
Journal of Artificial Intelligence Research 74 (2022) 1515-1563 Submitted 01/2022; published 08/2022

Better Decision Heuristics in CDCL
through Local Search and Target Phases

Shaowei Cai shaoweicai.cs@gmail.com

Xindi Zhang zhangxd@ios.ac.cn

State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences

Beijing, China

School of Computer Science and Technology,

University of Chinese Academy of Sciences

Beijing, China

Mathias Fleury fleury@cs.uni-freiburg.de

Armin Biere biere@cs.uni-freiburg.de

Albert-Ludwigs-University Freiburg, Freiburg, Germany

Johannes-Kepler-University Linz, Linz, Austria

Abstract

On practical applications, state-of-the-art SAT solvers dominantly use the conflict-
driven clause learning (CDCL) paradigm. An alternative for satisfiable instances is local
search solvers, which is more successful on random and hard combinatorial instances.
Although there have been attempts to combine these methods in one framework, a
tight integration which improves the state of the art on a broad set of application
instances has been missing. We present a combination of techniques that achieves
such an improvement. Our first contribution is to maximize in a local search fashion
the assignment trail in CDCL, by sticking to and extending promising assignments
via a technique called target phases. Second, we relax the CDCL framework by again
extending promising branches to complete assignments while ignoring conflicts. These
assignments are then used as starting point of local search which tries to find improved
assignments with fewer unsatisfied clauses. Third, these improved assignments are
imported back to the CDCL loop where they are used to determine the value assigned
to decision variables. Finally, the conflict frequency of variables in local search can be
exploited during variable selection in branching heuristics of CDCL. We implemented
these techniques to improve three representative CDCL solvers (Glucose, MapleLcm
DistChronoBT, and Kissat). Experiments on benchmarks from the main tracks
of the last three SAT Competitions from 2019 to 2021 and an additional benchmark
set from spectrum allocation show that the techniques bring significant improvements,
particularly and not surprisingly, on satisfiable real-world application instances. We
claim that these techniques were essential to the large increase in performance witnessed
in the SAT Competition 2020 where Kissat and Relaxed LcmdCbDl NewTech
were leading the field followed by CryptoMiniSAT-Ccnr, which also incorporated
similar ideas.

©2022 AI Access Foundation. All rights reserved.

Cai, Zhang, Fleury & Biere

1. Introduction

The satisfiability problem (SAT) asks to determine whether a given propositional formula
is satisfiable or not. Propositional formulas are usually represented in conjunctive normal
form (CNF). A growing number of problem domains are successfully tackled by SAT solvers,
including electronic design automation (EDA) (Silva & Sakallah, 2000), particularly hard-
ware verification (Prasad, Biere, & Gupta, 2005) and model checking (Vizel, Weissenbacher,
& Malik, 2015; Biere & Kröning, 2018), mathematical theorem proving (Heule, Kullmann,
& Marek, 2016), AI planning (Kautz & Selman, 1992), and spectrum allocation (Newman,
Fréchette, & Leyton-Brown, 2018), among others. Additionally, SAT solvers are also often
used as a core component of more complex tools such as solvers for satisfiability modulo the-
ory (SMT) (Barrett, Sebastiani, Seshia, & Tinelli, 2021), which form a crucial component
of state-of-the-art program analysis and software verification.

Many approaches have been proposed to solve SAT, but conflict-driven clause learning
(CDCL) and local search are the most popular ones. Since their inception in the mid-90s,
CDCL-based SAT solvers have been applied, in many cases with remarkable success, to a
number of practical applications, because CDCL solvers are so effective in practice.

The local search paradigm is an incomplete method only able to solve satisfiable in-
stances. Local search solvers begin with a complete assignment and iteratively modify it,
typically by flipping the value of a single variable, until a model is found or a resource limit
(usually time) is reached. Although local search solvers usually have worse performance
than CDCL on practical instances, they can be more successful on random and hard combi-
natorial instances (Li & Li, 2012; Cai, Luo, & Su, 2015; Biere, Fazekas, Fleury, & Heisinger,
2020). Many techniques, including clause learning (Fang & Ruml, 2004) and unit propaga-
tion (Hirsch & Kojevnikov, 2005), have been tried to improve local search algorithms but
they are still not competitive. Recent studies show that given a promising initial solution
for local search helps to improve the performance on some benchmarks (Zhang, Sun, Zhu,
Li, Cai, Xiong, & Zhang, 2020; Cai, Luo, Zhang, & Zhang, 2021). In this paper we go one
step further and the two components exchange information.

It is usually believed that one limitation of CDCL solvers is that they frequently restart
(in order to find short proofs) and therefore they usually work with partial short assign-
ments (Ryvchin & Strichman, 2008; Oh, 2015). We argue that this makes finding complete
assignments harder. Comparatively, local search solvers explicitly work on complete assign-
ments.

There have been several attempts to combine both approaches. However, in previous
hybrid solvers, both solvers, the CDCL and the local search solver, are opaque to each other,
at most exchange some partial information in one direction and therefore usually see each
other as a black box. These early hybrid solvers invoke the respective solver according to
different situations (Mazure, Sais, & Grégoire, 1998; Habet, Li, Devendeville, & Vasquez,
2002; Letombe & Marques-Silva, 2008; Balint, Henn, & Gableske, 2009; Audemard, Lagniez,
Mazure, & Sais, 2010) as discussed in Section 8 on related work.

This work is devoted to a tighter cooperation of CDCL and local search for SAT, with
CDCL acting as the main solver and local search mainly used as a tool to improve branching
heuristics in the CDCL solver. Occasionally the local search solver finds satisfying assign-
ments too (particularly for random formulas where CDCL performs worse) but, of course,

1516

Better Decision Heuristics in CDCL through Local Search and Target Phases

cannot determine unsatisfiability on its own. In contrast to earlier work, the solvers work
hand in hand and information flows frequently in both directions. Our main overall goal
is thus to decrease the running time of CDCL solvers on real-world application instances,
especially for satisfiable instances, by teaming it up with a local search solver as a “sidekick”.

Our first two contributions are inspired by the concept of “promising branches” originat-
ing in the Glucose solver, where it was used to schedule, actually prohibit, solver restarts.
In Section 3 we explicitly expand such promising branches in two different ways during
CDCL solving, instead of just avoiding restarts, as proposed in Glucose. Our vehicle to
improve models is to change the heuristic to determine values assigned to selected decision
variables. Current state of the art relies on saving the previous value to which a variable
was assigned (for instance through propagation) and reuse that value as saved phase (Pi-
patsrisawat & Darwiche, 2007) in case the variable is selected as decision. We present two
different mechanisms which in regular intervals try to find improved sets of values.

Our first contribution and first mechanism to expand promising branches is called
target phases and tries to maximize the size of the partial assignment (the trail size) explored
during a CDCL run consistent under unit-propagation, forcing the CDCL solver to repeat
the phases which led to the previously largest assignment. A larger assignment consistent
under unit-propagation is considered an improvement, recorded, and then used for selecting
values assigned to decision variables. Targeting these recorded phases forces the CDCL
solver to stay close to this assignment with the hope to reach larger and larger assignments,
thus gradually increasing the size of the assignment (the trail) until a full consistent thus
satisfying assignment is found.

While target phases follow the local search principle to optimize a global criterion lo-
cally, our second contribution and second mechanism explores these promising branches
directly by calling a local search solver on an extension of the current assignment, which
is “relaxed”, thus complete but not necessarily unit-propagation consistent. Promising
branches of sufficient length are extended to a complete assignment by the default CDCL
decision heuristic mechanism. We use unit-propagation to complete the model, while ignor-
ing all conflicts along the way, because unit propagations are hard to find for local search.
Then, a local search solver is called to find a model nearby. If the local search cannot find
a model within a given time limit the CDCL search process resumes.

In order to make use of the effort spent in a failed local search attempt, which did
not find a model (the usual case), our third contribution consists of saving the best
assignment found during local search as new improved set of values and reuse it for the
phase selection heuristics during assigning values to decision variables. This use of local
search can also be considered as a “rephasing” technique (Section 4), which resets saved
phases in regular intervals and thus implements a diversification strategy.

Besides the phases of the best assignment, statistics gathered during local search can pro-
vide additional information useful for guiding CDCL. As fourth contribution we propose
to enhance the CDCL variable selection heuristic by giving more focus to those variables
with high activity during local search. The idea is that variables for which it is “difficult”
to find a consistent value should be given higher preference to be selected as decision during
CDCL, as this might settle their value in a satisfying assignment early on or guide the solver
to a short proof of unsatisfiability. As an approximation of this difficulty, we propose to use
the variables’ conflict frequency during local search, that is, its frequency of appearing in

1517

Cai, Zhang, Fleury & Biere

unsatisfied clauses. This information is used to modify the variables’ activity in the VSIDS
heuristic and the variables’ learning rate in the LRB heuristic (Section 5).

To counteract the effect of losing satisfying assignments during rephasing of parts of
the formula, that is, for instance of some disconnected component, we further propose to
find autarkies (Section 6) during rephasing. The idea is that a partial assignments which
satisfies all clauses it touches allows to remove the touched clauses. We also discuss how to
reconstruct models of the original formula from models of the simplified formula.

All these ideas are primarily trying to improve promising partial assignments further and
they are indeed, according to our experiments, successful in substantially reducing solving
time on satisfiable instances. They can further be implemented and incorporated into a
SAT solver in such a way that solving time on unsatisfiable formulas in general degrades
only slightly if at all, yielding a clear overall performance gain.

We have implemented our proposed techniques in four state-of-the-art CDCL solvers,
including the latest version of Glucose (Audemard & Simon, 2009) (from the SAT Compe-
tition 2019), and the winners of the Main track of SAT Competition 2019 and 2020, namely
MapleLcmDistChronoBT-DL (Kochemazov, Zaikin, Kondratiev, & Semenov, 2019),
and Kissat and CaDiCaL (Biere et al., 2020). The experimental results clearly show that
these techniques enable solving a remarkable number of additional instances in the main
track benchmarks of the last three SAT Competitions from 2019 to 2021 (following the
evaluation guidelines set out by the SAT Practitioner Manifesto (Biere, Järvisalo, Le Berre,
Meel, & Mengel, 2020)). Moreover, the improved versions of the three CDCL solvers also
give better results on an additional real-world benchmark arising from a spectrum repacking
problem in the context of bandwidth auction.

As the experiments clearly show, exploration of promising branches either through target
phases or through local search are very helpful to solve satisfiable instances, with a slight
degradation on unsatisfiable instances (usually solving 2 or 3 fewer unsatisfiable instances
on SAT Competition Benchmarks). Using conflict frequency of variables to enhance the
CDCL branching strategy has to a large extent positive effects on satisfiable instances too
and gives improvements on few unsatisfiable instances. Overall, our proposed techniques
significantly improve the performance of CDCL solvers, leading to a remarkable increase in
the total number of solved instances, which we also claim is the main reason for the large
jump in performance of the top solvers in the SAT Competition 2020, where Kissat and
Relaxed LcmdCbDl NewTech were leading the field followed by CryptoMiniSAT-
Ccnr, which also incorporated similar ideas. In the latest SAT Competition 2021 variants
of Kissat were dominating.

This work combines, on the one hand, our previous (partially unpublished) work on tar-
get phases (Biere, 2019), rephasing (Biere, 2017a, 2018), and using local search (Biere, 2019;
Soos & Biere, 2019) to improve CDCL assignments which was presented at the workshop
on Pragmatics of SAT in 2020 (POS’20) (Biere & Fleury, 2020) and, on the other hand,
our paper published at SAT’20 on a deeper integration of local search into CDCL (Cai &
Zhang, 2021), including “relaxed” CDCL, local search based rephasing and using conflict
frequency to enhance branching heuristics. This publication received a best paper award
at SAT’20 and its ideas can be dated back to our ReasonLS solver in the SAT Competi-
tions 2018 (Cai & Zhang, 2018) and four relaxed CDCL solvers in the SAT Competitions

1518

Better Decision Heuristics in CDCL through Local Search and Target Phases

2019 (Cai & Zhang, 2019), and an earlier work on MaxSAT solvers that pass assignments
between a decimation algorithm and a local search algorithm (Cai, Luo, & Zhang, 2017).

We discovered that both lines of works, while having been developed independently,
have the same underlying ideas and give similar quite remarkable improvements. This is
also the reason we decided to join forces on writing this article in order to provide a more
complete understanding of the ideas. Compared to our previously reported empirical results
we have further implemented both line of works in Glucose and provide more details.

2. Preliminaries

In this section we define the notion of formulas we need (Section 2.1). CDCL is a procedure
to solve satisfiability problems in CNF (Section 2.2). In particular we recall how decisions
work in most implementations. Unlike CDCL that builds a partial assignment, local search
solvers work on adapting full assignments (Section 2.3). Finally, we give the setup for the
experiments and the SAT solvers we used for our experiments (Section 2.4)

2.1 Preliminary Definitions and Notations on Formulas

Let V = {x1, x2, . . . , xn} be a set of Boolean variables, a literal is either a variable x or
its negation ¬x. A clause is a disjunction of literals. A conjunctive normal form (CNF)
formula F = C1 ∧ C2 ∧ · · · ∧ Cm is a conjunction of clauses. For simplicity we assume
non-tautological clauses, that is, there is no variable x which occurs positively (x ∈ C) and
negative (¬x ∈ C) in the same clause.

A (partial) mapping α : V → {0, 1} is called an assignment. If α maps all variables
to a Boolean value, it is complete; otherwise, it is a partial. The size of an assignment α,
denoted as |α|, is the number of assigned variables in it. The value of a variable x under an
assignment α is denoted as α[x]. An assignment α satisfies a clause iff at least one literal
evaluates to true under α, and satisfies a CNF formula iff it satisfies all its clauses. A
CNF formula F is satisfiable iff there is at least one satisfying assignment. Such a satisfying
assignment is also called a model. The empty clause ⊥ is always unsatisfiable, and represents
a conflict. SAT is the problem of deciding whether a given CNF formula is satisfiable.

A key procedure in CDCL solvers is unit propagation. Whenever a clause has one unset
literal and all others false, the unset variable is assigned to satisfy this clause. This process
is run until fixpoint or until an empty clause (a clause false under the current assignment)
is produced, also called conflict.

2.2 CDCL Solvers

For the sake of the presentation in this article, see (Marques Silva, Lynce, & Malik, 2021)
for a more generic overview on CDCL, we consider CDCL SAT solvers to be composed of
a propagate-and-learn and a guessing part. CDCL solvers do propagate-and-learn eagerly
in practice (Section 2.2.1) and implementations do not differ much. However, the guessing
policy and also the search-restart policy (Section 2.2.2) are both considered to be important
for performance and differ across implementations.

1519

Cai, Zhang, Fleury & Biere

Algorithm 1: Typical CDCL algorithm: CDCL(F, α)

dl← 0; //decision level1

if UnitPropagation(F, α)==CONFLICT then return UNSAT2

while ∃ unassigned variables do3

/* PickBranchVar picks a variable to assign not in α */

x← PickBranchVar(F, α);4

/* PickBranchDirection picks the respective value */

v ← PickBranchDirection(F, x, α);5

dl← dl + 1;6

α← α ∪ {(x, v)};7

if UnitPropagation(F, α)=CONFLICT then8

bl← ConflictAnalysisAndLearning(F, α);9

if bl < 0 then10

return UNSAT;11

else12

Backtrack(F, α, bl);13

dl← bl;14

return SAT;15

2.2.1 Overall Organization

Algorithm 1 shows the standard procedure of a CDCL solver, where α is the current as-
signment, dl is the current decision level and bl denotes the backtrack level. Arguments to
the functions are assumed to be passed by reference.

The UnitPropagation procedure performs Boolean constraint propagation on the formula
and identifies potential conflicts. Once a conflict is derived, it is analyzed and a clause is
derived by the ConflictAnalysisAndLearning function. This learned clause is then added to
the clause database. Finally, Backtrack adapts the search to the newly learned clause. The
branching heuristics consists of two procedures, where PickBranchVar selects a variable to
assign and PickBranchDirection the respective phase.

Note that Algorithm 1 shows a simplified skeleton of a typical CDCL algorithm. It is
still missing several important techniques, including restarts, clause deletion policies, and
learned clause simplification, among others, as explained in (Marques Silva et al., 2021).

2.2.2 Decision Heuristics and Backtracking

There is a long history of research on branching heuristics in SAT. The choice of the branch-
ing heuristics is still considered today to have a large impact on the performance of SAT
solvers. See for instance (Biere & Fröhlich, 2015) for a survey on the effect of branching
heuristics. Here we briefly discuss three branching heuristics, that is, variants of function
PickBranchVar of Algorithm 1, which are relevant to this article.

Variable State Independent Decaying Sum (VSIDS) is known to be the first
heuristics to use information from recent conflicts instead of all present clauses (Moskewicz,

1520

Better Decision Heuristics in CDCL through Local Search and Target Phases

Madigan, Zhao, Zhang, & Malik, 2001). It relies on the concept of “variable activity”. We
describe the version used in MiniSAT (Eén & Sörensson, 2003) and most modern implemen-
tations of CDCL. Each variable has an activity attached to it. Each time a variable occurs
in resolved clauses during conflict analysis, the solver increases its activity. This is referred
to as bumping, effectively decaying the activity of all other variables. When selecting a
branching variable, VSIDS picks the variable with the maximum activity score.

Learning-Rate Branching (LRB) (Liang, Ganesh, Poupart, & Czarnecki, 2016)
frames branching as an optimization problem that picks a variable to maximize a metric
called learning rate. The learning rate of a variable x at interval I is P (x,I)

|I| , where I is the
sequence of conflicts that occurred between the assignment of x until it transitioned back to
unassigned, P (x, I) measures the number of conflicts in I, for which x occurred in at least
one clause during resolving the corresponding learned clause, and |I| matches the number of
learned clauses generated in interval I. Furthermore, the authors of LRB interpret variable
selection as optimization problem which is solved via a multi-armed bandit algorithm.

Move to front (VMTF) (Ryan, 2004; Biere & Fröhlich, 2015) is a heuristic to focus
aggressively on literals involved in the most recent conflicts. It provides a simpler and more
efficient implementation that focuses on the literals involved in the last conflicts. The idea
is to mark the last learned literals as the most important – they are moved to the front of
the queue and will be selected next (last in first out).

Phase Saving. Most modern decision heuristics, particularly all presented above, pick a
variable first and then use another heuristic to determine its value, or phase, that it should
be set to (i.e., whether the variable should be decided positively or negatively). This is
function PickBranchDirection of Algorithm 1. Picking the right phase is actually the
most important heuristic for satisfiable instances, because the solver can pick variables in
arbitrary order if the phases form already a model (satisfying assignment).

Formerly, some state-of-the-art SAT solvers like Chaff (Moskewicz et al., 2001) used
information based on the number of occurrences (Moskewicz et al., 2001) with the aim
of increasing the number of satisfied clauses under the current assignment, but this is
expensive. Other SAT solvers like MiniSAT (e.g., in the version submitted to the SAT
Competition 2005) always set literals to false. Instead of using information on the clauses,
phase saving (Pipatsrisawat & Darwiche, 2007) captures information on the search process
and caches how variables are set during propagation or backtracking. This saved value is
later used to set the phase when deciding that variable, bringing the SAT solver back to a
similar region of the search space. This simple (it only requires an array and is cheap to
update) and easy-to-calculate heuristic has a quite remarkable positive effect on performance
and is now standard in most modern SAT solvers.

With phase saving, the solver focuses on the region of the search space explored be-
fore. The heuristic is not only important for satisfiable instances, but also for unsatisfiable
instances. For instance, if the formula is composed of independent components, phase sav-
ing cheaply allows the solver to focus on one component instead of working on multiple
components at the same time. In particular, if the problem includes disjoint satisfiable
components, the interplay between the decision and phase saving heuristics achieves that
each component is solved independently and satisfying assignments of previously solved
components are maintained.

1521

Cai, Zhang, Fleury & Biere

Rephasing. Clearly, phase saving should be considered an intensification strategy and
by applying general heuristic search principles should benefit from complementing it with
a corresponding diversification strategy. Accordingly, the idea of rephasing is to regularly
reset saved phases. In principle, saved phases can be set arbitrarily, as phase selection does
not influence correctness nor termination of CDCL.

The SAT solvers PrecoSAT (Biere, 2010) and PicoSAT (Biere, 2010) use a Jeroslow-
Wang score (Jeroslow & Wang, 1990) to change the saved phases either on all or on irre-
dundant only) clauses in regular intervals, following a Luby sequence. The motivation is
to adapt the saved phases to the current formula. The SAT solver StrangeNight (Soos,
2013) flips values with a certain probability depending on the depth of the assignment.
The motivation here is to avoid the heavy-tail phenomenon. Manthey reported experi-
ments (Manthey, 2010, Section 3.1) for the SAT solver Riss (Balint, Belov, Järvisalo, &
Sinz, 2015) with negative results. However, to the best of our knowledge, this is the first
time that several rephasing heuristics were compared and used.

Restarts. For efficiency of SAT solvers on practical instances, restarts turn out to be
important. In particular, fast restarts (Ramos, van der Tak, & Heule, 2011) are now com-
mon. Originally “Luby restarts” were heavily used because they are a priori optimal strat-
egy (Luby, Sinclair, & Zuckerman, 1993). However, in recent years, most implementations
switched to Glucose-style restarts (Audemard & Simon, 2012a), basically, a requirement
for prevailing in the SAT Competition. Biere and Fröhlich’s presentation acts as a survey
on various restart heuristics (Biere & Fröhlich, 2015). To keep completeness of SAT solvers,
either restarts must be delayed more and more (for instance following a Luby sequence), or
alternatively the number of clauses kept during database reduction needs to be increased
(as it is usually done for Glucose-style restarts).

The potential overhead generated by frequent restarts in performing the same deci-
sions and propagations over and over again can be lessened by cheaply reusing parts of
the trail (Ramos et al., 2011). In order to find models, the solver must generate long as-
signments. For Luby-style restarts, this is realized by means of the (non-monotonically)
increasing intervals between successive restarts.

For Glucose-style restarts, the intervals are not necessarily increasing and hence there
are no guarantees that long assignments will be generated. To overcome that drawback,
as implemented in Glucose (Audemard & Simon, 2012b), restarts can be blocked and
delayed whenever the current assignment looks promising, for example, if the trail length
has increased by a predefined factor since the latest restart (Audemard & Simon, 2012b).
Delaying restarts is mostly useful for satisfiable problems.

Another option is to alternate restart policies (Oh, 2015) and restart less or even suppress
restarts for some time in regular intervals during the search process. The latter was shown
to be beneficial for satisfiable instances in particular and can be considered as one corner
stone to the large improvement of SAT solvers witnessed in the SAT Competition 2016.

2.3 Local Search Solvers

Local search algorithms (Hoos & Stützle, 2004) explore the search space using a neighbor-
hood relation. They start somewhere in the search space and the space is explored following
a neighboring relation until some criterion is met. In the context of SAT, the search space

1522

Better Decision Heuristics in CDCL through Local Search and Target Phases

is the set of complete assignments which is characterized as the set of strings {0, 1}n, where
n is the number of variables in the formula.

For SAT, the most natural neighborhood maps candidate solutions to their set of Ham-
ming neighbors, that is, candidate solutions that differ in exactly one variable, until a model
is found. In this view, a step in SAT local search consists of flipping the value assigned to
a single variable. A survey by the first author (Cai, 2015) provides more details on local
search SAT solvers.

2.4 Experiment Preliminaries

This sections describes the set up to evaluate our proposed methods, including a description
of the SAT solvers, benchmarks, running environment and experimental methodology.

Base Solvers. We choose several state-of-the-art CDCL solvers as the base solvers for our
studies, namely Glucose v4.0 (Audemard & Simon, 2009), CaDiCaL 0v9 for evaluating
target phases, which in essence is the version submitted to the SAT Competition 2020 (Biere
et al., 2020), MapleLcmDistChronoBT-DL v2.1 (Kochemazov et al., 2019), and Kis-
sat sat (Biere et al., 2020). Glucose is a milestone of modern CDCL solvers and has
won several gold medals in SAT Competitions. MapleLcmDistChronoBT-DL won the
SAT Race 2019 and Kissat sat won the Main Track of SAT Competition 2020.

We choose CCAnr (Cai et al., 2015) as the local search solver to integrate into the
CDCL solvers Glucose and MapleLcmDistChronoBT-DL, while Kissat sat already
includes a simple local search procedure inspired by ProbSAT (Balint & Schöning, 2012)
and particularly YalSAT (Biere, 2014). CCAnr is a local search solver with the aim for
solving structured SAT instances and has shown competitive results on various structured
instances from SAT competitions and applications.

Benchmarks. The experiments are carried out on the main track benchmarks of the
SAT Competitions and one SAT Race of the last three years (2019 – 2021). Additionally,
we evaluate the solvers on an important application benchmark suite consisting of 10 000
instances1 from the spectrum repacking in the context of bandwidth auction which resulted
in about 7 billion dollar revenue (Newman et al., 2018).

Experiment Setup. We conducted all experiments on a cluster of computers with Intel
Xeon Platinum 8153 @2.00 GHz CPUs and 1 024 GB RAM under the operating system
CentOS 7.7.1908. For each instance, each solver run with a cutoff time of 5 000 s. For each
solver and benchmark year, we report the number of solved SAT/UNSAT instances and the
total solved instances, denoted as ‘#SAT’, ‘#UNSAT’, and ‘#Solved’, and the penalized
run time average ‘Avg’ PAR2 score (as used in SAT Competitions), where the run time of
a failed run is penalized by twice the cutoff time.

We show the results as tables and a cumulative distribution function (CDF, and not
as a cactus plot), that is, as a graph showing the number of solved instances depending
on the time. The higher the curve, the better the solver. The source codes2 and detailed
experiment results3 are available online.

1. https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

2. http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATcodes.zip

3. http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATtables.zip

1523

https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz
 http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATcodes.zip
 http://lcs.ios.ac.cn/~caisw/Code/JAIR-SATtables.zip

Cai, Zhang, Fleury & Biere

3. Exploring Promising Branches

CDCL attempts to produce short proofs and hence often restarts. To focus the search
towards models, we force the CDCL part to improve models by using target phasing fol-
lowing ideas from local search. This forces CDCL to stay close to the target assignment
(Section 3.1). Another way to improve models is to use a local solver directly to explore
promising directions (Section 3.2) during the CDCL search.

3.1 Exploring Promising Branches By Directing CDCL

Fast restarts are important for the performance of SAT solvers, but make solving satisfiable
instances harder. To mitigate this issue, restarts can be blocked in Glucose. If the search
direction is promising (i.e., the current assignment has become much larger), instead of
restarting, the search continues (and the conflict count since the last restart is reset, which
prohibits restarts for the next 50 conflicts) (Audemard & Simon, 2012b).

The intuition is that promising assignments should be extended towards full assignments
(and hopefully a model of the formula) instead of being discarded by restarting. We refine
this idea further in our target phasing heuristic that saves promising models separately
instead of just extending them.

Target Phasing. The target phasing heuristic follows the idea of extending an assignment
to a full model. As for phase saving, an additional implicit (but partial) assignment is kept,
with the key difference that the target assignment is updated less frequently during the
search. It follows an idea from local search: the target is the assignment the solver tries to
fulfill and one mutation corresponds to finding a better assignment. Unlike most local search
methods, we still use and prioritize unit propagations over the target: propagations ignore
the saved target assignment. Only decisions follow the previously saved target phases. More
precisely, target phasing consists of the following three parts.

1. First, an implicit target assignment is saved. Whenever the current assignment be-
comes more promising (better) than the saved one, the latter is replaced. The current
assignment, as represented by the “trail” of the solver is more promising if it assigns
more variables (in terms of the size of the “trail”) without leading to a conflict after
propagation. Then the entire current assignment, that is, the trail, becomes the new
target assignment. The replacement is done before each decision if there is no conflict.

2. Second, when picking the phase to assign to a decision variable, we do not use the
saved value (as usually done with phase saving) but instead the value given by the
target assignment. If the target phase of the selected variable is unassigned, the
solver defaults to the value provided by phase saving or even to the default phase if
the variable was never assigned yet.

3. Third, the target assignment is reset after each rephasing to the initial all-unassigned
state. This diversification strategy encourages the solver to find larger and larger
target assignments until the next rephasing and has proved to be useful empirically.

Example 1. To better understand the technique, we give a sketchy example. Assume we
start from the empty trail ε, the target phase ¬B¬E, and the saved phase ABCDEF . Then

1524

Better Decision Heuristics in CDCL through Local Search and Target Phases

we decide the variable A. It has no value in the target phases, so we go for the default true
phase. Then we propagate to get the trail A+¬BC and the saved phases A¬BCDEF . We
have found no conflict and a more promising model, so the new target phase is A¬BC.

Then we decide another variable D which is set to the default positive value as for A.
We get the trail A+¬BCD+¬E and the saved phases A¬BCD¬EF . We find a conflict
and the trail becomes ¬E. We now decide another variable B which is set according to its
target phase thus to false (as ¬B was saved as target phase).

Restart Policy. To increase the chance of finding a model, the solver must work on
relatively long assignments. However, this increases the risk of encountering heavy-tailed
behavior (Gomes, Selman, Crato, & Kautz, 2000) and to miss short proofs. To circumvent
this problem, we alternate between focused mode (with Glucose-style fast restarts) and
stable mode (with fewer restarts)4 in the spirit of the work by Chanseok Oh (Oh, 2015).
Maple is based on Glucose, but the restart mechanism does not include its blocked
literals and it has a mechanism to avoid some of the restarts when it is using LRB as
decision heuristic.

The 2018 version of CaDiCaL did not restart at all in stable mode. Since 2019, Luby
restarts are used with a relatively large base interval (1 024 compared to MiniSAT’s default
value of 100). The same restart strategy is used for Kissat. Alternating between these
two restart policies allows us to use a shorter minimum of conflicts between two successive
restarts. Instead of the Glucose default of 50, CaDiCaL has a base restart interval of
2 in focused mode and Kissat even 1 (but increasing logarithmically). The duration of
each search mode interval is increased geometrically. In Kissat the conflict interval is in
O(n · log2n) after n mode switches though instead of O(n2) (Biere et al., 2020).

3.2 Exploring Promising Branches By Local Search During CDCL

The previous section used CDCL to improve promising models, but a local search solver
can achieve the same effect.

First, we provide the motivation of our method. By using reasoning techniques, CDCL
solvers are able to prune most of the branches of the search tree. This is useful for solving
unsatisfiable instances — to prove a formula is unsatisfiable, a CDCL solver needs to exam-
ine the whole search space, and therefore the more of the search tree is pruned, the more
efficient the solver is. However, when solving satisfiable formulas, some promising branches
are not immediately explored. This makes CDCL solvers miss opportunities for finding a
solution. The exploration of promising branches can improve CDCL solvers on satisfiable
formulas, and a natural way to do so is to employ local search at such branches.

Now, we present a method to explore promising branches by plugging a local search
solver into the CDCL solver, which can improve the ability to find solutions while keeping
the completeness of the CDCL solver. The framework of our method is described as follows
(Figure 1).

During CDCL, whenever a node is reached with a promising assignment, the search is
paused. The algorithm enters a non-backtracking mode, which uses unit propagation and

4. The stable mode was initially called “stable phase” (Biere, 2018), which is a confusing name (due to
rephasing), so we have decided to rename it, as can already be seen in the system description of the SAT
Competition 2020 (Biere et al., 2020)

1525

Cai, Zhang, Fleury & Biere

a decision heuristic to assign the remaining variables without backtracking, relaxing the
condition to stop on the first identified conflict clauses. At the end, this leads to a complete
assignment β, which the local search solver uses to search for a model nearby. If the local
search fails to find a model within a certain time budget, then the algorithm goes back to
the normal CDCL search from the node where it was paused (we call this a breakpoint).

We need to identify which branches (i.e., partial assignments) deserve exploration. We
propose two conditions below, and any assignment α satisfying at least one of them is
considered as promising and will be explored:

• A certain ratio of variables is assigned, that is, |α|
|V | > p and there is no conflict under

α, where p is a parameter and is set to 0.4 according to preliminary experiments on
a random sample of instances from recent SAT Competitions.

• A length ratio similar to the best saved assignment, that is, |α|
|α longest| > q and there

is no conflict under α, where q is set to 0.9 for the same reason.

In order to ensure that the search space of adjacent local search calls is sufficiently
different, we disallow local search for a certain number of k restarts, where k is set to 500
for Glucose, and 400 for Maple.

As a starting point for local search we first have to create a full assignment. The
simplest solution would be to use some saved information. However, it is difficult for local
search to achieve unit propagation (as it would require to flip the right literals, making it
very unlikely to find propagation chains). Hence we relax CDCL and complete the current
partial assignment by alternating decisions and propagations while ignoring all conflicts.
Notably, our implementation uses the same Boolean constraint propagation procedure5

and therefore, also updates the watched literals and the blocking literals of the clause. The
current implementation performs unit propagation whenever possible, and decides variables
by randomly picking an unassigned variable and assigning a value to it using phase saving
(as CDCL does) when propagation cannot continue. Note that the conflicting variables
in the relaxed propagation keep their value and are not changed. This approach reuses
the propagation loop and phase saving heuristics (although ignores conflicts). We call this
approach relaxed CDCL because it allows some branches to be extended to a leaf even
meeting conflicts, but does not change the data structures and the completeness. We could
even reuse the decision heuristic to select variables. Besides the watched literals, the non-
backtracking phase does not change the data structures used for CDCL search process.

After obtaining a complete assignment through this relaxed CDCL procedure, the local
search solver is called on all problem clauses and all the permanently added learned clauses
(i.e., of low LBD and thus heuristically important). On the contrary, Kissat uses only
the irredundant ones. However, inprocessing is heavily used, hence it removes subsumed
clauses and replaces them by smaller ones. Therefore, the short learnt clauses kept forever
in Glucose have a high chance to be in the irredundant clauses, achieving a similar effect.

In general, the time spent in local search has to be limited. To keep the solving process
deterministic, we count memory-accesses to estimate time, instead of relying on explicit
time limit. Kissat schedules based on the number of memory accesses, but instead of
counting each access, the number of cache line accesses is estimated (e.g., accessing a clause

5. Technically we duplicated the code to ignore conflicts, but otherwise there are no differences.

1526

Better Decision Heuristics in CDCL through Local Search and Target Phases

0

p

1

LS Solver

Unknown:
Continue CDCL

return SAT

SAT

Figure 1: Overall procedure of relaxed CDCL

counts as one, whether one or all elements are evaluated), and the time spent on random
walk is increasing in increasing intervals. For our relaxed CDCL implementation, we simply
count the accesses to the vector saving the candidate variables. The limit is set to 5× 107

and fixed during search.

4. Rephasing Heuristics

Exploring promising branches is already a useful addition to CDCL, but it is too stubborn
in particular in combination with target phases. In this section, we propose two rephasing
heuristics to provide more diversification. By rephasing we mean to globally reset or change
saved values, and we call a variant of such transformations a rephasing heuristic. The first
variant uses the improved assignment produced by the local seach solver (Section 4.1). To
introduce more scrambling, we also make use of a structured rephasing, for example, setting
all phases to true/false (Section. 4.2).

4.1 Local-search Rephasing

In Section 3.2 we proposed a method to plug a local search solver into CDCL solvers, where
the CDCL solver helps the local search solver by providing a sensible starting point, from
which local search is hoped to find a satisfying assignment in small number of steps. Now,

1527

Cai, Zhang, Fleury & Biere

we propose a rephasing heuristic to import back an improved assignment obtained by the
local search process, which is referred to as local-search rephasing (LS rephasing for short).

Algorithm 2: Relaxed CDCL Algorithm with Local-search Rephasing

dl← 0, α← ∅, α longest← ∅ ;1

if UnitPropagation(F, α)=CONFLICT then2

return UNSAT3

while ∃ unassigned variables do4

x← PickBranchVar(F, α);5

v ← PickBranchDirection(F, α);6

dl← dl + 1;7

α← α ∪ {(x, v)};8

if UnitPropagation(F, α)=CONFLICT then9

bl← ConflictAnalysis(F, α);10

if bl < 0 then11

return UNSAT12

else13

α longest← max(α longest, α);14

Backtrack(F, α, bl), dl← bl;15

/* lines 16-22 corresponds to the technique in Section 3.2 */

else if (|α|/|V | > p OR |α|/|α longest| > q) then16

β ← α;17

while β is not complete do18

x← PickBranchVar(F, β);19

v ← PickBranchDirection(F, β);20

β ← β ∪ {(x, v)};21

UnitPropagation(F, β);22

if LocalSearch(β, terminate condition) then23

return SAT24

if Meet Restart Conditions then25

Backtrack(F, α, 0) ;26

dl← 0;27

RephaseFromLocalSearch(); //corresponds to Section 4.128

return SAT;29

Algorithm 2 describes a CDCL solver that implements the idea of exploring promising
branches via local search, as well as the LS rephasing heuristic. Every time the CDCL solver
restarts (which is forced by a certain schedule and simply backtracks to decision level zero),
the LS rephasing heuristic overwrites the saved phases of all variables with assignments
produced by local search. To this end, we record the best assignment (with the fewest
unsatisfied clauses) in each run of the local search solver, and when we say the assignment
of a local search procedure (run), we refer to the best assignment in this procedure.

1528

Better Decision Heuristics in CDCL through Local Search and Target Phases

Phase Name α longest LS α latest LS α best LS no change

Probability 20% 65% 5% 10%

Table 1: Probability of different phases in our local-search rephasing mechanism.

For our LS rephasing technique, we consider the following assignments, all of which
come from the assignments of the local search procedures.

• α longest LS: This refers to the assignment of the local search procedure in which
the initial solution is extended based on α longest, where α longest is the longest
assignment met during past CDCL search. Thus, whenever α longest is updated, the
algorithm calls the local search solver and updates α longest LS.

• α latest LS: This is the assignment of the latest local search procedure.

• α best LS: Among all local search assignments so far, we denote the best one (with
the fewest unsatisfied clauses) as α best LS.

Local-search Rephasing: Whenever CDCL is restarted, we overwrite the saved
phases. We reset all variables with one complete assignment which is selected according to
the rephasing probabilities given in Table 1. Such changes are always allowed, because they
do not impact the underlying CDCL calculus, its correctness, nor termination.

As can be seen, the LS rephasing considers both intensification and diversification —
α longest LS and α best LS serve for the aim to derive longer models, while α latest LS
adds diversification, as different local search procedures start with initial assignments built
upon different branches. Given how fast restarts are scheduled in modern SAT solvers,
the rephasing is done quite often, and with a certain probability (25%), it goes in the
directions given by either α longest LS or α best LS, making it rather aggressive. Overall, it
is expected this LS rephasing technique would work well particularly for satisfiable instances,
and our experiment results confirm this. To determine the precise percentage we tried every
combination (with a 5% increment).

One implementation detail worth mentioning is the restarting policy in Glucose. Its
default configuration adapts the strategy according to statistics gathered during the first
100 000 conflicts. We do not change that. However, it blocks restarts (Audemard & Simon,
2012b) as mentioned before. In our first implementation, the restart frequency was so slow
that the effect of rephasing was not good. So we remove the blocking restart method from
Glucose and only use the LBD quality-based restart policy as Maple to increase the
restart frequency and instead rely on our methods to derive longer models. In particular,
we removed the restarts from the strategy adaption used by Glucose.

4.2 Fixed Rephasing

The previous section introduced some diversification. However, it is still very search related.
In this section, we introduce a more structured version of rephasing that not only considers
the past search behavior, but also changes the phases independently to cover more parts of
the search space.

1529

Cai, Zhang, Fleury & Biere

4.2.1 Rephasing Options

Rephasing heuristics diversify the exploration of the search space, which can be helpful
for satisfiable instances (we could get close to a model). They can also help to variegate
learned clauses. We conjecture that this, in turn, improves the efficiency of inprocessing
(e.g., learning additional important clauses, like small glue clauses).

Rephasing to a Fixed Value. Our first rephasing heuristic consists in setting all saved
phases to a single value, either the original value (phase ‘O’) – remember, unlike MiniSat,
our tools CaDiCaL and Kissat default to the value true – or the opposite value (the
inverted value, phase ‘I’). This alternation is helpful in finding models when most values
have a certain sign, but this depends on the order in which literals are decided. For example,
modifying the SAT solver Glucose (Audemard & Simon, 2009) to apply those rephasings
does not make solving certain adversarial factorization problems (Biere, 2017b) completely
trivial (some conflicts are still required), but they are now solved extremely fast, while being
hard for the default version of Glucose.

Flipping Values. Our second rephasing heuristic consists in flipping the saved values
(phase ‘F’), unlike the previous heuristic in which all saved values are set to a single value,
namely either true or false. This allows exploring the “opposite” region of the search space.
The motivation behind this heuristic comes from machine learning: Flipping corresponds to
diversification with a very different model. It can also support inprocessing by, for example,
simulating hyper binary resolution (Heule, Järvisalo, & Biere, 2013), because a literal can
be decided and later its opposite.

Randomizing Values. In order to diversify the exploration of the search space even more,
we additionally randomize the saved phase (phase ‘#’). The basic idea is that for satisfiable
instances and with some luck, the randomized saved phases will now form an assignment
that is close enough to a model of the problem we want to solve. The assignment can then
be adapted by means of CDCL to a model. If the randomization is done uniformly, the
saved phases will eventually be close to a model. In the same spirit, we also tried to shuffle
the scores of the variable decision heuristics (and the VMTF queue) in CaDiCaL, which,
however, only produced negative results and is switched off by default.

Local Search. With a limited local search (phase ‘W’, standing for walk) we attempt to
reduce the number of unsatisfied clauses under the assignment formed by the current saved
phases or a saved assignment. Our local search implements the ProbSAT strategy (Balint,
2014). During local search an assignment falsifying the least number of clauses is kept as
saved phases and this way used for decisions in the CDCL loop. The idea is that the solver
can focus on the unsatisfiable part of the clause set. Beside our solvers, CryptoMini-
Sat (Soos, Nohl, & Castelluccia, 2009) uses local search in a similar way (Soos & Biere,
2019). The search is in essence similar to the one described in the previous section, but it
works on a different model: Instead of exploring the current promising assignment while
executing CDCL, it alternates between the best model found so far and the current model
formed by the saved phases.

This method is very similar to the one described in Section 4.1 but scheduled differently,
less frequently, alternating with the other rephasing procedures and originally (and inde-

1530

Better Decision Heuristics in CDCL through Local Search and Target Phases

pendently) employed in the SAT solvers CaDiCaL and Kissat of the last author, Biere,
who developed it first.

Best Phasing. The key idea of best phasing (phase ‘B’) is that good current assignments
are close to models. The solver caches the best assignment found so far (with respect
to the length of the trail until the last decision if it generated a conflict). During each
backtrack and before each restart, the current partial assignment is saved if it improves the
best-so-far found assignment. This heuristic simply replaces the saved phases by the values
of the best assignment ever in contrast to target phases which are reset during rephasing.
For unsatisfiable instances, this corresponds to focusing on the unsatisfiable region of the
search space. This differs from the rephasing heuristic used in the previous section where
the model is never reset. The intuition behind that choice is that the best model can get
stuck to a local optimum, hence resetting it can help changing the search direction.

Note that the length of the trail might not be a perfect measure in the context of
techniques like on-the-fly self-subsuming resolution (OTFS) (Han & Somenzi, 2009; Hamadi,
Jabbour, & Sais, 2009) or in combination with chronological backtracking (Nadel & Ryvchin,
2018; Möhle & Biere, 2019). Furthermore, inprocessing needs to be taken into account. In
Kissat we actually measure the number of assigned variables plus the number of fixed,
substituted, or eliminated variables. The best assignment is reset after each best phasing
(in ‘B’, and only then).

4.2.2 Rephasing Strategies

The rephasing heuristics define how to change the saved phases, but they do not have to
be applied on all variables and an order has to be defined.

Autarkies. As explained above, one motivation for phase saving is that it caches the
phases needed to satisfy some components of an input problem allowing the solver to focus
on the unsatisfiable part. If saved values are changed by some of the rephasing heuris-
tics described above, this property does not hold anymore potentially harming satisfiable
instances that can be split into components. To avoid that, we detect such cases, called
autarkies, in Kissat, enabling the removal of satisfied components (See Section 6).

Rephasing Strategies. We schedule the different rephasing heuristics in geometrically
increasing intervals, unlike the heuristics described in the previous section that are applied
after each and every restart. Consequently, we spend more and more time exploring the
search space in any given direction. An extreme case would be to start with the inverted
phase ‘I’ and an infinitely long interval: We would then explore the search space like
MiniSAT without any rephasing. We describe the order in which we apply the heuristics
in Section 7, but the idea is to apply them in geometrically increasing intervals.

5. Directing the Branching Heuristic with Local Search

In the current presentation, CDCL and the local search solver only exchange assignments,
but no information on the search process. In particular, there is no exchange on the variables
that are usually involved in conflict clauses, while both solvers use this information: the
branching heuristic of CDCL focuses on such variables (the more often it is in a conflict,

1531

Cai, Zhang, Fleury & Biere

the more you should focus on it) and the local search solver prefers to flip those variables.
To transmit information to CDCL, we use the conflict frequency of variables in the latest
local search procedure.

Definition 2 (Conflict frequency). In a local search process, the conflict frequency of a
variable x, denoted as ls confl freq(x), is the ratio of flips in which x appears in at least one
unsatisfied clause.

The intuition behind the definition is that the unsatisfied clauses have a similar role to
the conflicts during CDCL, so we use that information to adapt the scores in the branching
heuristics of CDCL. To update the scores in the branching heuristics, we first multiply
ls confl freq(x) with a constant integer (100 in this work), and the resulting number is
denoted as ls conflict num(x). After each restart of the CDCL solver, ls conflict num(x) is
used to modify the activity score of the variable x for VSIDS and learning rate for LRB.

VSIDS: for each variable x, its activity score is increased by ls conflict num(x).

LRB: for each variable x, the number of learned clause during its period I is increased
by the number of conflicts ls conflict num(x). That is, both P (x, I) and L(I) are
increased by ls conflict num(x).

The bumping is not done immediately, but only be executed after the next restart, that
is, while doing the local-search rephasing described in Section 4.1. We delay rephasing to
avoid changing the exploration direction that is done by the CDCL solver currently: As
important variables might have been already set, they cannot be decided again, limiting
the effect of the search redirecting.

6. Autarky Detection

When the initial problem is composed of several independent subproblems and one such
subprolbem is satisfied, the SAT solver will focus on the other parts. With phase saving,
the component will remain satisfied. One limitation of rephasing is that the satisfying
values for these components are lost. To overcome the issue, it is possible to rephase only
some variables without changing the phase of satisfied components or to explicitly identify
components, called autarkies, that are satisfied by the current assignment and remove them
from the overall formula (Section 6.1). If the overall problem is deemed satisfiable, the full
model is reconstructed at the end (Section 6.2).

6.1 Algorithm

An autarky is a assignment that fulfills parts of the formula without touching other parts
of the formula. This allows for the fulfilled part to be removed from the overall formula
without changing the status (SAT or UNSAT). More formally:

Definition 3 (Autarky). An autarky is an assignment α such that every clause C of F is
either entailed (α � C) or disjoint (α ∩ ¬C = ∅).

We use an algorithm originally proposed by Kullmann and described in a publication
by Kiesl et al. (Kiesl, Heule, & Biere, 2019). Instead of forcing the autark assignment we
simply eliminate the clauses touched by the autarky as well as the variables assigned by it.

1532

Better Decision Heuristics in CDCL through Local Search and Target Phases

Algorithm 3: Algorithm to identify and adapt an autarky from a model

Data: An assignment α and a formula F
Result: An autarky and the adapted formula

while there is a clause C ∈ F such that α 2 C and α ∩ ¬C 6= ∅ do1

α := α \ ¬C2

foreach literal ` ∈ α do3

remove all clauses C from F with ` ∈ C;4

add the unit clause ` to the reconstruction stack with ` as witness;5

return (α, F)6

Algorithm 4: Implementation of the algorithm to identify an autarky from a model

Data: An assignment α and a formula F
Result: An autarky

αS := α;1

while αS 6= ∅ do2

` := pop αS ;3

foreach clause C in F containing ` such that α 2 C and ¬C ∩ α 6= ∅ do4

αS := αS ∪ (¬C ∩ α);5

α := α \ ¬C6

return α7

The algorithm is given in Algorithm 3. It is composed of two loops. The first one reduces
the current assignment by removing all literals that falsify any clause. If the remaining
assignment is not empty, then an autarky was found and the formula can be trimmed by
removing all entailed clauses from the set of clauses.

Theorem 4 (Correctness). Given an assignment α and α0 ⊆ α be any autarky. After
running Algorithm 3, the resulting assignment α′ contains α0 and is an autarky.

Proof. Let βi be the updated α after going through the first loop i times. Our first goal
is to prove α0 ⊆ βi. Note that α0 ⊆ β0 by assumption, as β0 is the original α. For the
induction step assume α0 ⊆ βi and that there is still a clause C ∈ F with βi 2 C and
βi ∩ ¬C 6= ∅. Since α0 ⊆ βi the first condition shows α0 2 C which implies α0 ∩ ¬C = ∅
as α0 is an autarky. Therefore α0 = (α0\¬C) ⊆ (βi\¬C) = βi+1. To prove that α′ is an
autarky if the loop terminates after n iterations with βn = α′ follows immediately as the
negation of the loop condition matches the definition of autarky.

Now, we can prove that Algorithm 3 not only derives an autarky, but the maximal
autarky contained in the initial assignment, possibly the empty assignment.

Corollary 5 (Maximal Autarky). Each assignment α has a unique maximum autarky with
α′ ⊆ α among all autarkies α′′ ⊆ α. This maximum α′ is computed by Algorithm 3.

1533

Cai, Zhang, Fleury & Biere

Proof. Assume α0, α1 ⊆ α are autarkies. Theorem 4 shows that α′ ⊇ (α0 ∪ α1). Therefore
there can not be two different maximal autarkies.

Algorithm 4 is a refined version with more implementation details of the first loop of
Algorithm 3. The solver relies on the occurrence lists to efficiently find all clauses containing
a given literal. This is not too costly as redundant learned clauses can be ignored. The
algorithm terminates because αS can contain each literal at most once during execution.

Theorem 6 (Complexity). The complexity of Algorithm 3 is O(
∑

C∈F |C|
2).

Proof. The algorithm iterates over every occurrence of a literal in the clauses at most twice
during the execution: once if coming from the initial α and potentially a second time if the
literal was removed from the assignment α. Therefore, every clause will be read at most
twice for each of its literals, and each clause check requires iterating over all the literals.

The implementation in our SAT solver Kissat is made more efficient by first running
the loop of Algorithm 3 without adding literals to αS (called work in the actual code6).
This reduces the number of clauses to visit. Our actual implementation in our SAT solver
Kissat is slightly more complicated, because binary clauses are only represented implicitly.
Additionally, whenever α becomes empty the execution is stopped immediately as the inner
loop condition in Algorithm 4 will be false for all literals.

Performance is further improved by the fact that all irredundant clauses follow each other
in memory (without interleaved redundant clauses), improving processor cache efficiency.
In our experiments with the SAT solver Kissat, the time spent to identify autarkies is small
enough to not be a problem in general and the algorithm can be run until completion, even
for very large instances.

6.2 Model Reconstruction

Whenever a non-trivial (non-empty) autarky is found the formula is simplified by removing
clauses satisfied by the autarky. Then the solver continues searching for a model. However,
if this is successful and a model for the simplified formula is found later, that model does
not necessarily satisfy the original formula before applying the autarky assignment and
removing the touched clauses.

A similar situation occurs when lifting models to the original formula after variable
elimination or removing blocked clauses. The standard solution is to use a reconstruction
stack on which removed clauses paired with witnesses (in the form of cubes resp. partial
assignments) are pushed. During model reconstruction these clauses are consulted and the
model is fixed by applying the witness assignment in case such a clause turns out not to be
satisfied. This technique was first described in (Järvisalo & Biere, 2010) but goes back to
to Niklas Sörensson who proposed it in the context of MiniSAT. For more details please
refer to the recent Handbook chapter on preprocessing (Biere, Järvisalo, & Kiesl, 2021).

Thus the implementation of our autarky algorithms also has to properly fill the recon-
struction stack. The main question is which witness should be used and whether a single
witness clause pair is sufficient. For Algorithm 3 we decided to simply add the literals ` ∈ α

6. see file autarky.c available at fmv.jku.at/kissat and in particular the function propagate clause that
trims the model for non-binary clauses.

1534

fmv.jku.at/kissat

Better Decision Heuristics in CDCL through Local Search and Target Phases

satisfied by the autarky α as units to the reconstruction stack with itself as witness. After
removing all the clauses satisfied by the autarky these literals do not occur in the formula
anymore and thus we can simply force them to be true during reconstruction.

In principle this has the same effect as learning these units as redundant (PR) clauses
as proposed in (Heule, Kiesl, & Biere, 2020) and then removing the same clauses but now
because they are satisfied by these units. Unfortunately, this approach would require more
sophisticated proof checking, as adding those units is not model preserving, while adding
the units only on the reconstruction stack does not influence proof generation and checking.

However, Algorithm 3 is not compatible with incremental SAT solving (Fazekas, Biere,
& Scholl, 2019) as those unit witnesses are clearly dependent on each other. It is possible to
simply use the full autarky as witness instead, but that blows up the reconstruction stack
(quadratically in the worst case) particularly if the autarky is large.

This potentially exploding reconstruction stack is a problem we also saw in the context
of globally blocked clauses (Kiesl et al., 2019), also in practice, as well as for covered
clause elimination (Barnett, Cerna, & Biere, 2020). We leave it to future work to come up
with a space efficient method for autarky reconstruction in incremental SAT Solving. This
probably requires a non-clausal reconstruction stack (Barnett & Biere, 2021).

7. Experiments

We have implemented the techniques described in the previous sections in several solvers.
Even though technically different, they have the same motivation and share ideas, and all
have the same goal to enhance the decision heuristics of CDCL. The results presented in
this section show that these improved heuristics yield better performance, particularly for
satisfiable instances.

We implemented target phasing and fixed rephasing in CaDiCaL, Glucose, and Kis-
sat (Section 7.1), while the deep combination between CDCL and local search is imple-
mented in Glucose, Maple, and Kissat (Section 7.2). We further combine the techniques
of both lines of research in Glucose and Kissat (Section 7.3).

7.1 Directed CDCL

Our heuristics for directed CDCL have been implemented in the SAT solvers CaDiCaL
and Kissat and ported to the SAT solver Glucose.

7.1.1 Implementation

Default Policies. We assume that assignments saved either as best or as target phases
are good candidates for expansion, and thus finding models faster. Hence, we spend most
time on ‘B’ phases.

In CaDiCaL the search mode is based on the number of conflicts found so far. In focused
mode, the default rephasing policy is ‘OI(BWOBWI)ω’ (Original, Inverted; then Best, Walk,
Original rephasing is repeated). The ‘OI’ at the beginning speeds up finding models where
all literals are set to either true or false (the phase ‘I’ starts after the very first conflict).
In stable mode, the policy is ‘(IBWFBW#BWOBW)ω’ (Flipped and # for random rephasing). By
default, CaDiCaL provides a mode to target satisfiable instances, which only uses target

1535

Cai, Zhang, Fleury & Biere

phasing and stable mode. However, in these experiments, we keep the alternation between
stable and focused mode.

In Kissat, the default rephasing policy is ‘(BWOBWIBW#BWF)ω’. Unlike CaDiCaL, Kis-
sat determines the time spent in focused and stable mode by estimating the number
of memory accesses (instead of measuring the time directly in order to be deterministic
across runs). More precisely, the number of cache misses is estimated, refining on Knuth’s
“mems” (Knuth, 2006). Unlike CaDiCaL, in the satisfiable configuration (‘--sat’) sub-
mitted to the SAT competition, Kissat alternates between focused and stable mode and
always uses target phasing. We have experimented with various parameters to decide how
to schedule the rephasing, but the results seems rather robust (even starting with rephasing
every 500 conflicts does not lead to worse performance).

All our implementations use the alternation of stable mode with Luby-style restarts
and focused mode with Glucose-style restarts. The idea of stable mode is to change less
overall. Hence, Kissat and CaDiCaL use chronological backtracking (Nadel & Ryvchin,
2018; Möhle & Biere, 2019). Both solvers also use two separate decision queues as suggested
by Oh (Oh, 2015). They use VMTF (Biere & Fröhlich, 2015) in focused and VSIDS in stable
mode. VMTF during focused mode makes the solver more agile whereas VSIDS with a low
bumping is more stable.

Kissat is the only solver to include autarky detection and elimination. We experimented
and found no obvious performance gain or loss. It turns out that autarky detection is fast
enough to be executed until completion.

Implementation in Glucose. To have a common platform for comparison between both
lines of research, we also implemented our heuristics in the SAT solver Glucose. However,
to avoid too many changes to the base solver we did not implement a separate different
decision queue for stable mode. Instead, to increase stability, we decrease the bonus that
bumped variables get by setting the variable decay to a smaller value. In focused mode
we do the opposite and increase the decay compared to the default value in order to follow
more closely the search process. To have a more balanced alternation between stable and
focused mode, we measure time in the same way as Kissat.

Two details of this implementation effort should be mentioned. First, implementing the
alternation of stable and focused mode was easy, but performance significantly dropped to
the point that our implementation became much worse than the original implementation
of Glucose. We resolved that issue by bumping not only the resolved literals and the
literals in the learned clause but also the literals in the reasons of the literals in the learned
clause, following the idea pioneered by MapleSAT (Liang et al., 2016), which is also used in
our other solvers. Experiments with CaDiCaL confirmed the importance of this heuristic.
Second, we had to change the types of data structure to save the target phase. Glucose
uses a vector of Booleans, but for target phases, it is necessary to use a vector of tri-states
(with third possible unassigned value, beside true and false).

7.1.2 Rephasing and Target Phases

For CaDiCaL and Kissat we have tested 7 configurations.

always-target (resp. no-target) always (resp. never) uses target phases to set the value of
decision variables. By default, target phasing is only activated in stable mode.

1536

Better Decision Heuristics in CDCL through Local Search and Target Phases

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

160

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) Unsatisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(f) All instances

Figure 2: CDF for the solver Kissat on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)

1537

Cai, Zhang, Fleury & Biere

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) Unsatisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(f) All instances

Figure 3: CDF for the solver CaDiCaL on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)

1538

Better Decision Heuristics in CDCL through Local Search and Target Phases

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) Unsatisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(f) All instances

Figure 4: CDF for the solver Glucose on benchmarks from the SAT Race 2019 (left) and
SAT Competition 2020 (right)

1539

Cai, Zhang, Fleury & Biere

no-rephasing never uses rephasing.

default (called phases) is an alternating approach. It uses target phasing in stable mode
and standard phase saving in focused mode.

no-phase-saving does not use any phase/target saving, nor rephasing, and simply sets the
variable to the inital phase, true.

For instance, the no-target configuration does not feature any target phasing but uses
rephasing, the always-target configuration always uses target phasing even in focused mode,
whereas no-rephase uses target phasing only during stable mode but never rephases the save
phases. All these configurations use save phasing to save the values.

Results for Kissat and CaDiCaL are presented in Figures 2 and 3 and in Tables 2 and 4.
The effect in the SAT Competition 2021 and SAT Competition 2020 are very similar. Thus,
for conciseness, we do not include the CDF for the SAT Competition 2021.7

First Kissat performs better than CaDiCaL. Second, we see that no-phase-saving solves
the least number of problems, confirming previous results. Third, on satisfiable instances,
pure phase saving no-target-no-rephase performs worse than any other configuration, but on
all instances, it performs better than always-target-no-rephase.

Fourth, target phasing without rephasing (configuration always-target-no-rephase) does
not perform better than no target phasing without rephasing no-rephase. Intuitively, this
makes sense because target phasing strongly constrains the search in a direction and rephas-
ing resets target phasing making it possible to explore different regions of the search space.

Fifth, our default alternating strategy manages to retain the best side of no-target and
always-target: It solves most satisfiable instances and it is not too harmful on unsatisfiable
instances. Sixth, no-phase-saving performs particularly bad in Kissat.

Glucose. The results of Glucose give a slightly different picture, see Figure 4 and Ta-
ble 3, with some interesting results.8 First, it seems that target phasing degrades perfor-
mance on unsatisfiable benchmarks, where target phasing is detrimental and our alternating
approach is not able to compensate.9

Also the impact of the new heuristics is smaller than for Kissat and CaDiCaL. One
possible explanation is that further tuning of constants like variable decay during focused
and stable mode or a dedicated separated decision heuristic is required to get more out of
our heuristics. Third, rephasing is less helpful than for Kissat and CaDiCaL. Fourth,
the phases configuration (the same alternating scheduling as for Kissat) solves most SAT
problems, albeit by a very small margin. The performance of no-phase-saving is surprising
and seems to be due to stable mode: Deactivating it significantly reduces performance on
unsatisfiable problems. Remember that no-phase-saving uses the alternation between stable
and focused mode unlike original.

Interpretation. Overall, the performance increases on satisfiable instances. Generally,
rephasing with target phasing improves the performance of the solver and makes it more

7. Note to the reviewers, Figures 5 and 6 are part of the appendix.
8. As for the previous case, the CDF from the SAT Competition 2021 is part of the appendix in Figure 7.
9. In our implementation in Glucose 3, this was less detrimental.

1540

Better Decision Heuristics in CDCL through Local Search and Target Phases

solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

CaDiCaL-default 148 92 240 4 688.13
CaDiCaL-always-target 147 85 232 4 774.77
CaDiCaL-no-target 127 97 224 5 028.43
CaDiCaL-no-rephase 129 96 225 5 052.92
CaDiCaL-no-rephase-no-target 131 98 229 4 913.18
CaDiCaL-always-target-no-rephase 126 80 206 5 478.14
CaDiCaL-no-phase-saving-no-target 126 88 214 5 313.91

SAT Competition 2020(400)

CaDiCaL-default 113 104 217 5 316
CaDiCaL-always-target 120 100 220 5 217
CaDiCaL-no-target 90 107 197 5 687
CaDiCaL-no-rephase 70 107 177 6 165
CaDiCaL-no-rephase-no-target 72 110 182 6 094
CaDiCaL-always-target-no-rephase 71 92 163 6 489
CaDiCaL-no-phase-saving-no-target 74 104 178 6 174

SAT Competition 2021(400)

CaDiCaL-default 115 139 254 4 310
CaDiCaL-always-target 126 134 260 4 243
CaDiCaL-no-target 116 141 257 4 260
CaDiCaL-no-rephase 104 139 243 4 606
CaDiCaL-no-rephase-no-target 107 145 252 4 387
CaDiCaL-always-target-no-rephase 99 122 221 5 151
CaDiCaL-no-phase-saving-no-target 90 137 227 4 966

Table 2: Summary of the performance of the SAT solvers CaDiCaL

robust to solve problems where a model with only true variables exists.10 Performance on
unsatisfiable instances degrades slightly except for Glucose.

On the other hand the default alternating approach (target phases during stable mode,
usual phase saving during focused mode) achieves a good compromise on a combination of
satisfiable and unsatisfiable problems. Rephasing alone does not seem to help as much for
Glucose as for the other solvers tested here.

Attempts to unify the rephasing strategies is ongoing work and we did not find a simple
overall winning strategy yet. Note that these solvers are of course not identical, (e.g., time
spent in stable and focused mode, the number and frequency of deleted learned clauses, the
details of the variable scoring mechanism, which inprocessing approaches are used, etc.).
Our experience is however, that using best rephasing every second or third time rephasing
is scheduled gives better results.

10. This kind of problem is unlikely to be selected at the SAT Competition, because very few solvers are
able to solve such instances.

1541

Cai, Zhang, Fleury & Biere

solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

Glucose-phases 142 78 220 5 107
Glucose-always-target 136 77 213 5 247
Glucose-no-target 133 85 218 5 116
Glucose-no-phase-saving 136 78 214 5 234
Glucose-no-rephase-no-target 130 84 214 5 184
Glucose-always-target-no-rephase 130 72 202 5 535
Glucose-no-phase-saving-no-rephase 128 74 202 5 525

SAT Competition 2020(400)

Glucose-phases 120 89 209 5 404
Glucose-always-target 115 84 199 5 624
Glucose-no-target 84 95 179 6 112
Glucose-no-phase-saving 113 85 198 5 585
Glucose-no-rephase-no-target 78 100 178 6 089
Glucose-always-target-no-rephase 69 77 146 6 791
Glucose-no-phase-saving-no-rephase 59 79 138 6 980

SAT Competition 2021(400)

Glucose-phases 107 117 224 4 963
Glucose-always-target 111 113 224 4 991
Glucose-no-target 103 128 231 4 799
Glucose-no-phase-saving 105 116 221 5 101
Glucose-no-rephase-no-target 106 128 234 4 716
Glucose-always-target-no-rephase 96 99 195 5 655
Glucose-no-phase-saving-no-rephase 83 119 202 5 605

Table 3: Summary of the performance of the SAT solvers Glucose

7.2 Techniques With Local Search

The techniques of deep combination of CDCL and local search include (1) exploring promis-
ing branches by local search (denoted as rx, Section 3.2); (2) local-search rephasing (denoted
as rp, Section 4.1) and (3) directing the branching heuristics with local search conflict fre-
quency (denoted as cf, Section 5). The experiment setup is described in Section 2.4.

For Glucose and MapleLcmDistChronoBT-DL-v2.1, we implement all the three
techniques in this work. For Kissat, we only implement the cf technique because it already
has a local search solver. We focus on Kissat sat, the version of Kissat that focuses on
satisfiable instances. Nevertheless, it is easy to apply the cf technique to Kissat, which is
what we do in this work.

Evaluations on Benchmarks of SAT Competitions. The results of evaluations of all
the base solvers and the different versions with our techniques are reported in Table 5. The
CDFs of these experiments are included in the appendix. According to the results, we have
some observations.

1542

Better Decision Heuristics in CDCL through Local Search and Target Phases

solver #SAT #UNSAT #Solved PAR2

SAT Race 2019(400)

Kissat-default 159 96 255 4 213
Kissat-always-target 160 90 250 4 255
Kissat-no-target 147 98 245 4 404
Kissat-no-rephase 150 99 249 4 352
Kissat-no-rephase-no-target 139 98 237 4 609
Kissat-always-target-no-rephase 148 88 236 4 607
Kissat-no-phase-saving-no-target 135 91 226 4 939

SAT Competition 2020(400)

Kissat-default 129 120 249 4 304
Kissat-always-target 143 113 256 4 123
Kissat-no-target 123 118 241 4 497
Kissat-no-rephase 107 118 225 4 974
Kissat-no-rephase-no-target 99 119 218 5 142
Kissat-always-target-no-rephase 109 108 217 5 171
Kissat-no-phase-saving-no-target 78 110 188 5 785

SAT Competition 2021(400)

Kissat-default 125 151 276 3 638
Kissat-always-target 135 141 276 3 681
Kissat-no-target 120 149 269 3 896
Kissat-no-rephase 114 151 265 3 985
Kissat-no-rephase-no-target 108 149 257 4 164
Kissat-always-target-no-rephase 118 130 248 4 293
Kissat-no-phase-saving-no-target 94 137 231 4 780

Table 4: Summary of the performance of the SAT solvers Kissat

• The rx technique improves Glucose and MapleLcmDistChronoBT-DL-v2.1 on
solving satisfiable instances, particularly for the benchmarks of 2020 (increased by
17 and 35 for #SAT). On the other hand, the Glucose+rx and Maple-DL+rx
have slightly worse performance than the original versions on unsatisfiable instances,
and the decrease on #UNSAT is only 2 on average, considering both solvers on all
benchmarks.

• By adding the rp technique, Glucose+rx+rp and Maple-DL+rx+rp gain further
improvement on #SAT, which is significant for all benchmarks. The increase on satis-
fiable instances is between 6 and 38 problems. Howover, some unsatisfiable instances
(less than 4) are lost.

• The impact of the cf technique can be seen from the comparisons of Glucose+rx+rp
vs. Glucose+rx+rp+cf, Maple-DL+rx+rp vs. Maple-DL+rx+rp+cf, and Kis-
sat sat vs. Kissat sat +cf. The results are mixed: On the 2020 benchmarks for
Maple the increase is significant for satisfiable instaces. Similar results appear for
the 2019 benchmarks with Glucose. Interestingly, the performance for unsatisfiable

1543

Cai, Zhang, Fleury & Biere

solver #SAT #UNSAT #Solved PAR2

SAT Competition 2019(400)

Glucose 4.0 115 86 201 5 531
Glucose+rx 120 85 205 5 430
Glucose+rx+rp 131 86 217 5 191
Glucose+rx+rp+cf 143 87 230 4 915

Maple-DL-v2.1 143 97 240 4 602
Maple-DL+rx 146 93 239 4 602
Maple-DL+rx+rp 152 91 243 4 535
Maple-DL+rx+rp+cf 154 95 249 4 377

Kissat SAT 160 90 250 4 255
Kissat SAT +cf 163 91 254 4 189

CCAnr1.0 13 0 13 9 678

SAT Competition 2020(400)

Glucose 4.0 77 93 170 6 325
Glucose+rx 94 90 184 5 939
Glucose+rx+rp 132 91 223 4 942
Glucose+rx+rp+cf 126 98 224 4 978

Maple-DL-v2.1 86 104 190 5 837
Maple-DL+rx 121 105 226 4 978
Maple-DL+rx+rp 141 101 242 4 512
Maple-DL+rx+rp+cf 151 106 257 4 171

Kissat SAT 143 113 256 4 123
Kissat SAT+cf 146 113 259 4 055

CCAnr1.0 45 0 45 8 979

SAT Competition 2021(400)

Glucose 4.0 96 126 222 5 094
Glucose+rx 103 125 228 4 966
Glucose+rx+rp 120 121 241 4 631
Glucose+rx+rp+cf 125 126 251 4 312

Maple-DL-v2.1 104 133 237 4 703
Maple-DL+rx 108 125 233 4 724
Maple-DL+rx+rp 129 121 250 4 364
Maple-DL+rx+rp+cf 130 123 253 4 293

Kissat SAT 135 141 276 3 681
Kissat SAT+cf 138 142 280 3 594
CCAnr1.0 24 0 24 9 409

Table 5: Experiment results on benchmarks from SAT Competitions 2019-2021, where
Maple-DL-v2.1 is short for MapleLcmDistChronoBT-DL-v2.1

insteances increases back to the original level or is even slightly better. Kissat sat
sees an increase of performance too.

1544

Better Decision Heuristics in CDCL through Local Search and Target Phases

Glucose-4.2.1 Maple Kissat sat CCAnr
. + . + . +cf .

#SAT 7 330 8 075 8 084 8 759 8 192 8 214 7 853
#UNSAT 187 197 215 218 207 211 0

#Solved 7 517 8 272 8 299 8 977 8 399 8 425 7 853
Avg (s) 2 555.85 1 850.58 1 867.13 1 243.66 1 760.55 1 734.61 2 215.35

Table 6: Compared with state-of-the-art solvers on FCC. The default version is marked as
“.”, whereas “+” stands for +rx+rp+cf

• By implementing all the three techniques, very large improvements are obtained for
Glucose and MapleLcmDistChronoBT-DL-v2.1 for all the benchmarks. Par-
ticularly, Glucose+rx+rp+cf solves 54 additional instances than the original solver,
and Maple-DL+rx+rp+cf solves 67 additional instances than its original solver for
the SAT Competition 2020 benchmark (which has 400 instances). We note that
Maple-DL+rx+rp+cf is a simplified and optimized version of our solver Relaxed -
LcmdCbDl NewTech which won the gold medal of Main Track SAT category and
the silver medal of the Main Track ALL category in SAT Competition 2020.

Evaluations on Benchmarks of Spectrum Repacking. We also carry out experi-
ments on a suite of instances arising from an important real world project — the spectrum
repacking project in US Federal Communication Commission (FCC). The instances of this
project was available on-line.11 (Newman et al., 2018). This benchmark contains 10 000
instances, including both satisfiable and unsatisfiable instances. We compare each base
CDCL solver with its final version using our techniques, as well as the underlying local
search solver CCAnr.

The results on this benchmark suite are reported in Table 6. According to the results,
for each of the base CDCL solvers, the improved version with our techniques has better
performance than the base solver. Particularly, the Maple-DL+rx+rp+cf solver solves the
most instances (8759+218=8977), significantly better than all the other solvers.

Further Analyses on the Cooperation. We perform more analyses to study the role
of local search in the hybrid solvers based on Glucose and MapleLcmDistChronoBT-
DL. This experiment does not include Kissat sat as we do not apply the relaxed CDCL
framework to it and the statistics in this experiment are not applicable to Kissat sat +cf.
Some important information is provided in Table 7.

We can see that the local search solver returns a solution for some instances, and this
number varies considerably with the benchmarks. A natural question is whether the im-
provements come mainly from the complementation of CDCL and local search solvers that
they solve different instances? If this were true, then a simple portfolio that runs both
CDCL and local search solvers would work similarly to the hybrid solvers in this work.
To answer this question, we compare the instances solved by the hybrid solvers with those
by the base CDCL solver and the local search solver (both the CDCL and the local search

11. https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

1545

https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz

Cai, Zhang, Fleury & Biere

Analysis for SAT Analysis for UNSAT

solver #byLS #SAT bonus #LS call LS time(%) #LS call LS time(%)

SAT Competition 2019(400)

Glucose+rx 9 10 33.94 11.7 22.99 6.95
Glucose+rx+rp 6 19 25.83 10.87 19.78 5.99
Glucose+rx+rp+cf 5 31 26.24 11.75 22.52 6.29

Maple+rx 14 7 12.66 2.67 12.94 1.98
Maple+rx+rp 12 16 12.73 2.91 16.79 2.13
Maple+rx+rp+cf 12 15 11.21 3.05 17.23 2.22

SAT Competition 2020(400)

Glucose+rx 30 6 15.55 12.2 22.18 11.35
Glucose+rx+rp 21 32 13.67 11.36 12.14 10.57
Glucose+rx+rp+cf 20 31 13.26 11.37 12.65 10.32

Maple+rx 19 13 14.21 6.69 10.24 5.25
Maple+rx+rp 21 30 10.89 6.32 13.09 5.67
Maple+rx+rp+cf 23 36 10.95 6.05 14.17 5.42

SAT Competition 2021(400)

Glucose+rx 23 7 24.32 13.8 24.9 6.13
Glucose+rx+rp 21 25 16.43 14.07 19.56 5.37
Glucose+rx+rp+cf 17 27 20.1 14.1 14.66 5.53

Maple+rx 17 8 7.47 6.09 5.62 1.69
Maple+rx+rp 17 23 12.84 5.84 6.35 1.71
Maple+rx+rp+cf 14 26 12.73 6.26 5.76 1.69

Table 7: Analyses on the impact of Local Search on the CDCL solvers. Maple is short for
Maple-DL to save space, #byLS is the number of instances for which the solution
is given by the local search solver, #SAT bonus is the number of instances for
which both base CDCL solver and Local Search solver fail to solve but the hybrid
solver finds a satisfiable solution. #LS call is the average number of calls on Local
Search, while LS time is the average value of the proportion of time (in percentage
%) spent on local search in the whole run, and these two figures are calculated for
satisfiable and unsatisfiable instances respectively.

solver are given 5000 seconds for each instance). We observe that, there is a large number of
instances (denoted by #SAT bonus) that both CDCL and local search solvers fail to solve
but can be solved by the hybrid solvers. For these instances, even a virtual best solver that
picks the solver with the best result for each instance would fail. For Glucose, this number
reaches 31, 31, and 27 for the three benchmarks respectively, while for MapleLcmDist
ChronoBT-DL, this number reaches 15, and 36, and 26 respectively. This clearly indicates
that our new cooperation techniques have essential contributions to the good performance
of the hybrid solvers.

1546

Better Decision Heuristics in CDCL through Local Search and Target Phases

We have also calculated the number of calls of the local search solver in each run. This
figure usually ranges from 10 to 25 calls per run for these benchmarks. As for the run time
of local search, which can be seen as the price paid for the benefit of using local search,
we calculate the portion of the time spent on local search. This figure is between 6% and
20% for the satisfiable instances, and it drops significantly on unsatisfiable instances, which
is usually less than 7%. This is consistent with the observations that the number of local
search calls is not necessarily fewer on unsatisfiable instances, because the portion of the
time on local search also depends on the total time of the hybrid solver.

On average the time for solving unsatisfiable instances is about 1.5× to 2× the time it
takes to solve satisfiable instances for both Glucose+rx+rp+cf and Maple-DL+rx+rp+cf.
In a nutshell, the price is acceptable and usually small for the unsatisfiable instances, which
also partly explains that our techniques do not have an obvious negative impact on solving
unsatisfiable instances although they incline to the satisfiable side.

7.3 Combination of Our Techniques

Finally, we also combined our techniques in a single SAT solver to be able to compare them.
Even though they were developed independently, but with the same overall motivation in
mind, and also differ on the technical level, the similar positive effects can be observed.

The results are given in Table 8. Overall we can see that both approaches improve the
performance of Glucose and in particular on SAT problems. In more details, the (slightly
simplified12) version of target phasing and rephasing is outperformed by the +rx+rp+cf,
especially on the SAT 2020 and 2021 benchmarks. Interestingly, the combination of all
techniques outperforms both versions.

In an attempt to better understand the phenomenon, we deactivate +cf from the com-
bination for Kissat, introducing a performance regression. Understanding the difference
better is left to future work.

8. Related Work

There has been interest in combining systemic search and local search for solving SAT.
Indeed, it was even included as one of the challenges in Selman et al (Selman, Kautz, &
McAllester, 1997). Previous attempts can be categorized into two families according to the
type (DPLL/CDCL or local search) of the main body solver.

A family of hybrid solvers use a local search solver as the main body solver. Unit-
Walk (Hirsch & Kojevnikov, 2005) is among one the first local-search algorithms that try
to include a technique mimicing propagation from CDCL, called unit clause elimination.
An incomplete hybrid solver hybridGM (Balint et al., 2009) calls CDCL search around
local minima with only one unsatisfied clause. Audemard et al. proposed a hybrid solver
named Sathys (Audemard, Lagniez, Mazure, & Sais, 2009; Audemard et al., 2010). Each
time the local search solver reaches a local minimum, a CDCL solver is launched. Some
reasoning techniques or information from CDCL solvers have been used to improve local

12. Missing is in particular the scaling of the random walk at the beginning of walking phases and the better
scheduling of which model is extended when walking.

1547

Cai, Zhang, Fleury & Biere

solver #SAT #UNSAT #Solved PAR2

SAT Competition 2019(400)

Glucose 4.0 115 86 201 5531.29
Glucose+rx+rp+cf 143 87 230 4915.2
Glucose phases 142 78 220 5107.06
Glucose+all 151 71 222 5045.35

Kissat 159 96 255 4212.63
Kissat +cf 159 99 258 4157.38

Kissat SAT 160 90 250 4255.0
Kissat SAT +cf 163 91 254 4189.04

SAT Competition 2020(400)

Glucose 4.0 77 93 170 6325.36
Glucose+rx+rp+cf 126 98 224 4977.58
Glucose phases 120 89 209 5404.23
Glucose+all 142 97 239 4616.08

Kissat 129 120 249 4304.49
Kissat +cf 140 124 264 4042.65

Kissat SAT 143 113 256 4122.68
Kissat SAT+cf 146 113 259 4055.31

SAT Competition 2021(400)

Glucose 4.0 96 126 222 5094.43
Glucose+rx+rp+cf 125 126 251 4312.46
Glucose phases 107 117 224 4962.6
Glucose+all 130 124 254 4230.77

Kissat 125 151 276 3637.79
Kissat+cf 130 152 282 3562.96

Kissat SAT 135 141 276 3681.33
Kissat SAT+cf 138 142 280 3594.41

Table 8: Experiment results of combination techniques on benchmarks from SAT Compe-
titions 2019-2021

search solvers. Resolution techniques were integrated to local search solvers (Cha & Iwama,
1996; Anbulagan, Pham, Slaney, & Sattar, 2005).

Recently, Lorenz and Wörz developed a hybrid solver GapSAT (Lorenz & Wörz, 2020),
which used a CDCL solver as a preprocessor before running the local search solver ProbSat.
The experiments showed that the learned clauses produced by the CDCL solver were useful
to improve the local search solver on random instances.

The other family of hybrid solvers focuses on boosting CDCL solvers by local search,
and this work belongs to this line. One simple way of hybridizing is to call local search
before CDCL is run, trying to solve the instance by the local search solver alone. This gives
the same benefits as a portfolio approach. Additionally, information derived during the
local search, such as variable ordering, can be used in the following CDCL solver call. The

1548

Better Decision Heuristics in CDCL through Local Search and Target Phases

hybrid solvers Sparrow2Riss (Balint & Manthey, 2018), CCAnr+Glucose (Cai, Luo, &
Su, 2014) and SGSeq (Li & Habet, 2014) belong to this family. In contrast to our approach,
there is no information flow back from CDCL to the local search solver. We actually switch
between local search and CDCL in regular intervals and further exchange information in
both directions in an “inprocessing” fashion (Järvisalo, Heule, & Biere, 2012).

Some works use local search to find a subformula for CDCL to solve. The local search
solver (Mazure et al., 1998) finds a part of the formula which is satisfiable, which helps
to divide the formula into two parts for the DPLL solver to allow the SAT solver to focus
on the unsatisfiable part. In Hinotos (Letombe & Marques-Silva, 2008), a local search
identifies a subset of clauses to be passed to a CDCL solver in an incremental way.

Although these previous attempts have been made to combine the strength of CDCL and
local search, they did not lead to hybrid solvers essentially better than CDCL solvers on ap-
plication instances. This work, for the first time, meets the standard of the challenge “create
a new algorithm that outperforms the best previous examples of both approaches” (Selman
et al., 1997) on standard application benchmarks from SAT Competitions.

9. Conclusion

This work takes a large step towards deep cooperation of CDCL and local search by pre-
senting four techniques for effectively using local search to improve CDCL solvers. The
first idea extends promising branches from being pruned by targeting phases of large con-
sistent assignments. The second idea relaxes CDCL by extending such promising branches
in order to let local search find a satisfying assignment nearby. The third idea is to utilize
assignments minimizing the number of unsatisfiable clauses found during local search and
use them as saved phases in the phase selection heuristic. Finally, we proposed to enhance
the branching strategy of CDCL solvers by considering the conflict frequency of variables in
the local search process. These techniques significantly improve the performance of state-
of-the-art CDCL solvers on real-world application benchmarks. As generic techniques they
are expected to improve other CDCL solvers too.

This is the first time that the combination of stochastic search and systematic search
techniques leads to substantial improvement of the state of the art on application bench-
marks, compared to using only one technique alone, thus positively resolving Challenge 7
of the “Ten Challenges in Propositional Reasoning and Search” (Selman et al., 1997).

Acknowledgement

This work is supported by NSFC Grant 62122078, Beijing Academy of Artificial Intelligence
(BAAI), the Austrian Science Fund (FWF), NFN S11408-N23 (RiSE), and the LIT AI Lab
funded by the State of Upper Austria. Sibylle Möhle and the anonymous reviewers suggested
many textual improvements on previous versions of this work.

1549

Cai, Zhang, Fleury & Biere

Appendix

In this section, two classes of CDF plots are listed for component effectiveness analysis.
The first three figures evaluate the directly CDCL guided exploring methods. Figures 5-7
show the results of different strategy combinations on the top of Kissat, CaDiCaL and
Glucose respectively. The last three figures compare the effectiveness of the local search
related strategies, which are implemented based on Glucose and Maple. Figures 8-10
show the results of the different benchmarks form SAT RACE 2019, SAT Competition 2020
and SAT Competition 2021.

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) All instances

Figure 5: CDF for the solver Kissat on benchmarks from the SAT Competition 2021

1550

Better Decision Heuristics in CDCL through Local Search and Target Phases

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

default
always-target
no-target
no-rephase
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) All instances

Figure 6: CDF for the solver CaDiCaL on benchmarks from the SAT Competition 2021

1551

Cai, Zhang, Fleury & Biere

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(b) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

phases
always-target
no-target
no-phase-saving
no-rephase-no-target
always-target-no-rephase
no-phase-saving-no-target

(c) All instances

Figure 7: CDF for the solver Glucose on benchmarks from the SAT Competition 2021

1552

Better Decision Heuristics in CDCL through Local Search and Target Phases

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

160

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(c) Unsatisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(f) All instances

Figure 8: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Race
2019

1553

Cai, Zhang, Fleury & Biere

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

140

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(c) Unsatisfiable instances only

0 1000 2000 3000 4000
0

20

40

60

80

100

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(f) All instances

Figure 9: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Com-
petition 2020

1554

Better Decision Heuristics in CDCL through Local Search and Target Phases

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(a) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(b) Satisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(c) Unsatisfiable instances only

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(d) Unsatisfiable instances only

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

glucose4.0
glucose+rx
glucose+rx+rp
glucose+rx+rp+cf

(e) All instances

0 1000 2000 3000 4000 5000

0

50

100

150

200

250

maple
maple+rx
maple+rx+rp
maple+rx+rp+cf

(f) All instances

Figure 10: CDF for the solvers Glucose (left) and Maple (right) about the relaxed CDCL,
local search rephasing and conflict frequency on benchmarks from the SAT Com-
petition 2021

1555

Cai, Zhang, Fleury & Biere

References

Anbulagan, Pham, D. N., Slaney, J. K., & Sattar, A. (2005). Old resolution meets modern
SLS. In Heule, M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Seventeenth Innovative Applica-
tions of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania,
USA, pp. 354–359. AAAI Press / The MIT Press.

Audemard, G., Lagniez, J., Mazure, B., & Sais, L. (2009). Integrating conflict-driven clause
learning to local search. In Deville, Y., & Solnon, C. (Eds.), Proceedings 6th Interna-
tional Workshop on Local Search Techniques in Constraint Satisfaction, LSCS 2009,
Lisbon, Portugal, 20 September 2009, Vol. 5 of EPTCS, pp. 55–68.

Audemard, G., Lagniez, J., Mazure, B., & Sais, L. (2010). Boosting local search thanks to
CDCL. In Fermüller, C. G., & Voronkov, A. (Eds.), Logic for Programming, Artificial
Intelligence, and Reasoning - 17th International Conference, LPAR-17, Yogyakarta,
Indonesia, October 10-15, 2010. Proceedings, Vol. 6397 of Lecture Notes in Computer
Science, pp. 474–488. Springer.

Audemard, G., & Simon, L. (2009). Predicting learnt clauses quality in modern SAT solvers.
In Boutilier, C. (Ed.), IJCAI 2009, Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pp.
399–404.

Audemard, G., & Simon, L. (2012a). Glucose 2.1: Aggressive—but reactive—clause
database management, dynamic restarts. In Workshop on the Pragmatics of SAT
2012.

Audemard, G., & Simon, L. (2012b). Refining restarts strategies for SAT and UNSAT.
In Milano, M. (Ed.), Principles and Practice of Constraint Programming - 18th In-
ternational Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012.
Proceedings, Vol. 7514 of Lecture Notes in Computer Science, pp. 118–126. Springer.

Balint, A. (2014). Engineering stochastic local search for the satisfiability problem. Ph.D.
thesis, University of Ulm.

Balint, A., Belov, A., Järvisalo, M., & Sinz, C. (2015). Overview and analysis of the SAT
Challenge 2012 solver competition. Artificial Intelligence, 223, 120–155.

Balint, A., Henn, M., & Gableske, O. (2009). A novel approach to combine a SLS- and
a DPLL-solver for the satisfiability problem. In Kullmann, O. (Ed.), Theory and
Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT
2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, Vol. 5584 of Lecture Notes
in Computer Science, pp. 284–297. Springer.

Balint, A., & Manthey, N. (2018). SparrowToRiss 2018. In Heule, M. J. H., Järvisalo,
M., & Suda, M. (Eds.), Proceedings of SAT Competition 2018: Solver and Benchmark
Descriptions, Vol. B-2018-1 of Department of Computer Science Report Series B, pp.
38–39, Finland. Department of Computer Science, University of Helsinki.

Balint, A., & Schöning, U. (2012). Choosing probability distributions for stochastic local
search and the role of make versus break. In Proceedings of SAT 2012, pp. 16–29.

1556

Better Decision Heuristics in CDCL through Local Search and Target Phases

Barnett, L. A., & Biere, A. (2021). Non-clausal redundancy properties. In Automated De-
duction - CADE 28 - 28th International Conference on Automated Deduction, Virtual
Event, July 12-15, 2021, Proceedings, Vol. 12699, pp. 252–272.

Barnett, L. A., Cerna, D. M., & Biere, A. (2020). Covered clauses are not propagation
redundant. In Peltier, N., & Sofronie-Stokkermans, V. (Eds.), Automated Reasoning
- 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part I, Vol. 12166 of Lecture Notes in Computer Science, pp. 32–47.
Springer.

Barrett, C., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2021). Satisfiability modulo theories.
In Biere, A., Heule, M. J. H., van Maaren, H., & Walsh, T. (Eds.), Handbook of
Satisfiability (Second edition)., Vol. 336, pp. 1267–1369. IOS Press.

Biere, A. (2010). Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. In FMV
Report Series Technical Report, Vol. 10.

Biere, A. (2014). Yet another local search solver and Lingeling and friends entering the SAT
competition 2014. In Heule, M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings
of SAT Competition 2014: Solver and Benchmark Descriptions, Vol. 2014, p. 65.

Biere, A. (2017a). CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT
Competition 2017. In Balyo, T., Heule, M. J. H., & Järvisalo, M. (Eds.), Proc. of SAT
Competition 2017 – Solver and Benchmark Descriptions, Vol. B-2017-1 of Department
of Computer Science Series of Publications B, pp. 14–15. University of Helsinki.

Biere, A. (2017b). Deep Bound Hardware Model Checking Instances, Quadratic Propa-
gation Benchmarks and Reencoded Factorization Problems Submitted to the SAT
Competition 2017. In Balyo, T., Heule, M. J. H., & Järvisalo, M. (Eds.), Proceedings
of SAT Competition 2017 – Solver and Benchmark Descriptions, Vol. B-2017-1 of
Department of Computer Science Series of Publications B, pp. 40–41. University of
Helsinki.

Biere, A. (2018). CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the SAT
Competition 2018. In Heule, M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings
of SAT Competition 2018: Solver and Benchmark Descriptions, Vol. B-2018-1, pp.
13–14.

Biere, A. (2019). CaDiCaL at the SAT Race 2019. In Heule, M. J. H., Järvisalo, M.,
& Suda, M. (Eds.), Proc. of SAT Race 2019 – Solver and Benchmark Descriptions,
Vol. B-2019-1 of Department of Computer Science Series of Publications B, pp. 8–9.
University of Helsinki.

Biere, A., Fazekas, K., Fleury, M., & Heisinger, M. (2020). CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In Balyo, T., Frol-
eyks, N., Heule, M., Iser, M., Järvisalo, M., & Suda, M. (Eds.), Proceedings of SAT
Competition 2020 – Solver and Benchmark Descriptions, pp. 51–53.

Biere, A., & Fleury, M. (2020). Chasing target phases. In Workshop on the Pragmatics of
SAT 2020.

Biere, A., & Fröhlich, A. (2015). Evaluating CDCL variable scoring schemes. In Theory
and Applications of Satisfiability Testing – SAT 2015 – 18th International Conference,

1557

Cai, Zhang, Fleury & Biere

Austin, TX, USA, September 24-27, 2015, Proceedings, Vol. 9340 of Lecture Notes in
Computer Science, pp. 405–422. Springer.

Biere, A., & Fröhlich, A. (2015). Evaluating CDCL restart schemes. In Heule, M. J. H., &
Weaver, S. (Eds.), Theory and Applications of Satisfiability Testing—SAT 2015—18th
International Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, Vol.
9340 of Lecture Notes in Computer Science, pp. 405–422. EasyChair.

Biere, A., Järvisalo, M., & Kiesl, B. (2021). Preprocessing SAT solving (second edition).
In Biere, A., Heule, M. J. H., van Maaren, H., & Walsh, T. (Eds.), Handbook of
Satisfiability, Vol. 336 of Frontiers in Artificial Intelligence and Applications, pp. 391–
435. IOS Press.

Biere, A., Järvisalo, M., Le Berre, D., Meel, K. S., & Mengel, S. (2020). The SAT Practi-
tioner’s Manifesto.

Biere, A., & Kröning, D. (2018). SAT-based model checking. In Handbook of Model Check-
ing, pp. 277–303. Springer.

Cai, S. (2015). Novel Local Search Methods for Satisfiability. Ph.D. thesis, Griffith Univer-
sity.

Cai, S., Luo, C., & Su, K. (2014). CCAnr+glucose in SAT Competition 2014. In Heule,
M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings of SAT Competition 2014:
Solver and Benchmark Descriptions, No. 2 in Department of Computer Science Series
of Publications B, p. 17.

Cai, S., Luo, C., & Su, K. (2015). CCAnr: A configuration checking based local search
solver for non-random satisfiability. In Heule, M., & Weaver, S. A. (Eds.), Theory
and Applications of Satisfiability Testing - SAT 2015 - 18th International Conference,
Austin, TX, USA, September 24-27, 2015, Proceedings, Vol. 9340 of Lecture Notes in
Computer Science, pp. 1–8. Springer.

Cai, S., Luo, C., & Zhang, H. (2017). From decimation to local search and back: A new
approach to MaxSAT. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pp. 571–577. ijcai.org.

Cai, S., Luo, C., Zhang, X., & Zhang, J. (2021). Improving local search for structured SAT
formulas via unit propagation based construct and cut initialization (short paper).
In Michel, L. D. (Ed.), 27th International Conference on Principles and Practice of
Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), Octo-
ber 25-29, 2021, Vol. 210 of LIPIcs, pp. 5:1–5:10. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik.

Cai, S., & Zhang, X. (2018). ReasonLS. In Heule, M. J. H., Järvisalo, M., & Suda, M.
(Eds.), Proc. of SAT Competition 2018 – Solver and Benchmark Descriptions, Vol.
B-2018-1 of Department of Computer Science Series of Publications B, pp. 52–53,
Finland. Department of Computer Science, University of Helsinki.

Cai, S., & Zhang, X. (2019). Four relaxed CDCL solvers. In Heule, M. J. H., Järvisalo, M., &
Suda, M. (Eds.), Proceedings of SAT Race 2019: Solver and Benchmark Descriptions,

1558

Better Decision Heuristics in CDCL through Local Search and Target Phases

Vol. B-2019-1 of Department of Computer Science Report Series B, p. 35, Finland.
Department of Computer Science, University of Helsinki.

Cai, S., & Zhang, X. (2021). Deep cooperation of CDCL and local search for SAT. In Li,
C.-M., & Manyà, F. (Eds.), Theory and Applications of Satisfiability Testing – SAT
2021, pp. 64–81, Cham. Springer International Publishing.

Cha, B., & Iwama, K. (1996). Adding new clauses for faster local search. In Proceedings
of the Thirteenth National Conference on Artificial Intelligence and Eighth Innova-
tive Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland,
Oregon, USA, August 4-8, 1996, Volume 1, pp. 332–337. AAAI Press / The MIT
Press.

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Giunchiglia, E., & Tacchella,
A. (Eds.), Theory and Applications of Satisfiability Testing, 6th International Con-
ference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, Vol. 2919 of Lecture Notes in Computer Science, pp. 502–518. Springer.

Fang, H., & Ruml, W. (2004). Complete local search for propositional satisfiability. In
McGuinness, D. L., & Ferguson, G. (Eds.), Proceedings of the Nineteenth National
Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications
of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA, pp. 161–166.
AAAI Press / The MIT Press.

Fazekas, K., Biere, A., & Scholl, C. (2019). Incremental inprocessing in SAT solving. In
Janota, M., & Lynce, I. (Eds.), Theory and Applications of Satisfiability Testing –
SAT 2019 – 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings, Vol. 11628 of Lecture Notes in Computer Science, pp. 136–154.
Springer.

Gomes, C. P., Selman, B., Crato, N., & Kautz, H. (2000). Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. Autom. Reasoning, 24 (1/2),
67–100.

Habet, D., Li, C. M., Devendeville, L., & Vasquez, M. (2002). A hybrid approach for
SAT. In Hentenryck, P. V. (Ed.), Principles and Practice of Constraint Programming
- CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, September 9-
13, 2002, Proceedings, Vol. 2470 of Lecture Notes in Computer Science, pp. 172–184.
Springer.

Hamadi, Y., Jabbour, S., & Sais, L. (2009). Learning for dynamic subsumption. In IC-
TAI 2009, 21st IEEE International Conference on Tools with Artificial Intelligence,
Newark, New Jersey, USA, 2-4 November 2009, pp. 328–335. IEEE Computer Society.

Han, H., & Somenzi, F. (2009). On-the-fly clause improvement. In Kullmann, O. (Ed.),
Theory and Applications of Satisfiability Testing – SAT 2009, 12th International Con-
ference, SAT 2009, Swansea, UK, June 30–July 3, 2009. Proceedings, Vol. 5584 of
Lecture Notes in Computer Science, pp. 209–222. Springer.

Heule, M. J. H., Järvisalo, M., & Biere, A. (2013). Revisiting hyper binary resolution. In
Gomes, C. P., & Sellmann, M. (Eds.), Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Problems, 10th International

1559

Cai, Zhang, Fleury & Biere

Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceed-
ings, Vol. 7874 of Lecture Notes in Computer Science, pp. 77–93. Springer.

Heule, M. J. H., Kiesl, B., & Biere, A. (2020). Strong extension-free proof systems. J.
Autom. Reasoning, 64, 533–554.

Heule, M. J. H., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In Creignou, N., & Berre, D. L.
(Eds.), Theory and Applications of Satisfiability Testing - SAT 2016 - 19th Interna-
tional Conference, Bordeaux, France, July 5-8, 2016, Proceedings, Vol. 9710 of Lecture
Notes in Computer Science, pp. 228–245. Springer.

Hirsch, E. A., & Kojevnikov, A. (2005). UnitWalk: A new SAT solver that uses local search
guided by unit clause elimination. Ann. Math. Artif. Intell., 43 (1), 91–111.

Hoos, H. H., & Stützle, T. (2004). Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann.

Järvisalo, M., & Biere, A. (2010). Reconstructing solutions after blocked clause elimina-
tion. In Strichman, O., & Szeider, S. (Eds.), Theory and Applications of Satisfiability
Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July
11-14, 2010. Proceedings, Vol. 6175 of Lecture Notes in Computer Science, pp. 340–
345. Springer.

Järvisalo, M., Heule, M., & Biere, A. (2012). Inprocessing rules. In Gramlich, B., Miller,
D., & Sattler, U. (Eds.), Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, Vol. 7364 of Lecture
Notes in Computer Science, pp. 355–370. Springer.

Jeroslow, R. G., & Wang, J. (1990). Solving propositional satisfiability problems. Ann.
Math. Artif. Intell., 1, 167–187.

Kautz, H. A., & Selman, B. (1992). Planning as satisfiability. In Neumann, B. (Ed.), 10th
European Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August
3-7, 1992. Proceedings, pp. 359–363. John Wiley and Sons.

Kiesl, B., Heule, M. J. H., & Biere, A. (2019). Truth assignments as conditional autarkies.
In Chen, Y., Cheng, C., & Esparza, J. (Eds.), Automated Technology for Verification
and Analysis – 17th International Symposium, ATVA 2019, Taipei, Taiwan, October
28-31, 2019, Proceedings, Vol. 11781 of Lecture Notes in Computer Science, pp. 48–64.
Springer.

Knuth, D. E. (2006). The Art of Computer Programming, Volume 4, Fascicle 4: Generat-
ing All Trees–History of Combinatorial Generation (Art of Computer Programming).
Addison-Wesley Professional.

Kochemazov, S., Zaikin, O., Kondratiev, V., & Semenov, A. (2019).
MapleLCMDistChronoBT-DL, duplicate learnts heuristic-aided solvers at the
SAT Race 2019. In Heule, M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings of
SAT Race 2019: Solver and Benchmark Descriptions, Vol. B-2019-1 of Department
of Computer Science Report Series B, pp. 24–24, Finland. Department of Computer
Science, University of Helsinki.

1560

Better Decision Heuristics in CDCL through Local Search and Target Phases

Letombe, F., & Marques-Silva, J. (2008). Improvements to hybrid incremental SAT algo-
rithms. In Büning, H. K., & Zhao, X. (Eds.), Theory and Applications of Satisfiability
Testing - SAT 2008, 11th International Conference, SAT 2008, Guangzhou, China,
May 12-15, 2008. Proceedings, Vol. 4996 of Lecture Notes in Computer Science, pp.
168–181. Springer.

Li, C. M., & Habet, D. (2014). Description of RSeq2014. In Heule, M. J. H., Järvisalo,
M., & Suda, M. (Eds.), Proceedings of SAT Competition 2014: Solver and Benchmark
Descriptions, Vol. 2014, p. 72.

Li, C. M., & Li, Y. (2012). Satisfying versus falsifying in local search for satisfiability -
(poster presentation). In Cimatti, A., & Sebastiani, R. (Eds.), Theory and Applications
of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy,
June 17-20, 2012. Proceedings, Vol. 7317 of Lecture Notes in Computer Science, pp.
477–478. Springer.

Liang, J. H., Ganesh, V., Poupart, P., & Czarnecki, K. (2016). Learning rate based branching
heuristic for SAT solvers. In Creignou, N., & Berre, D. L. (Eds.), Theory and Applica-
tions of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings, Vol. 9710 of Lecture Notes in Computer Science,
pp. 123–140. Springer.

Lorenz, J., & Wörz, F. (2020). On the effect of learned clauses on stochastic local search. In
Pulina, L., & Seidl, M. (Eds.), Theory and Applications of Satisfiability Testing - SAT
2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
Vol. 12178 of Lecture Notes in Computer Science, pp. 89–106. Springer.

Luby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47 (4), 173–180.

Manthey, N. (2010). Improving SAT solvers using state-of-the-art techniques. Master’s
thesis, Diploma thesis, Institut für Künstliche Intelligenz, Fakultät Informatik.

Marques Silva, J. P., Lynce, I., & Malik, S. (2021). Conflict-drive clause learning SAT
solvers. In Handbook of Satisfiability (Second edition)., Vol. 336 of Frontiers in Arti-
ficial Intelligence and Applications, pp. 133–182. IOS Press.

Mazure, B., Sais, L., & Grégoire, É. (1998). Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell., 22 (3-4), 319–331.

Möhle, S., & Biere, A. (2019). Backing backtracking. In Janota, M., & Lynce, I. (Eds.),
Theory and Applications of Satisfiability Testing – SAT 2019 – 22nd International
Conference,, Vol. 11628 of Lecture Notes in Computer Science, pp. 250–266. Springer.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineer-
ing an efficient SAT solver. In Proceedings of the 38th Design Automation Conference,
DAC 2001, pp. 530–535.

Nadel, A., & Ryvchin, V. (2018). Chronological backtracking. In Beyersdorff, O., & Win-
tersteiger, C. M. (Eds.), Theory and Applications of Satisfiability Testing - SAT 2018
- 21st International Conference, SAT 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, Vol. 10929 of Lecture
Notes in Computer Science, pp. 111–121. Springer.

1561

Cai, Zhang, Fleury & Biere

Newman, N., Fréchette, A., & Leyton-Brown, K. (2018). Deep optimization for spectrum
repacking. Commun. ACM, 61 (1), 97–104.

Oh, C. (2015). Between SAT and UNSAT: the fundamental difference in CDCL SAT. In
Heule, M., & Weaver, S. A. (Eds.), Theory and Applications of Satisfiability Testing -
SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, Vol. 9340 of Lecture Notes in Computer Science, pp. 307–323. Springer.

Pipatsrisawat, K., & Darwiche, A. (2007). A lightweight component caching scheme for
satisfiability solvers. In Marques-Silva, J., & Sakallah, K. A. (Eds.), Theory and Ap-
plications of Satisfiability Testing - SAT 2007, 10th International Conference, Lisbon,
Portugal, May 28-31, 2007, Proceedings, Vol. 4501 of Lecture Notes in Computer Sci-
ence, pp. 294–299. Springer.

Prasad, M. R., Biere, A., & Gupta, A. (2005). A survey of recent advances in SAT-based
formal verification. Int. J. Softw. Tools Technol. Transf., 7 (2), 156–173.

Ramos, A., van der Tak, P., & Heule, M. J. H. (2011). Between restarts and backjumps.
In Sakallah, K. A., & Simon, L. (Eds.), Theory and Applications of Satisfiability
Testing—SAT 2011—14th International Conference, SAT 2011, Ann Arbor, MI, USA,
June 19-22, 2011. Proceedings, Vol. 6695 of Lecture Notes in Computer Science, pp.
216–229. Springer.

Ryan, L. (2004). Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University.

Ryvchin, V., & Strichman, O. (2008). Local restarts. In Büning, H. K., & Zhao, X. (Eds.),
Theory and Applications of Satisfiability Testing - SAT 2008, 11th International Con-
ference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings, Vol. 4996 of
Lecture Notes in Computer Science, pp. 271–276. Springer.

Selman, B., Kautz, H. A., & McAllester, D. A. (1997). Ten challenges in propositional
reasoning and search. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes,
pp. 50–54. Morgan Kaufmann.

Silva, J. P. M., & Sakallah, K. A. (2000). Boolean satisfiability in electronic design au-
tomation. In Micheli, G. D. (Ed.), Proceedings of the 37th Conference on Design
Automation, Los Angeles, CA, USA, June 5-9, 2000, pp. 675–680. ACM.

Soos, M. (2013). Strangenight. In Balint, Adrian Belov, A., Heule, M. J. H., & Järvisalo, M.
(Eds.), Proceedings of SAT Competition 2013: Solver and Benchmark Descriptions,
Vol. B-2013-1 of Department of Computer Science Series of Publications B, p. 1.
University of Helsinki.

Soos, M., & Biere, A. (2019). CryptoMiniSat 5.6 with YalSAT at the SAT Race 2019. In
Heule, M. J. H., Järvisalo, M., & Suda, M. (Eds.), Proceedings of SAT Race 2019
– Solver and Benchmark Descriptions, Vol. B-2019-1 of Department of Computer
Science Series of Publications B, pp. 14–15. University of Helsinki.

Soos, M., Nohl, K., & Castelluccia, C. (2009). Extending SAT solvers to cryptographic
problems. In Kullmann, O. (Ed.), Theory and Applications of Satisfiability Testing -
SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July

1562

Better Decision Heuristics in CDCL through Local Search and Target Phases

3, 2009. Proceedings, Vol. 5584 of Lecture Notes in Computer Science, pp. 244–257.
Springer.

Vizel, Y., Weissenbacher, G., & Malik, S. (2015). Boolean satisfiability solvers and their
applications in model checking. Proc. IEEE, 103 (11), 2021–2035.

Zhang, W., Sun, Z., Zhu, Q., Li, G., Cai, S., Xiong, Y., & Zhang, L. (2020). NLocalSAT:
Boosting local search with solution prediction. In Bessiere, C. (Ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pp. 1177–1183. ijcai.org.

1563

	1 Introduction
	2 Preliminaries
	2.1 Preliminary Definitions and Notations on Formulas
	2.2 CDCL Solvers
	2.3 Local Search Solvers
	2.4 Experiment Preliminaries

	3 Exploring Promising Branches
	3.1 Exploring Promising Branches By Directing CDCL
	3.2 Exploring Promising Branches By Local Search During CDCL

	4 Rephasing Heuristics
	4.1 Local-search Rephasing
	4.2 Fixed Rephasing

	5 Directing the Branching Heuristic with Local Search
	6 Autarky Detection
	6.1 Algorithm
	6.2 Model Reconstruction

	7 Experiments
	7.1 Directed CDCL
	7.2 Techniques With Local Search
	7.3 Combination of Our Techniques

	8 Related Work
	9 Conclusion
	References

