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Abstract

Recent advances in the areas of multimodal machine learning and artificial intelligence (AI) have
led to the development of challenging tasks at the intersection of Computer Vision, Natural Lan-
guage Processing, and Embodied AI. Whereas many approaches and previous survey pursuits have
characterised one or two of these dimensions, there has not been a holistic analysis at the center of
all three. Moreover, even when combinations of these topics are considered, more focus is placed
on describing, e.g., current architectural methods, as opposed to also illustrating high-level chal-
lenges and opportunities for the field. In this survey paper, we discuss Embodied Vision-Language
Planning (EVLP) tasks, a family of prominent embodied navigation and manipulation problems
that jointly use computer vision and natural language. We propose a taxonomy to unify these tasks
and provide an in-depth analysis and comparison of the new and current algorithmic approaches,
metrics, simulated environments, as well as the datasets used for EVLP tasks. Finally, we present
the core challenges that we believe new EVLP works should seek to address, and we advocate for
task construction that enables model generalizability and furthers real-world deployment.

1. Introduction

With recent progress in the fields of artificial intelligence (AI) and robotics, intelligent agents are en-
visaged to cooperate or collaborate with humans in shared environments. Such agents are expected
to understand semantic contexts of an environment, e.g., using visual information perceived using
sensors, as well as auditory or textual information intended for humans, e.g., presented in natural
language. With the goal of developing intelligent agents disposing of these capabilties, embodied
AI is a field that studies AI problems situated in a physical environment. Recently, the number of
papers and datasets for the tasks that require the agents to use both vision and language understand-
ing has increased markedly (Das et al., 2018a; Gordon et al., 2018; Anderson et al., 2018c; Krantz
et al., 2020; Thomason et al., 2019b; Nguyen and Daumé III, 2019; Majumdar et al., 2020; Li et al.,
2020b). In this article, we conduct a survey of recent works on these types of problems, which we
refer to as as Embodied Vision-Language Planning (EVLP) tasks. In this article, we aim to provide a
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bird’s-eye view of current research on EVLP problems, addressing their main challenges and future
directions. The main contributions of this article are the following:

1. We propose a taxonomy that unifies a set of related subtasks of EVLP

2. We survey the current state-of-the-art techniques used in the EVLP family to provide a
roadmap for the researchers in the field

3. More importantly, we identify and discuss the remaining challenges with an emphasis towards
solving real-world problems.

1.1 Scope of this Survey

An “agent” in this article refers to an entity that can make decisions and take actions autonomously
(Wooldridge and Jennings, 1995; Castelfranchi, 1998). An embodied agent is situated in a physi-
cal or virtual environment which the agent navigates in and interacts with. An embodied agent is
generally equipped with sensing capabilities, e.g., via visual or auditory sensing modalities. In this
article, we focus on existing works that use visual perception and language understanding as the
two major inputs for an embodied agent to make decisions for various tasks in its environment. We
note that the topics covered here are mainly for a single agent in a static environment, i.e., topics
on multi-agent planning are outside the scope of this article. Moreover, as the majority of tasks
discussed in this article are conducted through simulated environments, real-world physical chal-
lenges in robotics (e.g., visual affordance learning, proprioceptive control, system identification)
are not considered. EVLP problems have previously been studied in the fields of natural language
processing, robotics, and computer vision (Oh et al., 2015; Boularias et al., 2015; Duvallet et al.,
2016). While the focus of this survey is on contemporary works, we will discuss how concepts
from classical approaches have inspired recent methodology and how they could be used for future
directions, e.g., as in the use of mapping and exploration strategies, search and topological planning,
and hierarchical task decomposition (Section 3.1.3).

1.2 Intended Audience and Reading Guide

This paper is tailored to accommodate a broad spectrum of reader backgrounds and perspectives, as
this paper is positioned at the intersection of Computer Vision (CV), Natural Language Processing
(NLP), and Robotics. For readers that are new to these topics, we provide an in-depth coverage of
existing works and methodologies; for readers with significant experience in one or more of these
areas, we offer a taxonomy of the broader field of Embodied Vision-Language Planning in Sec-
tion 2.1, provide an analysis of core challenges, and discuss future directions in Section 5.

For readers who are less familiar with implementation and evaluation of embodied agents, it is
recommended to read the sections in order, as each section builds upon previous sections. The rest
of the article is organized as follows. In Section 2, we formally define the class of EVLP problems
discussed in this article and present a taxonomy of the field. After describing the key tasks that
compose the EVLP family in Section 2.2, we present modeling approaches including commonly-
used learning paradigms, architectural design choices, and techniques proposed to tackle EVLP-
specific challenges. Section 4 presents the datasets and evaluation metrics currently used by the
research community. Finally, Section 5.1 discusses several open challenges in the field.
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1.3 Related Surveys

We review existing survey articles on relevant topics, in order to provide readers with pointers to
other papers on more specific topics and to clarify how this article differs from them.

• Ye and Yang (2020) discuss the datasets, methodologies, and common approaches to Vision
Indoor Navigation (VIN) tasks. VIN tasks do not necessarily require language, are limited to
navigation, and only occur in indoor environments. Our survey touches on planning tasks, of
which navigation is a subset, which use language to establish the goal state. Also, EVLP tasks
are not limited to indoor environments, but also include outdoor settings.

• Luketina et al. (2019) focus on existing approaches of using language components in the
context of reinforcement learning (RL). The authors divide the language-related problem into
language-conditional RL and language-assisted RL. In contrast, our work briefly discusses
different training paradigms commonly used for tasks in the EVLP domain, in Section 3.

• Mogadala et al. (2019) cover popular tasks and approaches in multimodal research. Our
survey, in comparison, specifically focuses on EVLP tasks, and provides more details, such
as commonly used datasets, training paradigms, and challenges on this specific domain.

• Bisk et al. (2020) explore the current research in language understanding and its shortcom-
ings. To categorize the differences between human and machine understanding, the authors
define the notion of a “world scope.” A worldscope defines the type of real world information
that language models capture, such as physical relationships or social concepts. Five world-
scopes are used to define a framework that discusses what aspects of language are harder
to grasp and issues with the current approaches. We do not set out a general framework to
identify the complexity of language. Instead, we survey the low-level research progress of
EVLP tasks, discuss the role of language in planning tasks, and further point out possible
improvements.

• Tangiuchi et al. (2019) discuss techniques at the intersection of language and robotics re-
search. Their work focuses heavily on the syntactic and semantic structures of language
information, and how it can be tied to the low level robotics actions. Instead, our survey fo-
cuses primarily on the task level, as opposed to low-level actions, and is suitable for readers
with no prior knowledge in the robotics field.

• Uppal et al. (2020) provide discussion of Vision and Language problems, dividing Vision-
language tasks into four categories: generation, classification, retrieval, and other tasks. Here,
the authors only discuss one EVLP task; however, due to the increased popularity of embodied
vision-language planning, we feel that the EVLP family warrants its own specific treatment
and careful discussion. Moreover, Uppal et al. (2020) further discuss changes in representa-
tion such as the use of transformers, fusion of multiple modalities, architectures, and evalua-
tion metrics. While both surveys discuss changes in multimodal representation, ours focuses
on EVLP research, providing a unified problem definition, taxonomy, and analysis of trends
for this exciting field.

• Batra et al. (2020) provide a detailed analysis and framework for the rearrangement task,
which involves using an embodied agent to change the environment from an initial state to
a target state. The authors argue that the manipulation problem can be viewed as two-fold:
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agent-centric problem and environment-centric problem. They further analyze the more fine-
grained split for each problem. Several evaluation metrics and existing testbeds are presented.
While they do introduce a framework which includes one EVLP task, it is not the principle
focus of that paper. We pursue a broader discussion of emerging trends and core challenges
in the field.

2. Problem Definition

In this article, we discuss a broad set of problems, related to an embodied agent’s ability to make
planning decisions in physical environments. We include both stateless problems such as question
answering and sequential decision-making problems, such as navigation, under the umbrella of
“planning”. Note that stateless problems belong to the special case of single-step decision making.
More generally, we refer to sequential decision-making problems as those where an agent must
perform actions over a countable time-horizon, given an objective. In the context of navigation, for
example, an agent may choose actions, according to a pre-defined action space, that enable an agent
to transition from an initial state to a goal state. In the context of manipulation, the agent executes
a series of actions, in order to effect a desired change in the environment. More formally, planning
problem are defined as follows:

Definition 1 (Planning) Let S denote a set of states; A, a set of actions. A planning problem
is defined as a tuple of its states, actions, initial and goal states: Φ = {S,A,sini,sgoal}, where
sini,sgoal ∈ S denote initial and goal states, respectively. A solution ψ ∈ ΨΦ to planning problem
Φ is a sequence of actions to take in each state, starting from an initial state to reach a goal state,
ψ = [sini,a1, ...,aT ,sgoal], where T is a finite time-step and ΨΦ is a set of possible solutions to Φ.

EVLP problems require planning in partially-observable environments, i.e., the entire state space
may not be known to the agent in advance. Instead, an agent needs to use vision and language
inputs to estimate its current and goal states in order to accomplish high-level tasks in a physical
environment. These inputs can be given at the start of a task, e.g., a task itself is described in natural
language in the form of a question or instruction, or become available as an agent moves through the
state space. Visual inputs are an example of such an input as they are primarily online information
that can be perceived through sensing. Note this is not always the case, as they can also be provided
as part of a task specification, e.g., a view from a goal location.

Definition 2 (Embodied Vision-Language Planning (EVLP)) Let V and L denote sets of vision
and language inputs available to an agent. Given an EVLP problem Φ, state st at time step t
can be defined in terms of vision and language inputs up to the current time step, such that, st =
f (v1, . . . ,vt , l1, . . . , lt) where vt ∈ V and lt ∈ L. The objective here is to minimize the difference
between an admissible1 solution ψ ∈ΨΦ and a predicted one ψ̄ .

This definition broadly captures the crux of EVLP problems. A customized definition would be
needed for each specific task where additional constraints or assumptions are added to focus on
particular subareas of this general problem. For instance, Vision-Language Navigation (VLN) is
a natural language direction following problem in an unknown environment, which can be defined

1. Admissibility condition: a solution that is possible, under the constraints of the environment’s transition dynamics as
well as the agents’ own system dynamics, which satisfies the task specification.
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Figure 1: Taxonomy of Embodied Vision-Language Planning, aligned with our paper organisation.

as a planning problem where an agent is given an initial state and a solution (or a sequence of
actions) represented in natural language, and is equipped with visual perception, e.g., first-person
view images.

2.1 Taxonomy

We propose a taxonomy of current EVLP research, illustrated in Figure 1, around which the rest of
the paper is organized. The taxonomy subdivides the field into three branches; tasks, approaches,
and evaluation methods. The Tasks branch (corresponding to Section 2) proposes a framework to
classify existing tasks and to serve as a basis for distinguishing new ones.

The Approaches branch (Section 3) touches on the learning paradigms, common architectures used
for the different tasks, as well as common tricks used to improve performance. The technical chal-
lenges that underlie all tasks are discussed in Section 3.3.

The right-most branch of the taxonomy, in Figure 1, discusses task Evaluation Methodology (Sec-
tion 4), which is subdivided into two parts: metrics and environments. The metrics subsection
references many of the common metrics and their formulæ, used throughout EVLP tasks, while the
environments subsection presents the different simulators and datasets currently used.

2.2 Tasks in Embodied Vision-Language Planning

Many EVLP tasks have been proposed, with each task focusing on different technical challenges
and reasoning requirements for agents. Tasks vary on the basis of the action space (types and
number of actions possible), the reasoning modes required (e.g., instruction-following, versus ex-
ploration and information-gathering), and whether or not the task requires dialogue with another
agent. In this survey, we only include tasks where clearly-defined datasets and challenges exist for
evaluation benchmarking, i.e., Vision Language Navigation (VLN) (Anderson et al., 2018c; Misra
et al., 2018; Hermann et al., 2020; Jain et al., 2019; Ku et al., 2020), Vision and Dialogue History
Navigation (VDN) (de Vries et al., 2018; Nguyen and Daumé III, 2019; Thomason et al., 2019b),
Embodied Question Answering (EQA) (Das et al., 2018a; Wijmans et al., 2019a), Embodied Object
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Referral (EOR) (Qi et al., 2020; Chen et al., 2019b), and Embodied Goal-directed Manipulation
(EGM) (Shridhar et al., 2020; Kim et al., 2020; Suhr et al., 2019). In the following sub-sections, we
compare and contrast these task families, with the hope that readers gain a solid understanding of
the differences in the problem formulations. In this manner, new datasets can be contextualized by
existing tasks, and new task definitions can be later positioned alongside those mentioned here. We
summarize the attributes for existing tasks in Table 1. We further refer the readers to to Section 4.2
for more information about the datasets and simulation environments pertaining each task.

Table 1: Properties of Embodied Vision-Language Planning (EVLP) tasks: ‘Navigation’ describes whether
navigation is part of the actions for the task; ‘Object Identification’ indicates whether the agent may only
solve the task through identifying specified objects; ‘Environment Interaction’ indicates whether or not the
agent can mutate environment state, e.g., through dialogue-based interaction with another agent or through
object manipulation; and ‘Primary Reasoning Mode(s)’ describes how agents are intended to interpret the
task.

Task Navigation Object Identification Environment Interaction Primary Reasoning Mode(s)
VLN 3 7 7 Understanding object and scene layout

properties; instruction-following
EQA 3 3 7 Exploration and information-gathering
EOR 3 3 7 Understanding spatio-semantic object

relations and scene layout properties;
instruction-following

VDN 3 7 3 Understanding object and scene layout
properties; multiple instruction-following

EGM 3 3 3 Understanding object affordances, envi-
ronment attributes, and scene layout prop-
erties; instruction-following

2.2.1 VISION LANGUAGE NAVIGATION

Vision-Language Navigation (VLN) requires an agent to navigate to a goal location in an environ-
ment following an instruction L. A problem in VLN can be formulated as ΦV LN = {S,A,s1,sgoal},
where a solution or a path ψΦV LN = {s1,a1, . . . ,aT ,sgoal} exists, such that each state st ∈ S, t ∈ [1,T ]
is associated with a physical location in the environment leading to the target location. The action
space A available to the agent consists of navigation actions between physical states, and a stop

action which determines the end of a solution. Navigation actions can be discrete, e.g., turn left,
turn right or move forward (Anderson et al., 2018c; Krantz et al., 2020), as well as continuous
(Irshad et al., 2021). Finally, the goal of the agent is to predict a solution ψ̄ΦV LN consisting of a se-
quence of actions at ∈ A, t ∈ [1,T ] that closest align to the instruction, and thus, to the true solution
ψΦV LN .

VLN is the most established EVLP task: a number of datasets (See Section 4.2) exist in both, indoor
(Anderson et al., 2018c; Jain et al., 2019; Krantz et al., 2020; Irshad et al., 2021), and outdoor envi-
ronments (Hermann et al., 2020; Misra et al., 2018). Overall, VLN models have seen considerable
progress in improving the ability to get closer to the goal and to the ground truth trajectory (Fried
et al., 2018b; Tan et al., 2019; Li et al., 2020b; Majumdar et al., 2020; Jain et al., 2019). Nonethe-
less, Zhu et al. (2021b) show that it is unclear if models are actually aligning the visual modality and
that recent work has experienced a slow-down in performance improvements. They suggest that un-
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derstanding how VLN agents interpret visual and textual inputs when making navigation decisions
is an open challenge.

2.2.2 EMBODIED QUESTION ANSWERING

In Embodied Question-Answering (EQA), an agent initially receives a language-based question
L, and must navigate around collecting information about its surroundings to generate an answer.
An EQA problem can be formulated as ΦEQA = {S,A,R,s1,r}, where R is the set of possible an-
swers, and r ∈ R represents the correct answer to the given question. The actions A available
to the agent consist of discrete moving actions as those in Subsection 2.2.1. However, as op-
posed to using a stop action, the ending of an episode is given by an answer action (Das et al.,
2018a; Gordon et al., 2018). Lastly, a correct solution to a given question can be expressed as
ψΦEQA = {s1,a1, . . . ,aT ,r}.

Unlike the aforementioned tasks, there are some challenges unique to EQA. First, there might not
necessarily exist a unique or perfect solution for any given question. Second, EQA also requires
an agent to understand the implications of the given questions and to translate them into actions
that lead to the correct answer. Furthermore, the EQA task requires an agent’s awareness of its
environment and commonsense knowledge on how those environments function or are spatially
organized, e.g., food is often located in the fridge, or parked cars are often found in a garage.
The level of ambiguity, reasoning required, and knowledge required make EQA one of the more
challenging EVLP tasks to date.

2.2.3 EMBODIED OBJECT REFERRAL

In Embodied Object Referral (EOR) tasks, an agent navigates to an object o mentioned in a given
instruction L, and has to identify (or select) it upon reaching its location. EOR can be framed as
ΦEOR = {S,A,O,s1,sgoal,o}. Here, O is the set of possible objects in the environment, which are
specified by a class label and a bounding-box or a mask, and o ∈ O is the object of interest. The set
of available actions A includes discrete navigation actions as those described in Subsection 2.2.1. An
EOR solution can be expressed as ψΦEOR = {s1,a1, . . . ,aT ,sgoal,o}, and represents the path leading
to the object of interest o. When the final state sgoal is reached, a bounding box or a mask is used
to indicate where the object o is located in the viewpoint given at that state. Finally, the goal of the
agent is to predict a solution ψ̄ΦEOR that follows the provided instruction and correctly selects the
referenced object, and thus, closely matches solution ψΦEOR .

Similar to VLN, EOR relies on instruction following. In this setting, instructions can be step-by-
step (Chen et al., 2019b; Mehta et al., 2020), or they can be under specified (Qi et al., 2020). The
latter requires the agent to reason and understand the context of the instruction, as was discussed
in Subsection 2.2.2. In addition, EOR introduces the challenge of identifying an object of interest.
This object might be visible from different viewpoints, and like previous tasks, multiple instances
of such object can exist in the environment. More importantly, while an object might be explicit
(Chen et al., 2019b), an agent might also be required to predict what object it should find from a
given instruction (Qi et al., 2020).
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2.2.4 VISION AND DIALOGUE NAVIGATION

A language instruction can be ambiguous and might require clarification or assistance (Thomason
et al., 2019b; Nguyen et al., 2019a). For example, when navigating through a home, an agent might
find multiple instances of an object referenced in an instruction. Moreover, an instruction may not
specify the goal in the level of granularity that the agent needs to plan and execute actions; the agent
may require clarification on intermediate sub-tasks. Unlike VLN and EQA, VDN allows an agent
to interact with another agent (e.g., a human collaborator) to resolve these types of uncertainties.
This interactive element has been added in two ways: through the use of an ambiguity resolution
module (Chi et al., 2020; Nguyen and Daumé III, 2019), or through dialogue (Thomason et al.,
2019b; Nguyen et al., 2019a). In the case of the former, if the agent gets confused, it may ask for
help from an oracle who is aware of the agent’s state and its goal. In the latter, the agent is given an
initial vague prompt and is required to ask an oracle for clarification.

More formally, Vision and Dialogue Navigation (VDN) requires an agent to navigate to a goal
location in an environment, but may do so through sequential directives L = {l1, . . . , lN}. These
directives may come in the form of sub-instructions upon an agent’s request, or as dialogue-based
interaction. Here, each instruction represents a sub-problem Φ

(i)
V DN = {S,A,s(i)1 ,s(i)goal}N

i=1, leading
the agent closer to its ultimate goal position. The actions A that the agent can execute consist of
navigation actions, as in previous tasks, but may additionally include other forms of interactive
actions (e.g., to request help). Akin to VLN, a solution to a VDN problem can be denoted as the set
ψ

(i)
ΦV DN

= {s(i)1 ,a(i)1 , . . . ,a(i)T ,s(i)goal}N
i=1, and the goal of the agent is to find ψ̄

(i)
ΦV DN

, i ∈ [1,N], a feasible
set of solutions that best align with the true solutions.

We note that past works in VDN (Thomason et al., 2019b; Nguyen et al., 2019a) use static, multi-
turn question-answer pairs to simulate conversation between the ego-agent and another agent. Still,
we accommodate, as part of the VDN family, problem definitions that feature active dialogue con-
text as well.

2.2.5 EMBODIED GOAL-DIRECTED MANIPULATION

Unlike previous tasks, Embodied Goal-directed Manipulation (EGM) requires the manipulation
of objects in a scene, posing unique challenges for agents (Shridhar et al., 2020; Padmakumar
et al., 2021). EGM may combine these manipulation-based environment interactions with require-
ments from aforementioned tasks, such as navigation and path-planning, state-tracking, instruction-
following, instruction decomposition, and object selection (Kim et al., 2020). Due to shared proper-
ties between EGM and, e.g., VLN task definitions, EGM also encompasses the mobile manipulation
paradigm from previous literature (Tellex et al., 2011; Khatib, 1999).

EGM may require solving multi-step instructions and, as such, it can be framed as a set of mul-
tiple sub-problems Φ

(i)
EGM = {S,A,O,s(i)1 ,s(i)goal}N

i=1 where the ith sub-problem is associated to the
ith sub-instruction. In this setting, the action space A of the agent includes navigation actions as
in the previous tasks, in addition to actions involving interactions with objects. These interactions
can be sub-divided into multiple types of interactions, e.g. pick up, turn on, turn off, etc.
(Shridhar et al., 2020), or used as a single interact action (Kim et al., 2020). Then, ψ

(i)
ΦEGM

=

{s(i)1 ,a(i)1 , . . . ,a(i)T ,s(i)goal}N
i=1 represents a solution to an EGM problem. Here, a state st not only in-

cludes the visual observation of the agent’s location at time step t, but also the state of objects that
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the agent interacted with. Lastly, the goal of the agent is to predict ψ̄
(i)
ΦEGM

, i ∈ [1,N] that follows the
provided instruction(s) and correctly selects and interacts with the object(s) referred in it, and thus,
best matches the true solution(s).

In EGM, there may be constraints such as which objects can or can’t be picked up. To interact with
an object, the agent specifies where o is in its view using a bounding box or mask. Furthermore,
agents not only need to interpret instructions and recognize objects they are meant to interact with,
but also need to understand the consequences of interacting with their environment. Immutability is
an important constraint, in real life you cannot un-slice a tomato. This means certain mistakes lead
to “un-winnable” states and that there may be an order of operations for certain tasks. This makes
EGM one of the most difficult EVLP task.

3. Approaches

This section provides a review of technical approaches used in EVLP. It discusses how current works
tackle the different facets of EVLP tasks, namely vision, language, and planning. It then discusses
different learning paradigms and tricks used to improve performance.

3.1 Modeling Vision, Language, and Planning

3.1.1 MODELING VISION

Modeling vision is an important part of EVLP tasks, as it is the principle way in which agents
build a representation of their environment. Representations of vision used include the use of ex-
plicit features (Duvallet, 2015; Tellex et al., 2011; Duvallet et al., 2016) and neural representations.
In EVLP models, neural representations are most common, with Convolutional Neural Networks
(CNNs) being used as encoders in most works (Mogadala et al., 2019). CNNs are neural network
architectures suitable to process structured data such as images, and thus are broadly used in the
computer vision tasks, e.g., image classification (Rawat and Wang, 2017).

In existing works, pre-trained neural networks such as ResNet (He et al., 2016) are commonly
used for extracting meaningful image features. One limitation of using such pre-trained networks
is that these features may lead to over-fitting. Zhang et al. (2020) propose using the logits of the
classification layer–i.e., a higher-level feature–in order to reduce the performance gap between the
seen and the unseen environments.

Neural feature approaches perform well, but lack the interpretability of using explicit features. An-
derson et al. (2018b) proposed a hybrid approach, extracting salient features using a pretrained ob-
ject detector (He et al., 2017) and encoding them using a pretrained CNN. Majumdar et al. (2020)
use this technique in VLN to represent objects in an image rather than the entire image. This lends
well to the use of multimodal transformers, which we will discuss in section 3.1.3.

3.1.2 MODELING LANGUAGE

Goal understanding is another critical piece of the EVLP puzzle. Goal information, often in the form
of instructions or a statement, are provided in the form of language. Like vision, hand-selected fea-
tures (Duvallet, 2015; Tellex et al., 2011) or neural representations can be used. Modeling language
is primarily done using Recurrent Neural Networks (RNNs) or Transformers.
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RNNs are a commonly used neural network architecture for processing sequential data such as
language. For more information on RNNs we refer readers to Lipton et al. (2015). When used
as a language encoder RNNs take in tokenized instructions and generates a vectorized represen-
tation of language. RNNs have some short comings, for example issues with long-term depen-
dencies. To better handle long-term dependency, gated RNNs such as Long Short-Term Memory
(LSTMs) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit (GRUs) (Cho et al., 2014)
are widely used for general NLP tasks as well as EVLP (Das et al., 2018a; Krantz et al., 2020; Fried
et al., 2018b; Nguyen and Daumé III, 2019; Thomason et al., 2019b; Tan et al., 2019; Zhang et al.,
2020) due to their superiority in handling long-term dependencies when compared to vanilla RNNs.
Other approaches to tackle this include the use of attention, which allows models to attend over the
entire context or memory modules (Zhu et al., 2020c).

Transformers operate on a different principle than RNNs, using stacked attention to combine infor-
mation from different inputs Vaswani et al. (2017). Transformer-based architectures have shown
to be effective across various communities, such as CV (Khan et al., 2021), NLP (Vaswani et al.,
2017; Devlin et al., 2019), robotics (Fang et al., 2019; Dasari and Gupta, 2020), and multimodal
tasks (Shin et al., 2021). Earlier work has leveraged transformers as language models to improve
performance on downstream tasks (Devlin et al., 2019). Several works in EVLP have used trans-
formers. Li et al. (2019) use a BERT encoder to encode language for VLN task which improves
upon past models.

3.1.3 MODELING MULTIMODALITY

Representing language and vision can not be done independently from one another. First, there
is overlapping information between the two modalities which could help correct for errors in one
representation. Moreover, information from each is required to interact with one other for the overall
task, for example grounding landmarks from the text to the environment. In contemporary works,
combining modalities is done either through the use of attention or transformers.

Attention was originally proposed to improve the performance of Seq2Seq neural machine trans-
lation (Bahdanau et al., 2015; Yang et al., 2020). It primarily serves two purposes in EVLP: to
fuse modalities; to align modalities (Baltrušaitis et al., 2019). Attention mechanisms come in many
forms, but typically can be framed as a process which takes in two inputs, referred to as the key
and query, and produces an output using a weighted sum of the input, known as the value (Vaswani
et al., 2017). Attention weights the query using the key, which can originate from the same or dif-
ferent sources. In the multimodal context this allows the model to combine vision, language, and
the agent’s current state (Wang et al., 2019b; Tan et al., 2019; Fried et al., 2018b; Das et al., 2018a;
Qi et al., 2020). This is often in done with the use of multiple attention mechanisms Qi et al. (2020);
Fried et al. (2018b); Tan et al. (2019).

More recently, multimodal transformers have also shown to be effective for vision-language tasks
(Tan and Bansal, 2019; Lu et al., 2019). For example, Lu et al. (2020a) learn language represen-
tations together with image information over 12 different multimodal tasks, outperforming most of
the tasks when trained independently. In VLN two works have used transformers to combine differ-
ent modalities. Hao et al. (2020) pre-train on instruction, image, action triplets across different tasks
and then finetune on a target task. Majumdar et al. (2020) use VilBERT (Lu et al., 2019) and pre-
train over the conceptual captions dataset (Sharma et al., 2018) to learn multimodal representations
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using a masking objective for both text and visual streams. During the task-specific fine-tuning,
they fine-tune on the VLN task and that shows significant improvement.

3.1.4 MODELING ACTION-GENERATION AND PLANNING

At a high level, we measure agents’ understanding of a given goal, its scene context, and its un-
derstanding of how to satisfy goals by its ability to generate appropriate sequences of actions to
execute in the environment. In fully-observable (known) environments, where the location of the
goal position is known (whether in a global or local/relative coordinate system), we expect the agent
to generate a sequence of actions for reaching the goal, with allowance for re-planning at arbitrary
frequency, based on newly-acquired information. In partially-observable (partially-known) environ-
ments, e.g., where the agent only has access to information about the adjacent admissible states, the
agent must generate actions over significantly shorter horizons, such as one or two time-steps. In-
spired by classical motion-planning techniques in robotics, several planning approaches have been
employed in EVLP tasks, such as: mapping and exploration, search and topological planning, and
hierarchical task decomposition.

Mapping and exploration strategies. In the robotics literature, mapping is a general concept
which refers to a transformation of the agent’s observations into a more abstract state representa-
tion, wherein, e.g., planning can be performed more efficiently (Filliat and Meyer, 2003). Multiple
choices of map representation are possible (metric maps, as in occupancy grids, or topological
graphs), depending on the required level of expressivity for agent pose, obstacle locations, and goal
position (Cummins and Newman, 2008).

Early mapping strategies relied simply on exploring unknown environments. Here the common
objective is to prioritise visiting unmapped states at the extent of the currently-explored regions
(frontier nodes), in order to facilitate quick and efficient coverage of the environment Burgard et al.
(2005). Agents must estimate the cost of visiting each frontier node and assess whether to proceed
in its current exploration heading, versus back-tracking to other frontier nodes that promise more
information at lower cost. Ke et al. (2019) propose adding an exploration module to VLN agents,
allowing agents to perform local decision-making while utilising global information to back-track
when the agent gets confused (i.e., revisits previously-visited states). Ma et al. (2019a,b) propose
the Regretful Agent (RA), which adds two differentiable modules to the standard VLN architecture:
the first, progress marker (PM), estimates the agent’s progress towards the goal, while the second
module, regret module (RM), decides whether the agent should back-track by comparing the agent’s
current observation with its historical information. This module attends over both image and lan-
guage inputs, and if the weight on the previous image features is larger it will back-track.

Because the overhead from mapping an unseen (unknown) or partially-observable environment can
be significant, classical robotics approaches moved quickly to Simultaneous Localization and Map-
ping (SLAM) techniques (Thrun et al., 1998; Cummins and Newman, 2008), wherein an agent
projects its observations to a map that it maintains, while also tracking its location in the map. This
serves as a basis for registering objects to specific locations of the map and for generating more
efficient plans. Anderson et al. (2019) use a navigation approach similar to SLAM, which consists
of three modules: a mapper, a Bayesian filter, and a policy. The mapper generates a semantic map
and the Bayesian filter uses RGB images and depth to find the most likely path at each time step.
The agent builds up its understanding of the world and assigns probabilities to different locations.
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By mapping, an agent can navigate efficiently by avoiding redundant visitations and eventually plan
using global information as opposed to local.

Search and topological planning. A popular planning approach is to utilise search algorithms,
such as informed search (Hart et al., 1968; Stentz et al., 1995), commonly employed for travers-
ing a graphical state representation (e.g., a tree or topological map). Greedy search algorithms
(Black et al., 1998), wherein the most likely action is taken at each state, is of particular interest for
partially-observable environments, where the agent has limited information to use for deciding on
the next state transition.

In the context of EVLP problems, it is common to implement greedy search by way of neural
sequence-to-sequence (Seq2Seq) modeling—serving as one of the earliest action-generation strate-
gies reported for these tasks (Fried et al., 2018b; Das et al., 2018a; Anderson et al., 2018c; Shrid-
har et al., 2020). One shortcoming of this approach is that it does not account for the likelihood
of an entire sequence, meaning that it can generate sub-optimal output sequences. Beam search
(Holtzman et al., 2019) is an alternative, which accounts for this by looking at k possible output se-
quences. Other search-inspired sampling algorithms, such as top-k sampling or nucleus sampling,
have shown additional promise, primarily in natural language processing community (Holtzman
et al., 2019).

Other approaches couple mapping with greedy search strategies. Deng et al. (2020) propose the
Evolving Graphical Planner, which creates a graph of all admissible nodes (states), where each
node is represented using learnable embeddings of the agent’s scene context. The agent’s global
planning module attempts to generate actions based on the current version of the map: the map, tra-
jectory history, and language components are fed into the planner model, which returns a probability
distribution over the set of the next node candidates; the agent then samples the next location and
builds up a new graph based on the new information at this node, keeping only the top-K locations
at each time step.

Hierarchical task decomposition. Early robot planning approaches considered multiple levels of
abstraction, defined for an arbitrary planning task: the highest level of abstraction need only contain
the goal specification, a lower level of abstraction would contain a sequence of subgoals needed to
satisfy the task and reach the goal, and even lower abstraction levels would include the primitive
actions required for satisfying each sub-goal (Sacerdoti, 1974; Nau et al., 2003). An agent is said
to perform hierarchical task decomposition if it is capable of reasoning at multiple levels of task
abstraction, as a consequence of either formal predicate calculus (Nilsson et al., 1984; Kaelbling
and Lozano-Pérez, 2010) and/or simply based on the agent’s architectural specification.

Architecturally, it is common to define at least two modules, e.g., a global planner and a local
planner, where the former is responsible for generating intermediate sub-tasks towards a given goal,
and the latter is responsible for generating satisfactory low-level actions for each sub-task. These
ideas manifest in more recent works as, e.g., hierarchical waypoint prediction and navigation (Chen
et al., 2020d; Misra et al., 2018; Blukis et al., 2018b) and hierarchical reinforcement learning (Li
et al., 2020a; Nachum et al., 2018). Certain datasets (Misra et al., 2018; Shridhar et al., 2020;
Suhr et al., 2019; Irshad et al., 2021) pair sub-goal sequences with a high-level goal, allowing
for hierarchical approaches to learn to reason at multiple levels of abstraction: agents can predict
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abstracted actions, corresponding to sub-goals (e.g., a waypoint to navigate to), and use a lower-
level module to control the movement actions to achieve that sub-goal (e.g., motor movements
to transition between waypoints). Misra et al. (2018); Blukis et al. (2018b) propose a two-part
modular architecture: the first is a Visitation Distribution Prediction (VDP) module, which predicts
waypoints using RGB images and instructions on a probabilistic map; and the second stage receives
this map from the VDP module, for learning to predict low-level actions, through reinforcement
learning.

Generalising beyond the above task decomposition paradigm, where sub-tasks consist of only nav-
igation or only manipulation actions, early work also considered settings where agents were re-
quired to dispatch multiple capabilities (e.g., manipulation, navigation, dialogue) within the same
procedure or episode. This integrated setting, manifesting in such applications as manufacturing as-
sistance and surgical robotics, represented a new challenge for planning-based approaches: agents
quickly needed to contend with heterogeneous action spaces, longer task horizons, and combina-
torial complexity in configuring the space of low-level actions. This setting was formalised as the
problem of task and motion planning (TAMP) (Cambon et al., 2009; Choi and Amir, 2009; Wolfe
et al., 2010; Kaelbling and Lozano-Pérez, 2010, 2013; Garrett et al., 2021), wherein algorithmic
solutions define hierarchies across the different environment interaction types, with each type hav-
ing its own unique execution primitive. These execution primitives were configured by way of a
task decomposition, between a task-planning module (symbolic planning) and motion and/or ma-
nipulation planning modules (geometric planning). Many such solutions were plagued, still, with
high search complexity, as early symbolic planners needed to enumerate all possible operations in
a state, in order to expand the search tree. On the other hand, motion/manipulation planners were
able to deal more effectively with geometry, but struggled when given partial goal specification.
Notably, Kaelbling and Lozano-Pérez (2010) utilised goal regression, to recursively decompose the
planning problem, through aggressive hierarchicality—limiting the length of plans and, thereby,
exponentially decreasing the amount of search required.2 With the advent of more sophisticated
simulators (e.g., AI2-THOR (Kolve et al., 2017)) and benchmarks (e.g., ALFRED (Shridhar et al.,
2020), Interactive Gibson (Li et al., 2021a)), recent approaches extend the original TAMP prob-
lem in the context of mobile manipulation, interactive navigation, and navigation among movable
objects. Li et al. (2020a) pursue interactive navigation by proposing a hierarchical reinforcement
learning framework, for learning cross-task hierarchical planning. Sharma et al. (2021) produced a
framework for learning hierarchical policies from demonstration, with the intention of identifying
reusable robot skills. Modularity as a general design principle in autonomous systems can be most
closely attributed to the principles of cross-task hierarchical planning, as studied in this section,
which serves as a strong foundation for improving the agents’ sample-efficiency and the tractability
of sometimes-conflicting learning objectives (Das et al., 2018b; Chen et al., 2020d).

3.2 Learning Paradigms

3.2.1 SUPERVISED LEARNING

Supervision in EVLP generally refers to a demonstration of a possible solution to a problem. Learn-
ing from demonstration approaches are typically focused on matching the behavior of their demon-
strator or expert (Hester et al., 2018). As such, these approaches can be suitable when there is

2. Garrett et al. (2021) further formalise a class of task and motion planning problems and survey solution methodology.
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available data from an expert, or when it is easier to collect expert demonstrations than to specify a
reward function to train an agent under reinforcement learning. Furthermore, this type of learning
paradigm has shown to help in accelerating the learning process in difficult exploration problems
(Syed and Schapire, 2007).

Different approaches within this paradigm have been used in all EVLP tasks. For example, in VLN,
Anderson et al. (2018c) use the Professor-Forcing (Lamb et al., 2016) approach, where at each
training step the expert action is used to condition later predictions. Here, expert demonstrations
generally correspond to the shortest-path from a start to a goal location for any given instruction.
Furthermore, this approach is coupled with Student-Forcing, a method which samples an agent’s
action from a output probability distribution in order to avoid limiting exploration to only the states
included in the expert trajectories (Anderson et al., 2018c). Another commonly used approach is
DAgger (Ross et al., 2011a), which trains on aggregated trajectories obtained using expert demon-
strations (Blukis et al., 2018a; Krantz et al., 2020; Irshad et al., 2021).

In EQA, Wijmans et al. (2019a) train a behavior cloning model using a synthetic dataset of demon-
stration episodes, e.g., the shortest paths between an agent’s location and the best viewpoint of
an object of interest. In VDN, an approach known as Imitation Learning with Indirect Intervention
(I3L) (Nguyen et al., 2019b) has been used where, in addition to learning from expert demonstration
during training, an agent can also request help from an assistant both during training and evaluation
in order to navigate to an object specified by the instructions (Nguyen and Daumé III, 2019).

In general, agents who learn from demonstrations do not generalize well, suffering from distribution
shift issues due to the greedy nature of imitating expert demonstrations (Reddy et al., 2020). This
tendency leads the agent in question to overfit to the seen environments, generally resulting in poor
performance in the new, unseen environments.

3.2.2 REINFORCEMENT LEARNING

Although learning from supervision can lead to a faster learning process, agents trained under this
paradigm often accumulate significant error due to limiting their exploration to the expert states
(Wang et al., 2020b). In Reinforcement Learning (RL) settings, as opposed to having supervisions,
an agent learns through interactions with an environment, e.g., by taking actions and receiving
feedback from them. Through this setting, agents often learn more general behavior, and are capable
of overcoming erroneous actions that may arise in unseen scenarios (Wang et al., 2018).

Policy gradient methods are frequently used in embodied research. This type of algorithms directly
models and optimises a policy function, which provides an agent with the guideline for the opti-
mal action that it can take at a given state. Within embodied AI research, two popular types of
policy gradient methods used include REINFORCE algorithms (Williams, 1992) and actor-critic
algorithms (Mnih et al., 2016; Schulman et al., 2017). The former use episode samples to update an
agent’s policy parameters, whereas the latter combine policy learning with value learning (Sutton
and Barto, 2018). Here, the policy has the role of the actor, choosing the action to take, while the
value function plays the role of the critic, which criticizes the actor’s decisions (Sutton and Barto,
2018).

Actor-critic algorithms generally achieve smoother convergence and generally show superior per-
formance, especially in continuous space problems (Schulman et al., 2017). One such example is
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Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016), an algorithm designed for parallel
training, where multiple actors interact asynchronously within an environment being controlled by a
global network. More recently, Decentralized Distributed Proximal Policy Optimization (DD-PPO)
(Wijmans et al., 2019b), an algorithmic extension of PPO (Schulman et al., 2017), has gained pop-
ularity within embodied goal-oriented tasks such as PointGoal Navigation (Schulman et al., 2017)
and AudioGoal Navigation (Chen et al., 2020b).

Although the aforementioned techniques are used in EVLP research, they have been used jointly
with supervised learning methods which we discuss in the following section. Nonetheless, some
EVLP approaches employ RL-based approaches exclusively. For instance, leveraging REINFORCE
algorithms, Wang et al. (2018) propose Reinforced Planning Ahead (RPA) an approach that couples
model-free and model-based RL to train a look-ahead model that allows an agent to predict a future
state, and thus, plan before taking an action.

For the tasks that require goal understanding and planning rather than instruction following, such as
EQA and IQA, Gordon et al. (2018) propose the Hierarchical Interactive Memory Network (HIMN)
where a model is decomposed into a hierarchy of controllers. For instance, a high-level planner
chooses the low-level controllers where each low-level controller operates on a particular task, e.g.,
navigation, question answering, interacting, etc. Then, Das et al. (2020) propose a Question An-
swering (QA) model that trains RL agents to use the notion of predictive modeling that stimulates
the agents to visit places in the environment that might become relevant in the future. Although
RL algorithms do not require labeled data and can endow agents with general skills to solve a task,
they suffer from several difficulties including reward specifications, slow convergence, and sample-
complexity.

3.2.3 JOINT REINFORCEMENT AND SUPERVISED LEARNING

Combining reinforcement and supervised learning is commonplace in EVLP literature. By doing
this, learning agents can leverage both the expert demonstrations and the direct feedback-based
interaction with an environment to achieve more generalizable behavior.

In VLN, Tan et al. (2019) use both imitation learning (IL) as a weak supervision to mimic expert
trajectories generated using a shortest-path algorithm and on-policy RL to train a more general
behavior. Then, Wang et al. (2019b) propose an RL model, Reinforced Cross-Modal Matching
(RCM), where intrinsic rewards are used to encourage the learning agent to align the instructions
with the trajectories. Then, they combine RCM with a self-supervised imitation learning approach
(SIL), where the agent explores the environment by imitating its own past good decisions. Wang
et al. (2019c) use both RCM and behavioral cloning to develop a generalized multitask model for
natural language grounded navigation tasks including VLN and VDN where learnable parameters
are shared between the tasks.

In the context of EQA, both Das et al. (2018b) and Yu et al. (2019) use IL to pre-train a model
and RL to finetune it. In particular, Das et al. (2018b) propose Neural Modular Controller (NMC),
which uses A3C to fine-tune a set of sub-policies trained through behavioral cloning to mimic expert
trajectories from a global policy. In contrast, Yu et al. (2019) uses REINFORCE to fine-tune an EQA
agent trained on multi-target questions. This strategy allows agents to learn to recover from errors,
which is not possible using expert demonstrations alone.
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Blukis et al. (2019) introduce Supervised Reinforcement Asynchronous Leaning (SuReAL) a frame-
work that learns to map instruction to continuous control of quad-copters. SuReAL asynchronously
trains two processes sharing data and parameters. The first one corresponds to a planner, trained
via IL to predict a plan, and an action generator, trained using PPO to predict the control actions to
solve a given plan. More recently, Krantz et al. (2021) introduce waypoint models for VLN tasks in
continuous environments. Motivated by the recent success of PointGoal tasks, Krantz et al. (2021)
leverage DD-PPO to extend the VLN-CE (Krantz et al., 2020) task to support language-conditioned
waypoint prediction models at varying action-space granularities.

Wang et al. (2020a) propose a module for exploration which enables an agent to decide when and
what to explore. They first use IL to guide an initial exploration policy from an expert. Then, they
use RL to explore the state-action space outside the demonstration paths and reduce the bias toward
copying expert actions. To overcome the issue of reward specification in RL, Wang et al. (2020b)
propose a VLN method based on Random Expert Distillation (Wang et al., 2019a), known as Soft
Expert Reward Learning (SERL), to learn a reward function by distilling knowledge from expert
demonstrations.

Another challenge that has been tackled by using RL and IL jointly is the accurate alignment of the
instructions and visual features. Zhu et al. (2020b) propose the Babywalk approach which uses IL
to first segment paths and then learn over these finer-grained, shorter instructions by demonstration.
Babywalk then uses curriculum-based RL to refine the policy by giving the agent increasingly longer
navigation tasks (Bengio et al., 2009). This was shown to improve the model’s ability to extrapolate
to longer sequences, although generalization to unseen data does not appear to benefit as much from
this approach.

3.3 Common Techniques

The following subsections discuss common improvements beyond architecture, such as: data aug-
mentation, pre-training, the use of additional training objectives, the use of different input represen-
tations, and optimization. Note that these can, and often are, used regardless of learning paradigm
or architecture.

3.3.1 DATA AUGMENTATION

Data augmentation is commonly used to improve performance and robustness (Shorten and Khosh-
goftaar, 2019; Tanner, 2012). In EVLP, back-translation is the most commonly used data aug-
mentation technique. Back-translation was originally introduced by the neural machine translation
community (Tan et al., 2019). It augments an existing corpus by generating synthetic training sam-
ples for mono-lingual (i.e., single view) data. Due to the difficulty of creating a paired corpus, it is
beneficial to train a “backwards” model which creates additional training pairs.

In VLN, paths are sampled throughout the environment. A speaker model is trained to generate syn-
thetic instructions for a given path. These synthetic sentences supplement the training data (Fried
et al., 2018b). Improvements on this idea were proposed in Tan et al. (2019), in which the authors
introduced Environmental Dropout. Here, entire frames from ground-truth paths are omitted to cre-
ate ”synthetic” environments. New instructions are created for these synthetic environments using
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back-translation approach. This approach led to improvements in task success rate and narrowed
the gap between the success rates on seen and unseen environments.

Other improvements to back-translation include changing the approach to sampling paths.Yu et al.
(2020) proposes using longer paths which are not the shortest path between two points. Shortest
paths may favor certain transitions in the training environment, which limit the agent’s need to
learn language. Instead, the paper proposes using a random walk which favors similar transition
probabilities at each point in the graph. Fu et al. (2020) propose using counter-factual reasoning
when sampling augmentation paths. An adversarial path sampler (APS) proposes increasingly hard
paths for the model to train on. This module is model-independent and uses the training loss to
choose paths the model is struggling with.

3.3.2 ADDITIONAL OBJECTIVES

Additional tasks can also be used to increase the amount of training data and improve performance.
In VLN, Ma et al. (2019a) add a completeness objective. Based on the data to date, the agent
predicts how close to completion the agent is in meters. Progress monitor (PM) implicitly adds
a prior over how instructions are processed. This approach encourages left-right attention of the
instructions as the agent progresses through the path (Ma et al., 2019a).

To further improve performance, Zhu et al. (2020a) propose four additional tasks:

• Trajectory retelling. Generating a text based on the actions to date from the hidden state. The
ground truth is generated using a speaker module (Fried et al., 2018b).

• Angle prediction. Generate the angle in degrees of the agent’s heading at the next time step.

• Instruction-path matching. Shuffle states within a batch and see if they correspond to given
instructions.

• Progress. Percentage of steps taken.

Respectively, these auxiliary tasks have the following reasoning objectives: explaining the previous
actions, predicting the next orientation, evaluating the trajectory consistency, and estimating the
navigation progress (Zhu et al., 2020a).

3.3.3 PRE-TRAINING

Pre-training is done either by training a component of the model, or a full model on another problem
entirely. This technique is used across most, if not all, neural EVLP approaches in the form of pre-
trained image embeddings (He et al., 2016). Not only are image embeddings used for RBG images
(Thomason et al., 2019b; Shridhar et al., 2020; Anderson et al., 2018c; Das et al., 2018a; Gordon
et al., 2018), but also for depth information (Wijmans et al., 2019a; Krantz et al., 2020).

Pre-training can also be used for language inputs. Fried et al. (2018b) ablates the use of pre-trained
word embeddings, finding that GloVe embeddings slightly improve performance (Pennington et al.,
2014). More recent developments in language representation include pre-trained contextual models
such as ELMO (Peters et al., 2018), BERT (Devlin et al., 2019) or the GPT models (Radford et al.,
2019; Brown et al., 2020). Li et al. (2019) encodes language using either BERT or GPT-2, giving
significant improvements compared to a baseline learned LSTM encoding.
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Fusion of modalities can also benefit from pre-training. Recent approaches have taken advantage
of large multimodal corpora (Sharma et al., 2018; Lin et al., 2014; Krishna et al., 2016; Shen et al.,
2021b) to pre-train BERT-like models (Tan and Bansal, 2019; Lu et al., 2019) which capture cross-
modal information. Majumdar et al. (2020) leverages pre-training to improve agent performance on
VLN. It uses VilBERT (Lu et al., 2019) as a base model to re-rank paths proposed by other models.
Shen et al. (2021b) integrate contrastive language-image pre-training (CLIP) (Radford et al., 2021),
a model designed for learning visual representations from natural language supervision, into Vision-
and-Language tasks such as Visual Question Answering (VQA) (Antol et al., 2015) and VLN. CLIP
leverages a large amount of image-text pairs for training, achieving state-of-the-art performance
with zero-shot transfer in a variety of computer vision tasks (Radford et al., 2021). As such, Shen
et al. (2021b) improve the performance of VLN agents on two datasets, R2R (Anderson et al.,
2018c) and RxR Ku et al. (2020) using EnvDrop (Tan et al., 2019) as their baseline model and CLIP
as a visual encoder.

3.3.4 MULTITASK LEARNING

A closely related topic to pre-training is multitask training. In the age of transformers this approach
has grown in popularity for multimodal tasks (Lu et al., 2020a; Nguyen and Okatani, 2019; Akhtar
et al., 2019), including EVLP tasks.

Nguyen and Daumé III (2019) trains over three tasks datasets, two VLN datasets and a VDN dataset.
The model proposed, PREVALENT, is a transformer that fuses modalities in a later layer. It is pre-
trained over speaker augmented R2R (Fried et al., 2018b) by converting each step in the path to
a action, image, text triple. PREVALENT is trained to predict the action and masking over the
instructions. The models are then specialized and fine-tuned over the R2R, CVDN, and HANNA
datasets. This approach benefits CVDN in both seen and unseen environments, while improving
performance uniquely over unseen environments for R2R and CVDN. Wang et al. (2020c) train
over both R2R and CVDN, but achieve lower performance over both datasets.

Task transfers have only been attempted between instruction following tasks. There have been no
transfers between tasks requiring instruction following to those that require interpreting instructions.
Doing so may be difficult, but could provide the a fine grained understanding of language, vision,
and action required to interact with the world.

3.3.5 LEARNING AND OPTIMIZATION

Another way to improve performance is to modify the loss and optimization functions used. In
EVLP tasks, there are two ways to pose the loss function: as a sequence-to-sequence (Seq2Seq)
problem; as a re-ranking problem. In a Seq2Seq problem, a series of inputs are used to predict a
sequence of ground-truth actions. Current approaches treat this as a classification problem, with the
goal of learning a maximum likelihood estimate using cross-entropy loss conditioned on the agent’s
observations. In a re-ranking problem, a Seq2Seq model first proposes candidate solutions, and a
second model scores them. Majumdar et al. (2020) does this through the use of negative sampling,
creating binary labels which reflect the validity of a path. Binary-cross entropy is again used as an
objective.

Reasons to choose one over the other include performance, computational cost, and whether or not
the environment is known. Re-ranking problems are, at the time of writing, state of the art in VLN

476



CORE CHALLENGES IN EMBODIED VISION-LANGUAGE PLANNING

(Majumdar et al., 2020). However they are more computationally expensive and unable to explore
the environment without use of an additional model(s).

Two optimization algorithms are commonly used (Mogadala et al., 2019): ADAM (Kingma and Ba,
2015), RMSPROP (Hinton et al., 2012). However the advantages or reasoning behind choosing one
or the other are not discussed in EVLP literature.

3.3.6 REWARD SHAPING

Reward-shaping is a widely-used technique in solving Markov decision processes, as with Rein-
forcement Learning (RL), where domain knowledge is used to define a shaped reward Rshaped , for
improved agent learning and optimisation (Hu et al., 2020). Typically, this shaped reward is linearly
combined with the original reward R, with R

′
= R+Rshaped , or used instead. Reasons for incorpo-

rating a shaped reward include situations where R is sparse or is deemed not sufficiently informative
for the task or for encouraging the desired agent behaviour (Sun et al., 2018).

The EVLP literature generally follows this standard formulation and adopts similar usage consider-
ations for shaped rewards. In EQA, Das et al. (2018b), Gordon et al. (2018) and Yu et al. (2019) use
a reward function R of the form R = Rterminal +Rshaped , where Rterminal is a sparse reward assigned
for correctly answering a question. Gordon et al. (2018) additionally assign a penalty for incorrect
answers. Rshaped consists of a dense reward determined by the agent’s progress toward its goal:
positive if moving closer to the goal and negative otherwise.

VLN and VDN works (Wang et al., 2018; Tan et al., 2019; Wang et al., 2020c,a) have used a similar
reward function where Rterminal is given if the agent stops within a specified radius of the target, and
Rshaped is given as progress-based reward. Wang et al. (2019b) use the aforementioned rewards to
define Rextr, an extrinsic reward to measure the agent’s success (Rterminal) and progress (Rshaped), and
further define Rintr, an intrinsic reward for measuring the alignment between the instruction and the
agent’s trajectory. The latter is obtained as a probability score of generating the original instruction,
given sequential encodings of the instruction and the agent’s historical trajectory. The total reward
function was defined as R = Rextr +δRintr, where δ is a weighting parameter.

In addition to the sparse extrinsic reward, Jain et al. (2019) and Zhu et al. (2020b) use fidelity of
the predicted path with the reference path based on the Coverage weighted by Length Score (CLS)
metric (Jain et al., 2019), discussed in Section 4.1.3, to shape the reward function. Similarly, SERL
(Wang et al., 2020b) uses two intrinsic rewards, RSED, a soft-expert distillation reward, and RSP,
a self-perceiving reward: the former is learned by aligning the VLN agent’s behavior with expert
demonstrations (Wang et al., 2019a), and the latter is learned by predicting the agent’s progress
toward its goal.

4. Evaluation

Environments and metrics form the backbone of EVLP agent assessment. Proper evaluation systems
allow to quantify specific aspects of agent performance (e.g., the ability to navigate toward a goal).
Standardization of such metrics and the environments used to train and evaluate agents enables
researchers to better coordinate current and future work (Anderson et al., 2018a). This section
serves to summarize and compare the evaluation metrics and environments that are most relevant to
the EVLP tasks defined in Section 2.2.
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4.1 Metrics

The metrics currently used in EVLP can be grouped into five categories, each measuring a different
aspect of agent performance: (i) success, (ii) distance, (iii) path-path similarity, (iv) instruction-
based metrics, and (v) object selection metrics. We survey and discuss the existing methods for
each category. For additional ease of reference, we summarize these metrics in tables 2-5.

4.1.1 SUCCESS

Metrics that assess whether or not an agent successfully completed a task are used, in various forms,
across all EVLP tasks. Instruction-following tasks such as VLN and VDN typically define the
success rate (SR) as how often the agent gets within a threshold distance dth of the goal. Distance
dth varies between datasets, with dth = 3m for R2R (Chang et al., 2017), and dth = 0.47m for Lani
(Misra et al., 2018). This measure has some weaknesses, particularly for discretized state-action
spaces, notably that it is rather dependent on the granularity of said discretization (Thomason et al.,
2019a; Krantz et al., 2020). Furthermore, variations in dth also impact SR, which may prompt
misleading results where correct executions might be considered wrong (Blukis et al., 2019).

EQA has no notion of a target location; instead, success is measured in terms of accuracy over
the output space, i.e., question-answering accuracy (Das et al., 2018a; Gordon et al., 2018). Other
common classification metrics that can be used include precision, recall, and F-score (Valuations,
2015). Per-class performance for any of these metrics can also be employed to measure if the model
is improving accuracy by outputting common responses at the cost of performance over minority
classes.

In most cases, a task is considered as “complete” only after the agent is near a final destination,
answers a question, or satisfies a manipulation directive. However, certain datasets such as ALFRED
(Shridhar et al., 2020), Lani (Misra et al., 2018), and CerealBar (Suhr et al., 2019) report sub-
goal completion as well. This addition of sub-goal scoring can be useful, for instance, to exploit
modularity and hierarchy of sub-tasks (Shridhar et al., 2020; Jansen, 2020), or to alleviate issues
with success metrics, e.g. that early failures early in a task impact later steps in the episodes (Suhr
et al., 2019), making it difficult to assess the ability of an agent per timestep. To address this issue,
CerealBar evaluates a trajectory T as |T | − 1 sub-paths, each shorter than the next: the average
success rate across these runs is taken, measuring the model’s ability to recover from errors. A
further benefit of sub-goal scoring is that specific agent mistakes can be pinpointed and categorized
more easily.

4.1.2 DISTANCE

While success is an intuitive measure, it provides limited information on how efficiently the agent
traveled through a space. Distance measures can quantify this type of information, in the context
of both navigation and manipulation tasks. Two useful metrics in this respect are navigation (or
displacement) error (NE) and overall amount of travel (or motion) required known as the path length
(PL). NE measures how far from a target location an agent chooses to stop, giving information
about the magnitude of the agent’s inability to get to the target location. In order to further analyze
whether agents learn to stop effectively, NE is often coupled with an Oracle Navigation Error (ONE),
which measures the distance of the nearest point along the agent’s trajectory to the goal location.
Significantly different NE and ONE measures may indicate an issue with stopping.
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These measures assume that the task has a specified goal or target location. In the context of VLN
and VDN this is a sensible assumption. However for EQA, or even EGM, that is not necessarily the
case. For example, in EQA, certain questions such as those about the state of an object, the answer
could be given from different points in the room. Rather than assess the distance from a goal, one
could look at the length of the path taken commonly referred to as PL. In a real-world scenario,
minimizing the length of travel is an important consideration. To only account for successful paths,
SR weighted by normalized inverse Path Length (SPL) can be calculated.

In essence, distance can be used not only to derive success metrics for VLN, VDN, but also to
quantify the error and efficiency of the agent’s path. In the context of navigation, this measures
how much does the agent meander from its target. This adds a dimension when evaluating and
comparing model performance.

4.1.3 PATH-PATH SIMILARITY

Distance metrics fail to capture whether or not the agent adhered to the ground-truth path. For
instruction-following tasks such as VLN and VDN, where the user specifies a given path with in-
structions, we may want to explicitly follow those directions and not find the shortest path. Jain
et al. (2019) discuss desiderata for path similarity metrics:

1. Metrics should gauge the fidelity between the path taken and the reference path, rather than
only the goal

2. Mistakes should not be hard penalties, metrics should favor a path that deviates and follows
the ground truth path over one that short cuts it entirely

3. Maxima should be unique and only occur in the case of a perfect match

4. The underlying scale of the dataset should not impact the value of the output

5. Metrics should allow fast automated performance evaluation

We believe these desiderata can be applied more widely to any instruction-following task. One of
the early metrics to measure path following is edit distance (Chen et al., 2019b). Edit Distance (ED)
measures the number of changes required to match two graphs. ED does not satisfy criterion #2,
as it only penalizes based on absolute deviation. Jain et al. (2019) introduce Coverage weighted by
Length Score (CLS), a metric which satisfies all 5 of these criteria. CLS is given by the product
of the path coverage, a measure of average per point overlap between the target and reference path,
and the length score, which penalizes paths both shorter and longer than the reference. Jain et al.
(2019) verify its utility by using it as an objective for a RL-based agent.

Ilharco et al. (2019) build on this work and propose two measures: normalized Dynamic Time Warp-
ing (nDTW) and Success weighted by normalized Dynamic Time Warping (SDTW). The former is
a similarity function that identifies an optimal warping of the elements from a reference path and a
query path, while the latter constrains nDTW to successful episodes. These metrics have a number
of desired properties: they respect the desiderata outlined above, they can be used effectively as a
reward signal for RL-based agents, and can be compared with human judgment. Such properties
make them consistently preferred compared to proposed alternatives such as CLS, SPL, SR.
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4.1.4 INSTRUCTION-BASED

Different approaches can be used to measure the alignment between paths in the form of images
and text: Semantic Propositional Image Caption Evaluation (SPICE) (Anderson et al., 2016) and
Consensus-based Image Description Evaluation (CIDEr) (Vedantam et al., 2015). While those were
originally used in the context of VQA, they have been recently adapted to VLN as well (Zhao et al.,
2021).

An alignment metric can also be used as part of training. Certain approaches (Fried et al., 2018b;
Tan et al., 2019) generate synthetic instructions to augment the data available, of varying quality.
Huang et al. (2019) train an alignment model in which instructions and paths are encoded using
BiLSTMs and fed into a binary classifier. Positive outputs are assigned to matched path instruction
pairs and negative outputs are mismatched instruction path pairs. This binary classifier is then used
as a scoring function to rank paths. Low scoring paths are removed from training leading to a
statistically significant improvement in performance while reducing the total dataset size.

4.1.5 OBJECT REFERRAL

EGM and EOR require object selection, either through masking or selecting from ground-truth
bounding boxes. Chen et al. (2019b) and Shridhar et al. (2020) use Intersection over Union (IoU) as
an evaluation metric, a commonly-used measure in CV, specifically in object detection tasks (Padilla
et al., 2020). However, it is not the only metric nor the most informative one.

Table 2: List of success metrics used in EVLP tasks with a brief description, type of metric, types and references to
tasks they are typically used in, and the formula if applicable. The nomenclature used is as follows: P is the predicted
path, R is the reference path corresponding to P, p and r are nodes in P and R, respectively. d is the appropriate distance,
S is the set of instruction-path pairs. dth is threshold distance, BB is the bounding box, ŷ is a prediction value, and y the
corresponding ground-truth value.

Metric Description Type Typical Tasks Formulas

SR (Anderson et al., 2018c) Percentage of episodes
an agent stops within a
threshold distance of goal

Success VLN, VDN, EOR, EGM 1
|S| ∑

P,R∈S
1[NE(P,R)< dth]

OSR (Anderson et al., 2018c) SR if the agent had
stopped at it’s nearest
point to the goal

Success VLN, VDN, EOR 1
|S| ∑

P,R∈S
1[ONE(P,R)< dth]

Sub-goal SR (Shridhar et al., 2020) SR for a specific sub-goal Success VLN, EGM SR
Accuracy (Das et al., 2018a) Measures whether a pre-

diction value matches the
ground-truth value

Success EQA 1(ŷ = y)

EM The agent perfectly repli-
cates the target path

Success All 1(P = R)

Recently, Kim et al. (2020) proposed three metrics to evaluate how well objects are selected: Col-
lected Target Correctness (CTC), Placement Target Correctness (PTC), and reciprocal Placement
Object Distance (rPOD). CTC measures if the correct object was selected; PTC measures if the ob-
ject was correctly placed. Note that CTC and PTC can both be framed as thresholded IoU problems,
as that is how some agents (Shridhar et al., 2020) decide whether or not to pick up an object. rPOD
is a normalized measure that gives a near zero score if the object is far from it’s ideal placement and
a score of 1 if the placement is perfect.
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Table 3: List of distance metrics used in EVLP tasks with a brief description, type of metric, types and references
to tasks they are typically used in, and the formula if applicable, where P is the predicted path, R is the reference path
corresponding to P, p and r are nodes in P and R, respectively.

Metric Description Type Typical Tasks Formulas

NE (Misra et al., 2018) Geodesic distance between
an agent’s final position and
the goal

Distance VLN, VDN d(p|P|,r|R|)

ONE (Misra et al., 2018) Distance to target if the
agent has stopped at the
nearest point

Distance VLN, VDN minp∈P d(p,r|R|)

PL (Anderson et al., 2018c) How far the agent traveled Distance VLN, VDN, EOR
|P|−1

∑
i=1

d(pi, pi+1)

SPL (Anderson et al., 2018a) Average of the path lengths
where the agent succeeded

Distance VLN, VDN, EOR, EGM 1[NE(P,R)< dth]
d(p1 ,r|R|)

max(PL(P),d(p1 ,r|R|))

Table 4: List of path-path similarity metrics used in EVLP tasks with a brief description, type of metric, types and
references to tasks they are typically used in, and the formula if applicable; here, P is the predicted path, R is the reference
path corresponding to P, p and r are nodes in P and R, respectively. d is the appropriate distance, dth is threshold distance,
and lev(·, ·) is the Levenshtein edit distance.

Metric Description Type Typical Tasks Formulas

CLS (Jain et al., 2019) Measure of similarity between
paths using path coverage and
length-score

Path-Path Simi-
larity

VLN PC(P,R) ·LS(P,R);

PC(P,R) = 1
|R| ∑

r∈R
exp

(
−d(r,P)

dth

)
;

LS(P,R) =
PC(P,R)·PL(R)

PC(P,R)·PL(R)+|PC(P,R)·PL(R)−PL(P)|

nDTW (Ilharco et al., 2019) Dynamic time warping normal-
ized between target and reference
path

Path-Path Simi-
larity

VLN exp
(
− DTW (R,P)

|R|·dth

)

SDTW (Ilharco et al., 2019) nDTW weighted by success rate Path-Path Simi-
larity

VLN 1[NE(P,R)< dth] ·nDTW (P,R)

SED (Chen et al., 2019b) Success weighted edit distance Path-Path Simi-
larity

VLN 1[NE(P,R)< dth] · (1− lev(P,R)
max(|P|,|R|) )

Table 5: List of path-instruction fidelity metrics used in EVLP tasks with a brief description, type of metric, types and
references to tasks they are typically used in, and the formula if applicable. The nomenclature used is as follows: S is the
set of instruction-path pairs, BB is the bounding box, ŷ is a prediction value, and y the corresponding ground-truth value.
Entries with a single asterisk (*) are learned approaches. For entries with double-asterisks (**), we refer the reader to the
referenced work.

Metric Description Type Typical Tasks Formulas

BLEU (Papineni et al., 2002) Compare generation caption
to some reference

Path-Instr. Fidelity Instr. generation BP · exp
( 1
|N|

N
∑

n=1

∑count(n,s)
∑count(n,ŝ)

)
,s ∈ S;

BP = exp
(
1− |s||ŝ|

)
if |ŝ| ≤

|s| else 1
SPICE (Anderson et al., 2016) Measure of image-caption

alignment
Path-Instr. Fidelity Instr. generation *

CIDER (Vedantam et al., 2015) Parsing based method to
align captions to images

Path-Instr. Fidelity Instr. generation **

ROUGE-N (Lin, 2004) Compare caption generation
to some reference

Path-Instr. Fidelity Instr. generation ∑n−gram∈s Countmatch(n−gram)

∑ ˆn−gram∈ŝ Count( ˆn−gram)
,s ∈ S

Path-Instr
discriminator (Huang et al., 2019)

Discriminator trained to find
matching vs synthetically
sampled datasets

Path-Instr. Fidelity VLN **

Path-Instr
compatibility (Zhao et al., 2021)

Compares path-instruction
alignment

Path-Instr. Fidelity VLN *

IoU (Everingham et al., 2010) Measures overlap between 2
bounding boxes

Object Referral EQA, EGM, EOR |BB1∩BB2 |
|BB1∪BB2 |
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While only applicable to EGM and EOR, measuring the quality of object selection interaction is
important. It is another aspect of the task and provides a good way of understanding what aspects of
language are harder for the model. Recent work in object recognition (Padilla et al., 2020) reveals
that there are many metrics and variants. Even more traditional metrics such as precision, recall,
and F-score are not currently reported in those tasks. Doing so would provide more information
about the bounding box accuracy. In addition we could report per-class accuracy, which would be
useful to identify which objects are poorly detected by the model.

4.2 Simulation Environments and Datasets

Solving EVLP tasks generally involves using a simulation environment and a dataset. Simulation
platforms and datasets facilitate the reproduction and evaluation of embodied systems. Simula-
tors aim to replicate aspects of the real-world and model agents capable of solving complex tasks
while abstracting away the difficulties of designing and supervising a real-world agent. In contrast,
datasets play a crucial role in articulating how each task is framed. They provide examples of how
agents should behave in response to certain multimodal stimuli.

In this section, we provide a per-task summary and comparison of literature pertaining to envi-
ronments and datasets used in, or designed for EVLP research. Furthermore, we provide a brief
discussion of other recent and relevant multimodal platforms and datasets outside the EVLP tasks
discussed in this survey article. Finally, we summarize important aspects of these simulators and
datasets in Table 6 and Table 7, respectively.

4.2.1 SIMULATORS

Early simulation platforms for embodied research typically leverage video game environments to
create and train neural controllers. Human performance was quickly achieved on some of these
platforms (Bellemare et al., 2015; Kempka et al., 2016; Synnaeve et al., 2016; Beattie et al., 2016;
Johnson et al., 2016; Nichol et al., 2018) as simplified environments generally lack the diversity and
complexity of real-world settings (Savva et al., 2017; Kolve et al., 2017; Deitke et al., 2020).

Recent works have addressed this lack of realism through the use of photo-realism (Savva et al.,
2019; Xia et al., 2018; Anderson et al., 2018c; Herman et al., 2021) and the use of interactive con-
texts where agents are able to modify the states of objects in the environment (Kolve et al., 2017; Xia
et al., 2019; Yan et al., 2018; Brodeur et al., 2018). Toward this end, there is also interest in develop-
ing frameworks focused on simulation-to-real transfer and evaluation (Deitke et al., 2020), allowing
the study of discrepancies between real settings and simulated ones. Finally, other platforms have
also focused on encouraging reproducibility of work, flexibility of design, and benchmarking (Savva
et al., 2019; Weihs et al., 2020).

VLN Simulators. Three environments are relevant to VLN tasks: Matterport3DSim (Chang et al.,
2017; Anderson et al., 2018c), Habitat (Savva et al., 2019), and StreetLearn (Mirowski et al., 2018).
In both Matterport3DSim and Habitat, VLN is set in indoor environments, while StreetLearn is set
outdoors. Matterport3DSim allows an agent to navigate in a discrete environment framed as an
undirected navigation graph which associates positions with the corresponding viewpoints, subject
to admissible (i.e., collision-free) intra-node transitions. Agents navigating in this setting teleport
between viewpoints, through high-level atomic actions.
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In contrast, Krantz et al. (2020); Irshad et al. (2021) leverage Habitat to provide a more realistic
setting for VLN, where agents can navigate in a a discrete (Krantz et al., 2020), as well as, con-
tinuous (Irshad et al., 2021) unconstrained state-space, as opposed to a discretized graph. In the
unconstrained setting, agents execute low-level actions over longer horizon sequences (Irshad et al.,
2021), and more realistically, risk colliding with obstacles along the way. Tangentially, VLN has
also been studied in the context of simulation-to-real transfer and evaluation. Anderson et al. (2020)
ports a VLN agent trained in Matterport3DSim using Robot Operating System (ROS) as a publish-
subscribe framework for robot control. They also evaluated the gap in performance between an
agent moving through high-level actions compared to a robot taking low-level actions in the real
world. They found that, although there has been significant progress in simulation environments
for VLN, simulation-to-real transfer is still not reliable, particularly when the agent does not have
access to a map.

EQA Simulators. Both, indoor, synthetic (Das et al., 2018a; Gordon et al., 2018) and photo-
realistic (Wijmans et al., 2019a) environments are used for EQA. Das et al. (2018a) use House3D
(Wu et al., 2018), a synthetic large-scale environment to train EQA agents, whereas Gordon et al.
(2018) used AI2-THOR (Kolve et al., 2017). In both settings, the agent navigates in a discrete
unconstrained environment and perceives the world through ego-centric RGB images. While AI2-
THOR is not a large-scale environment as House3D, it enables the study of interactive tasks some-
thing crucial in IQA.

Wijmans et al. (2019a) argue that although the above-mentioned environments are semantically
realistic in terms of layout and types of surrounding objects, they lack visual realism in terms of
graphics and intra-class variation. Thus, they propose MP3D-EQA, an EQA task set in a photore-
alistic simulator, and built upon the MINOS simulator (Savva et al., 2017) and the Matterport3D
dataset (Chang et al., 2017). In addition leveraging RGB images, they add 3D point-cloud obser-
vations, which they empirically showed to be more effective for navigation, in contrast to previous
works. More recently, MP3D-EQA has also been developed in Habitat. Savva et al. (2019) showed
that Habitat’s performance in terms of frames-per-second (FPS) is significantly superior to that of
MINOS, and other platforms, allowing to shift bottlenecks in simulation training.

EOR Simulators. Both indoor and outdoor settings exist for the EOR task. REVERIE (Qi et al.,
2020) is an indoor-based simulator built upon Matterport3DSim. In particular, it adds object-level
bounding boxes to Matterport3DSim allowing for object retrieval. Since a target object may be
observed from multiple viewpoints, and because it is expected that the agent reaches the goal within
a short distance, they only preserve object bounding boxes within a 3-meter radius of any given
viewpoint.

TouchDown (Chen et al., 2019b) was made publicly available by transferring it to the StreetLearn
environment (Mirowski et al., 2018; Mehta et al., 2020). StreetLearn contains panoramas from
New York City and Pittsburgh. Like Matterport3DSim, navigation in StreetLearn is based on an
undirected graph, and agents move through discrete actions.

VDN Simulators. The VDN task family has also been established in Matterport3DSim (Nguyen
and Daumé III, 2019; Thomason et al., 2019b; Chi et al., 2020). Typically the VLN task is extended
with crowd-sourced dialog or sub-instructions that provide the agents with assistance to complete
the task. We refer the reader for further information to Section 4.2.2.
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EGM Simulators. As discussed in Section 2.2.5, interaction with the environment is a crucial
component of the EGM task family. Currently, photo-realistic simulation environments are limited
in providing interactive or dynamic interaction prospects. Consequently, EGM tasks have mainly
leveraged synthetic environments (Shridhar et al., 2020; Misra et al., 2018; Suhr et al., 2019; Kim
et al., 2020).

Shridhar et al. (2020) used the AI2-THOR 2.0 simulation environment for the ALFRED task. In
contrast to IQA, which also leverages this simulator, ALFRED does not require agents to answer
contextualized questions. Instead, agents must complete tasks that require changing the state of
objects (e.g., cleaning, picking, stacking, and heating objects).

In contrast, ArraMon (Kim et al., 2020), and CerealBar (Suhr et al., 2019) are both framed in outdoor
synthetic environments. ArraMon uses a custom two-phase environment consisting of synthetic
street-layouts and buildings, used for the navigation phase, and a grid-based room layout used during
the assembly phase. CerealBar was designed to study of collaborative interactions between agents.

Other Simulators. We briefly discuss other platforms that have recently shown significant promise,
in the definition of multimodal embodied tasks that outside conventional EVLP families. Some of
the features proposed by these simulators include designing interactive tasks with improved physics
(Xia et al., 2019; Szot et al., 2021; Xiang et al., 2020; Gan et al., 2020) and object states (Li et al.,
2021a), additional modalities (Chen et al., 2020b; Shen et al., 2021a), low-level articulation (Xiang
et al., 2020; Szot et al., 2021), and integraton with virtual reality interfaces (Li et al., 2021a; Gan
et al., 2020).

iGibson 1.0 (Xia et al., 2019; Shen et al., 2021a) is a recent simulation environment that allows for
the development of interactive navigation and manipulation tasks in large-scale realistic scenes, in
contrast to its precursor Gibson (Xia et al., 2018), which only provides support for robot naviga-
tion tasks (where agent interaction is limited to collisions with scene meshes). Among the most
valuable aspects of this platform are the physics-based simulation capabilities, which enable high-
quality interactive tasks. More recently, iGibson 2.0 (Li et al., 2021a) was provided as an extension
to iGibson 1.0; it includes a set of extended states and logical descriptions, which simulate such
underlying physical processes as temperature, wetness, and cleanness of objects—thus motivating a
wider range of household tasks and perceptual modes. Moreover, to facilitate modeling household
tasks, iGibson 2.0 introduces a virtual reality (VR) interface to allow humans to collect demonstra-
tions, e.g., for developing solutions that leverage imitation-based learning.

Szot et al. (2021) present Habitat 2.0, a simulation platform for training virtual robots in interactive
environments and physics-enabled synthetic scenarios. It was built upon Habitat (Savva et al., 2019)
and, as such, it prioritises high-performance and speed. Szot et al. (2021) introduce the Home
Assistant Benchmark (HAB) a suite of tasks for assistive robots, such as, preparing groceries and
cleaning the house, designed for testing the manipulation capabilities of agents. Also extending
Habitat, SoundSpaces (Chen et al., 2020b) integrates environment acoustics to enable audio-based
navigation tasks in indoor environments. To do so, they leverage algorithms for modeling room
acoustics as well as sound reflections based on room geometry.
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VirtualHome (Puig et al., 2018) is an environment designed for simulating household activities by
generating programs containing sequences of symbolic instructions representing atomic actions.
Modalities supported by this platform include RGB, depth, semantic segmentation and natural lan-
guage.

ThreeDWorld (TDW) (Gan et al., 2020) enables the development of interactive navigation and ma-
nipulation tasks in both outdoor and indoor environments. It also allows users to procedurally create
custom environments (and the objects to populate them), as well as interact with objects through VR.
TDW also supports complex physical dynamics, with audio support, which is relevant for exploring
topics such as physical reasoning (Zhang et al., 2017) and audio-visual learning (Chen et al., 2020b;
Gan et al., 2019). Finally, Sapien (Xiang et al., 2020) is a synthetic-based platform that provides
rich physics support for developing low-level interactive manipulation tasks.

Table 6: A comparison of simulation environments, related to EVLP research. Supported Tasks: we include
PointNav (Wijmans et al., 2019b), RoomNav(Wu et al., 2018), AVN (Audio-Visual Navigation; (Chen et al.,
2020b)), HAB (Szot et al., 2021), ArmPointNav (Ehsani et al., 2021), general navigation, and manipulation,
in addition to conventional EVLP tasks. Agent-World Interaction: C: continuous actions / forces, D: dis-
crete actions. Environments: S: synthetic, P: photorealistic. Scenes: I: indoors, O: outdoors. Modalities:
A: audio, C: color, D: depth, F: flow, L: LiDAR, NL: natural language, SN: surface normals, SS: seman-
tic segmentations. Scene Scale: B: buildings, R: rooms, H: houses, RO: realistic outdoors, SO: synthetic
outdoors O: object-level.

Environment Supported Task Agent-World
Interaction Environments Scenes Scene Scale Modalities Multi-Agent Specialty Reference

Matterport3DSim VLN, VDHN, EOR D P I B C,D,NL Topological planning Chang et al. (2017)
MINOS EQA, PointNav, RoomNav C,D P,S I B C,D,NL,SN,SS High-speed, navigation Savva et al. (2017)
AI2-THOR VDHN, EQA, EGM C,D S I R A,C,D,SS 3 Actionable objects, task planning Kolve et al. (2017)
ManipulaTHOR ArmPointNav D S I R C,D Mobile manipulation Ehsani et al. (2021)
House3D EQA, RoomNav D S I B,R C,D,SS,NL Environment diversity, navigation Wu et al. (2018)
CerealBar EGM D S O SO C,NL 3 Collaborative interactions Suhr et al. (2019)
ArraMon EGM D S O SO C,NL Joint navigation and manipulation Kim et al. (2020)
StreetLearn VLN, EOR D P O RO C,NL Urban Navigation Mirowski et al. (2018)
Gibson Nav. C P,S I H C,D,SN,SS Navigation Xia et al. (2018)
iGibson 1.0 Nav., Manip. C P,S I H C,D,F,L,SN,SS Physics Interaction Shen et al. (2021a)
iGibson 2.0 Nav., Manip. C P,S I H C,D,F,L,SN,SS Extended object states, VR Li et al. (2021a)
Habitat VLN, EQA, PointNav C,D P,S I B C,D,SS High-speed, navigation, customizable Savva et al. (2019)
Habitat 2.0 HAB C S I H C,D High-speed, task planning, articulated dynamics Szot et al. (2021)
SoundSpaces AVN C,D P,S I B A,C,D,SS High-speed, audio-visual navigation Chen et al. (2020b)
VirtualHome Nav., Manip. D S I H,R C,D,F,SS Task Planning Puig et al. (2018)
ThreeDWorld Manip. C S I,O R,H,SO A,C,D,SS 3 Audio, Physics Interaction, VR Gan et al. (2020)
Sapien Manip. C S I O C,D,SN,SS Low-level articulation Xiang et al. (2020)

4.2.2 DATASETS

EVLP datasets vary across three main dimensions: visual observations, natural language prompts,
and navigation demonstrations. Visual observations, in general, consist of RGB images often paired
with depth data or semantic masks. These observations can represent both indoor and outdoor en-
vironments from both, photo-realistic or synthetic-based settings. In contrast, language varies in
the type of prompt. Language prompts may come in the form of questions (Das et al., 2018a; Wi-
jmans et al., 2019a), step-by-step instructions (Anderson et al., 2018c), or ambiguous instructions
that require some type of clarification through dialog or description (Nguyen and Daumé III, 2019;
Thomason et al., 2019b). Language can also vary in terms of complexity of language sequences and
scope of vocabulary. Finally, navigation traces differ in aspects like the granularity (or discretiza-
tion) of the action-space and the implicit alignment that a provided action sequence (or trajectory)
has with the other two dimensions.

VLN Datasets. Both indoor (Anderson et al., 2018c; Jain et al., 2019; Zhu et al., 2020b; Hong et al.,
2020) and outdoor (Chen et al., 2019b; Mehta et al., 2020; Hermann et al., 2020) datasets have been
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designed for the VLN task. Anderson et al. (2018c) introduced Room2Room (R2R), the first and
most widely known indoor VLN dataset. A number of R2R variants have been developed since its
introduction. Some of these variants propose longer and more complex navigation sequences. For
instance, R4R (Jain et al., 2019), R6R, and R8R (Zhu et al., 2020b) are formed by concatenating
sequences of two, three and four paths from the R2R dataset, respectively. Others aim to provide
better alignment between instructions an visual observations. For instance, Fine-Grained Room-
to-Room (FGR2R) (Hong et al., 2020), proposes finer alignment between instructions and visual
inputs. To do so, the authors provide additional supervision for the agent by dividing R2R instruc-
tions into sub-instructions and matching them with visual observations along a the corresponding
path. Room-Across-Room (RxR) (Ku et al., 2020) uses the PanGEA annotation tool (Ku et al.,
2021) to also tackle path-instruction alignment by densely recording and matching 3D pose traces
with audio-based instructions.

Multilingual datasets also exist in VLN. Two such examples of this type of dataset are Cross-Lingual
Room-to-Room (XL-R2R) (Yan et al., 2020) with instructions in Chinese in addition to English, and
RxR (Ku et al., 2020) which uses instructions in Hindi, Telugu, and English.

The preceding datasets are based on Matterport3DSim where, as mentioned in Section 4.2.1, navi-
gation is constrained to an undirected graph. Nonetheless, making the underlying navigation space
more realistic is another direction into which R2R has evolved. Krantz et al. (2020) proposed VLN
in Continuous Environments (VLN-CE), which transfers the graph-based trajectories of R2R to
an unconstrained discrete state-space in AI Habitat. Furthermore, Irshad et al. (2021) proposed
RoboVLN, a dataset which extends the high-level discrete actions of VLN-CE by adding low-level
ones that represent the agent’s linear and angular velocities between high-level actions. Beyond
continuity,there are other short comings in existing datasets that hamper realness. These include
biases in path distribution Ku et al. (2020). Some datasets, such as R2R, have limited variability in
path length. In addition they only contains paths that go directly from the origin to a target loca-
tion. Both these biases impact generalization to new environments and the agent’s ability to follow
instructions, favoring goal finding rather than instruction following.

In addition to R2R and its variants, other datasets explore outdoor navigation settings. For instance,
LANI (Misra et al., 2018) is a dataset designed for outdoor navigation in a synthetic environment.
LANI evaluates an agent’s ability to follow instructions referring to multiple landmarks. Hermann
et al. (2020) propose the StreetNav Suite which leverages the StreetLearn environment (Mirowski
et al., 2018) built using RGB panoramas from Google Street View. Similar to R2R, in this dataset
navigation is based on an undirected graph but unlike the previous datasets it uses synthetic instruc-
tions rather than human-generated ones.

EQA Datasets. Datasets in EQA mainly differ based on the type of environment used (Sec-
tion 4.2.1) and the type of questions asked. For instance, IQUADv1 (Gordon et al., 2018) is
an indoor-based dataset that contains three types of questions: existence questions (Is there an
[OBJECT] in [PLACE]?), counting questions (How many [OBJECT 1] are on the [OBJECT 2]?),
and spatial relationship questions (Are there [OBJECT 1] in the [OBJECT 2]?). These questions
along with their corresponding answers are generated automatically using templates.

EQAv1 (Das et al., 2018a) also implements template-generated questions and answers. The type of
questions involve scene recognition (What [ROOM] is the [OBJECT] located in?), color recognition
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(What color is the [OBJECT]?), and spatial reasoning (What is [on/above/below/next-to] the
[OBJECT] in the [ROOM]?). The object in a question is single-target, and the possible answer
options are room names, color names, and object names. MP3D-EQA (Wijmans et al., 2019a)is the
extension of EQAv1 to photo-realistic environments. However, it only defines questions about scene
and color recognition. Finally, MT-EQA (Yu et al., 2019) proposes a generalization of EQA where
the types of questions involve multiple target objects and rooms. They propose 6 types of questions
which compare attribute properties (color, size and distance) between multiple targets (objects and
rooms). For instance, Is [ROOM 1] [bigger/smaller] than [ROOM 2]?, or, Does [OBJECT 1] in
[ROOM 1] share the same color as [OBJECT 2] in [ROOM 2]?.

VDN Datasets. Current indoor-based VDN datasets were built on the R2R dataset. JustAsk (Chi
et al., 2020) uses R2R and extends the VLN task by adding an interactivity module where a confused
agent can ask an oracle to resolve any ambiguities. In turn, the oracle provides an action to take with
some probability of being incorrect. In HANNA (Nguyen and Daumé III, 2019), an agent receives
traditional VLN instructions and can also request assistance when it is lost or confused. Here, in
contrast to JustAsk, an oracle named ANNA provides the agent with a sub-task to help correct its
path. As such, the dataset builds a route system simulating human assistance (sub-tasks) on top of
the R2R dataset.

Thomason et al. (2019b) study dialog interactions between agents and human assistants. To do so,
they designed the Cooperative Vision-Dialog Navigation (CVDN) dataset which consists of ambigu-
ous and underspecified instructions along with human-based dialog guidance between a navigator
and an oracle. Compared to the step-by-step instructions in R2R, their instructions do not initially
specify a goal location and require clarification. Thus, resolution is done through the use of dia-
log between a navigator, who is given the instruction, and an oracle, who knows how to resolve
ambiguities.

Similarly, Talk the Walk (de Vries et al., 2018) consists of a tourist and a guide that interact with
each other using dialog to get the tourist to a target location. The dataset consists of RGB panoramic
images of New York City which are used to build a 2D grid-like environment in which the tourist
moves. The dialogs for this dataset were crowd-sourced and correspond to trajectories followed
from randomly sampled start and target locations.

EOR Datasets. There are two datasets in EOR: REVERIE (Qi et al., 2020) and Touchdown (Chen
et al., 2019b; Mehta et al., 2020). REVERIE is an indoor-based dataset built upon Matterport3DSim.
It differs from the R2R dataset in two main aspects: (1) instructions are intended to be more realistic,
and (2) the dataset contains object-level annotations. In R2R, instructions are often long and provide
step-by-step guidance toward a goal location. Qi et al. (2020) argue that it is unrealistic for humans
to give such instructions to a robot. Thus, they propose a dataset containing simplified instructions
such as Bring me a mug. Additionally, the REVERIE dataset includes object annotations in the
form of 2D bounding boxes since the task requires the agent to localize the target object to which
the instruction refers (e.g., the mug).

Touchdown is set in an urban environment. The dataset leverages RGB panoramic images of New
York City in Google Street View. It has recently been added to StreetLearn (Mehta et al., 2020)
and made publicly available to the research community. Like StreetNav, navigation is based on
an undirected graph. The goal of the agent is to find the location of a hidden teddy bear named
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Touchdown. Touchdown only appears if the correct location was selected. Compared to REVERIE,
the instructions in Touchdown represent a step-by-step guidance toward the goal, similar to VLN.
Moreover, these instructions clearly specify where to find the teddy bear, whereas in REVERIE, the
agent needs to infer both the object of interest and its probable location in the environment.

EGM Datasets. All of the contemporary EGM datasets use interactive synthetic environments
(Subsection 4.2.1). EGM datasets are crowd-sourced and validated by human annotators which
interact with these environments to verify the alignment between instructions, visual inputs, and
interactions.

The CHAI dataset (Misra et al., 2018) is based on household instructions (e.g., Go to the kitchen
and put the cup on the sink). A single instruction can be divided into sub-tasks requiring multiple
navigation and manipulation steps. ALFRED (Shridhar et al., 2020) is also based on household
instructions with multiple goals. The main differences between ALFRED and CHAI are that AL-
FRED includes expert demonstrations and allows the agent to perform several manipulation actions
(e.g., pick up, turn on, open, etc.), whereas CHAI only uses an interact action.

ArraMon (Kim et al., 2020) is set on an outdoor environment and consists of two types of instruc-
tions: navigation and assembly. Navigation instructions provide step-by-step guidance toward a
goal object which the agent requires to find and collect. Assembly instructions specify where does
the agent need to place each the collected item. These directives come in turns, i.e., a navigation
instruction is followed by an assembly one. Each episode is defined by two turns. Lastly, CerealBar
(Suhr et al., 2019) also set outdoors, considers a turn-based game between two agents, a leader,
and a follower. The leader gives step-by-step instructions to collect game cards of different colors,
shapes and count, and the follower has to execute them.

Table 7: Summary of EVLP dataset statistics. MP3D refers to the Matterport3D simulator (Chang et al.,
2017). CS refers to crowd-sourced instructions and G refers to generated instructions. We use EN for English,
CH for Chinese, HI for Hindi and TE for Telugu. Then, we use N for navigation and M for manipulation. The
vocabulary sizes provided are taken from the original works and account for all unique words generated using
that work’s tokenizer. Finally, missing fields, indicated by hyphens (-), were not computed by the originating
works.

Navigation Information Language Information

Dataset Task Simulator Avg.
# Steps # Trajectories Navigation # Instr. / Dialog /

Questions
Avg. Words Per

Instruction
Instruction

Type
Vocabulary

Size Language Reference

R2R VLN MP3D 5 7,189 graph 21,567 29 CS 3,100 EN Anderson et al. (2018c)
R4R VLN MP3D 20.5 7,189 graph 279,810 58.4 CS 3,100 EN Jain et al. (2019)
R6R VLN MP3D - - graph 12,5409 91.2 CS 3,100 EN Zhu et al. (2020b)
R8R VLN MP3D - - graph 138,004 121.6 CS 3,100 EN Zhu et al. (2020b)
FGR2R VLN MP3D - 7,189 graph 21,567 29 CS 3,100 EN Li et al. (2020b)
XL-R2R VLN MP3D - 5,798 graph 17,394 - CS EN: 1,583, CH: 1,134 EN, CH Yan et al. (2020)
RXR VLN MP3D 7 16,522 graph 126,000 EN: 101, HI: 76, TE: 56 CS - EN, HI, TE Ku et al. (2020)
VLN-CE VLN Habitat 55.8 4,475 discrete 13,425 - CS - EN Krantz et al. (2020)
RoboVLN VLN Habitat 326 3,177 continuous 9,533 - CS - EN Irshad et al. (2021)
LANI VLN Unity3D 24.6 6,000 grid 28,204 12.1 CS 2,292 EN Misra et al. (2018)
StreetNav VLN StreetLearn 125 613,000 graph ∼2.5M 7 G - EN Hermann et al. (2020)
IQAv1 EQA AI2-THOR - - discrete 75,000 - G 70 EN Gordon et al. (2018)
EQAv1 EQA House3D - - discrete 5,000 - G - EN Das et al. (2018a)
MT-EQA EQA House3D - - discrete 19,287 - G - EN Yu et al. (2019)
MP3D-EQA EQA Habitat - - discrete ∼1,100 - G - EN Wijmans et al. (2019a)
CVDN VDHN MP3D 17.4 7,000 graph 2,050 81.6 CS ∼1,100 EN Thomason et al. (2019b)
HANNA VDHN MP3D - - graph 21,594 - CS 2,332 EN Nguyen and Daumé III (2019)
Talk the walk VDHN Talk the Walk 62 - grid 10,000 - CS 10,000+ EN de Vries et al. (2018)
REVERIE EOR MP3D - - graph 21,702 18 CS 1,600 EN Qi et al. (2020)
(Re)Touchdown EOR StreetLearn - - graph 9,326 108 CS 5,625 EN Chen et al. (2019b); Mehta et al. (2020)
CHAI EGM Chalet 54.5 - discrete 13,729 10.1 CS 1,018 EN Misra et al. (2018)
ALFRED EGM AI2-THOR 50 8,055 graph 25,726 50 CS ∼100 EN Shridhar et al. (2020)
ArraMon EGM ArraMon 75.78 (N), 13.68 (M) 7,692 discrete/grid 30,768 48 (N), 21 (M) CS - EN, HI Kim et al. (2020)
CerealBar EGM CerealBar 8.5 1,202 grid 23,979 14 CS 3,641 EN Suhr et al. (2019)
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5. Open Challenges in Embodied Vision-Language Planning

5.1 New Directions in EVLP Research

Research in Embodied Vision-Language Planning has experienced a quick rise in popularity, due
to recent advances from the robotics, computer vision, and natural language processing communi-
ties on vision-language grounding and situated learning. As the EVLP research field evolves, we
highlight three promising directions, in the pursuit of more ubiquitous human-robot interaction and
better agent generalisation. Firstly, we describe social interaction (Section 5.1) as a necessary pro-
gression from static dialogue contexts to more dynamic ones, where new collaborative and assistive
capabilities of agents can more effectively emerge. Next, we discuss the need for developing agents
in dynamic environments (Section 5.1), which encourage agents to incorporate reasoning strategies
that are robust to environment uncertainty and non-stationarity. Finally, we discuss a vision for
cross-task robot learning (Section 5.1) for cross-task transfer, wherein agents may acquire expe-
rience from related modality-centric tasks, before deployment to shared multimodal settings with
significant task overlap.

5.1.1 SOCIAL INTERACTION

Social agent interaction is born out of a desire for an agent to carry out tasks and make decisions
collaboratively with other agents in a complex, multimodal world. Particularly compelling appli-
cation formats are those that require the intelligent system to perform EVLP tasks, wherein agents
not only perceive the world to extract knowledge from it but also actuate it, to create change that
is beneficial to others. Of particular importance is a shared understanding of the physical space
and task structure, throughout the interactions with other agents in the environment—a capability
that is absent from disembodied dialogue interaction systems. Such elevated understanding gives
the agent access to previously-inaccessible interaction scenarios, which can manifest in assistive
technologies for those with physical disabilities or allow for the deployment of search-and-rescue
systems in which a layperson can ask for help and explain their circumstances.

Despite the importance of collaboration for real-world deployment, current Embodied Vision-Language
Planning tasks (Section 2.2) tend not to include significant social interaction. Even in the case of the
Vision and Dialogue Navigation (VDN) and Embodied Goal-directed Manipulation (EGM) tasks,
the dialogue interaction components are static, i.e., pre-generated datasets of dialogue histories are
provided to the agent, during training and testing. Without tasks and simulators that enable more
dynamic interaction with agents, it is challenging to develop approaches that manifest behaviour
typical of online collaborative settings (Fried et al., 2021; Suhr et al., 2019), such as: (i) model-
ing other agent(s) conceptual schema of the world, (ii) incorporating direct feedback about task
progress, (iii) and generating statements and questions (e.g., for informing other agent(s) about task
progress, requesting assistance, resolving ambiguity in received instructions, asking for alternative
commands, etc.) (Padmakumar et al., 2021).

In order for EVLP agents to perform complex tasks that require dynamic interaction with other
agents, the underlying simulation environments and task structures must support the desired in-
teraction settings. Primarily, environments must enable the representation of others’ anticipated
actions, mental state, and previous behaviour, which has been shown to be critical in related ar-
eas, such as social navigation (Tsai and Oh, 2020; Vemula et al., 2018; Mavrogiannis et al., 2021),
natural language processing (Fried et al., 2018a, 2021; Zhu et al., 2021a), and human-machine in-
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teraction (Newman et al., 2018; Jeon et al., 2020; Charalampous et al., 2017). We highlight these
related fields as inspiration for this new direction in EVLP research.

5.1.2 DYNAMIC ENVIRONMENTS

Most contemporary tasks and agents assume that the underlying environments are stationary and
unchanging. Instead, we wish to highlight the notion of dynamic environments, which we define as
those that change due to events both inside and outside of the ego-agent’s locus of control. The Ro-
bustNav task (Chattopadhyay et al., 2021) extended the RoboTHOR visual navigation environment
(Deitke et al., 2020), to introduce structured perturbations on perception and transition dynamics,
with the intention of encouraging agents to learn robust navigation policies in lieu of these corrup-
tions. These perturbations are static with respect to the agent’s task-execution, however, and do not
change overtime. Other tasks, such as ALFRED (Shridhar et al., 2020) and TEACh (Padmakumar
et al., 2021), introduced entity-based interaction and unrecoverable states. However, these interven-
tions can only be caused by the agent and cannot occur independently.

In real-world environments, the state of the environment can change without any intervention from
the agent. Whether these changes should result from another agent (cognitive or otherwise) acting
on the environment, from physical dynamics of the environment (e.g., a book sliding off a shelf), or
from temporal dependencies on available interactions (e.g., interactions with certain objects are only
available at certain times of day), the planning and reasoning complexities introduced by dynamic
environments are challenging, yet largely unexplored, properties. We advocate for the introduction
of these dynamic elements to EVLP tasks, in order to advance one step closer to enabling agents
that accommodate the complexities of real-world deployment.

5.1.3 CROSS-TASK ROBOT LEARNING

EVLP tasks are currently evaluated separately from one another, which fails to capture the under-
lying skills shared between tasks and the overall progress made as a field. Being able to follow
instructions (e.g., as in the VLN task family) and also answer questions about an environment (e.g.,
as in the EQA task family) are not and should not be treated as mutually-exclusive tasks. Rather
than propose and evaluate tasks independently, tasks could be combined according to more unify-
ing requirements on agent capability. Similar notions of cross-task learning gave rise to seminal
modeling strategies (e.g., hierarchical task decomposition) and problem definitions (e.g., mobile
manipulation, under EGM), which remain quite relevant to this day, despite their classical founda-
tions (see Section 3.1.3). Combinations of existing task families may, likewise, yield new insights
and advances.

Recent works have begun to test over several environments, but often within the same task family
(Hao et al., 2020). Extending these types of benchmarks could allow for the use of transfer learning
to bootstrap models. Moreover, it would allow for shared metrics that measure underlying skills of
a particular agent. The idea that pre-trained models have specific abilities required for downstream
tasks is not new and has been explored by the NLP (Talmor et al., 2020) and robotics communities
(He et al., 2018). Extending this to EVLP tasks could prove beneficial to evaluating progress in the
field as a whole rather than over very specific benchmarks. Zero-shot learning between tasks, with
the idea that a model which can ground language should be as capable at manipulation as it is at
navigation could be used to this end. Otherwise, specific benchmarks could also be designed to test
for specific abilities, such as the ability to ground left and right, ability to recognize if an object
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is invalid, ability to recognize objects. In this vein, Zhu et al. (2021b) test the impact of masking
direction and object information in text on performance to evaluate how current VLN models use
these types of information. They find that the type of information that led to the biggest decrease,
either object or directional information, was dataset dependent. This finding means that shifts in
information type in instruction could impact model performance.

Another test was conducted to evaluate the ability of models to ground text to vision by masking
objects in the images found in the instructions. Doing so resulted in a limited decrease in perfor-
mance, casting doubt on the ability of current models to ground. More works in this line could help
understand and evaluate potential weaknesses in current models and how to improve their ability to
generalize. We provide further discussion on the need for improved cross-task agent generalizability
in Section 5.4.

5.2 Use of Domain Knowledge

Using domain knowledge to guide the learning progress of models has seen a recent resurgence
in various domains, such as: autonomous driving (Park et al., 2020; Chen et al., 2019a; Li et al.,
2020c), autonomous racing (Herman et al., 2021; Chen et al., 2021; Francis et al., 2022), robot
navigation (Das et al., 2018b; Yang et al., 2019a), natural language processing (Andreas et al.,
2016; Ravichander et al., 2017; Ma et al., 2019c, 2021; Oltramari* et al., 2020; Li et al., 2021b;
Lu et al., 2020b), sensing and control (Jiang et al., 2018; Francis et al., 2019; Chen et al., 2020a;
Munir et al., 2017), and many others. Indeed, domain knowledge comes in many forms, such
as in graphical models, physics-based constraints, admissibility conditions, auxiliary objectives,
knowledge distillation, pre-training steps, symbolic commonsense knowledge, and many others.
While domain knowledge holds the promise of improving agents’ sample-efficiency, interpretability,
safety, and generalizability, the challenge exists in how to effectively express and utilize the domain
knowledge in an arbitrary problem. In this section, we highlight pre-training and commonsense
knowledge, in particular, as these are two manifestations of domain knowledge that show incredible
promise for endowing agents with the aforementioned attributes.

5.2.1 PRE-TRAINING

A common strategy for injecting agents with external domain knowledge is to borrow informa-
tion from other tasks, models, and domains through generalized pre-training steps. Stemming from
principles of non-convex optimization, the idea behind pre-training is that task-specific models and
agents can start with a more optimal parameterization for a given task (for subsequent training or
“fine-tuning”), after having already undergone partial training on other similar tasks. However, the
selection of these pre-training tasks is not to be taken lightly: pre-training models on tasks that con-
tain counterfactual or causally-confusing samples, with respect to those in the intended downstream
task, can cause models to get stuck in sub-optimal local minima during the fine-tuning process. In
response to these challenges, pre-training tasks have been carefully designed and coupled with pop-
ular high-capacity models, in such domains as image classification (He et al., 2016; Mogadala et al.,
2019) and natural language processing (Devlin et al., 2019; Yang et al., 2019b; Ma et al., 2021),
in attempts maximize the generalizability of transferred or fine-tuned approaches. While there is
some progress in the context of specific multimodal problems (Majumdar et al., 2020; Hao et al.,
2020; Lu et al., 2019), where the cross-modal reasoning is performed primarily at a single time-step,
challenges remain for developing generalizable pre-training strategies that encompass the scope of
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the broader EVLP task family, wherein cross-modal reasoning must occur over arbitrary temporal
extents and alongside complex transition dynamics.

5.2.2 COMMONSENSE KNOWLEDGE

In the real world, much of the background information that governs the interactions amongst objects,
cognitive agents, and the environment is implicit—that is to say that this knowledge is learned (by
humans) through experience and is not commonly expressed explicitly, as we undertake our actions
in the world. Tasks that require this tacit or “commonsense” knowledge3 are notoriously difficult for
machines; even for tasks, in which models have recently enjoyed substantial performance improve-
ments by other means, researchers find that commonsense knowledge still represents a fundamental
cognitive gap in model- versus human-level performance, in scene understanding capability (Ma
et al., 2019c, 2021; Oltramari* et al., 2020). Challenges arise, however, if the type of common-
sense knowledge to be used (e.g., declarative, relational, procedural, sentiment, metaphorical, etc.)
is not chosen to align well with the representation of that knowledge or with the implicit semantic
characteristics of the downstream task.

Commonsense knowledge acquisition and injection in models remains an active research area in
NLP (Talmor et al., 2019; Ma et al., 2019c, 2021; Li et al., 2021b), with some works proposing
to ground observations with structured commonsense knowledge bases, directly, thereby improving
downstream performance on relevant tasks. However, the use of commonsense knowledge, in the
context of EVLP tasks remains largely unexplored. As the ultimate goal of EVLP tasks is to de-
velop intelligent agents that are capable of solving real-world problems in realistic environments,
it is reasonable to consider providing models with structured external knowledge from the world
(Yang et al., 2019a). In general, EVLP tasks can be viewed as a series of tasks that test agents’
commonsense reasoning, where the agent is required to learn general skills that can be transferred
to unseen contexts.

5.3 Agent Training Objectives

Selecting the appropriate training objective(s) for agents undertaking a given task has been a long-
standing problem in machine learning and artificial intelligence; this selection depends on the nature
of the available training signal(s) (reward/cost, full supervision, limited or non-existent supervision)
and on the degree to which external knowledge (e.g., auxiliary objectives, constraints) is deemed
necessary for effectively biasing agent behaviour. For EVLP tasks, specifically, the selection of
training objectives is made more challenging by the complex nature of the environments, often
necessitating frameworks that consist of more than one biasing strategy. For example, many state-
of-the-art models in VLN use self-supervised learning or multi-task learning in a pre-training stage
then supervised learning in a fine-tuning stage, in order to borrow information from large exter-
nal datasets (Majumdar et al., 2020). Compelling approaches in the EQA task family often start
with supervised (or imitation) learning to first learn from available expert traces, then use rein-
forcement learning in a fine-tuning stage, with the hope of finding a more generalisable model
parameterisation for unseen environments (Das et al., 2018a; Wijmans et al., 2019a). Of the pop-

3. Common sense is broad and inherits several concepts from related domains, such as cognitive science and psychology.
For a brief treatment of the various types of commonsense knowledge, in the context of neural prediction on AI tasks
such as question answering in NLP, we refer interested readers to the works by Ma et al. (2019c, 2021).
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ular learning paradigms in use, for a given task, it is challenging to define which permutation(s)
yield the best downstream and cross-domain results. However, given the underlying motivation
of optimising for generalisability and interpretability, explicit treatment should be given to finding
the learning paradigm(s) that most effectively integrate information for various related sources and
generalises agents’ inductive biases to new environments; the training paradigms should include ex-
plicit mechanisms (constraints, regularisation strategies) for encouraging these properties we hope
to imbue.

5.4 Model Evaluation Paradigms

Datasets and simulation environments are the primary driving forces behind EVLP research, since
one’s ability to measure model efficacy relies on the availability of strong testing scenarios and
the appropriate evaluation criteria. Current EVLP tasks are implemented as a set of goals and
metrics, atop pre-existing simulators or datasets. In this section, we urge the community to consider
and prioritise the deployment of EVLP agents to real-world settings. As examples of potential
task applications, we may imagine VLN models to be used for object-delivery and retrieval, EQA
models for search and reconnaissance scenarios, VDN models for shared autonomy and human-
machine collaboration, EOR models for scene understanding and surveillance, and EGM models for
such applications as household robotics and manufacturing. Here, task metrics can have conflicting
objectives, where they need to resemble measures of what “good” agent behaviour might look like
in the real-world, despite being subject to the practical limitations of the dataset or simulator itself
(e.g., physical fidelity, semantic saliency, phenomenological coverage). Specifically, we assert that
various EVLP tasks and metrics may be improved on the basis of three dimensions: (i) simulator
realness, (ii) dataset realness, and (iii) tests for model generalisability.

5.4.1 SIMULATOR REALNESS

Simulation-based training is intended to serve as a proxy for training agents in the real-world, par-
ticularly in situations where operating or fully-supervising real-world agents would be prohibitively
expensive or impossible. Furthermore, simulation-based training and execution are especially at-
tractive when modeling a sequential learning problem (i.e., in which the environment’s state and
an agent’s observations are functions of the agent’s previous action), since offline datasets do not
allow for such recursive interaction with an environment. There are limitations, however, in how
effectively scientists and practitioners can encourage the desired model behaviour to emerge for
real-world use-cases—chief among these limitations are those of the simulation environment itself
as well as discrepancies in how task metrics are defined. Compared to the real-world, simula-
tors have reduced physical fidelity (e.g., discretized navigation graphs, synthetic visual contexts)
and limited semantic/phenomenological coverage (e.g., time-invariant weather and obstacles). As
a result, a number of real-world physical challenges in robotics and computer vision (e.g., visual
affordance learning, proprioceptive control, system identification) are abstracted away in simulated
EVLP tasks. While this may allow for a concerted effort for pursuing other aspects of advanced
reasoning in agents, agents trained in these environments risk overfitting to the incomplete transi-
tion dynamics provided by the simulated environment, which are only approximations of the true
dynamics that govern corresponding natural generative processes (Alami et al., 1998). Further-
more, the task execution primitives (e.g., pick, place, move), which have become commonplace
in simulated EVLP tasks as abstracted actions, may not always translate to the same abstractions

493



FRANCIS, KITAMURA, LABELLE, LU, NAVARRO & OH

in the real-world, e.g., due to noisy execution (Chattopadhyay et al., 2021). Because this disso-
nance reduces models’ immediate viability for real-world deployment, we assert the importance of
increased attention from the computer vision and robotics communities on the topics of simulation-
to-real transfer, unseen generalisation, out-of-distribution prediction, and domain adaptation. In
situations where task metrics are inappropriately defined (e.g., only end-goal success rate metrics
are available, ignoring collisions and sharp movements), trained models are optimised according
to incomplete objectives, which serve only to distinguish between entries on AI task leaderboards
rather than fundamentally assess model readiness for real-world deployment. We encourage the
definition of metrics that assess intermediate agent behaviours and task efficiency, as opposed to
simply indicating task completion.

5.4.2 DATASET REALNESS

Dataset-based agent training thrives in many situations, including those that dictate modeling the
space of all observations and agent actions as probability distributions (as in normalising flow-based
approaches, variational Bayesian methods, etc.), when performing knowledge distillation with priv-
ileged information (as in learning from demonstrations), when warm-starting models before policy
refinement (e.g., pre-training, data augmentation), or when introducing auxiliary objectives to the
training procedure (e.g., learning skills, supervising stopping criteria).4 Despite these momentary
advantages over simulation, physical fidelity and semantic coverage requirements are even more
pronounced in dataset-based training, since, now, limited (or no) observation of the environment’s
transition dynamics is available to agents as additional supervision. Indeed, rare-event coverage is
particularly challenging for models in dataset-based training settings, due to the imbalanced sup-
port that leads to unrealistic priors and ill-prepared posteriors. Another limiting factor in the use
of datasets for real-world model deployment is the adoption of unrealistic assumptions about the
design or collection of data, e.g., the inclusion of programmatically-generated template instruc-
tions that would likely not be observed in the real-world. Next, the modalities provided by various
datasets reflect only a subset of the sensory information that a cognitive agent may utilise for solving
EVLP tasks in the real world. For example, few datasets have the notion of ambient environmental
sounds (e.g., running sink faucets, vibrations from home appliances), despite this information be-
ing crucial to how humans interact with the world (Chen et al., 2020c). Moreover, dataset metrics
vary in the agent behaviours they seek to encourage, i.e., by way of the model training objectives
they necessitate (see Section 5.3). We want agent behaviour to manifest, free from the spurious
variation in the visual observations, natural language, and expert traces; we want agent behaviour
to remain invariant to irrelevant features (e.g., environment-specific scene backgrounds, linguistic
synonyms and variance in sentence structure, etc.) and, accordingly, we encourage the emergence
of EVLP datasets that enable agents to be simulator-agnostic. The same metrics may be defined
across multiple environments, enabling “purer” skill affordances. Finally, special care should be
given to the formats in which datasets are released and reported: characterising (i) the action space,

4. One may reasonably argue in favour of dispensing with the datasets and, instead, using a simulator (should one be
available). However, we offer a reminder that using labeled datasets constitutes performing knowledge distillation
with privileged information (Lopez-Paz et al., 2016), as in Imitation Learning (IL), which has provably faster con-
vergence time and reduced model capacity requirements, compared to learning without privileged information. The
challenges facing IL (Ross et al., 2011b; de Haan et al., 2019) result primarily from the lack of comprehensiveness
and robustness in the expert (teacher) traces, not in the notion of using an expert in itself. Furthermore, IL approaches
have become the de facto alternative to formulating EVLP tasks as POMDPs with sparse rewards.

494



CORE CHALLENGES IN EMBODIED VISION-LANGUAGE PLANNING

(ii) instruction length (average and range), (iii) vocabulary size, (iv) data collection procedure, and
(v) data availability (e.g., open-source or academic use permitted).

5.4.3 TESTS FOR GENERALISABILITY

EVLP datasets, such as those listed in Table 7 of this paper, have been conventionally separated
across domain and task lines (Hermann et al., 2020; Chen et al., 2019b; Anderson et al., 2018c; Das
et al., 2018a). In the context of real-world deployment, however, models are expected to encompass
such properties as transferability to unseen environments and robustness to model and environmen-
tal uncertainty. Agents should be able to perform the same EVLP task, regardless of the nuances in
the visual background; agents should be capable of driving in both urban and highway scenarios;
agents trained on a relevant set of tasks should enjoy an advantage on similar unseen tasks. We
assert that evaluation paradigms should assess agents using explicit tests for: generalisability across
domains; generalisability across tasks. The need for these additional evaluation assessments is not
new. As the ubiquity of deployed approaches increased while the challenges in robust multimodal
alignment continued to abound, other communities, such as visual question answering (VQA), have
faced similar changes in requirements. Agrawal et al. (2018) produced the VQA-CP dataset, an
extension of the original VQA task (Antol et al., 2015) which contained multiple validation splits
from different environments. While, in EVLP tasks, there is already the notion of seen and unseen
environment splits (Anderson et al., 2018c; Das et al., 2018a; Gordon et al., 2018; Shridhar et al.,
2020), the multiple dimensions of possible variation in the unseen split (distribution of objects,
distribution of backgrounds, distribution of indoor layouts) remain largely unstudied; there are no
guarantees that these splits are representative of the types of desired real-world scenarios. Having a
test bed with different test splits would be beneficial, as it would allow researchers to verify if their
models are learning spurious (or non-transferable) correlations in the observations or if the mod-
els are actually learning to plan. The authors also advocate for the assessment of agents’ abilities
to generalise to longer path lengths and to other tasks. The EVLP community already has several
datasets that would facilitate this analysis, which broadly fall into two general categories: path con-
catenation and path decomposition. Path concatenation, such as R4R, R6R, R8R (Jain et al., 2019;
Zhu et al., 2020b) works by joining paths that start and terminate near one another to generate longer
paths. Agents can be trained on these longer paths or evaluated over them (Jain et al., 2019). Rather
than building longer paths from the same dataset, path decomposition breaks down the path into
fine-grained instructions (Li et al., 2020b; Zhu et al., 2020b). The agent is trained over those and
then evaluated over the larger dataset with longer instructions. Note that path concatenation and
decomposition are not mutually exclusive (Zhu et al., 2020b). Extending these techniques to other
datasets or developing new techniques would be one way of evaluating how length and complexity
impact performance.

6. Conclusion

As a field in development, EVLP has never been fully documented. In this paper we proposed a
taxonomy which covers: tasks in EVLP, learning paradigms and training techniques used, evalu-
ations, open challenges. We provided a framework to discuss existing and future tasks based on
the skills required to solve them. We discussed usage of training paradigms such as reinforcement
learning and supervised learning, common training tricks such as data augmentation, and commonly
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used loss functions. Evaluation of models and a framework to discuss what aspects of performance
each of these metrics covers. Finally the challenges currently being tackled in the field and what
challenges still remain to be tackled. Specifically we discuss issues that could prevent real world
deployment, such as a lack of generalization, robustness, simulator realness, and lack of interac-
tions. With the speed of improvements in the field we feel that these challenges could be tackled
and allow for real world deployment of these EVLP agents.
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(2021). Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., and Farhadi, A. (2018). IQA:
visual question answering in interactive environments. In 2018 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages
4089–4098. IEEE Computer Society.

Hao, W., Li, C., Li, X., Carin, L., and Gao, J. (2020). Towards learning a generic agent for vision-
and-language navigation via pre-training. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 13134–13143.
IEEE.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. B. (2017). Mask R-CNN. In IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2980–
2988. IEEE Computer Society.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society.

He, Z., Julian, R., Heiden, E., Zhang, H., Schaal, S., Lim, J. J., Sukhatme, G., and Hausman, K.
(2018). Zero-shot skill composition and simulation-to-real transfer by learning task representa-
tions. arXiv preprint arXiv:1810.02422.

Herman, J., Francis, J., Ganju, S., Chen, B., Koul, A., Gupta, A., Skabelkin, A., Zhukov, I., Kum-
skoy, M., and Nyberg, E. (2021). Learn-to-race: A multimodal control environment for au-
tonomous racing. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9793–9802.

Hermann, K. M., Malinowski, M., Mirowski, P., Banki-Horvath, A., Anderson, K., and Hadsell,
R. (2020). Learning to follow directions in street view. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in

502



CORE CHALLENGES IN EMBODIED VISION-LANGUAGE PLANNING

Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 11773–11781.
AAAI Press.

Hester, T., Vecerı́k, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan, J.,
Sendonaris, A., Osband, I., Dulac-Arnold, G., Agapiou, J. P., Leibo, J. Z., and Gruslys, A. (2018).
Deep q-learning from demonstrations. In McIlraith, S. A. and Weinberger, K. Q., editors, Pro-
ceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 3223–3230. AAAI Press.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural networks for machine learning lecture
6a overview of mini-batch gradient descent.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8):1735–1780.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. (2019). The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Hong, Y., Rodriguez, C., Wu, Q., and Gould, S. (2020). Sub-instruction aware vision-and-language
navigation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3360–3376, Online. Association for Computational Linguistics.

Hu, Y., Wang, W., Jia, H., Wang, Y., Chen, Y., Hao, J., Wu, F., and Fan, C. (2020). Learning to utilize
shaping rewards: A new approach of reward shaping. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M., and Lin, H., editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Huang, H., Jain, V., Mehta, H., Baldridge, J., and Ie, E. (2019). Multi-modal discriminative model
for vision-and-language navigation. In Proceedings of the Combined Workshop on Spatial Lan-
guage Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP), pages
40–49, Minneapolis, Minnesota. Association for Computational Linguistics.

Ilharco, G., Jain, V., Ku, A., Ie, E., and Baldridge, J. (2019). General evaluation for instruction
conditioned navigation using dynamic time warping. CoRR, abs/1907.05446.

Irshad, M. Z., Ma, C.-Y., and Kira, Z. (2021). Hierarchical cross-modal agent for robotics vision-
and-language navigation. arXiv preprint arXiv:2104.10674.

Jain, V., Magalhaes, G., Ku, A., Vaswani, A., Ie, E., and Baldridge, J. (2019). Stay on the path:
Instruction fidelity in vision-and-language navigation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 1862–1872, Florence, Italy. Association
for Computational Linguistics.

Jansen, P. (2020). Visually-grounded planning without vision: Language models infer detailed
plans from high-level instructions. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 4412–4417, Online. Association for Computational Linguistics.

503



FRANCIS, KITAMURA, LABELLE, LU, NAVARRO & OH

Jeon, H. J., Losey, D. P., and Sadigh, D. (2020). Shared autonomy with learned latent actions. arXiv
preprint arXiv:2005.03210.

Jiang, Z., Francis, J., Sahu, A. K., Munir, S., Shelton, C., Rowe, A., and Bergés, M. (2018). Data-
driven thermal model inference with armax, in smart environments, based on normalized mutual
information. In 2018 Annual American Control Conference (ACC), pages 4634–4639.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The malmo platform for artificial
intelligence experimentation. In Kambhampati, S., editor, Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 4246–4247. IJCAI/AAAI Press.
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H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 5754–5764.

Ye, X. and Yang, Y. (2020). From seeing to moving: A survey on learning for visual indoor naviga-
tion (vin).

Yu, F., Deng, Z., Narasimhan, K., and Russakovsky, O. (2020). Take the scenic route: Improving
generalization in vision-and-language navigation. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020,
pages 4000–4004. IEEE.

Yu, L., Chen, X., Gkioxari, G., Bansal, M., Berg, T. L., and Batra, D. (2019). Multi-target embodied
question answering. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pages 6309–6318. Computer Vision Foundation
/ IEEE.

Zhang, Y., Tan, H., and Bansal, M. (2020). Diagnosing the environment bias in vision-and-language
navigation. In Bessiere, C., editor, Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, pages 890–897. ijcai.org.

514



CORE CHALLENGES IN EMBODIED VISION-LANGUAGE PLANNING

Zhang, Z., Li, Q., Huang, Z., Wu, J., Tenenbaum, J., and Freeman, B. (2017). Shape and material
from sound. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vish-
wanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 1278–1288.

Zhao, M., Anderson, P., Jain, V., Wang, S., Ku, A., Baldridge, J., and Ie, E. (2021). On the evaluation
of vision-and-language navigation instructions. CoRR, abs/2101.10504.

Zhu, F., Zhu, Y., Chang, X., and Liang, X. (2020a). Vision-language navigation with self-supervised
auxiliary reasoning tasks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 10009–10019. IEEE.

Zhu, H., Neubig, G., and Bisk, Y. (2021a). Few-shot language coordination by modeling theory of
mind. In International Conference on Machine Learning, pages 12901–12911. PMLR.

Zhu, W., Hu, H., Chen, J., Deng, Z., Jain, V., Ie, E., and Sha, F. (2020b). BabyWalk: Going
farther in vision-and-language navigation by taking baby steps. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 2539–2556, Online. Association
for Computational Linguistics.

Zhu, W., Qi, Y., Narayana, P., Sone, K., Basu, S., Wang, X. E., Wu, Q., Eckstein, M. P., and
Wang, W. Y. (2021b). Diagnosing vision-and-language navigation: What really matters. CoRR,
abs/2103.16561.

Zhu, Y., Zhu, F., Zhan, Z., Lin, B., Jiao, J., Chang, X., and Liang, X. (2020c). Vision-dialog
navigation by exploring cross-modal memory. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 10727–
10736. IEEE.

515


	Introduction
	Scope of this Survey
	Intended Audience and Reading Guide
	Related Surveys

	Problem Definition
	Taxonomy
	Tasks in Embodied Vision-Language Planning
	Vision Language Navigation
	Embodied Question Answering
	Embodied Object Referral
	Vision and Dialogue Navigation
	Embodied Goal-Directed Manipulation


	Approaches
	Modeling Vision, Language, and Planning
	Modeling Vision
	Modeling Language
	Modeling Multimodality
	Modeling Action-Generation and Planning

	Learning Paradigms
	Supervised Learning
	Reinforcement Learning
	Joint Reinforcement and Supervised Learning

	Common Techniques
	Data Augmentation
	Additional Objectives
	Pre-Training
	Multitask Learning
	Learning and Optimization
	Reward Shaping


	Evaluation
	Metrics
	Success
	Distance
	Path-Path Similarity
	Instruction-Based
	Object Referral

	Simulation Environments and Datasets
	Simulators
	Datasets


	Open Challenges in Embodied Vision-Language Planning
	New Directions in EVLP Research
	Social Interaction
	Dynamic Environments
	Cross-Task Robot Learning

	Use of Domain Knowledge
	Pre-Training
	Commonsense Knowledge

	Agent Training Objectives
	Model Evaluation Paradigms
	Simulator Realness
	Dataset Realness
	Tests for Generalisability


	Conclusion

