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Abstract

The recent rise of machine learning (ML) has been leveraged by practitioners and re-
searchers to provide new solutions to an ever growing number of business problems. As
with other ML applications, these solutions rely on model selection, which is typically
achieved by evaluating certain metrics on models separately and selecting the model whose
evaluations (i.e., accuracy-related loss and/or certain interpretability measures) are opti-
mal. However, empirical evidence suggests that, in practice, multiple models often attain
competitive results. Therefore, while models’ overall performance could be similar, they
could operate quite differently. This results in an implicit tradeoff in models’ performance
throughout the feature space which resolving requires new model selection tools.

This paper explores methods for comparing predictive models in an interpretable man-
ner to uncover the tradeoff and help resolve it. To this end, we propose various methods
that synthesize ideas from supervised learning, unsupervised learning, dimensionality re-
duction, and visualization to demonstrate how they can be used to inform model developers
about the model selection process. Using various datasets and a simple Python interface,
we demonstrate how practitioners and researchers could benefit from applying these ap-
proaches to better understand the broader impact of their model selection choices.

1. Introduction

In recent years, there has been a surge in the application of machine learning (ML) algo-
rithms to solve core business problems in information systems (Bose & Mahapatra, 2001;
Fu, Huang, & Singh, 2021; Shin et al., 2020; Xia Liu, Li, & Xu, 2021), operations (Choi,
Wallace, & Wang, 2018; Mǐsić & Perakis, 2020; Qi, Mak, & Shen, 2020), marketing (Brei
et al., 2020; Ma & Sun, 2020), accounting (Bertomeu, 2020), and finance (Dixon, Halperin,
& Bilokon, 2020; Emerson, Kennedy, O’Shea, & O’Brien, 2019; Rundo, Trenta, di Stallo,
& Battiato, 2019). These include problems in pricing, revenue management, and supply
chain management. An important step in the development of predictive models is model
selection, which refers to processes and techniques for choosing the best model from a set of
candidate models, often with the goal of optimizing prediction accuracy. This can be done
for the purposes of selecting a model among different classes, such as between classification
trees or support vector classification models (Friedman, Hastie, Tibshirani, et al., 2001), and
for hyper-parameter tuning (i.e., selecting the best model within a family of models, such
as decision tree classifiers with different tree depths or linear models with different number
of linear coefficients). In both cases, model selection is usually performed by optimizing
quantifiable metrics that act as a proxy to or bound the generalization error, which is the
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measure of how well a model trained on one dataset (the training set) predicts the outcome
on a new dataset (the validation or test sets). This is achieved with techniques such as cross
validation (CV) or by using information criteria such as the Akaike information criterion
(AIC) or Bayesian information criterion (BIC) criteria (see Claeskens & Hjort, 2008).

Traditionally, the common wisdom was that since interpretability tradeoffs flexibility,
as a consequence it also tradeoffs performance. Figure 1 represents this view (James, Wit-
ten, Hastie, & Tibshirani, 2013). This figure contains a collection of models that vary in
their interpretability and flexibility. The simpler models (e.g., Lasso) appear on the top
left (low flexibility and high interpretability), and the increasingly more complex and less
interpretable models appear towards the bottom right. The figure conveys the intuition
that flexbility and therefore performance comes at a cost–when flexibility improves, inter-
pretability worsens.

Figure 1: A typical illustration of the interpretability–flexibility tradeoff (James et al.,
2013).

However, recent studies (e.g., Dong & Rudin, 2020; Fisher, Rudin, & Dominici, 2019;
Semenova, Rudin, & Parr, 2020) have challenged this view, suggesting that there are often
times multiple models that can be trained that are comparable in their overall performance.
This was termed the Rashomon set phenomenon by Breiman (2001). As an example,
consider Figure 2, which compares the prediction accuracy on four datasets (described
in Appendix B). The figure is partitioned into four subplots corresponding to the datasets:
in each subplot, the X-axis represents models (detailed in Appendix A), while the Y-axis
represents the mean and standard deviation of the CV accuracy. For each dataset, 15
models are compared, 10 of which are standard models (shown in red) and five are more
modern interpretable models (shown in blue). We observe that the performance of the
best models for each of the datasets is often quite similar in terms of accuracy. Therefore,
simply computing the CV accuracy is not informative for deciding how to choose among
the models.
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(a) Adult dataset (b) Bank Marketing dataset

(c) Mushroom dataset (d) FICO (binary) dataset

Figure 2: The CV accuracy of 10 standard box models (red, 10 leftmost models along the
X-axis) and five interpretable models (blue, five rightmost models along the X-axis). The

intervals represent the mean ± one standard deviation.

Note that while the models displayed in Figure 2 are comparable in terms of their ac-
curacy, they are of different functional forms. For example, for the FICO (binary) dataset,
the linear (logistic regression), generalized additive (EBM), non-parametric (SVM), and
neural network (MLP) models achieve similar accuracy, yet operate in fundamentally dif-
ferent ways. This is illustrated in Figure 3, which shows the pairwise agreements between
predictions of different models on the Bank Marketing dataset. The X-axis and Y-axis list
a collection of different models, and the numbers in the table indicate the percentage of the
agreement on each pair of models’ predictions. Specifically, using the test data, we make
predictions for all models, and for each pair of models, which corresponds to an entry in the
matrix, we compute the percentage of predictions on which the models predict the same
labels. For example, the value 0.98 in the cell corresponding to the models LR and MLP
means that on 98% of the test set observations, the model LR agrees with the model MLP
in terms of their predictions. The figure also shows (on the left column and top row) the
test accuracy of each model by comparing the models to the actual labels (denoted as Y ).
The level of agreement varies across pairs of models, and multiple models (ADB, LR, LSVC,
MLP, EBM) achieve the highest test accuracy of 74% (on the left column). These models
are similar in terms of their accuracy, but are otherwise quite different—tree ensembles
(ADB), linear models (LR and LSVC), neural networks (MLP), and generalized additive
models (EBM) each describe a different functional relation between input and output vari-
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ables. We note in passing that a similar intuition is conveyed by computing the mutual
information (MacKay, 2003) between pairs of models (see Figure 24 in Appendix F).

Figure 3: A heatmap showing the model prediction agreement level for the FICO (binary)
dataset. A value of 0.98 in the cell (LR, MLP) indicates that the models LR and MLP

agree on 98% of their predictions on the test data.

This observation raises the following question: how should one select a model when
several models are equivalent in terms of performance, but are actually different in terms
of their inner working? The latter implies that these models tradeoff prediction accuracy
across various parts of the feature space. As an example of the tradeoff, consider Figure 4,
which illustrates two different linear models that achieve the same prediction accuracy, each
misclassifying two observations. Model 1 predicts “+” in regions A and D, and “-” in regions
B and C. Model 2 predicts “+” in regions A and B, and “-” in regions C and D. We see
that Model 1 and Model 2 are identical in regions A and C, but make opposite predictions
in regions B and D. Therefore, they err differently in different parts of the feature space.
While this difference does not affect the overall accuracy, it could have a dramatic impact
on individuals and on how different parts of the population are affected by the models.
As an example, for estimating credit risk, there could be two models that are identical in
their overall performance and in their predictions on 90% of the population. However, on
two sub-populations (regions B and D) the models predict differently, and therefore make
different types of errors. As another example, consider medical diagnosis. Two models
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could be similar in their overall performance, but each of the models could make different
types of errors (false positive and false negative) on different groups of patients. Unveiling
the trade-off when choosing between models is important to understand the broader impact
of model selection decisions; that is, to clarify how the predictive models manage risk across
the population, and ideally, to identify their societal effects prior to deployment.

Figure 4: Two linear models with similar accuracy that predict differently throughout the
feature space.

More specifically, we ask and attempt to answer the following research questions: How
and whether comparing predictive models can be done in an interpretable manner to expose
the implicit model selection tradeoff? In the example of linear models, one could represent
the model differences using the polyhedra that define the respective parts of the feature
space. However, can this be done in the general case of non-linear, possibly non-parametric,
models? Can this be done when models are not explicitly given, but only their predictions?
Moreover, can this be done in an interpretable manner? If the answers to the above questions
is yes, then we might be able to make better model selection decisions by understanding
how predictive models affect the population differently and how risk is managed.

Results and contributions. Our paper studies a fundamental problem in ML that
greatly impacts practices in management sciences, and develops a practical and compre-
hensive tool-set to solve it. Specifically,

1. We introduce a new methodology for comparing models, which we call interpretable
comparative meta-models. Given the predictions of two models, it produces a meta-
model that describes the parts of the feature space in which the models make similar
and different predictions.

2. We develop new visualization methods for comparing two or more models. For exam-
ple, the visual model landscapes plot places on a two dimensional plane a collection
of models that show which models are most similar to each other. To provide a
comprehensive treatment of the problem, we also discuss and name some straightfor-
ward methods which we find useful (to avoid repetitions, we elaborate on each of the
methods in the body of the work in dedicated sections). The methods are based on
visualization techniques (e.g., scatter plots, heatmaps, and dendrograms), supervised
learning algorithms (in particular, interpretable ML models), unsupervised learning
methods (e.g., clustering and dimensionality reduction), as well as other standard ML
methods such as feature importance computation and confusion matrices.
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3. We demonstrate how these methods can be used for various datasets from the UCI
ML Repository (Dua & Graff, 2017). We also conduct a case study in which we apply
the methods in the context of recidivism risk prediction to show how the methods we
developed can be used to understand the implications of using different models.

4. We make the code available online to facilitate exploration and adoption (see Ap-
pendix E).

Organization. The rest of the paper is structured as follows. In Section 2, we review
related work. In Section 3, we introduce notation that will be helpful to describe the
methods. We then continue to discuss each of the methods: interpretable comparative
meta-models (Section 4), visual model landscapes (Section 5), visual confusion matrices
(Section 6), and visual comparative matrices (Section 7). In Section 8, we present a case
study using the COMPAS dataset (Larson, Mattu, Kirchner, & Angwin, 2016) on criminal
recidivism in which we show how our methods can be used to explain differences between
models. Finally, we conclude the paper in Section 9 with a discussion and suggestions for
future work.

2. Literature Review

There are four main bodies of work related to our paper: analytics as a domain area of ML,
model selection as we study a general model selection problem, the Rashomon set theory
(which is concerned with the existence of multiple top-performing models), and interpretable
ML (whose methods we employ).

Analytics. Analytics can be defined as the “... science of using data to build models that
add value to decisions made by companies, insitutions and individuals.” (Bertsimas, Allison,
& Pulleyblank, 2016). In many business problems, the goal is often to optimize decisions us-
ing data or ML models as primitives (Ban, El Karoui, & Lim, 2018; A. Elmachtoub, Liang,
& McNellis, 2020; A. N. Elmachtoub & Grigas, 2021; Ferreira, Lee, & Simchi-Levi, 2016;
Guo, Grushka-Cockayne, & De Reyck, 2021; J. Sun, Zhang, Hu, & Van Mieghem, 2021;
K. Wang et al., 2021). However, in many business problems, prediction itself is the main
objective. For example, the prediction of waiting time (Ibrahim, 2018; Kuo et al., 2020;
Y. Zhang, Nguyen, & Zhang, 2013), performance prediction (Bertsimas, Brynjolfsson, Re-
ichman, & Silberholz, 2015; Melançon, Grangier, Prescott-Gagnon, Sabourin, & Rousseau,
2021), medical outcomes (Bertsimas, O’Hair, Relyea, & Silberholz, 2016; Center, 2021; Lee
et al., 2016; Shah et al., 2019), demand forecasts (Bertsimas, Pauphilet, Stevens, & Tandon,
2021; Lin et al., 2020), etc. In the latter examples, and especially when prediction is an end
and not a primitive of an optimization problem, understanding the implicit model selection
tradeoff is important. This could potentially help uncover performance issues and biases
while improving the overall quality of the resulting model. See Choi et al. (2018), Qi et al.
(2020), and Mǐsić and Perakis (2020) for recent surveys on operations analytics literature.

Model selection. The literature on model selection studies methods for selecting a model
from a candidate set of models. This is typically conducted by balancing a loss function
(e.g., log-likelihood) with an additional term for complexity, where the complexity term is
added for the purposes of avoiding overfitting and improving interpretability. Claeskens and
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Hjort (2008) present an overview of selection criteria such as AIC, BIC, the deviance infor-
mation criterion (DIC), the focused information criterion (FIC), the likelihood ratio test,
etc. Naturally, different selection criteria lead to training different models as the definition
of optimal solution varies. Rust, Simester, Brodie, and Nilikant (1995) argued that com-
bining multiple criteria does not outperform a single criterion. The authors recommended
using simpler, less computationally intensive criteria, such as the Schwarz criterion, for
model selection. Shen and Ye (2002) proposed an adaptive model selection criterion that
employs a data-driven complexity penalty instead of traditional non-adaptive selection cri-
teria. Busemeyer and Wang (2000) offered a “generalization criterion” for model selection
that tends to select simpler models that generalize better. This method consider training
and validation samples from completely different experimental designs, instead of the same
design for all folds as in cross-validation, in order to assess the generalizability of models,
with the assumption of parameter invariance. In addition to regular and robust model se-
lection criteria, Rao, Wu, Konishi, and Mukerjee (2001) surveyed various model selection
methods in the literature including hypothesis testing, minimization of prediction error,
cross-validation, bootstrapping, the Bayesian approach, etc. Kadane and Lazarand (2004)
reviewed traditional methods for choosing among models that are related to feature impor-
tance analysis. For example, computing the impact on the SSE (sum of squared errors)
when excluding some variables in the original model; by using forward selection that starts
from an empty set and adds variables with the highest importance one by one from the
variable set without replacement; by using backward elimination that starts from a full set
and subtracts variables with the lowest importance; by using step-wise selection process
that combines forward and backward methods; or by selecting a set of variables from the
feature space based on some other criteria and using these features to compare competing
models.

More recently, researchers developed interactive visual tools to aid users with model
selection decisions. Ren, Amershi, Lee, Suh, andWilliams (2016) proposed Squares, which is
a visual tool to compare multiclass classifiers based on their predictions of each class. D. Sun
et al. (2020) proposed DFSeer, an interactive tool that ranks models using adjustable weights
of various performance metrics and allows drilling-down to observe model performance at
the cluster or item level (the information available on each item is a time series). Their
primarily goal is to perform stacking (Wolpert, 1992), that is, to decide how to partition
the feature space in order to assign a suitable model to each partition. J. Zhang, Wang,
Molino, Li, and Ebert (2018) introduced Manifold, a tool that consists of model comparison
plots that compare the scores predicted by each model for each label. The predictions
are organized in a confusion matrix based on whether the models agree or disagree on
the predictions. Additional plots provide information about the distribution of feature
attribution by each model. Finally, Narkar, Zhang, Liao, Wang, and Weisz (2021) discussed
a tool called Model LineUpper, which compares models based on summary statistics of their
performance, distribution of feature importance, and prediction scores.

While our work utilizes the idea of pairwise comparison, our techniques are conceptually
and technically different from that of the previous studies. The guiding principle of our solu-
tions attempts to elicit how models differ throughout the feature space. To our knowledge,
our comparative meta-model and model landscape plots are novel, as well as other types of
model comparison plots that synthesize dimensionality reduction and confusion matrices.
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Finally, we briefly note that the topic of debugging machine learning models has some
bearing to our work as it deals with model inspection (see, e.g., Cadamuro, Gilad-Bachrach,
& Zhu, 2016; Chakarov, Nori, Rajamani, Sen, & Vijaykeerthy, 2016; Lourenço, Freire, &
Shasha, 2019; X. Zhang, Zhu, & Wright, 2018). The focus in this line of work, however, is
quite different, as it aims to understand when a model makes wrong predictions and how
to correct it. For example, by identifying the set of training samples that are responsible
for prediction errors and improving the model performance by altering this subset. Our
paper, on the other hand, aims to determine which sub-populations do two models trade
off in terms of their predictions.

Rashomon set theory. Breiman (2001) coined the term Rashomon set as a set of pre-
dictive models that perform equally well. Recently, researchers developed the Rashomon
set theory to better understand this phenomenon, which challenges the common view that
complexity and performance must be traded-off with interpretability. They showed that
there is often not a single model that clearly dominates the rest of the hypothesis space;
rather, there could be multiple near-optimal candidate models. Building on existing mea-
sures of variable importance and the fact that different models place different importance
on variables of interest, Dong and Rudin (2020) proposed a way to evaluate Rashomon sets
by introducing variable importance clouds which are mappings of variable importance to
models within the Rashomon set to provide further comparison measures of models that
perform equally well. Fisher et al. (2019) proposed the model class reliance (MCR) which
returns a range (upper and lower bound) for the variable importance in near-optimal mod-
els within a Rashomon set as a novel approach to providing a comprehensive explanation.
Semenova et al. (2020) introduced the Rashomon ratio (the fraction of models from the
hypothesis space that are in the Rashomon set) as a measure for the simplicity of models
in the hypothesis space. According to the authors, a high Rashomon ratio (i.e., a compara-
tively large Rashomon set) indicates that the candidate set contains many well-performing
simple models with low loss. The authors propose to generate the Rashomon curve from
the Rashomon ratio, and use it to indicate the optimal balance of fit and complexity.

Our work is related to the Rashomon set phenomenon, but our focus is different. Rather
than understanding why it happens and how to take advantage of it when dealing with a spe-
cific hypothesis class, we develop methods to compare arbitrary models in an interpretable
manner.

Interpretable machine learning. The field of interpretable ML seeks to develop trans-
parent and simple predictive models that can be understood and used by relevant stake-
holders. According to Rudin et al. (2021), “an interpretable machine learning model obeys
a domain-specific set of constraints to allow it to be more easily understood by humans.
These constraints can differ dramatically depending on the domain.” One of our methods
for model comparison utilizes interpretable ML models. For our application, it is important
to be able to interpret the inner working of ML models that are used to infer how com-
parable models differ. Examples for some of the recent work on interpretable ML models
can be found in the work of Bennetot et al. (2021); Doshi-Velez and Kim (2017, 2018); Du,
Liu, and Hu (2019); Holzinger, Saranti, Molnar, Biecek, and Samek (2022); Molnar (2020);
Murdoch, Singh, Kumbier, Abbasi-Asl, and Yu (2019).
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To our knowledge, this paper is the first work to develop methods for interpretable
comparison of predictive models.

3. Problem Formulation and Experimental Setup

In this section, we introduce notation that we use to formalize the problem and describe
the experimental setup.

3.1 Notation and Problem Formulation

Denote by X a data matrix consisting of N observations {xi}Ni=1 that are characterized by
P features (that is, xi ∈ RP ), and a corresponding vector of labels Y. We consider binary
classification problems where each label yi in Y satisfies yi ∈ {0, 1} (later in Section 8, we
demonstrate how to apply methods for comparison of classification models to regression
models). We are given vectors with predictions Yk of M classification models {hk}Mk=1,
where hk : RP → {0, 1}, and the prediction of model hk for observation xi is denoted as
yk
i = hk(xi). To simplify the exposition, we will at times simply refer to model hk as k

when it is clear from the context.

Our goal is to derive insights into how the models {hk}Mk=1, and in particular how every
pair of models hj and hk, relate to each other—that is, when they predict similarly and
differently. To this end, we define the “joint prediction” as the combined predictions by
two compared models (i.e., {00, 01, 10, 11}), and define the four joint labels Y jk

00 , Y
jk
01 , Y

jk
10 ,

and Y jk
11 . The vector Yjk

00 represents labels of observations for which both models j and k

predict 0; that is, element i of Yjk
00 is defined as 1[yji = 0 AND yki = 0]. Similarly, the vector

Yjk
01 represents labels of observations where model j predicts 0 and model k predicts 1.

Let T (·) denote the matrix transpose operator, and [M ] the set {1, 2, . . . ,M}. We
define the following matrices to facilitate the discussion on the application of various ML
algorithms:

• The prediction matrix YS . For a set of models S ⊂ [M ], define the prediction matrix
YS as the matrix of predictions by the respective models. That is, the dimensions of
YS are N by |S|, and YS

i,k is equal to hk(xi).

• Dimensionality reduction transformation DRALG(X). Dimensionality reduction (DR)
algorithms transform data matrices into a lower-dimensional representation that pre-
serves some structure in the data. Given a DR algorithmALG, we denote by DRALG(X)
the 2-dimensional output of the algorithm when applied to the data matrix X. Note
that any matrix may be used as an input to the algorithm, including YS .

• PWacc(Y
S) is an operator that, given a matrix of predictions YS , returns the sim-

ilarities in the predictions between pairs of models. PWacc(Y
S)k,l is equal to the

percentage of observations for which the predictions of models hk and hl agree:

PWacc(Y
S)k,l =

|{i∈[N ]:hk(xi)=hl(xi)}|
N .
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3.2 Numerical Experiments

We next describe the datasets, training process, classification models, hyperparameters, and
the DR methods used in our experiments.

Datasets. We use datasets from the UCI Machine Learning Repository (Asuncion &
Newman, 2007) and FICO’s Explainable Machine Learning Challenge (FICO, 2018). The
description of the specific datasets used in this paper can be found in Appendix B.

Training process. We apply a standard model training and evaluation process of ran-
domly partitioning each of the datasets into a 80% training set and a 20% test set. We
evaluate the training error using five-fold CV on the training set and evaluate the test error
on the test set.

Preprocessing methods. We tested different preprocessing methods such as the min-
max scaler, standardization, and KBins discretizer (Pedregosa et al., 2011) and compared
the CV and test accuracy of the models attained using each method (the results are pre-
sented and discussed in later sections). The missing values in our datasets only affected
categorical variables. These were binarized, and additional binary features were added to
indicate that the corresponding feature value is missing (this is commonly done when miss-
ing values are informative and dropping them may result in performance loss). Some of
our models (see Appendix A) require binarized datasets, while others work with continuous
and categorical variables. In general, different models and scaling methods work better
for different datasets, and there is no single dominating scaling method. For simplicity, in
training the 10 standard models (ADB, DTC, GNB, GP, KNN, LR, LSVC, MLP, RBFSVC,
RF) and one interpretable model (EBM), we used unscaled datasets which mostly works
well for these models. For training the other four interpretable models (BRCG, CORELS,
OSDT, and SLIM) that require discretized datasets, we created a decision tree discretizer
that for each feature individually trains a decision tree classifier to predict the label and
use the resulting tree structure to determine the intervals of each feature which define the
respective binary features (see also Chen et al., 2022; Galli, 2021; Niculescu-Mizil et al.,
2009, for examples of this technique).

Hyperparameter tunning. We apply hypterparameter tuning using five-fold CV to
determine the configuration with the best prediction accuracy for each model. We tune the
typical hyperparameters of each model. The specific values used as hyperparameters for
each model are described in Appendix C.

Performance measures. We collect information on the average and standard deviation
of the CV accuracy, recall, precision, prediction, prediction confidence scores (e.g., proba-
bility for a certain class), and confusion matrix of each model.

Dimensionality reduction visualization methods. We experimented with the fol-
lowing DR methods: (Linear) principal component analysis (PCA) (Hotelling, 1933), (Non-
linear) isometric mapping (Isomap) (Tenenbaum, De Silva, & Langford, 2000), uniform
manifold approximation and projection (UMAP) (McInnes, Healy, & Melville, 2018), and
a DR method based on triplets (Trimap) (Amid & Warmuth, 2019). However, we found
that PCA works better for our datasets, so we mainly used it for visualization. We note
in passing that, in general, other DR methods may also be employed, including specialized
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methods that were designed primarily for visualization (e.g., PaCMAP, Y. Wang, Huang,
Rudin, & Shaposhnik, 2021). Even general purpose auto-encoders (e.g., the Variational
Autoencoder of Kingma & Welling, 2013) can also be used for dimensionality reduction.
Finally, we note that the DR methods were applied to the data matrices but also to some
of the auxiliary matrices defined in the previous section.

With the above definitions in mind, we introduce four approaches to visualizing model
comparison, with each presented in a separate section.

4. Interpretable Comparative Meta-models

We call the first approach interpretable comparative meta-models (ICMs). The general
idea behind it is that for a pair of models, we can train a meta-model, which is simply
a model trained on the joint predictions of the compared models. The interpretation of
the meta-model can be used to infer when the compared models make similar or different
predictions. This approach relies on supervised learning, and in particular, on interpretable
ML models.

Formally, given two models hj and hk, we compute one of the joint labels (e.g., Y jk
01 ), and

train an interpretable ML model to predict it. Assuming that the meta-model is sufficiently
accurate, it can then be used to explain when two models make a certain joint prediction
(e.g., when model hj predicts 0 and model hk predicts 1). Note that one can train any type
of model to learn any of the joint labels, or more generally, a Boolean function of the two
labels.

In the following experiments that illustrate this approach, we trained 15 ML models
using various datasets and computed the models’ predictions both for the training set and
on the test set. Since all the datasets have binary labels, the joint labels are denoted by 00,
01, 10, and 11. We then further defined binary classification tasks based on the joint labels.
For example, we denote as “01-mismatch vs. rest” the classification task of characterizing
the joint prediction 01. The term “mismatch” indicates that Model’s 1 prediction does not
match the prediction of Model 2, and that we are interested in understanding when the
particular mismatch in which Model 1 predicts 0 and Model 2 predicts 1 occurs. Similarly,
we define the classification tasks: “00-match vs. rest” (to identify when both models agree
on predicting 0), “10-mismatch vs. rest” (to identify when Model 1 predicts 1 and Model 2
predicts 0), “11-match vs. rest” (to identify when both models predict 1), and “match vs.
mismatch” (to understand when the two models predict the same). Based on these binary
labels, we trained various interpretable ML models to predict them.

We provide examples of two interpretable models, CORELS and BRCG, and present
two additional models, OSDT and EBM, in Appendix G.1.

Example 1: CORELS

CORELS (Certifiable Optimal Rule Lists; Angelino, Larus-Stone, Alabi, Seltzer, & Rudin,
2017) is an interpretable rule list model. We train it on the FICO dataset to compare the
models BRCG and OSDT to explain the 01-mismatch. CORELS is used to explain when
BRCG predicts 0 (low risk of customer defaulting on a loan) and OSDT predicts 1 (high
risk). The rules describing the comparative model and its associated confusion matrix are
provided in Figure 5.

839



He & Shaposhnik

Predicted rest Predicted 01-mismatch

Actual rest 1608 15

Actual 01-mismatch 0 352

RULELIST:
if (External Risk Estimate ≥ 71) and (Delinquency) then predict “01-mismatch”
else predict rest

Figure 5: CORELS confusion matrix and rulelist for BRCG vs. OSDT “01-mismatch” on
the FICO dataset. “Delinquency” indicates that the information about the number of

months since the most recent delinquency is not missing.

The confusion matrix shows that the rule list model serves as an accurate proxy for
the 01-mismatch prediction task. We can therefore infer that the model BRCG predicts a
low-risk of defaulting and OSDT predicts a high-risk of defaulting whenever the feature Ex-
ternalRiskEstimate is greater than 71 and the feature MonthsSinceMostRecentDelinquency
is positive. Since these features are interpretable (for more information, see FICO, 2018),
this approximate explanation provides some insights about when the two models predict
differently.

Similarly, a CORELS model can be trained to predict the 10-mismatch between the two
models, as shown in Figure 6.

Predicted rest Predicted 10-mismatch

Actual rest 1692 0

Actual 10-mismatch 76 207

RULELIST:
if (External Risk Estimate < 71) and (No Delinquencies) then predict “10-
mismatch”
else predict rest

Figure 6: CORELS confusion matrix and rulelist for BRCG vs. OSDT “10-mismatch” on
the FICO dataset.

Example 2: BRCG

BRCG (Boolean Decision Rules via Column Generation; Dash, Günlük, & Wei, 2018) gen-
erates Boolean rules in either disjunctive normal form (DNF, OR-of-ANDs, equivalent to
decision rule sets) or conjunctive normal form (CNF, AND-of-ORs) for classification tasks.
The comparative model that explains the 01-mismatch between the models LSVC and SLIM
for the FICO dataset and its corresponding confusion matrix can be seen in Figure 7.

We see that the meta-model is quite accurate, implying that it provides the approximate
conditions under which the 01-mismatch occurs for the two models. Specifically, when any
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Predicted rest Predicted 01-mismatch

Actual rest 1069 122

Actual 01-mismatch 75 709

Predict “01-mismatch” if ANY of the following rules are satisfied:
(External Risk Estimate ≤ 71) and (Months Since Most Recent Inquiry excluding 7
days ≤ 23)
(Average Months in File ≤ 49) and (Months Since Most Recent Inquiry excluding 7
days ≤ 1)

Figure 7: BRCG confusion matrix and rules for LSVC vs. SLIM “01-mismatch” on the
FICO dataset.

of the specified conditions are met, LSVC predicts 0 and SLIM predicts 1, and in most
other cases a different outcome occurs. Similarly, the following BRCG model in Figure 8
provides an explanation for 10-mismatch.

Predicted rest Predicted 10-mismatch

Actual rest 1827 20

Actual 10-mismatch 47 81

Predict “10-mismatch” if ANY of the following rules are satisfied:
(Percent Trades with Balance ≤ 74) and (No Delinquencies) and (No Inquiries)

Figure 8: BRCG confusion matrix and rulelist for LSVC vs. SLIM “10-mismatch” on the
FICO dataset.

By identifying which model works better in different parts of the feature space, ICMs
could potentially be used for stacking (Wolpert, 1992) (i.e., for combining multiple models
together in a way that is superior to each of the models). This, however, might result in
a combination of models that is overly complex and could even lead to overfitting if not
carefully executed. We leave this direction for future work, as the scope of this paper is
limited to model selection.

5. Visual Model Landscape

We call the second approach visual model landscape (VML). This type of visualization shows
how multiple models relate to each other in a two-dimensional or hierarchical space. These
methods utilize various unsupervised learning methods, such as dimensionality reduction
and clustering, and plots such as scatter plots or tree visualizations. We provide two
examples that convey the main ideas and delay the discussion on three additional examples
to Appendix G.3.
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Example 1: Comparing Models of Different Hypothesis Classes

Figure 9 shows multiple models trained on the Adult dataset. The green square marker
Y represents the true labels, the orange circle markers represent standard models, and
the blue diamond markers represent interpretable models. Beside each model is its test
accuracy. Models tend to cluster according to their performance and the similarity of their
predictions, and models with similar structure tend to be grouped together. For example,
EBM and ADB are both boosting methods and they are located within the same cluster.
Similarly, RBFSVC and KNN are both non-parametric classifiers that happen to be close
to each other. Figure 9 also helps identifying interpretable models that could substitute
standard models.

Figure 9 was created by computing YS (the matrix of models’ predictions) and applying
a DR method (PCA in this case) to the transposed prediction matrix (i.e., the matrix where
rows correspond to models and columns to predictions, meaning that there are S rows and
N columns in the matrix). The numeric values of the PCA transformation presented in
Figure 9 can be found in Table 1 of Appendix G.2. Comparing with the heatmap in Figure 3
which presents the complete pairwise comparisons of model predictions, the VML represents
the models graphically and uses Euclidean distance as a proxy for the similarity between
models.

Figure 9: A VML scatter plot on a model obtained using PCA on the Adult dataset; the
models BRCG and OSDT coincide.
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Figure 10: Dendrograms of VMLs on the Adult, Bank Marketing, and Magic datasets.

Example 2: VML Denrograms

We now present VML using hierarchies. Specifically, we apply hierarchical clustering to
model predictions and display the resulting dendrograms.

Figure 10 shows a dendrogram created using the matrix T (YS). It compares the same
15 models and shows which models are most similar to each other and could therefore
potentially be substituted for one another. For example, in the top subplot of Figure 10,
we see that BRCG and OSDT (both interpretable logical models) are clustered together
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with DTC (a decision tree generated using CART). It is also clear that SLIM (linear sparse
model) is quite similar to LR, EBM, and even ADB. Of course, this depends on the specific
dataset as well, which is why different hierarchies are generated from different datasets.

We briefly note that we can also cluster the models based on summary statistics, such
as confusion matrices or discretized ROC curves, rather than on the complete prediction
matrix (Appendix H). This could improve the running time and more importantly, generate
different insights about the comparison between the overall performance of models according
to certain metrics rather than the raw similarity of their predictions.

6. Visual Confusion Matrices

We denote by visual confusion matrices (VCMs) plots that, similarly to the confusion ma-
trix, separate joint predictions. The plot itself could be a density plot (presented below),
scatter plot, or biplot. All of these variants make use of dimensionality reduction on the
data matrix, and the third approach is specific to PCA. For brevity, we present the density
VCM plot, which conveys most of the ideas, and delay the discussion about the two variants
to Appendix G.4.

Example 1: Density VCM Plots

The density VCM plot extends the idea of confusion matrix by visualizing the density of
data points aggregated according to the joint predictions (e.g., 00, 01, 10, and 11) of the
compared models in the reduced-feature space. This is done by first applying a DR method
(e.g., PCA) to the data matrix and then creating a density plot (e.g., KDE, the kernel
density estimate; Parzen, 1962) to highlight the distribution of the joint predictions.

Figure 11 shows Density VCM plots created using PCA that compare two models (GNB
and OSDT) based on the binary-labeled Magic dataset. In Figure 11a, we see four “clouds”
corresponding to the joint predictions. For example, the bottom right red cloud corresponds
to the joint prediction 01. For the group of observations that mostly lie in the 01 cloud,
GNB tends to predict 0 and OSDT tends to predict 1. The implicit model selection tradeoff
is presented in this plot (and similarly in other VCM plots) by the two clouds corresponding
to the predictions 01 and 10. The particular meaning of each cloud provides intuition about
the set of observations affected by the selection of one model over other.

We can further use the plot to illustrate how this tradeoff affects clusters (i.e., similar
subsets of observations). Clusters identification can be done manually, using standard
clustering algorithms or by leveraging the interpretation of a particular DR method. This
can be used to determine the tendency for making certain types of errors (e.g., 01 or 10)
based on where the cluster is located. Two examples are shown in Figures 11b and 11c,
which illustrate observations belonging to two clusters on top of the density plot. The
cluster in Figure 11b lies at the orange and green regions where 10 and 11 overlap. Here,
Model 1 (GNB) mostly predicts 1, and there is some ambiguity about the prediction of
Model 2 (OSDT). On the other hand, the cluster shown in Figure 11c is located at a region
close to where the clouds 11 and 01 overlap. In this case, Model 1 is ambiguous and Model 2
mostly predicts 1. This type of analysis improves our understanding of how model selection
affects particular groups of observations.
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(a) Four density plots based on the DR-transformed data
matrix by each joint prediction.

(b) A cluster located at the 00 and 01 “clouds.” (c) A cluster located at the 01 and 11 “clouds.”

Figure 11: (a) Illustration of a Density VCM plot obtained using PCA for the models
GNB vs. OSDT on the Magic dataset; (b) the same Density VCM plot with observations
belonging to a cluster where the predictions of Model 1 (GNB) are mostly consistent and
the predictions of Model 2 (OSDT) are ambiguous; (c) the same Density VCM plot with
observations belonging to a cluster where the predictions of Model 1 are ambiguous and

the predictions of Model 2 are mostly consistent.

Note that the density plot is not perfect—clouds may overlap and observations may
reside outside of the clouds. Nevertheless, it provides useful information about the relation
between different models in the resolution of the entire dataset, particular clusters, or
observations.
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7. Visual Comparative Matrices

We next introduce the final approach, which we call visual comparative matrices (VCXs).
While this approach is straightforward and has been part of existing analyses (see, e.g.,
J. Zhang et al., 2018), we discuss it here for completeness and due to its apparent effective-
ness in comparing models. One example of this approach is given in Figure 3 in Section 1
where we compared different models in terms of the overall prediction similarity (additional
examples of other datasets can be found in Appendix F).

The general idea of this approach is to simply create tables where one dimension corre-
sponds to models that we wish to compare, the other dimension correspond to a property of
interest, and the values in the tables represent an important metric. The tabular represen-
tation allows us to simultaneously compare multiple models and observe how the property
affects the metric. Alternatively, both dimensions could correspond to models and the val-
ues represent quantified relations between them. We use heatmaps to highlight the relative
magnitude of values in the table.

We next present an example in which we use VCXs for cluster analysis. We delay the
discussion of another example that compares preprocessing methods to Appendix G.5.

Example 1: Cluster Analysis Using a VCX

Figure 12 shows how a VCX can be used for cluster analysis. It contains four heatmaps,
each corresponding to different metrics: true positive rate (TPR), false positive rate (FPR),
precision, and recall. In each heatmap, rows correspond to models, and columns correspond
to 10 clusters obtained by K-Means clustering. The values in the tables correspond to the
metric (i.e., subplot), model (i.e., row), and cluster (i.e., column). For example, we see that
some clusters (e.g., Cluster 5) are difficult to classify for most models while other clusters
(e.g., Cluster 2) are easier. The implicit model selection tradeoff is observed through the
quality of prediction of models on different clusters. For example, in comparing KNN and
LR, we observe that the recall is decreasing in cluster 4 while it is increasing for cluster 9.
This allows us to compare multiple models and understand how subsets of the populations
are impacted by the model selection decision.

Note that such an analysis relies on a meaningful application of a clustering algorithm
(which are widely and effectively used in practice; see Punj and Stewart (1983) for examples
in the marketing literature).

8. Case Study

In previous sections, we described different methods for model comparison and demon-
strated them using various datasets. In this section, we focus on a particularly important
application of predictive modeling routinely used to guide high-stake decisions. The Correc-
tional Offender Management Profiling for Alternative Sanctions (COMPAS) algorithm by
Northpointe, Inc. is one such example. Such algorithms are commonly used in U.S. criminal
sentencing to assess criminal defendant’s likelihood of recidivism. Larson et al. (2016) raised
the concern that the COMPAS algorithm is biased in evaluating certain populations to be
at a higher risk than they actually are. Such bias could result in high-risk defendants being
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Figure 12: Illustration of a VCX for cluster analysis based on the Magic dataset.

scored as low-risk, and vice versa. Understanding the implicit model selection tradeoff in
this context is important for determining the impact of model selection decisions on people.

We apply our methods using the COMPAS dataset (Larson et al., 2016), which contains
data collected between 2013–2014, which has information about criminal defendants in
Broward County, Florida. The COMPAS algorithm was used to evaluate their “General
Recidivism Risk” and “Violent Recidivism Risk” based on 137 features, as decile scores
ranging from 1 to 10, with 10 indicating the highest risk level. These scores were considered
in deciding about the release or detention of defendants. In general, a score between 1–4
is considered low risk, a score between 5–7 medium risk, and a score of 8–10 high risk
(Northpointe, 2019).

To demonstrate the advantages of our methods, we train classification and regression
models that predict risk, and then apply our methods to compare the resulting models
and show how our methods highlight certain issues. Specifically, we train classification and
regression models using the dataset provided by Coker, Rudin, and King (2021), which we
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further preprocess by deleting and discretizing certain features. The dataset contains 6215
observations, each representing a defendant, and contains 14 features which include defen-
dant’s gender, age (18–20, 21–22, 23–25, 26–45, and > 45), a binary indicator of whether
the most recent charge prior to filling the questionnaire is a felony, a binary indicator of
juvenile felonies, binary indicator of juvenile misdemeanors, a binary indicator of juvenile
crimes, and the number of prior charges (0, 1, 2–3, and > 3).

We note that we do not take any stance on this issue, but rather we demonstrate how
our methodologies could potentially be used within this important context.

8.1 Comparing Classification Models

To compare classification models, we train models in which the target is a binary variable
indicating recidivism within two years. Figure 13 shows the test accuracy of the models
we used; we see that ADB, MLP, LSVC, LR, RF, KNN are the top-performing models,
achieving test accuracies of 0.66 or higher. Figure 14 shows the agreement among models
regarding the prediction; while some models appear to be similar, others differ by up to
5% of the test set population. We then train interpretable comparative meta-models that
compare these top-performing models.

Figure 13: Performance of models based on test accuracy on the COMPAS dataset
(predicting two year recidivism).

Figure 14: Model agreement level of top-performing models for the COMPAS dataset
(predicting two year recidivism).

Figure 15 presents a CORELS rulelist for comparison of the pair ADB vs. KNN on
classification of “01-mismatch vs. rest.” The meta-model asserts that ADB tends to predict
0, while KNN predicts 1 whenever the most recent charge on file is a felony, the age is
between 21 to 22, and the number of prior charges is 1.
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Predicted rest Predicted 01-mismatch

Actual rest 1213 4

Actual 01-mismatch 8 19

RULELIST:
if (c charge degree F) and (age not between 21 and 22) then predict rest
else if (c charge degree F) and (priors = 1) then predict “01-mismatch”
else predict rest

Figure 15: CORELS confusion matrix and rulelist for ADB vs. KNN “01-mismatch” on
the COMPAS dataset. The feature“c charge degree F” indicates that the most recent

charge on file is a felony.

Figure 16 shows a meta-model based on BRCG boolean rule for comparing the pair
MLP vs. KNN on “01-mismatch vs. rest.” We see that MLP tends predicts 0 while KNN
predicts 1 in two cases. First, in the case of males, when the defendant’s age is between
21 to 22, the most recent charge on file is a felony, and the number of prior charges is 1.
Second, when the defendant is a female whose age is between 21 to 25, the most recent
charge on file is not a felony, and the number of prior charges is 3 or less.

Predicted rest Predicted 01-mismatch

Actual rest 1217 2

Actual 01-mismatch 6 19

Predict “01-mismatch” if ANY of the following rules are satisfied:
‘(age ≤ 22) and (age ≥ 21) and (c charge degree F) and (priors = 1) and (sex is
Male)’
‘(age ≤ 25) and (age ≥ 21) and (not c charge degree F) and (priors ≤ 3) and (sex
not Male)’

Figure 16: BRCG confusion matrix and rules for MLP vs. KNN “01-mismatch” on the
COMPAS dataset.

Finally, Figure 17 presents an optimal sparse decision tree meta-model for comparing the
models ADB with LR, with the goal of understanding 10-mismatch in prediction. The leaf
nodes of the tree show the predictions, the number of samples, and the training accuracy
in each leaf. There are two cases in which mismatches occur. The first case is when the
defendant is younger than 45 but not 23–25, his or her number of prior charges is different
than 2 and 3, and the most recent charge on file is not a felony. The second case involves
females older than 45 with more than three prior charges, and whose most recent charge
on file is not a felony. The meta-model also identifies the accuracy of the explanation with
69% in the first case and 96% in the second case.
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Predicted rest Predicted 10-mismatch

Actual rest 1210 5

Actual 10-mismatch 8 21

age ≤ 45

priors /∈ [2,3]

rest
(3379)

(acc 0.99)

age /∈ [23,25]

rest
(644)

(acc 0.97)

not c charge degree F

10
(24)

(acc 0.69)

rest
(79)

(acc 1)

priors ≤ 3

rest
(553)
(acc 1)

not c charge degree F

not Male

rest
(7)

(acc 1)

10
(55)

(acc 0.96)

rest
(181)
(acc 1)

Y

Y N

Y N

Y N

N

Y N

Y
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N

Figure 17: OSDT decision tree for ADB vs. LR “10-mismatch” on the COMPAS dataset.

8.2 Comparing Regression Models

Next we generalize our methods to compare regression models. To illustrate how to interpret
the implicit model selection tradeoff for regression problems, we use regression models to
predict the general recidivism risk decile scores of defendants that range from 1–10, where
10 represents the highest risk compared to other offenders in the norm group. We then
define classification problems on which our methods can be directly applied. This is done
by discretizing the continuous prediction into classes (Low risk (1–4), Medium risk (5–7),
and High risk (8–10) based on the COMPAS Practitioner’s Guide Northpointe, 2019). We
briefly note that an alternative way could be to define an indicator for when the difference
in the score prediction exceeds a certain threshold α. For example, we could define the
label Yjk

HL as 1[yji − yki > α], which could be used to decide whether model j’s prediction
is significantly higher than that of model k’s.

We used the following models in this experiment: AdaBoost Regressor (ADBR), Bayesian
Ridge (BR), Decision Tree Regressor (DTR), Gaussian Process Regressor (GPR), KNeigh-
bors Regressor (KNR), Lasso, Linear Regression (LinearR), MLP Regressor (MLPR), Ran-
dom Forest Regressor (RFR), Ridge, Epsilon-Support Vector Regression (SVR), Explain-
able Boosting Regressor (EBMR), and Supersparse Linear Integer Model Regressor (SLIMR).
The hyperparameters are described in Appendix D.

The MSE scores of the regression models are shown in Figure 18. We see that Lin-
earR, BR, Ridge, Lasso, EBMR, and MLPR achieve the smallest mean squared error. The
agreement in the models’ discretized predictions among the top-performing models is dis-
played in Figure 19. Some models are very similar in their discretized predictions (e.g.,
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LinearR, BR, Ridge, and Lasso) while others (EBMR and MLPR) predict differently from
other models, even though their MSEs are quite similar. Figure 36 in Appendix I shows
the average predicted labels versus the actual ones for each of the models—we can see that
the trained models are biased towards the average prediction. This may results from our
limited access to the complete dataset (we use less than 20 features in comparison to the
137 features available in the complete dataset).

Figure 18: Performance of models based on MSE on the COMPAS dataset (regression).

Figure 19: Model agreement levels where predictions are rounded to low, medium, and
high risk on the COMPAS dataset (regression).

To train interpretable meta-models, we define the joint predictions to classify when the
models agree (“LL,” “MM,” and “HH”) or disagree (“LM,” “ML,” “MH,” “HM,” “LH,”
and “HL”). We did not observe the joint predictions LH and HL, which indicates that none
of the models predicts too differently from the others. Therefore, understanding the implicit
model selection tradeoff can be done by explaining the joint predictions “LM vs. rest,” “ML
vs. rest,” “MH vs. rest,” and “HM vs. rest.”

Figure 20 shows a CORELS rulelist for comparing the models Ridge vs. MLPR on the
joint prediction “LM-mismatch vs. rest.” We see that Ridge (as well as LinearR and Lasso)
tends to predict low risk, while MLPR predicts medium risk for people aged 23–25 with
two or three prior charges when the most recent charge on file is a felony.

Figure 21 shows an example for the BRCG boolean rule as a meta-model for comparing
the models BR and MLPR, to explain the LM-mismatch. BRCG predicts “LM-mismatch”
in two cases: first, if the defendant’s age is between 23 and 25, the most recent charge on
file is a felony, the number of prior charges is less than three, and the defendant is a male;
second, if the defendant is older than 26, the most recent charge on file is a felony, there are
no juvenile misdemeanors, the number of prior charges is less than 3, and the defendant is
male.
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Predicted rest Predicted LM-mismatch

Actual rest 1215 5

Actual LM-mismatch 6 18

RULELIST:
if (not c charge degree F) and (age not between 21 and 22) then predict rest
else if (age between 23 and 25) and (priors = 2 or 3) then predict “LM-mismatch”
else predict rest

Figure 20: CORELS confusion matrix and rulelist for Ridge vs. MLPR “LM-mismatch”
on the COMPAS dataset (regression). “c charge degree F” indicates whether the most

recent charge before COMPAS score calculation is a felony.

Predicted rest Predicted LM-mismatch

Actual rest 1218 2

Actual LM-mismatch 6 18

Predict “LM-mismatch” if ANY of the following rules are satisfied:
‘(age ≤ 25) and (age ≥ 23) and (c charge degree F) and (priors ≤ 3) and (sex is
Male)’
‘(age ≥ 26) and (c charge degree F) and (juvenile misdemeanors = 0) and (priors
≤ 3) and (sex is Male)’

Figure 21: BRCG confusion matrix and rules for BR vs. MLPR “LM-mismatch” on the
COMPAS dataset (regression).

Finally, Figure 22 presents an optimal sparse decision tree for comparing the models
LinearR and MLPR, in order to identify HM-mismatches. There are multiple cases of dis-
crepancy, each characterized by an estimated accuracy level. For example, if the defendant
has a record of juvenile misdemeanor and crime, their age is 18–20, and the number of prior
charges is greater than three, then there is a chance of 78% that LinearR predicts high risk
while MLPR predicts medium risk.

9. Concluding Remarks

Summary. The paper studies the implicit model selection tradeoff and proposes an array
of methods to unveil it. To our knowledge, this is the first work that develops such methods
for the interpretable comparison of competing models. The methods we explored rely on
visualization techniques applied to outputs of supervised and unsupervised ML algorithms.
We illustrate how these methods work and make them accessible by providing a simple
Python interface (Appendix E).

Best practices. The paper proposes a host of methods for model comparison. To facil-
itate their utilization, we suggest using visual comparative matrices for preprocessing and
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Predicted rest Predicted HM-mismatch

Actual rest 1219 2

Actual HM-mismatch 0 23
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Figure 22: OSDT decision tree for LinearR vs. MLPR “HM-mismatch” on the COMPAS
dataset (regression).

feature engineering, utilizing visual model landscape plots as part of the preliminary anal-
ysis to identify and eliminate candidate models; and using visual confusion matrices and
comparative meta-models for final tuning and selection. The latter can also be used for
validation, that is, to compare the performance of models that are based on the train and
test data and to identify generalization issues.

Future work. We believe that this work could potentially lead to further research on the
implicit model selection tradeoff. We describe a few broad directions that seem promising.

First, it would be interesting to develop methods that address some of the limitations of
our work. For example, our sampling-based approach means that the resulting visualizations
and interpretable meta-model could suffer from bias and variance. An alternative approach
could take advantage of the exact structure of the compared models; however, this requires
knowledge about the compared models and may only allow for the comparison of specific
models. Another inevitable limitation is the reliance on DR methods that do not fully
preserve structure in high dimensions and on whose interpretation some of our approaches
are based. We also note that it is not always possible to succinctly describe the comparison
between models due to their complex functional form. Finally, while our focus has been on
structured data, it would be interesting to extend our methods to allow for a comparison
of models on unstructured data, such as images or text. These, however, might require
alternative methods. For example, to create a comparative meta-model, one may need to
resort to more complex interpretable neural network (see, for example, Chen et al., 2018).

853



He & Shaposhnik

Second, our work could be used as a new method of interpreting models that is based
on model comparison. That is, one can describe a potentially complex model using an
interpretable model that approximates it, and a meta-model that describes the difference
between the original model and the approximation. Such an explanation, could consist of
multiple interpretable models and meta-models.

Finally, we note that information theory could potentially serve as a source of inspi-
ration for additional ways to visualize the implicit model selection tradeoff. For example,
mutual information could be used as a means to compute similarity between models (as we
briefly illustrated in Figure 24 in Appendix F), which could, for example, be used to form
dimension-reduced plots (such as VML scatter plots and dendrograms).

We leave these directions for future research.
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Appendix A. Classification Models

The 15 classification models used in our numerical experiments involve 10 standard models
and five interpretable models. The standard models are: K-nearest Neighbors Classifier
(KNN), Linear Support Vector Classification (LSVC), Radial Basis Function kernel SVC
(RBFSVC), Gaussian Process Classifier (GP), Decision Tree Classifier (DTC), Random
Forest Classifier (RF), Multi-layer Perceptron classifier (MLP), AdaBoost Classifier (ADB),
Gaussian Naive Bayes (GNB), and Logistic Regression (LR) (Pedregosa et al., 2011). The
interpretable models are: Boolean Decision Rules via Column Generation (BRCG)(Dash
et al., 2018), CORELS (Angelino et al., 2017), ExplainableBoostingClassifier (EBM)(Nori,
Jenkins, Koch, & Caruana, 2019), Optimal Sparse Decision Tree (OSDT)(Hu, Rudin, &
Seltzer, 2019), and Supersparse Linear Integer Model (SLIM)(Singh, Nasseri, Tan, Tang, &
Yu, 2021; Ustun & Rudin, 2016).

The models BRCG, CORELS, and OSDT only work with binary datasets. Therefore,
we binarized the datasets using DTs by training a DT model for each feature to predict the
output variable. We then used the Boolean condition of each branching node of the tree as
a binary feature. We limited the parameter “min samples leaf” to 1/20 of the dataset size
and limited the parameter “max leaf nodes” to 10 to restrict the total number of features
to prevent overfitting.

Appendix B. Datasets

• Adult—Kohavi and Becker (1994); N=48,842, P=14; the binary labels in the data
indicate whether an individual’s income exceeds $50K per year using information
provided from the census data. The percentage of observations of each label: 75.9%
labeled 0 (income > 50K), and 24.1% labeled 1 (income ≤ 50K).
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• Bank Marketing—S. Moro and Rita (2014); N=41,188, P=17; the binary labels in the
data indicate whether a customer contacted in the direct marketing campaigns would
subscribe to a term deposit. The percentage of observations of each label: 88.7%
labeled 0 (yes), and 11.3% labeled 1 (no).

• Magic—Bock (1998); N=19020, P=11; the binary labels in the data indicate whether
Cherenkov photons are caused by primary gammas (signal) or hadronic showers (back-
ground). The percentage of observations of each label: 64.8% labeled 0 (class g), and
35.2% labeled 1 (class h).

• Mushroom—Schlimmer (1981); N=8,124, P=22; the binary labels in the data indi-
cate whether mushrooms are edible or poisonous (or unknown). The percentage of
observations of each label: 51.8% labeled 0 (class e), and 48.2% labeled 1 (class g).

• Musk (Version 2)—Chapman (1994); N=6,598, P=168; the binary labels in the data
indicate whether molecules are musks or non-musks. The percentage of observations
of each label: 84.6% labeled 0, and 15.4% labeled 1.

• German Credit data—Hofmann (1994); N=1000, P=24; the binary labels in the data
indicate whether people have bad or good credit risks based on a number of attributes.
The percentage of observations of each label: 70% labeled 0, and 30% labeled 1.

• FICO continuous data—FICO (2018); N=9,871, P=35; the binary labels in the data
indicate whether customers were late on payment of HELOC loans. The percentage
of observations of each label: 52.0% labeled 0, and 48.0% labeled 1.

• FICO binary data—FICO (2018); N=9,871, P=109; this is a binarized version of the
FICO continuous data based on Rudin and Shaposhnik (2023).

Appendix C. Tuning Parameters for Section 4

Standard models

Model Hyperparameters

ADB n estimators: [10, 30, 50], algorithm: [SAMME, SAMME.R]

DTC criterion: [gini, entropy], max depth: [2, 3, 4, 5]

GNB var smoothing: [1e-5, 1e-4, 1e-3]

GP random state: [0]

KNN n neighbors: [1, 2, 3, 4, 5], weights: [uniform, distance], algorithm: [auto],
metric: [euclidean, manhattan]

LR penalty: [l1, l2], tol: [1e-5, 1e-4, 1e-3], solver: [newton-cg, lbfgs, liblinear,
sag, saga]

LSVC loss: [hinge, squared hinge], tol: [1e-5, 1e-4, 1e-3]

MLP solver: [sgd, adam], alpha: [0.0001, 0.001, 0.01], activation: [logistic, relu],
learning rate: [constant, invscaling, adaptive]

RBFSVC kernel: [poly, rbf], degree: [2, 3, 4, 5], gamma: [scale, auto]

RF n estimators: [10, 30, 50], criterion: [gini, entropy], max depth: [2, 3, 4]
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Interpretable models

Model Datasets Hyperparameters

BRCG Sections 5, 6, and 7
for the Adult, Bank
Marketing, Magic,
Mushroom, and Musk2
datasets

lambda0: [0.0005, 0.001, 0.005], lambda1:
[0.0005, 0.001, 0.005], CNF: [True], iterMax:
[100, 500, 1000], K: [10], D: [10], B: [5], eps:
[1e-6, 1e-3]

BRCG Sections 5, 6, and 7 for
the German Credit and
FICO datasets

lambda0: [1e-05, 1e-04, 1e-03], lambda1: [1e-05,
1e-04, 1e-03], CNF: [True], iterMax: [100], K:
[10], D: [10], B: [5], eps: [1e-3, 1e-2]

BRCG Section 4 for all datasets lambda0: [0.0001, 0.0005, 0.001, 0.005, 0.01],
lambda1: [0.0001, 0.0005, 0.001, 0.005, 0.01],
CNF: [True], iterMax: [100, 200, 300], K: [10],
D: [10], B: [5], eps: [1e-6, 1e-3]

CORELS Sections 4, 5, 6, and
7 for the Adult, Bank
Marketing, Magic,
Mushroom, and Musk2
datasets

c: [0.025, 0.05, 0.075], n iter: [10000], map type:
[prefix], policy: [bfs], verbosity: [[rulelist]], ab-
lation: [0], max card: [2], min support: [0.01,
0.025]

CORELS Sections 4, 5, 6, and 7
for the German Credit
and FICO datasets

c: [1e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3], n iter:
[10000], map type: [prefix], policy: [bfs], ver-
bosity: [[rulelist]], ablation: [0], max card: [2],
min support: [1e-6, 1e-5, 5e-5, 1e-4, 5e-4]

EBM Sections 4, 5, 6, and 7
for all datasets

inner bags: [50, 100], outer bags: [50, 100],
learning rate: [0.1], n jobs: [-2], binning: [quan-
tile], interactions: [2], max rounds: [100], min
samples leaf: [2], max leaves: [7]

OSDT Sections 4, 5, 6, and
7 for the Adult, Bank
Marketing, Magic,
Mushroom, and Musk2
datasets

lamb: [0.005, 0.01, 0.05], prior metric : [curios-
ity], MAXDEPTH: [2, 3, 4], MAX NLEAVES:
[3, 5, 7], timelimit: [1800], niter: [100]

OSDT Sections 4, 5, 6, and 7
for the German Credit
and FICO datasets

lamb: [0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025],
prior metric: [curiosity], MAXDEPTH: [2, 3, 4],
MAX NLEAVES: [3, 5, 7], timelimit: [1800],
niter: [100, 200, 300]

SLIM Sections 4, 5, 6, and 7
for all datasets

alpha: [1e-09, 5e-09, 1e-08, 5e-08, 1e-07, 5e-07,
1e-06, 5e-06, 1e-05, 5e-05, 0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.25, 1.5, 1.75, 2,
2.25]
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Appendix D. Tuning Parameters for the Section 8 Case study

D.1 Classification Problem

Standard models

Model Hyperparameters

ADB n estimators: [10, 15, 20, 25, 30], algorithm: [SAMME, SAMME.R]

DTC criterion: [gini, entropy], max depth: [3, 4, 5, 6, 7, 8]

GNB var smoothing: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

GP random state: [0]

KNN n neighbors: [10, 20, 30, 40, 50], weights: [uniform, distance], algorithm:
[auto], metric: [euclidean, manhattan]

LR penalty: [l1, l2], tol: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], solver: [newton-cg,
lbfgs, liblinear, sag, saga]

LSVC loss: [hinge, squared hinge], tol: [1e-12, 1e-9, 1e-6, 1e-3]

MLP solver: [sgd, adam], alpha: [1e-6, 1e-5, 1e-4, 1e-3, 1e-2], activation: [logistic,
relu], learning rate: [constant, invscaling, adaptive]

RBFSVC kernel: [poly, rbf], degree: [2, 3, 4, 5], gamma: [scale, auto]

RF n estimators: [10, 20, 30, 40, 50], criterion: [gini, entropy], max depth: [3, 4,
5, 6, 7, 8]

Interpretable models

Model Hyperparameters

BRCG lambda0: [0.0001, 0.001, 0.01], lambda1: [0.0001, 0.001, 0.01], CNF: [False],
iterMax: [100], K: [5, 10], D: [5, 10], B: [5, 10], eps: [1e-6, 1e-4, 1e-2]

CORELS c: [1e-12, 1e-09, 1e-06, 1e-03], n iter: [10000], map type: [prefix], policy:
[bfs], verbosity: [[rulelist]], ablation: [0], max card: [2], min support: [1e-12,
1e-09, 1e-06, 1e-03]

EBM inner bags: [50, 100], outer bags: [50, 100], learning rate: [0.001, 0.01, 0.1],
n jobs: [-2], binning: [uniform, quantile, quantile humanized], interactions:
[1, 2], max rounds: [500], min samples leaf: [2], max leaves: [3, 5, 7]

OSDT lamb: [1e-09, 1e-06, 1e-03], prior metric : [curiosity], MAXDEPTH: [3, 4],
MAX NLEAVES: [3, 4, 5], timelimit: [1800], niter: [100, 200, 300]

SLIM alpha: [1e-06, 5e-06, 1e-05, 5e-05, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

D.2 Regression Problem

The new standard models we introduce here are: AdaBoost Regressor (ADBR), Bayesian
Ridge (BR), Decision Tree Regressor(DTR), Gaussian Process Regressor (GPR), KNeigh-
bors Regressor (KNR), Lasso, Linear Regression (LinearR), MLP Regressor (MLPR)), Ran-
dom Forest Regressor (RFR), Ridge, and Epsilon-Support Vector Regression (SVR).

The new interpretable models are: ExplainableBoostingRegressor (EBMR) and Super-
sparse Linear Integer Model Regressor (SLIMR).
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Standard models

Model Hyperparameters

ADBR n estimators: [10, 15, 20, 25], loss: [linear, square, exponential], learning rate:
[0.01, 0.1, 0.2, 0.3, 0.4, 0.5]

BR n iter: [50, 100], tol: [1e-3, 1e-2, 0.1, 0.2, 0.3], alpha1: [1e-10, 1e-8, 1e-6, 1e-4,
1e-2, 1e-1], alpha2: [1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 1e-1], lambda1: [1e-10, 1e-8,
1e-6, 1e-4, 1e-2, 1e-1], lambda2: [1e-10, 1e-8, 1e-6, 1e-4, 1e-2, 1e-1]

DTR criterion: [squared error, friedman mse, absolute error, poisson], splitter:
[best, random], max depth: [3, 4, 5, 6, 7]

GPR random state: [0]

KNR n neighbors: [30, 50, 70, 90], weights: [uniform, distance], algorithm: [auto],
metric: [euclidean, manhattan]

Lasso alpha: [1e-06, 1e-05, 1e-04, 1e-03, 1e-02, 1e-01, 1, 1e01, 1e02, 1e03, 1e04, 1e05,
1e06], fit intercept: [True, False], normalize: [True, False], max iter:[1000,
10000], tol: [1e-08, 1e-07, 1e-06, 1e-05, 1e-04, 1e-03, 1e-02, 1e-01], random
state: [0], selection: [cyclic, random]

LinearR fit intercept: [True, False], normalize: [True, False]

MLPR hidden layer sizes: [10, 20, 30, 40, 50, 60], solver: [sgd, adam], alpha: [0.00001,
0.0001, 0.001, 0.01], activation: [logistic, relu], learning rate: [constant, invs-
caling, adaptive]

RFR n estimators: [50, 100, 150], criterion: [squared error, absolute error, poisson],
max depth: [3, 6, 9, 12, 15, 18]

Ridge alpha: [1e-06, 1e-05, 1e-04, 1e-03, 1e-02, 1e-01, 1, 1e01, 1e02, 1e03, 1e04, 1e05,
1e06], fit intercept: [True, False], normalize: [True, False], max iter:[None],
tol: [1e-12, 1e-11, 1e-10, 1e-09, 1e-08, 1e-07, 1e-06, 1e-05, 1e-04, 1e-03, 1e-02,
1e-01], random state: [0], solver: [auto]

SVR kernel: [poly, rbf], degree: [1, 2, 3, 4, 5], gamma: [scale, auto]

Interpretable models

Model Hyperparameters

EBMR inner bags: [50, 100], outer bags: [50, 100], learning rate: [0.001, 0.01, 0.1],
n jobs: [-2], binning: [uniform, quantile, quantile humanized], interactions:
[1, 2], max rounds: [500], min samples leaf: [2], max leaves: [3, 5, 7]

SLIMR alpha: [1e-06, 5e-06, 1e-05, 5e-05, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

BRCG lambda0: [0.0001, 0.001, 0.01], lambda1: [0.0001, 0.001, 0.01], CNF: [False],
iterMax: [100], K: [5, 10], D: [5, 10], B: [5, 10], eps: [1e-6, 1e-4, 1e-2]

CORELS c: [1e-12, 1e-09, 1e-06, 1e-03], n iter: [10000], map type: [prefix], policy:
[bfs], verbosity: [[rulelist]], ablation: [0], max card: [2], min support: [1e-12,
1e-09, 1e-06, 1e-03]

OSDT lamb: [1e-09, 1e-06, 1e-03], prior metric : [curiosity], MAXDEPTH: [3, 4],
MAX NLEAVES: [3, 4, 5], timelimit: [1800], niter: [100, 200, 300]
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Appendix E. Python Programming Interface

We create a simple interface that can be used to generate plots similar to those generated
in this paper. The function headers and descriptions of their parameters are listed below.
The code is available at https://github.com/zhesimon/ComparativeMetaModels.

MC heatmap of prediction(Y list, export file = False, filename = None):

• Y list: a list of tuples that consists of model names and model predictions. The first
tuple contains the true labels, while the subsequent tuples contain model predictions.

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC scatterplot prediction(Y list, color indices = None, colors = None, export file = False,
filename = None):

• Y list: a list of tuples that consists of model names, model predictions, and test
accuracies

• color indices: a list of indices for the colors

• colors: a list of colors

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC scatterplot confusion(Y list, color indices = None, colors = None, export file = False,
filename = None):

• Y list: a list of tuples that consists of model names, model predictions, and test
accuracies. The first tuple contains the true labels, while the subsequent tuples contain
model predictions.

• color indices: a list of indices for the colors

• colors: a list of colors

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name
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MC hierarchical tree(Y list, export file = False, filename = None):

• Y list: a list of tuples that consists of model names and model predictions

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC visual density plot(X DR, Y list, export file = False, filename = None):

• X DR: a dimensionality reduction transformation of data matrix X in 2D represented
by a pandas dataframe of shape (n samples, 2)

• Y list: a list of tuples that consists of model names and model predictions

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC cluster analysis(X, Y list, models, n cl = 10 , export file = False, filename = None):

• X: a data matrix represented by a pandas dataframe of shape (n samples, p features)

• Y list: a list of tuples that consists of model names and model predictions. The first
tuple contains the true labels, while the subsequent tuples contain model predictions.

• models: a list that consists of model names in Y list

• n cl: number of clusters (default is 10)

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC simple dr comparison(X DR, Y list, export file = False, filename = None):

• X DR: a dimensionality reduction transformation of data matrix X in 2D represented
by a pandas dataframe of shape (n samples, 2)

• Y list: a list of tuples that consists of model names and model predictions. The first
tuple contains the true labels, while the subsequent tuples contain model predictions.

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name
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MC visual confusion matrix(X DR, Y list, export file = False, filename = None):

• X DR: a dimensionality reduction transformation of data matrix X in 2D represented
by a pandas dataframe of shape (n samples, 2)

• Y list: a list of tuples that consist of model name and model predictions

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name

MC biplot(X pca, pca model, Y list, features, export file = False, filename = None):

• X pca: a PCA dimensionality reduction transformation of data matrix X in 2D rep-
resented by a pandas dataframe of shape (n samples, 2)

• pca model: model of PCA

• Y list: a list of tuples that consists of model names and model predictions

• features: features of data matrix X

• export file: a Boolean parameter indicating whether to export the figure to a file or
simply display to screen

• filename: output file name
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Appendix F. Heatmaps of Model Comparisons

(a) Adult dataset. (b) Magic dataset.

(c) Mushroom dataset. (d) Musk2 dataset.

(e) German Credit dataset. (f) FICO (binary) dataset.
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Figure 24: Heatmaps indicating the models predictions’ pairwise agreement (top) and
mutual information (bottom) for the FICO (binary) dataset.
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Appendix G. Additional Examples

G.1 Additional Examples of ICM

Example 1: OSDT

OSDT (Optimal Sparse Decision Tree, Hu et al., 2019) is an algorithm that generates a
decision tree classifier for binary datasets. Figure 25 shows an example for an OSDT model
trained to identify the 10-mismatch between the models RBFSVC vs. DTC on the Bank
Marketing dataset.

Predicted rest Predicted 10-mismatch

Actual rest 8135 2

Actual 10-mismatch 17 84

poutcome not success

rest
(31786)
(acc 1)

nr.employed /∈ [4963.6, 5087.65)

duration /∈ [730.5, 4919.0)

10
(176)

(acc 0.95)

rest
(17)

(acc 1)

duration /∈ [77.5, 129.5)

duration /∈ [129.5, 162.5)

rest
(695)

(acc 0.95)

10
(86)

(acc 1)

10
(103)
(acc 1)

Y N

Y

Y N

N

Y

Y N

N

Figure 25: OSDT confusion matrix and decision tree for RBFSVC vs. DTC
“10-mismatch” on the Bank Marketing dataset. “Poutcome” indicates outcome
of the previous marketing campaign, “nr.employed” indicates the number of
employees, and “duration” indicates the last contact duration, in seconds

(S. Moro & Rita, 2014).

The leaf nodes of the trees show the predictions, the number of samples and the training
accuracy of each leaf. The union of the leafs whose prediction is 10 indicate the conditions
for the 10-mismatch between the two models.

Similarly, we can construct an OSDT to explain the 01-mismatch between the RBFSVC
and DTC models as shown in Figure 26.

Example 2: EBM

EBM (Explainable Boosting Machine, Nori et al., 2019) is a generalized additive model
(GAM) that utilizes boosting. When trained on data, it returns a non-linear function
(“Score”) for each feature (or pairs of features if interaction terms are enabled), which are
used for classification based on where their total summation exceeds a certain threshold.
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Predicted rest Predicted 01-mismatch

Actual rest 7600 134

Actual 01-mismatch 179 325

campaign /∈ [1.0, 1.5)

month not March

cons.conf.idx /∈ [-41.3, -36.95)

rest
(29005)

(acc 0.99)

duration /∈ [249.5, 322.5)

rest
(1255)

(acc 0.93)

rest
(164)

(acc 0.70)

cons.conf.idx /∈ [-50.8, -46.65)

rest
(200)

(acc 0.99)

duration /∈ [162.5, 205.5)

rest
(131)

(acc 0.67)

10
(31)

(acc 1)

emp.var.rate /∈ [0.5, 1.25)

nr.employed /∈ [4963.6, 5087.65)

euribor3m /∈ [1.349, 3.168)

10
(789)

(acc 0.73)

rest
(112)

(acc 0.79)

rest
(211)
(acc 1)

rest
(334)
(acc 1)

Y

Y

Y N

Y N

N

Y N

Y N

N

Y

Y

Y N

N

N

Figure 26: OSDT decision tree for RBFSVC vs. DTC “01-mismatch” on the Bank
Marketing dataset. “Campaign” indicates the number of contacts performed

during this campaign and for this client, “cons.conf.idx” indicates the consumer
confidence index, and “emp.var.rate” indicates the employment variation rate.

The confusion matrix below shows the performance of EBM in identifying the 01-
mismatch between the models RBFSVC and DTC on the Bank Marketing dataset. We
find that this is very accurate.

Figure 27 shows several plots that improve our understanding of the EBM model. The
top plot shows the mean absolute score, which is the average contribution of a feature to pre-
diction (i.e., the average absolute values returned by the non-linear functions corresponding
to each feature). The subsequent plots show the non-linear function of individual and pairs
of features. For example, the duration feature is important to understanding the difference
between the two models. Moreover, when the value of duration is between roughly 900 to
1600, the 01-mismatch is more likely to occur. We similarly observe other features and pairs
of features that are important for 01-mismatch prediction.

Predicted rest Predicted 01-mismatch

Actual rest 7727 7

Actual 01-mismatch 10 494
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Figure 27: EBM confusion matrix and score functions for the features with the highest
importance for predicting 01-mismatch for the pair of models RBFSVC vs. DTC on the
Bank Marketing dataset. “Pdays” indicates the number of days that passed after the

client was last contacted since the previous campaign.
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G.2 Additional Table: PCA Table for Figure 9

DR1 DR2 Test Accuracy

Y −9.77 8.15 1.0

ADB −13.44 1.56 0.86

DTC −8.51 −2.72 0.84

GNB 10.54 −8.76 0.8

GP 14.82 29.28 0.7

KNN 13.52 −1.14 0.79

LR −13.01 −0.38 0.85

LSVC 14.69 −4.54 0.79

MLP 11.29 −8.83 0.79

RBFSVC 14.59 −3.26 0.79

RF 4.3 −2.96 0.82

BRCG −9.44 −3.45 0.83

CORELS 4.65 −5.09 0.81

EBM −13.41 2.42 0.87

OSDT −9.44 −3.45 0.83

SLIM −11.4 3.17 0.84

Table 1: The numeric values of the PCA transformation of Figure 9. The first two
columns indicate the principal components, and the third column shows each

models’ test accuracy.

G.3 Additional Examples of VML

Example 1: Simple Comparison of Model Predictions Using DR

One of the most straightforward ways to compare models is to use scatter plots to visualize
the dimension reduction of the data matrix, color observations according to their predictions,
and present the plots of each model next to each other. For example, Figure 28 compares
model predictions on the Adult dataset. In this case, PCA was used to reduce the data
matrix to two dimensions. The yellow markers represent the positive labels (“y pos”),
while the blue markers represent observations with negative (“y neg”) labels. The top-left
subfigure shows the true labels and serves as the baseline, while the other subfigures show the
predictions of the different models. This provides information about how frequently models
make different predictions (e.g., GP tends to make negative predictions and RBFSVC tends
to make positive predictions) and how these predictions change across the DR space, for
each model.

Example 2: Comparing Hyperparameters

As with comparing models of different hypothesis class, we could visualize multiple mod-
els in the same hypothesis class with different hyperparameters, which could potentially
assist in hyper-parameter tuning. Figure 29 illustrates this using various combinations of
hyperparameters for three models (KNN, MLP, and RF) on the German Credit dataset,
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Figure 28: Illustration of a simple DR comparison of VMLs obtained using PCA on the
Adult dataset.

where each model is represented by a different color. Models from the same family tend
to cluster together (this can be observed by the color of the model in the figure). In the
case of overlaps between models, it could help identify substitutes from models of different
classes that may be more appropriate for the specific application.

Example 3: Accelerating Computation Using Confusion Matrices

A potential computation challenge in creating VML could arise in datasets with a large
number of observations (this, in turn, affects the matrix that is reduced to create the plot).
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Figure 29: A scatter plot that uses dimensionality-reduced model predictions through
multiple parameter combinations of KNN, MLP, and RF (distinguished by color and

shape) obtained using PCA on the German Credit dataset. The KNN models coincide.

One alternative is to create similar plots using the confusion matrix of each model. That is,
we first compute the confusion matrix of each model, and organize these values in a matrix
with a row per model and a column per value in the confusion matrix. We then apply any
desirable DR method on this matrix to create the plot. Figure 30 illustrates a scatter plot
created this way using the Magic dataset. Similar to Figure 9, the 10 circle markers in
orange represent standard models; the five diamond markers in blue represent interpretable
models; and the square green marker represents the baseline of the true labels. Despite
being created using summary statistics and not complete predictions, the plot meaningfully
presents models according to their performance. This implies that close distance results in
similar overall performance (as captured by the confusion matrix) rather than similarity in
all predictions.

G.4 Additional Examples of VCM

Example 1: Scatter Plots of VCMs

Scatter plots of VCMs visualize how joint predictions of the compared models are distributed
in a reduced-feature space. Figures 31a and 31b illustrate a VCM scatter plot that com-
pares two models (GNB and OSDT) on the Magic dataset. The plot was generated by
applying a DR method (PCA) to the data matrix X and by coloring observations according
to the joint predictions of GNB and OSDT. In each subplot, the X-axis represents DR1
(the first dimension of the two reduced dimensions), while the Y-axis represents DR2 (the
second dimension). Figure 31a shows instead of having one figure, we now have four figures
separated according to the joint predictions. As with the confusion matrix, the subplots
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Figure 30: A scatter plot VML based on confusion matrices obtained using PCA on the
Magic dataset.

on the main diagonal present observations in which both models predict the same values,
and on the secondary diagonal are the observations that the models predict differently. For
example, the bottom left part of Figure 31a shows observations in which GNB predicts 1
and OSDT predicts 0. When we choose between these two models, we exchange red and
yellow observations.

Figure 31b consolidates differently-predicted observations into a single plot, which il-
lustrates the tradeoff between the two models—choosing one model over another results in
trading off the one type of prediction error over the other. Observations with the 10 label
(in yellow) and observations labeled 01 (in red) are mostly located in separate areas of the
reduced-dimensional space. There is a rough separation between the joint predictions 01
and 10 near the value 0 on the first dimension. This means that the 10 discrepancy is more
likely to occur on clusters and observations that are located in the negative region of the
first dimension, and the 01 discrepancy is more likely to occur in clusters that are located in
the positive part of the first dimension. If there is an intuitive meaning to each dimension
that relates them to features, we could use it to explain which observations are affected by
choosing between the two models. This is a direction that we explore in the next example.

Note that by comparing density and scatter VCMs, we observe that the scatter plot
better presents detailed information about particular observations and the predictions of
the models. On the other hand, the density plot approximates well the overall distribution
of the data and the regions in which predictions are either similar or different.
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(a) Visual confusion matrix (b) Visual confusion matrix on 01 and 10

Figure 31: Scatter plots of VCM obtained using PCA for the models GNB vs. OSDT on
the Magic dataset.

Figure 32: Biplot of VCM (principle components) obtained using PCA for the models
GNB and OSDT using the Magic dataset.
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Example 2: Biplots of VCMs

Biplots of VCMs aim to translate the meaning of the reduced dimensions into features.
They visualize features on top of scatter plots of observations and reveal the role of feature
importance in model selection. Figure 32 shows a biplot on top of the scatter VCM plot
that focuses on the 01 and 10 joint predictions (the same dataset and model). We see that
the first loading vector (PC1), shown on the X-axis, explains 35% of the variation; thus
placing more weight on features whose corresponding vectors point horizontally. The second
loading vector (PC2) is, by definition, orthogonal to PC1. It is shown on the Y-axis and
explains 17% of the variation and places more weight on the features whose corresponding
vectors point vertically. We can then deduce that large and small values of certain features
tend to lead to certain types of joint predictions. For example, large values of the features
fWidth, fLength, fSize, and fDists are associated with the joint prediction 01 where the
model GNB predicts 0 and OSDT predicts 1. This could potentially help model designers
decide whether a certain tendency is desirable.

G.5 Additional Example of VCX

Figure 33: VCX for comparison of model performance across various preprocessing
methods on the Magic dataset.

Example 1: A Comparison Preprocessing Methods

Figure 33 illustrates the use of VCX to compare models and preprocessing methods and
presents a heatmap of the test accuracy on the Magic dataset across different models (X-
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axis) trained after various preprocessing methods (Y-axis) were applied. Linear models
such as LR and LSVC are not flexible enough and work better with discretized data, while
generalized additive models (i.e., linear models based on nonlinear transformation of each
feature) such as EBM perform well with continuous datasets. Furthermore, non-parametric
models (including tree-based methods) such as MLP, DTC, and RF work better with contin-
uous datasets. The Normalization preprocessing method performs poorly, and SLIM does
not perform well on unscaled continuous datasets due to its sparse nature. Finally, there
is no dominant preprocessing method. Such observations can be easily made using this
approach—they inform the model developer about the behavior of the models and guide
the model development process.

Appendix H. Additional VML Dendrograms

Figure 34: Dendrograms of VMLs on the Adult, Bank Marketing, and Magic datasets;
hierarchical clustering applied to the confusion matrix.
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Figure 35: Illustration of dendrograms of VMLs on the Adult, Bank Marketing, and
Magic dataset: hierarchical clustering applied to ROC curves.
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Appendix I. Barplot of Average Model Decile Score Predictions

Figure 36: Barplot of average model predictions (Y-axis) for every actual COMPAS decile
score (X-axis). The models are ranked from the lowest overall performance (left) to
highest overall performance (right). The error bars indicate the standard deviation.
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