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Abstract

Face hallucination is a task of generating high-resolution (HR) face images from low-
resolution (LR) inputs, which is a subfield of the general image super-resolution. However,
most of the previous methods only consider the visual effect, ignoring how to maintain
the identity of the face. In this work, we propose a novel face hallucination model, called
C-Face network, which can generate HR images with high visual quality while preserving
the identity information. A face recognition network is used to extract the identity features
in the training process. In order to make the reconstructed face images keep the identity
information to a great extent, a novel metric, i.e., C-Face loss, is proposed. We also propose
a new training algorithm to deal with the convergence problem. Moreover, since our work
mainly focuses on the recognition accuracy of the output, we integrate face recognition into
the face hallucination process which ensures that the model can be used in real scenarios.
Extensive experiments on two large scale face datasets demonstrate that our C-Face network
has the best performance compared with other state-of-the-art methods.

1. Introduction

Face hallucination is a domain-specific super-resolution (SR) task, which aims to super-
resolve a low-resolution (LR) face image into a high-resolution (HR) one. Face hallucination
model has many applications in practice. Specifically, it can help to recognize faces with
a very low resolution. Although face recognition methods such as SphereFace (Liu et al.,
2017) or ArcFace (Deng et al., 2019) have already achieved an impressive achievement and
surpassed human-level performance, most of them have a very poor performance when the
resolution of the input image is low. However, there are many cases where we only have LR
images to identify (e.g., video surveillance). The most effective and direct way to solve this
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Figure 1: Comparison of face hallucination: (a) LR face (16×16), SR faces reconstructed
by (b) general face hallucination (e.g., (Zhang et al., 2018)), (c) identity-preserving face
hallucination (e.g., (Zhang et al., 2018a)), (d) identity-preserving face hallucination with
compare face (our method), and (e) the ground-truth HR face.

problem is to reconstruct the HR images using face hallucination methods, so that they can
be recognized by face recognition models with high accuracy.

With the development of deep learning, many recent works in the field of super-resolution
resort to artificial neural network to learn the feature relationship between the HR images
and their LR counterparts. However, the super-resolution of face images, i.e., face halluci-
nation, is different from the super-resolution of ordinary images, because the distribution of
geometric features is different when faces occupy most of the images. As shown in Fig. 1(b),
although using the general super-resolution model to super-resolve the face images can pro-
duce visually pleasing results, it cannot help improve the face recognition accuracy. Thus,
face hallucination methods should have more considerations about maintaining facial fea-
tures compared with general super-resolution methods.

There are also many works, such as the work of Huang et al. (2017) and Bulat and
Tzimiropoulos (2018), focusing on super-resolving face images by considering some charac-
teristics of the human faces. Through the capabilities of neural networks, most of them have
achieved better results than traditional methods. However, most of the previous face hallu-
cination methods only pay attention to visual quality and ignore how to maintain identity
information during reconstruction.

Whether the reconstructed images can facilitate the performance of face recognition
depends on whether the identity information can be preserved in the face hallucination
process. Therefore, the identity-preserving face hallucination methods have attracted in-
creasing research attention (Zhang et al., 2018a; Hsu et al., 2019) in recent years. However,
most of the existing identity-preserving face hallucination methods only minimize the dis-
tance of the SR face image and its corresponding ground-truth HR face image in the identity
feature space. The identity loss objective function of these methods is likely to be trapped
into a local optimum. These methods cannot be applied to recognize other face images of
the same identity, which may have distinct appearance, as shown in Fig. 1(c). Unlike those
methods, our work compares the output face image with other face images of the same
identity, i.e., images from the same person, during the training phase. In this way, our
proposed method has a better ability to maintain the identity information compared with
previous methods, as shown in Fig. 1(d).
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According to the previous idea, we propose a face hallucination model with a novel loss
function, as well as a new training method. The loss function we propose is called the
C-Face loss, where C-Face stands for “compare face”. In the face dataset, some images
that belong to the same person can be used as an identity reference for each other during
the training phase. For each image in the training dataset, we call its reference image as
the “compare face”. In C-Face loss, we calculate the difference between the output SR
image and its target, i.e., the ground-truth HR face image, as well as the difference from
the compare face. By using this loss function to train our network, the resulting model have
a better ability to maintain the identity information from the LR input.

Directly combining the C-Face loss with other common loss function to train the network
can improve the performance of the model. However, the loss function will not decrease to
a sufficiently small value for the reason that the output images and the original HR images
are in different manifolds in the high-dimensional space of the identity feature. To solve this
problem, we propose a new training algorithm with four stages. Experiments show that the
model has a better performance after our new training process is applied.

We use a generative adversarial network mentioned in Ledig et al. (2017) as the base
architecture of our model, and we name our model as C-Face network. The model is trained
on the CASIA-WebFace dataset (Yi et al., 2014), and we test it on the LFW dataset (Huang
et al., 2008) including the standard protocol (with only face verification) as well as the
LFW-BLUFR protocol (Liao et al., 2014). Moreover, we also verify the performance of
our proposed model on the Celebrity Face Attributes (CelebA) dataset (Liu et al., 2015)
which is a more challenging in the wild face images dataset. We compare the results of our
model with some previous works to show that our method has the best ability to preserve
the identity information in face hallucination. The main contributions of this paper can be
summarized as follows:

• We propose a model named C-Face network with a novel loss function that can main-
tain the identity information when super-resolving the LR face images. Our loss
function not only penalizes the distance of identity features between the SR face im-
age and its corresponding ground-truth HR face image, but also decreases the distance
with other examples of the same identity.

• A four-stage training algorithm is proposed to deal with the convergence problem
for our model. By using this multi-stage training strategy, the hallucinated SR face
images and the ground-truth HR face images will gradually move closer to each other
in the same identity feature space.

• We conduct extensive experiments on three large-scale datasets to evaluate the ef-
fectiveness of our proposed model. Compared with several existing state-of-the-art
face hallucination models, the C-Face network has the best performance on identity
preservation ability.

The rest of this paper is organized as follows. Section 2 introduces some work that is
related to this paper. Our method is presented in Section 3 and the experimental results
are given in Section 4 and 5 which prove the validity of our method. Finally, Section 6
concludes our work.
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2. Related Work

In this section, we review the literature on the most related work of general image super-
resolution, identity-unaware face hallucination, and identity-aware face hallucination and
put this work in an appropriate context.

2.1 General Image Super-Resolution

The image super-resolution field has achieved impressive success since deep learning based
methods. The method in Dong et al. (2014) first uses a CNN model to map the LR images
to HR ones. Motivated by the idea of residual learning, the very deep super resolution
network (VDSR) (Kim, Lee, & Lee, 2016a) and the deeply-recursive convolutional network
(DRCN) (Kim, Lee, & Lee, 2016b) tried to explore deeper architectures and improved
accuracy. To achieve visually-pleasing results, Ledig et al. (2017) employ the generative ad-
versarial network (GAN) (Goodfellow et al., 2014) with the adversarial loss to construct the
super-resolution model (SRGAN). The SRGAN model also uses the perceptual loss (John-
son, Alahi, & Fei-Fei, 2016), which can generate photo-realistic HR images but cannot
achieve a high grade in PSNR or SSIM indicators. In order to generate more perceptually
satisfying results, Wang et al. (2018) proposed an enhanced SRGAN (ESRGAN) to im-
prove SRGAN performance by a relativistic adversarial loss. In contrast to adversarial loss,
Mechrez et al. (2018) proposed a contextual loss to maintain natural image statistics by
measuring the distribution of features. Lim et al. (2017) enhanced the previous framework
by removing batch normalization layers in conventional residual networks and expanding
the model size.

2.2 Identity-Unaware Face Hallucination

Aiming at reconstructing the LR face images, face hallucination is a common research
topic in both traditional image processing and deep learning. Based on the idea of sparse
representation, Farrugia and Guillemot (2017) used a sparse coding scheme to form the HR
patches by globally optimal LR patches. Jiang et al. (2017b) used two kinds of smoothing
constraints to alleviate noise effects during the reconstruction. However, these traditional
methods show limited advantages compared with deep learning models.

The performance of face hallucination has been improved significantly by using deep
neural network. Yu and Porikli (2016) utilized a discriminative generative network to im-
prove the scaling factors from 2 ∼ 4× to 8× so as to ultra-resolve a very low resolution
face image. To use facial features in the deep neural network, Huang et al. (2017) com-
bined the wavelet transform and the CNN model to construct a new architecture, which
can generate the HR images with the predicted wavelet coefficient. Chen et al. (2018)
and Bulat and Tzimiropoulos (2018) used some geometry prior, such as facial landmarks
or feature heatmaps, to calculate parts of the loss function during the training process.
Yu et al. (2018a) proposed a method that used multi-task convolutional neural networks
to explicitly incorporate the structural information of faces into the face super-resolution
process. Focusing on one-to-many ambiguity in face hallucination tasks, Yu et al. (2018b)
found that using some supplementary attributes during the face super-resolution process
can significantly reduce that ambiguity. Yu et al. (2020) constructed an attribute-embedded
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upsampling network, using supplementary residual images with additional facial attribute
information to reduce the ambiguity in face hallucination. Conventional face hallucination
methods require accurate alignment of low-resolution faces before upsampling them. In
order to directly super-resolve unaligned face images, Yu and Porikli (2017) proposed an
end-to-end transformative discriminative neural network to allow local receptive fields to
line-up with similar spatial supports by embedding spatial transformation layers into the
upsampling network. Motivated by this idea, the follow-up work (Yu et al., 2020) proposed
a multiscale transformative discriminative neural network, which can be used for super-
resolving small face images of different resolutions. In order to solve the problem that the
performance of the existing face hallucination methods based on convolutional neural net-
works is significantly degraded under low and non-uniform illumination conditions, Zhang
et al. (2020) and Zhang et al. (2021) proposed a copy and paste generative adversarial
network to offset illumination and enhance facial details.

2.3 Identity-Aware Face Hallucination

The above-mentioned face hallucination methods have considered the face structure prior
and attribute information. However, most of them did not consider the identity information
of the face images or did not fully consider two similar tasks, face hallucination and face
recognition, together. The identity information contains identity-aware details which is
essential for boosting down-stream face recognition accuracy after reconstruction (Jiang
et al., 2021).

Face recognition technology has made rapid progress in the past few years. The work
of Taigman et al. (2014) achieved a breakthrough performance on recognition accuracy by
using the CNN model and softmax loss function. However, softmax loss may be insufficient
in distinguishing thousands or more classes. Schroff, Kalenichenko, and Philbin (2015)
proposed the triplet loss to minimize the distance between the features from the same
identity and maximize the features from different identities. Inspired by triplet loss, we
try to improve the identity loss in Zhang et al. (2018a) and finally make the network
model have a better ability for maintaining identity information in this paper. In Liu
et al. (2017) and Deng et al. (2019), the angular-margin-based loss functions were used to
make the inter-class distance larger than the intra-class distance. Zangeneh et al. (2020)
proposed a coupled architecture for low resolution face recognition using two branches of
deep convolutional neural networks, which can project the HR and LR faces into a common
feature space. In our method, we use the recognition model in Liu et al. (2017) to extract
identity information and use it in the new loss function we propose. Thus, our method has
an excellent ability to maintain identity information during reconstruction and improve the
performance of down-stream face recognition.

As mentioned before, identity-preserving face hallucination has received increasing at-
tention recently because of its benefits in maintaining the identity information. Jiang et al.
(2017a) used a method based on smooth regression to learn the relationship between facial
images with different resolution and proved the validity of their method on some public
face recognition datasets. Zhang et al. (2018a) and Huang et al. (2019) used the identity
loss to add a recognition constraint during the training process of the face hallucination
model. Instead of directly obtaining identity features from the original SR face image
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Figure 2: Overview of our proposed approach. It consists of a face hallucination GAN and
a face recognition network and a pretrained perceptual feature extractor network. During
the training phase, we employ 1) angular softmax (A-Softmax) loss to learn angularly
discriminative features, 2) adversarial loss and perceptual loss to differentiate between the
SR images and original HR images, and 3) our C-Face loss to retain face identity.

and the HR face image, Grm et al. (2020) extracts them from constructed residual images
between SR (or HR) and LR. The training of face recognition-based methods utilizing iden-
tity loss needs well-labeled datasets which are costly. Instead, Hsu et al. (2019) proposed a
siamese generative adversarial networks (SiGAN) to reconstruct high-resolution faces while
preserving identity information with weak binary pairwise label. Specifically, SiGAN de-
signs an identity-distinguishable contrastive loss that not only decreases the difference of
same-identity pairs but also increases the difference of different-identity pairs. Different
from existing identity-preserving face hallucination methods that just calculate the iden-
tity loss between the SR face image and its corresponding HR face image, our proposed
method also minimizes the difference with the compare face image (another HR face image
of the same person) at the same time. In this manner, our proposed method can produce a
better identity-preserving reconstruction while improving the generalization ability of the
hallucination model.

3. C-Face Network

In this section, we provide the details of our proposed C-Face network, as shown in Fig. 2.
We first describe the identity-preserving SRGAN which is the backbone network of our
C-Face network. Then we introduce the proposed C-Face loss to achieve further effectively
identity-preserving reconstruction. After that, we show the selection method of compare
face images in detail and analyze the effects of different selection strategies. Finally, we
introduce the proposed training procedure to overcome the convergence problem.
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3.1 Identity-Preserving SRGAN

The proposed C-Face network adopts the SRGAN network (Ledig et al., 2017) as the
backbone network, which is a generative adversarial network for image super-resolution with
perceptual loss. The perceptual loss is formulated as the weighted sum of an adversarial loss
and a content loss term. In order to achieve identity-preserving reconstruction, we employ
the SphereFace model (Liu et al., 2017) to extract the identity features from face images
during training. This subnetwork is trained by A-Softmax loss function which can further
increase the angular margin of learned face features.

3.1.1 Adversarial Loss

Adversarial loss was first introduced in generative adversarial networks (GANs) (Goodfellow
et al., 2014) to improve the data generator NSR until it generates something that resembles
the real data. It fools the discriminator network, ND, that classifies an image as real or
fake. The adversarial loss function in our model can be expressed as follows:

LGAN (ILR, IHR) = E[log(ND(IHR))] + E[log(1−ND(NSR(ILR)))], (1)

where ILR is the LR input of the NSR and IHR is the counterpart HR images, which can
be seen as the target. The output image of the NSR is denoted as ISR in the following.

Through the continuous confrontation during training, NSR will eventually generate the
high quality output so that ND cannot discriminate whether it is the original HR image or
a super-resolved one.

3.1.2 Content Loss

We use the perceptual loss as the content loss, which was first proposed in Johnson et al.
(2016), to make sure that the output of our model has a good visual quality. The perceptual
loss focuses on the similarity of the perceptual or the texture representations by comparing
the feature maps extracted by the pretrained 19 layers VGG network. We use ϕi,j(I) to
denote the feature map of the input I after the activation of the j-th convolution layer
and before the i-th max pooling layer within the VGG19 network. The perceptual loss
calculates the Euclidean distance between two feature maps:

LP (ISR, IHR) =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(ϕi,j(I
HR)x,y − ϕi,j(ISR)x,y)

2. (2)

Wi,j and Hi,j correspond to the length and width of ϕi,j(.) respectively. In our experiments,
we set i = 3 and j = 5 for the perceptual loss when training the C-Face network.

3.1.3 A-Softmax Loss

Similar to Zangeneh et al. (2020) and Zhang et al. (2018a), we use a face recognition
model, which is denoted as CNNR, to assist the training. In theory, CNNR could be any
face recognition network that can output the identity features. In our work, we use the
SphereFace (Liu et al., 2017) as CNNR, which is trained by the A-Softmax loss function.
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For the input Ii that belongs to the yi-th identity, the A-Softmax loss is represented as:

LFR =
1

N

∑
i

− log
( e‖φ(Ii)‖ψ(mθyi )

e‖φ(Ii)‖ψ(mθyi ) +
∑
j 6=yi

e‖φ(Ii)‖cos(θyj )

)
. (3)

We set m = 4 and ψ(.) is a monotonically decreasing angle function. φ(Ii) denotes the
identity feature of the input image Ii, which is the output of the fully connected layer
before the classification in CNNR. The LFR is not used to train NSR or ND directly.
Instead, we use it to fine-tune the CNNR in Section 3.4.

Directly using LGAN and LP to train the GAN model can produce the output with
good visual quality, but this has not taken the identity information into consideration. A
direct idea is to use the LFR to train the GAN model to make the output ISR to have the
same classification result as the input human face. However, face hallucination and face
recognition are two different tasks with different objectives, so LFR has a limited effect
when it is used to train the face hallucination model directly.

3.2 C-Face

To further effectively maintain the identity information, we introduce in the training process
an C-Face loss which aims at penalizing the distance of SR/HR image pairs while decreasing
the distance between the SR and other examples with the same identity.

Zhang et al. (2018a) proposed the super-identity loss (abbreviated as LSI) that can
help to keep the identity information. The core idea of LSI is to penalize the normalized
Euclidean distance between the features of ISR and IHR. The LSI can be written as:

LSI(IHR, ISR) =
∥∥∥ φ(ISR)

‖ φ(ISR) ‖2
− φ(IHR)

‖ φ(IHR) ‖2

∥∥∥2

2
. (4)

As mentioned before, φ(I) represents the identity feature of the input image I extracted by
CNNR.

The LSI only tries to reduce the distance of identity information between the original
image and the output result. It does not take full advantage of the face recognition model as
well as the characteristic of the human face datasets. In face recognition datasets, different
images in the same class are the photos of the same person, identity features of these images
can be compared with each other with a relatively higher accuracy. In order to utilize this
characteristic in our face hallucination model, we want φ(ISR) to be not only close to the
φ(IHR), but also close the feature vector of the images that have the same identity label
with IHR. Inspired by this, for each IHR in training data, we pick an image IHRC from
the images that have the same identity label as IHR in the training set. In other words,
the IHRC is an image that belongs to the same person and is sufficiently similar to IHR.
During training, we want φ(ISR) to be similar to both φ(IHR) and φ(IHRC ). We will give
the selection method of IHRC and explain it later in Section 3.3.

To avoid confusions, we use ILRo to represent the LR input in the following which was
denoted as ILR in (1) and (4). Similarly, IHRo and ISRo are used to replace IHR and ISR,
respectively. By picking an IHRc for every input ILRo , we penalize the distance between
the identity features of IHRo and IHRc . In this way, we have a novel loss function named
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(a) Traditional Method (b) C-Face Loss

Figure 3: Sketch map for the core idea of C-Face loss. All the images above belong to the
same person. The red arrow means the difference between two images. The C-Face loss
concerns about the difference between two different images that belong to the same person.

C-Face loss, where “C-Face” is short for “compare face”. Our study found that using the
normalized Euclidean distance to measure the distance can get a better result than other
measures such as the L2-loss or the cosine distance. As defined by (4), we use LSI(I1, I2)
to denote the normalized Euclidean distance between the identity features.

During training, we penalize the distance between ISRo and IHRo , as well as the distance
between ISRo and IHRc . In this way, we expect that the identity information of the output
ISR is similar to those images that have the same identity label with IHR. Now, we have
the first version of the C-Face loss function LCF , which can be represented as:

LCF = γ1LSI(ISRo , IHRo ) + γ2LSI(ISRo , IHRc ) (5)

where the hyper-parameters γ1 and γ2 are constants during training.

In super-resolution tasks, the high-resolution image IHRo is usually regarded as the upper
bound of the reconstructed super-resolution image ISRo in terms of visual quality and the
identity information it contains. Thus, we require that the distance between IHRo and IHRc

should be smaller than the distance between ISRo and IHRc . This is illustrated in Fig. 3.
Therefore, we modified the first version of the C-Face loss and use LSI(IHRo , IHRc ) as the
lower bound of the second term in (5). The final version of the C-Face loss is represented
as:

LCF = γ1LSI(ISRo , IHRo ) + γ2 max
(
LSI(ISRo , IHRc )− LSI(IHRo , IHRc ), 0

)
. (6)

As shown in Fig. 4, other methods only make ISRo to be as close to IHRo as possible.
After some training, ISRo will stay close to IHRo , but they may be sparse with each other.
However, by using the C-Face loss function, the output images of our method will not only
stay close to their IHRo , but also be close to images in the same class (IHRc ).
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(a) Other Methods (b) Our Method

Figure 4: The design idea of our C-Face loss function. Assume that the feature space of the
identity information is a two-dimensional plane. The blue star icons represent the position of
the feature vector for some facial images that belong to the same person. The green hollow
triangle symbols represent the feature vectors of the output ISR images and the solid green
triangle symbols represent the reconstruction results after some training. Fig. 4a represents
other methods such as SICNN. Fig. 4b represents our method. Our method can make the
reconstruction results stay closer to each other when they belong to the same identity label.

To sum up, the loss function that is used to train our GAN-based face hallucination
model has three different parts, which can be formulated as:

Ltotal = αLGAN + βLP + LCF (7)

where the hyperparameters α and β are constants. In order to optimize the model, we use
stochastic gradient descent. The loss function Ltotal is differentiable with regard to all the
parameters. In the end, NSR is able to super-resolve face images while maintaining the
identity information. We name the currently obtained NSR as C-Face-v1.

3.3 Selection of the Compare Images

Now we discuss how to choose Ic. In the face dataset, the images of the same person may be
quite different due to factors such as angle or expression. So a randomly chosen IHRc may
be quite different from IHRo , and LCF will not drop during training. For similar reasons, we
cannot directly use the LFR to train the face hallucination model. Before training, we use
CNNR to get the identity feature vector for every image IHRo in the training set. Then we
calculate the normalized Euclidean distance between the feature vectors of any two images
that belong to the same person and record the k most similar images. For every input ILRo
during training, we randomly choose an IHRc from those k images that are most similar to
IHRo . Through experimental exploration, we found that k = 3 has the best performance.

The Fig. 5 and Fig. 6 give an explanation of the result on k. As we have discussed
before, the core idea of the C-Face loss is that we picked a similar image that can be used
to compare with the output images. If the compare image Ic has a large difference with
the original image Io, the face hallucination model, which is used to reconstruct the image,
may not have the ability to catch the similarity between Io and Ic. As shown in Fig. 5,
when the k value is large or we just randomly choose the Ic, there is a certain probability
of choosing an image that has a large difference with Io. When we use k < 3, we will pick
the image that is very close to the Io. However, as can be seen in Fig. 6, the Ic will be too
similar to the Io so that the C-Face loss function will not work with this choosing method.
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Figure 5: For the Io, we randomly choose Ic from the three images in the first row that are
most similar to Io. However, if we randomly pick the Ic, images in the second row may be
picked and it will be so different with Io that the face hallucination model cannot capture
the similarity.

Figure 6: The second row is the most similar face image in the dataset of the first row. If
we choose the Ic from the second row, the C-Face loss will not work.

3.4 Training Procedure

Although C-Face-v1 can achieve a better result compared with most of the previous works,
the C-Face loss in (7) cannot decrease low enough by using this direct training method.
The CNNR model is only trained by the original HR images, so the feature vectors of ISR

and IHR extracted by CNNR have different feature distributions. ISR and IHR stay in
different domains of the feature space, even though they have the same identity.

Following this idea, we propose a new training algorithm with several stages as shown
in Algorithm 1. In stage 3 of Algorithm 1, we fine-tune the CNNR to make it map the
original images and the super-resolved images into the same feature space. In this way, the
CNNR will better recognize ISR. For similar reasons, we also fine-tune the CNNR in each
training step in stage 4. Using the fine-tuned CNNR to calculate the feature vector for the
C-Face loss, the ISR output by NSR will be more discriminative. Trained by this method,
we get the NSR as our final C-Face network. In order to prevent confusion with C-Face-v1
as well as to emphasize the effectiveness of the training algorithm, we call it C-Face-v2 in
the following.
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Algorithm 1 Training Procedure of C-Face Network

Input: CNNR pretrained by HR face images, the GAN model including NSR and ND, a
set of three images including ILRo , IHRo and IHRc .

1: Train NSR and ND with the loss function in (7);
2: Use the NSR that we obtained after stage 1 to process all the LR images. Now, we have

two datasets: the original HR dataset DHR and the super-resolved dataset DSR;
3: Mix DHR and DSR together, and use the combined dataset to fine-tune CNNR;
4: Fine-tune NSR and ND by using the CNNR after stage 3 to extract features. In each

step, we update NSR and ND by descending the loss function (7), we also update the
CNNR with LFR in (3);

Output: The final C-Face network.

4. Experiments and Analysis

We compared the C-Face network on several public benchmark datasets with state-of-the-
art general image super-resolution methods including Bicubic interpolation, VDSR (Kim
et al., 2016a), EDSR (Lim et al., 2017), SRGAN (Ledig et al., 2017), DBPN (Haris,
Shakhnarovich, & Ukita, 2018), RDN (Zhang et al., 2018), ESRGAN (Wang et al., 2018),
and SRFBN (Li et al., 2019), and also with face super-resolution approaches including
Wavelet-SRNet (Huang et al., 2017), and SICNN (Zhang et al., 2018a).

4.1 Datasets and Evaluation Metrics

In our experiments, we use the CASIA-WebFace dataset (Yi et al., 2014) with 494, 414
images as our training set and use the LFW dataset (Huang et al., 2008) with 13, 233
images as our testing set. Moreover, we also verify the performance on CelebA (Liu et al.,
2015) which is a more challenging in the wild face images dataset. Before training, we first
crop all the images from these datasets into 128 × 128 pixels. The image set we get after
cropping is named as the HR-set. The size of input LR face images is down-sampled to
16×16, 32×32, and 64×64 and then upscaled to 128×128, respectively, by various scaling
factor.

For the evaluation, we perform face recognition and verification on reconstructed SR
face images, and use the recognition/verification accuracy as the indicator to evaluate
whether the reconstructed SR images are suitable for identity recognition. We also adopt
the widely-used pixel-wise metrics, Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity (SSIM), for measuring reconstruction fidelity.

4.2 Experimental Settings

We implement our C-Face networks with the PyTorch framework and train them using four
NVIDIA 1080Ti GPUs. We use Adam optimizer with a decayed learning rate of 0.99 and
the batch size is 64 in every experiment. The learning rates of the GAN in stage 1 and
stage 4 are 0.0002 and 1 × 10−5 respectively. We train the GAN model for 10 epochs in
stage 1 and 5 epochs in stage 4. The initial learning rate of stage 3 is 0.1 but it will be
multiplied by 0.1 after each epoch and the CNNR will be fine-tuned for 10 epochs. We
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Table 1: Comparison of face verification rates evaluated by SphereFace for various face
hallucination models on standard LFW protocol.

Models Scale=2 Scale=4 Scale=8

HR (128 × 128) 0.9508 0.9508 0.9508

Bicubic 0.9472 0.8775 0.6460

VDSR 0.9487 0.9152 0.7442

Wavelet-SRNet 0.9483 0.9340 0.8688

EDSR 0.9468 0.9330 0.8460

SRGAN 0.9495 0.9315 0.8437

DBPN 0.9487 0.9323 0.8633

RDN 0.9482 0.9365 0.8750

SICNN 0.9457 0.9103 0.7243

ESRGAN 0.9505 0.9338 0.8747

SRFBN 0.9463 0.9338 0.8603

C-Face (Ours) 0.9503 0.9403 0.8897

set α = 0.1 and β = 1.0 for (7) in each stage. For (6), we set γ1 = 0.05, γ2 = 0.1 in
stage 1 and γ1 = γ2 = 0.05 in stage 4. For the sake of fairness, all the models in the
comparison experiments are trained by the CASIA-WebFace dataset from scratch after the
data pre-process as mentioned above.

4.3 Evaluation on LFW

4.3.1 Standard Protocol

To make sure that our model has state-of-the-art performance in maintaining identity in-
formation, we use each model to reconstruct the downscaled LFW dataset and take the
resulting images for face recognition. The SphereFace model (Liu et al., 2017) is used as
the recognition model. Although the CNNR, which is also the SphereFace model in our
experiments, has been fine-tuned in the training algorithm as we proposed. We use the orig-
inal SphereFace model trained by the CASIA-WebFace dataset in the testing experiments
for fair comparisons.

We first use the standard LFW protocol (Liao et al., 2014) to test the results of each
model and the testing results are shown in Table 1. The accuracy of the C-Face network is
higher than all the comparing models on upscaling factor of 4× and 8×. All models perform
very closely on upscaling factor of 2×, our model is only 0.0002% behind the best model.

We also give the testing results of the average PSNR and SSIM on LFW in Table 2. Our
method is not superior in these two indicators, but it has maintained a relatively acceptable
level. As has been mentioned in Ledig et al. (2017) and Zhang et al. (2018b), the level of
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Table 2: Comparison of PSNR and SSIM of SR faces reconstructed by various face halluci-
nation models on LFW.

Models
Scale=2 Scale=4 Scale=8

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Bicubic 36.5394 0.9596 29.9898 0.8659 24.4935 0.6563

VDSR 37.3361 0.9648 31.6599 0.8974 25.7980 0.7069

Wavelet-SRNet 37.8071 0.9669 33.2989 0.9232 27.9486 0.7989

EDSR 38.0262 0.9675 33.2594 0.9198 27.5588 0.7820

SRGAN 37.7331 0.9653 32.6060 0.9094 27.0180 0.7547

DBPN 38.1096 0.9679 33.5679 0.9236 28.0302 0.7976

RDN 38.1444 0.9680 33.6732 0.9245 28.2989 0.8088

SICNN 36.0144 0.9544 30.8252 0.8822 25.1120 0.6978

ESRGAN 37.5245 0.9645 33.4906 0.9233 28.0794 0.8001

SRFBN 38.0842 0.9679 33.2063 0.9199 27.6855 0.7888

C-Face (Ours) 37.8452 0.9665 32.9545 0.9132 27.5794 0.7792

PSNR and SSIM is inconsistent with human observation. These two metrics cannot measure
the visual quality and the recognition accuracy of the reconstructed SR face images. By
comparing the results of several methods in Table 1 and Table 2, we can see that whether
the reconstruction results can help face recognition tasks is also independent of these two
indicators.

The qualitative comparisons of some generated images are shown in Fig. 7. Compared
with deep learning methods, the effect of the traditional interpolation method is not ideal.
The results of Wavelet-SRNet and SRGAN are relatively noisy compared with the other
deep learning methods. The VDSR model can make the reconstructed results smoother but
also lack more details. In contrast, our C-Face network can produce faithful and realistic
facial identity details, such as eyes, mouth, and eyebrows. As shown in the second row of
Fig. 7b, C-Face network also performs better on face images with occlusion (e.g., eyeglass)
while other methods fail to recover the eyes with glasses.

4.3.2 BLUFR Protocol

The standard LFW protocol is not a difficult test for the accuracy of face hallucination.
Even the traditional interpolation method can achieve a good accuracy and the difference
between the results of each deep learning model is not obvious. With 3000 genuine and 3000
impostor matches for a model to recognize, the accuracy of the standard LFW protocol may
be too optimistic for the reason that the protocol does not consider a low false accept rate
(FAR) which is important in actual use. Therefore, we introduce a benchmark named LFW-
BLUFR (Liao et al., 2014) which includes two test indicators: the verification rate (VR)
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(a) Subjective visual quality comparison.

(b) Details of zoomed in regions.

Figure 7: Qualitative comparison on the LFW for 8× face super-resolution. Our C-Face
network produces realistic details in identity facial components, such as eyes, mouth, and
eyebrows.

at FAR = 0.1% for the face verification and the detection and identification rate (DIR) at
Rank-1 corresponding to a FAR = 1% for open-set identification. The LFW-BLUFR is a
tougher recognition test compared with the standard LFW protocol.

Table 3 shows the comparison results between the C-Face network and other methods
on the LFW-BLUFR protocol. Our C-Face model significantly outperforms other models
in both two indicators of the LFW-BLUFR. This result shows that our model has the best
ability to maintain identity information in face hallucination. The C-Face network is able
to recognize the low-resolution faces by reconstructing high-resolution outputs. Our C-Face
network has a more noticeable improvement for the open-set identity test compared with
the verification test on LFW-BLUFR.

The different effects under three different scaling factors (2×, 4×, and 8×) show that our
proposed loss function as well as the training algorithm can be used as a general mechanism
in face-hallucination. When the LR images contain enough identity information, the C-Face
loss function will make the output result more recognizable.
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Table 3: Comparison of verification rate (VR) at FAR = 0.1% for the face verification and
the detection and identification rate (DIR) at Rank-1 corresponding to an FAR = 1% for
open-set identification for various face hallucination models on LFW-BLUFR.

Models
Scale=2 Scale=4 Scale=8

VR DIR VR DIR VR DIR

HR (128 × 128) 72.1141 36.2393 72.1141 36.2393 72.1141 36.2393

Bicubic 68.1243 32.6806 27.7407 3.8953 0.8822 0.3114

VDSR 70.0296 33.9750 46.2373 12.5788 1.0314 0.2968

Wavelet-SRNet 70.7067 35.4183 61.4134 25.3992 27.8256 9.3985

EDSR 70.9778 35.6552 58.5329 22.2884 19.6761 5.8050

SRGAN 71.1067 34.9254 57.7483 20.6052 18.9507 6.3029

DBPN 71.2264 36.2539 60.8500 23.8256 25.2759 9.5752

RDN 70.5374 35.0639 61.1352 24.2950 29.0899 9.1727

SICNN 69.8254 33.5369 42.4736 8.6124 1.0663 0.4661

ESRGAN 71.0270 36.1958 61.4914 25.0623 26.0105 9.3612

SRFBN 71.1204 35.8408 59.4563 22.1702 21.8458 8.3347

C-Face (Ours) 71.2884 36.3369 63.2833 26.0716 30.8874 10.3348

4.4 Evaluation on CelebA

In order to test the generalization ability, we also evaluate the hallucination models on
CelebA faces dataset whose identities are not included in the training set. Following the
standard protocol of LFW, we construct the 10-fold cross-validation scheme on the CelebA
dataset. We define 3000 pairs of genuine comparisons and 3000 pairs of impostor compar-
isons, and then divide them into 10 disjoint subsets for cross validation, with each subset
containing 300 genuine pairs and 300 impostor pairs. The quantitative results are shown
in Table. 4. Our C-Face network achieves superior performance on all the three scaling
factor (2×, 4×, and 8×), showing its significant generalization capability. C-Face network
achieves the highest verification rate, indicating that our results retain better identity.

Not surprisingly, our C-Face network achieves lower PSNR and SSIM than general image
super-resolution methods as shown in Table. 5. As mentioned before, this is mainly because
PSNR and SSIM may be not good assessment metrics for the task of identity-preserving
face super-resolution.

The qualitative comparisons are shown in Fig. 8. It can be observed that our proposed
C-Face network outperforms previous methods in both global and local details. For instance,
C-Face network recovers faithful details in mouth, teeth, and mustache, etc., while other
methods tend to generate blurry results or incorporate unnatural noise. C-Face is capable
of restoring accurate and reasonable mouth direction even the face images are accompanied
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Table 4: Comparison of face verification rates evaluated by SphereFace for various face
hallucination models on CelebA.

Models Scale=2 Scale=4 Scale=8

HR (128 × 128) 0.9188 0.9188 0.9188

Bicubic 0.9137 0.8597 0.6203

VDSR 0.9177 0.8802 0.7313

Wavelet-SRNet 0.9188 0.9022 0.8438

EDSR 0.9178 0.8965 0.8097

SRGAN 0.9155 0.8947 0.8062

DBPN 0.9188 0.9018 0.8357

RDN 0.9197 0.8995 0.8477

SICNN 0.9178 0.8753 0.7070

ESRGAN 0.9172 0.8985 0.8343

SRFBN 0.9165 0.8970 0.8307

C-Face (Ours) 0.9202 0.9043 0.8538

by pose variations (e.g., the third row in Fig. 8b) while other methods introduce undesired
textures or fail to generate enough details.

5. Ablation Study

In this section, we conduct an ablation study to estimate the effectiveness of our method.
The experimental settings in Section 4.1 and 4.2 remain unchanged in the following ablation
experiments.

5.1 The Choice of the Compare Images

For each input image Io during the training, we will choose a compare image Ic for it to
calculate the C-Face loss. The selecting rule of Ic for each Io is described in Section 3.3 and
contains a hyperparameter k. For previous experiments in Section 4, we set k = 3. However,
to show that k = 3 is the reasonable choice for our model, we implement the experiments
on k = 1 to k = 5 as well as randomly choosing an Ic from all the photos belonging to the
same class with Io in the dataset. Table 6 shows the results of each selection method for the
C-Face. It can be observed that k = 3 or k = 4 brings the better performance of identity
preserving and recognizability. If the k is too small, the compare image is too similar to
the original HR image, and it is impossible to obtain additional identity information from
the compare face images. On the contrary, if k is too large, the compare image will be
very different from the original image, which is unable to capture the identity consistency
between the compare face image Ic and the original HR face image Io.
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Table 5: Comparison of PSNR and SSIM of SR faces reconstructed by various face halluci-
nation models on CelebA.

Method
Scale=2 Scale=4 Scale=8

PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Bicubic 34.2380 0.9449 28.4892 0.8407 23.7447 0.6410

VDSR 35.0572 0.9520 30.0858 0.8770 25.1269 0.6987

Wavelet-SRNet 35.7770 0.9564 31.7079 0.9073 27.2819 0.7918

EDSR 35.9918 0.9569 31.6853 0.9038 26.8454 0.7750

SRGAN 35.5009 0.9518 31.0906 0.8924 26.3385 0.7477

DBPN 36.1076 0.9579 31.9608 0.9078 27.3514 0.7917

RDN 36.0980 0.9579 32.0567 0.9089 27.5843 0.8013

SICNN 34.0152 0.9381 29.3030 0.8569 24.6323 0.6885

ESRGAN 35.1837 0.9502 31.8892 0.9075 27.3576 0.7924

SRFBN 36.0469 0.9576 31.6743 0.9043 27.0613 0.7839

C-Face (Ours) 35.5605 0.9540 31.3789 0.8961 26.8520 0.7691

Table 6: Ablation study results on the choice of the compare face images.

C-Face VR@Standard VR@BLUFR DIR PSNR SSIM

Random 0.9350 62.7250 24.6500 33.0463 0.9148

k=1 0.9380 62.7045 24.4298 32.3248 0.9040

k=2 0.9392 62.6514 25.6149 32.8596 0.9122

k=3 0.9403 63.2833 26.0716 32.9545 0.9132

k=4 0.9392 63.9404 27.0118 32.9347 0.9133

k=5 0.9380 63.2339 26.7296 33.0028 0.9140

5.2 The Effectiveness of the Training Algorithm

In Section 3.4, we propose a novel training algorithm that will fine-tune the CNNR model
as well as our GAN-based model. In our training algorithm, we combine the reconstruction
set DSR and the original set DHR and use the combined dataset to fine-tune the CNNR.
In order to demonstrate the superiority of our proposed training approach, we evaluate
different training methods as follows:

• Version 1: Only use stage 1 of Algorithm 1 to train our model (C-Face-v1);

• Version 2: Use Algorithm 1 to train the model (C-Face-v2);
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(a) Subjective visual quality comparison.

(b) Details of zoomed in regions.

Figure 8: Qualitative comparison on the CelebA for 8× face super-resolution. Our C-Face
network produces realistic details in identity facial components, such as mouth, teeth, and
mustache.

• Version 2-1: Only use DSR to fine-tune the CNNR in the stage 3 of Algorithm 1;

• Version 2-2: Train a CNNR with DSR from scratch in the stage 3 of Algorithm 1;

• Version 2-3: Do nothing in stage 3, use the original SphereFace in the stage 4 of
Algorithm 1.

Table 7: Ablation study results on different training approaches.

Methods VR@Standard VR@BLUFR DIR PSNR SSIM

version 1 0.9337 60.3485 22.1485 33.4452 0.9217

version 2 0.9403 63.2833 26.0716 32.9545 0.9132

version 2-1 0.9382 63.3349 24.7008 32.8952 0.9123

version 2-2 0.9352 61.6216 24.1057 33.0494 0.9137

version 2-3 0.9388 63.7920 24.8658 32.8045 0.9102
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Table 7 shows the results of each method. As can be seen, the Version 2, which is also the
C-Face-v2 model, has a better performance than the other training methods. Especially
on the open-set identity test (DIR), our proposed training algorithm achieves the best
performance. The reason that the C-Face-v2 model has a lower accuracy than version 2-1
and 2-3 on the LFW-BLUFR protocol is as follows. Directly using the C-Face loss to train
the GAN model will make the identity features of images, which belong to the same person,
coming closer to each other. This will be more helpful for face verification. In stage 3 and
stage 4 of Algorithm 1, the fine-tuned CNNR will make every ISR find a better place in the
feature space from each other, which will be helpful to the open-set identity test. However,
those stages will not further decrease the distance between the images of the same person,
so they do not help the verification test and may have a little disturbance to the original
results.

6. Conclusion

In this paper, we propose a novel model named the C-Face network for face hallucination.
Our GAN-based model can generate high-resolution face images while preserving identity
information. A novel C-Face loss is employed to make sure that the output images belonging
to the same person have similar identity features. We also propose a new training algorithm
to overcome the convergence problem. Experimental results demonstrate that our method
can significantly improve the face recognition/verification rate of SR face images. Our C-
Face network achieves superior performance on both of the two test datasets that are not
used for training, showing its remarkable generalization capability. In the future, we will
simplify the training strategy which now has multiple stages. We also plan to apply the
idea of our model to other similar tasks such as heterogeneous face recognition.
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