
Journal of Artificial Intelligence Research 74 (2022) 1687-1713 Submitted 01/2022; published 08/2022

Threshold Treewidth and Hypertree Width

Robert Ganian rganian@ac.tuwien.ac.at

André Schidler aschidler@ac.tuwien.ac.at

Manuel Sorge manuel.sorge@ac.tuwien.ac.at

Stefan Szeider sz@ac.tuwien.ac.at

Algorithms and Complexity Group

Faculty of Informatics

TU Wien

Vienna, Austria

Abstract

Treewidth and hypertree width have proven to be highly successful structural param-
eters in the context of the Constraint Satisfaction Problem (CSP). When either of these
parameters is bounded by a constant, then CSP becomes solvable in polynomial time.
However, here the order of the polynomial in the running time depends on the width, and
this is known to be unavoidable; therefore, the problem is not fixed-parameter tractable
parameterized by either of these width measures. Here we introduce an enhancement of
tree and hypertree width through a novel notion of thresholds, allowing the associated
decompositions to take into account information about the computational costs associated
with solving the given CSP instance. Aside from introducing these notions, we obtain
efficient theoretical as well as empirical algorithms for computing threshold treewidth and
hypertree width and show that these parameters give rise to fixed-parameter algorithms
for CSP as well as other, more general problems. We complement our theoretical results
with experimental evaluations in terms of heuristics as well as exact methods based on
SAT/SMT encodings.

1. Introduction

The utilization of structural properties of problem instances is a key approach to tractabil-
ity of otherwise intractable problems such as Constraint Satisfaction, Sum-of-Products, and
other hard problems that arise in AI applications (Dechter, 1999; Gottlob, Pichler, & Wei,
2010; Gottlob, Leone, & Scarcello, 2002). The idea is to represent the instance by a (hy-
per)graph and to exploit its decomposability to guide dynamic programming methods for
solving the problem. This way, one can give runtime guarantees in terms of the decomposi-
tion width. The most successful width measures for graphs and hypergraphs are treewidth
and hypertree width, respectively (Gottlob, Greco, & Scarcello, 2014).

1.1 Treewidth

The Constraint Satisfaction Problem (CSP) can be solved in time dk · nO(1) for instances
whose primal graph has n vertices, treewidth k, and whose variables range over a domain
of size d (Dechter, 1999; Freuder, 1982). If d is a constant, then this running time gives rise
to fixed-parameter tractability w.r.t. the parameter treewidth (Gottlob, Scarcello, & Sideri,

©2022 AI Access Foundation. All rights reserved.

Ganian, Schidler, Sorge, & Szeider

2002). However, without such a constant bound on the domain size, it is known that CSP
is W[1]-hard (Samer & Szeider, 2010) and hence not fixed-parameter tractable.

In the first part of this paper, we propose a new framework that allows fixed-parameter
tractability even if some variables range over large (though finite) domains. The idea is to
exploit tree decompositions with the special property that each decomposition bag contains
only a few (say, at most c) such high-domain variables whose domain size exceeds a given
threshold d. This results in a new parameter for CSP that we call the threshold-d load-c
treewidth. We show that finding such tree decompositions is approximable to within a
factor of (c+ 1) in fixed-parameter time, employing a replacement method which allows us
to utilize state-of-the-art algorithms for computing treewidth such as Bodlaender et al.’s
approximation (Bodlaender, Drange, Dregi, Fomin, Lokshtanov, & Pilipczuk, 2016). We
then show that for any fixed c and d, CSP parameterized by threshold-d load-c treewidth is
fixed-parameter tractable, and that the same tractability result can be lifted to other highly
versatile problems such as CSP with Default Values (Ganian, Kim, Slivovsky, & Szeider,
2018, 2022), Valued CSP (Schiex, Fargier, & Verfaillie, 1995; Zivny, 2012), and the Integer
Programming (IP) problem (Schrijver, 1999).

1.2 Hypertree Width

Bounding the treewidth of a CSP instance automatically bounds the arity of its constraints.
More general structural restrictions that admit large-arity constraints can be formulated
in terms of the hypertree width of the constraint hypergraph. It is known that for any
constant k, hypertree decompositions of width at most k can be found in polynomial time,
and that CSP instances of hypertree width k can be solved in polynomial time. If k is a
parameter and not constant, then both problems become W[1]-hard and hence not fixed-
parameter tractable. We show that also in the context of hypertree width, a more fine-
grained parameter, which we call threshold-d load-c hypertree width, can be used to achieve
fixed-parameter tractability. Here we distinguish between heavy and light hyperedges, where
a hyperedge is light if the corresponding constraint is defined by a constraint relation that
contains at most d tuples. Each bag of a threshold-d load-c hypertree decomposition of
width k must admit an edge cover that consists of at most k hyperedges, where at most
c of them are heavy. We show that for any fixed c and k, we can determine for a given
hypergraph in polynomial time whether it admits a hypertree decomposition of width k
where the cover for each bag consists of at most c heavy hyperedges1. We further show that
for any fixed c and d, given a width-k threshold-d load-c hypertree decomposition of a CSP
instance, checking its satisfiability is fixed-parameter tractable when parameterized by the
width k.

1.3 Practical algorithms and experiments

The most popular practical algorithms for finding treewidth and hypertree decompositions
are based on characterizations in terms of elimination orderings. We show how these charac-
terizations can be extended to capture threshold treewidth and threshold hypertree width.
These then allow us to obtain practical algorithms that we test on large sets of graphs and

1. This is not fixed-parameter tractable for parameter k, as already without the c restriction, the problem
is W[2]-hard.

1688

Threshold Treewidth and Hypertree Width

hypergraphs originating from real-world applications. In particular, we propose and test
several variants of the well-known min-degree heuristics, as well as exact methods based on
SMT-encodings for computing threshold tree and hypertree decompositions. Our experi-
mental findings are significant, as they show that by optimizing decompositions towards low
load values we can obtain in many cases decompositions that are expected to perform much
better in the dynamic programming phase than ordinary decompositions that are oblivious
to the weight of vertices or hyperedges.

1.4 Related work

There are several reports on approaches for tuning greedy treewidth heuristics to improve
the performance of particular dynamic programming (DP) algorithms. For instance, Jégou
and Terrioux (2017) considered computing tree decompositions whose bags induce connected
subgraphs in order to speed up solution methods whose running time depends on the con-
nected components induced by bags. Kask, Gelfand, Otten, and Dechter (2011) optimized
the state space of graphical models for probabilistic reasoning, which corresponds in our
setting to minimizing the product of the domain sizes of variables that appear together in
a bag. Similar heuristics were suggested by Bachoore and Bodlaender (2007) for treewidth.
Abseher, Musliu, and Woltran (2017) optimized heuristic tree decompositions w.r.t. the
sizes of DP tables when solving individual combinatorial problems such as 3-Colorability or
Minimum Dominating Set. Scarcello, Greco, and Leone (2007) presented a general frame-
work for minimizing the weight of hypertree decompositions of bounded width. We discuss
in Sections 3 and 5 how the above notions give rise to complexity parameters for CSP and
how they compare to threshold treewidth and hypertree width.

1.5 Outline

We give the basic definitions and notation in Section 2. In Section 3 we formally introduce
the notion of threshold-d load-c treewidth and give results on computing the associated
decompositions. In Section 4 we give applications of these new notions to further prominent
problems different from CSP in the AI context. In Section 5 we then introduce threshold-d
load-c hypertree width and give results on computing the associated decompositions. In
Section 6 we give alternative characterizations of the threshold treewidth and hypertree
width notions via so-called elimination orderings which we use in our experiments. The
algorithms we implemented are described in Section 7 and in Section 8 we report on the
empirical results. Section 9 contains a conclusion.

2. Preliminaries

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i]∪ {0}. We let N be the set of natural
numbers, and N0 the set N∪{0}. We refer to Diestel (2012) for standard graph terminology.

Similarly to graphs, a hypergraph H is a pair (V,E) where V or V (H) is its vertex set
and E or E(H) ⊆ 2V is its set of hyperedges. An edge cover of S ⊆ V (in the hypergraph
(V,E)) is a set F ⊆ E such that for every v ∈ S there is some e ∈ F with v ∈ e. The size
of an edge cover is its cardinality. For a (hyper)graph G, we will sometimes use V (G) to
denote its vertex set and E(G) to denote the set of its (hyper)edges.

1689

Ganian, Schidler, Sorge, & Szeider

Threshold Treewidth and Hypertree Width

a

b

d
e

f

c

g a c b e

c f e

e g

a d e

g

r

s t

u

a c b e

c f e

e g

a d e

r

s t

u

Figure 1: Left: a hypergraph H. Middle: a tree decomposition of H of width 3. Right: a hypertree
decomposition of H of width 2.

scope contains both v and w. The hypergraph HI of I is the hypergraph with vertex set V ,
where there is a hyperedge E ✓ V if and only if there exists a constraint with scope E. Note
that the hypergraph does not contain parallel edges as for each scope there is at most one
constraint with that scope.

3. Threshold Treewidth

The aim of this section is to define threshold treewidth for CSP, but to do that we first need
to introduce a refinement of treewidth on graphs. Let G be a graph where V is bipartitioned
into a set of light vertices and a set of heavy vertices; we call such graphs loaded. For
c 2 N0, a load-c tree decomposition of G is a tree decomposition of G such that each bag
�(t) contains at most c heavy vertices. It is worth noting that, while every graph admits a
tree decomposition, for each fixed c there are loaded graphs which do not admit any load-c
tree decomposition (consider, e.g., a complete graph on c + 1 heavy vertices). The load-c
treewidth of G is the minimum width of a load-c tree decomposition of G or 1 if no such
decomposition exists.

Let d, c 2 N0 and I = (V, D, C) be a CSP instance. Moreover, let Gd
I be the primal

graph such that v 2 V is light if and only if |D(v)| d. Then the threshold-d load-c treewidth
of I is the load-c treewidth of Gd

I . The following theorem summarizes the key advantage of
using the threshold-d load-c treewidth instead of the “standard” treewidth of GI .

5

Figure 1: Left: a hypergraph H. Middle: a tree decomposition of H of width 3. Right: a hypertree
decomposition of H of width 2; the covers of the bags are indicated by the blue edges and blue
encircled vertex sets. Observe that the hypertree decomposition satisfies the Special Condition: the
bag at node s is the only bag whose edge cover uses an edge containing a vertex from outside the
bag (the edge {e, g} ∈ λ(s) contains the vertex g outside χ(s)). However, as s has no descendants,
the Special Condition is trivially satisfied.

2.1 Parameterized Complexity

In parameterized algorithmics (Downey & Fellows, 2013; Niedermeier, 2006; Cygan, Fomin,
Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, & Saurabh, 2015; Flum & Grohe, 2006),
the running-time of an algorithm is studied with respect to a parameter k ∈ N0 and input
size n. The basic idea is to find a parameter that describes the structure of the instance
such that the combinatorial explosion can be confined to this parameter. In this respect,
the most favorable complexity class is FPT (fixed-parameter tractable), which contains all
problems that can be decided by an algorithm running in time f(k) · nO(1), where f is a
computable function. Algorithms with this running-time are called fixed-parameter algo-
rithms. A less favorable outcome is an XP algorithm, which is an algorithm running in time
O(nf(k)); problems admitting such algorithms belong to the class XP. Problems hard for
the complexity classes W[1], W[2], . . . , W[P] do not admit fixed-parameter algorithms (even
though they might be in XP) under standard complexity assumptions.

2.2 Treewidth

A tree decomposition T of a (hyper)graph G is a pair (T, χ), where T is a tree and χ is a
function that assigns each tree node t a set χ(t) ⊆ V (G) of vertices such that the following
conditions hold:

(P1) For every (hyper)edge e ∈ E(G) there is a tree node t such that e ⊆ χ(t).
(P2) For every vertex v ∈ V (G), the set of tree nodes t with v ∈ χ(t) induces a non-empty

subtree of T .

The sets χ(t) are called bags of the decomposition T , and χ(t) is the bag associated with
the tree node t. The width of a tree decomposition (T, χ) is the size of a largest bag minus 1.
The treewidth of a (hyper)graph G, denoted by tw(G), is the minimum width over all tree
decompositions of G.

1690

Threshold Treewidth and Hypertree Width

2.3 Hypertree Width

A generalized hypertree decomposition of a hypergraph H is a triple D = (T, χ, λ) where
(T, χ) is a tree decomposition of H and λ is function mapping each t ∈ V (T) to an edge
cover λ(t) ⊆ E(H) of χ(t). The width of D is the size of a largest edge cover λ(t) over all
t ∈ V (T), and the generalized hypertree width ghtw(H) of H is the smallest width over all
generalized hypertree decompositions of H.

It is known to be NP-hard to decide whether a given hypergraph has generalized hyper-
tree width ≤ 2 (Fischl, Gottlob, & Pichler, 2018). To make the recognition of hypergraphs
of bounded width tractable, one needs to strengthen the definition of generalized hypertree
width by adding a further restriction. A hypertree decomposition (Gottlob et al., 2002) of
H is a generalized hypertree decomposition D = (T, χ, λ) of H where T is a rooted tree
that satisfies in addition to (P1) and (P2) also the following Special Condition (P3):

(P3) If t, t′ ∈ V (T) are nodes in T such that t′ is a descendant2 of t, then for each e ∈ λ(t)
we have (e \ χ(t)) ∩ χ(t′) = ∅.

The hypertree width htw(H) of H is the smallest width over all hypertree decompositions
of H.

To avoid trivial cases, we consider only hypergraphs H = (V,E) where each v ∈ V
is contained in at least one e ∈ E. Consequently, every considered hypergraph H has an
edge cover, and the parameters ghtw(H) and htw(H) are always defined. If |V | = 1 then
htw(H) = ghtw(H) = 1.

Figure 1 shows a hypergraph, a tree decomposition, and a hypertree decomposition.

2.4 The Constraint Satisfaction Problem

An instance of a constraint satisfaction problem (CSP) I is a triple (V,D,C) consisting of
a finite set V of variables, a function D which maps each variable v ∈ V to a set (called
the domain of v), and a set C of constraints. A constraint c ∈ C consists of a scope,
denoted by S(c), which is a completely ordered subset of V , and a relation, denoted by
R(c), which is a |S(c)|-ary relation on N. If not stated otherwise, we assume that for
each scope there is at most one constraint with that scope. The size of an instance I is
|I| = |V |+ |D|+ ∑

c∈C |S(c)| · |R(c)|.
An assignment is a mapping θ : V → N which maps each variable v ∈ V to an element of

D(v); a partial assignment is defined analogously, but for V ′ ⊆ V . A constraint c ∈ C with
scope S(c) = (v1, . . . , v|S(c)|) is satisfied by a partial assignment θ if R(c) contains the tuple
θ(S(c)) = (θ(v1), . . . , θ(v|S(c)|)). An assignment is a solution if it satisfies all constraints in
I. The task in CSP is to decide whether the instance I has at least one solution.

The primal graph GI of a CSP instance I = (V,D,C) is the graph whose vertex set is
V and where two vertices v, w are adjacent if and only if there exists a constraint whose
scope contains both v and w. The hypergraph HI of I is the hypergraph with vertex set V ,
where there is a hyperedge E ⊆ V if and only if there exists a constraint with scope E.
Note that the hypergraph does not contain parallel edges as for each scope there is at most
one constraint with that scope.

2. A descendant of a node t in a tree T is any node t′ on a path from t to a leaf of T in the subtree rooted
at t.

1691

Ganian, Schidler, Sorge, & Szeider

3. Threshold Treewidth

The aim of this section is to define threshold treewidth for CSP, but to do that we first
need to introduce a refinement of treewidth on graphs. Let G be a graph where V is
bipartitioned into a set of light vertices and a set of heavy vertices; we call such graphs
loaded. For c ∈ N0, a load-c tree decomposition of G is a tree decomposition of G such that
each bag χ(t) contains at most c heavy vertices. It is worth noting that, while every graph
admits a tree decomposition, for each fixed c there are loaded graphs which do not admit
any load-c tree decomposition (consider, e.g., a complete graph on c + 1 heavy vertices).
The load-c treewidth of G is the minimum width of a load-c tree decomposition of G or ∞
if no such decomposition exists.

Let d, c ∈ N0 and I = (V,D,C) be a CSP instance. Moreover, let GdI be the primal
graph such that v ∈ V is light if and only if |D(v)| ≤ d. Then the threshold-d load-c
treewidth of I is the load-c treewidth of GdI . The following theorem summarizes the key
advantage of using the threshold-d load-c treewidth instead of the “standard” treewidth of
GI .

Theorem 1. Given d, c ∈ N, a CSP instance I and a load-c tree decomposition of GdI of
width k, it is possible to solve I in time at most O(dk+1 · |I|c+2).

Proof. The proof follows by applying the classical algorithm for solving CSP by using the
treewidth of the primal graph GI (Freuder, 1982; Gottlob et al., 2002), whereas the stated
runtime follows from the bound on high-domain variables imposed by the definition of load-
c treewidth. However, since the proof idea is also used in the subsequent Propositions 1
to 3, we provide a full description of the algorithm below for completeness.

Let T = (T, χ) be the load-c tree decomposition of GdI provided on the input. Choose
an arbitrary node t of T and denote it as the root r. Let Vt = { v ∈ V : v ∈ χ(t)∨ (there is
a child t′ of t such that v ∈ χ(t′)) }. Moreover, let a t-mapping be a mapping that assigns
to each variable v in χ(t) a value from D(v). It is easy to see that the number of t-mappings
is upper-bounded by dk−c+1 · |I|c.

The algorithm proceeds by computing, for each node t in a leaf-to-root fashion, the set
M(t) of all t-mappings with the following property: θ ∈M(t) if and only if there exists an
extension θ′ of θ to Vt such that each constraint q with S(q) ⊆ Vt is satisfied by θ′. Clearly,
I is a YES-instance if and only if M(r) is non-empty; moreover, if we correctly compute a
non-empty M(r) by leaf-to-root dynamic programming, then it is possible to reconstruct a
solution for I by retracing the steps of the dynamic program in a standard fashion.

To compute M(`) for a leaf `, it suffices to loop over all `-mappings and for each perform
a brute-force check to determine whether all of the relevant constraints are satisfied. For a
non-leaf node t, we also loop over all t-mappings, whereas for each t-mapping θ we first check
whether each constraint c such that S(c) ⊆ χ(t) is satisfied; if not, we discard θ. If yes, we
then check that θ is “consistent” with each of the children of t—notably, for each child t′ of t,
we ensure that there is at least one t′-mapping θ′ such that ∀v ∈ χ(t)∩χ(t′) : θ′(v) = θ(v).3

If this is the case then we add θ to M(t).

3. This check can be carried out in amortized constant time via suitable data structures if all t-mappings
are ordered based on a fixed variable ordering.

1692

Threshold Treewidth and Hypertree Width

Correctness follows by the observation that each constraint c such that S(c) ⊆ Vt must
be contained in a bag of at least one descendant of t, and hence each such constraint is
checked against θ by transitivity. The runtime bound follows by the upper bound on V (T)
and the upper bound on the number of t-mappings for each node t.

We now briefly discuss the relation between threshold-d load-c treewidth and other pa-
rameters of CSP instances related to treewidth and domain size. First, Bachoore and Bod-
laender (2007) introduced a parameter called weighted treewidth. Consider a graph G with
vertex-weight function w : V (G)→ N. The weighted width of a tree decomposition (T, χ) of
G is maxt∈V (T) Πv∈χ(t)w(v), and the minimum such quantity is the weighted treewidth of G.
The weighted treewidth of a CSP instance is the weighted treewidth of its primal graph with
weight function w defined as w(v) = |D(v)| for each variable v. It is not hard to see that
we can replace the given load-c tree decomposition in Theorem 1 by a tree decomposition
minimizing the weighted treewidth, say the minimum is w, and the algorithm would run in
O(w · |I|2) time. However, the weighted treewidth implicitly upper-bounds the domains of
all variables. This is not the case for load-c treewidth, which allows each bag to contain up
to c variables of arbitrarily large domains. Thus, load-c treewidth can be thought of as a
more general parameter, that is, fixed-parameter algorithms for it apply to a larger set of
instances.

Another way of dealing with variables with large domain would be to replace each of
these variables v in every constraint by dlog |D(v)|e representative variables with domain
size two. Since the representative variables occur together in a constraint, they induce a
clique in the primal graph. Computing a tree decomposition of low width for the primal
graph thus roughly corresponds to minimizing the number of high-domain variables in a
bag. More precisely, it corresponds to minimizing the sum of the logarithms of the domain
sizes of the high-domain variables in the bags. Similarly to weighted treewidth, this means
that the (maximum) domain size is in a strong relation with the width. In comparison, the
approach taken here is aimed at restricting the number of high-domain variables that occur
together in a bag.

To apply Theorem 1 it is necessary to be able to compute a load-c tree decomposition
of a loaded graph efficiently. While there is a significant body of literature on computing or
approximating optimal-width tree decompositions of a given graph, it is not obvious how
to directly enforce a bound on the number of heavy vertices per bag in any of the known
state-of-the-art algorithms for the problem. Our next aim is to show that in spite of this, it
is possible to reduce the problem of computing an approximate load-c tree decomposition
to the problem of computing an optimal-width tree decomposition of a graph. This then
allows us to use known results in order to find a sufficiently good approximation of load-c
treewidth.

Lemma 1. Given an n-vertex loaded graph G with m edges and an integer k ≥ 1, it
is possible to compute in O((n + m) · k2) time a graph G′ such that: (1) If G has load-c
treewidth k then G′ has treewidth at most ck+k, and (2) given a tree decomposition of width
` of G′, in linear time we can compute a load-(`/(k+1)) tree decomposition of G of width `.

Proof. Consider the graph G′ constructed as follows: (a) we add each light vertex in G
into G′; (b) for each heavy vertex v ∈ V (G), we add k+ 1 vertices v0, v1, . . . , vk into G′ (we

1693

Ganian, Schidler, Sorge, & Szeider

call them images of v); (c) we add an edge between each pair of images, say vi, vj ∈ V (G′),
of some vertex v; (d) for each vw ∈ E(G), we add into G′ the edge vw (if both v and w
are light), or the edges { vwi : i ∈ [k]0 } (if w was heavy and v was light), or the edges
{ viwj : i, j ∈ [k]0 } (if both v and w were heavy).

Clearly, G′ can be constructed from G in time O((n+m) · k2). For the part (1) of the
lemma, consider a minimum-width tree decomposition T = (T, χ) of G. Now consider the
mapping χ′ that is obtained from χ by replacing each occurrence of a heavy vertex v by
all of its images, i.e., v0, . . . , vk—formally, x ∈ χ′(t ∈ V (T)) if and only if either x ∈ χ(t),
or there exists v ∈ V (G) such that v ∈ χ(t) and x = vi. Since the number of heavy
vertices in a single bag was upper-bounded by c, the maximum size of an image of χ′ is
(k + 1) · c+ k + 1− c = ck + k + 1. It is easy to verify that (T, χ′) is a tree decomposition
of G′, and so the first claim follows.

For part (2) of the lemma, call a tree decomposition T ′ = (T, χ′) of G′ discrete if for each
v ∈ V (G) such that v is heavy and each t ∈ V (T) it holds that either for all i ∈ [k]0 we have
vi /∈ χ′(t) or for all i ∈ [k]0 we have vi ∈ χ′(t). Let T̂ = (T, χ̂) be a tree decomposition of G′

of width at most `. We first claim that in linear time we can compute a tree decomposition
T ′ = (T, χ′) of G′ that is discrete and of width at most `. To do this, we compute χ′ from
χ̂ as follows. We iterate over all t ∈ V (T) and for each vertex in χ̂(t) we check whether it is
the image of some heavy vertex v ∈ V (G) and, if so, we check whether all images of v are
contained in χ̂(t). If not all images of v are contained in χ̂(t) we remove from χ̂(t) all images
of v. In this way we obtain a mapping χ′. Note that, for each t, the above computation
can be done in O(|χ̂(t)|) time as follows. First, iterate over χ̂(t), obtaining a list of heavy
vertices which have images in χ̂(t). For each such vertex v, initialize an empty list of images
in χ̂(t). Iterate over χ̂(t) again to fill the lists of images with pointers to the images in χ̂(t).
Finally, compute the length of each list and, if it is shorter than k + 1, remove all images
from χ̂(t) using the pointers. Thus, (T, χ′) can be computed in linear time.

Next, we argue that (T, χ′) is a tree decomposition of G′. Consider first condition (P2)
of tree decompositions. Clearly, (P2) holds for every vertex v which is not an image of a
heavy vertex. For the sake of contradiction, assume that (P2) is violated for an image vj ,
j ∈ [k]0, of some heavy vertex v ∈ V (G). Thus, there are r, s, t ∈ V (T) such that s is on
the unique path between r and t in T , vj ∈ χ′(r), vj ∈ χ′(t), and vj /∈ χ′(s). Observe that
both χ̂(r) and χ̂(t) contain all images of v whereas there is an image vi of v which is not
contained in χ̂(s). Hence, (P2) is violated for (T, χ̂) and vertex vi, a contradiction.

Now consider condition (P1). Clearly, (P1) holds for each edge whose endpoints either
both are images of a heavy vertex of G or both are not images of heavy vertex of G. For the
sake of contradiction, assume that (P1) does not hold for an edge such that one endpoint,
u, is not the image of a heavy vertex and one endpoint, vj for some j ∈ [k]0, is the image
of a heavy vertex v ∈ V (G). Since the images of v induce a clique in G, there is a node
t ∈ V (T) such that χ̂(t) contains all images of v.4 By assumption on u, we have u /∈ χ′(t)
and thus u /∈ χ̂(t). There is thus an edge e in T whose removal separates T into a connected
component that contains t and a connected component that contains all t′ ∈ T such that

4. This is a well-known fact about cliques and tree decompositions and can be proved roughly as follows:
The vertices in the clique induce subtrees of the decomposition tree whose vertex sets have pairwise
nonempty intersection. Since the trees are subtrees of the decomposition tree, this means there is a
vertex in the decomposition tree that is contained in all of the subtrees.

1694

Threshold Treewidth and Hypertree Width

u ∈ χ′(t′). Moreover, there is such an edge e such that one endpoint, s, has the property
that u ∈ χ′(s). Since u is adjacent to each vi ∈ V (G′), i ∈ [k]0, for each i ∈ [k]0 there is
ri ∈ V (T) such that both u, vi ∈ χ̂(ri). By (P2) of (T, χ̂), for each i ∈ [k]0, the subtree of T
induced by the nodes r ∈ V (T) with vi ∈ χ̂(r) contains e. Thus, χ̂(s) contains each vi. By
construction of χ′ it follows that χ′(s) contains each vi. This is a contradiction to the fact
that χ′(s) contains u and to the assumption that there is no bag of (T, χ′) that contains
both u and vj . Thus, (P2) holds for (T, χ′).

Above we have shown that the discrete tree decomposition (T, χ′) of G′ of width ` can be
computed in linear time. Next, let us compute the mapping χ from χ′ as follows: For each
t ∈ V (T), we put v ∈ χ(t) if either v ∈ χ′(t) or there exists j ∈ [k]0 such that vj ∈ χ′(t).
Since in this way each vertex in a bag χ′(t) can only lead to the addition of at most one
vertex into χ(t), it is easy to see that the maximum size of an image of χ is ` + 1. Hence,
if (T, χ) is a tree decomposition, then its width is at most `.

We claim that the load of (T, χ) is at most `/(k + 1). Otherwise, there would be some
t ∈ V (T) such that χ(t) contains `/(k+ 1) + 1 heavy vertices. In that case, by discreteness
of χ′, the number of vertices in χ′(t) is at least (k+ 1) · (`/(k+ 1) + 1) = `+ k+ 1 > `+ 1.
This contradicts the fact that (T, χ′) has width `.

It remains to show that (T, χ) is a tree decomposition of G. Condition (P1) clearly holds
for every edge vw ∈ E(G) such that vw ∈ E(G′). On the other hand, if vw 6∈ E(G′) then
either one or both of v, w are heavy in G, and hence, e.g., the vertices v0 and w0 are adjacent
in G′. This implies that there is some node t′ ∈ V (T) such that {v0, w0} ⊆ χ′(t′), and by
construction we obtain {v, w} ⊆ χ(t′)—hence (P1) holds. Finally, assume that (P2) is vio-
lated. Since it is easy to see that each vertex in V (G) will be contained in at least one image
of χ, this means that there would be some v ∈ V (G) and nodes t, ta, tb ∈ V (T) such that:

� v 6∈ χ(t) but v ∈ χ(ta) and v ∈ χ(tb);
� t separates ta from tb in T .

If v is light, then this would immediately violate the fact that T ′ is a tree decomposition
of G′. On the other hand, if v is heavy, then there would have to exist vi and vj such that
vi ∈ χ′(ta) and vj ∈ χ′(tb); moreover, vi 6= vj since otherwise we would once again contradict
(P2) for T ′. But then by construction we know that vivj ∈ E(G′). Thus, by (P1) there is
a bag t′ ∈ V (T) for which vi, vj ∈ χ′(t′). By (P2) there is a path in T from ta (resp. from
tb) to t′ on which each bag s has vi ∈ χ(s) (resp. vj ∈ χ(s)). One of these paths contains t
and thus v ∈ χ(t), a contradiction. Hence (P2) holds as well, completing the proof.

Lemma 1 and the algorithm of Bodlaender (1996) can be used to approximate load-c
treewidth:

Theorem 2. Given c ∈ N, a loaded graph G and k ∈ N, in (ck)O((ck)3) · |V (G)| time it is
possible to either correctly determine that the load-c treewidth of G is at least k + 1 or to
output a (ck + k)-width load-c tree decomposition of G with O(|V (G)|) nodes.

Proof. First, we construct the graph G′ as per Lemma 1. By that lemma, if G has load-
c treewidth at most k, then G′ has treewidth at most ck + k = `. We then apply the
fixed-parameter linear-time algorithm for treewidth of Bodlaender (1996) to compute a tree
decomposition of width at most `, or correctly determine that no such tree decomposition
exists—in which case we output “NO”. Applying this algorithm takes `O(`3) · |V (G)| time

1695

Ganian, Schidler, Sorge, & Szeider

(see also Bodlaender et al. (2016)). If the output is NO, then the load-c treewidth of G is at
least k + 1, as required. If a decomposition for G′ is found, we translate it back to G using
Lemma 1 and output the result. By Lemma 1 the treewidth of the output decomposition
is at most ck + k and the load is at most

`

k + 1
=
c(k + 1) + k − c

k + 1
= c+

k − c
k + 1

.

Since the load is an integer, it is at most c, as claimed.

By constructing the graph GdI and then computing a load-c tree decomposition of GdI
with width at most ck + k using Theorem 2, in combination with Theorem 1, we obtain:

Theorem 3. Given c, d ∈ N, and a CSP instance I, we can solve I in dck+k+1 · |I|c+2 +
(ck)O((ck)3) · |I| time where k is the threshold-d load-c treewidth of I. Thus, for constant c
and d, CSP is fixed-parameter tractable parameterized by k.

Proof. The algorithm is as follows. We first construct the graph GdI . Since I has threshold-d
load-c treewidth at most k, the maximum number of variables in a constraint is at most k+1.
Thus, GdI can be computed in O(k2·|I|) time by initializing an empty graph with a vertex for
each variable of I, marking the vertices as heavy that correspond to variables with domain
size more than d, and then iterating over all constraints and adding the corresponding
edges. Then, we compute a load-c tree decomposition of GdI with width at most ck+k using

Theorem 2. This takes ckO((ck)3) ·k2 · |I| time. The result then follows from Theorem 1.

Note that the runtime bound stated in Theorem 3 would allow us to take the thresh-
old d as an additional parameter instead of a constant, to still establish fixed-parameter
tractability of CSP, parameterized by k + d.

4. Further Applications of Threshold Treewidth

While our exposition here focuses primarily on applications for the classical constraint
satisfaction problem, it is worth noting that load-c treewidth can be applied analogously on
many other prominent problems that arise in the AI context. In this subsection, we outline
three such applications of our machinery in highly general settings.

4.1 Weighted Constraint Satisfaction with Default Values

Our first application concerns a recently introduced extension of constraint satisfaction
via a combination of weights and default values (Brault-Baron, Capelli, & Mengel, 2015;
Ganian et al., 2022); see also the published preprint (Ganian et al., 2018)). This extension
captures, among others, counting CSP (#CSP) and counting SAT (#SAT). We introduce
the extension below by building on our preliminaries on CSP.

For a variable set V and a domain D, a weighted constraint C of arity ρ over D with
default value η (or “weighted constraint” in brief) is a tuple C = (S, F, f, η) where

� the scope S = (x1, . . . , xρ) is a sequence of variables from V ,

� η ∈ Q is a rational number called the default value,

1696

Threshold Treewidth and Hypertree Width

� F ⊆ D ρ is called the support, and

� f : F → Q is a mapping which assigns rational weights to the support.

A weighted constraint c = (S, F, f, η) naturally induces a total function on assignments
of its scope S = (x1, . . . , xρ): for each assignment α : X → D where X ⊇ S, we define
the value c(α) of c under α as c(α) = f(α(x1), . . . , α(xρ)) if (α(x1), . . . , α(xρ)) ∈ F and
c(α) = η otherwise.

Similarly to CSP, an instance I of Weighted Constraint Satisfaction with De-
fault Values (#CSPD) is a tuple (V,D,C), but here C is a set of weighted constraints.
The task in #CSPD is to compute the total weight of all assignments of V , i.e., to compute
the value sol(I) =

∑
α:V→D

∏
c∈C c(α).

#CSPD was shown to be fixed-parameter tractable when parameterized by the treewidth
of the primal graph plus |D| (Ganian et al., 2018), in particular as a corollary of a more
general dynamic programming algorithm A (Ganian et al., 2018, Theorem 1). When A is
applied on the primal graph, it proceeds in a leaf-to-root fashion that is similar in nature to
the algorithm described in the proof of Theorem 1 here; however, formally the records stored
by A are more elaborate. In particular, at each node t of a provided tree decomposition, A
stores one record for each pair (θ, ~B) where

� θ is an assignment of the vertices in χ(t), and

�
~B is a tuple that specifies for each constraint that is “processed” at t the subset of
tuples in the support that agree with θ.

Crucially, when applying A on the primal graph, in every tuple (θ, ~B) the latter com-
ponent ~B is fully determined by the former component. And since the number of possible
choices for θ is upper-bounded by dk · |I|c+2 for the same reason as in Theorem 1, we obtain:

Proposition 1. Given c, d ∈ N, and an instance I of #CSPD it is possible to solve I in
dck+k+1 · |I|c+2 + (ck)O((ck)3) · |I| time where k is the threshold-d load-c treewidth of I. In
particular, for constant c and d #CSPD is fixed-parameter tractable parameterized by k.

4.2 Valued Constraint Satisfaction

The second application is for the Valued CSP (VCSP) (Schiex et al., 1995; Zivny, 2012).
Herein, we are given the same input as in #CSPD but where every weighted constraint
has a default value of 0. The goal in VCSP is to compute a variable assignment α that
minimizes

∑
c∈C c(α). VCSP generalizes MaxCSP, where we aim to find an assignment

for a CSP instance that maximizes the number of satisfied constraints.
It is a folklore result that VCSP can be solved by a dynamic programming algorithm

along a tree decomposition of the primal graph, yielding XP-tractability when parameter-
ized by the treewidth of the primal graph (Carbonnel, Romero, & Zivný, 2018; Bertele &
Brioschi, 1972). The algorithm can be seen as a slight extension of the one presented in
Theorem 1: the records M(t) used in the algorithm that keep a list of all assignments θ are
enhanced to also keep track of the value

∑
c⊆Vt c(θ). We thus obtain the following.

Proposition 2. Given c, d ∈ N and an instance I of VCSP it is possible to solve I in
dck+k+1 · |I|c+2 + (ck)O((ck)3) · |I| time where k is the threshold-d load-c treewidth of I. In
particular, for constant c and d VCSP is fixed-parameter tractable parameterized by k.

1697

Ganian, Schidler, Sorge, & Szeider

4.3 Integer Programming

Our third application concerns Integer Programming (IP) (Schrijver, 1999), the general-
ization of the famous Integer Linear Programming problem to arbitrary polynomials.
IP is, in fact, undecidable in general; see Köppe (2012) for a survey on its complexity.
However, when there are explicit bounds on the variable domains, it can be solved by a
fixed-parameter algorithm via dynamic programming on tree decompositions.

For our presentation, we provide a streamlined definition of IP with domain bounds as
used, e.g., by Eiben, Ganian, Knop, and Ordyniak (2019). An instance of IP consists of a
tuple (X,F , β, γ) where:

� X = {x1, . . . , xn} is a set of variables,

� F is a set of integer polynomial inequalities over variables in X, that is, inequalities
of the form p(x1, . . . , xn) ≤ 0 where p is a sparsely encoded polynomial with rational
coefficients,

� β is a mapping from variables in X to their domain, i.e., β(x) is the set of all integers
z such that x 7→ z satisfies all constraints in F over precisely the variable x (these are
often called box constraints), and

� γ is an integer polynomial over variables in X called the evaluation function.

The goal in IP is to find an assignment α of the variables of I which (1) satisfies all
inequalities in F and β while achieving the maximum value of γ.

Let d = maxx∈X |β(x)|, and let the primal graph GI of an IP instance I be the graph
whose vertex set is X and where two variables are adjacent if and only if there exists an
inequality in F containing both variables. It is known that IP is fixed-parameter tractable
when parameterized by d plus the treewidth of GI (Eiben et al., 2019). The algorithm B
used to establish this result performs leaf-to-root dynamic programming that is analogous
in spirit to the procedure used in the proof of Theorem 1. Herein in particular, at each
node t algorithm B stores records which specify the most favorable “partial evaluation” of
γ for each possible assignment of variables in χ(t) in view of β and F .

Since each variable is equipped with a domain via β, we may define the graph GdI in an
analogous way as for CSP. Once that is done, it is not difficult to verify that running the
algorithm of Eiben et al. (2019) on a threshold-d load-c tree decomposition of GdI guarantees
a runtime bound for solving IP of dO(k) · |I|c+2. In combination with our Theorem 2, we
conclude:

Proposition 3. Given c, d ∈ N, and an instance I of IP it is possible to solve I in
dck+k+1 · |I|c+2 + (ck)O((ck)3) · |I| time where k is the threshold-d load-c treewidth of I. In
particular, for constant c and d IP is fixed-parameter tractable parameterized by k.

5. Threshold Hypertree Width

In this section, we define threshold hypertree width for CSP, show how to use it to obtain
fixed-parameter algorithms, and how to compute the associated decompositions. Similar to

1698

Threshold Treewidth and Hypertree Width

threshold treewidth, we will first introduce an enhancement of hypertree width for hyper-
graphs. Intuitively, the running time of dynamic programs for CSP based on decomposi-
tions of the corresponding hypergraph is strongly influenced by constraints, corresponding
to hyperedges, whose relations contain many tuples. We hence aim to distinguish these
hyperedges.

Let H be a hypergraph where E = E(H) is bipartitioned into a set EB of light hyper-
edges and a set ER of heavy hyperedges. We call such hypergraphs loaded. Let c ∈ N0.
A load-c hypertree decomposition of H is a hypertree decomposition (T, χ, λ) for H such
that each edge cover λ(v), v ∈ V (T), contains at most c heavy hyperedges. The width and
the notion of load-c hypertree width (of H) are defined in the same way as for hypertree
decompositions.

Similar to threshold treewidth, for each fixed c there are hypergraphs that do not admit
a load-c hypertree decomposition. For example, consider a clique graph with at least c+ 2
vertices with heavy edges only, interpreted as a hypergraph. As a load-c hypertree decom-
position contains a tree decomposition for the clique, there is a bag containing all vertices
of this clique, and the minimum edge cover for this bag has size c+ 1.

We now apply the above notions to CSP. Let d, c ∈ N0 and I = (V,D,C) be a CSP
instance. Let Hd

I be the loaded hypergraph of I wherein a hyperedge F ∈ E(Hd
I) is light

if and only if |R(γ)| ≤ d, for the constraint γ ∈ C corresponding to F , i.e., S(γ) = F .
Then, the threshold-d load-c hypertree width of I is the load-c hypertree width of Hd

I . For
threshold-d load-c hypertree width, we also obtain a fixed-parameter algorithm for CSP.
Instead of building on hypertree decompositions in the above, we may also use generalized
hypertree decompositions, leading to the notion of generalized threshold-d load-c hypertree
width and the associated decompositions.

Theorem 4. Given c, d ∈ N, a CSP instance I with (generalized) threshold-d load-c hy-
pertree width k together with the associated decomposition of Hd

I , in O(dk · |I|c+2) time it
is possible to decide I and produce a solution if there is one.

In particular, for fixed c, d, CSP is fixed-parameter tractable parameterized by k when
a threshold-d load-c hypertree decomposition of width k is given.

Proof Sketch. A usual approach used for ordinary hypertree decompositions is to compute
an equivalent CSP whose hypergraph is acyclic and then use an algorithm for acyclic CSPs
(Gottlob et al., 2002). We instead apply a direct dynamic programming approach; the
stated running-time bound then follows from the upper bound on constraints with large
number of tuples imposed by the definition of load-c hypertree width.

Let (T, χ, λ) be the load-c hypertree decomposition of Hd
I provided in the input. Root T

arbitrarily and denote the root by r. For each t ∈ V (T), let Vt =
⋃
t′ χ(t′), where the union

is taken over all t′ in the subtree of T rooted at t. A t-mapping is a mapping that assigns
to each variable v ∈ χ(t) a value from D(v).

The algorithm proceeds by dynamic programming, i.e., computing, for each node t ∈
V (T) in a leaf-to-root fashion, the set M(t) of all t-mappings θ with the following two
properties: (1), there exists some extension θ′ of θ to Vt which maps each variable v ∈ Vt to
an element of D(v) such that each constraint γ with S(γ) ⊆ Vt is satisfied by θ′ and, (2), for

1699

Ganian, Schidler, Sorge, & Szeider

each constraint γ ∈ λ(t), mapping θ projected5 onto S(γ) occurs as a tuple in γ projected
onto χ(t).

Observe that I is a YES-instance if and only if M(r) 6= ∅: The backward direction
follows from property (1). To see the forward direction, note that any satisfying assignment
projected onto χ(r) is contained in M(r). Thus, to decide I it suffices to compute all sets
M(t), t ∈ V (T). The solution, if it exists, can then be computed by retracing the steps of
the dynamic program in a standard fashion.

Before we explain how to compute M(t), consider the following way of constructing a
t-mapping θ. For each constraint in λ(t), pick a tuple such that each pair of picked tuples
agree on the variables they share (if any). Note that the picked tuples induce a t-mapping,
and we set θ to be this mapping. Call a t-mapping constructed in this way derived. Note
that the number of derived t-mappings is at most dk−c · |I|c and that the set of all derived
t-mappings can be computed in O(dk−c · |I|c+1) time.

Next, we explain how to compute M(t). To compute M(`) for a leaf `, due to prop-
erty (2), it suffices to loop over all derived `-mappings and to put them into M(`) if they
satisfy all constraints γ for which S(γ) ⊆ χ(`). By the bound on the number of derived
`-mappings, this takes O(dk · |I|c+1) time.

Consider an internal node t of T . Again, we loop over each derived t-mapping θ and
check whether it satisfies all constraints whose scope is in χ(t). If not, then we discard θ.
If yes, then for each child t′ of t we check whether there is a mapping θ′ ∈M(t′) such that
θ and θ′ agree on their shared variables; in formulas ∀v ∈ χ(t) ∩ χ(t′) : θ′(v) = θ(v). If so,
then we put θ into M(t). By using property (2) of the mappings in M(t′), in this way, we
correctly compute M(t). Using suitable data structures and the bound on the number of
derived mappings, this computation can be carried out in time at most O(dk · |I|c+1) per
node in T .

Similar to weighted treewidth, a weighted variant of hypertreewidth has been pro-
posed (Scarcello et al., 2007) wherein the whole decomposition (T, χ, λ) is weighted ac-
cording to the estimated running time of running a dynamic program similar to the above.
The approach is, slightly simplified, to weigh each hyperedge in the cover of a bag by |R(c)|
for the corresponding constraint c and then to minimize

∑
t∈V (T) Πc∈λ(t)|R(c)|. A draw-

back here again is that, using this quantity as a parameter, it implicitly bounds the number
of tuples in each constraint |R(c)| and in turn all domain sizes. This is not the case for
threshold-d load-c hypertree width.

We now turn to computing the decomposition for the hypergraph of the CSP used
in Theorem 4. A previous approach for computing ordinary hypertree decompositions
of width at most k by first recursively decomposing the input hypergraph via separators
which roughly correspond to the vertex sets of the potential covers of the bags, that is,
sets S of at most k hyperedges. The decomposition can then be determined in a bottom-
up fashion (Gottlob, Leone, & Scarcello, 1999). This approach can be adapted to load-c
hypertree decomposition by replacing the sets S with sets of at most k hyperedges among
which there are at most c heavy hyperedges. We omit the details. Indeed, we may instead
use a more general framework, due to Scarcello et al. (2007), which allows to compute

5. The projection of a relation R onto a subset S of its variables is the set resulting from taking each tuple
of R and removing from this tuple the entries for variables not in S.

1700

Threshold Treewidth and Hypertree Width

hypertree decompositions of width at most k that additionally optimize an arbitrary weight
function. Applying this framework leads to the following.

Theorem 5. Given c, k ∈ N, and a loaded hypergraph H, in O(|E(H)|2k · |V (H)|2) time it
is possible to compute a load-c hypertree decomposition for H of width at most k or correctly
report that no such decomposition exists.

Proof. We first state the result of Scarcello et al. (2007) in a simplified and weaker form
that is sufficient for our purpose. Let p be a function that assigns an integer to a bag
of any hypertree decomposition. Let rp be the function of the running time needed to
evaluate p. A tree aggregation function is a function that assigns to each hypertree de-
composition (T, χ, λ) the integer maxt∈V (T) p(t). Scarcello et al.’s Theorems 4.4 and 4.5
now imply the following. There is an algorithm that, given an integer k, a hypergraph H,
and a tree aggregation function f , computes a width-k hypertree decomposition for H that
minimizes f , or correctly decides that no such decomposition exists. The algorithm runs in
O(|E(H)|2k · |V (H)| · (|V (H)|+ rp)) time.6

To apply this result to our setting, we put p to be the function that assigns to each bag
t the number of heavy hyperedges in the edge cover λ(t). Thus, Scarcello et al.’s algorithm
will compute the smallest c such that there is a load-c hypertree decomposition. Note that
|λ(t)| ≤ |V (H)| and hence rp = O(|V (H)|). This implies the running-time bound.

Assuming FPT 6= W[2] the running time in Theorem 5 cannot be improved to a fixed-
parameter tractable one, even if c is constant. This follows from the fact that the special
case of deciding whether a given hypergraph without heavy hyperedges admits a load-
0 hypertree decomposition of width at most k is W[2]-hard with respect to k (Gottlob,
Grohe, Musliu, Samer, & Scarcello, 2005).

Bounding the threshold treewidth or threshold hypertree width of a CSP instance con-
stitutes a hybrid restriction and not a structural restriction (Carbonnel & Cooper, 2016),
as these restrictions are formulated in terms of the loaded primal graphs and the loaded
hypergraphs, and not in terms of the plain, unlabeled (hyper)graphs. However, as the
loaded (hyper)graphs carry only very little additional information, we would like to label
such restrictions as semi-structural.

6. Elimination Orderings

The algorithms used in our experiments rely on a characterization of treewidth and gen-
eralized hypertree width by so-called elimination orders. An elimination ordering ≺ of a
graph G is a total ordering ≺ of V (G). Let us denote the i-th vertex in ≺ as vi, and let
G0 = G. For each i ∈ [|V (G)|], let the graph Gi be obtained from Gi−1 by removing vi and
adding edges between each pair of vertices in the neighborhood of vi (i.e., the neighborhood,
NGi−1(vi), of vi in Gi−1 becomes a clique in Gi). The width of vi w.r.t. ≺ is then defined
as |NGi−1(vi)|, and the width of ≺ is the maximum width over all vertices in G w.r.t. ≺.

It is well known that a graph G has treewidth k if and only if it admits an elimination
ordering ≺ of width k (Kloks, 1994; Bodlaender & Koster, 2010). Moreover, a tree decompo-
sition of width k can be computed from such ≺ and, vice-versa, given a tree decomposition

6. The running time bound follows from the analysis given by Scarcello et al. (2007) in the proof of
Theorem 4.5.

1701

Ganian, Schidler, Sorge, & Szeider

of width k one can construct a width-k elimination ordering in polynomial time (Kloks,
1994; Bodlaender & Koster, 2010).

Recently, it has been shown that generalized hypertree decompositions of CSP instances
can be characterized in a similar way (Fichte, Hecher, Lodha, & Szeider, 2018). In par-
ticular, consider a CSP instance I with primal graph GI and an elimination ordering ≺
of GI . The cover width of vi w.r.t. ≺ is then defined as the size of a minimum edge cover
of NGi−1(vi) ∪ {vi} in HI , and the cover width of ≺ is the maximum cover width over all
vertices in G w.r.t. ≺. Analogously as in the treewidth case, a generalized hypertree de-
composition of width k can be computed from an elimination ordering ≺ of cover width k,
and, vice-versa, given a generalized hypertree decomposition of width k one can construct
a cover width-k elimination ordering in polynomial time (Fichte et al., 2018; Schidler &
Szeider, 2020).

It is relatively straightforward to adapt these notions of elimination orderings to de-
scribe not only classical treewidth and generalized hypertree width, but also their threshold
variants. In particular, by simply retracing the steps of the original proofs (Kloks, 1994;
Fichte et al., 2018), one can show the following. Recall that for a CSP instance I and an
integer d, we have defined GdI as the loaded graph obtained from the primal graph GI of
I by marking each vertex v ∈ V (GI) as light if |D(v)| ≤ d and heavy otherwise. Also,
Hd
I is the loaded hypergraph obtained from the hypergraph HI of I wherein we mark each

hyperedge F ∈ E(HI) as light if R(γ) ≤ d, where γ is the constraint corresponding to F ,
and we mark F as heavy otherwise.

Theorem 6. (1) A CSP instance I has threshold-d load-c treewidth k if and only if GdI ad-
mits an elimination ordering of width k with the property that for each vi, NGd

I,i−1
(vi)∪{vi}

contains at most c heavy vertices. (2) A CSP instance I has generalized threshold-d load-c
hypertree width k if and only if GI admits an elimination ordering of cover width k with
the property that for each vi, NGd

I,i−1
(vi)∪ {vi} admits a hyperedge cover (in Hd

I) of size at

most k containing at most c heavy hyperedges.

Proof. We prove both parts of the statement simultaneously; we mainly describe the proof
of part (1) and while doing so explain the differences to obtain part (2). First, we show
the direction from a tree decomposition (resp. hypertree decomposition) to an elimination
ordering. Let I be a CSP instance with threshold-d load-c treewidth k (resp. with gen-
eralized threshold-d load-c hypertree width k). Let (T, χ) be a load-c tree decomposition
of width k for GdI . For the case of hypertree width, let (T, χ, λ) be a generalized load-
c hypertree decomposition. Let n := |V (GdI)|. Proceed as follows: Put G′0 = GdI and
T0 = (T0, χ0) := (T, χ); respectively, put T0 = (T0, χ0, λ0) := (T, χ, λ). Then, for each
i = 1, 2, . . . , n construct a graph G′i, a vertex vi, and a tree decomposition Ti = (Ti, χi)
(resp. a generalized hypertree decomposition Ti = (Ti, χi, λi)) as follows. Herein, we main-
tain the invariant that Ti is a load-c tree decomposition of width k for G′i (resp. a load-c
hypertree decomposition of width k for Hi, the hypergraph obtained from H by removing
v1, . . . , vi−1).

1. Pick an arbitrary leaf t in Ti−1. If each vertex in χi−1(t) occurs in the parent of t
in Ti−1, remove t from Ti−1. Note that this results in another (generalized hyper-)
tree decomposition of at most the same width and load. If t was removed, repeat this
step.

1702

Threshold Treewidth and Hypertree Width

2. After Step 1, in the picked leaf t ∈ T there is a vertex v ∈ χi−1(t) that occurs in no
other bag of Ti−1. Put vi := v.

3. To obtain G′i, take G′i−1, remove vi, and make NG′i−1
(vi) a clique. To obtain Ti, take

Ti−1 and remove vi from all bags. Observe that this maintains our invariant because
NGi−1(vi) is contained in the bag χi−1(t).

We claim that the elimination ordering ≺ on V (GdI) induced by v1, v2, . . . , vn has (cover)
width k and for each vi we have that NGd

I,i−1
(vi) ∪ {vi} contains at most c heavy vertices

(resp. for each vi we have that NGd
I,i−1

(vi)∪ {vi} admits a hyperedge cover in HI of size at

most k and with at most c heavy hyperedges). Indeed, G′i is equal to the graph Gi defined by
≺. In the case of tree decompositions, since NG′i−1

(vi)∪{vi} is contained in the bag χi−1(t)

in Step 3 and since Ti−1 is a width-k load-c tree decomposition for G′i−1, the ordering ≺
has width k and there are at most c heavy vertices in NGi−1(vi) ∪ {vi}. Similarly, in the
case of hypertree decompositions, since NG′i−1

(vi) ∪ {vi} is contained in the bag χi−1(t) in

Step 3 and since Ti−1 is a width k load-c generalized hypertree decomposition for G′i−1, the
required cover of NG′i−1

(vi) is given by λi−1(t). Thus, the ordering ≺ has cover width k and

NG′i−1
(vi) ∪ {vi} admits a cover of size at most k with at most c heavy hyperedges. This

completes the argument for the direction from tree decompositions to elimination orderings.

Now let ≺ be an elimination ordering for GdI with the properties promised in part (1) of
the theorem (resp. in part (2)). Let v1, v2, . . . , vn be the ordering of vertices of GI induced
by ≺ and let G1, G2, . . . , Gn be the corresponding graphs. Let Gn+1 be the empty graph
and let Tn+1 = (Tn+1, χn+1) be a trivial tree decomposition for Gn+1 wherein Tn+1 consists
of a single vertex t and the corresponding bag is empty. For hypertree decompositions we
let Tn+1 = (Tn+1, χn+1, λn+1) be an analogous hypertree decomposition, where additionally
λn+1(t) = ∅. For each i = n, n − 1, . . . , 1 we construct a tree decomposition Ti = (Ti, χi)
for Gi (resp. a generalized hypertree decomposition for Hi, the hypergraph obtained from
HI by removing the vertices v1, v2, . . . , vi−1). Herein, we maintain the invariant that Ti is
a (generalized hyper-) tree decomposition for Gi (resp. Hi) of width at most k and load at
most c. At Step i, proceed as follows. Take Ti+1 and find a node t in Ti+1 such that the bag
χi+1(t) contains NG′i

(vi). Such a node exists, because NG′i
(vi) is a clique in Gi+1. To obtain

Ti from Ti+1, add a new vertex t′ as a child of t to Ti+1 and define χi(t
′) := NG′i

(vi)∪ {vi}.
Since ≺ has width k and there are at most c heavy vertices in NG′i

(vi)∪ {vi}, we have that
Ti is a load-c tree decomposition of width at most k for Gi. For hypertree decompositions,
define also λi(t

′) as the hyperedge cover in HI of NG′i
(vi)∪{vi} that has size at most k and

contains at most c heavy hyperedges. Since Hi is a subhypergraph of HI , this cover is also
a cover in Hi. Thus, Ti is a load-c hypertree decomposition of width at most k for Hi. This
finishes the proof.

A (significantly more complicated) elimination ordering characterizations of hypertree
width has been obtained by Schidler and Szeider (2020, 2021). These, too, can be trans-
lated into characterizations of threshold-d load-c hypertree width. However, experimental
evaluations confirmed the expectation that there was no practical benefit to using hypertree
width instead of generalized hypertree width.

1703

Ganian, Schidler, Sorge, & Szeider

Table 1: Overview of the algorithms that we use. The acronym ghtw stands for generalized hyper-
tree width. We use small to indicate that the corresponding quantity is optimized using heuristic
methods. We use second to indicate that the corresponding quantity was optimized as a secondary
objective.

Parameter Type Name Description

treewidth Exact TW-X-Obl Minimum width, disregarding load.
TW-X-W�L Minimum width, load second.
TW-X-L�W Minimum load, treewidth second.

Heuristic TW-H-Obl Small width, disregarding load.
TW-H-W�L Small width, load second.
TW-H-L�W Small load, treewidth second.

ghtw Exact HT-X-Obl Minimum width, disregarding load.
HT-X-W�L Minimum width, load second.
HT-X-L�W Minimum load, width second.

Branch & Bound HT-H-Obl Minimum (cover) width for heuristic
tree decomposition, disregarding load.

HT-H-W�L Minimum (cover) width for heuristic
tree decomposition, load second.

HT-H-L�W Minimum load for heuristic tree decom-
position, (cover) width second.

Greedy HT-G-Obl Small width, disregarding load.
HT-G-W→L Small width, load second.

7. Implemented Algorithms

We use classical exact and heuristic algorithms to compute tree decompositions and gener-
alized hypertree decompositions and adapt them to take the load into account as described
below. We call the algorithms without adaptions (load-) oblivious. These algorithms will
bear the suffix Obl in the identifiers for the implemented algorithms that we introduce be-
low. The adapted algorithms either minimize the width of the decomposition first (with
heuristic or exact methods) and the load second, represented by suffix W→L, or load first
and width second, represented by suffix L→W. Algorithms for treewidth are prefixed with
TW and algorithms for (generalized) hypertree width are prefixed with HT. An overview
over all algorithms can be found in Table 1.

All our algorithms are based on elimination orderings. A minimum-width elimination
ordering without taking heavy vertices into account for a given graph can be computed
using a SAT encoding (Samer & Veith, 2009); below we call this algorithm TW-X-Obl.
This encoding can be extended to compute optimal generalized hypertree decompositions,
by computing the covers for a tree decomposition of the primal graph (Fichte et al., 2018)
using an SMT encoding, below denoted by HT-X-Obl. The SMT approach is highly robust
and can be adapted to also compute threshold-d load-c tree decompositions: analogously
to the existing cardinality constraints for bags/covers, we add new constraints that limit
the number of heavy vertices/hyperedges (see Theorem 6). We use the SMT approach to
either compute a decomposition that minimizes the width first and the load second, that is,

1704

Threshold Treewidth and Hypertree Width

a decomposition that has minimum width and, among all decompositions with minimum
width, minimum load (leading to algorithms TW-X-W�L and HT-X-W�L). Or we use the
SMT approach to compute a decomposition that minimizes the load first and the width
second, that is, a decomposition that has minimum load and, among all decompositions
with minimum load, minimum width (leading to algorithms TW-X-L�W and HT-X-L�W).

Since optimal elimination orderings of graphs are hard to compute, heuristics are often
used. The min-degree heuristic constructs an ordering in a greedy fashion by choosing the
i-th vertex, vi, in the ordering among the vertices of minimum degree in the graph Gi−1

as defined above, and yields decompositions with good width values overall (Bodlaender &
Koster, 2011). Below we call this algorithm TW-H-Obl. We adapted this method into two
new heuristics that consider load: TW-H-L�W and TW-H-W�L. The former chooses all the
heavy vertices first; that is, it selects the i-th vertex, vi, in the ordering as an arbitrary
heavy vertex in Gi−1 of minimum degree or, if Gi−1 does not contain any heavy vertices,
then it selects vi to be an arbitrary vertex in Gi−1 of minimum degree. This leads to
decompositions with low load but possibly larger width. The latter heuristic (TW-H-W�L)
maintains a bound ` ∈ N on the target load of the decomposition, and selects the i-th vertex
vi in the ordering as an arbitrary vertex of minimum degree among all vertices in Gi−1 that
have at most ` heavy neighbors in Gi−1; if no such vertex exists, the heuristic restarts with
an incremented value of `.

Our heuristics for generalized hypertree width follow the general framework introduced
by Dermaku, Ganzow, Gottlob, McMahan, Musliu, and Samer (2008). In particular, they
begin by computing an elimination ordering for the primal graph using the min-degree
heuristic, and then compute an edge cover for each bag. We use the same approach and
employ two different methods to compute the covers: greedy and branch & bound (b&b).

The branch & bound heuristic computes an optimal edge cover for each bag. Although
this approach optimally solves an in general NP-hard problem, it is viable in our data since
the resulting Set Cover instances are comparatively easy. For convenience, let us call the
size of the edge cover also its width and let the load of an edge cover be the number of
heavy hyperedges contained in the cover. Note that minimizing the width (resp. load) of
the cover corresponds to minimizing the width (resp. load) of the resulting decomposition.
We use three different objectives: minimize the width of the cover only (HT-H-Obl), min-
imize width first and load second (HT-H-W�L), and minimize load first and width second
(HT-H-L�W).

The greedy heuristic is a faster alternative to the branch & bound approach. The
oblivious algorithm (HT-G-Obl) always adds the hyperedge that covers the most uncovered
vertices of the current bag. Recall that this results in covers of width at most (1 + log n)
times the minimum width of a cover, where n is the number of vertices (see, e.g., Chvatal
(1979) or Theorem 1.11 by Williamson and Shmoys (2011)). We take the load into account
by using the number of heavy hyperedges as a tie breaker when choosing the hyperedges
(HT-G-W→L). This corresponds to a width first and load second strategy.

8. Experiments

In this section we present experimental results using the algorithms discussed in the previous
section. We were particularly interested in the difference in loads between oblivious (Obl)

1705

Ganian, Schidler, Sorge, & Szeider

(a) load/exact

3 4 5 6 7 8 9 10 11
TW-X-W L

3

4

5

6

7

8

9

10

11

T
W
-X
-O
b
l

(b) width/exact

14 18 22 26 30
TW-X-Obl

14

18

22

26

30

T
W
-X
-L

W

(c) load/exact

3 4 5 6 7 8 9 10
TW-X-W L

3

4

5

6

7

8

9

10

T
W
-X
-L

W

(d) load/heuristic

0 1000 2000
Instances

10
1

10
2

Lo
ad

TW-H-L W
TW-H-W L
TW-H-Obl

(e) width/heuristic

0 1000 2000
Instances

10
1

10
2

10
3

W
id
th

TW-H-L W
TW-H-W L
TW-H-Obl

Figure 2: Exact and heuristic computations of tree decompositions: differences in values depending
on the optimization strategy.

and width-first load-second (W�L) methods, and the trade-off between width-first (W�L)
and load-first (L�W) methods.

Setup We ran our experiments on a cluster, where each node consists of two Xeon E5-
2640 CPUs, each running 10 cores at 2.4 GHz and 160 GB memory. As solvers for the
SAT and SMT instances we used minisat 2.2.0 (Eén & Sörensson, 2003)7 and optimathsat
1.6.2 (Sebastiani & Trentin, 2020)8. The control code and heuristics use Python 3.8.0. Our
code is freely available.9 The nodes run Ubuntu 18.04. We used a 8 GB memory limit and
a 2 hour time limit per instance.

Instances For threshold-d load-c tree decompositions we used 2788 instances from the
twlib10 benchmark set. For generalized threshold-d load-c hypertree decompositions we used
the 3071 hyperbench (Fischl, Gottlob, Longo, & Pichler, 2019)11 instances after removing
self-loops and subsumed hyperedges. We created our loaded instances by marking a certain
percentage of all vertices or hyperedges as heavy. We ran experiments for different ratios,
but since the outcomes did not deviate too much, here we only present the results for a
ratio of 30% heavy vertices/hyperedges (same as by Kask et al. (2011)).

7. http://minisat.se/
8. http://optimathsat.disi.unitn.it/
9. See https://github.com/ASchidler/htdsmt/tree/weighted and https://github.com/

ASchidler/tw-sv.
10. http://www.cs.uu.nl/research/projects/treewidthlib/
11. http://hyperbench.dbai.tuwien.ac.at/

1706

Threshold Treewidth and Hypertree Width

Since instances of low width are considered efficiently solvable, our presentation only
focuses on high-width instances. In particular, for treewidth and generalized hypertree
width, we disregarded instances of width below 13 and below 4, respectively. We were not
able to find solutions for all instances; the number of instances with solutions is stated
below.

Plots We use a specific type of scatter plot: the position of the marker shows the pairs
of values of the data point, while the size of the marker shows the number of instances for
which these values were obtained. The measured quantities are noted in the plot caption.
For example, the data points in Figure 2a are, for each of the solved instances, the pair
of loads of the tree decompositions computed by the TW-X-W�L and TW-X-Obl methods
from Section 7.

Treewidth Figures 2a to 2c show the results from running the exact algorithms (methods
TW-X; 168 instances could be solved within the time limit). It shows that even by using
W�L methods, we can significantly improve the load without increasing the width. Further
improvements in load can be obtained by using TW-X-L�W, as seen in Figure 2c. In
Figure 2b we see that the trade-off (in terms of the width) required to achieve the optimal
loads is often very small.

The results are different for heuristic methods. Figures 2d and 2e show the results from
the 2203 instances with high width. While good estimates for load or width are possible,
finding good estimates for both at the same time is not possible with the discussed heuristics:
In Figure 2d we see that both the TW-H-Obl and TW-H-W�L heuristics mostly fail to find
a good estimate for the load. On the other hand, Figure 2e shows that TW-H-L�W tends to
result in decompositions with much larger width than the optimum. These results suggest
that it may be non-trivial to obtain heuristics which provide a good trade-off between load
and width.

Generalized hypertree width Figures 3a to 3c show the results from 259 optimal
decompositions computed within the time limit. The general outlook is the same as for
treewidth: Even the HT-X-W�L algorithm significantly improves the load without any
trade-off (Figure 3a), and HT-X-L�W can decrease the load even further (Figure 3a) while
only slightly increasing the generalized hypertree width (Figure 3c).

The results obtained by applying the HT-H-Obl and HT-H-L�W heuristics on the 1624
instances with large width can be seen in Figure 3d. There is a stark contrast to the
heuristics used for treewidth: The HT-H-W�L heuristic can significantly reduce the load
with no trade-off, as the width is guaranteed to be the same (i.e. fixed after giving the vertex
ordering). We can lower the load further by optimizing for load first as Figure 3f shows.
Figure 3e shows that the resulting increase in width is about the same as the gain in load.

The results for the greedy heuristic look similar to the branch & bound results. Notably,
the width is the same for most instances as shown in Figures 3e and h. The main difference
is the slightly increased load as is shown in Figures 3d and 3g. This suggests that the greedy
heuristic is a viable choice whenever a slightly higher load is acceptable.

1707

Ganian, Schidler, Sorge, & Szeider

(a) load/exact

0 1 2 3 4 5
HT-X-W L

0

1

2

3

4

5

H
T
-X
-O
b
l

(b) width/exact

4 5 6
HT-X-L W

4

5

6

HT
-X

-O
bl

(c) load/exact

0 1 2 3
HT-X-W L

0

1

2

3

H
T
-X
-L

W

(d) load/b&b

0 1 2 3 4 5 6 7
HT-H-W L

0

1

2

3

4

5

6

7

H
T
-H
-O
b
l

(e) width/b&b

4 6 8 10 12 14
HT-H-L W

4

6

8

10

12

14

HT
-H

-O
bl

(f) load/b&b

0 1 2 3 4 5 6
HT-H-W L

0
1
2
3
4
5
6

HT
-H

-L
W

(g) load/greedy

0 1 2 3 4 5 6 7
HT-G-W L

0
1
2
3
4
5
6
7

HT
-G

-O
bl

(h) width/greedy

4 6 8 10 12 14 16
HT-G-W L

4
6
8

10
12
14
16

HT
-G

-O
bl

Figure 3: Exact and heuristic computations of generalized hypertree decompositions: differences in
values depending on the optimization strategy.

9. Concluding Remarks

We have introduced a novel way of refining treewidth and hypertree width via the notion
of thresholds, allowing us to lift previous fixed-parameter tractability results for CSP and
other problems beyond the reach of classical width parameters. Our new parameters have
the advantage over the standard variants of treewidth and hypertree width that they can
take more instance-specific information into account. A further advantage of our new pa-
rameters is that decompositions that optimize our refined parameter can be used as the
input to existing standard dynamic programming algorithms, resulting in a potential ex-
ponential speedup. Our empirical findings show that in realistic scenarios, one can expect
that optimizing the loads requires only minimal overhead while offering huge gains in further
processing times.

A natural direction for future research is to explore how the concept of threshold
treewidth can be adapted to CSPs in which variables may have infinite domains. On the one
hand, several classes of such CSPs have been shown to be XP-tractable (Huang, Li, & Renz,
2013; Bodirsky & Dalmau, 2013) and even fixed-parameter tractable (Dabrowski, Jonsson,
Ordyniak, & Osipov, 2021) with respect to the treewidth of the primal graph. This makes it
interesting to attempt to further generalize these tractability results by using the threshold
concept. On the other hand, in the finite-domain regime the potential “difficulty” induced
by a domain can be captured straightforwardly by its size, however, it seems in the infinite-
domain regime the difficulty of a domain has to be captured by different means. This is
indicated when considering Mixed-Integer Linear Programs (MILPs) as CSPs: Checking the
feasibility of MILPs is NP-hard but fixed-parameter tractable with respect to the number
of integer variables (Lenstra, 1983). Thus the integer domains introduce the difficulty into

1708

Threshold Treewidth and Hypertree Width

checking feasibility rather than the domain size alone. It thus seems important to capture
the structure rather than the size of the domains. This would need a new approach.

Acknowledgments

Preliminary and shortened versions of the results presented in this submission appeared
in the proceedings of IJCAI 2020 (Ganian, Schidler, Sorge, & Szeider, 2020). This article
expands the exposition of that version by providing full proofs, detailed explanations espe-
cially including a more in-depth discussion of the applications of threshold treewidth, and
an expanded experimental section.

André Schidler and Stefan Szeider acknowledge the support from the FWF, projects
P32441 and W1255, and from the WWTF, project ICT19-065. Robert Ganian also ac-
knowledges support from the FWF, notably from projects P31336 and Y1329. Manuel
Sorge acknowledges support by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement no. 714704 and
by the Alexander von Humboldt Foundation. Main work of Manuel Sorge done while with
University of Warsaw.

References

Abseher, M., Musliu, N., & Woltran, S. (2017). Improving the efficiency of dynamic pro-
gramming on tree decompositions via machine learning. Journal of Artificial Intelli-
gence Research, 58, 829–858.

Bachoore, E., & Bodlaender, H. L. (2007). Weighted treewidth — algorithmic techniques
and results. In Proceedings of the 18th International Symposium on Algorithms and
Computation (ISAAC ’07), Vol. 4835 of Lecture Notes in Computer Science, pp. 893–
903. Springer.

Bertele, U., & Brioschi, F. (1972). Nonserial Dynamic Programming. Academic Press, Inc.,
USA.

Bodirsky, M., & Dalmau, V. (2013). Datalog and constraint satisfaction with infinite tem-
plates. Journal of Computer and System Sciences, 79 (1), 79–100.

Bodlaender, H. L. (1996). A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25 (6), 1305–1317.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin, F. V., Lokshtanov, D., & Pilipczuk,
M. (2016). A ckn 5-approximation algorithm for treewidth. SIAM Journal on Com-
puting, 45 (2), 317–378.

Bodlaender, H. L., & Koster, A. M. C. A. (2010). Treewidth computations I. Upper bounds.
Information and Computation, 208 (3), 259–275.

Bodlaender, H. L., & Koster, A. M. C. A. (2011). Treewidth computations II. Lower bounds.
Information and Computation, 209 (7), 1103–1119.

1709

Ganian, Schidler, Sorge, & Szeider

Brault-Baron, J., Capelli, F., & Mengel, S. (2015). Understanding model counting for
beta-acyclic CNF-formulas. In Proceedings of the 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS 2015), Vol. 30 of LIPIcs, pp. 143–
156. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Carbonnel, C., & Cooper, M. C. (2016). Tractability in constraint satisfaction problems: a
survey. Constraints. An International Journal, 21 (2), 115–144.

Carbonnel, C., Romero, M., & Zivný, S. (2018). The complexity of general-valued CSPs
seen from the other side. In Thorup, M. (Ed.), Proceedings of the 59th IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2018), pp. 236–246. IEEE
Computer Society.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Oper-
ations Research, 4 (3), 233–235.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., & Saurabh, S. (2015). Parameterized Algorithms. Springer.

Dabrowski, K. K., Jonsson, P., Ordyniak, S., & Osipov, G. (2021). Solving infinite-domain
csps using the patchwork property. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Ar-
tificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 3715–3723.
AAAI Press.

Dechter, R. (1999). Bucket elimination: a unifying framework for reasoning. Artificial
Intelligence, 113 (1-2), 41–85.

Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B. J., Musliu, N., & Samer, M. (2008).
Heuristic methods for hypertree decomposition. In Gelbukh, A. F., & Morales, E. F.
(Eds.), Proceedings of the 7th Mexican International Conference on Advances in Arti-
ficial Intelligence(MICAI 2008), Vol. 5317 of Lecture Notes in Computer Science, pp.
1–11. Springer Verlag.

Diestel, R. (2012). Graph Theory, 4th Edition, Vol. 173 of Graduate texts in mathematics.
Springer.

Downey, R. G., & Fellows, M. R. (2013). Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer Verlag.

Eén, N., & Sörensson, N. (2003). An extensible SAT-solver. In Giunchiglia, E., & Tacchella,
A. (Eds.), Proceedings of the 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2003), Selected Revised Papers, Vol. 2919 of Lecture
Notes in Computer Science, pp. 502–518. Springer Verlag.

Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2019). Solving Integer Quadratic Program-
ming via explicit and structural restrictions. In Proceedings of the the Thirty-Third
AAAI Conference on Artificial Intelligence (AAAI 2019), pp. 1477–1484.

Fichte, J. K., Hecher, M., Lodha, N., & Szeider, S. (2018). An SMT approach to fractional
hypertree width. In Hooker, J. N. (Ed.), Proceedings of the 24rd International Con-
ference on Principles and Practice of Constraint Programming (CP 2018), Vol. 11008
of Lecture Notes in Computer Science, pp. 109–127. Springer Verlag.

1710

Threshold Treewidth and Hypertree Width

Fischl, W., Gottlob, G., Longo, D. M., & Pichler, R. (2019). Hyperbench: A benchmark
and tool for hypergraphs and empirical findings. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS
2019), pp. 464–480. ACM.

Fischl, W., Gottlob, G., & Pichler, R. (2018). General and fractional hypertree decomposi-
tions: Hard and easy cases. In den Bussche, J. V., & Arenas, M. (Eds.), Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS 2018), pp. 17–32. ACM.

Flum, J., & Grohe, M. (2006). Parameterized Complexity Theory, Vol. XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin.

Freuder, E. C. (1982). A sufficient condition for backtrack-bounded search. Journal of the
ACM, 29 (1), 24–32.

Ganian, R., Kim, E. J., Slivovsky, F., & Szeider, S. (2018). Sum-of-products with default
values: Algorithms and complexity results. In Tsoukalas, L. H., Grégoire, É., & Ala-
maniotis, M. (Eds.), Proceedings of the 30th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2018), pp. 733–737. IEEE.

Ganian, R., Kim, E. J., Slivovsky, F., & Szeider, S. (2022). Sum-of-products with default
values: Algorithms and complexity results. Journal of Artificial Intelligence Research,
73, 535–552.

Ganian, R., Schidler, A., Sorge, M., & Szeider, S. (2020). Threshold treewidth and hypertree
width. In Bessiere, C. (Ed.), Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (IJCAI 2020), pp. 1898–1904. International Joint
Conferences on Artificial Intelligence Organization.

Gottlob, G., Greco, G., & Scarcello, F. (2014). Treewidth and hypertree width. In Bor-
deaux, L., Hamadi, Y., & Kohli, P. (Eds.), Tractability: Practical Approaches to Hard
Problems, pp. 3–38. Cambridge University Press.

Gottlob, G., Grohe, M., Musliu, N., Samer, M., & Scarcello, F. (2005). Hypertree Decom-
positions: Structure, Algorithms, and Applications. In Proceedings of the 31st Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005),
Vol. 3787 of Lecture Notes in Computer Science, pp. 1–15. Springer.

Gottlob, G., Leone, N., & Scarcello, F. (1999). On tractable queries and constraints. In
Proceedings of the 10th International Conference on Database and Expert Systems
Applications (DEXA ’99), Vol. 1677 of Lecture Notes in Computer Science, pp. 1–15.
Springer.

Gottlob, G., Leone, N., & Scarcello, F. (2002). Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64 (3), 579–627.

Gottlob, G., Pichler, R., & Wei, F. (2010). Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artificial Intelligence, 174 (1), 105–132.

Gottlob, G., Scarcello, F., & Sideri, M. (2002). Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138 (1-2), 55–86.

1711

Ganian, Schidler, Sorge, & Szeider

Huang, J., Li, J. J., & Renz, J. (2013). Decomposition and tractability in qualitative spatial
and temporal reasoning. Artificial Intelligence, 195, 140–164.

Jégou, P., & Terrioux, C. (2017). Combining restarts, nogoods and bag-connected decom-
positions for solving CSPs. Constraints An Int. J., 22 (2), 191–229.

Kask, K., Gelfand, A., Otten, L., & Dechter, R. (2011). Pushing the power of stochastic
greedy ordering schemes for inference in graphical models. In Burgard, W., & Roth,
D. (Eds.), Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI 2011), p. 54–60. AAAI Press.

Kloks, T. (1994). Treewidth, Computations and Approximations, Vol. 842 of Lecture Notes
in Computer Science. Springer.

Köppe, M. (2012). On the complexity of nonlinear mixed-integer optimization. In Lee, J.,
& Leyffer, S. (Eds.), Mixed Integer Nonlinear Programming, Vol. 154, pp. 533–557.
Springer.

Lenstra, H. W. (1983). Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8 (4), 538–548.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press.

Samer, M., & Szeider, S. (2010). Constraint satisfaction with bounded treewidth revisited.
Journal of Computer and System Sciences, 76 (2), 103–114.

Samer, M., & Veith, H. (2009). Encoding treewidth into SAT. In Proceedings of the 12th
International Conference on Theory and Applications of Satisfiability Testing (SAT
2009), pp. 45–50.

Scarcello, F., Greco, G., & Leone, N. (2007). Weighted hypertree decompositions and
optimal query plans. Journal of Computer and System Sciences, 73 (3), 475–506.

Schidler, A., & Szeider, S. (2020). Computing optimal hypertree decompositions. In Blel-
loch, G., & Finocchi, I. (Eds.), Proceedings of the 22nd Workshop on Algorithm En-
gineering and Experiments (ALENEX 2020), pp. 1–11. SIAM.

Schidler, A., & Szeider, S. (2021). Computing optimal hypertree decompositions with SAT.
In Zhou, Z. (Ed.), Proceeding of IJCAI-21, the 30th International Joint Conference
on Artificial Intelligence.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard
and easy problems. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI ’95), pp. 631–639.

Schrijver, A. (1999). Theory of linear and integer programming. Wiley-Interscience series
in discrete mathematics and optimization. Wiley.

Sebastiani, R., & Trentin, P. (2020). OptiMathSAT: A tool for optimization modulo theories.
Journal of Automated Reasoning, 64 (3), 423–460.

Williamson, D. P., & Shmoys, D. B. (2011). The Design of Approximation Algorithms.
Cambridge University Press.

1712

Threshold Treewidth and Hypertree Width

Zivny, S. (2012). The Complexity of Valued Constraint Satisfaction Problems. Cognitive
Technologies. Springer.

1713

