
Journal of Artificial Intelligence Research 75 (2022) 985-1002 Submitted 03/2022; published 11/2022

Reinforcement Learning from Optimization Proxy
for Ride-Hailing Vehicle Relocation

Enpeng Yuan eyuan8@gatech.edu

Wenbo Chen wchen616@gatech.edu

Pascal Van Hentenryck pvh@gatech.edu

School of Industrial and Systems Engineering,

Georgia Institute of Technology,

Atlanta, GA 30332 USA

Abstract

Idle vehicle relocation is crucial for addressing demand-supply imbalance that fre-
quently arises in the ride-hailing system. Current mainstream methodologies - optimization
and reinforcement learning - suffer from obvious computational drawbacks. Optimization
models need to be solved in real-time and often trade off model fidelity (hence quality of
solutions) for computational efficiency. Reinforcement learning is expensive to train and
often struggles to achieve coordination among a large fleet. This paper designs a hybrid
approach that leverages the strengths of the two while overcoming their drawbacks. Specif-
ically, it trains an optimization proxy, i.e., a machine-learning model that approximates an
optimization model, and then refines the proxy with reinforcement learning. This Rein-
forcement Learning from Optimization Proxy (RLOP) approach is computationally efficient
to train and deploy, and achieves better results than RL or optimization alone. Numerical
experiments on the New York City dataset show that the RLOP approach reduces both the
relocation costs and computation time significantly compared to the optimization model,
while pure reinforcement learning fails to converge due to computational complexity.

1. Introduction

The rapid growth of ride-hailing markets has transformed urban mobility, offering on-
demand mobility services via mobile applications. While major ride-hailing platforms such
as Uber and Didi leverage centralized dispatching algorithms to find good matching be-
tween drivers and riders, operational challenges persist due to frequent imbalances between
demand and supply. Consider morning rush hours as an example: most trips originate
from residential areas to business districts where a large number of vehicles accumulate and
remain idle. Relocating these vehicles back to the demand areas is crucial to maintaining
quality of service and income for the drivers.

Extensive studies have focused on vehicle relocation problems in real time. Existing
methodologies fit broadly into two categories: model-based and model-free approaches.
Model-based approaches, e.g., Model Predictive Control (MPC), involve the solving of an
optimization program using expected demand and supply information over a future horizon.
Model-free approaches (predominantly Reinforcement Learning (RL)) train a state-based
decision policy by interacting with the environment and observing the rewards. While both
approaches have demonstrated promising performance in simulation and (in some cases)
real-world deployment (Jiao et al., 2021), they have obvious drawbacks: the optimization

©2022 AI Access Foundation. All rights reserved.

Yuan, Chen, & Van Hentenryck

needs to be solved in real time and often trades off model fidelity (and hence solution
quality) for computational efficiency. Reinforcement learning does not require a model but
needs a large number of samples to train. Consequently, most works simplify the problem
(e.g., by restricting relocations to nearby regions and/or limiting coordination among the
fleet) to reduce computational complexity.

This paper addresses these challenges by proposing a Reinforcement Learning from Op-
timization Proxy (RLOP) approach that combines optimization, supervised learning, and
reinforcement learning. The RLOP framework is a special case of Reinforcement Learn-
ing from Expert Demonstration (RLED) where the expert is an optimization algorithm
(Ramı́rez, Yu, & Perrusqúıa, 2021). The RLOP approach consists of two main steps:

1. It first applies supervised learning to obtain an optimization proxy for an MPC op-
timization, i.e., it trains a machine learning model that approximates the mapping
between the inputs of the MPC optimization and its actionable decisions (i.e., the
outputs of the MPC for the first epoch).

2. It then seeds an RL component with the optimization proxy as the initial policy.
The RL component further improves this policy by interacting with the environment,
which captures the real system dynamics and long-term effects that are beyond the
capabilities of the model-based optimization.

To the best of the authors’ knowledge, this paper is the first application of an RLED frame-
work to tackle vehicle relocation problems, and one of the few RL models with a fully cen-
tralized policy. The RLOP framework has three important benefits:

1. The optimization proxy approximates the model-based optimization with high fidelity
and is order of magnitude faster.

2. The RL component is significantly easier to train since it starts with a high-quality
policy.

3. The RL component improves the optimization proxy by capturing long-term effects
and real system dynamics present in sample trajectories.

The application of RLOP framework to relocation problems comes with several challenges,
which require additional methodological contributions.

1. The relocation decisions are typically high-dimensional (e.g., number of vehicles to
relocate between each zone) and sparse (most vehicles relocate to only a few popular
zones). This creates great difficulty for supervised and reinforcement learning.

2. The predicted relocation decisions may be infeasible since most learning algorithms
cannot enforce integrality or physical constraints that the decisions need to satisfy.

To tackle these challenges, this paper proposes an aggregation-restoration-disaggregation
procedure which predicts the relocation decisions at an aggregated level, restores them back
to feasible solutions, and then disaggregates them to the original granularity by applying a
polynomial-time transportation optimization. As a result, the dimensionality and sparsity of
the decisions are reduced considerably, and the approach remains computationally efficient.

986

Vehicle Relocation by RLOP

The proposed RLOP framework is evaluated on the New York Taxi data set, using the
optimization and simulation architecture presented by Riley, Van Hentenryck, and Yuan
(2020). The experimental results reveal two interesting findings:

1. The optimization proxy learns the relocation optimization with high fidelity, producing
similar objective values at a fraction of the optimization’s computing time.

2. the RL component further reduces the relocation costs by 10% compared to the op-
timization proxy, whereas pure centralized reinforcement learning is too expensive
computationally to be applied.

These results suggest that the RLOP framework provides a promising approach for the
real-time operations of ride-hailing systems. It is also important to stress that the RLOP
framework is general and can be applied with any relocation optimization and RL tech-
niques.

The rest of the paper is organized as follows. Section 2 summarizes the existing liter-
ature. Section 3 defines the relocation problem. Section 4 reviews the existing relocation
model used in the simulation experiments. Section 5 presents the learning framework.
Section 6 reports the experimental results on a large-scale case study in New York City.

2. Related Work

Prior works on real-time idle vehicle relocation problem fit broadly into two frameworks:
model predictive control (MPC) and reinforcement learning (RL). MPC is an online control
procedure that repeatedly solves an optimization problem over a moving time window to find
the best control actions. System dynamics, i.e., the interplay between demand and supply,
are explicitly modeled as mathematical constraints. Due to computational complexity,
almost all the MPC models in the literature work at a discrete spatial-temporal scale (i.e.,
the dispatch area is partitioned into zones and time is divided into epochs) and use a
relatively coarse granularity with a small number of zones or epochs (Miao et al., 2015,
2017; Iglesias et al., 2017; Tsao et al., 2018; Riley et al., 2020).

Reinforcement learning, on the contrary, does not explicitly model the system dynam-
ics. It trains a decision policy by interacting with the environment and observing the
rewards. It can be divided into three streams: single-agent RL (Wen, Zhao, & Jaillet,
2017), decentralized multi-agent RL (Oda & Joe-Wong, 2018; Guériau & Dusparic, 2018;
Holler et al., 2019; Lin et al., 2018; Jiao et al., 2021; Liang et al., 2021), and centralized
multi-agent RL (Mao, Liu, & Shen, 2020). The single-agent framework maximizes reward
of an individual agent, while the multi-agent framework maximizes system-level benefits. A
main challenge of RL is training complexity since the state and action spaces are typically
high-dimensional (often infinite-dimensional) due to the complex demand-supply dynamics.
Sampling in high-dimensional spaces makes the training computationally expensive and un-
stable. Consequently, many works simplify the problem by enforcing agents within the same
region to follow the same policy (Verma et al., 2017; Lin et al., 2018), or restricting reloca-
tions to only neighboring regions (Wen et al., 2017; Holler et al., 2019; Oda & Joe-Wong,
2018; Guériau & Dusparic, 2018; Lin et al., 2018; Jiao et al., 2021). Another challenge is
promoting coordination among a large number of agents (vehicles). Single-agent framework

987

Yuan, Chen, & Van Hentenryck

…… ……

R
iders

D
rivers

Dispatch
Algorithm

T = k

Pricing +
Relocation
Algorithm

R
iders

D
rivers

Dispatch
Algorithm

T = 2

R
iders

D
rivers

Dispatch
Algorithm

T = 1

R
iders

D
rivers

Dispatch
Algorithm

T = k+1

R
iders

D
rivers

Dispatch
Algorithm

T = 2k

Pricing +
Relocation
Algorithm

Figure 1: The Real-Time Ride-Hailing Operations.

focuses on a single vehicle and ignores group-level reward. Decentralized multi-agent frame-
work considers group-level benefits only in a limited fashion since the state/action/reward
of the individual agents are modeled separately. Centralized multi-agent framework con-
siders the state and action of the agents jointly and has the potential to achieve maximal
cooperation. However, the joint state-action spaces are extremely high-dimensional and
make the problem computationally prohibitive. Mao et al. (2020) propose the only paper
using a fully-centralized formulation. Similar to this paper, it models each dispatch zone
instead of vehicle as an agent to simplify the state-action space. Nevertheless, the approach
is demonstrated in a simple setting with a small number of zones due to computational
complexity. The RLOP approach in this paper is able to demonstrate the fully-centralized
approach on a much larger scale because of its computational efficiency.

The RLED approach has been applied extensively in robotics and games and achieved
promising performance, a famous example being AlphaGo (Silver et al., 2016). However,
it has not been employed to solve planning problems in ride-hailing systems. This paper
explores this possibility through the RLOP framework.

3. Problem Definition

The real-time ride-hailing system, depicted in Figure 1, has three key components: vehicle
routing, idle vehicle relocation, and dynamic pricing. The vehicle routing algorithm matches
requests to vehicles and chooses the vehicle routes. It operates at the individual request level
with high frequency (e.g., every 15−60 seconds). Because of the tight time constraints and
large number of requests, the routing algorithm is usually myopic, taking only the current
demand and supply into account. Idle vehicle relocation and dynamic pricing, on the
other hand, are forward-looking in nature. Idle vehicle relocation repositions the vehicles
preemptively to anticipate demand, and dynamic pricing balances expected demand and
supply in a future horizon. The two decisions also take place at a lower frequency (e.g.,
every 5− 20 minutes). In addition, the three components are interconnected. Take vehicle
relocation as an example: the vehicle relocations depend on future demand as well as
how the requests are scheduled, which are determined by the vehicle routing and pricing
decisions. This paper focuses on idle vehicle relocation and abstracts away the other two
components. The goal is to reduce rider waiting time by relocating idle vehicles while

988

Vehicle Relocation by RLOP

accounting for the relocation costs. This paper assumes that the ride-hailing platform uses
a fleet of autonomous vehicles or their own pool of drivers who follow instructions exactly
- the platform can thus relocate the vehicles at will.

The Vehicle Routing Component To illustrate the relocation problem, it is helpful
to review the vehicle routing component briefly. The simulation experiments in this paper
use the routing algorithm in Riley, Legrain, and Van Hentenryck (2019) which is reviewed
here as an example. The algorithm batches requests into a time window and optimizes
every 30 seconds. Its objective is to minimize a weighted sum of passenger waiting times
and penalties for unserved requests. Each time a request is not scheduled by the routing
optimization, its penalty is increased in the next time window giving the request a higher
priority. The routing algorithm is solved by column generation: it iterates between solving a
restricted master problem (RMP), which assigns a route (sequence of pickups and dropoffs)
to each vehicle, and a pricing subproblem, which generates feasible routes for the vehicles.
The RMP is depicted below.

min
∑
r∈R

cryr +
∑
i∈P

pizi (1a)

s.t.

(∑
r∈R

yra
r
i

)
+ zi = 1 ∀i ∈ P (1b)∑

r∈Rv

yr = 1 ∀v ∈ V (1c)

zi ∈ N ∀i ∈ P (1d)

yr ∈ {0, 1} ∀r ∈ R (1e)

R denotes the set of routes. V the set of vehicles, and P the set of passengers. Rv denotes
the subset of feasible routes for vehicle v. A route is feasible for a vehicle if it does not
exceed the vehicle capacity and does not incur too much of a detour for its passengers due to
ride-sharing. cr represents the wait times incurred by all customers served by route r. pi is
the penalty of not scheduling request i, and ari = 1 iff request i is served by route r. Decision
variable yr ∈ [0, 1] is 1 iff route r is selected and zi ∈ [0, 1] is 1 iff request i is not served by
any of the selected routes. The objective function minimizes the waiting times of the served
customers and the penalties for the unserved customers. Constraints (1b) ensure that zi is
set to 1 if request i is not served by any of the selected routes and constraints (1c) ensure
that only one route is selected per vehicle. The column generation process terminates when
the pricing subproblem cannot generate new routes to improve the solution of the RMP or
the solution time limit is met.

4. The Relocation MPC Model

The first step of the RLOP framework uses supervised learning to approximate the first-
stage decisions of an relocation optimization. The optimization model makes decisions at
the zone-to-zone level, i.e., the number of vehicles to relocate from one zone to another.
The discussion of the learning methodology and the simulation experiments are based on
the model proposed by Yuan and Van Hentenryck (2021) reviewed in this section. Note

989

Yuan, Chen, & Van Hentenryck

Model Input

Vit Number of vehicles that will become idle in i during t
Dijt Number of vehicles needed to serve riders from i to j who

places their requests during t
λij Number of epochs to travel from i to j

Model Parameters

s Number of epochs that a rider remains in the system
Wij Average number of riders from i to j that a vehicle carries
qp(t, ρ) Weight of a rider served at ρ whose request was placed at t
qrij(t) Relocation cost between i and j in t

Decision Variables

xrijt ∈ Z+ Number of vehicles starting to relocate from i to j during t

Auxiliary Variables

xpijtρ ∈ Z+ Number of vehicles that start to serve at time ρ riders going
from i to j whose requests were placed at t

lit ∈ {0, 1} Whether there is unserved demand in i at the end of epoch
t

Table 1: The Nomenclature for the MPC Optimization.

however that the RLOP framework is general and not confined to any particular relocation
optimization.

Yuan and Van Hentenryck (2021) follows the Model Predictive Control (MPC) frame-
work. The MPC is a rolling time horizon approach that discretizes time into epochs of equal
length and performs three tasks at each decision epoch: (1) it predicts the demand and sup-
ply for the next T epochs; (2) it optimizes relocation decisions over these epochs; and (3) it
implements the decisions of the first epoch only. The dispatch area is partitioned into zones
(not necessarily of equal size or shape) and relocation decisions are made at the zone-to-zone
level. The model assumes that vehicles only pick up demand in the same zone and that
vehicles, once they start delivering passengers or relocating, must finish their current trip
before taking another assignment. These assumptions help the MPC model approximate
the behavior of the underlying vehicle-routing algorithm, but the routing algorithm does
not have to obey these constraints. The only interactions between the routing optimization
and the MPC are the relocation decisions. To model reasonable waiting times, riders can
only be picked up within s epochs of their requests: they would drop out if waiting more
than s epochs.

The nomenclature of the model is summarized in Table 1. In the formulation, i and
j denote zones, and t0, t, and ρ are epochs. Z denotes the set of zones in the dispatch
area and T = {1, 2, ..., T} the set of time epochs in the planning horizon. The ride-sharing
coefficient Wij represents the average number of riders traveling from i to j that a vehicle
carries accounting for ride-sharing. Expected supply Vit can be estimated based on the

990

Vehicle Relocation by RLOP

current route of the vehicles and travel time. Expected demand Dijt can be forecasted
based on historical demand. The time-dependent weights qp(t, ρ) and qrij(t) are designed to
favor serving requests and performing relocations early: they are decreasing in t and ρ.

The decision variables xrijt capture the relocation decisions. Although decisions are
made for each epoch in the time horizon, only the first epoch’s decisions are actionable and
implemented: the next MPC execution will reconsider the decisions for subsequent epochs.
Note that the auxiliary variables xpijtρ are only defined for a subset of the subscripts, since
riders drop out if they are not served in reasonable time. The valid subscripts for variables
xpijtρ must satisfy the constraint 1 ≤ t ≤ ρ ≤ min(T, t+s−1). These conditions are implicit
in the model for simplicity. Furthermore, φ(t) = {ρ ∈ T : t ≤ ρ ≤ t+ s− 1} denotes the set
of valid pick-up epochs for riders placing their requests in epoch t.

max
∑
i,j

∑
t,ρ

qp(t, ρ)Wijx
p
ijtρ −

∑
i,j

∑
t

qrij(t)x
r
ijt

s.t.
∑
ρ∈φ(t)

xpijtρ ≤ Dijt, ∀i, j, t (2a)

∑
j,t0

xpijt0t +
∑
j

xrijt = Vit +
∑
j,t0

xpjit0(t−λji) +
∑
j

xrji(t−λji), ∀i, t (2b)

∑
j

xrijt ≤Mlit, ∀i, t (2c)

∑
j

∑
t0: t∈φ(t0)

(
Dijt −

t∑
ρ=t0

xpijt0ρ

)
≤M(1− lit), ∀i, t (2d)

xpijtρ, x
r
ijt ∈ Z+, ∀i, j, t, ρ (2e)

lit ∈ {0, 1}, ∀i, t (2f)

The model formulation is given above. The objective maximizes the weighted sum of
riders served and minimizes the relocation costs. Constraint (2a) makes sure that the served
demand does not exceed the true demand. Constraint (2b) is the flow balance constraint
for each zone and epoch. Big-M constraints (2c) and (2d) prevent vehicles from relocating
unless all demand in the zone is served, approximating the behavior of the routing algorithm
which favors scheduling vehicles to nearby requests. Constraints (2e) and (2f) specify the
ranges of the variables. The model is always feasible since all vehicles can remain idle and
not serve any requests.

The model is a mixed-integer program (MIP), which is challenging to solve at high fi-
delity when the number of zones |Z| or the length of time horizon |T | is large. In addition,
it is difficult to gauge how accurately the model (or any optimization model) approximates
the true dynamics of the system. This is the key motivation for approximating the MPC
optimization by a computationally efficient machine-learning policy and refining it by rein-
forcement learning which interacts with the real system dynamics.

991

Yuan, Chen, & Van Hentenryck

5. The RLOP Framework

The RLOP framework has two stages: supervised learning and reinforcement learning. The
supervised-learning stage trains an optimization proxy, i.e., a machine-learning model that
approximates the actionable decisions of an optimization model. The reinforcement-learning
stage takes the optimization proxy as the initial policy and refines it by a policy gradient
method.

5.1 The Optimization Proxy

The supervised-learning stage trains a machine-learning model to predict the actionable
decisions of an relocation model M : S → W, where S is the model input and W is the
model decision, i.e., the number of vehicles to relocate between each zone in the dispatch
area. Hence |W| = |Z|2, where |Z| is the number of zones in the dispatch area. The training
data can be generated by runningM on a set of problem instances and extracting its results.
Without loss of generality, the presentation illustrates the supervised-learning methodology
based on the MPC model from Section 4, but the framework applies to any relocation model
as long as the decisions are at the zone-to-zone level.

The machine-learning model takes the MPC model’s input s = [Dijt, Vit]i,j∈Z,t∈T -
expected demand and supply in each zone and epoch - and predicts its first epoch decisions
w = [xrij1]i,j∈Z (only these decisions are actionable after each MPC execution). In reality,

w is high-dimensional (|W| = |Z|2) and sparse, since most vehicles relocate to a few high-
demand zones. The high-dimensionality and sparsity makes supervised learning difficult.
It also imposes significant challenges for RL in the second stage since sampling in high-
dimensional action space W is expensive and makes the training unstable (see Section 5.2
for details). Therefore, this paper designs an aggregation-disaggregation procedure which
predicts w at the aggregated (zone) level and then disaggregates the predictions via an
efficient optimization procedure.

More precisely, the zone-level relocation decision a ∈ A is predicted by the machine-
learning model Ôθ : S → A and disaggregated to zone-to-zone level by an efficient optimiza-
tion problem T O : A → W. To ensure that the machine-learning model can be refined by
the policy gradient method in the RL stage, Ôθ needs to be differentiable with respect to
its parameters θ. For example, Ôθ can be an artificial neural network or a linear regression
parametrized by θ. The RLOP framework however is general and can accommodate any
other machine-learning model.

5.1.1 Aggregation and Prediction

The zone-to-zone level decision w = [xrij1]i,j∈Z is first aggregated to, and predicted at the
zone level. More specifically, two metrics are predicted for each zone i:

1. the number of vehicles relocating from i to other zones, i.e., xoi :=
∑

j∈Z,j 6=i x
r
ij1;

2. the number of vehicles relocating to i from other zones, i.e., xdi :=
∑

j∈Z,j 6=i x
r
ji1.

These two metrics can be both non-zero at the same time: an idle vehicle might be relocated
from i to another zone for serving a request in the near future, and another vehicle could
come to i to serve a later request. The aggregated decisions a = [xdi , x

o
i]i∈Z are then

992

Vehicle Relocation by RLOP

predicted by the chosen machine-learning model. This aggregation step reduces the label
dimension from |W| = |Z|2 to |A| = 2|Z|.

5.1.2 Disaggregation and Feasibility Restoration

The predicted relocation decisions â = [x̂oi , x̂
d
i]i∈Z must be transformed to feasible solutions

that are integer and obey flow balance constraints. This is performed in three steps:

1. x̂oi and x̂di are rounded to their nearest non-negative integers;

2. to make sure that there are not more relocations than idle vehicles, take x̂oi =
min{x̂oi , Vi1} where Vi1 is expected number of idle vehicles in i in the first epoch;

3. x̂oi and x̂di must satisfy the flow balance constraint, e.g.,
∑

i∈Z x̂
o
i =

∑
i∈Z x̂

d
i : this

is achieved by setting the two terms to be the minimum of the two, by randomly
decreasing some non-zero elements of the larger term.

After a feasible relocation plan is constructed at the zone level, the disaggregation step
reconstructs the zone-to-zone relocation via a transportation optimization T O : A → W.
The model formulation is given below. Variable wij denotes the number of vehicles to
relocate from zone i to zone j, and constant cij represents the corresponding relocation
cost. The model minimizes the total relocation costs to consolidate the relocation plan.
The solution wij will be implemented by the ride-hailing platform in the same way as xrij1
from the MPC. Note that wii should be 0 since ŵ denotes relocations into and out of each
zone. However, the problem in that form may be infeasible. By allowing the wii’s to be
positive and assigning a large value to the relocation costs cii, the problem is always feasible,
totally unimodular, and polynomial-time solvable (Rebman, 1974).

T O(â) = arg min
w

∑
i,j∈Z

cijwij (3a)

s.t.
∑
j∈Z

wij = x̂oi , ∀i ∈ Z (3b)

∑
j∈Z

wji = x̂di ∀i ∈ Z (3c)

wij ∈ Z+ ∀i, j ∈ Z (3d)

5.2 Reinforcement Learning

The supervised-learning stage trains an optimization proxy Ôθ : S → A from an relocation
model. The RL process starts from Ôθ and improves it by a policy gradient method. Specif-
ically, the RL step models the relocation problem as a Markov Decision Process (MDP).
MDP is characterized by a tuple < S,A, R, P, γ >, which consists of a state space S, an
action space A, a reward function R(s,a), a transition function P (s′|s,a), and a discount
factor γ ∈ [0, 1]. At each decision epoch t in the planning horizon {0, 1, ..., Te}, the agent
observes the state of the system st ∈ S, takes an action at ∈ A, receives an immediate
reward R(st,at), and transitions to the next state according to the transition probability

993

Yuan, Chen, & Van Hentenryck

P (st+1|st,at). The goal is to find a stochastic decision policy πθ : S → P(A) parametrized
by θ, i.e., a mapping from the state space to a probability distribution over the action space
that maximizes the total expected discounted reward

J(θ) = EP,πθ

[
Te∑
t=0

γtR(st,at)

]
(4)

For the present application, the state and action space are the same as the input and output
space of the optimization proxy Ôθ : S → A so that Ôθ can be transformed into an initial
policy for RL. The details of this transformation will be presented shortly. The reward
function R(st,at) = −ut − βvt is a weighted average of customer satisfaction and system
cost, where ut is the total waiting time of riders who emerges in epoch t and vt is the expected
time that vehicles will relocate due to action at. Both ut and vt are in minutes. Parameter
β denotes the relative importance of system cost compared to customer satisfaction, e.g.,
β = 0.5 implies that the platform is willing to relocate up to 2 minutes for a 1 minute
reduction in waiting time. β depends on the platform’s underlying objective and is taken as
an input. The transition function P (st+1|st,at) depends on the underlying vehicle-routing
algorithm, travel times, and demand arrival, and does not have a closed-form expression.

The policy is trained iteratively based on the policy gradient theorem (Sutton & Barto,
2018)

∇θJ(θ) = EP,πθ

[
Te∑
t=0

Gt∇θ logPπθ(at|st)

]
(5)

where Gt =
∑Te

τ=t γ
τ−tRτ is the total (discounted) reward since epoch t in the trajectory

τ = (s0,a0, R0, ..., sTe ,aTe , RTe) and Pπθ(at|st) is the probability of taking action at in state
st under the decision policy πθ. In reality, computing the expectation in (5) is intractable
since P does not have a closed-form expression. The gradient is approximated by Monte-
Carlo sampling, i.e.,

∇θJ(θ) ≈ 1

N

N∑
i=1

Te∑
t=0

Git∇θ logPπθ(a
i
t|sit) (6)

where {τi}Ni=1 = {
(
si0,a

i
0, R

i
0, ..., s

i
Te
,aiTe , R

i
Te

)
}Ni=1 are trajectories generated by applying πθ

in the simulation environment.
It remains to specify how the optimization proxy Ôθ can be turned into an initial policy

for RL. Recall that Ôθ : S → A is a deterministic mapping from the state space to the action
space. In the RLOP framework, the policy gradient optimization starts from a Gaussian
policy π0

θ(·) = N (Ôθ(·),Σ) centered around Ôθ with covariance Σ. The covariance matrix
Σ is a diagonal matrix whose diagonal entry Σii is the (sampling) variance of an relocation
action ai (ai is an entry of a ∈ A). Note that ai is one of the prediction labels of Ôθ, so its
empirical distribution can be estimated in the supervised-learning stage. Therefore, Σii can
be taken as a certain percentage of ai’s characteristic statistics such as its empirical mean
or median in the supervised-learning dataset. Prior knowledge on Σ is extremely valuable
since a well-chosen Σ can lead to a more efficient exploration during training.

The policy gradient algorithm is summarized in Algorithm 1. Note that, after sampling
action a from πθ, a should be rounded and restored to zone-to-zone level by the transporta-
tion optimization T O : A →W in Section 5.1.2. Again, note that the RLOP framework is

994

Vehicle Relocation by RLOP

Algorithm 1: RLOP

1 Train a differential optimization proxy Ôθ to approximate a given relocation model;
2 Choose learning rate α, discount factor γ, trade-off parameter β and covariance Σ ;
3 for Episode = 1, 2, ... do
4 for i = 1, ..., N do
5 for t = 0, 1, ...Te do
6 Observe current state sit and sample an action ait from current policy

πθ(s
i
t) = N (Ôθ(sit),Σ);

7 Round and disaggregate ait to feasible zone-to-zone level action wi
t by

transportation optimization T O;
8 Implement wi

t in the simulator and observe reward Rit;

9 end

10 end

11 Compute total discounted reward Git =
∑Te

τ=t γ
τ−tRiτ for all i, t;

12 Compute the policy gradient ∇θJ(θ) by Eq. (6);
13 θ ← θ + α∇θJ(θ)

14 end

general and can incorporate any specific reinforcement-learning techniques (e.g., actor-critic,
PPO, off-policy sampling, etc.) appropriate for the problem at hand.

6. Simulation Study

The RLOP framework is evaluated on Yellow Taxi Data in Manhattan, New York City
(NYC, 2019). It is trained from 2017/01 to 2017/05 and evaluated in 2017/06 during
morning rush hours on weekdays. Section 6.1 reviews the simulation environment, Section
6.2 presents the supervised-learning results, Section 6.3 presents the reinforcement-learning
results, and Section 6.4 evaluates the performance of the policy.

6.1 Simulation Environment

The experiments use the end-to-end simulation framework in Riley et al. (2020). The Man-
hattan area is partitioned into a grid of cells of 200 squared meters and each cell represents
a pickup/dropoff location. Travel times between the cells are queried from OpenStreetMap
(2017). The fleet is fixed to be 1800 vehicles with capacity 4, distributed randomly among
the cells at the beginning of the simulation.

The simulator has two main components: the ride-sharing routing algorithm reviewed
in Section 3 and the relocation MPC model reviewed in Section 4. The routing algorithm
batches riders into a time window and optimizes every 30 seconds. The relocation MPC
model is executed every 5 minutes. It partitions the Manhattan area into 60 zones (Figure
2) and time into 5-minute epochs. Its planning horizon contains 4 epochs. The number
of idle vehicles in each epoch is estimated by the simulator based on the current route of
each vehicle and the travel times. The ride-share ratio is Wij = 1.5 for all i, j ∈ Z. Service
weight and relocation penalty are qp(t, ρ) = 0.5t0.75ρ−t and qrij(t) = 0.001 ∗ 0.5tηij where

995

Yuan, Chen, & Van Hentenryck

Figure 2: The Manhattan Area.

ηij is travel time between zone i and zone j in seconds. The zone-to-zone demand Dijt is
forecasted based on historical data. The design of demand forecasting techniques is beyond
the scope of this work. This paper first forecasts zone-level demand Dit =

∑
j∈Z Dijt

and then assigns the destinations based on historical distribution. The reason for doing
zone-level prediction is to reduce sparsity in Dijt, since most trips travel between a few
popular regions. The forecasting model is a 2-layer fully-connected neural network with
(256, 256) hidden units and RELU activation functions. The loss function is MSE with
l1-regularization. It is trained from 2017/01 to 2017/05, 8am–9am, and tested on 2017/06,
8am–9am. The original time series data is augmented by injecting white noise sampled
from a uniform distribution U(−5, 5) to create more training data. To predict zone-level
demand in the MPC horizon {Dit}i∈Z,t∈T , the model uses the demand observed in the
previous 3 epochs, as well as data observed a week ago during the same period to account
for seasonality. For example, when forecasting demand from 8am to 8:20am (4 epochs) on
2017/06/08, the model uses demand from 7:45am to 8:00am on 2017/06/08 and demand
from 7:45am to 8:20am on 2017/06/01. After zone-level demand is predicted, it is assigned to
zone-to-zone level based on the historical distribution of the trip’s destination. For example,
if µij proportion of trips from zone i goes to zone j during the hour of the prediction and
D̂it is the demand prediction for zone i, the final zone-to-zone prediction is D̂ijt = D̂it×µij
rounded to the nearest integer. Overall, the mean squared error of the zone-to-zone level
forecast in 2017/06 is 0.86.

After the MPC decides zone-to-zone level relocations, a vehicle assignment optimization
determines which individual vehicles to relocate by minimizing total traveling distances
(Riley et al., 2020). Of the routing, relocation, and vehicle assignment models, the routing
model is the most computationally intensive since it operates on the individual (driver and
rider) level as opposed to the zone level. Since all three models must be executed in the 30
seconds batch window, the experiments allocate 15 seconds to the routing optimization, 10
seconds to the MPC, and 5 seconds to the vehicle assignment. All the models are solved
using Gurobi 9.1 with 24 cores of 2.1 GHz Intel Skylake Xeon CPU (Gurobi Optimization,
2021).

996

Vehicle Relocation by RLOP

Lasso MLP LSTM Transformer

MSE 15.90 6.68 6.64 6.45

Table 2: Testing Loss of Machine Learning Models.

6.2 The Optimization Proxy

The optimization proxy is trained from 2017/01 to 2017/05, 8am - 9am, Monday to Friday,
when the demand is at its peak and the need for relocation the greatest. The number of
riders in these instances range from 22,000 to 29,000, providing a wide variety of demand
distribution. The weekends and non-busy hours see much less demand and should be
considered separately. The experimental study focuses on the busy hours because they need
relocation the most. Each 1-hour taxi instance is perturbed by randomly adding/deleting
a certain percentage of requests to generate more instances, where the percentages are
sampled from a uniform distribution U(−5, 5). These instances are run by the simulator
and the MPC model’s inputs and outputs are extracted as training data. In total, 15, 000
data points are used in training and 2500 data points are held out for testing.

Several machine learning models are trained to learn the relocation decisions. The model
inputs are expected demand Dit =

∑
j∈Z Dijt, expected idle vehicles Vit, and expected

vehicle shortage (Dit − Vit) in each zone i and epoch t. The target is zone-level relocation
decisions a = [xdi , x

o
i]i∈Z . All the models use MSE loss with l1-regularization. Their loss on

the testing set are given in Table 2. Of the tested models, multilayer perceptron (MLP),
long short-term memory (LSTM), and Transformer achieve similar level of accuracy and
outperform Lasso regression. The MLP is selected as the final optimization-proxy because it
has fewer parameters. Specifically, the MLP has two hidden layers of (128, 128) units with
hyperbolic tangent (tanh) activation functions. It is trained in Pytorch by Adam optimizer
with batch size 32 and learning rate 10−3 (Kingma & Ba, 2015; Paszke et al., 2019). The
loss of each zone is reported in Figure 3. The errors for all zones are reasonable, although
a few zones exhibit higher losses than others. In addition, the optimization proxy achieves
similar performance as the MPC in simulation: the detailed results are presented in Section
6.4. Overall, these results indicate that the optimization proxy successfully learned the
MPC decisions.

6.3 Reinforcement Learning

The optimization proxy is refined by reinforcement learning in 2017/05. Since the number
of riders in most daily instances ranges from 22,000 to 29,000, four instances with [23960,
25768, 27117, 28312] riders are selected and the policy is trained on these representative
instances. To stabilize training, it is common practice to subtract a baseline from the reward
to distinguish good and bad actions when computing the policy gradient:

∇θJ(θ) ≈ 1

N

N∑
i=1

Te∑
t=0

(Git − bit)∇θ logPπθ(a
i
t|sit) (7)

where bit is the baseline representing the expected reward since t following the current policy.
(Git − bit) therefore measures the ”advantage” of this trajectory’s decisions over the current

997

Yuan, Chen, & Van Hentenryck

policy. The baseline bit can be estimated in many different ways (Weng, 2018). This paper
employs the sample average method: it samples K = 10 trajectories for each training
instance and takes the sample average as baseline, i.e., bit = 1

K

∑K
k=1G

ik
t if trajectories for

instance i are indexed by {i1, ...iK}. Therefore each policy gradient update is based on
4K = 40 sample trajectories.

Algorithm 1 with the baseline is run with α = 0.005, β = 0.75 and γ = 0.75. The
sampling variance Σii is taken as 0.05a0.75

i where a0.75
i is the 75th percentile of action ai in the

supervised-learning data set (recall that ai is a prediction label for the optimization proxy).
To make sure that RL does not overfit on the selected representative instances, the policy is
validated on other instances in 2017/05 after each training episode and the algorithm stops
when the average reward on the validation set fails to improve for 5 consecutive episodes.
The training and validation curves (broken down into waiting and relocation time) in Figure
4 show that the relocation costs drop dramatically, while the waiting times stay about the
same. The algorithm converges in 55 episodes: the training is significantly more efficient
computationally than pure reinforcement learning algorithms, which typically converge in
tens of thousands of episodes.

6.4 Evaluation Results

The trained policy is evaluated on weekdays in 2017/06. The proposed RLOP approach is
compared with the optimization proxy, as well as the MPC optimization. Pure reinforcement
learning without an initial policy seeded with the optimization proxy (Algorithm 1 without
step 1) fails to converge due to the high-dimensional state and action spaces: it is too
expensive computationally to be applied in this setting. Figure 5 reports the average rider
waiting time and the average vehicle relocation time of each weekday in 2017/06, and
Table 3 reports their monthly averages as well as model run times. The optimization
proxy and the MPC optimization achieve similar performance on all daily instances. The

Figure 3: MPC Decision Predictions: Each Point in the Plot Denotes the Average Number
of Relocations and the Mean Absolute Error of Relocation Predictions for a Zone.

998

Vehicle Relocation by RLOP

Figure 4: Training and Validation Curve of Reinforcement Learning (Normalized).

Avg Wait Time (mins) Avg Reloc. Time (mins) Avg Run Time (s) Max Run Time (s)

MPC 2.21 4.03 1.603 9.729
Opt. Proxy 2.18 4.06 0.016 0.048

RLOP 2.21 3.62 0.019 0.338

Table 3: Summary Statistics of Tested Models.

optimization proxy did slightly better than the MPC on certain metrics since the MPC
optimization is based on an approximation of the ride-sharing system - its decisions are
optimal for the approximation but not necessarily for the real system. The optimization
proxy’s performance probably benefits from the small deviation caused by the prediction.
RLOP achieves similar rider waiting time as the other two models but with less relocation
cost. In particular, its relocation time is 10.1% lower than the MPC and 10.8% lower than
the optimization proxy. The waiting time performance of the MPC and optimization proxy
are probably already near-optimal, leaving little room for improvements. Moreover, the
optimization proxy and the RLOP are much faster than the MPC and are guaranteed to
run in polynomial time. The longest MPC instance takes 9.73s, almost exceeding the 10s
solver time limit. The optimization proxy and the RLOP framework take fractions of a
second on all instances. The main computational cost of the RLOP framework lies in the
offline stage where data for supervised learning and RL are generated through simulation.
Nevertheless, RLOP is still more efficient than RL which requires a prohibitively large
number of samples to train starting from a random policy. Overall, these promising results
show that the RLOP is an efficient and effective approach for idle vehicle relocation in
real-time settings.

7. Conclusion

Preemptively relocating idle vehicles is crucial for addressing demand-supply imbalance
that frequently arises in the ride-hailing system. Current mainstream methodologies - opti-
mization and reinforcement learning - suffer from computational complexity in either offline

999

Yuan, Chen, & Van Hentenryck

Figure 5: Evaluation Results of the RLOP, the Optimization Proxy, and the MPC Opti-
mization in 2017/06.

training or online deployment. This paper proposes a reinforcement learning from Opti-
mization Proxy (RLOP) approach to alleviate their computational burden and search for
better policies. It trains a machine-learning policy to approximate an optimization model
and then refines the policy by reinforcement learning. To reduce dimensionality and spar-
sity of the prediction and action space, this paper presents an aggregation-disaggregation
procedure which predicts relocation actions at the aggregated level and disaggregates the
predictions via a polynomial-time optimization. On the New York City dataset, the RLOP
approach achieves significantly lower relocation costs and computation time compared to
the optimization model, while pure reinforcement learning is too expensive computationally
for practical purposes.

A key assumption behind the RLOP framework is the ability to forecast future demand
and supply accurately, which may be challenging due to the volatile nature of real-time
ride-hailing dynamics. Therefore, future work should focus on designing solutions that are
robust to input uncertainty, possibly exploring stochastic optimization and robust training
techniques.

Acknowledgments

This research is partly supported by NSF Awards 2112533 and 1854684. Many thanks to
Professor Yao Xie for insightful comments on the paper.

References

Guériau, M., & Dusparic, I. (2018). Samod: Shared autonomous mobility-on-demand us-
ing decentralized reinforcement learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pp. 1558–1563.

Gurobi Optimization (2021). Gurobi optimizer reference manual..

1000

Vehicle Relocation by RLOP

Holler, J., Vuorio, R., Qin, Z. T., Tang, X., Jiao, Y., Jin, T., Singh, S., Wang, C., & Ye, J.
(2019). Deep reinforcement learning for multi-driver vehicle dispatching and reposi-
tioning problem. In Wang, J., Shim, K., & Wu, X. (Eds.), 2019 IEEE International
Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, pp.
1090–1095. IEEE.

Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., & Pavone, M. (2017). Data-
driven model predictive control of autonomous mobility-on-demand systems. CoRR,
abs/1709.07032.

Jiao, Y., Tang, X., Qin, Z., Li, S., Zhang, F., Zhu, H., & ping Ye, J. (2021). Real-
world ride-hailing vehicle repositioning using deep reinforcement learning. ArXiv,
abs/2103.04555.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y., & LeCun, Y. (Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Liang, E., Wen, K., Lam, W. H. K., Sumalee, A., & Zhong, R. (2021). An integrated rein-
forcement learning and centralized programming approach for online taxi dispatching..

Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018). Efficient large-scale fleet management via
multi-agent deep reinforcement learning. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’18, p.
1774–1783, New York, NY, USA. Association for Computing Machinery.

Mao, C., Liu, Y., & Shen, Z.-J. M. (2020). Dispatch of autonomous vehicles for taxi services:
A deep reinforcement learning approach. Transportation Research Part C: Emerging
Technologies, 115, 102626.

Miao, F., Han, S., Hendawi, A. M., Khalefa, M. E., Stankovic, J. A., & Pappas, G. J.
(2017). Data-driven distributionally robust vehicle balancing using dynamic region
partitions. In 2017 ACM/IEEE 8th International Conference on Cyber-Physical Sys-
tems (ICCPS).

Miao, F., Lin, S., Munir, S., Stankovic, J., Huang, H., Zhang, D., He, T., & Pappas, G.
(2015). Taxi dispatch with real-time sensing data in metropolitan areas — a receding
horizon control approach. IEEE Transactions on Automation Science and Engineer-
ing, 13.

NYC (2019). Nyc taxi & limousine commission - trip record data.. Accessed: 2020-10-01.

Oda, T., & Joe-Wong, C. (2018). Movi: A model-free approach to dynamic fleet manage-
ment. In IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
pp. 2708–2716.

OpenStreetMap (2017). Planet dump retrieved from https://planet.osm.org.. Accessed:
2020-10-01.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Wallach,

1001

Yuan, Chen, & Van Hentenryck

H., Larochelle, H., Beygelzimer, A., d’Alche Buc, F., Fox, E., & Garnett, R. (Eds.),
Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Asso-
ciates, Inc.

Ramı́rez, J., Yu, W., & Perrusqúıa, A. (2021). Model-free reinforcement learning from
expert demonstrations: a survey. Artificial Intelligence Review, 1 (1).

Rebman, K. R. (1974). Total unimodularity and the transportation problem: a generaliza-
tion. Linear Algebra and its Applications, 8 (1), 11–24.

Riley, C., Legrain, A., & Van Hentenryck, P. (2019). Column generation for real-time
ride-sharing operations. In Rousseau, L.-M., & Stergiou, K. (Eds.), Integration of
Constraint Programming, Artificial Intelligence, and Operations Research, pp. 472–
487. Springer International Publishing.

Riley, C., Van Hentenryck, P., & Yuan, E. (2020). Real-time dispatching of large-scale
ride-sharing systems: Integrating optimization, machine learning, and model predic-
tive control. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pp. 4417–4423. International Joint Conferences on
Artificial Intelligence Organization.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T., & Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529, 484–489.

Sutton, R., & Barto, A. (2018). Reinforcement Learning: An Introduction. The MIT Press.,
Cambridge, Massachusetts.

Tsao, M., Iglesias, R., & Pavone, M. (2018). Stochastic model predictive control for au-
tonomous mobility on demand. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pp. 3941–3948.

Verma, T., Varakantham, P., Kraus, S., & Lau, H. C. (2017). Augmenting decisions of taxi
drivers through reinforcement learning for improving revenues. In ICAPS.

Wen, J., Zhao, J., & Jaillet, P. (2017). Rebalancing shared mobility-on-demand systems:
A reinforcement learning approach. In 2017 IEEE 20th International Conference on
Intelligent Transportation Systems (ITSC), pp. 220–225.

Weng, L. (2018). Policy gradient algorithms. In lilianweng.github.io/lil-log.

Yuan, E., & Van Hentenryck, P. (2021). Real-time pricing optimization for ride-hailing
quality of service. In Zhou, Z. (Ed.), Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada,
19-27 August 2021, pp. 3742–3748. ijcai.org.

1002

