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Abstract

Time management under uncertainty is essential to large scale projects. From space
exploration to industrial production, there is a need to schedule and perform activities.
given complex specifications on timing. In order to generate schedules that are robust to
uncertainty in the duration of activities, prior work has focused on a problem framing that
uses an interval-bounded uncertainty representation. However, such approaches are unable
to take advantage of known probability distributions over duration.

In this paper we concentrate on a probabilistic formulation of temporal problems with
uncertain duration, called the probabilistic simple temporal problem. As distributions of-
ten have an unbounded range of outcomes, we consider chance-constrained solutions, with
guarantees on the probability of meeting temporal constraints. By considering distributions
over uncertain duration, we are able to use risk as a resource, reason over the relative like-
lihood of outcomes, and derive higher utility solutions. We first demonstrate our approach
by encoding the problem as a convex program. We then develop a more efficient hybrid
algorithm whose parent solver generates risk allocations and whose child solver generates
schedules for a particular risk allocation. The child is made efficient by leveraging existing
interval-bounded scheduling algorithms, while the parent is made efficient by extracting
conflicts over risk allocations. We perform numerical experiments to show the advantages
of reasoning over probabilistic uncertainty, by comparing the utility of schedules generated
with risk allocation against those generated from reasoning over bounded uncertainty. We
also empirically show that solution time is greatly reduced by incorporating conflict-directed
risk allocation.

1. Introduction

Scheduling problems are ubiquitous and often involve complex interdependencies between
timing of events. One example is ocean exploration. For ocean field deployments to be
successful, schedulers must reason about uncertainty in the duration of activities. Activities
associated with traversals are uncertain due to actuation noise and slip, and science activities
are uncertain due to the variability in the time needed to perform experiments and collect
data. Probability distributions for these uncertain durations are often known, for example,
from dynamics modeling in the case of traversals and from prior history in the case of science
activities. One approach to managing uncertainty is to construct a schedule that is feasible
for all possible outcomes, but this approach is not viable for a commonly occurring case
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Figure 1: Oceanographic example. The Jason underwater vehicle operated by the Woods
Hole Oceanographic Institute (left) is sent on missions to collect samples under-
water, include water column samples and soil samples. The picture on the right
shows the feed from onboard cameras during a water column sample mission.

in which the range of outcomes is unbounded, such as an uncertain position that behaves
according to a normal distribution.

The following is an example of our alternative, of using a probabilistic problem state-
ment.

Example 1. Consider an oceanographic mission similar to that described in (Mendes et al.,
2013), in which an unmanned vehicle and a crewed science vessel cooperate to gather and
analyze samples from the seabed. The unmanned vehicle must travel to the site of interest
and gather seabed soil samples before an eruption of a hydrocarbon plume. The scientists
require at least 6 1/2 hrs for sample collection, while travelling to the site takes at least 4 hrs.
The time of eruption is not known exactly before hand. However, given past observations,
a distribution is available over eruption time relative to the start of day, with a mean of 15
hrs and a standard deviation of 2 1/2 hrs. Given this uncertainty, the scientists decide they
will accept a risk of 5% of having less than 6 1/2 hrs to collect samples.

In this example, the goal is captured by the requirement of having at least 6 1/2 hrs
to collect samples. Importantly, it includes a corresponding upper bound on probability of
failure of 5%, which acknowledges that there is risk, and specifies what risk is acceptable.
Variables that influence this required collection time are time of eruption and travel time.
Eruption is treated as a random variable and is described by a normal distribution, through
a mean and variance. Travel time is treated as controllable and has a lower bound.

We refer back to this example to motivate our first contribution: our introduction of the
probabilistic simple temporal network (pSTN), for modeling scheduling problems with tem-
poral uncertainty, and the definition of the chance-constrained probabilistic simple temporal
problem (cc-pSTP), which asks for schedules that offer upper-bounds on the probability of
requirement failure. This formulation allows us to describe uncertainties that arise from
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many real world phenomena and activities, and allows us to find schedules that are of high
utility with respect to an objective function, while meeting requirements on timing at a
confidence level specified by the user.

It can be difficult to evaluate the probability of success of a particular schedule exactly.
However, it is often easier to evaluate the probability mass covered by finite intervals over
uncertain durations. This insight motivates the second major contribution, an approximate
encoding of cc-pSTP as a mathematical programming problem. This encoding leverages prior
results on scheduling with interval-bounded uncertainty, and incorporates the corresponding
constraints within the mathematical program. The key to this contribution is a particular
application of risk allocation (Ono and Williams, 2008) that allows us to come up with
uncertainty sets that respect the chance constraints and result in feasible schedules with
higher utility schedules.

Decomposition can often offer a more efficient alternative to framing a monolithic math-
ematical program. Our third contribution is a decomposition of the encoding used to solve
cc-pSTPs. A parent sub-solver generates candidate uncertainty sets by allocating the risk,
specified by the chance constraint, across the uncertain durations. A child sub-solver then
checks schedulability of a candidate, using standard methods for problems with interval-
bounded uncertain durations. A key to this contribution is to focus subsequent candidate
search using conflicts discovered when a candidate is found infeasible. A conflict is a con-
straint denoting infeasible candidates (Stallman and Sussman, 1977; De Kleer and Williams,
1989). Together, the parent avoids unpromising candidates while the child offers efficient
checking procedures.

While the formulation of the pSTN and the approximate encoding of cc-pSTP were doc-
umented together (Fang et al., 2014), the decomposition approach was separately described
(Wang and Williams, 2015). The two approaches have complementary features.

The nonlinear optimization encoding of the cc-pSTP included the specification of an
objective function, allowing higher quality schedules. This is in the tradition of prior work
on simple temporal problems with preference (Khatib et al., 2001) and simple temporal
problems with preference and uncertainty (Yorke-Smith et al., 2003). This contrasts with
the approach using decomposition, which did not incorporate an objective function.

On the other hand, as the numerical encoding did not exploit the availability of solution
methods specific to temporal networks, the numerical encoding did not benefit from the ef-
ficiency gains of the decomposition approach. Our fourth contribution is the unification of
the decomposition approach with the numerical approach, allowing efficient optimal schedul-
ing through a conflict driven algorithm. We thus combine the best features of our previous
work, and provide an approach which optimizes with respect to an objective function as
our algorithm did in Fang et al. (2014), while retaining similar runtime performance to our
algorithm in Wang and Williams (2015).

The rest of this paper is structured as follows: Section 2 provides a survey of methods
for scheduling with temporal constraints, with a focus on stochastic scheduling. Section 3
then presents our new representation for temporal networks with probabilistic uncertainty
and states the chance-constrained probabilistic simple temporal problem (cc-STP). Section
4 provides an approximate encoding of the cc-pSTP as a convex program, expanding on
our treatment in Fang et al. (2014). Section 5 reviews the decomposition approach given in
Wang and Williams (2015) to finding a satisfying solution to the approximate cc-pSTP, and
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Figure 2: An STN for the traversal portion of the oceanography example described in Exam-
ple 1. The two circles represent the controllable events and the solid line between
represent the timing constraint between the events, specifying the allowed interval
for the time difference between the two events.

discusses two methods for incorporating the objective function. Section 6 provides numerical
results comparing the nonlinear optimization encoding approach, and the decomposition
approaches, in terms of the quality of solution and the run time. Section 7 provides a
summary of the key points of this work.

2. Background on Simple Temporal Networks

The problem of scheduling arises from temporal planning, where actions have duration and
the start and end times of actions need to be determined. In temporal planning, not only
must the generated sequence of actions be feasible, be enabled and reach the goal state, but
the event times of this sequence must be consistent with a set of temporal requirements,
such as deadlines and ordering constraints. The problem of scheduling events with stringent
specifications is crucial to the success of science missions, shown in Example 1. As part of
your plan, you need to come up with a schedule to meet these requirements.

Temporal constraint networks (Dechter et al., 1991), called temporal networks for short,
offer a way to express the temporal structure of such plans. They consist of real-valued
variables called events (sometimes called timepoints), which denote when actions start and
end, and temporal constraints relating pairs of events. By drawing the events as vertices and
the constraints as directed edges, a graph structure emerges, called a temporal constraint
network. A network depicting the traversal portion of the oceanography example is shown
in Figure 2. A scheduling problem involves finding an assignment to the events such that
all temporal constraints are satisfied. Thus, a temporal network is often used to isolate the
scheduling aspect of temporal planning. Uncertainty has been addressed before in temporal
networks, but primarily in the form of interval bounds over possible values of uncertain
variables (Vidal and Fargier, 1999; Venable and Yorke-Smith, 2005; Hunsberger et al., 2012).
For example, an interval [5, 10] could specify that an action duration is guaranteed to be
between 5 and 10 minutes, but its exact value can not be controlled. This is a simple but
imprecise model of temporal uncertainty, as it is unable to express that certain durations
are more likely than others; something that we can often extract from data or a model. To
do so, we could replace interval bounds on durations with probability distributions, as was
first introduced by Tsamardinos (2002). Using this as a starting point, our purpose is to
revisit the problem statement of probabilistic scheduling and to offer an alternative class of
problems and solution approaches, with particular attention to the concept of risk and risk
bound.
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Note that an important dimension of temporal network research, not explored in this pa-
per, involves representing and reasoning about conditionality. Temporal constraints can be
labeled by logical conditions, with these constraints activated only if their conditions eval-
uate to true, given the state of the world (Dechter et al., 1991; Stergiou and Koubarakis,
2000; Kim et al., 2001; Levine and Williams, 2018; Lau and Hoang, 2014). These conditions
can represent controllable choices made during planning or uncontrollable effects observed
during execution. Thus, conditional networks can express the temporal structure of plans
with contingencies. When searching for a contingent plan, it is possible to leverage infor-
mation from temporal constraints to prune the space of conditions (Conrad and Williams,
2011). However, this type of reasoning is largely orthogonal to our goal of realizing consis-
tent schedules given uncertain durations. Therefore, this paper focuses on the unconditional
setting, a class of networks called simple temporal networks (STNs), in which all constraints
are always active.

The goal of the remainder of this section is to define the scheduling problem for an STN
with probabilistic durations, including what constitutes a valid solution. To this end, we
first establish the concepts of consistency and execution, drawing from the literature. First,
we define STN and the concepts of scheduling and dispatching an STN. Then, we make some
durations uncontrollable, with intervals bounding their uncontrolled values, thus forming a
STN with uncertainty (STNU). Next we update the concepts of scheduling and dispatching
accordingly. Building upon this background, in Section 3 we describe uncertain durations
using distributions rather than intervals, thus creating a probabilistic STN (pSTN). Finally,
we incorporate specifications of acceptable risk of failure by defining chance constraints, thus
completing our new problem statement.

2.1 Simple Temporal Networks

Temporal constraint networks, as originally defined by Dechter et al. (1991), allow a con-
straint on the difference between two events to be expressed as a disjunction of intervals.
For instance, Y may be allowed to happen either 1 to 3 time units or 5 to 9 time units
after X, but not 3 to 5. In other words, Y − X ∈ [1, 3]

⋃
[5, 9]. This disjunction can be

equivalently expressed as conditional constraints; intuitively, checking whether the disjunc-
tive constraint is satisfied involves determining which interval is active. Simple temporal
networks forbid multiple disjuncts outright (Definition 1).

Definition 1. A simple temporal network (STN) N = 〈E,C〉 is a constraint network
consisting of

• real-valued events E, as its scope, and

• simple temporal constraints (STCs) C on the duration between pairs of events X and
Y , of the form Y − X ∈ [l, u], where X and Y are events, and l, u ∈ R. Y − X is
called a duration.

Events denote specific points in time. A simple temporal constraint may be equivalently
expressed by the two constraints l ≤ Y −X ≤ u, denoting lower bound l and upper bound
u on Y −X.

STNs are used to identify consistent schedules (Definition 2).
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Figure 3: Distance Graph for the traversal portion of the oceanography example.

Definition 2. A schedule of STN N = 〈E,C〉 is an assignment to events E that satisfies
constraints C. A schedule of N is called a solution to a simple temporal problem with
network N . If a schedule exists, then the STN is said to be consistent.

Because temporal constraints express bounds on the relative difference between pairs of
events, a schedule can be offset forward or backward in time and still be valid. Hence, by
convention, we typically introduce a start event S that occurs at time 0 and precedes or
co-occurs with all events, so that all events occur at non-negative times. A fundamental
property of an STN is that it is consistent if and only if no negative cycles are contained
in its equivalent distance graph (Dechter et al., 1991). A simplified STN and its distance
graph for the Oceanographic example is shown in Figure 2 and Figure 3 respectively. To
encode an STN with a distance graph, each event in E is introduced as a vertex, and each
constraint l ≤ Y −X ≤ u in C is expressed with two upper-bound directed edges, X

u−→ Y

and Y
−l−→ X, denoting constraints Y −X ≤ u and X − Y ≤ −l, respectively. Each path

through the distance graph represents an upper bound between the endpoints of that path,
where the upper bound is the accumulated weights of the path. A shortest path between
two events specifies the tightest constraint on their separation. Finally, a path that starts
and ends on the same event e, that is, a cycle, denotes constraint e− e ≤ w, where w is the
path weight. This constraint is inconsistent if and only if w is negative.

2.2 Uncertainty and Controllability

In a standard STN formulation, simple temporal constraints are used to represent both
temporal requirements and the duration of actions. An implicit assumption is that the
duration of actions are fully controllable: like requirements, we may choose any value for
action duration that lies within its bounds. However, this is insufficient to represent many
real world scenarios, as actions may have uncontrollable durations. In this case we cannot
choose the precise duration of the actions, but we may know their duration within given
bounds. The simple temporal network with uncertainty models these scenarios (Vidal and
Fargier, 1999) (Definition 3).

Definition 3. A simple temporal network with uncertainty (STNU) is defined as Nu =
〈Ec, Eu, Cr, Cc〉, where

• Ec is a set of real-valued controllable events that the agent can assign;

• Eu is a set of real-valued uncontrollable events assigned by nature;

• Cr is a set of requirement constraints, y − x ∈ [l, u], for events x, y ∈ Ec
⋃
Eu,

l, u ∈ R and
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Figure 4: STNU representation of the oceanography example.

• Cc is a set of contingent constraints, Y −X ∈ [l, u] where X ∈ Ec
⋃
Eu, y ∈ Eu, and

l, u ∈ R+. Y is called the terminating event. Every Y ∈ Eu is a terminating event of
exactly one c ∈ Cc.

A duration Y −X is controllable if X,Y ∈ Ec and uncontrollable, otherwise.

A STNU differs from a STN in that events are divided into controlled and uncontrolled
events. Likewise, simple temporal constraints are divided into requirement and contingent
constraints. Both bound the difference between events to an interval. However, while
requirement constraints allow their difference to be chosen by design, contingent constraints
are used to represent actions with uncertain durations whose values are chosen by nature.

We might map the scenario from Example 1 to an STNU as follows.

Example 2. Given the uncertainty surrounding the time of eruption, the oceanographers
typically provide estimated upper and lower bounds on the uncertain duration to this event.
Recall that the scientists set the probability of failure to complete sample collection before
eruption to be less than 5%. The scientists decide to distribute this risk evenly and consider
only the 2σ interval for the time of eruption, by assuming a normal distribution for the time
of eruption. This results in the STNU depicted in Figure 4.

It follows from this definition that there is a 1-1 mapping between uncontrolled events Eu

and contingent constraints Cc. A contingent constraint must terminate on an uncontrollable
event. Conversely, every uncontrollable event has exactly one contingent constraint that
terminates on it. The reason for this is that the duration associated with every contingent
constraint corresponds to an independent stochastic process, hence it does not make sense
for two contingent constraints to determine the value of the same event.

It is often the case that we would like to model two independent threads of activity that
each have uncertain durations and are followed by a common event. We cannot guarantee
that these two threads end at the same time, hence one thread may have to wait for the other
thread to finish. We can model these waiting times using [0,+∞) requirement constraints.
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We place no restrictions on the start event of an uncontrollable duration. It could be a
controllable event that is scheduled by a policy, or it could be an uncontrollable event that
ends a previous uncertain duration.

To characterize the behavior of an STNU for different values of uncontrolled events, we
introduce the concept of outcome (Definition 4).

Definition 4 (Outcomes and scheduling policies). An outcome ω of STNU Nu is a set of
assignments to the durations of its contingent constraints Cc. ωX,Y denotes the assignment
ω(Y −X) to duration Y −X.

A scheduling policy π : R|Cc| → R|Ec| for Nu assigns controllable events Ec based
on outcomes ω for its contingent constraints Cc. A policy denotes a fixed schedule if
π(ω) = π(ω′) for all outcomes ω and ω′.

In this paper we only consider outcomes as complete assignments to durations of contin-
gent constraints. When an outcome ω assigns ωXY to the duration of a contingent constraint

X
[l,u]−→ Y , that contingent constraint effectively becomes X

[ωXY ,ωXY ]−→ Y . There is thus no
uncertainty in the contingent constraint, given the outcome, and the contingent constraint
is equivalent to requirement constraint [ωXY , ωXY ]. As a consequence, given an outcome,
we may reduce an STNU to an equivalent STN, by replacing all contingent constraints with
requirement constraints. This STN is called the projection pω of the STNU under outcome
ω.

The concept of correct fixed schedule with respect to possible outcomes is captured by
strong controllability (Definition 5).

Definition 5 (Strong Controllability). Consider STNU N u = 〈Ec, Eu, Cr, Cc〉. Let Ω be
the set of outcomes for contingent constraints Cc. We say that N is strongly controllable
if there exists a fixed schedule π such that for any ω ∈ Ω, all constraints in Cr are satisfied.

Intuitively, an STNU is strongly controllable if there exists a schedule such that, for any
outcome of its contingent constraints, its set of requirement constraints is satisfied. There
is thus at least one schedule that always “works”.

We illustrate strong controllability with the following example, which shows that the
scenario given in Example 2 is not strongly controllable.

Example 3. Consider again Figure 4, depicting an STNU with a 2σ interval around mean
for its uncertain duration. Given the 240 minute lower bound for traversal time and the 390
minute lower bound required to collect data, we need at least 630 minutes to complete the
mission. However, the contingent constraint specifies that the eruption could occur as early
as 600 minutes. Thus, there is no schedule that guarantees for all eruption times that the
data will be gathered before the eruption occurs. The STNU is thus not strongly controllable.

One way to think about strong controllability for STNUs is to think in terms of individual
outcomes. Recall that for every STNU outcome, we may replace the contingent constraint
with requirement constraints. For the volcano survey example, consider the outcome in
which contingent constraint AC is assigned 600. We could replace AC with a requirement
constraint [600,600].

Since strong controllability requires a fixed schedule that works for all possible outcomes,
one way to determine strong controllability is to examine all possible outcomes and see if
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Case Conditions Reduction

1 x controllable, y′ uncontrollable with contingent
constraint y′−y ∈ [ly, uy], requirement constraint
y′ − x ≥ a,

y − x ≥ a− ly

2 x controllable, y′ uncontrollable with contingent
constraint y′−y ∈ [ly, uy], requirement constraint
x− y′ ≥ a

x− y ≥ a+ uy

3 x′ uncontrollable with contingent constraint x′ −
x ∈ [lx, ux], y′ uncontrollable with contingent con-
straint y′ − y ∈ [ly, uy], requirement constraint
y′ − x′ ≥ a

y − x ≥ a− ly + ux

Figure 5: Strong controllability reductions (Vidal and Fargier, 1999).

there is a consistent schedule across all outcomes. This is impractical, since contingent con-
straints are assigned real-values within intervals, and thus there is an uncountable number
of outcomes, except degenerate cases.

The key observation made by the STNU literature is that we can represent the effects
of uncertainty on the controllable events and durations of the network through derived
requirements constraints. Intuitively these derived constraints eliminate all schedules that
are inconsistent with any outcome, together with the original requirement constraints. If a
schedule satisfies these derived constraints, it is guaranteed to be consistent with the STNU
for any outcome.

A complete set of derived requirement constraints for an STNU is constructed by com-
puting the closure of a set of strong controllability reductions (Vidal and Fargier, 1999)
(Table 5). This closure can be viewed as eliminating each uncontrollable event through
bucket elimination (Dechter, 1999). Together the reductions take each requirement con-
straint that includes an uncontrollable event and derives from it requirement constraints
between controllable events. The net effect of this process is to reduce a STNU strong
controllability problem to a STN consistency problem.

Performing the reductions over all constraints takes linear time (Vidal and Fargier,
1999) and results in an STN that largely resembles the original STNU, but stripped of
uncontrollable events. With this reduction, the entire theory and set of algorithms for
STNs can be ported over to strongly controllability of STNUs. This means that checking
STNU strong controllability after reduction, is equivalent to checking STN consistency,
which has O(nm) complexity.

In the following example, we give a walk through of the strong controllability algorithm.

Example 4. Consider again Figure 4. From edges
−→
AC and

−−→
BC we use reduction Case 1

to derive a new edge
−−→
BA, as shown in Figure 6. Case 2 is too weak, since the upper bound

is infinite, and Case 3 does not apply. Since all reductions have been applied, this new edge
captures all constraints imposed by the STNU on controlled events A and B, allowing us

to reduce the STNU to an equivalent STN over A and B. Note that the new edge
−−→
BA can
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Figure 6: Strong controllability checking for the oceanography scenario.

also be read as imposing an upper bound of 210 in the direction
−−→
AB. This conflicts with the

original lower bound of 240 on the traversal. Hence the reduced STN is inconsistent, and
the STNU is not strongly controllable.

Note that our proof that the problem was not strongly controllable depended on the
specified bound for the time of eruption. The alternative bound of [630, 1400] would result
in a strongly controllable STNU, while still covering a 95% probability mass. We will
return to this observation when we present our probabilistic approach to scheduling under
uncertainty, in which we consider the relative likelihood of outcomes.

3. Problem: Probabilistic Temporal Networks with Chance Constraints

The STNU formulation of uncertainty offers two powerful benefits. First, it is rooted in the
common real world practice of using intervals to reason about uncertainty simply. Second a
very rich theory and set of efficient algorithms have been developed for reasoning over this
representation.

There are, however, two significant drawbacks. First, the criteria of strong controlla-
bility can be difficult to satisfy in practice. The reason is that a schedule violates strong
controllability if it is inconsistent for even a single outcome, no matter how unlikely the
set of violating outcomes might be. Second, coming up with appropriate intervals for con-
tingent constraints is an art; the literature has not yet provided an objective criteria for
constructing and evaluating the accuracy of contingent constraint intervals, relative to a
particular real world situation.

To address these limitations we introduce a probabilistic problem formulation that as-
sociates a probability distribution, rather than an interval, with each contingent duration.
This allows us to extract a probability for every outcome, rather than simply classifying
each outcome as possible or not. We call this new model a probabilistic Simple Temporal
Network (pSTN).

In addition, we acknowledge that for many real-world problems, risk of failure cannot
be completely removed, and that many real-world processes are accepting of some level of
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failure, if not too excessive. We model this by specifying bounds on the risk of failure to
meet the requirement constraints, called chance constraints (Charnes and Cooper, 1959;
Miller and Wagner, 1965) by the stochastic optimization community.

Alternative extensions of STNs with probabilistic durations have been introduced in
the community. One such formulation (Tsamardinos, 2002) introduced stochasticity into
the problem by considering the timing of uncontrollable events as random variables, with
probability distributions conditioned on the choice of execution times for controllable events.
This formulation was problematic, as the timing of controllable variables are not naturally
cast as random variables.

The timing of controllable variables are influenced both by the choice of execution strat-
egy and the timing of uncontrollable events. It was thus difficult to define the probability
distribution of the timing for each controllable event. This is carried over to the conditional
distributions for the uncontrollable variables, the construction of which required the prob-
ability distributions of the controllable variables. The work in Tsamardinos (2002) focused
on static scheduling, and the controllable events could be scheduled regardless of the out-
come of the uncontrollable events. While this may motivate the construction of probability
distributions for controllable events as indicator functions, this would require the schedule
of the controllable events to be known a priori.

A revision of this formalism partially addresses these concerns (Tsamardinos et al.,
2003). While the absolute timing of the uncontrollable events are still defined as the random
variables in the problem, the associated probability distributions are indirectly constructed
using the time difference between uncontrollable events and controllable events. These time
differences were conditioned on the timing of controllable events. However, the probability
distributions were independent of the assignments to the controllable events. The key
insight, which also motivates our formulation below, is that stochasticity is not introduced
by the timing of the uncontrollable events. Rather, uncertainty in the problem is introduced
due to the timing of the uncontrollable events relative to the timing of the controllable
events. Our definition thus focuses on random variables describing the duration of the
contingent constraints.

A related approach (Lund et al., 2017) considered maximizing the robustness of schedul-
ing strategies to failure. In both cases, the decision making is performed without an ob-
jective function, potentially leading to conservative strategies that result in excessive cost.
Our cc-pSTN formulation lends it self to optimizing an objective function that measures
performance, while incorporating risk as a constraint. Alternatively, a robust optimization
approach was explored in Lau et al. (2006), in which only the mean and variance of the
random variables were considered. Rather than using only the mean and variance of the
random variables, our approach uses the full distributional information in order to avoid
conservatism.

There is also a branch of research into resolving over-constrained chance-constrained
simple temporal problems (Cui et al., 2015; Yu et al., 2015, 2017). Similar to the work
described in Tsamardinos (2002), the work focuses on the feasibility of solutions. Preference
models are specified over the constraint, so that the solver may be able to restore feasibility
by relaxing conflicting constraints. Like this work, the relaxation algorithm uses negative
cycle detection to efficiently prove infeasibility and provide an concise representation of
infeasibility. This is because both approaches rely on decompositions of the problem, in
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which controllability is checked via reformulations to STNs. Negative cycles are natural
summaries of conflicts, and are related to feasibility cuts in a Bender’s Decomposition
framework given a system of difference constraints (see Appendix B).

While preferences are also represented in our work in the form of objective function,
they are not the focus of our work. Preference functions in the context of simple temporal
networks were discussed with a semi-ring formalism (Khatib et al., 2001), a general frame-
work which covers the makespan objective function used in our evaluations. The work was
extended to deal with set-bounded uncertainty (Yorke-Smith et al., 2003), and we adopt a
similar focus on optimality in the context of a fixed schedule in our work.

There has also been work on scheduling under uncertainty beyond the STN community.
The cc-pSTN formulation can be considered a particular kind of stochastic constraint pro-
gramming (Walsh, 2002; Hnich et al., 2012). However, the cc-pSTN can be thought of as
chance-constrained version of a problem involving only difference constraints. This is a key
feature that we exploit in Section 5 in deriving an efficient solution method for cc-pSTNs.

A related line of research in the constraint programming community focuses on stochas-
tic jobshop scheduling (Beck and Wilson, 2007), as well as extensions such as resource-
constrained project scheduling (Fu et al., 2012). The traditional jobshop scheduling focuses
on the order of the jobs, rather than the time assignments, without specifications of tem-
poral constraints, and thus does not naturally describe the same set of problems as STNs
and extensions of STNs. The resource constrained extension is also restrictive, focusing
on specifications of time differences between activities, rather than temporal constraints
between time points in general.

Lastly, recent work has focused on quantifying the probability of feasibility given an
execution strategy and probabilistic uncertainty in timing (Saint-Guillain et al., 2020, 2021).
Rather than constructing a static schedule which meets guarantees on the probability of
success as in this work, the authors have focused on computing the probability of success
when an execution strategy has been specified. The alternative approach has the advantage
of being applicable to dynamic strategies, whereas we confine ourselves to generating static
schedules. The other key difference is that we assume that the uncertain timing is described
with continuous distributions, while the prior work considers discrete distributions.

We start with the following definition of probabilistic STN (Definition 6). An example
is provided in Figure 7.

Definition 6. N p = 〈Ec, Eu, Cr, Cp〉 defines a probabilistic simple temporal network
(pSTN), with

• Ec, Eu, Cc as in Definition 3, and

• Cp is the set of probabilistic contingent constraints. For each cXY ∈ Cp from X to
Y , there is a known probability distribution d such that Y −X ∼ d.

Having made the uncontrollable durations probabilistic in a pSTN, we now consider
what this means for controllability. Whereas the uncontrollable durations of an STNU
are interval-bounded, the tails of pSTN distributions may have unbounded support. When
scheduling pSTNs, we may need to consider more extreme outcomes that could preclude the
scheduler from always producing valid event sequences, that is, satisfying all requirement
constraints. The key, however, is that due to a well-defined joint distribution over outcomes,
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Figure 7: Oceanographic scheduling example.

we can compute success probability in terms of the cumulative probability of outcomes for
which a policy’s resulting schedule satisfies the requirement constraints. This motivates the
following definition of risk for a scheduling policy (Definition 7).

Definition 7 (pSTN policy risk). Consider pSTN N p = 〈Ec, Eu, Cr, Cp〉. For policy π,
let Ωπ ⊆ Ω be the subset of the sample space where some requirement constraint is violated,
that is, for all ω ∈ Ωπ, there exists some constraint c ∈ Cr, where c : Y −X ∈ [l, u], such
that Y (ω)−X (ω) /∈ [l, u], then ω ∈ Ωπ.

The risk of policy π with respect to the set of requirement constraints Cr is, therefore,

ρ(π) = P (Ωπ).

This definition conceptually evaluates risk by integrating the probability measure over
all outcomes for which a policy satisfies its requirements. To do so, the policy can be used
to map each outcome to a schedule over controllable events and check this schedule against
the requirement constraints for violation.

Using our definition of policy risk, we define the pSTN scheduling chance-constrained
satisfaction problem as finding a policy whose risk is below an acceptable bound. The formal
definition of the chance-constrained probabilistic simple temporal problem (cc-pSTP) is
defined as follows.

Problem 1 (Chance-constrained probabilistic simple temporal problem). Given:

• N p = 〈Ec, Eu, Cr, Cp〉, a pSTN; and

• ∆ ∈ [0, 1], an upper bound on the risk of failure.

Find:

• π, a scheduling policy for Ec based on outcomes of contingent constraint durations.

Subject to:
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• ρ(π) ≤ ∆, the probability of policy risk being bounded by ∆.

N p is said to be controllable with probability of failure at most ∆ if and only if such a
policy π exists.

The above problem is defined in general terms, allowing for different types of scheduling
policies. A dynamic policy, assigning controllable events as the outcomes of contingent
constraints are observed, would be dynamically controllable with required probabilities of
success.

In our subsequent treatment, we focus on static schedules for controllable events. These
correspond to a static policy, with parallels to strong controllability in STNU literature.
They would thus be strongly controllable with bounds on the probabilty of failure.

An example of a cc-pSTP is given as follows.

Example 5. Consider the oceanography example introduced in Example 1, and suppose as
in Example 2 that we require a scheduling policy such that the pSTN is controllable with
probability of failure at most 5%. Figure 7 is a graphical depiction of the pSTN for this
scenario. If we define a 5% chance-constraint over this pSTN then we obtain the following

cc-pSTP, where Ec = {A,B}, Eu = {C}, Cr = {
−−→
AB,

−−→
BC}, Cu = {

−→
AC}, and ∆ = 0.05.

In real-world applications, we may also wish to optimize our policies based on defined
performance metrics. For example, for an AUV mission, we may wish to minimize the total
time of the mission. This motivates an optimal extension of the cc-pSTP.

Problem 2 (Optimal cc-pSTP). Given:

• N p = 〈Ec, Eu, Cr, Cp〉, a pSTN; and

• ∆ ∈ [0, 1], an upper bound on the risk of failure.

Find:

• π, a scheduling policy for Ec based on outcomes of contingent constraint durations.

Minimizing:

• E[c(π)], the expected cost given the scheduling policy.

Subject to:

• ρ(π) ≤ ∆, the probability of policy risk being bounded by ∆.

N p is said to be controllable with probability of failure at most ∆ if and only if such a
policy π exists.

The optimal cc-pSTP adds an objective function to the problem formulation, calculated
from the timing of the controllable events. However, in general policies assign times to con-
trollable events based on the outcomes of contingent constraints. The timing of controllable
events is thus probabilistic, and we minimize the objective function in expectation. The
oceanography example may be extended with such an objective function as follows.
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Example 6. Consider the oceanography example outlined in Example 5. Suppose we wish
to find the latest time at which we may arrive at the science site. Then, the objective to be
minimized would be −tB.

In our subsequent treatment, we will focus on finding static scheduling policies – time ta-
bles for controllable events which do not depend on the outcomes of probabilistic contingent
constraints. This particular variant of the problem is highlighted below.

Problem 3 (Optimal static policy cc-pSTP). Given:

• N p = 〈Ec, Eu, Cr, Cp〉, a pSTN; and

• ∆ ∈ [0, 1], an upper bound on the risk of failure.

Find:

• π : Ec → R, a full assignment for Ec, independent of the outcomes of contingent
constraints.

Minimizing:

• c(π), the cost of the static policy π.

Subject to:

• ρ(π) ≤ ∆, the probability of policy risk being bounded by ∆.

N p is said to be strongly controllable with probability of failure at most ∆ if and only if
such a policy π exists.

This problem is of practical interest. Oceanography missions are often drawn up with
timetables for each day, as a common reference for large crews on vessels. In the use case
of public transportation, we may solve for static policies which can then be published as
timetables for departure times.

The focus on static policies also has implications on the formulation of the problem.
In the general formulation in which we may adopt a dynamic policy, the timing of the
controllable events may depend on the outcomes for the contingent constraints. As such,
even in the presence of a policy, the actual timing of the events would be random variables,
and we would need to evaluate the cost of the policy in expectation. In the static schedule
setting, the objective function is over static assignments to controllable events, which are
independent of the outcomes of the contingent constraints. The objective function is thus no
longer evaluated over assignments which are probabilistic. This means that we can directly
minimize the objective rather than minimizing the objective in expectation.

In the remainder of this article we present two efficient methods for solving pSTNs
with static policies, and characterize their performance both analytically and empirically.
Note that these two pSTN approaches preserve the algorithmic benefits of STNUs, by
automatically reformulating pSTNs to STNUs using the concept of risk allocation (Ono
and Williams, 2008), and then applying STNU reductions and consistency procedures to
check pSTN strong controllability. In addition, both approaches offer automated procedures
for deriving STNUs from pSTNs and for objectively evaluating the accuracy of the resulting
STNUs with respect to the pSTN distributions and chance constraints.
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4. Picard: Solving pSTNs by Risk Allocation and Convex Optimization

A cc-pSTP specifies a constraint on the probability of violating any one of a number of
temporal constraints, which is an instance of the classic concept of a joint chance-constraint
(Miller and Wagner, 1965). Evaluating whether a joint chance-constraint is satisfied is
non-trivial, even for a given policy, except under strict assumptions. This motivates a
body of literature on approximations within the stochastic optimization community. Prior
approaches have included scenario- or particle-based evaluations (Nemirovski and Shapiro,
2006; Blackmore and Williams, 2007), which are numerically difficult to evaluate for smaller
risk bounds. As an alternative, prior work has employed convex approximations (Nemirovski
and Shapiro, 2007; Blackmore et al., 2010). Following this second approach, our main focus
in this section is a solver called Picard, which draws on prior insights using the union
bound to formulate a tractable convex approximation of the cc-pSTP. This approximation
leverages the STNU reductions reviewed earlier. Picard encodes this approximation as
a convex program, which it solves using an off-the-shelf commercial solver. This section
thus expands on the treatment of the cc-pSTP given in Fang et al. (2014). In the next
section, we will introduce an alternative solver called Rubato. Rubato builds upon the
same convex approximation, but introduces a hybrid algorithm, which fully exploits STNU
strong controllability and uses conflict-directed search to coordinate between subsolvers.
Rubato’s hybrid algorithm demonstrates significant improved performance over Picard’s
use of an off-the-shelf solver.

4.1 Approximate cc-pSTP

Consider our cc-pSTP encoding, which is based on prior approaches to encoding chance-
constrained problems using the union bound. These approaches search for interval bounds
on the uncertain variables whose cumulative distribution respects the chance constraint.
To do so, they introduce decision variables that denote upper- and lower-bounds on each
uncertain variables. In addition, they impose a constraint on the probability covered within
the bounds. We take a similar approach for cc-pSTP. We introduce decision variables that
bound the outcome of each uncertain duration. In addition, we introduce a constraint on the
probability covered, which by the union bound is sufficient to satisfy the chance constraint
(Problem 4).

Problem 4 (Union Bound Approximation of cc-pSTP). Given a cc-pSTP, comprised of:

• pSTN N p = 〈Ec, Eu, Cr, Cp〉, and

• ∆ ∈ [0, 1], an upper bound on the risk of failure,

Find:

• Lower-bounds Lp = {lc}c∈Cp for contingent constraints Cp,

• Upper-bounds Up = {uc}c∈Cp for contingent constraints Cp, and

• static policy π′, for Ec as a function of uncontrolled durations, mentioned in contingent
constraints Cc = {y − x ∈ [lc, uc]}c∈Cp,
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Minimizing:

• c(π′), the cost of the static policy π′.

Subject to:

• ∑
c∈Cp

Fc(lc) +
∑
c∈Cp

1− Fc(uc) ≤ ∆,

where each Fc is the cumulative distribution for the duration of contingent constraint
c ∈ Cp.

In the original cc-pSTP, computing the risk of a candidate schedule is difficult because it
involves integrating over the outcomes of a joint distribution that satisfies the requirements.
In the approximate cc-pSTP we deal with this difficulty using the union bound, which states
that

P (A ∨B) ≤ P (A) + P (B)

for probabilistic events A and B, regardless of the dependence between A and B. We
use this bound to factor the integration over the joint distribution to integrals over the
individual random variables.

By solving the approximate cc-pSTP, we are trying to find a controllable STNU. We do
so by finding interval bounds for the durations of contingent constraints that cover a large
amount of probability mass. Intuitively, we guarantee the probability of scheduling success
by accounting for a likely range of outcomes.

Problem 4 is thus the mathematical programming formulation of the problem we are
looking to solve in this and subsequent chapters. While we present three approaches in the
remainder of this paper (a monolithic encoding of the approximate problem as a numerical
program; an iterative decomposition of the approximate problem; and a combination of the
two approaches), all three are methods for solving the same problem.

We note that the Union Bound is an upper bound on the probability of failure, thus some
conservatism is introduced. Notably, this formulation does not require the assumption of
independence between durations in our prior work Wang and Williams (2015). We examine
the correctness of the approximation in the next subection, and show that it is sound but
not complete.

4.2 Soundness and Incompleteness

We prove that a policy π obtained from solving the approximate cc-pSTP is also a solution
to the exact cc-pSTP. The intuition behind the approach is as follows:

1. We restrict the probabilistic contingent constraints to bounded intervals, making them
interval-bounded contingent constraints in a new STNU;

2. Suppose the STNU strongly controllable and π is a valid schedule;

3. Suppose further that the subset has measure greater than 1−∆;
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Then the schedule is consistent with probability at least 1 − ∆, hence the probability of
failure is less than ∆.

Theorem 1. Suppose the policy π and set of lower and upper bounds for contingent con-
straints LU are the solutions to an approximate cc-pSTP with N p = (Ec, Eu, Cr, Cp) and
chance constraint ∆ ∈ [0, 1], as given in Problem 4. Then π is a solution to the correspond-
ing exact cc-pSTP as given in Problem 1.

Proof. Consider ∆ the upper bound on the probability of failure for the requirement con-
straints Cr. Let Ωπ be the set of outcomes for which at least one requirement constraint is
violated, as defined in Definition 7. Further, let ΩLU the set of samples which give random
durations outside intervals specified by LU .

Consider now any non-satisficing outcome ω ∈ Ωπ. Since π and the lower and upper
bounds LU were the solutions for the approximate problem, we have π valid with respect
to all outcomes of the contingent constraints in LU . Therefore ω is not one of the outcomes
in LU , so ω ∈ ΩLU .

As this is true for any ω thus defined,

Ωπ ⊆ ΩLU

Further, since LU is a solution to the problem in Problem 4, we have

∆ ≥ P (ΩLU ) ≥ P (Ωπ)

Noting that P (Ωπ) is exactly ρ(π) the risk of schedule π, we thus have ρ(π) < ∆ as required
by the original problem.

While we have shown that the approximate cc-pSTP is sound, it is also incomplete.
A solution may exist for the exact cc-pSTP but not for the approximation. Note that in
general we have introduced conservatism, as P (ΩLU ) ≥ P (Ωπ). The actual risk of the
returned schedule is less than the probability of contingent constraint values falling outside
the returned intervals.

The approximation is thus an incomplete solution, in that although a solution π may
exist with P (Ωπ) ≤ ∆, P (ΩLU ) ≤ ∆ may not be true. That is, a schedule which is
consistent with the required probability may exist, but there may not be a way to bound
the intervals to cover enough probability mass. One such example is given as follows.

Example 7 (Incompleteness of approximate cc-pSTP). Suppose we have the pSTN in
Figure 8. By inspection, the timing of the start event does not impact the probability
of failure.

Suppose we assign start = 0, so that the timing of the uncontrollable events take on
the values of the contingent constraints. Figure 9 shows the feasible range of times for the
uncontrollable events which result in temporal consistency.

However, the approximate cc-pSTP requires that we find a risk allocation which would
carve out a rectilinear subset of the feasible region. Given any chance constraint, we can
construct distributions so that the feasible region covers the required probability mass, but
no such rectilinear subset exists.
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Figure 8: An example demonstrating the challenge involved in evaluating the risk of failure.
For any schedule, we can characterize the subset of the sample space for which the
schedule is inconsistent, but evaluating the measure of the subset is non-trivial.

Figure 9: The plot shows part of the region in the space of the uncontrollable events which
results in temporal consistency.

Although the approximation is incomplete, it allows us to evaluate the risk of candidate
policies without performing multivariate integrations. We have thus traded off completeness
for tractability, while retaining the soundness of solutions.

We have thus defined a cc-pSTP and a tractable approximation, in general terms with
regard to controllability. In our subsequent treatment of the problem, we focus on strong
controllability for cc-pSTPs. In our next subsection, we provide a numerical encoding for
finding a strongly controllable schedule for the approximate cc-pSTP.
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4.3 Picard: Convex Program Encoding of cc-pSTP

Given the approximate cc-pSTP, we now provide a solution method for deriving chance-
constrained strongly controllable schedules. Intuitively, we choose the most probable set
of outcomes of the contingent constraints, and schedule activated time points such that
the timing constraints are satisfied for any combination of outcomes in this restricted set.
The key insight behind our approach is that by distributing the allowable risk amongst the
contingent constraints, we can set-bound the outcomes. This allows us to convert a pSTN
into a simple temporal network with uncertainty (STNU), a well studied structure. We then
make use of strong controllability reductions for STNUs to reduce the STNU to an STN,
allowing us to reframe a cc-pSTP as a convex constrained programming problem, solvable
with standard optimisers.

4.3.1 Approach

We outline and motivate our approach before developing the details of our algorithm. We
begin by noting that a cc-pSTP is an instance of a stochastic programming problem. A
family of methods have been developed that reformulate the stochastic problem to a deter-
ministic problem, by converting the stochastic constraints into deterministic constraints.

For example, optimising controls for stochastic dynamical systems involves bounding
the extent of deviations from the mean, either by distributing the risk evenly (Van Hessem
and Bosgra, 2006) or by optimising the distribution of risk (Ono et al., 2013). The process
results in bounds on the state of the system, leading to reformulations as deterministic
constraint optimisation problems.

4.3.2 Convex Program Encoding of the Chance Constraint

Recall that in a cc-pSTP, we have an upper bound for the probability of temporal incon-
sistency. We distribute this allowable risk over the set of contingent constraints of the
pSTN. For each contingent constraint, we then consider an interval subset of its possible
outcomes according to the risk allocation. This allows us to represent the uncertainty in
each contingent constraint as bounded intervals, giving us an STNU to check for strong
controllability.

A direct approach is a convex program encoding. In this encoding we define our decision
variables to be upper and lower bounds for the contingent constraints, as well as timing
assignments to controllable events. We assert correctness with respect to the chance con-
straint by requiring that the sum of the probability mass above the upper bounds and below
the lower bounds is less than our allowed risk. We enforce strong controllability through a
set of linear constraints between event variables and upper and lower bound variables for
the contingent constraints.

The concept of risk allocation has been used to provide scalable conservative approx-
imations to risk evaluation in path planning with safety guarantees under probabilistic
uncertainty (Blackmore and Williams, 2007; Ono and Williams, 2008). In this work, we
also approximate the risk of a policy, by applying risk allocation to portion and distribute
risk amongst the lower and upper bounds of contingent constraints.

Consider Figure 10. We are given a 10% upper bound on the probability of failure. For
k contingent constraints, we divide up the risk into 2k portions corresponding to the lower
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Figure 10: Converting from a probabilistic contingent constraint to a bounded contingent
constraint via risk allocation.

and upper bounds for each contingent constraint, such that the sum of the portions is less
than 10%. Let δl and δu be respectively the risk allocations to the lower and upper bounds
of a contingent constraint. We may then find the lower and upper bounds as F−1(δl) and
F−1(1− δu). Given this scheme for finding lower and upper bounds, the probability of any
contingent constraint taking on a value outside the bounds is less than 10%.

This approach is sound in the sense that solution policies obtained will have risk of failure
less than that allowed in the chance constraint. The inspiration behind risk allocation is the
Union Bound, where P (A

⋃
B) ≤ P (A) + P (B) for events A and B. We consider events in

which the outcomes of contingent constraints land outside our prescribed bounds, intuitively
being unexpectedly short or long in duration. The union bound thus guarantees that the
probability of any contingent constraint in the network landing outside its bounds is at most
the sum of the probabilities of each individual contingent constraint being unexpectedly
short or long. This guarantees that the probability of observing an unaccounted for outcome
is less than the risk specified in the chance constraint.

Note that the above procedure allows a convex program representation of a chance
constraint. We proceed to discuss the encoding of simple temporal constraints.

4.3.3 Convex Program Encoding of cc-pSTP

The previous sections have outlined that the chance constraint may be encoded as a nonlin-
ear constraint, and that strong controllability may be encoded as a set of linear constraints.
We now combine these two insights to produce a convex program that encodes the cc-pSTP.
We begin by considering how this is done with our running example.

Example 8. Recall Example 2, and assume that we would like to find a schedule with

at least 95% probability of success. We only have one uncertain duration,
−→
AC, and we

introduce decision variables for the lower and upper bounds lAC and uAC respectively. We
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Figure 11: Example Picard solution to the oceanography scenario.

further require P
(−→
AC /∈ [lAC , uAC ]

)
≤ 0.05 in order to cover at least 95% of the possible

outcomes.

In addition, we have controllable events, A and B, so we introduce decision variables tA
and tB to represent execution times of the events. We have linear constraint tB − tA ≥ 240
as specified in the pSTN. Applying the strong controllability reductions, we also derive tA +
lAC − tB ≥ 390. This is a convex, nonlinear encoding of the problem. Giving this encoding
to a convex solver, for example SNOPT (Gill et al., 2005), we may obtain assignments:

• tA = 0, tB = 240

• lAC = 630, uAC = 1400

The solution pSTN and execution times are shown in Figure 11.

More generally, we derive a system of constraints for a cc-pSTP as in Algorithm 1. For
ease of reference, we denote the described convex encoding approach to solving cc-pSTNs
as Picard. The first for-loop of Algorithm 1 adds two decision variables denoting lower
and upper bounds for every contingent constraint, and notes the CDF Fdxy associated with
each contingent constraint. The CDFs are used to calculate the probability mass lost by
restricting the outcome of the contingent constraint. Note that both the CDF evaluating
the probability mass discarded by the lower bound and the complement CDF evaluating
that discarded by the upper bound are recorded.

In the second for-loop, the algorithm applies reductions to the contingent constraints in
the pSTN. This corresponds to the constraints for the static schedule in Problem 4. Specif-
ically, the set of reductions Ĉr− are the linear constraints in the problem. The reductions
are based on those for strong controllability. However, instead of fixed lower and upper
bounds, the reductions performed allow the lower and upper bounds to be decided by the
solver.

The reductions are similar to those proposed in Tsamardinos (2002). The key innovation
is accounting for requirement constraints between two uncontrollable events, disallowed in
previous work. This innovation follows from our reformulation of the pSTN. By representing
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Algorithm 1: Convex program encoding for strong controllability of cc-pSTP

input : N p = 〈Ec, Eu, Cr, Cp〉 a pSTN
output: Bp risk allocation bound variables on Cp,

F chance constraint function, and
Ĉr− reductions

1 Bp ← ∅, Ĉr− ← ∅,F ← ∅
2 for each cXY ∈ Cp do
3 Bp ← Bp ∪ {lXY , uXY }
4 F ← F ∪ {FcXY ; 1− FcXY }
5 for each cXY ∈ Cr do
6 a, b← lower and upper bounds for cXY respectively
7 if X ∈ Eu ∧ Y ∈ Eu then
8 Let ctiX , ctjY be contingent constraints ending in X and Y , [lX , uX ] and

[lY , uY ] corresponding bounds on the contingent constraints

9 Ĉr− ← Ĉr− ∪ {tj − ti + lY − uX ≥ a}
10 Ĉr− ← Ĉr− ∪ {−tj + ti − uY + lX ≥ −b}
11 else if Y ∈ Eu then
12 Let ctjY be contingent constraint ending in Y , [lY , uY ] corresponding

bounds on contingent constraints

13 Ĉr− ← Ĉr− ∪ {tj −X + lY ≥ a}
14 Ĉr− ← Ĉr− ∪ {−tj +X − uY ≥ −b}
15 else if X ∈ Eu then
16 Let ctiX be contingent constraint ending in X, [lX , uX ] corresponding

bounds on contingent constraints

17 Ĉr− ← Ĉr− ∪ {Y − ti − uX ≥ a}
18 Ĉr− ← Ĉr− ∪ {−Y + ti + lX ≥ −b}
19 else

20 Ĉr− ← Ĉr− ∪ {Y −X ≥ a}
21 Ĉr− ← Ĉr− ∪ {−Y +X ≥ −b}
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stochasticity with interval-bounded contingent durations, we have a natural mapping from
the STNU structure, allowing us to transcribe Case 3 in a probabilistic context.

Applying reductions in Algorithm 1, we are thus able to transform the approximate
problem given in Problem 4 to the following form.

Problem 5. Given a cc-pSTP, comprised of:

• pSTN N p = 〈Ec, Eu, Cr, Cp〉, and

• ∆ ∈ [0, 1], an upper bound on the risk of failure,

Solve the numerical program

min
EC ,BP

c(Ec)

s.t.
∑

i∈2|Eu|

Fi(B
P
i ) ≤ ∆

Cr−

for Bp, F , and Ĉr− from Algorithm 1.

Note that the constraints are in a form solvable with off-the-shelf nonlinear solvers. The
reductions comprise the majority of the constraints, and are linear in the decision variables
π and LU . The only possible source of nonlinearity is the chance-constraint.

We have thus provided a mathematical encoding for finding strongly controllable sched-
ules to cc-pSTPs. However, we may leverage known algorithms from the STNU literature
to solve problems involving pSTNs. While the monolithic encoding casts strong control-
lability as a mathematical programming problem, the STNU community has polynomial
time techniques for checking strong controllability. In the next section, we show how to
leverage these algorithms to separate out the problems of risk allocation and controllability
checking, resulting in an iterative algorithm with conflict-guided risk allocation.

5. Hybrid Solver Using Conflict-Directed Consistency

The previous section established the notion of temporal risk allocation in solving the cc-
pSTP. We showed that one way to find a chance-constrained schedule was to produce a
risk allocation whose corresponding STNU was also strongly controllable. However, we
essentially treated the temporal aspect of the problem as a linear program and fell back on
generic mathematical programming.

By contrast, the family of work on STNs and their extensions exploits the insight that the
temporal constraints are essentially difference constraints. This has allowed for specialized
algorithms that center around negative cycle detection (Dechter et al., 1991; Morris and
Muscettola, 2005). These are particularly efficient methods for detecting when a STN is
inconsistent, or when an STNU is uncontrollable. This key insight has been used to discover
how to relax temporal constraints given uncertainty over activity durations (Yu et al., 2017).

These insights motivate an alternative to a monolithic encoding of the cc-pSTP problem.
Rather than specifying the complete list of temporal constraints and reductions at the start,
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we may generate candidate risk allocations, and use efficient methods for identifying why
the resulting STNU is not strongly controllable. These can be summarised as numerical
constraints to be satisfied in subsequent risk allocations. Effectively, rather than solving
one numerical program with a large number of constraints, we may solve a sequence of
numerical programs with a smaller number of constraints. This section expands on this
approach, first given in Wang and Williams (2015), with additional insight into edge cases
for when the algorithm will and will not perform well.

The approximate cc-pSTP in Problem 4 may thus be decomposed into two portions:
1) the nonlinear programming portion containing the risk allocation; and 2) the temporal
constraints portion. The risk allocation can be used to suggest possible STNUs, to be
checked for controllability using specialized methods working on temporal networks.

5.1 Approach

The key feature of an STNU being strongly controllable is that it is equivalent to a consistent
STN. In turn, recall from Section 2 that an STN is consistent if and only if its distance
graph contains no negative cycles. Negative cycle detection algorithms only work on graphs
with fully instantiated edge weights. In contrast, we are trying to construct an STNU
without negative cycles by performing risk allocation to contingent constraints. Therefore,
such algorithms do not apply directly to our parameterized STNU.

However, given a grounded STNU, where the lower and upper bounds on contingent
constraints have been found via risk allocation, it is straightforward to verify whether it is
controllable. We would simply construct the equivalent STN and check for negative cycles.

In the absence of negative cycles, we would derive a schedule for the STN.The schedule
would be a solution to the cc-pSTP as long as the original risk allocation had satisfied the
chance constraint. The presence of a negative cycle proves that the risk allocation resulted
in a STNU that is not strongly controllable. A different risk allocation would be needed, in
which the cycle in the resulting STNU is no longer negative.

This suggests an iterative approach where we use negative cycles to repeatedly constrain
the risk allocation. In essence, we would be searching over the space of STNUs, using
discovered negative cycles as conflicts to drive the search. This approach is codified in an
algorithm called Rubato.

5.2 Rubato: Iterative Solution of cc-pSTP

Rubato splits the solution process into a master problem and a subproblem. The master
problem handles the chance constraint by generating a risk allocation that respects the risk
bound. The subproblem then verifies the corresponding STNU for strong controllability.
Only when both parts are successful do we have a solution to the cc-pSTP.

Given a risk allocation, the resulting STNU may not be strongly controllable. The
algorithm must then identify the negative cycle that violated strong controllability, and
generate another risk allocation that ensures the cycle is nonnegative. Recall that the
cycle lies in the distance graph of the STN that was derived from the STNU using strong
controllability rules. Thus, we would need to: 1) map the edges of that cycle back to the
edges of the STNU they were derived from; 2) undo the assignments to risk allocation
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Figure 12: Example Rubato solution to the oceanography scenario.

variables in those edges; and 3) add up the weight expressions of all those edges. This
results in a linear expression in terms of the risk allocation variables.

The next iteration of the risk allocation would thus try to make this linear expression
nonnegative, while still respecting the risk bound. The negative cycle avoidance is encoded
as a linear inequality to be satisfied for all subsequent risk allocations. Note that in the next
round of risk allocation, we would be recalculating the assignments to all of the risk allo-
cation variables, not just those involved in the newly discovered negative cycle. Intuitively,
this is because the new linear constraint may require a greater sum of risk to be allocated to
the contingent constraints involved in the negative cycle. If we fix the risk allocated to the
other contingent constraints, we may find that we can not allocate the required additional
amount of risk, and falsely conclude that the problem is infeasible.

This process would continue until one of two things happens: Either the subproblem
returns no conflict, and so we have a solution, or the master gets too constrained to produce
a risk allocation, in which case we declare no solution. The termination and completeness
of this process are discussed in the next subsection. For now, we demonstrate it on the
running example and present the pseudocode of Rubato.

Example 9. Recall Example 2. We wish to find an execution strategy which will work with
probability at least 95%. We thus first divide up the risk evenly between the lower and upper

bounds of the uncertain duration
−→
AC, resulting in the bounds [600, 1200]. We apply standard

strong controllability checking, and find that the proposed STNU is not strongly controllable.
Based on STNU theory, this is due to the negative cycle −240 − (−210) < 0. Note that

the −240 comes from the lower bound of
−−→
AB and −210 comes from the lower bound of

−−→
BC

subtracting LAC , the lower bound of
−→
AC. Rearranging the terms in the negative cycle, we

find that any assignment to LAC must satisfy LAC ≥ 240 + 390 for the resulting STNU to
be strongly controllable.

The linear constraint on LAC is then inserted when we propose the next candidate value

for the lower bound. This results in bounds [630, 1400] for uncertain duration
−→
AC. The new

STNU is then checked for strong controllability. It is shown to be strongly controllable, and
therefore any execution strategy for the STNU also satisfies the original cc-pSTP.
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Algorithm 2: Rubato - Feasibility

input : N p = 〈Ec, Eu, Cr, Cp〉 a pSTN, and
∆ ∈ [0, 1] a risk bound

output: π : R|Cc| → R|Ec|, a constant scheduling policy to Ec, and
LU risk allocation bounds on Cp

1 Bp ← {li, ui|ci ∈ Cp}

2 constraint list ←

{[∑
c∈Cp

Fc(lc) + 1− Fc(uc) ≤ ∆

]}
3 Ñ u ← MapToParametricSTNU(N p, Bp)

4 while True do
5 ok, LU ← Solve(constraint list)
6 if not ok then return no solution

7 N u, edge mapping ← Instantiate(Ñ u, LU)
8 ok, π, cycle = CheckSC (N u)
9 if ok then return π, LU

10 c̃ycle ← Uninstantiate(cycle, edge mapping)

11 Append(constraint list,
[
Weight(c̃ycle) ≥ 0

]
)

Rubato, given in Algorithm 2, begins by defining the initial master problem. The
variables of the problem are lower and upper bounds on each probabilistic duration of
the pSTN, representing the risk allocation to be found. The risk allocation master is
initiated with only the chance constraint. The risk allocation variables, applied to the
pSTN, establish the concept of a parametric STNU Ñ u, where the contingent constraints
are bounded, but their bounds are uninitialized.

The risk allocation master, comprising the chance constraint initially added to the con-
straint list, as well as the subsequent linear constraints derived from the negative cycles, is
solved using a nonlinear program, much like Picard. If the solver finds a solution, then the
master can project the assignment onto the parametric STNU to instantiate a grounded
STNU. The grounded STNU uses the values for the lower and upper bounds of contingent
constraints found via risk allocation. A mapping of edges from the parametric STNU to
the grounded one is also recorded, for later use if conflicts will need to be resolved.

If the solver could not find a solution at this point, then Rubato would return without a
valid policy. Alternatively, if a valid risk allocation is found, the decision variables provide
the lower and upper bounds for contingent constraints in an STNU.

Leveraging STNU controllability theory, we check whether the instantiated STNU is
strongly controllable. If so, then the function can also return a schedule for that STNU.
When such a schedule is produced, we declare it a solution to the cc-pSTP, and return.
Otherwise, a negative cycle must be presented as evidence of the STNU’s uncontrollability.

All future risk allocations must avoid this negative cycle. First, the cycle is mapped back
to its analog in the STNU. We do so by performing reverse lookups on the parametric-to-
grounded edge mapping that was created alongside the grounded STNU. Then we collect the
weight expressions along that analog cycle, constants and variables alike, and state that the
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expression for their sum must be nonnegative. That statement, inserted into the constraint
list, represents the learning by the master of temporal conflicts from the subproblem.

We provide a run-through of how Rubato would work on the running example in Figure
12 in the following Example.

Example 10. First, the variables and constraints of the master problem would be initialized
as follows:

risk allocation variables = {l1, u1}
constraint list = {[F1(l1) + 1− F1(u1) ≤ 0.05]}

The function F1 represents the cumulative distribution of the probabilistic duration for time
until eruption.

The master passes the list of variables and constraint to a nonlinear solver and asks
for a solution. In return, the solver, whose details we do not really care about, could yield
the following solution: Assign 600 to the lower bound variable l1, and assign 1200 to the
upper bound variable u1. We can verify by inspection that the solution satisfies the chance
constraint, since the bounds lie at the ±2σ points of the distribution.

When this STNU is passed to the subproblem, it will be determined that it is not strongly
controllable, so we do not get a policy. However, we do get a negative cycle consisting of:
the lower bound of AC, the negated lower bound of BC, and the negated lower bound of AB.
Indeed, we can verify that

lAC − lBC − lAB = 600− 390− 240 = −30 < 0

We map this negative cycle back into the parametric STNU. That means the condition we
insert back in the master’s constraint list is:

lAC − lBC − lAB ≥ 0

Now we begin the second iteration, and the master’s job is to amend the original risk
allocation to satisfy the new cycle constraint, while preserving the chance constraint. When
we send this request through the nonlinear solver, it could assign 630 to l1 and 1400 to u1.

The updated grounded STNU is also shown in Figure 12. We now no longer account
for outcomes in which the eruption occurs less than 630 minutes from the start of day, but
allow the eruption to occur up to 1400 minutes after the start of day. We can also verify
this risk allocation satisfies the chance constraint.

F1(630) + 1− F1(1400) = 0.0359 + 1− 0.9996 < 0.05

When we pass this STNU to the subproblem, we will find there are no negative cycles.
Therefore, we will get a strongly controllable scheduling policy for the STNU, which decides
when the controllable timepoints are executed. In our case, there are only two controllable
timepoints: the start event and the beginning of data collection. A strongly controllable
policy would say that we have to start collecting data at 240 minutes from start of day.
That is because, according to our risk allocation, we have to allow the eruption to happen
as early as 630, and we need at least 390 minutes to perform data collection. That means
we can take up to 240 minutes to traverse to the site – we have to travel at our maximum
speed.
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5.3 Termination

Rubato, like the monolithic numerical encoding, solves the approximate cc-pSTP, and thus
inherits the soundness and completeness properties with respect to the original cc-pSTP.
However, Rubato is an iterative algorithm, explictly incorporating techniques from the
STNU literature. In this subsection, we discuss the termination conditions of Rubato.

Theorem 2 (Rubato Termination). Rubato, described in Algorithm 2, terminates in finite
time, given a cc-pSTP with a finite number of requirement constraints.

Proof. Note first that the subprocedures in the loop are finite time. We assume that the
nonlinear solver terminates given any input. Further, strong controllability checking is done
in polynomial time (Vidal and Fargier, 1999).

We may thus prove finite time termination by showing that Rubato only runs for a
finite number of loops. For a complete loop through Lines 4 to 11, there must have been
a solution found by the nonlinear solver (Line 6), and the resulting STNU must not be
strongly controllable (Line 9). If either condition is not met, the algorithm terminates via
the respective return statements.

Note that, for each completed loop, one new negative cycle must be found by construc-
tion - the risk allocation performed by the nonlinear program must explicitly resolve all
previous negative cycles, and the resulting STNU is not strongly controllable. The argu-
ment thus hinges on showing that there is only a finite number of possible negative cycles.

Recall that the underlying pSTN from the cc-pSTP is first mapped to a STNU, which is
then reduced to a STN for strong controllability checking. The negative cycles are essentially
combinations of the reduced requirement constraints in the resulting STN distance graph.
Each requirement constraint adds two edges in the distance graph, each of which may
feature up to once in a negative cycle. Thus, for T requirement constraints, there are at
most 22T possible negative cycles.

The number of negative cycles is thus finite for a cc-pSTP with finite requirement
constraints. There is thus a finite number of times Rubato may loop, and Rubato thus
returns in finite time.

So Rubato terminates because it cannot go on forever collecting cycles. That does not
mean, however, that there might not be a very large number of cycles in the STNU, waiting
to be discovered.

Contrary to prior analysis (Wang and Williams, 2015), the number of negative cycles is
not bounded by the number of linear constraints in the monolithic encoding given in Picard.
Again, the negative cycles are combinations of the linear constraints in the monolithic
encoding. Each linear constraint in Picard may feature in multiple negative cycles discovered
by Rubato

Even so, a cycle typically combines multiple temporal constraints into one condition,
and not all cycles may need to be discovered. In practice, we observe that the number
of negative cycles detected is usually fewer than the number of requirement constraints.
Rubato thus typically solves sequences of nonlinear programs with much fewer constraints,
and thus is still efficient with respect to the total computation time.
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x100
… 

Figure 13: A pSTN of probabilistic constraints in series.

5.4 Efficiency Relative to Picard

At the heart of the cc-pSTP is the tension between the chance constraint and the temporal
constraints. The chance constraint wants to push the uncontrollable bounds outwards to
reduce the risk of failure, while the temporal constraints wants to push them inwards to
make the STNU more controllable. To resolve this tension, both Rubato and Picard let the
solver handle the nonlinear gradient analysis needed to move the risk allocation around.

Rather than using a general purpose numeric program, the approach taken in Rubato
separates out the task of verifying temporal controllability into a subproblem, which is then
handled by an efficient dedicated method. In this subsection, we present two pathological
examples to illustrate the conditions under which the decomposition performs well, and
when the decomposition performs badly.

Consider the pSTN in Figure 13. It consists of a sequence of 100 probabilistic dura-
tions, each followed by an infinite controllable wait. The entire sequence is constrained
by an overall deadline. Rubato would require up to two iterations to process this network
against a chance constraint. The first iteration, as always, is to find a risk allocation that
satisfies only the chance constraint. In the event that the uncontrollable upper bounds add
up to more than the deadline, the subproblem will find this conflict and add that cycle into
the second iteration of the master. This cycle summarizes the only real temporal condition;
the uncontrollable lower bounds can never be involved in a cycle, because the strong con-
trollability rules attach them to the infinities on their respective controllable waits, which
essentially means no constraint. So the final master problem to be solved by Rubato would
contain only two constraints.

In contrast, Picard would create 101 additional variables for the controllable events, and
deduce the 100 controllable lower bound constraints between these events (the 100 control-
lable upper bound constraints all become infinity and are thus ignored, like in Rubato).
Adding those on top of the 200 lower and upper bound variables, the deadline’s lower and
upper bound constraint, and the chance constraint, that’s a total of 301 variables and 103
constraints sent to the solver. The main cost of the solver will be to compute first- and
second-order partial derivatives for all constraints with respect to all variables. On the
other hand, even though Rubato requires two iterations, it does away with the 101 event
variables and has only two constraints to compute derivatives for. Rubato thus allows a
more compact encoding of the problem.

Here is a negative example. Figure 14 depicts another pSTN. This time all the activities
are in parallel, so there are only two controllable events—the start and end—and the waits
after each probabilistic duration are 30 minutes instead of infinite. Assume that each
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x100
… 

Figure 14: A pSTN with probabilistic constraints in parallel.

probabilistic duration is normally distributed and followed by a [0, 30] constraint as follows:

N(85, 1), [0, 30]

N(84.9, 1), [0, 30]

N(84.8, 1), [0, 30]

. . .

N(75.1, 1), [0, 30]

Applying strong controllability rules will effectively convert each horizontal “thread”
into a controllable duration between the start and end, with lower bound ui and upper
bound li + 30. Assuming a 99% chance constraint, a plausible initial risk allocation in the
first round of Rubato would be as follows.

{l1, u1} = {70, 100}
{l2, u2} = {69.9, 99.9}
{l3, u3} = {69.8, 99.8}

. . .

{l100, u100} = {60.1, 90.1}

These bounds are at the ±15σ points of each distribution, so there is practically no risk
of violating the chance constraint. Now say we discover in the subproblem that l2 + 30 is
less than u1. This forms a negative cycle, so we would send this back to the master, and it
could be resolved by raising l2 from 69.9 to 70. In the same manner, we would discover that
every li+1 + 30 is less than ui, so we would have a total of 99 corrections to make, raising
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each li+1 by 0.01.

{l1, u1} = {70, 100}
{l2, u2} = {70, 99.9}
{l3, u3} = {69.9, 99.8}
{l4, u4} = {69.8, 99.7}

. . .

{l100, u100} = {60.2, 90.1}

However, now we will find l3 + 30 is less than u1, and that in general every li+2 + 30 is
less than ui by 0.01. So that is another 98 rounds of corrections. Continuing in this fashion,
there will be 99 + 98 + ...+ 1 = 4950 master-subproblem iterations before we arrive at the
following risk allocation.

{l1, u1} = {70, 100}
{l2, u2} = {70, 99.9}
{l3, u3} = {70, 99.8}
{l4, u4} = {70, 99.7}

. . .

{l100, u100} = {70, 90.1}

Note that these bounds, placed on their respective distributions, all lie beyond ±5σ,
and the cumulative probability at 5σ is much less than 1/100th of a percent, so the chance
constraint is still satisfied. Therefore, this is a solution to 200 variables that could have
taken Rubato – including the final round for verification – 4951 rounds to find, accumulating
4950 conflicts along the way.

Now let’s see how Picard would have handled the problem. In addition to the risk
allocation variables, it is also solving for the start and end event times, so there are a total
of 202 variables. Then Picard will apply strong controllability to each thread to directly
encode a controllable duration of [ui, li + 30] from the start to the end. That’s merely 200
linear constraints plus a chance constraint, which will be much easier to solve than Rubato’s
accumulated list of 4951 constraints. The key reason for this difference is that the parallel
structure turns every pair of constraints into a cycle, so the number of cycles is quadratic
in terms of the number of constraints, and Rubato may have to find them all.

It is worth noting that Picard’s encoding is close to optimal. We can intuitively un-
derstand the constraints of the problem as: every ui has to be less than or equal to every
li + 30. Rubato interprets this literally as a quadratic number of constraints, while Picard
attaches every constraint to the same start and end variables. If we notice that the expres-
sion (end − start) appears in every constraint in Picard, we can replace that with a new
variable m such that ui ≤ m and m ≤ li + 30, which would be the most efficient encoding.

These examples are extreme cases, but they illustrate the mechanisms that affect the
performance of Rubato. In the second example, we constructed the risk allocation and chose
the conflicts in an order that would guarantee the discovery of every cycle. So we could have
been unlucky, and a better conflict discovery order might have helped. However, specialized
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conflict extraction algorithms are outside the scope of this paper, and we leave it to the
experiments section to see how a generic one performs on various scenarios. Together, the
above examples and benchmarks should give some insight on when to use one approach
over the other.

5.5 Rubato for Optimization

The preceding discussion, as well as our prior work on the iterative approach (Wang and
Williams, 2015), has concentrated on finding feasible solutions to cc-pSTPs, without refer-
ence to the objective function. In this paper, we extend these results by considering how
optimization may be performed.

A straight forward method to optimization, while leveraging negative cycle detection, is
to incorporate the objective function directly into the risk allocation step of Rubato, as in
Algorithm 3.

Note that the cost function is defined over the static policy, and hence the assignments
to the controllable events. Thus, we can not perform risk allocation only over the lower-
and upper-bounds of the contingent constraints. Instead, we must perform risk allocation
and optimize over assignments to the controllable events at the same time, as in Line 5.

The resulting assignments to the controllable events are then reflected in controllability
checking, by augmenting the resulting STNU. For every assignment a to controllable event e,
a requirement constraint [a, a] is added from a reference controllable event to e - intuitively,
this sets the timing of the controllable event. The remainder of the algorithm is the same
as that given in Algorithm 2.

Algorithm 3: Rubato - Optimizing during Risk Allocation

input : N p = 〈Ec, Eu, Cr, Cp〉 a pSTN,
∆ ∈ [0, 1] a risk bound, and
c an objective defined over the static policy

output: π : R|Cc| → R|Ec|, a constant scheduling policy to Ec, and
LU risk allocation bounds on Cp

1 Bp ← {li, ui|ci ∈ Cp}

2 constraint list ←

{[∑
c∈Cp

Fc(lc) + 1− Fc(uc) ≤ ∆

]}
3 Ñ u ← MapToParametricSTNU(N p, Bp)

4 while True do
5 ok, LU , π ← Optimize(c, constraint list)
6 if not ok then return no solution

7 N u, edge mapping ← Instantiate(Ñ u, LU , π)
8 ok, π, cycle = CheckSC (N u)
9 if ok then return π, LU

10 c̃ycle ← Uninstantiate(cycle, edge mapping)

11 Append(constraint list,
[
Weight(c̃ycle) ≥ 0

]
)
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However, this straightforward approach was observed empirically to be inefficient. This
can be attributed to the inclusion of the objective function in the risk allocation step, in
particular the need to make explicit assignments to the controllable events.

Consider first the risk allocation step. With the inclusion of the controllable events, the
nonlinear program is now defined over a larger number of variables. Each risk allocation
thus takes longer to compute.

In addition, the results from risk allocation are more likely to be infeasible. Recall that
we introduce additional requirement constraints reflecting the assignments to the control-
lable events. These additional requirement constraint remove any flexibility in the STNU -
the controllable events are effectively already scheduled by that point. Even if the bounds on
the contingent constraints would have allowed us to produce a strongly controllable STNU,
the strong controllability check would still fail if the static schedule was not consistent for
all possible outcomes for the contingent constraints. This results in a higher number of
risk allocations. As an alternative, we perform Rubato without the objective until a first
feasible solution is found. In this version of the optimizing Rubato algorithm, we only per-
form risk allocation with the objective function after a first chance-constrained solution is
found. In this way, we quickly discover a number of negative cycles in the process of finding
a consistent solution, which are then used when trying to find an optimal solution. This
approach is outlined in Algorithm 4.

6. Numerical Results

The algorithms proposed were evaluated on a set of 138 benchmark problems, inspired
by autonomous underwater vehicle (AUV) scenarios. In each of the scenarios, a number
of AUVs must coordinate to explore a series of promising locations. Each vehicle must
perform a number of dives, and for each dive must perform a number of surveys.

The promising locations were randomly generated from the region within 10km of
(33.251, -121.555), in the North Pacific. The vehicle traversal durations are modeled as
normally distributed random variables with parameters derived from distance traveled and
an average vehicle speed uniformly sampled between 10km/h and 20km/h, and each vehicle
must spend a minimum amount of time exploring each area. The benchmark set contained
900 randomly generated scenarios. For each scenario, there were between 1 and 12 robots,
up to 5 dives for each robot, and up to 4 activities per dive.

For each scenario, we required chance-constrained schedules with risk bounds of 5%,
10%, 20% and 40% respectively. We used the makespan of the network as the objective
function. For brevity, we present only a summary of the empirical results in this section.
The full tables of results are given in the supplemental material.

We compare the performances of the following algorithms:

1. Rubato: the iterative consistency checking algorithm given in Wang and Williams
(2015). This implementation does not consider the objective function, and only tries
to find a feasible solution.

2. Picard: the monolithic encoding as given in Fang et al. (2014) and Section 4. This
encoding does consider the objective function, and tries to find the optimal solution
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Algorithm 4: Rubato - Feasible Seed

input : N p = 〈Ec, Eu, Cr, Cp〉 a pSTN,
∆ ∈ [0, 1] a risk bound, and
c an objective defined over the static policy

output: π : R|Cc| → R|Ec|, a constant scheduling policy to Ec, and
LU risk allocation bounds on Cp

1 Bp ← {li, ui|ci ∈ Cp}

2 constraint list ←

{[∑
c∈Cp

Fc(lc) + 1− Fc(uc) ≤ ∆

]}
3 Ñ u ← MapToParametricSTNU(N p, Bp)

4 c′ ← 0
5 feas ← False
6 while True do
7 ok, LU , π ← Optimize(c′, constraint list)
8 if not ok then return no solution

9 N u, edge mapping ← Instantiate(Ñ u, LU , π)
10 ok, π, cycle = CheckSC (N u)
11 if ok then
12 if feas then return π, LU
13 else
14 feas ← True
15 c′ ← c

16 c̃ycle ← Uninstantiate(cycle, edge mapping)

17 Append(constraint list,
[
Weight(c̃ycle) ≥ 0

]
)
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Figure 15: Quality of solution for benchmark scenarios.

without decomposing the problem and exploiting efficient methods for the controlla-
bility subproblem.

3. Rubato-Opt: the optimal version of Rubato, in which the objective function is used
when performing each iteration of risk allocation, as presented in Section 5.

4. Rubato-Opt-FF: the feasible-first version of Rubato-Opt, in which a feasible solution
to the chance-constrained problem is found using Rubato, before the objective is added
to the nonlinear program for risk allocation, as presented in Section 5.

As Rubato exploits efficient algorithms for the strong controllability subproblem, and
stops at the first feasible solution, we expect the algorithm to be fast. However, this comes
at the cost of suboptimal solutions. We provide evidence that the suboptimality can be
significant relative to Picard. This motivates the search for an algorithm which optimizes
with respect to an objective function, while maintaining a runtime performance similar to
Rubato. We test two such approaches, Rubato-Opt and Rubato-Opt-FF, both proposed
in Section 5. Our results show that while Rubato-Opt is faster than Picard, it is still
significantly slower than both Rubato and Rubato-Opt-FF.
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Figure 15 shows the makespans of the networks obtained using each solution method,
compared against the total number of constraints. The total number of constraints can
be obtained as the number of simple temporal constraints in the problem, with one more
representing the nonlinear chance constraint.

The networks derived with the consistency algorithm typically result in makespans which
are far higher than the optimal, motivating the use of optimisation methods. However, we
may also note that the optimising algorithms solved far fewer instances. This is a direct
consequence of the difficulty of finding an optimal solution relative to finding a feasible
solution.

Rubato-Opt has the fewest number of solutions. This is because at each iteration,
much of the computation is driven by the objective function, which repeatedly produces
candidates which violate the chance constraints. Rubato-Opt-FF, which tries to discover a
first chance-constrained solution before further optimization, was able to solve more cases
than Picard by itself. This demonstrates the importance of leveraging consistency checking
to find negative cycles, which also help to guide optimization.

Recall that for each pSTN, the Rubato algorithms must allocate risk multiple times to
find controllable STNUs. Risk allocation in these benchmarks is a convex nonlinear program
(NLP), with the number of variables equal to twice the number of uncertain durations, since
we are allocating risk to the tails of uncertain durations. The computation time spent in
each round of risk allocation is thus a measure of the difficulty of risk allocation in each
approach, and contribute to the total computation time.

Figure 16 shows, for each benchmark scenario, the average computation time for each
round of risk allocation for the iterative methods. For the same number of uncertain dura-
tions, the optimizing approaches take significantly more time as expected. This is because
during risk allocation, Rubato can stop as soon as a first feasible risk allocation is found,
rather than finding the optimal risk allocation.

However, Rubato-Opt-FF, performs better slightly better than Rubato-Opt. This is
because most of the nonlinear optimizations are essentially the same as that of Rubato,
until the first feasible solution is found.

Each candidate risk allocation must be generated and the resulting STNU checked for
controllability, with negative cycle conflicts extracted where the STNU is uncontrollable.
The total computation time thus grow with the number of candidates generated.

Figure 17 compares the number of candidates generated by Rubato-Opt-FF and Rubato-
Opt in scenarios solved by both algorithms. Similarly, we also compare the number of
candidates generated by Rubato-Opt-FF against those generated by Rubato in Figure 18.

In comparing Rubato-Opt-FF against Rubato-Opt, we note that the number of candi-
dates generated is similar, although Rubato-Opt-FF seems to require fewer risk allocations
in general. This indicates that many of the constraints required to ensure an optimal solu-
tion can be collapsed by more concise constraints discovered during feasibility checking.

The number of candidate risk allocations generated for Rubato-Opt-FF is slightly higher
than that of the Rubato. This is as expected since Rubato-Opt-FF essentially runs Rubato
until a first feasible solution is found, after which it proceeds to optimize the risk allocation
with respect to the objective function using Picard. Empirically the number of additional
candidates generated to prove optimality is small. We thus only need to pay a small cost
in the number of candidates generated to ensure optimality.
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Figure 16: Average run time of risk allocation for benchmark scenarios.
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Figure 17: Number of candidate risk allocations where solutions were found for both
Feasible-First and Objective-Throughout.
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Figure 18: Number of candidate risk allocations where solutions were found for both
Feasible-First and the consistency checking solution.
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Figure 19: Total run times where solutions were found
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Figure 19 shows the total runtimes required for solutions. As expected, Picard took far
longer than the alternative algorithms. Of the iterative algorithms, the Rubato-Opt took
the longest. This is expected, as we have seen above that the approach requires both a higher
number of risk allocations, and has a higher average time spent in each risk allocation.

While Rubato-Opt-FF was slower than Rubato, the difference decreased as the risk
bound loosened. This is because the number of candidates required to find the optimal
risk allocation given a first feasible solution also decreased with a loosening risk bound,
as in Figure 18. Intuitively, given the abundance of risk allowed with looser risk bounds,
there is little to improve on a risk allocation derived from the first feasible solution. This is
supported when considering the difference in quality of solutions with loosening risk bounds
in Figure 15.

In summary, while Picard is able to provide optimal solutions to the approximate cc-
pSTP problem, it is often slow in terms of runtime. On the other hand, Rubato is fast, but
the solutions found are suboptimal. Rubato-Opt attempts to unite the two approaches by
incorporating the objective function in the risk allocation steps of Rubato. However, this
leads to a greater number of risk allocations, each of which is slower to complete. Rubato-
Opt-FF, in which the objective function is only considered after a first feasible solution
has been found, addresses the weaknesses of Rubato-Opt, allowing optimal solutions with
computation speed comparable to Rubato.

7. Conclusion

This work has been motivated by the need to deal with uncertainty in scheduling. These are
commonly encountered in applications from remote science exploration missions to trans-
portation logistics. While prior representations concentrated on interval-bounded descrip-
tions of uncertainty with the simple temporal problems with uncertainty (STNU) repre-
sentation, we proposed the probabilistic simple temporal network (pSTN). The uncertain
durations are described probabilistically and we gain flexibility by reasoning over the relative
likelihood of different outcomes.

However, the use of the probabilistic representation of uncertainty allows for a poten-
tially unbounded range of outcomes. Thus, instead of schedules guaranteed to be consistent
with all temporal constraints for all outcomes of the uncertain durations, we must instead
find schedules with guarantees over the probability of success. We thus proposed the chance-
constrained probabilistic simple temporal problem (cc-pSTP). Instead of notions of control-
lability in prior work with interval-bounded uncertainty, we proposed chance-constrained
controllability, such that the schedules are valid with a high probability. Intuitively, risk
can be thought of as a resource in the cc-pSTP, and distributed for feasibility and higher
utility solutions.

We noted first the difficulty of evaluating the probability of success given a schedule
and a set of temporal constraints. However, we were able to propose an approximation of
the cc-pSTP by reasoning over the marginals of each of the uncertain durations. The key
insight was that, by allocating risk over each marginal, we were able to propose candidate
interval-bounded uncertain durations. In effect, by good distribution of the allowed risk, we
generate STNUs for which feasible schedules with high utility exist. This insight allows us to
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encode the approximate cc-pSTP as a nonlinear program, with a risk allocation constraint
in addition to standard constraints enforcing controllability from STNU literature.

We further noted that there is a natural decomposition of the nonlinear program. We
may separate the problem into a nonlinear programming master, which enforces the chance-
constraint and performs risk allocation over the uncertain durations, and a subsolver which
checks the STNUs resulting from risk allocation. The subsolver can be implemented as
negative cycle detection over a directed graph, meaning that checking can be performed
efficiently. In addition, the negative cycles can be returned to guide subsequent risk alloca-
tions. This approach allows us to efficiently generate and test solutions, and perform risk
allocation consistent with only the set of relevant constraints.

While the decomposition was able to find solutions which satisfied the constraints, the
approach did not naturally consider the objective function. We have outlined two additional
methods for incorporating the objective function: 1) we explicitly considering the objective
function at every iteration of risk allocation; 2) we first find a feasible solution using the
decomposition, and then use that as an initial point for the nonlinear optimization.

We have performed numerical experiments to compare the speed of the nonlinear opti-
mization approach relative to the decomposition approach for finding as satisfying solution,
as well as the two extensions.

The contributions of this work are summarized as follows:

1. The pSTN representation for temporal problems with probabilistic durations;

2. Formulation of chance-constrained controllability for pSTNs, and the cc-pSTP for
scheduling with guarantees on consistency with temporal constraints;

3. An encoding for an approximate solution to the cc-pSTP via nonlinear programming;

4. A conflict-directed decomposition of the solution encoding leveraging efficient tech-
niques for checking controllability;

5. Two extensions which combine the conflict directed and nonlinear programming ap-
proaches, allowing for faster computation of solution which also consider the objective
function; and

6. A set of numerical experiments demonstrating how the extensions improve on the
prior approaches, in terms of solution quality and solution speed.

7.1 Future work

There are three main avenues for future work: 1) extension beyond static schedules; 2)
better cut generation; 3) multiple cuts for each risk allocation; and 4) a branch and bound
approach.

In our current treatment of the chance-constrained simple temporal problem, we have
focused on static scheduling of controllable events. However, the body of work investigating
dynamic controllability provides insights into dynamic policies for execution in the pres-
ence of uncertain durations. One extension of the current work would consider how the
decomposition approach could be applied to find chance-constrained policies, leveraging
some of the insight in prior work. In particular, Cui et al. (2015) had insights into casting
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restoring dynamic controllability as a mixed-integer linear program. One avenue of ongo-
ing investigation is how we can leverage the insights in this paper to provide a customized
branch-and-bound approach to solving the mixed problem.

We have also seen in the results that the risk allocation nonlinear optimization steps
take up the majority of the runtime. If we consider each risk allocation as a chance to
learn about the underlying structure of the simple temporal constraints, then we may be
motivated to make the best use of each risk allocation.

The current iterative approach also does not discriminate between different negative
cycles when generating linear constraints for risk allocation from the results of strong con-
trollability checking. However, one negative cycles may result in a linear constraint that
eliminates a larger portion of solution space than another, and may thus lead to faster con-
vergence. One approach would be to appeal to the correspondence between negative cycles,
and feasibility cuts in Bender’s Decomposition. Future work may apply different selection
criteria (Fischetti et al., 2010) to determine the best choice of negative cycles.

Alternatively, future work would concentrate on schemes for generating multiple negative
cycles for each risk allocation. One such scheme is as follows: given an infeasible STN with
controllability reductions, find a negative cycle, remove the edges comprising the negative
cycle, and test the resulting STN for feasibility. By repeating this process, we are able to
extract negative cycles which are independent of each other, and generate multiple linear
constraints for each risk allocation.

Lastly, we can consider branch-and-bound techniques for the problem. Rather than only
using negative cycles to generate linear cuts, and switching to optimization after the first
feasible risk allocation is found, we can also consider ways of upper-bounding the cost of the
feasible risk allocations. This may again be done by appealing to Bender’s Decomposition.
While STN checking can only give us feasibility cuts, we can consider the optimization
problem with fixed bounds on contingent constraints, given a feasible risk allocation. For
certain classes of objective functions, we may be able to find efficient subsolvers for the
resulting numerical programs, and return optimality cuts as constraints to the risk allocation
solver. These would allow us to summarize how future risk allocations may be performed
to give better candidates.

Appendix A. STNU Strong Controllability Reductions

The check for strong controllability outlined in Vidal and Fargier (1999) is a proof by
construction: the algorithm attempts to construct a schedule which will work for all possible
values for the uncertain durations. This is especially powerful, as we will not only be able to
determine whether the problem is strongly controllable, but also obtain a schedule which will
work under all circumstances if the problem is strongly controllable. The key insight which
allowed this is the fact that we can override requirement constraints involving uncontrollable
events with new requirement constraints over controllable events. This turns the STNU into
a STN, for which polynomial solution methods are known. Before outlining the rationale,
we walk through an example.

Example 11. Consider the STNU as seen in Figure 20. We have two controllable events,
and one uncontrollable event. The uncontrollable event tω occurs in the interval [c, d] after

1365



Fang, Wang, and Williams

the execution of t0, and we must schedule t1 and t0 such that t1 occurs between [a, b] before
tω.

Figure 20: Example of how to override constraints involving uncontrollable event.

Let us consider the constraints between t0 and t1, and see if we can obtain some con-
straint t0 − t1 ∈ [a′, b′]. As a first step, observe that tω may be written t0 + ω, where ω is
some value between [c, d] assigned by the environment. Then, we can write the constraint
between tω as

t0 + ω − t1 ∈ [a, b]

Consider first the lower bound, that is, t0 +ω− t1 ≥ a. Note that, this is guaranteed for
all values of ω ∈ [c, d] iff t0− t1 ≥ a− c. Consider now the upper bound, t0 +ω− t1 ≤ b, or
equivalently t1 − t0 − ω ≥ −b. Note that this is guaranteed if and only if t1 − t0 ≥ −b− d.
We have thus found a set of constraints equivalent to those in the original problem, and we
may replace the original constraints with the new constraint, removing the uncontrollable
event and the associated contingent constraint. This conveniently leaves us with a STN,
shown on the right in Figure 20.

The above demonstrates how we may reduce away the contingent constraints in an
STNU for strong controllability. The process can be generalized, such that any requirement
constraint to an uncontrollable event may be replaced by requirement constraints between
controllable events. The new constraints allow us to reason without dealing directly with the
uncontrollable constraints. The problem is reduced from a game against an uncooperative
environment to a standard constrained optimization problem solvable with readily available
packages.

We repeat the general reductions from Vidal and Fargier (1999) to develop our algorithm.
Consider STNU N u = 〈Ec, Eu, Cr, Cc〉. Let Cr− ⊆ Cr be the set of requirement constraints
involving uncontrollable events. These are the only constraints which depend on variables
not controlled by the agent, and thus need to be reframed.

We consider the lower and upper bounds separately and first perform our analysis for
lower bounds. For each lower bound c ∈ Cr−, we obtain one of three cases in Figure 21:

Case 1 (only the end event is uncontrollable) ti + ωi − tj ≥ a

Case 2 (only the start event is uncontrollable) ti − tj − ωj ≥ a

Case 3 (both start and end are uncontrollable) ti + ωi − tj − ωj ≥ a
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Requirement constraint 
bounded by [c,d]

Contingent constraint 
bounded by [c,d]

Figure 21: Three cases for reductions.

where ωi is the duration of the contingent constraint starting at controllable event ti and
bounded by [li, ui], with ωj similarly defined.

In each case, we replace the original requirement constraint with a new requirement
constraint:

Case 1 ti − tj ≥ a− li

Case 2 ti − tj ≥ a+ uj

Case 3 ti − tj ≥ a− li + uj

The corresponding reductions for the upper bounds can be written similarly by multiplying
both sides by −1.

In this way, an STNU may be rewritten with only requirement constraint between
controllable events. We may discard the contingent constraints because the constraints
are already encoded by the reformulation outlined above. We may thus obtain an STN
with only the requirement constraints and the controllable events. A consistent solution
to the STN will be a schedule for the STNU valid under any combination of outcomes for
the contingent constraints, because the constraints derived from the contingent constraints
require consistency for all possible outcomes. More formally, let Ĉr− be the collection of
requirement constraints obtained from the reduction.

Theorem 3. If there exists a schedule S satisfying all constraints in (Cr \ Cr−) ∪ Ĉr−,
then the STNU is strongly controllable. Further, given any combination of outcomes for
Cc the set of contingent constraints, S is consistent with respect to all elements in Cr the
set of requirement constraints.

The interested reader may be referred to the more detailed exploration in Vidal and
Fargier (1999). However, the above allows robust scheduling. If the uncertain durations are
interval-bounded such that the corresponding STNU is strongly controllable, then we can
schedule the activated time points to be temporally consistent for every possible outcome
of the uncertain durations.
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Appendix B. Negative Cycles as Bender’s Feasibility Cuts

In this section, we show that negative cycles have a natural interpretation as feasibility cuts
in a Generalized Bender’s Decomposition (Benders, 1962; Geoffrion, 1972) framework.

In a Bender’s Decomposition framework, a larger problem can be decomposed into two
steps. The candidate generation step suggests potential assignments to a subset of the de-
cision variables, the choice of which allows the remaining constraints and decision variables
to be considered as a subproblem for which we can apply efficient solvers. This is applicable
to the cc-pSTP framework among others such as those in Yu et al. (2015); Cui et al. (2015),
as these have subproblems which can be formulated as simple temporal problems. Key to
the efficiency of such approaches is the derivation of Bender’s feasibility cuts given infeasi-
ble candidates, which help the generator to avoid generating further infeasible candidates.
These cuts are generated using unbounded rays for the dual of the subproblem.

We will show that negative cycles correspond to a special case of unbounded rays, which
arise when the subproblem can be formulated as a system of difference constraints, as in the
case of simple temporal problems. We will do so by first noting that the simple temporal
problem may be solved via negative cycle detection on a distance graph. We then present
the dual problem of the numerical program encoded by the distance. Lastly we show that
the unbounded rays can be constructed using the edges involved in a negative cycle.

A set of simple temporal constraints may be mapped to a distance graph representing
a set of difference constraints, with decision variables corresponding to assignments to con-
trollable events (Dechter et al., 1991). The negative cycle detection algorithm thus solves
the following numerical program:

min
x∈R

0

st. Ax ≤ b (B.1)

where:

• x is a set of real decision variables. These represent the assignments to the controllable
events, which are the nodes in the distance graph;

• A is a matrix such that every row has two elements, one of which has value -1, and
the other has value 1. These correspond to the two controllable events involved in
each simple temporal constraint, which are respectively the source and sink in the
distance graph; and

• b is a vector of real numbers. These represent the upper-bound of each temporal
constraint, which are the edge distances for each edge of the distance graph.

Taking the standard linear dual, we have the dual problem:

max
u≥0

− bTu

st. ATu = 0

where u is the vector of Lagrangian multipliers. Each element of u corresponds to a con-
straint in the primal problem, and thus an edge in the distance graph. Note that this dual

1368



Chance-constrained Static Schedules for Temporally Probabilistic Plans

problem is equivalent to

min
u≥0

bTu

st. ATu = 0 (B.2)

Suppose that the primal for the subproblem given in B.1 is infeasible. In a Bender’s de-
composition framework, the dual given in B.2 would be unbounded, and we must construct
a feasibility cut using the unbounded ray u∗, a vector along which the dual is unbounded.

However, if the primal problem is infeasible, we can construct a negative cycle on the
distance graph. For a negative cycle, let us construct a ray uneg, such that the ith element
of uneg is 1 if the corresponding edge features in the negative cycle, and 0 otherwise. We
can verify that uneg is an unbounded ray for the dual given in B.2.

Note first that ATuneg = 0, because uneg correspond to edges in a cycle. Consider the
indices of the non-zero elements of uneg - these correspond to the edges in the negative
cycle. Each row in AT correspond to edges associated with a node in the distance graph,
such that for the element AT

ij at row i and column j, AT
ij is:

• 1 if edge j is incoming to node i;

• -1 if edge j is outgoing from node i; and

• 0 otherwise.

By definition, for every node in a cycle, the number of incoming edges is equal to the number
of outgoing edges. Thus, for every row AT

i of AT , we have ATuneg = 0.

Further, note that b is the list of edge weights for the distance graph. By construction,
uneg ≥ 0, and bTuneg = ψ < 0. Thus, for λ > 1, bT [λuneg] = λψ < 0.

Thus, B.2 is unbounded and uneg is an unbounded ray, as λuneg meets the constraints,
for arbitrarily large values of λ, and results in an objective value that is arbitrarily negative.

This shows that negative cycles correspond to feasibility cuts in a Bender’s Decom-
position framework, in the special case when the subproblem is one of satisfying a set of
difference constraints. This motivates the use of negative cycles to summarize infeasibility
in our work and related work where the subproblem can be expressed as checking feasibility
for a system of simple temporal constraints.
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