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Abstract

Current Max-SAT solvers are able to efficiently compute the optimal value of an input
instance but they do not provide any certificate of its validity. In this paper, we present
a tool, called MS-Builder, which generates certificates for the Max-SAT problem in the
particular form of a sequence of equivalence-preserving transformations. To generate a
certificate, MS-Builder iteratively calls a SAT oracle to get a SAT resolution refutation
which is handled and adapted into a sound refutation for Max-SAT. In particular, we
prove that the size of the computed Max-SAT refutation is linear with respect to the size
of the initial refutation if it is semi-read-once, tree-like regular, tree-like or semi-tree-like.
Additionally, we propose an extendable tool, called MS-Checker, able to verify the validity
of any Max-SAT certificate using Max-SAT inference rules. Both tools are evaluated on
the unweighted and weighted benchmark instances of the 2020 Max-SAT Evaluation.

1. Introduction

Given a Boolean formula in Conjunctive Normal Form (CNF), the Maximum Satisfiability
(Max-SAT) problem consists in determining the maximum number of clauses that it is
possible to satisfy by an assignment of the variables, while the Satisfiability (SAT) problem
simply ascertains whether there exists an assignment which satisfies all the clauses. Max-
SAT is an optimization extension of the satisfiability problem and is a natural formalism
enabling to model many real-world and crafted problems (Muise, Beck, & McIlraith, 2016;
Zhang & Bacchus, 2012; Demirovic & Musliu, 2017; Manyà, Negrete, Roig, & Soler, 2020;
Achá & Nieuwenhuis, 2014; Bofill, Garcia, Suy, & Villaret, 2015; Xu, Rutenbar, & Sakallah,
2003; Guerra & Lynce, 2012; D’Almeida & Grégoire, 2012), making it of major interest in
theory as well as in practice. Different complete solving paradigms for Max-SAT have seen
the day in recent years including Branch and Bound algorithms (Li, Manyà, & Planes,
2007; Küegel, 2012; Abramé & Habet, 2014; Li, Xu, Coll, Manyà, Habet, & He, 2022) and
SAT-based algorithms (Fu & Malik, 2006; Manquinho, Silva, & Planes, 2009; Ansótegui,
Bonet, & Levy, 2009; Davies & Bacchus, 2011; Ansótegui, Bonet, & Levy, 2013; Martins,
Manquinho, & Lynce, 2014; Ignatiev, Morgado, & Marques-Silva, 2019) among others. For
a detailed overview of SAT and Max-SAT theory and solving, the reader can refer to the
Handbook of Satisfiability (Biere, Heule, van Maaren, & Walsh, 2021).

Inference plays an important role in the context of Max-SAT solving (Li et al., 2007;
Narodytska & Bacchus, 2014; Abramé & Habet, 2014) and this has led to an increasing
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interest in studying proof systems for Max-SAT in the literature (Larrosa & Heras, 2005;
Bonet, Levy, & Manyà, 2006, 2007; Larrosa & Rollon, 2020a, 2020b; Bonet & Levy, 2020;
Filmus, Mahajan, Sood, & Vinyals, 2020; Cherif, Habet, & Py, 2022). In particular, Max-
SAT resolution (Larrosa & Heras, 2005; Bonet et al., 2006, 2007) is one of the first known
complete systems for Max-SAT and is a natural extension of the resolution rule (Robinson,
1965) used in the context of SAT. Max-SAT resolution proofs are more constrained than
their SAT counterparts as the premise clauses are replaced by the conclusions when applying
Max-SAT resolution. Consequently, switching from a resolution proof to a Max-SAT resolu-
tion proof is possible and well-known for the particular case of read-once resolution (Bonet
et al., 2007; Heras & Marques-Silva, 2011), where clauses can be used at most once in the
proof. The adaptation of any resolution proof to a Max-SAT resolution proof is an estab-
lished problem. Bonet et al. state that ”it seems difficult to adapt a classical resolution
proof to get a Max-SAT resolution proof, and it is an open question if this is possible with-
out increasing substantially the size of the proof” (Bonet et al., 2006). This open problem
coupled with the variety of paradigms and techniques used in Max-SAT solving hinders
certificate generation for Max-SAT, which remains an unexplored topic in practice.

In this paper, we propose two main contributions for Max-SAT. Firstly, we contribute to
the open problem of adapting resolution refutations, i.e., proofs deducing an inconsistency
in the form of an empty clause, for Max-SAT. To this end, we augment Max-SAT resolution
with the split rule which allows to generate two clauses subsumed by the original clause.
We prove that it is always possible to adapt a resolution refutation into a max-refutation,
i.e., a refutation using Max-SAT inference rules, whose size is linear with respect to the
initial refutation for the following cases: semi-read-once resolution, tree-like regular resolu-
tion, tree-like resolution and semi-tree-like resolution. Furthermore, we propose a complete
adaptation for any (unrestricted) resolution refutation into a max-refutation, although with
a worst-case exponential blow-up in the size of the proofs. Secondly, we propose an indepen-
dent tool, called MS-Builder, able to build certificates for the Max-SAT problem. To build
such certificates, MS-Builder iteratively calls a SAT oracle to get a resolution refutation,
adapts it for Max-SAT and applies it on the current formula. Moreover, we implemented an
associated tool, called MS-Checker to check the validity of the certificates. Both tools are
experimentally evaluated on the unweighted and weighted benchmarks of the 2020 Max-
SAT Evaluation (Bacchus, Järvisalo, & Martins, 2020). This paper extends previous work
published in (Py, Cherif, & Habet, 2020) and (Py, Cherif, & Habet, 2021a). The theoret-
ical background on the adaptation of any resolution refutation for Max-SAT is based on
our work in (Py et al., 2020) with one additional case, called semi-read-once, which is for-
mally described and proved. The implementation of the tools has been improved since the
work in (Py et al., 2021a) and MS-Builder is now able to generate certificates for weighted
(partial) formulas.

This paper is organized as follows. Section 2 includes some necessary definitions and
notations. Section 3 describes our proposed adaptations from resolution refutations to valid
max-refutations. Section 4 describes our tools MS-Builder and MS-Checker and includes
an experimental evaluation of both tools on the unweighted and weighted benchmark of the
2020 Max-SAT Evaluation (Bacchus et al., 2020). Finally, we conclude and discuss future
work in Section 5.
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2. Preliminaries

2.1 Definitions and Notations

Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation
x. A clause c is a disjunction (or set) of literals, i.e., c = (l1 ∨ l2 ∨ ... ∨ lk). A unit
clause is composed of only one literal. A formula in Conjunctive Normal Form (CNF) φ is a
conjunction (or multiset) of clauses, i.e., φ = c1∧c2∧...∧cm. An assignment I : X −→ {0, 1}
maps each variable to a Boolean value and can be represented as a set of literals. A literal
l is satisfied (resp. falsified) by an assignment I if l ∈ I (resp. l ∈ I). A clause c is satisfied
by an assignment I if at least one of its literals is satisfied by I, otherwise it is falsified by
I. The empty clause � contains zero literals and is always falsified. A clause c opposes a
clause c′ if c contains a literal whose negation is in c′, i.e., ∃l ∈ c, l ∈ c′. We denote var(c)
the variables appearing in the clause c. A CNF formula φ is satisfied by an assignment I,
that we call model of φ, if each clause c ∈ φ is satisfied by I, otherwise it is falsified by
I. Solving the Satisfiability problem (SAT) consists in determining whether there exists an
assignment I that satisfies a given CNF formula φ. In the case where such an assignment
exists, we say that φ is satisfiable, otherwise we say that φ is unsatisfiable or inconsistent.

The cost of an assignment I, denoted costI(φ), is the number of clauses falsified by I.
Solving the (plain) Maximum Satisfiability problem (Max-SAT) consists in determining the
maximum number of clauses that can be satisfied by an assignment of a CNF formula φ.
Equivalently, it consists in determining the minimum number of clauses that each assign-
ment must falsify, i.e., opt(φ) = min

I
costI(φ). In the weighted partial Max-SAT problem,

a finite or infinite weight is associated to each clause, representing the penalty of falsifying
it. Clauses with infinite weight are called hard clauses and must be satisfied while clauses
with finite weight wc ∈ N∗ are called soft clauses.

Example 1. We consider the CNF formula φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).
φ is not satisfiable and it is possible to falsify only one clause, for instance with the assign-
ment I = {x1, x2, x3}, and therefore the opt(φ) = 1.

2.2 SAT Resolution

To certify that a CNF formula is satisfiable, it is sufficient to exhibit a model of the formula.
On the other hand, to prove that a CNF formula is unsatisfiable, we need to refute the
existence of a model. A well-known SAT refutation system is based on an inference rule
for SAT called resolution (Robinson, 1965). The resolution rule, defined below, deduces a
clause called resolvent which can be added to the formula. Note that this rule is sound
for SAT as it maintains SAT equivalence and it is extensively used in the context of SAT
solving and particularly the Conflict Driven Clause Learning (CDCL) framework (Silva &
Sakallah, 1996).

Definition 1 (Resolution (Robinson, 1965)). Given two clauses c1 = (x ∨ A) and c2 =
(x ∨B), the resolution rule deduces a third additional clause as follows:

c1 = (x ∨A) c2 = (x ∨B)

c3 = (A ∨B)

1375



Py, Cherif, & Habet

Definition 2 (SAT Equivalence). Let φ and φ′ be two CNF formulas. We say that φ is
equivalent (in the sense of SAT) to φ′ if for any assignment I : var(φ) ∪ var(φ′)→ {1, 0},
I is a model of φ if and only if I is a model of φ′.

It is possible to prove that a formula is unsatisfiable using a resolution refutation, which
is a sequence of resolutions leading to an empty clause. A resolution refutation is represented
as a Directed Acyclic Graph (DAG) whose nodes are either clauses having zero or two
incoming arcs, respectively if they are clauses of the initial formula or clauses deduced by
a resolution step. We refer to the clauses from the original formula, having zero incoming
arcs in the DAG representation, as leaf clauses while clauses deduced by resolution and
having two incoming arcs are referred to as intermediate clauses. Many restricted classes of
resolution refutations have been studied in the literature namely linear resolution (Loveland,
1970), unit resolution (Hertel & Urquhart, 2009), input resolution (Hertel & Urquhart,
2009), regular resolution (Urquhart, 2011), read-once resolution (Iwama & Miyano, 1995)
and tree-like resolution refutations (Ben-Sasson, Impagliazzo, & Wigderson, 2004) among
others. In particular, a resolution refutation is tree-like if every intermediate clause is used
at most once in the proof. Similarly, a resolution refutation is read-once if each clause is used
at most once in the proof. Clearly, read-once refutations are also tree-like since they form a
restricted class of tree-like resolution refutations. Finally, a resolution refutation is regular
if each branch, i.e., path from a leaf to the empty clause, contains at most one resolution
per variable. An irregularity is a sequence of clauses (each clause must be deduced using
the previous one as premise) such that the first clause and the last one contain a literal l
but at least one of the intermediate clauses does not contain this literal l. In other words,
an irregularity is a certificate that a resolution refutation is not regular.

Example 2. We consider the CNF formula φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3).
The resolution refutation of φ, represented in Figure 1, is tree-like (and) regular, but not
read-once because of clause (x1).

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Figure 1: A resolution refutation

2.3 Max-SAT Resolution

In the last fifteen years, the study of inference rules for Max-SAT has led to major results
in Max-SAT theory and solving. In particular, one of the first and most studied proof
systems for Max-SAT is based on an inference rule called Max-SAT resolution (Larrosa &
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Heras, 2005; Bonet et al., 2006, 2007), which is an extension of the resolution rule used in
the context of SAT. The aim of complete Max-SAT systems is not to refute the formula
per se but to compute the Max-SAT optimum of a given CNF formula, i.e., the maximum
number of falsified clauses. The formula is thus refuted as many times as its optimum
through equivalence-preserving transformations in the sense of Max-SAT as defined below.
Other than the resolvent clause, Max-SAT resolution introduces new clauses referred to as
compensation clauses and which are essential to preserve Max-SAT equivalence.

Definition 3 (Max-SAT resolution (Larrosa & Heras, 2005; Bonet et al., 2006, 2007)).
Given two clauses c1 = x ∨ A and c2 = x ∨B where A = a1 ∨ ... ∨ as and B = b1 ∨ ... ∨ bt,
the Max-SAT Resolution rule is defined as follows:

c1 = x ∨A c2 = x ∨B
cr = A ∨B

cc1 = x ∨A ∨ b1
cc2 = x ∨A ∨ b1 ∨ b2

...

cct = x ∨A ∨ b1 ∨ ... ∨ bt−1 ∨ bt
cct+1 = x ∨B ∨ a1

cct+2 = x ∨B ∨ a1 ∨ a2
...

cct+s = x ∨B ∨ a1 ∨ ... ∨ as−1 ∨ as

where cr is called the resolvent clause and cc1, ..., cct+s the compensation clauses.

Definition 4 (Max-SAT Equivalence). Let φ and φ′ be two CNF formulas. We say that φ
is equivalent (in the sense of Max-SAT) to φ′ if for any assignment I : var(φ) ∪ var(φ′)→
{1, 0}, we have costI(φ) = costI(φ

′).

Remark 1. Unlike resolution, Max-SAT resolution replaces the premises by the conclusions.
This is essential to maintain Max-SAT equivalence.

As a sound and complete rule for Max-SAT (Bonet et al., 2006), Max-SAT resolution
plays an important role in the context of Max-SAT theory and solving. In particular, it is
extensively used in the context of Branch and Bound algorithms for Max-SAT to transform
inconsistent subsets (Li et al., 2007; Küegel, 2012; Abramé & Habet, 2014; Cherif, Habet,
& Abramé, 2020) and more marginally in the context of SAT-based algorithms to transform
cores returned by SAT oracles (Heras & Marques-Silva, 2011; Narodytska & Bacchus, 2014).
For a given CNF formula, it is always possible to generate a Max-SAT resolution proof of its
optimum by applying the saturation algorithm (Bonet et al., 2006) to deduce empty clauses.
A Max-SAT refutation, or simply max-refutation, is a sequence of Max-SAT inference steps
(specifically Max-SAT resolution augmented with other rules defined hereafter) deducing
the empty clause. A max-refutation can be represented as a bipartite DAG whose nodes
are either clauses or inference steps. For more simplicity, we will omit inference step nodes
and represent a max-refutation as a plain DAG (as showcased in Figure 2). We consider
that the size of a SAT or Max-SAT refutation is the number of its inference steps.
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Example 3. We consider the CNF formula from Example 2. A hand-made max-refutation
of φ was proposed in (Bonet et al., 2006) and is represented in Figure 2.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x1 ∨ x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Figure 2: A max-refutation

In recent work, Max-SAT resolution was augmented with other rules such as the split
rule (Larrosa & Rollon, 2020b; Bonet & Levy, 2020; Py, Cherif, & Habet, 2021b) defined be-
low or the extension rule (Larrosa & Rollon, 2020a). It was shown that the addition of such
rules to Max-SAT resolution can improve its efficiency in generating shorter proofs (Lar-
rosa & Rollon, 2020b, 2020a; Py, Cherif, & Habet, 2021c) or in simulating other proof
systems (Filmus et al., 2020; Bonet & Levy, 2020). To be exhaustive, we must also men-
tion that other Max-SAT proof systems were introduced and studied in the literature (Li,
Manyà, & Soler, 2016; Atserias & Lauria, 2019; Larrosa & Rollon, 2020a; Filmus et al.,
2020).

Definition 5 (Split rule). Given a clause c1 = (A) where A is a disjunction of literals and
x a variable, the split rule replaces the premise c1 by two new clauses as follows:

c1 = (A)

c2 = (x ∨A) c3 = (x ∨A)

If these proof systems have been extensively studied in theory, generating proofs remains
an unexplored topic in practice. Hence, this work aims to contribute to this topic by
proposing tools to build and check certificates for the Max-SAT problem. To this aim, we
first propose adaptations from resolution refutations to max-refutations. These adaptations
are used in a tool enabling to build certificates for the Max-SAT problem. For the sake
of simplicity, we will exhibit examples with unweighted unpartial (i.e., all clauses are soft)
formulas to introduce MS-Builder. However, MS-Builder is also able to generate certificates
for weighted (partial) Max-SAT formulas. To this end, two inference rules can be used to
deal with weights, namely the fold and the unfold rules defined below. Using these rules,
Max-SAT resolution and split can be easily lifted to the weighted case (Bonet et al., 2007;
Larrosa, Heras, & de Givry, 2008; Larrosa & Rollon, 2020b).

Definition 6 (Fold & Unfold). Given a weighted clause c and two positive weights w1 and
w2, the fold and unfold rules are respectively defined as follows:

(c, w1) (c, w2)

(c, w1 + w2)

(c, w1 + w2)

(c, w1) (c, w2)
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3. From Resolution Refutations to Max-Refutations

In this section, we show how to adapt any resolution refutation to get a max-refutation, i.e.,
a refutation using Max-SAT-equivalence-preserving inference rules. In particular, we prove
that the size of the computed max-refutation is linear with respect to the size of the initial
resolution refutation in the case of semi-read-once, tree-like regular, tree-like or semi-tree-
like resolution. We also prove that the adaptation is always possible in the unrestricted
case, but with a worst-case exponential blow-up in the size of the proofs. The theoretical
results are resumed in Table 1.

Resolution Refutation Size of the Max-SAT Refutation

Read-Once Linear (Bonet et al., 2007; Heras & Marques-Silva, 2011)

Semi-Read-once Linear

Tree-like regular Linear

Tree-like Linear

Semi-tree-like Linear

Unrestricted Exponential

Table 1: Adaptation of resolution refutations for Max-SAT

3.1 From Semi-Read-Once Resolution Refutations to Max-Refutations

SAT algorithms are based on unit propagation, which means that when a unit clause is
deduced, the value of its only literal is propagated in the whole formula, because satisfying
this literal is necessary to satisfy the formula. Applying unit propagation can be seen as the
use of a particular unit clause in several resolution steps. As such, transforming resolution
refutations to fix non-read-once unit clauses can therefore be a useful preprocessing tech-
nique to our proof builder which relies on iterative calls to a SAT oracle, as will be shown
in Section 4. To fix a non-read-once unit clause, we remove the resolution steps in which it
is involved and we add a new resolution step at the end of the refutation. Such a strategy
works when the refutation is based on unit propagation, i.e., every time a resolution step is
applied on a unit clause, the variable contained in the unit clause no longer appears in the
rest of the refutation. As SAT algorithms make a strong application of the unit propagation
technique, we made the hypothesis, confirmed by experiments, that the computed resolu-
tion refutation will be often based on unit propagation. Accordingly, we propose in Lemma
1 to adapt any resolution refutation based on unit propagation to Max-SAT by fixing every
non-read-once unit clause.

Lemma 1. Let φ be an inconsistent formula and P a resolution refutation of φ based on
unit propagation. There exists a resolution refutation of φ such that every unit clause is
read once containing O(|P |) inference steps.

Proof. Let φ be an inconsistent formula and P a resolution refutation of φ based on unit
propagation. We show that if P has k > 0 non-read-once unit clauses, then there exists a
resolution refutation with k−1 non-read-once unit clauses. To this aim, we consider the last
non-read-once unit clause c of P and assume w.l.o.g. that c = (x). Since P is based on unit
propagation, then we can delete resolution steps on clause c to generate c′ = (x) instead of
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�. We can now add a resolution step on clauses c = (x) and c′ = (x) to get a resolution
refutation of φ with k − 1 non-read-once unit clauses. Repeating this transformation, we
clearly obtain a resolution refutation of φ such that every unit clause is read-once containing
O(|P |) inference steps.

�

The proposed transformation can be seen as a preprocessing technique for any non-
read-once resolution refutation. In particular, some non-read-once resolution refutations
can be non-read-once only because of unit clauses and we say that such refutations are
semi-read-once. These semi-read-once resolution refutations can be adapted for Max-SAT
as described in Theorem 1.

Definition 7 (Semi-read-once). A resolution refutation is semi-read-once if it is based on
unit propagation and if each non-read-once clause is also a unit clause.

Theorem 1. Given an unsatisfiable formula φ and a semi-read-once resolution refutation
P of φ, there exists a max-refutation of φ containing O(|P |) inference steps.

Proof. We apply the transformation in the proof of Lemma 1 to get a read-once resolution
refutation P ′ of size O(|P |). P ′ can then be immediately adapted to a Max-SAT refutation
of size |P ′| (Bonet et al., 2007) and therefore of size O(|P |).

�

Example 4. We consider the tree-like regular resolution refutation in Figure 1. This refu-
tation is semi-read-once. To make it read-once, we remove the two resolution steps on clause
(x1) and we add a new resolution step at the end of the refutation. We obtain the read-once
resolution refutation in Figure 3. We can now replace each resolution step by a Max-SAT
resolution step to get a max-refutation, represented in Figure 4.

Remark 2. For simplicity of presentation of the examples in the following subsections, we
intentionally avoid applying the unit-propagation-fixing preprocessing described in Lemma
1.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3

x1

�

Figure 3: Transformation of a semi-read-once resolution refutation into a read-once resolu-
tion refutation
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x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3x1

�

Figure 4: Adaptation of a semi-read-once resolution refutation into a max-refutation

3.2 From Tree-Like Regular Resolution Refutations to Max-Refutations

To adapt a tree-like regular resolution refutation for Max-SAT, the idea is to use the split
rule to fix non-read-once clauses. More precisely, if a clause c is used k times (k > 1) as a
premise of a resolution step, we use the split rule on clause c with respect to a particular
variable x which is carefully chosen as in Lemma 2, to duplicate c into two distinct clauses
c ∨ x and c ∨ x. We then use c ∨ x and c ∨ x to replace c as a premise of its resolution
steps. If necessary, we repeat the same process on clauses c ∨ x and/or c ∨ x. Given a
branch starting from a leaf clause c in a regular refutation, we say that this branch accepts
the substitution of c by c ∨ l if the literal l appears in at least one resolvent in the branch.
Clearly, such a substitution does not impact the validity of the refutation. The following
lemma guarantees that, for a given non-read-once clause, there exists a variable x such that
some branches starting from c accepts the substitution of c by c ∨ x while the rest accepts
the substitution of c by c ∨ x.

Lemma 2. Given a regular tree-like resolution refutation P and a non-read-once clause c in
P , there exists a variable x /∈ var(c) such that it is possible to partition the branches starting
from c into two non-empty subsets of branches, the branches in the first subset accepting
the substitution of c by c ∨ x and the branches in the second accepting the substitution of c
by c ∨ x.

Proof. Let P a non-read-once regular tree-like resolution refutation and c a non-read-once
clause in P . There exists a node v of the DAG of P representing a resolution step on variable
x such that v is the first junction point of all the paths starting from c. The existence is
ensured since this junction point is eventually the empty clause. Furthermore, every path
starting from the clause c leads to one (and only one) of the premises of the resolution
step in the node v. Indeed, a path leading to both premises entails the existence of an
intermediate non-read-once clause which is not possible since the refutation is tree-like. We
partition the branches starting from c into two subsets containing respectively the paths
leading to the first and second premise of the resolution step in the node v. Each partition
is non empty since if there exists an empty subset v can’t be the first junction point of the
branches. Let x be the variable eliminated at this resolution step and suppose w.l.o.g that
the first premise contains literal x while the second contains literal x. As P is regular, x is
not a variable of c and the subset of branches starting from c leading to the first premise
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accepts the substitution of c by c ∨ x while the subset of branches leading to the second
premise accepts the substitution of c by c ∨ x.

�

The result established in Lemma 2 ensures the possibility to fix any non-read-once
clause used k > 1 times by using the split rule. Indeed, we can apply this rule to replace
a non-read-once clause used k > 1 times by two clauses used respectively 1 ≤ k1 < k and
1 ≤ k2 < k such that k = k1 +k2. By iterating this method, we can fix every non-read-once
clause. Then, we only need to replace the resolution rule by the Max-SAT resolution rule
to obtain an adaptation from any regular tree-like resolution refutation to a max-refutation
in linear size as established in the following theorem.

Theorem 2. Given an unsatisfiable formula φ and a regular tree-like resolution refutation
P of φ, there exists a max-refutation of φ containing O(|P |) inference steps.

Proof. Let P be a regular tree-like resolution refutation of φ. We set T1 = ∅ and T2 =
MR(P ), where MR(P ) is obtained from P after replacing each resolution by Max-SAT
resolution. If P is read-once, T2 is a max-refutation of φ containing |P | inference steps
(which is obviously in O(|P |)). Now, let c be a non-read-once clause of P . Using Lemma
2, there exists a variable x /∈ var(c) and a partition of the branches starting from c into
two non-empty subsets, the first accepting c ∨ x and the second accepting c ∨ x. We apply
the Max-SAT split rule on c to obtain c ∨ x and c ∨ x and we replace c as premise by c ∨ x
on the first subset of branches and c by c ∨ x on the second. Doing this, we augment T1

by adding one split and we change T2 by replacing the premise clause c as described above.
As T2 is a tree-like regular resolution refutation of (φ\c) ∧ (c ∨ x) ∧ (c ∨ x), it is possible to
iteratively apply this operation on T2 until we obtain a read-once regular tree-like resolution
refutation. Therefore, after the last iteration, we have a couple (T1, T2) such that T1 is a
sequence of applications of the split rule transforming φ into a Max-SAT equivalent φ′ and
T2 is a read-once regular max-refutation of φ′. Therefore, these transformations form a
max-refutation of φ.

To prove that the size of the max-refutation is in O(|P |), we first consider how to fix a
leaf clause of P (i.e., how to replace it by read-once clauses). We prove by induction on k
that it is possible to fix any leaf clause of P used k times using at most k − 1 splits:

• If k = 1, we clearly need 0 splits to fix the read-once clause c.

• Suppose the assertion is true for any k′ < k and let c be a clause used k times. Using
Lemma 2, it is possible to use 1 split to replace c by two clauses c1 and c2 respectively
used k1 and k2 times with k1, k2 > 0 and k1 + k2 = k. Using our assertion for k1 and
k2, it is possible to fix c1 with at most k1 − 1 splits and c2 with at most k2 − 1 splits.
Therefore, it is possible to fix c with at most 1 + (k1 − 1) + (k2 − 1) = k − 1 splits.

Let c1, ..., cp be the leaf clauses of P used respectively k1, k2, ..., kp times. Notice that
k1 +k2 + ...+kp = |P |+1 since P has exactly 2|P | premises, i.e., uses of clauses, and |P |−1
intermediate clauses (the empty clause is not used and we neglect the trivial cases where
a non-empty intermediate clause is not used and where the proof produces several empty
clauses). Using the previous induction, we need at most k1 − 1 + k2 − 1 + ...+ kp − 1 ≤ |P |
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splits to fix every non-read-once leaf clause of P . Consequently, |T1| ≤ |P |. On the other
hand, the number of Max-SAT resolutions in T2 is by construction equal to the number
of resolution steps in P and, therefore, |T2| = |P |. We conclude that the complete max-
refutation contains at most 2|P | inference steps, which is in O(|P |).

�

Example 5. We consider the regular tree-like resolution refutation from Example 2 repre-
sented by the DAG in Figure 1. We observe that the original clause (x1) is used two times as
a premise of a resolution step. The junction point of the left and right branches eliminates
variable x3 such that the branch on the left leads to the premise containing literal x3 and
the branch on right leads to the premise containing literal x3. We apply the split rule on
clause (x1) to get (x1 ∨ x3) and (x1 ∨ x3) and we replace (x1) by (x1 ∨ x3) and (x1 ∨ x3)
respectively on the left and right branches. Finally, we replace all resolutions by Max-SAT
resolutions to obtain the full max-refutation represented in Figure 5.

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Figure 5: Applying the split rule to deal with a non-read once clause

3.3 From Tree-Like Resolution Refutations to Max-Refutations

In the previous section, we proposed a linear adaptation from regular tree-like resolution
refutations to max-refutations. Next, we extend the case where this adaptation guarantees
linear size of the obtained max-refutation to tree-like resolution refutations. To this end,
we simply exhibit a known transformation from any tree-like resolution refutation to a
regular tree-like resolution refutation without increasing its size. This result was proved
in (Urquhart, 1995) in the form of the following lemma (cf. Lemma 5.1 in (Urquhart, 1995)).
The proof relies on a simple pruning argument which consists in iteratively discarding the
first resolution in the case of an irregularity and updating the rest of the resolution proof
accordingly, potentially discarding other resolution steps which are no longer necessary. The
following lemma thus ensure that every tree-like resolution refutation can be made regular
without increasing its size.

Lemma 3. (Urquhart, 1995) A tree-like resolution refutation of minimal size is regular.

Example 6. We consider the tree-like resolution refutation represented in Figure 6. This
refutation is not regular since x1 is eliminated two times in the same branch. As shown in
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Figure 7, this refutation can be made regular by discarding the first resolution on variable
x1 in the irregularity and updating the rest of the proof. Note that after the transformation,
clauses (x1 ∨ x3) and (x3) are no longer used in the refutation.

x1 ∨ x3 x1 ∨ x2

x3 x2 ∨ x3

x1 ∨ x2 x2

x1 x1

�

Figure 6: Tree-Like resolution refutation
containing an irregularity on variable x1

x1 ∨ x2 x1 ∨ x2

x1 x1

�

Figure 7: Regular tree-like resolution
refutation after minimization

Since it is possible to make a tree-like resolution refutation regular without increasing
the size of the proof, we can apply the adaptation in Theorem 2 to produce a max-refutation
with linear size as established in the following theorem.

Theorem 3. Given an unsatisfiable formula φ and a tree-like resolution refutation P of φ,
there exists a max-refutation of φ containing O(|P |) inference steps.

Proof. Using Lemma 3, there exists a tree-like regular resolution refutation P2 such that
|P2| = O(|P |). By applying Theorem 2, we obtain a max-refutation containing O(|P2|)
inference steps. Using the fact that |P2| = O(|P |), we conclude that this max-refutation
contains O(|P |) inference steps.

�

3.4 From Semi-Tree-Like Resolution Refutations to Max-Refutations

In Theorem 3, we proposed a linear adaptation from any tree-like resolution refutation to
a max-refutation. In this section, we extend this linear result to semi-tree-like resolution
refutations defined below. As shown in Proposition 1, this class of refutations extends
tree-like resolution refutations, i.e., every tree-like resolution refutation is semi-tree-like.

Definition 8 (semi-tree-like resolution refutation). A resolution refutation is semi-tree-like
if, for any branch of the refutation, at most one clause is non-read-once.

Example 7. We consider the resolution refutation P in Figure 8. P is clearly semi-tree-
like since in each branch at most one clause is non-read-once. Notice also that P is not
tree-like since (x1) is an intermediate non-read-once clause.
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x1 ∨ x4 x1 ∨ x4

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Figure 8: Semi-tree-like resolution refutation

Proposition 1. Let P be a resolution refutation. If P is tree-like then P is semi-tree-like.

Proof. By definition of tree-like, each intermediate clause is read-once. In each branch, the
only clause that can be non-read-once in P is by definition a leaf. Therefore, at most one
clause is non-read-once in each branch and we conclude that P is semi-tree-like.

�

To extend our result to semi-tree-like resolution refutations, we propose a method which
relies on the fact that such refutations can be partitioned into two parts where the first part
is a read-once sequence of resolutions and the second part is a tree-like resolution refutation.
As the first part is a read-once sequence of resolutions, it is possible to adapt it for Max-
SAT using a similar method to the one in (Heras & Marques-Silva, 2011), i.e., replacing
each resolution by a Max-SAT resolution. Since the second part forms a tree-like resolution
refutation, it is possible to adapt it for Max-SAT using our result in Theorem 3. After
transforming the two parts, we glue them back to construct the full max-refutation.

Theorem 4. Given an unsatisfiable formula φ and a semi-tree-like resolution refutation P
of φ, there exists a max-refutation of φ containing O(|P |) inference steps.

Proof. As P is semi-tree-like, each branch of P contains at most one non-read-once clause.
We partition P into two parts P1 and P2 as follows:

• For each branch containing one non-read-once clause, the transformations until this
clause are put in P1 and the transformations after this clause are put in P2.

• For each branch not containing a non-read-once clause, the transformations are put
in P2.

By construction, P1 is a read-once sequence of resolutions so it is possible to adapt it to
obtain a Max-SAT transformation P ′1 containing exactly |P1| inference steps by replacing
resolutions with Max-SAT resolutions as in (Heras & Marques-Silva, 2011). Furthermore,
P2 is a tree-like resolution refutation because the non-read-once clauses of P are leaf clauses
in P2. Consequently, it is possible to adapt P2 into a max-refutation P ′2 containing O(|P2|)
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inference steps using the result in Theorem 3. Finally, we can combine P ′1 and P ′2 to obtain
a Max-SAT refutation containing at most O(|P1|+ |P2|) and we conclude that the complete
adaptation contains O(|P |) inference steps.

�

Example 8. We consider the semi-tree-like resolution refutation in Example 7, represented
in Figure 8. To adapt this semi-tree-like resolution refutation to a max-refutation, we put
aside the top resolution on variable x1 taking clauses (x1 ∨ x4) and (x1 ∨ x4) and we obtain
the tree-like resolution refutation in Example 2, represented in Figure 1. We adapt this
tree-like resolution refutation as in Example 5 and we replace the resolution step on x1 by
a Max-SAT resolution step (in this case no compensation clauses are generated). We glue
back the two parts to obtain the complete max-refutation represented in Figure 9.

x1 ∨ x4 x1 ∨ x4

x1

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3 x1 ∨ x2 x2 ∨ x3

x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Figure 9: Adapting a semi-tree-like resolution refutation to a max-refutation

3.5 From Unrestricted Resolution Refutations to Max-Refutations

In Theorems 1, 2, 3 and 4, we proposed linear adaptations from specific classes of resolu-
tion refutations to max-refutations. Now, we propose an adaptation from any resolution
refutation to a max-refutation. The adaptation simply extends the one described in Theo-
rem 3 by adding a prior transformation to make the initial resolution refutation tree-like as
described in Lemma 4. Notice that we could make the initial resolution refutation semi-tree-
like (instead of tree-like) but this choice does not affect the theoretical size of the obtained
max-refutation.

To achieve this prior transformation, we iteratively search the proof for the first non-
read-once intermediate clause c. If this clause is used k > 1 times as a premise of another
resolution step, we consider the part of the proof leading to c and we duplicate it k−1 times
in order to get a tree-like sequence of resolutions generating k resolvents each containing
exactly the same literals as c and generated by a similar sequence of resolution steps.
Consequently, c is no longer used several times as a premise of a resolution step, the input
clauses are. Repeating this treatment on intermediary non-read-once clauses forces the
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resolution refutation to become tree-like. Fixing a non-read-once intermediate clause can,
in the worst case, double the size of the current resolution refutation. As such, the size of
the obtained tree-like resolution refutation is exponentially bounded by O(|P |×2|P |), where
P is the initial unrestricted resolution refutation. To polish this upper bound, we introduce
a new parameter defined below, which is the number of multi-uses of intermediate clauses.
Notice how, in the definition, we subtract one use for each clause. Intuitively, we consider
the first use of any non-read-once intermediate clause as authorized.

Definition 9. Let P be a resolution refutation. The number of multi-uses of intermediate
non-read-once clauses, denoted µ(P ), is defined as follows:

µ(P ) =
∑

c intermediate non-read-once in P

(d+(c)− 1)

where d+(c) denotes the number of uses of the clause c, i.e., the number of outgoing arcs
from c in the DAG representation of P .

Lemma 4. Given an unsatisfiable formula φ and a resolution refutation P of φ, there exists
a tree-like resolution refutation of φ containing O(2µ(P ) × |P |) resolution steps.

Proof. Let P be a resolution refutation of φ. We iteratively make the intermediate non-read-
once clauses read-once. Each time, we pick the first intermediate non-read-once clause c and
duplicate the sub-proof deriving c. Each iteration decrements the number of intermediate
non-read-once clauses by 1 until the resolution refutation becomes tree-like. Clearly, for
each duplication, the size of the proof is doubled in the worst case and we perform exactly
µ(P ) duplications. We conclude that the size of the obtained tree-like resolution refutation
is bounded by O(2µ(P ) × |P |).

�

Now that we can transform any resolution refutation to a tree-like resolution refutation,
we just have to adapt the obtained tree-like resolution refutation with the method described
in Theorem 3 as established in the following theorem.

Theorem 5. Given an unsatisfiable formula φ and an unrestricted resolution refutation P
of φ, there exists a max-refutation of φ with O(2µ(P ) × |P |) inference steps.

Proof. Let P be an unrestricted resolution refutation of φ. We adapt P to obtain a tree-like
resolution refutation Pt of size O(2µ(P ) × |P |) using Lemma 4. Then, using Theorem 3, we
obtain a max-refutation of size O(2µ(P ) × |P |).

�

Example 9. We consider the resolution refutation represented in Figure 10. This refutation
is not semi-tree-like since the clauses (x1) and (x4) are two non read-once clauses in the
same branch. First, we duplicate the resolutions leading to (x1) and we obtain the tree-like
resolution refutation represented in Figure 11. Then, we apply the transformations described
in Theorem 3 to get the max-refutation represented in Figure 12.
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x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3 x1

x3 x2

x3

�

Figure 10: Unrestricted resolution refutation

x1 ∨ x3 ∨ x4 x4 x1 ∨ x4 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3 x1 x1

x3 x2

x3

�

Figure 11: Adapting a resolution refutation to a tree-like resolution refutation

x4

x3 ∨ x4 x3 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4x1 ∨ x3 ∨ x4

x1 ∨ x2

x2 ∨ x3

x1 ∨ x3 x1 ∨ x3 x1 ∨ x3
x1 ∨ x3 ∨ x4

x3 x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Figure 12: Adapting an unrestricted resolution refutation to a max-refutation
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3.6 Unrestricted Resolution Refutations and Diamond Patterns

We finish this section by exhibiting resolution refutations whose adaptations as in Theorem
5 is exponential. To this end, we introduce in the following definition a new pattern which
we will use to build such refutations.

Definition 10 (Diamond pattern). Let A be a disjunction of literals and let x /∈ var(A) and
y /∈ var(A) two distinct variables. We define the diamond pattern (x, y,A) as the sequence
of resolutions represented in Figure 13.

x ∨Ax ∨ y x ∨ y

y ∨A y ∨A

A

Figure 13: Diamond pattern (x, y,A)

Figure 14: Simplified representation of a
diamond pattern

Figure 15: Simplified representation of a
5-stacked diamond pattern

We can represent this pattern by a diamond as in Figure 14. Notice that the particular
diamond pattern (x, y,�) is a resolution refutation. Now, imagine that the topmost clause
of (x, y,�) is derived through another diamond pattern. We iterate the same reasoning to
define a k-stacked diamonds pattern as follows:

Definition 11 (k-stacked diamond pattern). Let k ≥ 1 be a natural number and let xi
and yi where 1 ≤ i ≤ k be distinct variables. A k-stacked diamond pattern is formed by k
diamond patterns (xi, yi, Ai) where 1 ≤ i ≤ k such that A1 = � and Ai = (x1 ∨ · · · ∨ xi−1)
for 1 < i ≤ k. Each diamond (xi, yi, Ai) is stacked on top of (xi−1, yi−1, Ai−1) such that the
last conclusion of the former is the topmost central premise of the latter.

A k-stacked diamond pattern is represented as a stack of diamonds as shown in Figure 15
for k = 5. Clearly, k-stacked diamonds are resolution refutations as they deduce the empty
clause �. In particular, when k > 2, a k-stacked diamond is not semi-tree-like. The size
of a k-stacked diamond P is |P | = 3k. Furthermore, we have µ(P ) = k − 1. Therefore,
after the application of the adaptation described in Theorem 4, we obtain a max-refutation
whose size is at least 2k−1 showing that the proposed adaptation can be exponential in the
worst case.
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4. MS-Builder & MS-Checker

In this section, we propose to use the adaptation of any resolution refutation for Max-SAT,
presented in Section 3, to generate certificates for the Max-SAT problem.

4.1 MS-Builder

MS-Builder generates certificates for the Max-SAT Problem in the particular form of a
Max-SAT-equivalence-preserving transformation from the initial formula into a formula
composed of a set of empty clauses and a satisfiable sub-formula. The treatment applied
by MS-Builder is similar to SAT-based Max-SAT algorithms and particularly core-guided
ones (Ansótegui et al., 2013; Morgado, Heras, Liffiton, Planes, & Marques-Silva, 2013).
The tool also relies on the adaptation of resolution refutations proposed in Section 3. Given
an initial formula, MS-Builder iteratively calls a SAT oracle to get a resolution refutation,
adapts it for Max-SAT and applies it to the current formula as shown in Algorithm 1.
When the SAT oracle returns that the current formula is now satisfiable (with a model),
the algorithm terminates. The complete sequence of transformations generating k empty
clauses is a proof that the Max-SAT optimum is at least k while the model is a proof that
it is possible to falsify exactly k clauses and therefore that the Max-SAT optimum is k.

Algorithm 1 MS-Builder

Require: Formula φ
Ensure: Max-SAT certificate c for φ
1: (T, opt)← (∅, 0)
2: while φ is inconsistent do
3: RP ← compute resolution refutation(φ)
4: MRP ← adapt resolution refutation for Max-SAT(RP )
5: φ← apply max-refutation(φ,MRP )
6: (φ, opt)← remove empty clauses(φ, opt)
7: T ← concatenate(T,MRP )
8: end while
9: I ← compute model(φ)

10: return (T, opt, I)

MS-Builder also works on weighted (partial) formulas in similar fashion. The only
difference is that the inconsistent core returned by the oracle is treated differently. The
minimum weight over all the clauses in the core is computed and is used to partition the
clauses using the unfold rule. Once all the clauses in the core have the same weight, the
obtained residual clauses are put back into the formula. Note that non-read-once hard
clauses are not fixed because a hard clause can be used several times by duplicating as
many copies as needed using the unfold rule. After the transformation, an empty clause
is generated and its weight is added to opt. Note that this treatment is similar to the
one performed by weighted core-guided algorithms for Max-SAT (Ansótegui et al., 2013;
Morgado et al., 2013).
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MS-Builder receives a file containing a formula in the standard WCNF format1 and it
returns a certificate like in Figure 17. The proof file must start with a sequence of Max-
SAT transformation steps, each step being a line of the file. A Max-SAT transformation
line must start with ’t’ and must include the name of the inference rule (msres for Max-SAT
resolution, split for the split rule, fold for the fold rule and unfold for the unfold rule)
and its premise(s) (between ’< >’ and separated by ’|’). For the split rule, the variable
to split on must be specified as a parameter after its name, while, for the unfold rule, the
weight of the first conclusion must be specified in the same way. Then, the proof file must
contain a line (starting with ’o’) with the announced optimum cost of the formula. Finally, it
must contain a line (starting with ’v’) with a truth assignment satisfying the final formula
(without the empty clauses). Both files may contains commentary lines, which must be
started with ’c’.

Example 10. We consider the formula φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨ x2) ∧ (x2) ∧ (x3) ∧
(x2 ∨ x3) corresponding to the input file represented in Figure 16. MS-Builder calls a SAT
oracle for the first time and it returns that the initial formula is inconsistent alongside the
resolution refutation represented in Figure 18. This refutation is read-once and is adapted
into the max-refutation in Figure 19 by simply replacing each resolution step with a Max-
SAT resolution. After applying the max-refutation in Figure 19, the current formula is now
φ = (x1∨x3)∧ (x1)∧ (x1∨x2)∧ (x2∨x3)∧�. MS-Builder calls a SAT oracle for the second
time and it returns that the current formula (without the empty clause) is inconsistent. The
oracle also provides the semi-read-once resolution refutation represented in Figure 20, which
is adapted into the max-refutation in Figure 21. Applying the max-refutation of Figure 21
produces the current formula φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧� ∧�. MS-Builder calls
a SAT oracle for the third and last time. The SAT oracle returns that the current formula
(without the empty clauses) is satisfiable and provides the model I = {x1, x2, x3}. Finally,
MS-Builder returns the Max-SAT certificate described in Figure 17.

c formula with opt = 2
1 -1 3 0
1 1 0
1 -1 2 0
1 -2 -3 0
1 -2 0
1 -3 0
1 2 3 0

Figure 16: Formula file

c certificate of example 10
c first refutation is read-once
t msres < 1 2 3 | 1 -2 >
t msres < 1 3 | 1 -3 >
c second refutation is semi-read-once
t msres < 1 -1 2 | 1 -2 -3 >
t msres < 1 -1 3 | 1 -1 -3 >
t msres < 1 1 | 1 -1 >
o 2
v 000

Figure 17: Max-SAT certificate

1. our tools support both the old and new formats described in https://maxsat-evaluations.github.io/

2020/format.html
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x2 ∨ x3 x2 x3

x3

�

Figure 18: First resolution refutation

x2 ∨ x3 x2 x3

x2 ∨ x3

x3

�

Figure 19: First max-refutation

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3

x2

x3

�

Figure 20: Second resolution refutation

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x1 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3x1

�

Figure 21: Second max-refutation

4.2 MS-Checker

MS-Checker receives two files corresponding respectively to the formula and to the computed
certificate. For each inference rule applied in the certificate, MS-Checker verifies that the
transformation is valid and that the premises are in the current formula, then applies it. It
also checks that the number of computed empty clauses is equal to the claimed optimum
of the certificate and that the provided assignment is a model of the final formula (without
the empty clauses). MS-Checker can be described by Algorithm 2.

Algorithm 2 MS-Checker

Require: Formula φ, Max-SAT certificate C for φ
Ensure: True if C is a valid certificate for φ, False otherwise
1: for each inference step s ∈ C do
2: if a premise in s is missing in φ then
3: return False
4: else
5: φ← apply inference step(s, φ)
6: end if
7: end for
8: (φ, opt)← remove empty clauses(φ)
9: if opt(C) 6= opt or model(C) does not satisfy φ then

10: return False
11: end if
12: return True
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4.3 Experiments

We have implemented MS-Builder and MS-Checker in C++2. Resolution Refutations are
computed using Booleforce (Biere, 2010; Eén & Sörensson, 2003) and Tracecheck (Biere,
2006, 2008). We considered the benchmark of the unweighted partial track and of the
weighted partial track of the 2020 Max-SAT Evaluation (Bacchus et al., 2020). The ex-
periments are performed on Dell PowerEdge M620 servers with Intel XeonSilver E5-2609
processors (clocked at 2.5v2.6 GHz) under Ubuntu 18.04. Each solving process is allocated
a slot of 1 hour and at most 16 GB of memory per instance.

MS-Builder has succeeded to construct full proofs for 163 instances over 576 unweighted
partial instances and for 144 instances over 600 weighted partial instances. The running
time for building Max-SAT certificates is in Figure 22. We can see that the weighted
benchmark seems to be more difficult than the unweighted one although we added core
minimization techniques (Ignatiev et al., 2019; Silva, 2010).

Figure 22: Running time for building complete proofs for unweighted and weighted instances

Figure 23: Running time for checking proofs for unweighted and weighted instances

2. the source code is available on https://pageperso.lis-lab.fr/matthieu.py/en/software.html

1393



Py, Cherif, & Habet

MS-Checker has succeeded to check 575 complete or partial certificates over 576 for the
unweighted benchmarks and 593 complete or partial certificates over 600 for the unweighted
benchmarks. Proof checking is obviously much easier than proof building except on rare
formulas with a large number of clauses which can make difficult the operation of extracting
a premise or exceed the memory limit. The running time for checking certificates is in
Figure 23. MS-Builder has also succeed to build at least half of the proofs (with respect
to the number of empty clauses) of 302 instances over 463 unweighted instances and of
326 instances over 489 weighted instances for which the optimum cost is known. This is
illustrated in Figure 24 which reports the percentage of empty clauses built per instance.
The sizes of the computed proofs vary from a few bytes to 1 Gigabyte as illustrated in
Figure 25. Notice how empty (incomplete) proofs are computed for some very hard instances
for which the timeout is not sufficient to even compute the first Max-SAT refutation. On
the other hand, there are some unweighted instances, usually with an optimum cost of 1,
which have very small proofs.

Figure 24: Percentage of proved � per instance for unweighted and weighted instances

Figure 25: Size of proof per instance (in logarithmic scale) for unweighted and weighted
instances
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Type of resolution refutation Unweighted instances Weighted instances
Number Percentage Number Percentage

read-once 169,239 83.7 % 135,594 35.60 %
semi-read-once 24,556 12.1 % 87,748 23.04 %
tree-like regular 2,879 1.4 % 23,612 6.20 %
tree-like 1,795 0.9 % 87,529 22.99 %
unrestricted 3,799 1.9 % 46,337 12.17 %

Table 2: Encountered types of resolution refutations in the whole benchmark

Finally, we can observe in Table 2 how the resolution refutation types are different
for unweighted and weighted instances (semi-tree-like refutations are merged with tree-like
refutations using a preprocessing technique). Indeed, while the percentage of read-once
and semi-read-once resolution refutations is 83.7 % in the unweighted benchmark, it is only
35.60 % in the weighted benchmark. Such a difference can explain why weighted instances
are harder to solve than unweighted instances. We further observed experimentally that,
when MS-Builder is working on an instance, the first resolution refutations are often easy
(i.e., read-once) and small while the last ones are often hard (i.e., unrestricted) and huge,
that is why the timeout often stops on the last resolution refutations.

5. Conclusion

In this paper, we contributed to the generation of certificates for Max-SAT. First, we pro-
posed an adaption from any resolution refutation into a max-refutation The showed that
the proposed adaptation is linear in terms of the number of inference steps of the com-
puted max-refutation with respect to the initial resolution refutation for the following cases:
semi-read-once resolution, tree-like regular resolution, tree-like resolution and semi-tree-like
resolution. These results are achieved by augmenting Max-SAT resolution with the split
rule which enabled us to duplicate clauses by adding literals when necessary. However,
our generic adaptation for unrestricted resolution refutations has a worst-case exponen-
tial blow-up in the size of the proofs. Then, we devised two tools, called MS-Builder and
MS-Checker, to respectively generate and check certificates for the Max-SAT problem. The
certificates are represented in the form of a Max-SAT-equivalence-preserving transformation
from the initial formula into a formula composed of a set of empty clauses and a satisfiable
sub-formula. To compute the transformation, MS-Builder iteratively calls a SAT oracle to
get a resolution refutation, adapts it for Max-SAT and applies it to the current formula.
These tools were evaluated on the unweighted and weighted instances of the 2020 Max-SAT
Evaluation (Bacchus et al., 2020).

As future work, it would be relevant to study if there exists an adaptation of resolution
refutations for Max-SAT which is polynomial in the unrestricted case, or to prove that such
an adaptation is not possible. Moreover, it would be interesting to study cases where we can
extend the treatment provided for unit clauses and the semi-read-once case. In particular,
the diamond patterns can be transformed using the unit-propagation-fixing preprocessing
(applied on a non-unit clause), showing that this preprocessing can sometimes be general-

1395



Py, Cherif, & Habet

ized for non-unit clauses. It would be also relevant to improve the implementation of both
our tools with more adapted data structures or more advanced techniques such as stratifi-
cation (Ansótegui, Bonet, Gabàs, & Levy, 2012). Finally, it would be interesting to study
whether efficient heuristics can be devised to encourage a SAT oracle to generate specific
types of refutations, for which a cost-effective adaptation is possible.
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