′ ,o)
pj′,o′ < 1 and o ∈ MP,r+1, a

contradiction.

Theorem 4. Given a profile R, a random assignment P satisfies ex-ante favoring-
eagerness-for-remaining-items (ea-FERI) if and only if there exists an eating speed function
ω such that P = PREω(R).

Proof. (Satisfaction) Let P = PREω(R) where ω is any collection of eating functions.
By Lemma 3 (iii), we have that for any item o ∈ MP,r,

∑
o′∈U(�j ,o)

pj,o′ = 1 for any

j ∈ EP,r′(o) with r′ < r, which means that P satisfies ea-FERI.

(Uniqueness) Given Q satisfying ea-FERI, we prove that it coincides with the outcome
P = PREω(R) where the eating functions in ω are as defined in Eq (17) for each agent j:

ωj(t) =

{
n · qj,o, t ∈ [ r−1

n , rn ], where r = min({r̂ | j ∈ EQ,r̂(o)}),
0, others.

(17)

We prove by mathematical induction that the following conditions hold for any round r:

Condition (1): MP,r = MQ,r, and EP,r(o) = EQ,r(o) for each o ∈MQ,r.

Condition (2): for any j ∈ EQ,r(o), if agent j is not satisfied by items in U(�j ,
top(j,MQ,r−1), i.e.,

∑
o′∈U(�j ,top(j,MQ,r−1)) pj,o′ < 1, the start time tj = (r − 1)/n and the

consumption time ρo = 1/n, and

Condition (3): for any j ∈ EQ,r(o) and o ∈MQ,r, pj,o = qj,o.

Base case. When r = 1, we trivially have that MQ,1 = M ′ = M and EQ,1(o) = No for
any o ∈M at round 1 in Algorithm 3, and each j ∈ No consumes o. With Lemma 3 (i), we
have that condition (1) holds for r = 1.

Then we show condition (2) holds for r = 1. By Line 2, s(o), the supply of o, is
set to 1 for any o ∈ M ′, and for any j ∈ EQ,r(o), tj is set to 0 = (r − 1)/n. Since∑

k∈No

∫ 1
tk
ωk(t)dt ≥ s(o) = 1, ρo = min{ρ |

∑
k∈No

∫ ρ
0 ωk(t)dt = s(o)} by Line 6.1, and o is

consumed to exhaustion. We also have that
∑

k∈No
pk,o = 1 for P . Otherwise, o ∈ MP,2,

and there exists j′ ∈ EP,1(o) with
∑

o′∈U(�j ,o)
pj′,o′ = pj′,o < 1, a contradiction to P

satisfying ea-FERI by the satisfaction part above. Similarly, with Q satisfying ea-FERI,∑
k∈No

qj,o = 1 =
∑

k∈No
pk,o. Therefore by Eq (17),

∑
k∈No

∫ 1/n
0 ωk(t)dt = 1, which means

that ρo, the time for consuming o, is exactly 1/n. Together we have that condition (2) holds
for r = 1.

With ρo = 1/n, pj,o =
∫ 1/n

0 ωj(t)dt = qj,o, i.e., condition (3) holds for r = 1.
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Inductive step. Supposing that conditions (1)-(3) hold for r′ < r, we show they also hold
for r. First, since conditions (1) and (3) hold for r′ < r, we trivially have that condition
(1) holds for r.

Next we show condition (2) holds for r. By Lemma 3 (i) and condition (1) for r which
we just prove, it holds that MQ,r = M ′ and EQ,r(o) = No for each o ∈MQ,r. By Line 8 and
condition (2) for r−1, we have that for any j ∈ EQ,r(o) with

∑
o′∈U(�j ,top(j,MQ,r−1)) pj,o′ < 1,

tj = (r − 1)/n.

Then we show that the consumption time ρo = 1/n. Let N ′o = {k ∈ No |∑
o′∈U(�k,top(j,MQ,r−1)) pk,o′ < 1}, and we see that agent j′ ∈ No \N ′o does not consume o at

round r since they have been satisfied with
∫ tj

0 ωj(t)dt =
∑

o′∈U(�j′ ,top(j,MQ,r−1)) pj′,o′ ≥ 1.

Besides, we define M∗ = {o∗ | k ∈ EQ,r′(o∗) with r′ < r} = {o∗ | k ∈ EP,r′(o∗) with r′ < r}
by conditions (1) and (3) for r′ < r. We show that ρo = 1/n in both cases about s(o), now
the remaining shares of o at round r in Algorithm 3. We also note that with Lemma 3 (i),
s(o) =

∑
k/∈

⋃
r′<r EP,r′ (o)

pk,o =
∑

k/∈
⋃

r′<r EQ,r′ (o)
qk,o, which means that s(o) is also the total

shares of o owned by agents not in EQ,r′(o) with r′ < r in assignment Q.

• If
∑

k∈No

∫ 1
tk
ωk(t)dt ≥ s(o), then o is consumed to exhaustion, i.e.

∑
k∈N ′o pk,o = s(o).

Otherwise, assume for the sake of contradiction that
∑

k∈N ′o pk,o < s(o). Then by the

assumption, o ∈ MP,r+1, and there exists j′ ∈ EP,r(o) with pj′,o <
∫ 1
tj
ωj(t)dt, which

means that
∑

o′∈U(�j′ ,o)
pj′,o′ =

∑
o′∈M∗ pj′,o + pj′,o <

∫ 1
0 ωj(t)dt = 1 by Lemma 4 (i),

a contradiction to P satisfying ea-FERI. Since Q also satisfies ea-FERI, we have that
o /∈ MQ,r+1, and with conditions (1) and (3) for r′ < r, we have that

∑
k∈N ′o qk,o = s(o) =∑

k∈N ′o pk,o. We also note that r = min({r̂ | j ∈ EQ,r̂(o)}) for any j ∈ N ′o, because

otherwise j ∈ EQ,r′(o) = EP,r′(o) with r′ < r and o ∈ MP,r, while
∑

o′∈U(�j ,o)
pj,o′ ≤∑

o′∈U(�j ,top(j,MQ,r−1)) pj,o′ < 1, a contradiction to P satisfying ea-FERI. Then by Eq (17)
and Line 6.1 of Algorithm 3,

ρo = min{ρ |
∑
k∈No

∫ tk+ρ

tk

ωk(t)dt = s(o)} = 1/n.

• If
∑

k∈No

∫ 1
tk
ωk(t)dt < s(o), then o ∈ MP,r+1, and we have that all the agents in N ′o are

satisfied, i.e.,
∑

k∈N ′o pk,o =
∑

k∈No

∫ tk+ρo
tk

ωk(t)dt =
∑

k∈No

∫ 1
tk
ωk(t)dt. Otherwise, there

exists j′ ∈ EP,r(o) who is not satisfied with
∑

o′∈U(�j′ ,o)
pj′,o′ =

∑
o′∈M∗ pj′,o + pj′,o < 1

by Lemma 4 (i), a contradiction to P satisfying ea-FERI. With conditions (1) and (3) for
r′ < r, we also have that

∑
k∈N ′o

qk,o ≤
∑
k∈N ′o

(1−
∑
o′∈M∗

qk,o′) =
∑
k∈N ′o

(1−
∑
o′∈M∗

pk,o′) =
∑
k∈N ′o

∫ 1

tk

ωk(t)dt =
∑
k∈N ′o

pk,o. (18)

We also claim that
∑

k∈N ′o qj,o =
∑

k∈N ′o(1−
∑

o′∈M∗ qk,o′) in Eq (18). Otherwise, o ∈MQ,r+1

since
∑

k∈N ′o qk,o <
∑

k∈N ′o pk,o < s(o), and there exists j′ ∈ N ′o with
∑

o′∈U(�j′ ,o)
qj′,o =∑

o′∈M∗ qj′,o + qj′,o < 1 by Lemma 4 (i), a contradiction to Q satisfying ea-FERI. With
r = min({r̂ | j ∈ EQ,r̂(o)}) for any j ∈ N ′o, and Eq (17) and (18), we obtain that ρo = 1/n.
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Together we have that condition (2) holds for r.

Finally, we show that condition (3) holds for r. For any j ∈ EQ,r(o), if j ∈ EQ,r′(o)
with some r′ < r, then we have the proof trivially by the fact that condition (3) holds for
r′. Next we consider the case that j /∈ EQ,r′(o), i.e., o 6= top(j,MQ,r′) with any r′ < r. We
show qj,o = pj,o in both of the possible cases below:

• If
∑

o′∈U(�j ,top(j,MQ,r−1)) pj,o′ < 1, then by the fact that condition (2) for r which we just

proved above, pj,o =
∫ r/n

(r−1)/n ωk(t)dt = qj,o.

• If
∑

o′∈U(�j ,top(j,MQ,r−1)) pj,o′ = 1, then
∑

o′∈U(�j ,top(j,MP,r−1)) pj,o′ = 1 by condition (1)

for r − 1, which means that j is satisfied before round r by Lemma 4 (i) and does not
consume o since o 6= top(j,MQ,r′) = top(j,MP,r′) for any r′ < r. Therefore pj,o = 0. As for
Q, by condition (3) for r′ < r,

∑
o′∈U(�j ,top(j,MQ,r−1)) qj,o′ ≥

∑
o′∈U(�j ,top(j,MQ,r−1)) pj,o′ = 1.

Because o 6= top(j,MQ,r−1) and o ∈MP,r = MQ,r ⊆MQ,r−1 by condition (1) for r, we have
that top(j,MQ,r−1) �j o, and therefore qj,o = 0 = pj,o.

Together we have that condition (3) holds for r.

From the induction above, we have that conditions (1) and (3) hold for any r, i.e., for
any r, we have that MP,r = MQ,r, EP,r(o) = EQ,r(o) for any o ∈ MQ,r, and pj,o = qj,o for
any j ∈ EQ,r(o). In Algorithm 3, shares of o are only allocated to agents in EP,r(o) in each
round, and o is exhausted at the end, which means that pj′,o = 0 if j′ /∈ EP,r(o) = EQ,r(o)
for any r. With the fact that the supply of all the items is fully allocated to agents, it
follows that qj′,o = 0 if j′ /∈ EQ,r(o) for any r by condition (3). Together we have that
P = Q.

Proposition 5. No mechanism simultaneously satisfies ex-ante favoring-eagerness-for-
remaining-items (ea-FERI) and sd-envy-freeness (sd-EF).

Proof. For ease of reading, we recall the preference profile R and assignment Q used
in Proposition 4, which are used in the following proof.

Preference Profile R
�1: a �1 c �1 b �1 d,
�2: a �2 c �2 b �2 d,
�3: a �3 b �3 c �3 d,
�4: b �4 a �4 d �4 c.

Assignment Q
a b c d

1 1/3 0 ? ?
2 1/3 0 ? ?
3 1/3 0 ? ?
4 0 1 0 0

For any assignment P satisfying ea-FERI, we have that EP,1(a) = {1, 2, 3} and EP,1(b) =
{4}. It follows that

∑
k∈EP,1(a) dP,1(k) > sP,1(a), and therefore a /∈ MP,r with r > 1

by Lemma 4 (ii), which means that only agents 1, 2 and 3 get shares of a. It also follows
that agent 4 fully gets b for the same token. Then any assignment satisfying ea-FERI and
SETE (implied by sd-EF) is in the form of Q, but Q does not satisfy sd-EF as we have
shown in Proposition 4.

Proposition 7. No mechanism simultaneously satisfies ex-ante favoring-eagerness-for-
remaining-items (ea-FERI), strong equal treatment of equals (SETE), and sd-weak-strategy
proofness (sd-WSP).
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Proof. Assume such mechanism f exists. Let R be:

�1: a �1 b �1 · · · �1 h �1 c,

�2: a �2 h �2 · · · �2 b �2 c,

�3-7: c � d � e � f � g � b � h � a,
�8: c �8 d �8 b �8 e �8 f �8 g �8 h �8 a.

Let P = f(R). Recall the notations in Lemma 4 that sP,r(o) = 1 −
∑

k∈
⋃

r′<r EP,r′ (o)
pk,o,

and dP,r(j) = 1−
∑

o′�jo
pj,o′ for any j ∈ EP,r(o).

- For r = 1, by Lemma 4 (ii), since EP,1(a) = {1, 2} and
∑

k∈EP,1(a) dP,1(k) > sP,1(a), only

agents 1 and 2 gets shares of a. It follows that only agents in EP,1(c) = {3, . . . , 8} gets c
for the same token. Then we have p1,a = p2,a = 1/2, pj,c = 1/6 for j ∈ {3, . . . , 8} by SETE.

- For r = 2, MP,2 = {b, d, . . . , h}, EP,2(b) = {1}, EP,2(h) = {2}, and EP,2(d) = {3, . . . , 8}.
With

∑
k∈EP,2(d) dP,2(k) > sP,2(d), we have that pj,d = 1/6 for j ∈ {3, . . . , 8} by Lemma 4 (ii)

and SETE. With
∑

k∈EP,2(b) dP,2(k) ≤ sP,2(b), p1,b = dP,2(1) = 1/2 by Lemma 4 (iii), and

it follows that p2,h = dP,2(2) = 1/2 for the same token.

- For r = 3, MP,3 = {b, e, . . . , h}, EP,3(b) = {8}, and EP,3(e) = {3, . . . , 7}. With
Lemma 4 (ii) and

∑
k∈EP,3(d) dP,3(k) > sP,3(d), we have that p8,b = 1/2. With∑

k∈EP,3(e) dP,3(k) > sP,3(e), pj,e = 1/5 for j ∈ {3, . . . , 7} by SETE.

With the analysis above, we have assignment P in the following form.

Assignment P
a b c d e f g h

1 1/2 1/2 0 0 0 0 0 0
2 1/2 0 0 0 0 0 0 1/2

3-7 0 0 1/6 1/6 1/5 ? ? ?
8 0 1/2 1/6 1/6 0 ? ? ?

If agent 8 misreports her preference as

�′8: c �′8 d �′8 e �′8 b �′8 f �′8 g �′8 h �′8 a,

then let P ′ = f(R′) for R′ = (�′8,�−8).

- The analysis for P ′ with r = 1 and 2 is the same as P .

- For r = 3, MP ′,3 = {b, e, . . . , h} and EP ′,3(e) = {3, . . . , 8}. With
∑

k∈EP ′,3(e) dP ′,3(k) >

sP ′,3(e), p′j,e = 1/6 for j ∈ {3, . . . , 8} by SETE.

- For r = 4, MP ′,4 = {b, f, g, h}, EP ′,4(b) = {8}, and EP ′,4(f) = {3, . . . , 7}. With
Lemma 4 (iii) and

∑
k∈EP ′,4(b) dP ′,4(k) = sP ′,4(b), p′8,b = dP ′,4(8) = 1/2.

Then we obtain the assignment P ′ in the following form.
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Assignment P ′

a b c d e f g h

1 1/2 1/2 0 0 0 0 0 0
2 1/2 0 0 0 0 0 0 1/2

3-7 0 0 1/6 1/6 1/6 ? ? ?
8 0 1/2 1/6 1/6 1/6 0 0 0

We see that P ′8 strictly dominates P8 for
∑

o∈U(8,e) p8,o = 5/6 < 1 =
∑

o∈U(8,e) p
′
8,o and∑

o∈U(8,o′) p8,o ≤
∑

o∈U(8,o′) p
′
8,o for other o′ ∈ M , a contradiction to the fact that f is sd-

WSP.

Proposition 8. No mechanism simultaneously satisfies ex-post favoring-eagerness-for-
remaining-items (ep-FERI), ex-ante favoring-eagerness-for-remaining-items (ea-FERI),
and strong equal treatment of equals (SETE).

Proof. Assume that there exists a mechanism f satisfying ea-FERI and SETE. Let P =
f(R) for the following preference profile R, and then we show that P is not ep-FERI,

�1,2: a1 �1 a2 �1 a3 �1 others

�3: a1 �3 a2 �3 a4 �3 others

�4,5: b1 �4 b2 �4 b3 �4 others

�6: b1 �6 b2 �6 b4 �6 others

�7-17: c1 �7 c2 �7 c3 �7 c4 �7 c5 �7 c6 �7 others

�x: c1 �x c2 �x c3 �x a3 �x b3 �x c5 �x c4

�x c6 �x others

- For r = 1, MP,1 = M,EP,1(a1) = {1, 2, 3}, EP,1(b1) = {4, 5, 6} and EP,1(c1) =
{7, . . . , 17, x}. By Lemma 4 (ii), item a1, b1, c1 /∈ MP,2 since dP,1(j) = 1 for any j ∈ N .
Then we have pj,a1 = 1/3 for j ∈ EP,1(a1), pi′,b1 = 1/3 for j′ ∈ EP,1(b1) and pj∗,c1 = 1/12
for j∗ ∈ EP,1(c1) by SETE.

- For r = 2, MP,2 = {a2, a3, a4, b2, b3, b4, c2, . . . , c6, . . . }, EP,2(a2) = {1, 2, 3}, EP,2(b2) =
{4, 5, 6} and EP,2(c2) = {7, . . . , 17, x}. Similar to r = 1, by Lemma 4 (ii), a2, b2, c2 /∈MP,3.
Then we have pj,a2 = 1/3 for j ∈ EP,2(a2), pi′,b2 = 1/3 for j′ ∈ EP,2(b2) and pj∗,c2 = 1/12
for j∗ ∈ EP,2(c2) by SETE.

- For r = 3, MP,3 = {a3, a4, b3, b4, c3, . . . , c6, . . . }, EP,3(a3) = {1, 2}, EP,3(a4) = {3},
EP,3(b3) = {4, 5}, EP,3(b4) = {6}, and EP,3(c3) = {7, . . . , 17, x}. By Lemma 4 (iii), pj,a3 =
1/3 for j ∈ EP,3(a3), p3,a4 = 1/3, pj′,b3 = 1/3 for j′ ∈ EjP,3(b3), and p6,b4 = 1/3. Since∑

ô∈U(�j ,top(j,MP,3)) = 1 for any agent j ∈ N ′ = {1, . . . , 6}, their allocations have been
determined and we do not need to consider them for r > 3.

- For r = 4, MP,4 = {a3, a4, b3, b4, c4, c5, c6, . . . }. Then EP,4(c4) \ N ′ = {7, . . . , 17} and
EP,4(a3) \ N ′ = {x}. By Lemma 4 (ii), a3, c4 /∈ MP,5, px,a3 = 1/3 and pj′,c4 = 1/11 for
j′ ∈ EP,4(c4) by SETE.
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- For r = 5, MP,5 = {a4, b3, b4, c5, c6, . . . }, EP,5(c5) \N ′ = {7, . . . , 17} and EP,5(b3) \N ′ =
{x}. By Lemma 4 (ii), b3, c5 /∈ MP,6, px,b3 = 1/3 and pj′,c5 = 1/11 for j′ ∈ EP,5(c5) by
SETE.

- For r = 6, MP,5 = {a4, b4, c6, . . . }, EP,6(c6) \ N ′ = {7, . . . , 17, x}. By Lemma 4 (ii),
c6 /∈MP,7 and pj′,c6 = 1/12 for j′ ∈ EP,6(c6) by SETE.

We show the part of P which has been determined by r ≤ 6 in the following P (i) for
agents {1, 2, 3, x} over items {a1, . . . , a4}, P (ii) for agents {4, 5, 6, x} over items {b1, . . . , b4},
and P (iii) for agents {7, . . . , 17, x} over items {c1, . . . , c6}.

Assignment P (i)
a1 a2 a3 a4

1 1/3 1/3 1/3 0
2 1/3 1/3 1/3 0
3 1/3 1/3 0 1/3
x 0 0 1/3 0

Assignment P (ii)
b1 b2 b3 b4

4 1/3 1/3 1/3 0
5 1/3 1/3 1/3 0
6 1/3 1/3 0 1/3
x 0 0 1/3 0

Assignment P (iii)
c1 c2 c3 c4 c5 c6

7-17 1/12 1/12 1/12 1/11 1/11 1/12
x 1/12 1/12 1/12 0 0 1/12

There exists an assignment A with A(x) = c6 among the deterministic assignments
which constitute the convex combination for P . In the following, we prove that none of
such A is FERI. According to P , a3 is assigned to one of {1, 2} in A since agent x does
not get it. Due to the fact that �1=�2, let A(1) = a3 without loss of generality. With the
fact that only agents in {1, 2, 3} can get {a1, a2}, we have that agents {2, 3} get {a1, a2}. It
follows that b3 is assigned to one of {4, 5} and {4, 5, 6} get {b1, b2, b3} for the same token.
Due to the fact that �4=�5, let A(4) = b3 without loss of generality, and therefore {5, 6}
get {b1, b2}. Agents in {7, . . . , 17} get the rest items, and for ease of exposition, let agent ji
with i ∈ {1, . . . , 6} satisfy ji ∈ {7, . . . , 17} and ji = A−1(ci). We further have the following
analysis about checking if A satisfies FERI:

- For r = 1, TA,1 = {a1, b1, c1} because M1 = M , top(j,M1) = a1 for j ∈ {1, 2, 3},
top(j′,M1) = b1 for j′ ∈ {4, 5, 6}, and top(j∗,M1) = c1 for j∗ ∈ {7, . . . , 11, x}. Then one of
{2, 3} gets a1, one of {4, 5} gets b1, and agent j1 gets c1 by FERI.

- For r = 2, no matter which j ∈ {2, 3} gets a1 and which j′ ∈ {4, 5} gets b1, TA,2 =
{a2, b2, c2} because for M2 = M \TA,1, top(j,M2) = a2 for j ∈ {1, 2, 3}, top(j′,M2) = b2 for
j′ ∈ {4, 5, 6}, and top(j∗,M2) = c2 for j∗ ∈ {7, . . . , 11, x}. Then the rest one of {2, 3} gets
a2, the rest one of of {4, 5} gets b2, and agent j2 gets c2 by FERI.

- For r = 3, we do not consider j′ ∈ {2, 3, 5, 6, j1, j2} because A(j′) ∈
⋃
r′<3 TA,r′ . We obtain

that TA,3 = {a3, b3, c3} because for M3 = M \
⋃
r′<3 TA,r′ , top(1,M3) = a3, top(4,M3) = b3,

and top(j,M3) = c3 for j ∈ {7, . . . , 11, x}. Then agent 1 gets a3, agent 4 gets b3, and agent
j3 gets c3 by FERI.
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- For r = 4, we do not consider j′ ∈ {1, . . . , 6, j1, j2, j3}. We obtain that TA,4 = {c4, c5}
because for M4 = M \

⋃
r′<4 TA,r′ , top(j,M4) = c4 for j ∈ {7, . . . , 11} and top(x,M4) = c5.

However, we have that A−1(c5) = j5 and top(j5,M4) = c4, which violates FERI.

With the analysis above, we have that A does not satisfy FERI, and therefore P does
not satisfy ep-FERI, which means that f does not satisfy ep-FERI, ea-FERI, and SETE
simultaneously.
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