
Journal of Artificial Intelligence Research 75 (2022) 1177-1221 Submitted 04/2022; published 11/2022

Strategy Graphs for Influence Diagrams

Eric A. Hansen hansen@cse.msstate.edu

Jinchuan Shi jinchuanshi86@gmail.com

James Kastrantas jkastrantas@gmail.com

Dept. of Computer Science and Engineering

Mississippi State University, MS 39762, USA

Abstract

An influence diagram is a graphical model of a Bayesian decision problem that is solved
by finding a strategy that maximizes expected utility. When an influence diagram is solved
by variable elimination or a related dynamic programming algorithm, it is traditional to
represent a strategy as a sequence of policies, one for each decision variable, where a
policy maps the relevant history for a decision to an action. We propose an alternative
representation of a strategy as a graph, called a strategy graph, and show how to modify
a variable elimination algorithm so that it constructs a strategy graph. We consider both
a classic variable elimination algorithm for influence diagrams and a recent extension of
this algorithm that has more relaxed constraints on elimination order that allow improved
performance. We consider the advantages of representing a strategy as a graph and, in
particular, how to simplify a strategy graph so that it is easier to interpret and analyze.

1. Introduction

An influence diagram (Howard & Matheson, 1981; Tatman & Shachter, 1990; Jensen &
Nielsen, 2011) is a compact graphical model of a Bayesian decision problem that is solved
by finding a strategy that maximizes expected utility, where a strategy specifies what action
to take in each situation based on available information.

Variable elimination algorithms for solving influence diagrams, and closely-related node
reduction algorithms, represent a strategy by a sequence of policies, one for each decision
variable, where a policy maps the relevant history for a decision to an action (e.g., Shachter,
1986; Tatman & Shachter, 1990; Shenoy, 1992; Ndilikilikesha, 1994; Jensen, Jensen, &
Dittmer, 1994; Dechter, 2000; Jensen & Nielsen, 2007; Luque & Dı́ez, 2010). However, this
representation of a strategy has the drawback that it can be difficult for a human user to
understand, as well as unnecessarily large, since it specifies an action for every scenario,
including those that are impossible or unreachable, and thus irrelevant.

In recent work, Luque, Arias, and Dı́ez (2017) show how to modify a variable elimination
algorithm so that it represents a strategy in the more compact and understandable form
of a tree, called a strategy tree. This alternative representation of a strategy is related to
classic methods for solving an influence diagram by unfolding it into an equivalent decision
tree, where a strategy tree is a subtree of the decision tree that only includes branches that
are reachable by following the strategy. In practice, strategy trees have been shown to be
especially useful in domains where clear communication with users about the strategy found
by an influence diagram solver is important, for example, in medical decision making (Segal
& Shahar, 2009; Luque, Dı́ez, & Disdier, 2016).

©2022 AI Access Foundation. All rights reserved.

Hansen, Shi, & Kastrantas

In this paper, we develop an approach to strategy representation that leverages the fact
that a strategy tree with repeated subtrees can be represented more compactly, and usually
much more compactly, by an equivalent graph that we call a strategy graph. The possibility
of compressing a strategy tree into an equivalent graph has been considered before in the
literature on influence diagrams, especially the early literature, where it is referred to by
the term coalescence (Olmsted, 1983; Tatman, 1986; Smith, Holtzman, & Matheson, 1993).
However, the representation of a strategy as a graph has almost never been used in practice,
apparently due to difficulties in developing an algorithm that can easily perform coalescence
when solving an influence diagram. To address these difficulties, the concept of a strategy
graph that we develop in this paper generalizes and extends the traditional concept of
coalescence in several significant ways.

Our central contribution is to show how to modify a variable elimination algorithm for
influence diagrams so that it represents a strategy as a graph. We show how to do so for
both a classic variable elimination algorithm and a recently-introduced generalization of this
algorithm that integrates the variable elimination approach with techniques adapted from
the value iteration algorithm for finite-horizon partially observable Markov decision pro-
cesses (POMDPs) (Hansen, 2021). The integrated algorithm has more relaxed constraints
on the order in which variables can be eliminated, which can improve the performance of
the variable elimination approach to solving influence diagrams, sometimes dramatically.

In the original description of this new algorithm, called generalized variable elimination,
a strategy is represented by a sequence of policies, in keeping with the traditional approach
to strategy representation. However, a policy constructed by generalized variable elimina-
tion can map belief states (as well as histories) to actions, a representation that it inherits
from POMDPs, where a belief state is a probability distribution over the hidden states of a
problem that is updated by Bayes’ rule. Execution of a strategy that is represented in this
more general form has the drawback that it requires updating a belief state by Bayes’ rule
after each action and observation, in order to select the next action. Thus one advantage
of modifying the new algorithm so that it represents a strategy as a graph is that it makes
it unnecessary to maintain a belief state in order to execute a strategy.

A more important advantage is that a strategy graph can be more compact, and often
much more compact, than an equivalent representation of a strategy as a tree, or as a
sequence of policies. As a result, it can be easier to interpret and analyze. To enhance
this advantage, we show how to simplify a strategy graph as much as possible by removing
redundant and unreachable nodes, and especially by merging duplicate subgraphs, that is,
by coalescence. We distinguish among three forms of coalescence. First, we use the term
implicit coalescence to refer to a form of coalescence that is performed automatically by the
variable elimination algorithm itself when it eliminates variables in an order that leverages
Markovian independence from prior history. We show that generalized variable elimination
leads to much more implicit coalescence (and speedup) than the classic algorithm because it
can solve dynamic programming recurrences over belief states. Second, we consider a form
of coalescence that we call explicit coalescence because it explicitly checks for and merges
duplicate subgraphs that are not merged implicitly. Explicit coalescence is performed by
additional steps that are added to the algorithm, and so it incurs some computational
overhead (unlike implicit coalescence). Finally, we consider a third form of coalescence that
can simplify a strategy graph even further in exchange for bounded-error approximation.

1178

Strategy Graphs for Influence Diagrams

Representing a strategy in the more compact and easier-to-understand form of a graph
has advantages that are in keeping with the original motivation for introducing influence
diagrams as a tool for decision analysis. An influence diagram is a graphical representation
of a decision problem that is exponentially more compact than its equivalent representation
as a decision tree, which makes the structure of a problem easier to interpret and analyze.
In a similar way, the representation of a strategy as a graph can be exponentially more
compact than its equivalent representation as a strategy tree, or a sequence of policies, and
thus it makes the structure of a strategy easier to interpret and analyze.

The paper is organized as follows. Section 2 introduces the concept of a strategy graph.
Section 3 shows how to modify a classic variable elimination algorithm for influence diagrams
so that it represents a strategy as a graph. Section 4 reviews our recent generalization of this
algorithm, which uses POMDP techniques to relax constraints on elimination order, and
shows how it can also be modified to represent a strategy as a graph. Section 5 considers how
to use coalescence to simplify a strategy graph even further in exchange for bounded-error
approximation. Section 6 summarizes the paper and discusses related work.

2. Influence Diagrams and Strategy Representation

We begin with a brief review the influence diagram model and previous approaches to
strategy representation. Then we introduce the concept of a strategy graph.

Notation We use upper-case letters such as X to denote variables and lower-case letters
such as x to denote values, or states, of variables. We assume variables are discrete. For a
variable X, we let sp(X) denote its set of states, or state space. We use bold upper-case
letters such as X to represent sets of variables, that is, joint variables, and we let bold
lower-case letters such as x denote instantiations of X. The state space of a joint variable
X is the Cartesian product of the individual state spaces, that is, sp(X) = ×X∈Xsp(X).

2.1 Graphical Model of a Decision Problem

An influence diagram is a graphical model of a Bayesian decision problem that is defined
on a directed acyclic graph with three types of nodes. Chance nodes, drawn as ovals, rep-
resent random variables, denoted C = {C1, . . . , Cm}. Decision nodes, drawn as rectangles,
represent decision variables, denoted D = {D1, . . . , Dn}. Reward (or value) nodes, drawn
as diamonds, represent additive reward functions, denoted R = {R1, . . . , Rq}, and are the
sink nodes of the graph.

The graph of an influence diagram also has three types of arcs, distinguished by the type
of node they go into. Arcs into chance nodes, called conditional arcs, represent probabilistic
dependence, as in a Bayesian network. For each chance variable C ∈ C, a conditional
probability function, P (C|pa(C)), maps each instantiation of the variables {C} ∪ pa(C) to
a probability, where pa(X) denotes the set of parent variables of variable X in the graph.
Arcs into reward nodes, called functional arcs, indicate the domain of the associated reward
function. Thus a reward function R assigns a scalar value to each instantiation of its parent
variables pa(R). Arcs into decision nodes, called informational arcs, imply information
precedence. That is, an arc from a node for variable X to a node that represents a decision
variable D indicates that the state of variable X is known when decision D is made.

1179

Hansen, Shi, & Kastrantas

We consider influence diagrams under the classic assumptions of (i) a total ordering
of decisions and (ii) no-forgetting. The first assumption is equivalent to the assumption
that there is a directed path in the graph that includes all of the decision nodes, which
means decision variables are ordered in time: D1, ..., Dn. Let Y denote the subset of chance
variables that are observed at some point in the decision problem, and let X denote the
subset of chance variables that are never observed, so that C = Y∪X. Given a total ordering
of decision variables, we have a partition of the chance variables, {Y1,Y2, ...,Yn,X}, where
Y1 is the set of chance variables whose state is known before the first decision D1 is made,
Yi+1 is the set of chance variables observed after the decision Di is made and before the
decision Di+1 is made, and X is the set of chance variables that are never observed. Given
this partition, there is a partial temporal ordering of variables,

Y1 ≺ D1 ≺ Y2 ≺ D2 ≺ . . . ≺ Yn ≺ Dn ≺ X, (1)

where each decision variable Di, or set of chance variables Yi, is instantiated before all
subsequent variables in this partial order.

The no-forgetting assumption means that if the state of a variable Y is known before a
decision Di is made, it is also known before any posterior decision Dj is made, where i < j,
even if there is not an explicit arc from Y to Dj in the graph. The set of variables for which
the state is known to the decision maker before a decision Di is made is called the set of
informational predecessors of Di, denoted Pred(Di), and defined as:

Pred(Di) = Y1 ∪ {D1} ∪Y2 ∪ . . . ∪Yi−1 ∪ {Di−1} ∪Yi

= Pred(Di−1) ∪ {Di−1} ∪Yi. (2)

The total ordering of decisions and the no-forgetting assumption reflect the perspective
that the decision problem is solved by a single decision maker who makes a sequence of
decisions based on perfect recall of all past decisions and observations.

Example: Mildew treatment. Figure 1 shows an influence diagram for a problem of
fungicide treatment of mildew in a wheat field. The example is described by Jensen and
Nielsen (2007, pp. 282-283) and the probabilities and rewards are from the HUGIN website.1

The influence diagram has four unobserved chance variables. The initial crop state (Q)
can be fair (f), average (a), good (g), or very good (v). The crop state at harvest (H) can
be in any one of these four states or three others: poor (p), bad (b), or rotten (r). Both the
degree of mildew present before treatment (M) and after treatment (M∗) can be in any one
of four possible states: none (no), little (l), moderate (m), or severe (s).

There are two observed chance variables: observation of the crop state (OQ), with the
same four possible values as Q, and observation of the mildew situation (OM), with the
same four possible values as M . Although the possible values are the same, the observations
are noisy and imperfectly correlated with the underlying state.

There is one decision variable (A) with four options for fungicide treatment: none (no),
light (l), moderate (m), or heavy (h). One reward node (C) gives the cost of fungicide
treatment. The other (U) gives the value of the final harvest as a function of crop state.

1. See http://camvac.hugin.com/index.php/Mildew.

1180

Strategy Graphs for Influence Diagrams

Q H

M M∗

OM

OQ

A

C U

P (Q)
f a g v

0.2 0.4 0.3 0.1

P (OQ|Q)
Q f a g v

f 0.8 0.15 0.05 0.0
a 0.3 0.6 0.1 0.0
g 0.1 0.2 0.6 0.1
v 0.0 0.1 0.4 0.5

P (M)
no l m s

0.4 0.3 0.2 0.1

P (OM |M)
M no l m s

no 0.9 0.1 0.0 0.0
l 0.2 0.5 0.2 0.1

m 0.1 0.2 0.5 0.2
s 0.0 0.1 0.3 0.6

P (M∗|A,M)
A, M no l m s

no, no 1.0 0.0 0.0 0.0
no, l 0.0 1.0 0.0 0.0
no, m 0.0 0.0 1.0 0.0
no, s 0.0 0.0 0.0 1.0
l, no 1.0 0.0 0.0 0.0
l, l 0.8 0.2 0.0 0.0

l, m 0.0 0.8 0.2 0.0
l, s 0.0 0.0 0.8 0.2

m, no 1.0 0.0 0.0 0.0
m, l 1.0 0.0 0.0 0.0
m, m 0.8 0.2 0.0 0.0
m, s 0.0 0.8 0.2 0.0
h, no 1.0 0.0 0.0 0.0
h, l 1.0 0.0 0.0 0.0

h, m 1.0 0.0 0.0 0.0
h, s 0.8 0.2 0.0 0.0

P (H|M∗, Q)
M∗, Q r b p f a g v

no, f 0.00 0.05 0.10 0.70 0.10 0.05 0.00
no, a 0.00 0.00 0.05 0.10 0.70 0.10 0.05
no, g 0.00 0.00 0.00 0.05 0.10 0.70 0.15
no, v 0.00 0.00 0.00 0.00 0.10 0.20 0.70
l, f 0.05 0.10 0.70 0.10 0.05 0.00 0.00
l, a 0.00 0.00 0.05 0.10 0.70 0.10 0.05
l, g 0.00 0.00 0.05 0.10 0.70 0.15 0.00
l, v 0.00 0.00 0.00 0.05 0.15 0.70 0.10
m, f 0.15 0.70 0.10 0.05 0.00 0.00 0.00
m, a 0.05 0.10 0.70 0.10 0.05 0.00 0.00
m, g 0.00 0.05 0.10 0.70 0.10 0.05 0.00
m, v 0.00 0.00 0.05 0.10 0.70 0.15 0.00
s, f 0.90 0.10 0.00 0.00 0.00 0.00 0.00
s, a 0.15 0.70 0.10 0.05 0.00 0.00 0.00
s, g 0.05 0.10 0.70 0.10 0.05 0.00 0.00
s, v 0.00 0.05 0.10 0.70 0.10 0.05 0.00

C(A)
h m l no

-4 -3 -2 0

U(H)
r b p f a g v

-1 1 5 8 10 12 13

Figure 1: Influence diagram for the mildew treatment problem.

2.2 Traditional Representation of a Strategy

To solve, or evaluate, an influence diagram means to compute an optimal strategy and its
expected utility. For a problem faced by a single decision maker with perfect recall, it is
well-known that an optimal deterministic strategy exists. It is traditional to represent such
a strategy by a sequence of policies, ∆ = (δD1 , . . . , δDn), with one policy for each decision
variable Di ∈ D, where a policy is a mapping, δDi : sp(Pred(Di)) → sp(Di). That is,
a policy maps each instantiation of the informational predecessors of the decision variable
to an action. A straightforward way to represent a strategy defined in this way is by a
sequence of tables, where each table represents a policy. Note that the table may not need
to have a dimension for every variable that is an informational predecessor of Di. It only
needs to consider variables that are relevant, which means they affect the choice of action.

1181

Hansen, Shi, & Kastrantas

Expected utility of a strategy. The same strategy can also be represented by an ordered
set of degenerate conditional probability distributions, P∆ = (PδD1

, . . . , PδDn
), one for each

decision variable Di, where each conditional probability distribution is defined as follows:

PδDi
(Di = di|Pred(Di)) =

{
1 if di = δDi(Pred(Di)),

0 otherwise.
(3)

A strategy ∆ defined in this alternative way induces a joint probability distribution over
the variables C ∪D of the problem, defined as

P∆(C,D) =
∏
D∈D

PδD(D|Pred(D))
∏
C∈C

P (C|pa(C)), (4)

which allows the expected utility of a strategy ∆ to be defined as

EU(∆) =
∑
C∪D

[
P∆(C,D)U(C,D)

]
, (5)

where U(C,D) =
∑

R∈RR(pa(R)) is the global utility function of the decision problem,
that is, it is the sum of the local reward functions. In words, Equation (5) means that the
expected utility of a strategy is the sum of the probability of each joint assignment to the
variables in C ∪D multiplied by its utility.

Let ∆ denote the set of all deterministic strategies for an influence diagram. An optimal
strategy is defined as ∆∗ = arg max∆∈∆EU(∆), and the maximum expected utility (MEU)
for the decision problem is EU(∆∗). In Sections 3 and 4, we describe variable elimination
algorithms that compute an optimal strategy and its expected utility.

2.3 Representation of a Strategy as a Graph

In this paper, we introduce an alternative representation of a strategy as a special kind
of directed acyclic graph. As pointed out in the introduction, this representation can be
more compact, since it allows redundancies and unreachable scenarios to be more easily
removed, and thus it “compresses” the graph and makes it easier to interpret. Of course,
the following definition of a strategy graph includes a strategy tree as a special case.

Definition 1. A strategy graph represents a strategy for an influence diagram by a directed
acyclic graph with two kinds of nodes, observation nodes and decision nodes, where the
following conditions hold.

• An observation node is associated with an observed chance variable and has one or
(usually) more outgoing arcs that are labeled by states of the variable. Each state
labels at most one arc, and corresponds to an observation. An outgoing arc leads to
either another observation node or a decision node.

• A decision node is associated with a decision variable, and has a single outgoing arc
that is labeled by a state of the decision variable, which corresponds to an action. The
outgoing arc leads to either an observation node, another decision node, or nil. Its
successor is nil if the decision node is a “terminal node” of the graph, which means it
is the last decision node on a path originating from a source node of the graph.

1182

Strategy Graphs for Influence Diagrams

A A A A A A A A A A A A A A A A

OQ OQ OQ OQ

OM
n

l m
s

f
a g v f

a g v f
a g v f

a g v

no no no no no no no no m m m no h m m no

(a)

A A A

OQ OQ

OM

no m h

n,l m s

f, a, gv f

a, g

v

(b)

Figure 2: (a) Optimal strategy tree for mildew problem and (b) equivalent strategy graph.

• All ancestor nodes of a decision node must be associated with a variable that is an
informational predecessor of the decision variable associated with the decision node.
That is, the order in which variables are considered on any path from a source node to a
terminal node of the strategy graph must respect the information precedence constraints
of the problem.

• More than one node of a strategy graph can be associated with the same variable of the
influence diagram, in which case the nodes are distinguished by their histories, that
is, their ancestors in the graph.

• A source node of a strategy graph can be a decision or an observation node, and there
can be more than one source node, in which case there is a rule for selecting the
source node from which to start execution of the strategy. For example, the starting
source node can be selected based on the start state of the problem, or a probability
distribution over the possible start states.

Because every terminal decision node has a single outgoing arc corresponding to the
choice of an action, with nil as a successor, a strategy graph defined in this way is not quite
a graph. Therefore, to ensure it is a graph, we assume that the outgoing arc from a terminal
decision node leads to a global sink node for nil that represents termination of the strategy.

Obviously, a strategy graph can be displayed in different ways that affect how easily
a user can interpret the strategy it represents. When we display strategy graphs in this
paper, we distinguish between decision and observation nodes by shape. By convention, we
represent a decision node by a rectangle and an observation node by an oval. In addition,
for simplicity, the global sink node of the graph is not shown.

Example: Mildew treatment. Figure 2a shows an optimal strategy tree for the mildew
problem, which has one terminal decision node for each instantiation of the two observed
chance variables. Each node is labeled by the variable it is associated with and each arc is
labeled by a state of the variable.

Figure 2b shows an equivalent strategy graph. In the rest of the paper, we show how to
modify a variable elimination algorithm so that it constructs a strategy graph, and how to
compress a strategy graph so that it is as compact and easy to understand as possible.

1183

Hansen, Shi, & Kastrantas

3. Variable Elimination

The representation of a strategy as a graph can be adopted by any algorithm for solving
influence diagrams. In this section, we show how to modify the classic variable elimination
approach so that it constructs a strategy graph. We consider the simple variable elimination
algorithm described by Jensen and Nielsen (2007, pp. 353–5). Closely-related algorithms
can be modified in a similar way (e.g., Tatman & Shachter, 1990; Shenoy, 1992; Ndilikilike-
sha, 1994; Jensen et al., 1994; Dechter, 2000; Luque & Dı́ez, 2010).

Notation. Recall that we use bold upper-case letters such as X to represent sets of
variables, that is, joint variables. In the special case of an empty set of variables, we adopt
the standard convention that its state space consists of a single special state, denoted λ.
Thus sp(∅) = {λ} and |sp(∅)| = 1. In addition, when X ∩Y = ∅, we let (X,Y) denote a
joint variable, and (x,y) a state of this joint variable. Note that (λ,y) = y.

If X ⊆ Y, then y↓X denotes the projection of the state y onto the state space for X,
which means that values of variables in Y that are not also in X are ignored. Thus y↓X is
a state of X. If X = ∅, then y↓X = λ.

A potential over a set of variables X is a function that maps each instantiation x of X
to a real number. A probability potential, denoted φ(X), is further restricted to be a non-
negative function that is not identically zero. It generalizes the concept of a probability
distribution to contexts where it is not necessarily normalized. A conditional probability
potential for X given Y, denoted φ(X|Y), is a probability potential over X conditional on
disjoint Y. A utility potential, denoted ψ(X), generalizes the concept of an expected utility
function to contexts involving multiplication by a probability potential.

For convenience, we often abuse notation by not specifying the variables in a potential’s
domain.2 For example, we often write φ(X) as simply φ. Note that we let the operator dom
return the variables in the domain of a potential, so that dom(φ(X)) = X and dom(φ) = X.

3.1 Algorithm

As shown by several authors (e.g., Jensen & Nielsen, 2007, pp. 350-2), a variable elimination
algorithm solves, or “evaluates,” an influence diagram by solving the following equation for
the maximum expected utility (MEU) of a strategy:

MEU =
∑

y1∈sp(Y1)

max
d1∈sp(D1)

. . .
∑

yn∈sp(Yn)

max
dn∈sp(Dn)

∑
x∈sp(X)

∏
φ∈Φ

φ
∑
ψ∈Ψ

ψ

. (6)

In this equation, both the product and the sum inside the square brackets are over the
potentials in a set of potentials, where Φ = {P (C|pa(C))|C ∈ C} denotes the set of prob-
ability potentials of the influence diagram and Ψ = {R(pa(R)|R ∈ R} denotes the set of
utility potentials. The outer sums and maximizations are over the states of the variables of
the influence diagram, and the order of outer sums and maximizations reflects the order of
information precedence.

2. We follow Jensen and Nielsen (2007) in referring to the set of variables X associated with a potential
ψ(X) as the domain of the potential. It is also common in the literature to refer to this set of variables
as the scope of the potential (e.g., Koller & Friedman, 2009; Dechter, 2019), and to refer to the set of
possible instantiations of X as the domain of the potential.

1184

Strategy Graphs for Influence Diagrams

3.1.1 Operations on Potentials

The operations performed by variable elimination in solving Equation (6) are of two types:
combination and marginalization.

Combination operations. Two potentials are combined by the operations of addition,
multiplication, or division, and the domain of the resulting potential is the union of the
domains of the combined potentials. Thus when the potentials ψ(X) and ψ′(Y) are com-
bined, the domain of the resulting potential ψ′′(Z) is Z = X ∪Y. Combination operations
are performed pointwise, as follows.

• The sum of two utility potentials, ψ(X) and ψ′(Y), is a utility potential, ψ′′(Z) =
ψ(X) + ψ′(Y), defined so that ψ′′(z) = ψ(z↓X) + ψ′(z↓Y), for each z ∈ sp(Z) =
sp(X ∪Y). (Recall that ↓ denotes the projection operation, defined above.)

• The product of two probability potentials, φ(X) and φ′(Y), is a probability potential,
φ′′(Z) = φ(X) · φ′(Y), defined so that φ′′(z) = φ(z↓X) · φ′(z↓Y), for each z ∈ sp(Z) =
sp(X ∪Y). The product of a utility potential and a probability potential is defined
similarly, except the result is a utility potential.

• The division operation is similarly performed pointwise. Note that it is only used to
normalize probabilities.

Marginalization operations. Marginalization operations eliminate one or more vari-
ables from the domain of a potential. In the following definitions, we let ϕ denote a potential
that could be either a probability or a utility potential.

• The elimination by max-marginalization of a decision variable D from potential ϕ cre-
ates a new potential ϕ′ over the variables dom(ϕ)\{D}, defined as ϕ′ = maxD ϕ. That
is, given a potential ϕ(D,X), elimination of the variable D by max-marginalization
creates a potential ϕ′(X), which is defined so that for each x ∈ sp(X):

ϕ′(x) = max
d∈sp(D)

ϕ(d,x). (7)

• The elimination by sum-marginalization of a chance variable C from a potential ϕ
creates a new potential ϕ′ over the variables dom(ϕ)\{C}, defined as ϕ′ =

∑
C ϕ. For

example, given a potential ϕ(C,X), elimination of C by sum-marginalization creates
a new potential ϕ′(X) defined so that for each x ∈ sp(X):

ϕ′(x) =
∑

c∈sp(C)

ϕ(c,x). (8)

• The restriction operation instantiates one or more of the variables in a potential. For
example, the restriction ϕR(Y=y)(X) of a potential ϕ(Y,X) is a potential over X such
that for each x ∈ sp(X):

ϕR(Y=y)(x) = ϕ(y,x). (9)

1185

Hansen, Shi, & Kastrantas

Algorithm 1: Variable elimination algorithm.

Input: Variables V = C ∪D, probability potentials Φ = {P (C|pa(C))|C ∈ C} and
utility potentials Ψ = {R(pa(R)|R ∈ R}

Output: An optimal strategy, ∆, and its expected utility (MEU)
1 ∆← ∅ // strategy is initialized
2 for i← 1 to |V| do // i is index of elimination step
3 Select next variable V to eliminate
4 // Process probability potentials
5 ΦV ← {φ ∈ Φ|V ∈ dom(φ)} // get set of relevant probability potentials
6 φV ←

∏
φ∈ΦV

φ // compute product of relevant probability potentials

7 if V is a chance variable then
8 φi ←

∑
V φV // eliminate V by sum-marginalization

9 else if V is a decision variable then
10 φi ← maxV φV // eliminate V by max-marginalization
11 Φ← (Φ\ΦV) ∪ {φi} // update set of probability potentials
12 // Process utility potentials
13 ΨV ← {ψ ∈ Ψ|V ∈ dom(ψ)} // get set of relevant utility potentials
14 ψV ←

∑
ψ∈ΨV

ψ // compute sum of relevant utility potentials

15 if V is a chance variable then
16 φcond ← φV /φi // normalize conditional probability of V
17 ψi ←

∑
V φcond · ψV // sum-marginalize V to compute expected value

18 else if V is a decision variable then
19 ψi ← maxV ψV // max-marginalize V to compute maximum value
20 δV ← arg maxV ψV // compute optimal policy for decision variable
21 ∆← ∆ ∪ {δV } // add policy to strategy

22 Ψ← (Ψ\ΨV) ∪ {ψi} // update set of utility potentials

23 end
24 MEU ←

∑
ψ∈Ψ ψ // after all variables are eliminated, utility potentials are scalars

25 return (∆, MEU) // ∆ is optimal strategy

3.1.2 Pseudocode

Algorithm 1 gives pseudocode for the algorithm. It eliminates variables in the reverse
of the partial temporal order given by Equation (1). When more than one elimination
order is possible, a heuristic can be used to select an order that is likely to lead to good
performance. For example, it is common to use a heuristic that greedily tries to minimize
the size of generated potentials (Cabañas, Cano, Gómez-Olmedo, & Madsen, 2013).

Identify relevant potentials. Once a variable V is selected for elimination, the next step
is to identify the potentials that include V in their domain, and thus need to be replaced
by equivalent potentials that do not. We call these potentials the relevant potentials. We
call the variables in the union of the domains of the relevant potentials, not including the
variable V itself, the relevant variables. The relevant variables are the variables in the
domain of the new utility potential ψi that is generated at the end of an elimination step.

1186

Strategy Graphs for Influence Diagrams

Process probability potentials. Once all relevant probability potentials are identified,
they are multiplied to create the probability potential φV . Eliminating the variable V from
φV creates the probability potential φi. If V is a chance variable, it is eliminated by sum-
marginalization. If it is a decision variable, it can be eliminated by max-marginalization,
as shown in Line 10 of Algorithm 1, which follows the description of the algorithm given
by Jensen and Nielsen (2007, pp. 353–5). However, when a decision variable is eliminated,
it is d-separated from its predecessors and any successors have already been eliminated.
Thus it cannot have an effect on the value of any probability potential, even if it is in its
domain, and the decision variable can be more simply eliminated by just projecting the
potential onto the remaining variables (e.g., Luque et al., 2017).

Process utility potentials. Once all relevant utility potentials are identified, their sum
ψV is computed. If V is a chance variable, ψV is multiplied by the normalized probability
potential φcond = φV /φi, and then V is eliminated by sum-marginalization. If V is a decision
variable, it is simply eliminated from ψV by max-marginalization. In either case, ψi denotes
the resulting utility potential. When a decision variable is eliminated, a policy δV is also
computed that records the maximizing action for each instantiation h of the variables H in
the domain of ψi, so that δV (h) = arg maxv∈sp(V) ψV (v,h).

Return solution. Once all variables are eliminated, the algorithm returns the MEU value
of Equation (6), as well as an optimal strategy ∆ represented by a sequence of policies.

3.2 Strategy Graph Construction

We next describe an alternative approach to strategy representation and construction for
this algorithm. Except for superficial differences of terminology and notation, the approach
we describe is the same as a recent proposal of Luque et al. (2017). The only significant
difference is that they describe how to modify the algorithm so that it represents a strategy
as a tree, called a strategy tree, whereas we consider how to construct a strategy graph.3

In constructing a strategy graph, our approach associates each utility potential ψ(X)
with a companion function, sψ : sp(X)→ N ∪ {nil}, that we call a strategy node function,
where N denotes the set of nodes of the strategy graph. The strategy node function sψ(X)
maps each instantiation of the variables in the domain of the utility potential ψ to a node
of the strategy graph, or to nil, if there is no corresponding node.

3.2.1 Initialization and Elimination of Unobserved Chance Variables

For a utility potential associated with a reward node of an influence diagram, the associated
strategy node function maps each instantiation of the variables in its domain to nil.

When an unobserved chance variable is eliminated, the strategy node function generated
also maps every instantiation of the variables in its domain to nil, since strategy graph
construction does not begin until a decision variable is eliminated, and all unobserved
chance variables must be eliminated before any decision variable is eliminated.

3. Although influenced by many ideas in the excellent paper of Luque et al. (2017), we introduced the
concept of a strategy graph in a paper published a year before (Hansen, Shi, & Khaled, 2016), inspired
by the concept of a policy graph for a finite-horizon POMDP (Kaelbling, Littman, & Cassandra, 1998).

1187

Hansen, Shi, & Kastrantas

3.2.2 Elimination of Decision Variable by Max-Marginalization

Elimination of a decision variable from a utility potential by max-marginalization results in
the creation of decision nodes that are added to the strategy graph. For the first decision
variable eliminated, the decision nodes created are the terminal nodes of the strategy graph.

Let ψD(D,H) denote a utility potential from which the variableD is eliminated. Because
the classic variable elimination algorithm eliminates all unobserved chance variables first,
all variables in the domain of this potential must be observed, and so they are denoted
H because they represent the relevant history of the process. Eliminating D generates
a utility potential ψi(H) and strategy node function sψi

(H), where for each instantiation
h of H, the maximizing decision is d∗ = arg maxd∈sp(D) ψD(d,h), the maximum utility is
ψi(h) = ψD(d∗,h), and sψi

(h) is set equal to a newly-created decision node., which has a
single outgoing arc labeled by the maximizing decision d∗, with successor node sψD

(d∗,h).

3.2.3 Elimination of Observed Chance Variable by Sum-Marginalization

Elimination of an observed chance variable from a utility potential by sum-marginalization
results in creation of observation nodes that are added to the strategy graph.

Let ψC(C,H) denote the utility potential from which the observed chance variable C
is eliminated. Its elimination creates a utility potential ψi(H) and strategy node function
sψi

(H), where for each instantiation h of H, we have ψi(h) =
∑

c∈sp(C) ψC(c,h), and
sψi

(h) is set equal to a newly-created observation node that has an outgoing arc for each
observation c ∈ sp(C), with successor node sψC

(c,h).

3.2.4 Graph Simplification When Observed Chance Variable is Eliminated

Luque et al. (2017) propose some rules for simplifying a strategy tree generated by this
procedure that we adopt for simplifying a strategy graph. The rules apply to observation
nodes that are added to a strategy graph when an observed chance variable C is eliminated.

Removal of zero-probability observation branches. If P (c|h) = 0 for observation c ∈
sp(C) and history h ∈ sp(H), which means the conditional probability of observing c after
history h is zero, the observation node does not include an outgoing arc for observation c.
In short, zero-probability branches are not included in the strategy graph.

Removal of redundant observation nodes. If an observation node has the same suc-
cessor node for every observation c ∈ sp(C) for which P (c|h) > 0, it is redundant, and it
does not need to be included in the strategy graph. To remove it, sψ(h) is set equal to the
successor node of the redundant node, which is sψ(h, c), for some c where P (c|h) > 0.

Merging of observation branches that reflect irrelevant distinctions. If two or
more outgoing arcs from an observation node lead to the same successor node, the arcs can
be merged into a single arc, which is labeled by the set of observations.

Removal of unreachable decision and observation nodes. Because a strategy graph
is created bottom-up from its sink to its source nodes, it may turn out that some, or many,
of its nodes are only reachable from a source node via a suboptimal or non-selected action,
or via a zero-probability observation. These unreachable nodes can be removed from a
strategy graph after it is created.

1188

Strategy Graphs for Influence Diagrams

3.2.5 Addition of Utility Potentials

The sum of utility potentials ψ(X) and ψ′(Y) is a new utility potential ψ′′(Z), with domain
Z = X ∪ Y. If the strategy node functions sψ(X) and sψ′(Y) are both mappings to nil,
the new strategy node function sψ′′(Z) also maps every instantiation of the variables in
its domain to nil. If one strategy node function, sψ(X), maps every instantiation of the
variables in its domain to nil, while the other, sψ′(Y), is a mapping to strategy nodes, the
new strategy node function sψ′′(Z) is defined so that for each instantiation z of Z, we have
sψ′′(z) = sψ′(z

↓Y), which preserves the strategy associated with the utility potential ψ′(Y).

If both strategy node functions, sψ(X) and sψ′(Y), are mappings to strategy nodes, the
new strategy node function, sψ′′(Z), is created by an operation we call concatenation, which
is defined for each instantiation z of Z as follows: for every terminal decision node of the
strategy graph rooted at sψ(z↓X), its successor node is set to sψ′(z

↓Y), which is the root
node of the other strategy graph. Essentially, concatenating two strategy graphs means
combining them so that one is executed after the other. Therefore, the order in which
strategy graphs are concatenated matters, and it must be the reverse of the order in which
their corresponding utility potentials are generated in order to ensure that the ordering
of actions along each branch of the strategy graph is consistent with the total ordering of
decision nodes in the influence diagram. As a simple example, Figure 3e shows the result
of concatenating the strategy graph in Figure 3d with the strategy graph in Figure 3b.

3.2.6 Multiplication of a Probability Potential by a Utility Potential

Multiplication of a probability potential φ(X) by a utility potential ψ′(Y) generates a utility
potential ψ′′(Z) with domain Z = X∪Y. For a given instantiation z of Z, the strategy node
function associated with the new utility potential is defined as follows: sψ′′(z) = sψ′(z

↓Y).
That is, multiplication of a probability potential by a utility potential does not change the
strategy associated with the utility potential.

3.2.7 Example

To illustrate this procedure for strategy graph construction, we consider the simple influence
diagram shown in Figure 3a, which is used by Luque et al. (2017) to illustrate how they
modify the variable elimination algorithm to construct a strategy tree. For this example,
all variables are Boolean, and the only possible elimination order is: D2, D1, and then Y1.

Elimination of the decision variable D2 generates a utility potential ψ1() and strategy
node function sψ1() with an empty domain, where sψ1() maps the special state λ to the
decision node shown in Figure 3b. The outgoing arc from the decision node is labeled by
the action +d = arg maxd2∈D2 R2(d2), where we adopt the notation +d from Luque et al.

Elimination of the decision variable D1 generates a utility potential ψ2(Y1) and strat-
egy node function sψ2(Y1). For each of the two possible values y1 of the variable Y1, a
decision node is created with an outgoing arc labeled by the optimizing action, which is
arg maxd1∈D1 R1(d1, y1). The two new decision nodes are shown in Figure 3c.

Elimination of the observed chance variable Y1 generates a utility potential ψ3() and
corresponding strategy node function sψ3(), which maps the special state λ to the observa-
tion node at the root of the strategy graph shown in Figure 3d. The observation node has
one outgoing arc for each of the two possible values of the observed chance variable Y1.

1189

Hansen, Shi, & Kastrantas

Y1

D1 D2

R1 R2

(a)

D2

+d

(b)

D1 D1

+d -d

(c)

D1 D1

Y1

+d -d

-y +y

(d)

D1 D1

Y1

D2

+d -d

-y +y

+d

(e)

D1 D1

Y1

D2 D2

+d -d

-y +y

+d +d

(f)

Figure 3: (a) Influence diagram from Luque et al. (2017); (b) strategy graph for sψ1(),
created whenD2 is eliminated; (c) strategy graph for sψ2(Y1), created whenD1 is eliminated;
(d) strategy graph for sψ3(), created when Y1 is eliminated; (e) final strategy graph created
by concatenating the strategy graphs for sψ3() and sψ1(); and (f) equivalent strategy tree.

After all three variables are eliminated, two scalar-valued utility potentials, ψ1 and ψ3,
remain in the set Ψ, together with their corresponding strategy graphs. Adding the two
utility potentials results in concatenation of their strategy graphs. Thus each outgoing arc
from the strategy graph shown in Figure 3d leads to the root node of the strategy graph
shown in Figure 3b, with the concatenated strategy graph shown in Figure 3e.

This last step of our strategy graph construction procedure is the only step that differs
from the procedure described by Luque et al. (2017). For this example, they show that their
procedure constructs the strategy tree shown in Figure 3f, with two identical leaf nodes,
instead of the equivalent strategy graph shown in Figure 3e. If not for their claim that their
procedure always constructs a strategy tree, and their use of this example to illustrate it,
we would consider our procedure for strategy graph construction to be the same as theirs.

3.3 Coalescence

The procedure for strategy graph construction described above generates a strategy graph
that is not a tree in some cases, such as the simple example described in Section 3.2.7.
Much more often, however, it generates a strategy tree, and the strategy tree contains
many duplicate subtrees that could be merged, but are not.

In the literature on influence diagrams, the term coalescence refers to the simplification
of a strategy tree (or graph) by merging duplicate subtrees (or, more generally, duplicate
subgraphs). From now on, it will be helpful to distinguish between two forms of coalescence.
In the form of coalescence illustrated by the strategy graph shown in Figure 3e, duplicate
subtrees are never actually created, and so they are only implicitly merged. Thus we call
this form of coalescence implicit coalescence. But there are cases where the procedure for
strategy graph construction described above generates a strategy tree, and yet an additional
step can be added to the procedure that explicitly converts the strategy tree to a smaller,
equivalent strategy graph. We call this second form of coalescence explicit coalescence.
Below, we consider each form of coalescence in turn and illustrate it by example.

3.3.1 Implicit Coalescence

The following example more clearly illustrates what we mean by implicit coalescence.

1190

Strategy Graphs for Influence Diagrams

Y1 Y2

D2D1

R1 R2

(a)

D2 D2

Y2 Y2Y2 Y2

D1 D1

Y1

1 0

0
1

1 00

1
0

1

1 0

0 1

(b)

D2D2D2D2 D2 D2 D2 D2

Y2 Y2Y2 Y2

D1 D1

Y1

0 1 0 1 0 1 0 1

01 0 101 1 0

1 0

0 1

(c)

Figure 4: (a) Influence diagram for a two-stage MDP, (b) strategy graph, and (c) equivalent
strategy tree. Dashed lines indicate unreachable nodes and arcs, which can be removed.

Example: Completely observable Markov decision process. Figure 4a shows a
simple influence diagram for a two-stage completely observable Markov decision process
(MDP). For convenience, we assume that all variables are Boolean. Figure 4b shows the
strategy graph constructed by the procedure described in Section 3.2. It has the same
structure regardless of the strategy, and so the labeling of arcs by 0 or 1 is arbitrary.

The only order in which the variables can be eliminated is: D2, Y2, D1, then Y1. For
each eliminated variable, a node is added to the strategy graph for each instantiation of the
variables in the domain of the utility potential created by eliminating the variable. For the
first eliminated variable, D2, the utility potential created is ψ1(Y2). Since Y2 has just two
possible instantiations, the strategy graph in Figure 4b has two terminal decision nodes.

For the second eliminated variable, Y2, the utility potential created is ψ2(Y1, D1) . There
are four possible instantiations of these two variables, and so four observation nodes are
generated. But only two are reachable by following an optimal strategy. Unreachable nodes,
which are shown by dashed circles and arcs, can be removed from the final strategy graph.

When the variable D1 is eliminated, the utility potential ψ3(Y1) is generated, and two
decision nodes are added to the strategy graph. Finally, when Y1 is eliminated, the generated
utility potential ψ() has an empty domain, and a single source node is added to the strategy
graph. Note that the strategy graph constructed by this procedure and shown in Figure 4b
is not a tree. For comparison, the equivalent strategy tree is shown in Figure 4c.

The construction by variable elimination of a smaller, equivalent strategy graph in which
duplicate subtrees are implicitly merged not only makes a strategy easier to interpret, it
reflects the improved efficiency of the algorithm. Like the value iteration algorithm for
completely observable MDPs, variable elimination solves a completely observable MDP in
low-order polynomial time in the number of stages because it never generates a utility
potential with more than two variables in its domain, no matter how many stages of the
problem it solves. If a strategy is represented by a strategy tree, however, the size of the
tree grows exponentially in the number of stages. It follows that representing a strategy
by a tree instead of a more compact graph can sometimes increase the time and space
complexity of the variable elimination algorithm by an exponential factor!

1191

Hansen, Shi, & Kastrantas

Dynamic programming and implicit coalescence. To better understand implicit
coalescence, we must consider its relationship to dynamic programming. The classic variable
elimination algorithm solves a dynamic programming recurrence with one subproblem for
each pair of eliminated variable and instantiation of variables in the domain of the resulting
utility potential. For each subproblem it solves when eliminating a decision or observed
chance variable, it adds a node to the strategy graph.

Variable elimination implicitly constructs a strategy graph, and not a strategy tree, when
not all un-eliminated variables are relevant when a decision or observed chance variable is
eliminated, that is, when part of the history is irrelevant. The fewer variables are relevant,
and thus in the domain of the generated utility potential, the fewer subproblems are in the
dynamic programming recurrence, and so the fewer nodes are added to the strategy graph.

In an insightful discussion of this form of coalescence, Tatman (1986, chp. 4) relates it
to Bellman’s principle of optimality – the underlying principle of dynamic programming.
He points out that coalescence occurs “under certain conditions involving conditional inde-
pendence among the variables in the model, the separability of the value function or both.”
That is, it occurs when not all un-eliminated variables are relevant in an elimination step,
either because they have no effect on the state (due to conditional independence) or because
they have no effect on utility (due to separability of the utility function).

For example, consider the two-stage completely observable MDP represented by the
influence diagram in Figure 4a. When the decision variable D2 is eliminated, the values of
the variables Y1 and D1 are not relevant because (i) the decision variable D2 is conditionally
independent of the variables Y1 and D1 given observation of the state of Y2, and (ii) Y1 and
D1 are not in the domain of a reward function influenced by D2. Note that the irrelevance
of the variables Y1 and D1 for the decision variable D2 given observation of the state of
the variable Y2 corresponds to the irrelevance of previous history when the current state of
the Markovian process is observed. That is, in solving this influence diagram, the variable
elimination algorithm leverages the same Markov property that is leveraged by the value
iteration algorithm for solving the corresponding completely observable MDP.

(For the influence diagram in Figure 3b, the variables Y1 and D1 are similarly irrelevant
when D2 is eliminated, and so a strategy graph is constructed instead of a tree.)

3.3.2 Explicit Coalescence

The classic variable elimination algorithm is effective in leveraging variable independence
for implicit coalescence (and speedup) when it solves influence diagrams that represent
completely observed problems, as these two simple examples illustrate. Unfortunately, it is
not effective in leveraging variable independence when solving influence diagrams that have
unobserved chance variables, and therefore represent partially observed problems. For such
problems, it typically constructs a strategy tree, with no implicit coalescence at all.

Example: Mildew treatment problem. Recall the mildew problem described at the
end of Section 2.1 and represented by the influence diagram in Figure 1. The classic variable
elimination algorithm must first eliminate all four unobserved chance variables: H, M∗, Q,
and M . Doing so creates the utility potential ψ4(A,OQ,OM) =

∑
H,M∗,Q,M P (H|M∗, Q)

P (M∗|A,M)P (Q)P (M)U(H), as well as a strategy node function sψ4(A,OQ,OM) that
maps each instantiation of the variables in its domain to nil.

1192

Strategy Graphs for Influence Diagrams

Elimination of the decision variableA then generates the utility potential ψ5(OQ,OM) =
maxA(C(A)+ψ4(A,OQ,OM)), and a strategy node function sψ5(OQ,OM) that maps each
instantiation of the variables in its domain to a decision node of the strategy graph. Sixteen
decision nodes are created, one for each joint instantiation of the observed variables OQ and
OM , or, equivalently, one for each possible history. The decision nodes are the terminal
nodes of the strategy tree shown in Figure 2a, with the outgoing arc from each decision
node labeled by the maximizing action for the corresponding entry in the utility potential.

Because the utility potential ψ5(OQ,OM) generated when A is eliminated includes all of
the informational predecessors of the decision variable A in its domain, the decision depends
on the full history of the process, and there is no implicit coalescence. Without stepping
through the rest of the algorithm, it is already easy to see that it generates the strategy
tree shown in Figure 2a, instead of the simpler strategy graph shown in Figure 2b.

Algorithm for explicit coalescence. For such problems, we next describe a step that
can be added to the variable elimination algorithm to explicitly check for and merge dupli-
cate subgraphs that are not merged implicitly. We call this extra step explicit coalescence.

Explicit coalescence is performed whenever a decision or observed chance variable is
eliminated, and there are one or more un-eliminated decision and observed chance variables,
denoted H, that are relevant in this elimination step, and thus are in the domain of the
generated utility potential ψ(H). Duplicate subgraphs are possible in this case because a
node added to the strategy graph for instantiation h of the observed variables H can be a
duplicate of a node already added for another instantiation h′ of H, where one node is a
duplicate of another if they are the root nodes of identical subgraphs.

We detect and merge duplicate nodes as follows. Before a node is added to the strategy
graph for instantiation h of H, we compare it to every node added to the strategy graph for
any instantiation h′ of H already considered in this elimination step. If it is a duplicate of an
existing node, the entry sψ(h) in the strategy node function is set equal to the node already
in the strategy graph, instead of creating a new node. Two decision nodes are duplicates
if their single outgoing arc is labeled by the same action and leads to the same successor
node (as identified by the unique index of the node). Two observation nodes are duplicates
if every outgoing arc that is labeled by the same observation has the same successor node.

Duplicate subgraphs that are present in a strategy graph represent solutions of distinct
subproblems that have different relevant histories, corresponding to different instantiations
of H. That means they do not represent shared subproblems of the dynamic programming
recurrence solved by variable elimination, and explicitly merging these duplicate subgraphs
in the way we have described does not result in any speedup. Indeed, it incurs overhead.
However, the per-node overhead is bounded by the number of distinct nodes of the strategy
graph that must be checked for a duplicate, and the number of distinct nodes generated
is often much less than the number of instantiations of the variables in the domain of
the utility potential. For example, consider the last decision variable Dn of an influence
diagram, which is the first decision variable eliminated. No matter how many decision and
observed chance variables are relevant when Dn is eliminated, and thus are in the domain
of the generated utility potential, the number of distinct terminal decision nodes of the
strategy graph cannot be greater than |sp(Dn)|, which is the number of actions for Dn.

There are a couple useful optimizations of this procedure for merging duplicate nodes.

1193

Hansen, Shi, & Kastrantas

D DD

Y Y

a1 a2 a3

y1
y2

y2
y3

(a)

D DD

Y

a1 a2 a3

y1 y2
y3

(b)

Figure 5: Example of wildcard matching for merging observation nodes. (a) On the left,
the two observation nodes have zero-probability branches that are not shown. (b) In the
equivalent strategy graph on the right, the two observation nodes are merged.

Tie breaking for decision nodes. When selecting the best action for a decision variable
given instantiation h of H, it is customary to break ties arbitrarily. However, we adopt a
different tie-breaking rule to encourage further coalescence. If there is more than one optimal
action, and one gives rise to a duplicate node that can be merged with an existing node of
the strategy graph, and another does not, we select the optimal action that gives rise to a
duplicate node in order to merge these nodes and simplify the strategy graph.

Wildcard matching for observation nodes. When comparing two observation nodes
to determine whether they are duplicates, there is an additional opportunity to compress
the strategy graph. When one or the other node lacks outgoing arcs corresponding to zero-
probability observations, we treat a missing arc as a wildcard that can match an outgoing arc
for the same observation for the other node, regardless of its successor node. For example,
consider the two observation nodes in the strategy graph shown in Figure 5a. Although
superficially different, the two observation nodes can be merged to create the equivalent
and smaller strategy graph shown in Figure 5b.

Explicit coalescence for the mildew problem. When variable elimination solves the
mildew problem without performing explicit coalescence, it constructs the strategy tree in
Figure 2a. When it performs explicit coalescence, it constructs the smaller and equivalent
strategy graph shown in Figure 2b. Table 1 shows how much this strategy graph is simplified
by the various techniques we have described. It also shows the same information for the
more complex strategy graph constructed for the Arthronet problem that we consider next.

Mildew Arthronet
Degree of simplification Nodes Arcs Nodes Arcs

Generated strategy graph with implicit coalescence only 21 36 149,695 232,638
With suboptimal (un-selected) branches removed 21 36 10,344 15,526
With zero-probability branches removed 21 36 1,141 1,408
With redundant nodes removed 21 36 892 1,159
With duplicate nodes merged (explicit coalescence) 6 10 60 105

Table 1: For the Mildew and Arthronet influence diagrams, the size of the strategy graphs
constructed by variable elimination based on how much simplification is performed.

1194

Strategy Graphs for Influence Diagrams

Allergy

Diabetes

BMI

Drained CC

Ischemia

CRP

ESR

Motion

Infection

SGT FSP

Implant Scintigraphy Synovial Remove

R1 R2 R3 R4

Figure 6: Arthronet influence diagram for knee arthroplasty problem.

Example: Arthronet influence diagram. Figure 6 shows an influence diagram created
by researchers in the Department of Artificial Intelligence at UNED, in Madrid, Spain, to
model a real-world medical decision problem for total knee arthroplasty. It has four decision
variables, ten observed chance variables, and just one unobserved chance variable. However,
the unobserved variable Infection makes the problem partially observable, and most of the
conditional independence relations in the influence diagram involve this variable.

Of the ten observed chance variables in the influence diagram, three represent risk factors
for the surgery (Allergy, Diabetes, BMI), three represent postoperative observations by the
surgeon (Ischemia, Drained CC, Knee motion), and four represent the results of laboratory
tests (C-reactive protein, ESR, Sequential Ga67 Tc99, Frozen sections PMN). All variables
have two possible values.4 If the surgeon implants a prosthesis, the next two decisions are
whether to perform a scintigraphy or synovial biopsy, which are medical procedures that
test for infection. Depending on the test outcomes, the final decision is whether to remove
the prosthesis. The optimization problem requires weighing the the effectiveness of medical
treatment in QALYs (“quality-adjusted life years”) against the treatment cost, where one
QALY is valued at 30,000 Euros. The influence diagram is described in detail by León
(2011). It is also available in the open-source influence diagram solver OpenMarkov.5

4. Some chance variables have a dimension of three instead of two, but only because they have a “dummy
state” in case the other states of the variable are impossible, as is common in modeling asymmetric
problems (Bielza & Shenoy, 1999). A dummy state is added to the chance variables Ischemia and
Drained CC in case the prosthesis is not implanted. It is added to the chance variable SGT in case a
scintigraphy is not done, and to the chance variable FSP in case a synovial biopsy is not done.

5. The influence diagram we solve is the same one described by León (2011) and available in OpenMarkov
at the URL: http://www.probmodelxml.org/networks/. However, Figure 6 shows this influence diagram
with an equivalent but simpler reward structure, with just one reward node for each decision variable.

1195

Hansen, Shi, & Kastrantas

Remove RemoveRemove prosthesis

Yes No

FSP
Frozen section PMN
−→ > 5 PMN
99K ≤ 5 PMN

SynovialSynovial SynovialMake synovial biopsy

No
Yes

No

SGT SGT
Sequential
Ga67 Tc99
−→ Negative
99K Positive

ScintigraphyScintigraphy Scintigraphy Scintigraphy ScintigraphyMake Scintigraphy

No Yes No Yes No

CRP CRPCRP CRP CRP CRP
C-reactive protein
−→ > 10 mg/L
99K ≤ 10 mg/L

ESRESRESRESRESR ESR ESR ESR ESR ESR
Erythrocyte
sedimentation rate
−→ > 30 mm/h
99K ≤ 30 mm/h

MotionMotionMotionMotion Motion Motion Motion Motion
Knee motion
−→ > 65 degrees
99K ≤ 65 degrees

DCCDCCDCCDCC DCC DCC DCC DCC
Drained CC
−→ not 800− 1000 cc
99K 800− 1000 cc

ISQISQ ISQ ISQ
Ischemia
−→ > 90 min
99K ≤ 90 min

ImplantImplantImplant Implant ImplantImplant prosthesis

Yes Yes
Yes

No

Yes

BMI BMI BMI
Body Mass Index
−→ normal
99K high

Diab. Diab.
Diabetes
−→ absent
99K present

Allerg.
Antiobiotic allergy
−→ No
99K Yes

Figure 7: Optimal strategy graph for the Arthronet problem.

Figure 7 shows an optimal strategy graph for this problem after simplification in all the
ways we have described. Table 1 shows the effectiveness of the simplification techniques.
Without them, the strategy graph construction procedure described above generates a tree
with 149, 695 nodes and 232, 638 arcs! Simplifying the strategy tree by removing unreachable
and redundant nodes, as described in Section 3.2.4, reduces its size by three orders of
magnitude. In this form, it is the same strategy tree created by the procedure of Luque
et al. (2017). Without explicit coalescence, however, it still has 892 nodes and 1159 arcs.

1196

Strategy Graphs for Influence Diagrams

Coalescence of duplicate subgraphs reduces the size of the strategy graph so that it has
only 60 nodes and 105 arcs – an order of magnitude further reduction. This further reduction
is due entirely to explicit coalescence. For this problem, the variable elimination algorithm
itself does not perform any implicit coalescence. That is because it must eliminate the
unobserved chance variable Infection first, before it eliminates any other variable. Although
there are many conditional independence relations in the influence diagram, most involve
the unobserved chance variable Infection. Once it is eliminated, all remaining variables
become relevant in every subsequent elimination step and all are in the domain of every
utility potential that is generated when a variable is eliminated. Because the optimal action
for every decision variable is conditioned on all variables that are informational predecessors
of the decision variable, that is, the entire prior history, a strategy tree is generated that
has a branch for every possible history. As a result, explicit coalescence must be performed
to convert this strategy tree to the equivalent strategy graph shown in Figure 7.

3.3.3 Elimination Order Within Groups of Observed Chance Variables

Before concluding our discussion of the traditional algorithm, we mention one more way in
which it is possible to compress a strategy graph into a smaller equivalent graph.

In our discussion of elimination-ordering constraints in Sections 2.1, we noted that the
variables in a set Yi+1 of chance variables that are observed after decision Di, and before
the next decision Di+1, can be eliminated in any order relative to each other. For the
Arthronet influence diagram, for example, the three observed chance variables before the
Implant decision variable can be eliminated in any order. Similarly, the five observed chance
variables between the Implant and Scintigraphy decision variables can be eliminated in any
order relative to each other. Both the structure and the size of a strategy graph can be
affected by the order in which these subsets of observed chance variables are eliminated.

By solving the Arthronet problem for all valid elimination orders, we found that the
strategy graph in Figure 7 is the smallest optimal strategy graph for any elimination order,
with just 60 nodes. But the size of the smallest strategy graph for a given elimination order,
when averaged over all valid elimination orders, is a little more than 80 nodes, which shows
that elimination order can affect the size of a strategy graph.

Recall that a node of a strategy graph can be generated for each instantiation of variables
in the domain of a utility potential, and so there is a correlation between the size of a strategy
graph and the size of utility potentials. It suggests that an elimination-ordering heuristic
that minimizes the size of utility potentials will also tend to minimize strategy graph size.

4. Generalized Variable Elimination: Influence Diagrams and POMDPs

Recently, we proposed an improved variable elimination algorithm for influence diagrams,
called generalized variable elimination (Hansen, 2021). The algorithm behaves exactly like
the classic variable elimination algorithm reviewed in Section 3 when it eliminates vari-
ables in an order that is allowed by the classic algorithm. But it can also use techniques
adapted from the value iteration algorithm for POMDPs to relax traditional constraints on
elimination order, which leads to improved performance in many cases. In particular, the
generalized algorithm is not constrained to eliminate all unobserved chance variables before
it eliminates any other variable.

1197

Hansen, Shi, & Kastrantas

In this section, we review the generalized variable elimination algorithm and show how
to modify it so that it represents a strategy as a graph. Then we show that it allows a more
efficient approach to coalescence than is possible for the classic algorithm.

Notation. Recall that sp(X) denotes the set of states of a joint variable X. We let bsp(X)
denote the set of all belief states over the possible states of X, where the term belief state
(adopted from the POMDP literature) refers to a probability distribution over the possible
states of a hidden variable. We let b(X) ∈ bsp(X) denote a particular belief state, and b(x)
the probability (or belief) that the unobserved variable X is in state x ∈ sp(X).

Recall also that ψ(X) denotes a utility potential defined as ψ : sp(X) → <. To model
decision making under imperfect information, we let utility potentials have belief states over
the possible states of unobserved variables as input. Thus we adopt the convention that
ψ(H, B(U)) denotes a utility potential that is defined as ψ : sp(H) × bsp(U) → <, where
the variables in the domain of the potential are partitioned into two subsets: a subset H (for
“history”) of decision and observed chance variables, and a subset U (for “unobserved”)
of unobserved chance variables. In this context, B(U)) denotes a belief variable for the
unobserved joint variable U, where an instantiation of a belief variable B(U) is a belief
state b(U), just as an instantiation of the observed variable H is a state h.

4.1 Generalized Algorithm

Generalized variable elimination has relaxed constraints on elimination order that follow
from more general definitions of utility potentials and operations on utility potentials.

4.1.1 Piecewise-linear and convex utility potentials

The key concept of the generalized algorithm is the concept of a piecewise-linear and convex
(PWLC) utility potential. It is modeled on the concept of a PWLC value function for a
POMDP, although it is a more general concept that includes a POMDP value function
as a special case. A PWLC utility potential ψ(H, B(U)) is a utility potential that is
represented by an indexed family of sets of ordinary potentials {Γh}h∈sp(H), where the
ordinary potentials in each set Γh have domain U. For a given history h ∈ sp(H) and belief
state b(U) ∈ bsp(U), the value of the utility potential is defined as:

ψ(h, b(U)) = max
γ∈Γh

∑
u∈sp(U)

b(u)γ(u). (10)

Interestingly, a similar generalization of the concept of a utility potential is used by
some algorithms for solving limited-memory and multi-objective influence diagrams (Mauá,
de Campos, & Zaffalon, 2012; Mauá & Cozman, 2016; Marinescu, Razak, & Wilson, 2012,
2017). But it is not used in the same way that we use it to relax constraints on elimination
order in solving an influence diagram, and our development of this concept is more closely
related to, and was inspired by, the dynamic programming approach to solving POMDPs.

Although the potentials in each set Γh that represents a PWLC utility potential are
ordinary potentials, and the operations performed on them are the same operations for
ordinary potentials, we refer to these potentials from now on as linear potentials. We do
so both to indicate their role in representing a PWLC utility potential, and to distinguish
them from ordinary (probability and utility) potentials used in the rest of the algorithm.

1198

Strategy Graphs for Influence Diagrams

Pruning sets of linear potentials. The complexity of operations on PWLC utility
potentials increases with the size of the sets of linear potentials that represent them. It
follows that it is useful to remove redundant linear potentials from these sets in order to
keep them as small as possible.

Given a set Γh of linear potentials over the unobserved variables U that represents a
PWLC utility potential ψR(H=h)(B(U)), a linear potential γ′ ∈ Γh is said to be dominated
by the other linear potentials in the set, Γh\{γ′}, if for all belief states b ∈ bsp(U):∑

u∈sp(U)

b(u)γ′(u) ≤ max
γ∈Γh\{γ′}

∑
u∈sp(U)

b(u)γ(u). (11)

That is, a linear potential γ′ ∈ Γh is dominated if there is no belief state b ∈ bsp(U) for
which it provides a better value than any other linear potential in Γh\{γ′}. In this case, the
linear potential γ′ is redundant and can be removed from the set Γh without affecting the
value of the PWLC utility potential it represents. This condition can be tested by solving
the following linear program, where the objective is to maximize the value of the variable ε.

Variables: ε, {b(u)}u∈sp(U)

Constraints:
∑

u∈sp(U)

[
b(u) ·

(
γ′(u)− γ(u)

)]
≥ ε, ∀γ ∈ Γh\{γ′}∑

u∈sp(U)

b(u) = 1 and b(u) ≥ 0,∀u ∈ sp(U)

(12)

If the scalar value ε maximized by this linear program is non-positive, then γ′ is dominated,
and it can be safely removed from the set Γh, that is, it can be “pruned.”

From now on, we let Prune(Γ) denote an operator that takes a set Γ of linear potentials
with domain U and prunes its dominated linear potentials. A naive way to implement this
operator is to test each linear potential by solving the above linear program. More efficient
algorithms are described in the POMDP literature, to which we refer for details (Cassandra,
Littman, & Zhang, 1997; Walraven & Spaan, 2017; Hansen & Bowman, 2020).

4.1.2 Operations on Piecewise-Linear and Convex Utility Potentials

We next describe how to generalize the operations on utility potentials performed by the
variable elimination algorithm so that they apply to PWLC utility potentials.

Combination operations. We first consider the combination operations of addition and
multiplication. (The division operation is not performed on utility potentials.) Recall that
when two potentials are combined, the domain of the new potential is the union of the
domains of the combined potentials. For PWLC utility potentials, we must also distinguish
between observed and unobserved variables in the domain of a potential. Thus when an
ordinary potential ψ(H,U) and a PWLC utility potential ψ′(H′, B(U′)) are combined,
the resulting PWLC utility potential is ψ′′(H′′, B(U′′)), where H′′ = H ∪H′ is the set of
observed variables and U′′ = U ∪U′ is the set of unobserved variables.

In the following definitions, we adopt the notational convention that a PWLC utility
potential ψ′(H′, B(U′)) is represented by an indexed family of sets of linear potentials over
U′, which is denoted {Γ′h′}h′∈sp(H′).

1199

Hansen, Shi, & Kastrantas

• The sum of an ordinary utility potential ψ(H,U) and a PWLC utility potential
ψ′(H′, B(U′)) is a PWLC utility potential ψ′′(H′′, B(U′′)), represented by an indexed
family of sets of linear potentials, {Γ′′h′′}h′′∈sp(H′′), where the linear potentials have
domain U′′, and for each instantiation h′′ of H′′:

Γ′′h′′ = Prune
({
ψR(H=h′′↓H)(U) + γ′(U′)|γ′ ∈ Γ′

h′′↓H′

})
. (13)

Note that ψR(H=h′′↓H)(U) = ψ(h′′↓H,U) based on the definition of the restriction
operator given by Equation (9). The sum of two PWLC utility potentials is considered
in Appendix A.

• The product of a probability potential φ(H,U) and PWLC utility potential ψ′(H′, B(U′))
is defined similarly, except addition in Equation (13) is replaced by multiplication.

Marginalization operations. We next consider generalizations of the max and sum-
marginalization operations. (The restriction operation only applies to ordinary potentials.)

• The elimination by max-marginalization of a decision variable D from a PWLC util-
ity potential ψ(H, D,B(U)) creates a PWLC potential ψ′(H, B(U)), where for each
instantiation h of H:

Γ′h = Prune
(
∪d∈sp(D)Γ(h,d)

)
. (14)

That is, Γ′h is the union of the sets {Γ(h,d)}d∈sp(D), with subsequent pruning.

• Let sp(C) = {c1, c2, . . . , c|sp(C)|} denote the set of states (or “observations”) of an
observed chance variable C. The elimination by sum-marginalization of an observed
chance variable C from a PWLC utility potential ψ(H, C,B(U)) creates a PWLC
utility potential ψ′(H, B(U)), where for each instantiation h of H:

Γ′h = Prune
(((

Γ(h,c1) ⊕ Γ(h,c2)

)
⊕ Γ(h,c3)

)
. . .⊕ Γ(h,c|sp(C)|)

)
. (15)

In this equation, the symbol ⊕ denotes the cross sum operator, defined as A ⊕ B =
{a + b|a ∈ A, b ∈ B}, where A and B are sets of linear potentials. The efficiency of
this computation is dramatically improved by interleaving the cross-sum and pruning
operations, as in the incremental pruning algorithm (Cassandra et al., 1997), so that:

Γ′h = Prune
(
Prune

(
Prune

(
Γ(h,c1) ⊕ Γ(h,c2)

)
⊕ Γ(h,c3)

)
. . .⊕ Γ(h,c|sp(C)|)

)
. (16)

• The elimination by sum-marginalization of an unobserved chance variable C from a
PWLC utility potential ψ(H, B(C,U)) creates a PWLC utility potential ψ′(H, B(U)),
where for each instantiation h of H:

Γ′h = Prune

({∑
C

γ(C,U)|γ ∈ Γh

})
. (17)

That is, the unobserved chance variable C in the domain of each linear potential
γ(C,U) in a set Γh is eliminated by simple sum-marginalization.

1200

Strategy Graphs for Influence Diagrams

Conversion between representations of utility potentials. The generalized variable
elimination algorithm represents utility potentials as ordinary potentials whenever possible,
and as PWLC potentials in order to relax traditional constraints on elimination order.

At the start of the algorithm, all utility potentials are ordinary potentials. But to allow
elimination of a decision variable by max-marginalization from an ordinary utility potential
that includes unobserved chance variables in its domain, the ordinary utility potential must
first be converted to a PWLC utility potential.

This conversion is easily done. For any ordinary utility potential ψ(H,U), with observed
variables H and unobserved variables U in its domain, we can construct an equivalent
PWLC potential ψ′(H, B(U)), which is represented by an indexed family of sets of linear
potentials {Γ′h}h∈sp(H), where each set Γ′h is a singleton set defined as follows:

Γ′h = {ψR(H=h)(U)}. (18)

For any history h and belief state b(U), we have
∑

u∈sp(U) b(u)ψ(h,u) = ψ′(h, b(U)), and
thus the two representations are equivalent. Simply stated, any ordinary (that is, linear)
potential can also be represented by a PWLC potential.

When a PWLC utility potential ψ(H) does not have any unobserved chance variables
in its domain, it is also easily converted to an equivalent ordinary utility potential ψ′(H),
as follows: ψ′(h) = maxγ∈Γh

γ. In this case, each set Γh in the representation of ψ(H)
contains a single linear potential with an empty domain, and thus a scalar value, which is
assigned to ψ′(h). Thus any PWLC potential that does not have any unobserved variables
in its domain can be represented by an equivalent ordinary (linear) potential.

4.1.3 Generalization of Pseudocode

The generalized variable elimination algorithm follows the pseudocode given by Algorithm 1,
with just a couple of differences that reflect its use of PWLC utility potentials: (i) it has more
relaxed constraints on elimination order, (ii) the condition for identifying relevant PWLC
potentials is slightly more complex than the condition for identifying relevant ordinary
potentials, and (iii) the representation of a policy is generalized so that it can be a function
of belief states as well as history. We consider each of these generalizations in turn.

Relaxed constraints on elimination order. Recall from the discussion in Section 2.1
that the classic variable elimination algorithm eliminates variables in reverse order of the
partial order of information precedence given by Equation (1). Because it assumes that
the set X of unobserved chance variables comes last in the partial order of information
precedence, it requires all unobserved chance variables to be eliminated first.

The generalized algorithm eliminates variables in an order that is also constrained by
the partial order of information precedence, but with a key difference. It does not need to
eliminate all unobserved variables before it eliminates any other variable. That is, the new
algorithm eliminates variables in an order that respects the following revised partial order
of information precedence,

Y1 ≺ D1 ≺ Y2 ≺ . . . ≺ Dn−1 ≺ Yn ≺ Dn, (19)

where this partial order no longer includes the set X of unobserved variables. Because the
variables in X are not observed, they provide no information. It follows that they are not

1201

Hansen, Shi, & Kastrantas

actually subject to constraints based on information precedence. By representing utility
potentials as PWLC functions, we are able to drop the constraint that all unobserved vari-
ables must be eliminated before any other variable is eliminated. Relaxing this constraint
on elimination order is the central idea of the generalized approach to variable elimination.

Although the generalized algorithm is not required to eliminate all unobserved chance
variables first, there are still constraints on how long the elimination of unobserved chance
variables can be postponed. These constraints turn on the following definition, which is
analogous to the definition of the set of informational predecessors of a decision variable
given by Equation (2).

Definition 2. The set of causal successors of a decision variable D, denoted Succ(D), is
the set of all chance variables that are descendants of the decision variable D via some
directed path of conditional arcs in the influence diagram.

Only conditional arcs are used to define causal precedence, just as only informational
arcs are used to define informational precedence. Elimination-ordering constraints based
on causal precedence take this form: any variable that is a causal successor of a decision
variable must be eliminated before the decision variable itself is eliminated. This constraint
ensures that a decision variable is eliminated from all probability potentials before it is
eliminated from any utility potential.

We combine the elimination-ordering constraints based on causal precedence with the
elimination-ordering constraints based on information precedence by requiring that variables
be eliminated in an order that is consistent with an influence diagram, defined as follows.

Definition 3. An elimination order is consistent with an influence diagram if each decision
variable is eliminated (i) after all of its causal successors are eliminated and (ii) before any
of its informational predecessors are eliminated.

Identification of relevant potentials. When a variable is eliminated, all potentials
that have a value that depends on the eliminated variable must be replaced by equivalent
potentials that do not. We call the potentials that need to be replaced when a variable is
eliminated the relevant potentials. For the classic algorithm, they are the potentials that
include the variable selected for elimination in their domain.

For the generalized algorithm, it is still the case that any potential that includes the
eliminated variable in its domain is relevant. But if the eliminated variable is an observed
chance variable, a PWLC utility potential that does not include the eliminated variable in
its domain is nevertheless relevant if an unobserved variable in its domain is d-connected
to the eliminated variable. In that case, the observed state of the eliminated variable can
influence a belief about the state of the unobserved variable, and in that way it can influence
the value of the PWLC potential (Hansen, 2021).

There is a simple way to avoid this extra test for relevance, however. We simply assume
that if the utility potential ψi generated at the end of an elimination step is PWLC, it is
relevant in the next elimination step. Although this assumption does not necessarily hold, it
almost always holds, and when it doesn’t, the algorithm is still correct. For even if it treats
a PWLC potential as relevant when it is not, the algorithm is correct as long as it processes
every relevant potential. We use this implementation of the algorithm for our results in
this paper. When implemented in this way, there cannot be more than one PWLC utility
potential at a time, and so there is no need to add two PWLC utility potentials.

1202

Strategy Graphs for Influence Diagrams

Generalized representation of strategy. Finally, recall that a strategy can be rep-
resented by a sequence of policies, ∆ = (δD1 , . . . , δDn), with one policy for each decision
variable Di ∈ D. A policy δDi has the same domain as the utility potential created when the
decision variable Di is eliminated. Thus when variables are eliminated in a traditional order,
a policy is represented in the traditional way as a mapping δDi : sp(Pred(Di)) → sp(Di),
as described in Section 2.2. But when variables are eliminated in a non-traditional order,
the utility potential created when a decision variable Di is eliminated is PWLC. Therefore
the corresponding policy is a mapping,

δDi : sp(Hi)× bsp(Ui)→ sp(Di), (20)

which is defined so that

δDi(hi, b(Ui)) = d

(
arg max
γ∈Γhi

∑
ui

b(ui)γ(ui)

)
, (21)

where d(γ) ∈ sp(Di) denotes the action associated with linear potential γ. The action is
associated with the linear potential when it is created, and it represents the action used to
generate the linear potential.

As already pointed out, this representation of a strategy has two disadvantages. First,
it can be difficult for a human to understand. Second, when a policy is a function of belief
states, strategy execution requires updating a belief state by Bayes’ rule. Both disadvantages
can be overcome by representing a strategy as a graph, which we consider next.

4.2 Strategy Graph Construction

Because the generalized algorithm behaves exactly like traditional variable elimination when
it eliminates variables in an order allowed by the traditional algorithm, the approach to
strategy graph construction and simplification for traditional variable elimination described
in Sections 3.2 and 3.3 is also used by the generalized algorithm. It remains only to show how
to construct a strategy graph when variables are eliminated in an order that is not allowed
by the traditional algorithm, and operations are performed on PWLC utility potentials.

Recall that a PWLC utility potential, ψ : sp(H) × bsp(U) → <, is represented by an
indexed family of sets of linear potentials, {Γh}h∈sp(H), where the linear potentials have
the domain U. The corresponding strategy node function maps each instantiation of the
variables in the domain of the utility potential to a node of the strategy graph, as follows,

sψ : sp(H)× bsp(U)→ N ∪ {nil}, (22)

where N denotes the set of nodes of the strategy graph. We can represent the strategy
node function by the same indexed family of sets of linear utility potentials that represents
the PWLC utility potential, so that

sψ(h, b(U)) = n

(
arg max
γ∈Γh

∑
U

b(u) · γ(u)

)
, (23)

where n(γ) denotes the node of the strategy graph associated with the linear potential γ,
or else nil, if the linear potential is not associated with any node of the strategy graph.

Below, we describe how generalized variable elimination constructs a strategy graph
with a strategy node function that is represented in this way.

1203

Hansen, Shi, & Kastrantas

4.2.1 Elimination of Decision Variable by Max-Marginalization

Recall that in order to eliminate a decision variable D from an ordinary utility potential
ψ(H, D,U) with unobserved variables U in its domain, the ordinary utility potential must
first be converted to an equivalent PWLC potential, ψ(H, D,B(U)), as described at the end
of Section 4.1.2. In this case, each linear potential γ in the representation of ψ(H, D,B(U))
is associated with nil, that is, n(γ) = nil, since strategy graph construction does not begin
until the decision variable D is actually eliminated from the utility potential.

Elimination of a decision variable D from a PWLC utility potential ψ(H, D,B(U))
creates a PWLC utility potential ψ′(H, B(U)), represented by an indexed family of sets
of linear potentials, {Γ′h}h∈sp(H), where each set Γ′h is defined by Equation (14). Before
pruning, each set Γ′h is the union of the sets {Γh,d}d∈sp(D), and so each linear potential
γ′ ∈ Γ′h corresponds to a linear potential γ from a set Γh,d, for some d. Therefore, for each
linear potential γ′ in Γ′h, we set n(γ′) equal to a newly-created decision node that has an
outgoing arc labeled by the action d, where the outgoing arc has successor node n(γ).

4.2.2 Elimination of Observed Chance Variable by Sum-Marginalization

Elimination of an observed chance variable C from a PWLC utility potential ψ(H, C,B(U))
creates another PWLC utility potential ψ′(H, B(U), which is represented by an indexed
family of sets of linear potentials {Γ′h}h∈sp(H), where each set Γ′h is the cross sum of the sets
{Γh,c}c∈sp(C), as defined by Equation (16). For each linear potential γ′ ∈ Γ′h, we set n(γ′)
equal to a newly-created observation node that has one outgoing arc for each observation
c ∈ sp(C). For the outgoing arc labeled by observation c, the successor node is n(γc), where
γc ∈ Γ(h,c) is the linear potential for observation c used to compute γ′ =

∑
c∈sp(C) γc.

4.2.3 Graph Simplification When Observed Chance Variable is Eliminated

Whenever an observed chance variable C is eliminated from a PWLC utility potential
ψ(H, C,B(U)), the observation nodes added to the strategy graph can be simplified in the
same ways described in Section 3.2.4, with the following minor changes.

Removal of zero-probability observation branches. Recall that an observation node
with an outgoing arc for each observation c ∈ sp(C) can be simplified by removing arcs that
correspond to zero-probability observations. For observation nodes created by eliminating
an observed chance variable C from a PWLC utility potential ψ(H, C,B(U)), we generalize
the check for zero-probability observations as follows. If P (c|h,u) = 0 for every instantiation
u of U, then the outgoing arc for observation c has probability zero and can be removed
from the strategy graph. In words, an observation c is impossible after history h if it is
impossible after history h no matter what the unobserved state u.

This generalized test can remove many zero-probability observations. But it is not guar-
anteed to remove all, by contrast to the related test for the traditional variable elimination
algorithm. However, any zero-probability observations that are missed in this step can be
identified and removed in a post-processing step, as described at the end of Section 4.3.1.

Removal of redundant observation nodes. If the observation node n(γ) associated
with a linear potential γ ∈ Γ′h is redundant, which means all of its outgoing arcs lead to
the same successor node, it is removed and n(γ) is set equal to the successor node.

1204

Strategy Graphs for Influence Diagrams

4.2.4 Elimination of Unobserved Chance Variable by Sum-Marginalization

Recall that elimination of an unobserved chance variable C from a PWLC utility potential
ψ(H, B(C,U)) creates another PWLC utility potential ψ′(H, B(U)), represented by an
indexed family of sets of linear potentials {Γ′h}h∈sp(H), where each set Γ′h is defined by
Equation (17). Each linear potential γ′ ∈ Γ′h is created from a linear potential γ ∈ Γh,
as follows: γ′(U) =

∑
C γ(C,U). To construct the corresponding strategy node function

sψ′(H, B(U)), we simply let n(γ′) = n(γ). In words, the new linear potential γ′(U) points
to the same node of the strategy graph as the linear potential γ(C,U) from which it is
created by eliminating the unobserved chance variable C by sum-marginalization.

If the set U of unobserved variables is empty, the PWLC utility potential ψ′(H, B(U))
created by this operation can be converted to an ordinary utility potential, as described at
the end of Section 4.1.2. In that case, of course, it is straightforward to convert the PWLC
strategy node function to an equivalent ordinary strategy node function.

4.2.5 Addition and Multiplication

When an ordinary potential ψ(H,U) is added to, or multiplied by, a PWLC potential
ψ′(H′, B(U′)), represented by an indexed family of sets of linear potentials over U′, denoted
{Γ′h}h′∈H′ , the result is a PWLC potential ψ′′(H′′, B(U′′)), represented by a new indexed
family of sets of linear potentials over U′′, denoted {Γ′′h′′}h′′∈H′′ , as defined by Equation (13).
Since each linear potential γ′′ ∈ Γ′′h′′ is derived from a corresponding linear potential γ′ ∈
Γ′

h′′↓H′
, the strategy node for γ′′ is inherited from γ′, that is, n(γ′′) = n(γ′). Thus no new

strategy nodes are created by this operation, although strategy nodes may be pruned if
their corresponding linear potentials are pruned.

4.2.6 Example: Mildew Treatment

To illustrate this procedure for strategy graph construction, we consider how a strategy
graph is constructed when the generalized algorithm solves the mildew problem represented
by the influence diagram in Figure 1. When solving this problem, it can eliminate variables
in an order that is not allowed by the traditional variable elimination algorithm, and so we
show how a non-traditional elimination order affects strategy graph construction.

Eliminate unobserved chance variables H and M∗. Because the unobserved chance
variables H and M∗ are causal successors of the decision variable A, they must be eliminated
first, generating the utility potential ψ2(A,Q,M) =

∑
H,M∗ P (H|M∗, Q)P (M∗|A,M)U(H).

Eliminate decision variable A. Unlike traditional variable elimination, the generalized
algorithm can eliminate the decision variable A before the unobserved chance variables
Q and M are eliminated. Doing so generates a PWLC utility potential ψ3(B(Q, M)) =
maxA(C(A) + ψ2(A,Q,M)), represented by the following set of four linear potentials:

Γ3={〈(7.75, 4.85, 1.45,−0.8, 9.9, 9.9, 4.85, 1.45, 11.75, 9.85, 7.75, 4.85, 12.5, 11.6, 9.85, 7.75), 2〉,
〈(4.75, 4.75, 4.17, 1.17, 6.9, 6.9, 6.9, 5.89, 8.75, 8.75, 8.37, 6.43, 9.5, 9.5, 9.32, 8.25), 3〉,
〈(5.75, 5.17, 2.17,−1.0, 7.9, 7.9, 6.89, 2.17, 9.75, 9.37, 7.43, 5.17, 10.5, 10.32, 9.25, 7.43), 1〉,
〈(3.75, 3.75, 3.75, 3.17, 5.9, 5.9, 5.9, 5.9, 7.75, 7.75, 7.75, 7.37, 8.5, 8.5, 8.5, 8.32), 4〉}.

1205

Hansen, Shi, & Kastrantas

Traditional VE
Eliminated Relevant vars.

variable Obs. Unobs.

1 H Q, M∗

2 Q OQ M∗

3 M∗ OQ, A M

4 M OQ, A, OM

5 A OQ, OM

6 OQ OM

7 OM

(a)

Generalized VE
Eliminated Relevant vars.

variable Obs. Unobs.

1 H Q, M∗

2 M∗ A Q, M

3 A Q, M

4 OQ Q, M

5 Q M

6 OM M

7 M

(b)

1 : A 2 : A 3 : A 4 : A

light none moderate high

(c)

Figure 8: The two tables show the order in which Mildew variables are eliminated by
(a) traditional and (b) generalized variable elimination, with the relevant observed and
unobserved variables for each elimination step. On the right, (c) shows the terminal nodes
of the strategy graph after the generalized algorithm eliminates the decision variable A.

Each of these linear potentials has dimension 16, with instantiations of the unobserved
variables Q and M listed in the order: ([f, no], [f, l], [f, m], [f, s], [a, no], [a, l], [a, m], [a,
s], [g, no], [g, l], [g, m], [g, s], [v, no], [v, l], [v, m], [v, s]). Note that each linear potential is
associated with the index of a node of the strategy graph shown in Figure 8c, where there
is one decision node for each of the four possible actions of the decision variable A.

Eliminate observed chance variable OQ and unobserved chance variable Q. The
observed chance variable OQ is eliminated next, generating the PWLC utility potential
ψ4(B(Q, M)) =

∑
OQ P (OQ|Q)ψ3(B(Q, M)), which is represented by a set Γ4 of 190 linear

potentials of dimension 16. This set and corresponding strategy graph are too large to
show here. When the unobserved chance variable Q is then eliminated, the PWLC utility
potential ψ5(B(M)) =

∑
Q P (Q)ψ4(B(Q, M)) is created, which is represented by the set:

Γ5 = {〈(10.285, 9.045, 5.54, 2.65), 2〉, 〈(6.285, 6.285, 6.285, 6.037), 4〉,
〈(7.525, 7.423, 7.0449, 5.2716), 11〉, 〈(8.025, 7.516, 6.6395, 5.1193), 15〉,
〈(6.705, 6.705, 6.6426, 5.8858), 16〉, 〈(8.675, 8.124, 6.7258, 3.7282), 7〉,
〈(9.355, 8.636, 6.2398, 3.5454), 10〉, 〈(6.975, 6.975, 6.8312, 5.6934), 18〉,
〈(7.285, 7.285, 7.037, 5.344), 3〉, 〈(8.335, 7.826, 6.8453, 4.7699), 8〉,
〈(7.865, 7.721, 6.9254, 4.2299), 6〉〈(7.215, 7.113, 6.8391, 5.621), 12〉
〈(6.625, 6.625, 6.583, 5.9175), 17〉〈(6.605, 6.503, 6.3525, 5.9329), 13〉
〈(9.265, 8.235, 6.1455, 3.8745), 9〉〈(9.665, 8.8418, 5.8904, 2.714), 5〉
〈(6.945, 6.843, 6.6505, 5.8134), 14〉}.

All 17 of the linear potentials in Γ5 have dimension 4, with the states of the unobserved
variable M in the order: (no, l, m, s). Each linear potential is also associated with the
index of a node of the strategy graph shown in Figure 9. However, only 14 of the 17 linear
potentials have a corresponding observation node in the strategy graph. The other three
have a corresponding decision node because three of the originally-generated observation

1206

Strategy Graphs for Influence Diagrams

5:OQ 6:OQ 7:OQ 8:OQ 9:OQ 10:OQ 11:OQ 12:OQ 13:OQ 14:OQ 15:OQ 16:OQ 17:OQ 18:OQ

1:A 2:A 3:A 4:A

light none moderate high

f a,g,v a
v

f,g
a

g,v f g,v

f,a

f,g,v a a,g,v
f

v f,a,g

v
a,g
f

v
f,a,g

v

a f,g

g,v

a f

a,v f,g a

f,g,v

a,g,v

f

Figure 9: Strategy graph for Mildew problem after elimination of unobserved variable Q.

nodes are redundant, which means all of their outgoing arcs lead to the same successor node.
After removal of these redundant observation nodes, the corresponding linear potentials are
associated with the index of the successor decision node of the removed redundant node.

Eliminate observed chance variable OM and unobserved chance variable M .
Elimination of the observed chance variable OM generates the PWLC utility potential
ψ6(B(M)) =

∑
OM P (OM |M)ψ5(B(M)), which is represented by a set Γ6 of 328 linear po-

tentials of dimension 4. Again, it is too many to show here. Elimination of the unobserved
chance variableM then generates an ordinary utility potential ψ7(λ) =

∑
M P (M)ψ6(B(M)),

which has an empty domain and a scalar value of 8.50046 (rounded to five decimal places).
The final strategy graph is shown in Figure 2b.

Discussion. When the traditional variable elimination algorithm solves this problem, as
described in Section 3.3.2, it constructs the strategy tree shown in Figure 2a – unless it also
uses explicit coalescence to merge duplicate subgraphs. By contrast, when the generalized
algorithm solves this problem by eliminating variables in the order shown in Table 8b, it
constructs the strategy graph in Figure 2b, with duplicate subgraphs merged implicitly.

A comparison of Tables 8a and 8b shows why the traditional algorithm needs to perform
coalescence explicitly while the generalized algorithm can perform coalescence implicitly.
When the traditional algorithm eliminates all unobserved chance variables first, the un-
eliminated decision and observed chance variables are relevant in all subsequent elimination
steps. By contrast, when the generalized algorithm postpones elimination of the unobserved
chance variables Q and M until the decision variable and some of the observed chance
variables are eliminated, the un-eliminated decision and observed chance variables are not
relevant in subsequent elimination steps, which leads to implicit coalescence.

For this problem, traditional variable elimination finds a solution faster than generalized
variable elimination (when the latter eliminates variables in the order shown in Table 8b).
But that is primarily because a belief state dynamic programming recurrence provides little
or no computational leverage when solving a problem with a single decision variable and
such a short history.6 For the multi-stage influence diagrams we consider next, eliminating
variables in a non-traditional order leads to speedup, as well as implicit coalescence.

6. It is also because the generalized algorithm solves a more general problem. After the variable OM is
eliminated, and before the variable M is eliminated, it has found an optimal solution for all possible
belief states over the possible states of the unobserved variable M . By contrast, the traditional algorithm
only finds a solution for a single initial belief state over the possible states of M .

1207

Hansen, Shi, & Kastrantas

4.3 Coalescence

Like traditional variable elimination, the generalized algorithm can perform coalescence
both implicitly and explicitly. But unlike the traditional algorithm, it can perform implicit
coalescence when solving influence diagrams that represent partially observable problems.

4.3.1 Implicit Coalescence

In Section 3.3.1, we related implicit coalescence to the dynamic programming recurrence
solved by the traditional algorithm. A similar analysis applies to the generalized algorithm.

When variables are eliminated in an order that is not allowed by the traditional variable
elimination algorithm, the generalized algorithm solves a dynamic programming recurrence
that is defined not only for all instantiations of the observed variables in the domain of
the utility potential created when the variable is eliminated, but for all belief states over
the possible instantiations of the unobserved variables. In this more general dynamic pro-
gramming recurrence, a subproblem is defined by a triple of the variable eliminated, an
instantiation of the remaining observed variables in the domain of the utility potential, and
a belief state over possible instantiations of the remaining unobserved variables. Although
the space of belief states is continuous, it is partitioned into a finite number of regions
because each linear potential in the representation of a PWLC utility potential gives the
optimal utility for a region of belief states. It follows that when variables are eliminated
in a non-traditional order, the dynamic programming recurrence solved by the generalized
algorithm has one subproblem for each linear potential in the representation of a PWLC
utility potential it constructs. In turn, the strategy graph has one node for each linear
potential generated when a decision variable or observed chance variable is eliminated.

Because the generalized algorithm allows dynamic programming to be performed over
belief states as well as observed states, it can leverage independence among variables more
effectively. In particular, observed variables that represent prior history can be conditionally
independent of the variable selected for elimination given a belief state over the possible
states of the relevant unobserved variables, and thus irrelevant in an elimination step.

Consider the mildew problem. The traditional algorithm first eliminates all unobserved
variables: H, Q, M∗, and M . When it eliminates decision variable A, the two observed
variables OQ and OM are relevant, and a decision node is created for each instantiation of
them, leading to construction of the strategy tree in Figure 2a. By contrast, the generalized
algorithm can postpone elimination of the unobserved variables Q and M . In this case,
when A is eliminated, the observed variables OQ and OM (representing prior history) are
not relevant given a belief state over the possible states of the relevant unobserved variables
Q and M , and so the strategy graph in Figure 2b is constructed, instead of a strategy tree.

We have the following parallel. In the case of an influence diagram for a completely
observable MDP, observation of the current state makes the previous history irrelevant, as
illustrated by the example considered in Section 3.3.1. In the case of the influence diagram
for the mildew problem, which is a partially observed problem, a belief state over the possible
states of the unobserved chance variables Q and M makes the previous history irrelevant. In
both cases, the irrelevance of previous history reflects a Markovian property of the problem
that is leveraged by dynamic programming in solving the problem. Leveraging Markovian
independence from previous history leads to implicit coalescence, and often speedup.

1208

Strategy Graphs for Influence Diagrams

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

D2D1 D3 D4 D5 D6 D7 D8 D9 D10

R10

(a)

0

0
1 5

5

5

5

3 3
3

3

3

10

2

2
4

9

9

7

6 8
11

G

(b)

Figure 10: (a) Influence diagram for ten-stage (b) maze POMDP.

Example: Maze POMDP. For a vivid example of how the generalized algorithm can
leverage a Markovian property over belief states to speed up problem solving, as well as
construct a strategy graph with implicit coalescence, we consider a toy robot planning
problem introduced in previous work on limited-memory influence diagrams (Nilsson &
Hohle, 2001) and also used as an example in our earlier paper (Hansen, 2021).

Figure 10a shows an influence diagram that represents a ten-stage path-planning prob-
lem for the “maze” shown in Figure 10b. Each white cell in the maze represents a state
of an unobserved chance variable Xt, for each stage t = 1, . . . , 10, with an absorbing goal
state marked by the letter G. In all, there are 23 possible states. Shaded cells and the
outside borders of the maze represent walls through which the robot cannot pass. For each
decision variable Dt, for t = 1, . . . , 10, the robot can take one of four possible actions; it
can move a single step in any of the four compass directions. It successfully moves in its
intended direction with probability 0.89. It moves sideways with probability 0.02 (0.01 for
each side), it moves backward with probability 0.001, and it fails to move with probability
0.089. If its movement would take it into a wall, or if it is in the goal state, it remains
where it is. For each observed chance variable Yt, for t = 1, . . . , 10, the robot can accurately
sense whether the neighboring cell in each direction of the compass is a wall. There are
13 possible observations, including perfect observation of the goal state, with the non-goal
observations indexed from 0 through 11. The index of the observation received when the
robot is in a given state of the maze is shown in that state in Figure 10b. Because the same
observation can be received in different states, the problem is partially observable. (For
example, observation 3 can be received in five different states.)

The problem begins with the robot placed randomly in a non-goal state, so that it does
not know its initial location. The robot performs an action in each of a sequence of ten
stages. If it reaches the absorbing goal state by the final stage, it receives a reward of 1.
Otherwise, it receives a reward of 0. Thus the objective is to maximize the probability of
reaching the goal state within ten stages.

Elimination order and algorithm efficiency. When the influence diagram for this
problem is solved by traditional variable elimination, all unobserved chance variables must
be eliminated before any other variable is eliminated. But after all ten unobserved chance
variables are eliminated, the utility potential created when the decision variable D10 is
eliminated includes in its domain all nine of the other decision variables and all ten observed
chance variables. Thus it has 1310 · 49 possible instantiations, one for each possible history
before the last decision! As a result, traditional variable elimination cannot solve this
problem even after many hours of computation time.

1209

Hansen, Shi, & Kastrantas

By contrast, generalized variable elimination finds an optimal solution in just a couple
of seconds. Unlike the traditional algorithm, it can eliminate the decision variable D10

before eliminating any other variable. It does so by optimizing for all belief states over the
possible states of the unobserved variable X10, which is the only relevant variable when D10

is eliminated first. After that, generalized variable elimination can eliminate variables in the
same order in which variables are eliminated by the standard value iteration algorithm for
POMDPs (Cassandra et al., 1997), which is D10, X10, Y10, D9, X9, Y9, D8, etc. However,
we found that the algorithm runs even faster, and constructs a smaller strategy graph, when
it eliminates variables in the order: D10, Y10, X10, D9, Y9, X9, D8, etc.

Elimination order and implicit coalescence. When this influence diagram is solved
by traditional variable elimination, and explicit coalescence is not performed, a strategy tree
of immense size is created, with 529 ·13 terminal decision nodes alone. (Many of these nodes
can be removed from the final strategy tree because they are only reachable via suboptimal
or zero-probability branches. But they are all initially generated!)

When generalized variable elimination solves the same problem by eliminating variables
in the order D10, Y10, X10, D9, Y9, X9, D8, etc., even if explicit coalescence is not performed,
it generates an equivalent strategy graph with just 71 nodes and 167 arcs. The much smaller
strategy graph constructed by generalized variable elimination compared to the strategy tree
constructed by traditional variable elimination reflects much more effective use of dynamic
programming in solving this problem. In particular, the problem is solved more efficiently by
solving a dynamic programming recurrence over belief states instead of histories. Note that
when variables are eliminated in this non-traditional order, each time a decision variable Dt

or an observed chance variable Yt is eliminated, the only relevant variable is the unobserved
chance variable Xt. That is, no observed variable that represents the history of the process
is ever relevant in any elimination step. By contrast, when variables are eliminated in
a traditional order, every observed variable that represents the history of the process is
relevant in every elimination step.

Additional simplification in a post-processing step. Some further simplification of
the strategy graph is still possible. In Section 4.2.3, we described how generalized variable
elimination can remove zero-probability observations from a strategy graph, which can lead
to subsequent removal of unreachable nodes. However, it can only do so if there are relevant
decision and observed chance variables that represent prior history and affect observation
probabilities when an observed chance variable is eliminated. When the maze POMDP is
solved by generalized variable elimination using our elimination order, however, there are no
relevant observed variables in any elimination step! Thus for this example and elimination
order, zero-probability observations cannot be removed in the same way.

Once a strategy graph has been constructed, however, it is possible to identify and
remove zero-probability observations in a post-processing step. For each observation node
in the final strategy graph, its ancestor nodes in the graph can be analyzed to determine
whether a given observation has zero probability or not. By performing this analysis,
we were able to further simplify the strategy graph constructed by generalized variable
elimination, and the number of nodes in the graph was reduced from 71 to 58.

Figure 11 shows this 58-node strategy graph with one more simplification: each decision
node has an incoming arc from an observation node in the previous step only if the arc

1210

Strategy Graphs for Influence Diagrams

D10
E

D9D9 D9
E N S

9 10 3

Y9

D8D8 D8
E N S

Y8 Y8

9 9
5 10 3

D7D7D7 D7 D7

S E N S W

Y7 Y7

3 5,7 10
9 9

8 11

D6D6 D6 D6 D6
S NE S W

Y6 Y6

3 105,7 8 11
9 9

D5 D5D5 D5 D5
NES S W

Y5 Y5

104,5,6,73 8 11
9 9

D4 D4D4 D4 D4
S E N WS

Y4 Y4

3 4,5,6,7 10 118
9 9

D3 D3D3 D3 D3
NES S W

Y3 Y3

100,1,4,5,6,72,3 8 11
9 9

D2D2 D2 D2 D2

0,1,4,5,6,7 102,3 118

E NS WS

Y2 Y2

9 9

D1 D1D1D1D1

102,3 8,9 110,1,4,5,6,7

NS S WE

Y1

Figure 11: Strategy graph for the maze POMDP. The graph is simplified by not showing
the predecessor node of an arc when the successor node depends only on the observation.

1211

Hansen, Shi, & Kastrantas

is labeled by observation 9. Otherwise, it has an incoming arc that is labeled by the
observation(s) that lead to this node regardless of previous history. This simplification is
possible because the most recent observation is enough to determine the next decision node
of the strategy graph for this problem unless a wall is observed to the west only, which is
observation 9 in Figure 10b. Observation 9 is possible in just two states of the maze: the
state immediately west of the goal and the state two steps above it, which is immediately
west of a dead-end state. Surprisingly, an optimal strategy for the maze POMDP only needs
memory to disambiguate the identical observation that is received in these two states. By
contrast to the traditional algorithm, generalized variable elimination is able to leverage the
very simple structure of an optimal strategy for this problem to speed up problem solving.

The strategy graph in Figure 11 has been simplified in a couple additional ways. None
of the arcs is labeled by observation of the goal state because once the absorbing goal state
is reached, the strategy no longer matters. Similarly, none of the arcs is labeled by an
observation that reveals the robot must be in a state from which the goal cannot be reached
in the remaining number of steps, since again, the strategy does not matter in that case.

As this example shows, construction of a strategy graph that is simplified in all the ways
we have described can help make the logic of a strategy easier to interpret and analyze.

4.3.2 Explicit Coalescence

We have shown that variable elimination implicitly merges duplicate subgraphs of a strategy
graph when one or more un-eliminated decision or observed chance variables are not relevant
in an elimination step, that is, when part of the prior history is not relevant. The more un-
eliminated observed variables are irrelevant, the more coalescence is performed implicitly.
In fact, when all un-eliminated observed variables are irrelevant in every elimination step,
there are no duplicate subgraphs at all, as illustrated by the strategy graphs for the maze
and mildew problems, as well as for the two-stage completely observable MDP.

For many or most influence diagrams, however, regardless of elimination order, there
are elimination steps in which some un-eliminated decision or observed chance variables are
relevant. When part or all of the history is relevant when a decision or observed chance
variable is eliminated, the strategy graph constructed by variable elimination can have
un-merged duplicate subgraphs, and so we must consider how to merge them explicitly.

Algorithm for explicit coalescence. Let ψi(H, B(U)) denote a PWLC utility potential
that is created by eliminating a decision or observed chance variable, where H denotes the
variables that represent the relevant history. For each instantiation h of H, there is a set
Γh of linear potentials over the unobserved variables U, where each linear potential γ in Γh

is associated with a node n(γ) ∈ N of the strategy graph.

We detect and merge duplicate nodes of the strategy graph as follows. After a set Γh of
linear potentials is created and pruned, the node n(γ) associated with each linear potential
γ ∈ Γh is compared to the nodes in each set of linear potentials Γh′ already created for
other instantiations h′ of H. If node n(γ) is a duplicate of an already-existing node, they
are merged in the same way described above for nodes eliminated in a traditional order.

For efficiency, we perform this comparison-and-merge step after pruning a set Γh of
linear potentials, so as not to waste effort on nodes that will be pruned. This delay requires
no additional checking, since one node cannot be duplicate of another node in the same set.

1212

Strategy Graphs for Influence Diagrams

Elim. Eliminated Relevant variables Irrelevant
Step Variable Dim. Observed Unobserved var. count

1 Remove prosthesis 2 Infection 12

2 Frozen sections PMN 3 Synovial Infection 10

3 Make synovial biopsy 2 Infection 10

4 Sequential Ga67 Tc99 3 Scintigraphy Infection 9

5 Make scintigraphy 2 Infection 9

6 C-reactive protein 2 Infection 8

7 Erythrocyte sedimentation rate 2 Infection 7

8 Knee motion 2 Infection 6

9 Knee deep infection 2 Allergy, Diabetes, 0
BMI, Implant,
Ischemia, Drained CC

10 Drained CC 3 Allergy, Diabetes, 0
BMI, Implant,
Ischemia

11 Ischemia 3 Allergy, Diabetes, 0
BMI, Implant,

12 Implant prosthesis 2 Allergy, Diabetes, 0
BMI

13 Body mass index 2 Allergy, Diabetes 0

14 Diabetes 2 Allergy 0

15 Antibiotic allergy 2 0

Table 2: The order in which Arthronet variables are eliminated by generalized variable
elimination, showing the dimension of each eliminated variable, the relevant observed and
unobserved variables in the elimination step, and the count of irrelevant variables. It is the
many irrelevant variables before Infection is eliminated that leads to implicit coalescence.

To further improve the efficiency of this comparison-and-merge step, we could leverage
the fact that a new node only needs to be compared to all distinct nodes that have been
generated so far, which could be much less than the number of linear potentials generated.

Example: Arthronet. To illustrate the complementary effect of implicit and explicit
coalescence in simplifying a strategy graph, we consider how the generalized algorithm
solves the Arthronet influence diagram shown in Figure 6 and described in Section 3.3.2.

Recall that in solving this problem, the classic variable elimination algorithm must
eliminate the unobserved chance variable for Infection first. Once this variable is eliminated,
all of the remaining variables are relevant in every subsequent elimination step, and so the
only form of coalescence performed by the traditional algorithm is explicit coalescence.

By contrast, generalized variable elimination can postpone elimination of the unobserved
chance variable for Infection. As a result, when variables are eliminated in the order shown
in Table 2, only the unobserved chance variable for Infection, and occasionally a decision
variable, is relevant in the first eight elimination steps. Although the problem is small
enough that it can be solved easily by both traditional and generalized variable elimination,
our implementation of the generalized algorithm solves it more than an order of magnitude
faster by leveraging independence relations among variables more effectively.

Generalized variable elimination not only speeds up problem solving, it constructs a
strategy graph in which most duplicate subgraphs are implicitly merged. The first row of

1213

Hansen, Shi, & Kastrantas

Traditional VE Generalized VE
Degree of simplification Nodes Arcs Nodes Arcs

Generated strategy graph with implicit coalescence only 149,695 232,638 162 391
With suboptimal (un-selected) branches removed 10,344 15,526 97 167
With zero-probability branches removed 1,141 1,408 85 131
With redundant nodes removed 892 1,159 64 110
With duplicate nodes merged by explicit coalescence 60 105 60 105

Table 3: For Arthronet, the table shows the size of the strategy graphs constructed by
traditional and generalized variable elimination (VE) based on how much simplification is
performed.

Table 3 compares the size of the strategy graphs constructed by traditional and general-
ized variable elimination when there is no simplification of the graph except for implicit
coalescence. In this case, the traditional algorithm constructs a strategy tree. By contrast,
generalized variable elimination constructs an equivalent but much smaller strategy graph
that reflects the more efficient dynamic programming recurrence it solves.

The second and third rows of Table 3 compare the size of the strategy graphs after
unreachable nodes and arcs are removed, which are nodes and arcs that are only reachable
via an un-selected action or zero-probability observation. The fourth row shows the further
compression achieved by removing redundant observation nodes. Finally, the last row of the
table shows that when all forms of strategy graph simplification are performed, including
explicit coalescence, both algorithms construct the same strategy graph shown in Figure 7,
which has 60 nodes and 105 arcs.

Although both algorithms construct the same strategy graph, the generalized algorithm
does so much more efficiently for two reasons. First, it solves a more efficient dynamic pro-
gramming recurrence that better leverages independence relations among variables. Second,
the initial strategy graph constructed by the generalized algorithm is much smaller, due to
implicit coalescence, and so the overhead incurred for compressing it further by explicit
coalescence and other simplification techniques is much less.

5. Coalescence in Exchange for Bounded-Error Approximation

Finally, we consider one last form of coalescence that can be used to simplify a strategy
graph further in exchange for bounded-error approximation. As usual, how this form of
coalescence is performed depends on elimination order.

5.1 Traditional Elimination Order

Recall that Section 3.3.2 describes a tie-breaking rule for action selection that leads to
additional coalescence when variables are eliminated in a traditional order. It applies when
there is more than one optimal action for a decision variable, given an instantiation h of
the variables H in the domain of the utility potential generated by eliminating the decision
variable. If one action gives rise to a duplicate node that can be merged with an existing
node of the strategy graph, and another does not, the action that gives rise to a duplicate
node is selected in order to merge the duplicate subgraphs, and simplify the strategy graph.

1214

Strategy Graphs for Influence Diagrams

We can modify this tie-breaking rule to allow further coalescence in exchange for bounded-
error approximation. For each instantiation h of the variables H, we consider all actions
that are bounded-suboptimal, which means the value of the action is within some threshold
δ > 0 of the optimal value for any action. If a bounded-suboptimal action gives rise to a
duplicate node that can be merged with an existing node of the strategy graph, we choose
the best bounded-suboptimal action that gives rise to a duplicate node, so that the dupli-
cate nodes can be merged. If no bounded-suboptimal action gives rise to a duplicate node,
we choose an optimal action, and add a new node to the strategy graph.

This approach to bounded-error approximation does not lead to speedup when potentials
are represented by tables, as in the simplest implementation of variable elimination. In fact,
it incurs some overhead. However, it can simplify a strategy graph.7

5.2 Non-Traditional Elimination Order

When variables are eliminated in a non-traditional order, which means the variable elim-
ination algorithm generates PWLC utility potentials, we can use a related but different
technique to encourage further coalescence in exchange for bounded-error approximation.

Recall the procedure described in Section 4.1.1 for pruning dominated linear poten-
tials from an indexed family of sets of linear potentials that represents a PWLC utility
potential. A linear potential is said to be approximately dominated if the linear program
of Equation (12) for testing whether it is dominated has an objective value ε that is less
than or equal to some small user-adjusted threshold δ > 0, instead of zero. By pruning
approximately dominated linear potentials, we create a bounded-suboptimal PWLC utility
potential that is represented by smaller sets of linear potentials. We say that a PWLC
utility potential ψ(H, B(U)) is bounded-suboptimal, with bound δ, if there is no state h
and belief state b(U) for which its value is suboptimal by more than δ.8

Because each linear potential corresponds to a node of the strategy graph, pruning
approximately-dominated linear potentials leads to a smaller strategy graph. Moreover,
this approach to bounded-error approximation also leads to computational speedup, since
operations on PWLC utility potentials are faster when the sets of linear potentials that
represent them are smaller. In fact, approximate pruning is a widely-used approach to
achieving speedup in exchange for approximation when solving POMDPs, and it often
provides substantial speedup in exchange for a relatively small degree of approximation.

To see how pruning approximately-dominated linear potentials has the effect of merging
duplicate nodes, note that pruning an approximately-dominated linear potential means that
for any belief state for which it gives an optimal value, we replace it with another linear
potential that gives a value for this belief state that is sub-optimal by less than δ. Because
each linear potential corresponds to a node of the strategy graph, pruning an approximately-
dominated linear potential is equivalent to removing a corresponding optimal node from the

7. It may be possible to use bounded-error approximation for both speedup and coalescence if utility
potentials are represented by data structures that leverage context-specific independence for both reduced
storage and more efficient operations (Gómez & Cano, 2003; Cabañas, Gómez-Olmedo, & Cano, 2016).

8. Pruning approximately-dominated linear potentials ensures bounded suboptimality under the condition
that any linear potential that is used to prune another linear potential cannot itself be pruned, since
approximate dominance is not transitive. This condition is ensured by the pruning algorithms cited at
the end of Section 4.1.1.

1215

Hansen, Shi, & Kastrantas

Remove RemoveRemove prosthesis

Yes No

FSP
Frozen section PMN
−→ > 5 PMN
99K ≤ 5 PMN

SynovialSynovial SynovialMake synovial biopsy

No Yes No

Scintigraphy Scintigraphy ScintigraphyMake scintigraphy

No No No

CRP CRP
C-reactive protein
−→ > 10 mg/L
99K ≤ 10 mg/L

ESRESR ESR
Erythrocyte sedimenta-
tion rate
−→ > 30 mm/h
99K ≤ 30 mm/h

MotionMotion
Knee motion
−→ > 65 degrees
99K ≤ 65 degrees

DCCDCC
Drained CC
−→ not 800− 1000 cc
99K 800− 1000 cc

ISQ ISQ
Ischemia
−→ > 90 min
99K ≤ 90 min

ImplantImplant ImplantImplant prosthesis

Yes Yes

No

BMI BMI BMI
Body Mass Index
−→ normal
99K high

Diab. Diab.
Diabetes
−→ absent
99K present

Allerg.Antiobiotic allergy
−→ No
99K Yes

Figure 12: Smaller, bounded-suboptimal strategy graph for Arthronet problem.

strategy graph, and replacing it with a bounded sub-optimal node that is a duplicate of a
node that is already in the strategy graph, allowing them to be implicitly merged.

This approach to bounded-error approximation leads to speedup as well as implicit
coalescence, which reflects the fact that it is a form of approximate dynamic programming.

Example: Arthronet. Figure 12 shows a bounded-suboptimal strategy graph for the
Arthronet problem that is constructed by generalized variable elimination when it prunes
approximately-dominated linear potentials by checking whether the objective value ε of
the linear program of Equation (12) is less than or equal to the threshold δ = 0.1. The
expected utility of this smaller strategy graph is 0.468 (when rounded to three decimal
places) compared to the expected utility of the optimal strategy graph shown in Figure 7,
which is 0.496. It is a relatively small decrease in expected utility in exchange for reducing
the size of the strategy graph by half.

1216

Strategy Graphs for Influence Diagrams

A conservative bound on the sub-optimality of a strategy constructed by this approach
is easily obtained by multiplying the approximation parameter δ by the number of times
an indexed family of sets of linear potentials that represents a PWLC utility potential is
pruned using this technique. Obviously, δ can be adjusted to tighten or loosen this bound.

Model approximation and coalescence. We mention one more way in which it may
be useful to perform additional coalescence in exchange for bounded-error approximation.
For influence diagrams that model real-world problems, probabilities and utilities are often
estimated and inexact. Given a model with inexact parameters, it may make sense to ignore
differences of expected utility that are less than a threshold δ > 0 that reflects the degree
of model approximation. In that case, the threshold δ can be used to compress the strategy
graph constructed by variable elimination in the way described above, that is, by ignoring
differences of expected utility that are less than δ when doing so allows further coalescence.

Intuitively, a smaller strategy graph constructed by ignoring small differences in utility
is more likely to include only those steps of a strategy that are justified by an inexact model.

6. Conclusion

We have introduced an approach to strategy representation for influence diagrams that
represents a strategy as a graph, and simplifies the graph as much as possible so that it is
easier to interpret and analyze. We have also shown how to modify a variable elimination
algorithm for influence diagrams so that it constructs a strategy graph.

Among the techniques we have described for simplifying a strategy graph, we have given
special attention to coalescence, that is, merging duplicate subgraphs. We have refined the
traditional concept of coalescence by distinguishing among three forms it can take. Implicit
coalescence is performed automatically by the variable elimination algorithm itself when
it solves a dynamic programming recurrence that leverages independence relations among
variables, especially Markovian independence from variables that represent previous history.
Explicit coalescence merges duplicate subgraphs that are not merged implicitly. Because it
is performed by extra steps that are added to the variable elimination algorithm, it incurs
some overhead. Finally, coalescence can also be performed in exchange for bounded-error
approximation. In this case, a bounded-suboptimal node is added to a strategy graph
instead of an optimal node when the bounded-suboptimal node is a duplicate of a node
already in the strategy graph. As a result, the duplicate nodes can be merged in order to
simplify the strategy graph further, and more than would be otherwise possible.

Both traditional and generalized variable elimination construct the same strategy graph
when they perform both implicit and explicit coalescence, in addition to other simplification
techniques. But when solving influence diagrams with unobserved chance variables, which
represent partially observed problems, the traditional algorithm must rely almost entirely
on explicit coalescence. By contrast, the generalized algorithm can rely much more, and
often almost entirely, on implicit coalescence. It has this advantage when solving partially
observed problems because it can solve dynamic programming recurrences over belief states,
and thus it can eliminate variables in an order that better leverages independence relations
among variables, including variables that represent prior history. In many cases, eliminating
variables in an order that better leverages variable independence also leads to computational
speedup. As a result, implicit coalescence is often associated with faster problem solving.

1217

Hansen, Shi, & Kastrantas

Some of the techniques we use to simplify strategy graphs are similar to techniques used
to simplify or “reduce” decision diagrams (Bryant, 1986; Bahar, Frohm, Gaona, Hachtel,
Macii, Pardo, & Somenzi, 1993). In particular, two of the rules we use to simplify strategy
graphs – removing redundant nodes and merging duplicate nodes – are essentially the same
reduction rules used to simplify decision diagrams. Furthermore, the well-known effect of
variable ordering on the size of a decision diagram is related to the effect that the ordering
of observed chance variables can have on the size of a strategy graph, as discussed in
Section 3.3.3. However, and by contrast to decision diagrams, the information precedence
constraints of an influence diagram severely limit the possible re-orderings of decision and
observed chance variables in a strategy graph.

The concept of a strategy graph generalizes the concept of a strategy tree for an influence
diagram, and the concept of coalescence, as we have discussed. In addition, it is inspired by,
and generalizes, the concept of a policy graph for a finite-horizon POMDP (Kaelbling et al.,
1998). That is in keeping with the fact that the generalized algorithm not only generalizes
the traditional variable elimination algorithm for influence diagrams, it also generalizes the
value iteration algorithm for finite-horizon POMDPs. Both a strategy graph and a policy
graph allow a strategy to be executed without updating a belief state, and both can be easier
for a human user to understand. However, a policy graph has just one kind of node instead
of two, since a node of a policy graph corresponds to an action and an arc corresponds
to an observation. Because a strategy graph has distinct decision and observation nodes,
it can more clearly represent the observational structure of a strategy when observations
are factored into several variables, as is common for both influence diagrams and factored
POMDPs (Boutilier & Poole, 1996). This advantage is illustrated by the strategy graphs
for the Arthronet problem shown in Figures 7 and 12.

Influence diagrams have traditionally been used to solve relatively small problems, and,
for small problems, strategy graphs can be easy to interpret and understand. But for larger
and more complex problems, additional techniques may be needed to help users interpret
more complex strategies. A promising direction for future research is to consider more
sophisticated techniques for visualization and analysis of strategies that are represented by
very large and complex strategy graphs.

Acknowledgments This research was supported by the National Science Foundation
under Award IIS:RI #1718384. We thank the reviewers for comments and suggestions that
have helped to improve this paper.

Appendix A. Addition of Piecewise-Linear and Convex Utility Potentials

In this paper, especially in Section 4.1.3, we describe an implementation of generalized
variable elimination that assumes that if the utility potential generated in an elimination
step is PWLC, it is relevant in the next elimination step. Under this assumption, there can
never be more than one PWLC utility potential at a time, and so we never need to add
two PWLC utility potentials. However, our earlier paper describes a version of generalized
variable elimination that does not make this simplifying assumption (Hansen, 2021). Since
it may need to add two PWLC utility potentials, we review this additional operation and
explain how it affects strategy graph construction.

1218

Strategy Graphs for Influence Diagrams

When a PWLC utility potential ψ(H, B(U)), represented by an indexed family of sets
of linear utility potentials over U, {Γh}h∈sp(H), is added to another PWLC utility potential
ψ′(H′, B(U′)), which is represented by an indexed family of sets of linear utility potentials
over U′, {Γ′h′}h′∈sp(H′), the new PWLC utility potential ψ′′(H′′, B(U′′)) is represented by
an indexed family of sets of linear utility potentials over U′′, {Γ′′h′′}h′′∈sp(H′′), where each
set is created as follows:

Γ′′h′′ = Prune
({
γ + γ′|γ ∈ Γh′′↓H , γ

′ ∈ Γ′
h′′↓H′

})
. (24)

The corresponding strategy node function, sψ′′(H
′′, B(U′′)), is constructed as follows. For

each linear potential γ′′ in Γ′′h′′ , where γ′′ = γ + γ′ as specified by Equation (24), the asso-
ciated strategy node, denoted n(γ′′), is the root of a strategy graph that is constructed by
concatenating the strategy graph rooted at the node n(γ) with the strategy graph rooted
at the node n(γ′), where concatenation of strategy graphs is the same operation described
in Section 3.2.5 for traditional variable elimination. Recall that the order in which strategy
node functions are concatenated must be the reverse of the order in which their correspond-
ing utility potentials were generated, in order to ensure that the resulting strategy graph
respects the total ordering of decisions.

For example, if we assume that ψ comes before ψ′ in temporal order, the strategy graphs
rooted at n(γ) and n(γ′) are concatenated by adding an arc from every terminal node of
the strategy graph rooted at n(γ) to n(γ′), which is the root node of the other strategy
graph, and then setting n(γ′′) to the root node of the concatenated strategy graphs.

References

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., & Somenzi,
F. (1993). Algebraic decision diagrams and their applications. In Proc. of IEEE/ACM
Int. Conf. on Computer-aided Design, pp. 188–191. IEEE Computer Society Press.

Bielza, C., & Shenoy, P. P. (1999). A comparison of graphical techniques for asymmetric
decision problems. Management Science, 45 (11), 1552–1569.

Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable
Markov decision processes using compact representations. In Proc. of 13th National
Conf. on Artificial Intelligence, pp. 1168–1175.

Bryant (1986). Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35 (8), 677–691.

Cabañas, R., Gómez-Olmedo, M., & Cano, A. (2016). Using binary trees for the evaluation
of influence diagrams. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 24 (01), 59–89.

Cabañas, R., Cano, A., Gómez-Olmedo, M., & Madsen, A. (2013). Heuristics for determining
the elimination ordering in the influence diagram evaluation with binary trees. In 12th
Scandinavian Conf. on Artificial Intelligence: SCAI 2013, volume 257 of Frontiers in
Artificial Intelligence and Applications, pp. 65–74. IOS Press.

Cassandra, A., Littman, M., & Zhang, N. (1997). Incremental pruning: A simple, fast, exact
method for partially observable Markov decision processes. In Proc. of 13th Conf. on
Uncertainty in Artificial Intelligence, pp. 54–61.

1219

Hansen, Shi, & Kastrantas

Dechter, R. (2000). A new perspective on algorithms for optimizing policies under uncer-
tainty. In Proc. 5th Int. Conf. on Artificial Intelligence Planning Systems, pp. 72–81.

Dechter, R. (2019). Reasoning with Probabilistic and Deterministic Graphical Models: Exact
Algorithms. Morgan & Claypool.

Gómez, M., & Cano, A. (2003). Applying numerical trees to evaluate asymmetric deci-
sion problems. In Nielsen, T. D., & Zhang, N. L. (Eds.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pp. 196–207, Berlin, Heidelberg. Springer.

Hansen, E. (2021). An integrated approach to solving influence diagrams and finite-horizon
partially observable decision processes. Artificial Intelligence, 294, 1–48.

Hansen, E., & Bowman, T. (2020). Improved vector pruning in exact algorithms for solving
POMDPs. In Proc. of 36th Conference on Uncertainty in Artificial Intelligence (UAI).

Hansen, E., Shi, J., & Khaled, A. (2016). A POMDP approach to influence diagram evalua-
tion. In Proc. of 25th International Joint Conf. on Artificial Intelligence (IJCAI-16),
pp. 3124–3132. AAAI Press.

Howard, R., & Matheson, J. (1981). Influence diagrams. In Howard, R., & Matheson.,
J. (Eds.), The Principles and Applications of Decision Analysis, pp. 719–762, Menlo
Park, CA.

Jensen, F., Jensen, F., & Dittmer, S. (1994). From influence diagrams to junction trees. In
Proc. of 10th Conf. on Uncertainty in Artificial Intelligence, pp. 367–373.

Jensen, F., & Nielsen, T. (2007). Bayesian Networks and Decision Graphs (2nd edition).
Springer, New York.

Jensen, F., & Nielsen, T. (2011). Probabilistic decision graphs for optimization under
uncertainty. 4OR - A Quarterly Journal of Operations Research, 9 (1), 1–28.

Kaelbling, L., Littman, M., & Cassandra, A. (1998). Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101, 99–134.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

León, D. (2011). A probabilistic graphical model for total knee arthroplasty. Master’s thesis,
Dept. Artificial Intelligence, UNED, Madrid, Spain.

Luque, M., Arias, M., & Dı́ez, F. (2017). Synthesis of strategies in influence diagrams. In
Proc. of 33rd Conf. on Uncertainty in Artificial Intelligence (UAI-17).

Luque, M., & Dı́ez, F. (2010). Variable elimination for influence diagrams with super-value
nodes. International Journal of Approximate Reasoning, 51 (6), 615 – 631.

Luque, M., Dı́ez, F., & Disdier, C. (2016). Optimal sequence of tests for the mediastinal
staging of non-small cell lung cancer. BMC Medical Informatics and Decision Making,
16 (9), 1 – 14.

Marinescu, R., Razak, A., & Wilson, N. (2012). Multi-objective influence diagrams. In
Proc. of 28th Conf. on Uncertainty in Artificial Intelligence, pp. 574–583.

1220

Strategy Graphs for Influence Diagrams

Marinescu, R., Razak, A., & Wilson, N. (2017). Multi-objective influence diagrams with
possibly optimal policies. In Proc. of 31th AAAI Conf. on Artificial Intelligence, pp.
3383–3389.

Mauá, D., & Cozman, F. G. (2016). Fast local search methods for solving limited memory
influence diagrams. International Journal of Approximate Reasoning, 68, 230–245.

Mauá, D., de Campos, C., & Zaffalon, M. (2012). Solving limited memory influence dia-
grams. Journal of Artificial Intelligence Research, 44, 97–140.

Ndilikilikesha, P. (1994). Potential influence diagrams. International Journal of Approxi-
mate Reasoning, 10 (3), 251–285.

Nilsson, D., & Hohle, M. (2001). Computing bounds on expected utilities for optimal
policies based on limited information. Tech. rep. 94, Danish Informatics Network in
the Agricultural Sciences.

Olmsted, S. (1983). On representing and solving decision problems. Ph.D. thesis, Stanford
University.

Segal, I., & Shahar, Y. (2009). A distributed system for support and explanation of shared
decision-making in the prenatal testing domain. Journal of Biomedical Informatics,
42 (2), 272–286.

Shachter, R. (1986). Evaluating influence diagrams. Operations Research, 34, 871–882.

Shenoy, P. (1992). Valuation based systems for Bayesian decision analysis. Operations
Research, 40, 463–484.

Smith, J., Holtzman, S., & Matheson, J. (1993). Structuring conditional relationships in
influence diagrams. Operations Research, 41, 280–297.

Tatman, J. (1986). Decision Processes in Influence Diagrams: Formulation and Analysis.
Ph.D. thesis, Stanford University.

Tatman, J., & Shachter, R. (1990). Dynamic programming and influence diagrams. IEEE
Trans. on Systems, Man and Cybernetics, 20 (2), 365–379.

Walraven, E., & Spaan, M. (2017). Accelerated vector pruning for optimal POMDP solvers.
In Proc. of 31st AAAI Conf. on Artificial Intelligence, pp. 3672–3678.

1221

