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Abstract

We study the computational complexity of abstract argumentation semantics based on
weak admissibility, a recently introduced concept to deal with arguments of self-defeating
nature. Our results reveal that semantics based on weak admissibility are of much higher
complexity (under typical assumptions) compared to all argumentation semantics which
have been analysed in terms of complexity so far. In fact, we show PSPACE-completeness
of all non-trivial standard decision problems for weak-admissible based semantics. We then
investigate potential tractable fragments and show that restricting the frameworks under
consideration to certain graph-classes significantly reduces the complexity. We also show
that weak-admissibility based extensions can be computed by dividing the given graph into
its strongly connected components (SCCs). This technique ensures that the bottleneck
when computing extensions is the size of the largest SCC instead of the size of the graph
itself and therefore contributes to the search for fixed-parameter tractable implementations
for reasoning with weak admissibility.

1. Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung (1995) are nowadays
identified as key concept to understand the fundamental mechanisms behind formal ar-
gumentation and non-monotonic reasoning. In these frameworks, it is solely the attack
relation between (abstract) arguments that is used to determine the semantics of a given
AF, i.e. jointly acceptable sets of arguments called extensions.

Most of the existing argumentation semantics were either based on the concept of naivety
or admissibility (van der Torre & Vesic, 2017). The former is satisfied if the selected sets
are maximal conflict-free. For the latter, it is required that the sets defend themselves (each
attacker of an argument in the set is counter-attacked by the set).

There is a wide consensus that the absence of defense in naive extensions potentially
leads to undesired results. However, already Dung noticed that also the concept of defense
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can be seen problematic; in particular, when self-defeating arguments are involved, that is,
arguments which attack themselves directly or indirectly through an odd loop of arguments.
Such “dummy” arguments may block the acceptance state of other reasonable ones, while
never standing a chance of being accepted themselves. This issue has been known for a long
time, and inspired several approaches to mitigate the effect of self-defeating arguments,
see e.g. (Amendola & Ricca, 2019; Bodanza & Tohmé, 2009; Dondio, 2019; Dondio &
Longo, 2019; Fazzinga, Flesca, & Furfaro, 2020a). However, no semantics for abstract
argumentation among the numerous invented so far (Baroni, Caminada, & Giacomin, 2011)
has addressed this problem in a commonly agreed way.

In a recent paper, Baumann, Brewka, and Ulbricht (2020b) propose a mediating posi-
tion between naivity and admissibility and introduced the concept of weak admissibility.
This new concept aims at limiting the effect of self-defeating arguments by verifying the
credibility of arguments in a recursive fashion: any conflict-free set of arguments is con-
sidered acceptable unless attacked by some serious rival. On top of handling self-defeating
arguments in a more reasonable way, the introduced semantics possess several promising
theoretical properties which were already pointed out in (Baumann et al., 2020b) by showing
that weak admissibility inherits many of the desirable properties of its classical Dung-style
counterpart. These observations triggered further investigations of these semantics w.r.t.
well-known postulates discussed in the literature (Baroni, Caminada, & Giacomin, 2018;
van der Torre & Vesic, 2017): in particular, Dauphin, Rienstra, and van der Torre (2020)
have studied the aforementioned postulates in a comprehensive fashion, while in (Baumann,
Brewka, & Ulbricht, 2020a) concepts like strong equivalence for semantics based on weak
admissibility are adressed.

In light of these solid theoretical results an investigation from a computational point of
view stands to reason as well. In this paper, we take several steps towards this direction
by thoroughly analyzing the computational complexity of weak admissibility. The com-
plexity analysis we provide is of particular interest, since all known complexity results of
standard tasks for argumentation semantics are located within the first two layers of the
polynomial hierarchy (Dvořák & Dunne, 2018). This holds even for semantics which have
a certain recursive nature like cf2 or stage2 semantics; see (Gaggl & Woltran, 2013; Dvořák
& Gaggl, 2016) for the respective complexity analyses. In contrast, reasoning with weak
admissibility based semantics will turn out to be PSPACE-complete in general. We recall
that under the assumption that the polynomial hierarchy does not collapse, problems com-
plete for PSPACE are rated as significantly harder than problems located at lower levels of
the polynomial hierarchy. Our results are mirrored in the complexity landscape of (propo-
sitional) non-monotonic reasoning in the broad sense, where decision problems for many
prominent formalisms (like default logic or circumscription) are located on the second level
of the polynomial hierarchy (see, e.g. (Cadoli & Schaerf, 1993; Thomas & Vollmer, 2010)
for survey articles), and only a few formalisms reach PSPACE-hardness. Examples for the
latter are nested circumscription (Cadoli, Eiter, & Gottlob, 2005), nested counterfactuals
(Eiter & Gottlob, 1996), model-preference default logic (Papadimitriou, 1991), and theory
curbing (Eiter & Gottlob, 2006).

In the literature, several techniques have been developed in order to circumvent the
worst case complexity of reasoning tasks as good as possible. A quite straightforward
approach is restricting the structural properties of the given AF. Commonly investigated
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sub-classes are odd-cycle free, noeven, bipartite, symmetric, and acyclic AFs (Dvořák &
Dunne, 2018). We will amplify our investigation by examining these cases as well. Thereby,
we will obtain a significant drop in the computational complexity in many cases. Other
approaches aim at dividing the given AF into certain smaller parts and evaluating them
separately. This, however, not only relies on the graph structure but also on the semantics
under consideration. Noteworthy examples for such techniques are SCC-recursiveness and
splitting (Baumann, 2011). Regarding the former, the idea is that many AF semantics allow
for the computation of extensions SCC-wise (Baroni, Giacomin, & Guida, 2005) which, very
roughly speaking, implicates that the most relevant input value is no longer the size of the
given AF, but the size of its largest SCC. Computing AF semantics this way is a common
strategy in abstract argumentation and contributed not only to a theoretical understanding
of existing semantics, but also inspired the proposal of novel ones (Dvořák & Gaggl, 2016).
Splitting (Baumann, 2011) can be seen as a restricted version of SCC-recursiveness. Here,
the AF is divided into two parts and the computation can be performed step-wise. Similar
techniques have been investigated for several non-monotonic formalisms like logic programs
(Lifschitz & Turner, 1994), auto-epistemic logic (Gelfond & Przymusinska, 1992) and default
logic (Turner, 1996). The overall picture we obtain in this paper is that techniques of this
kind are hard to adapt to weak admissibility-based semantics. However, we will make
several contributions into this direction. Notably, we show that the verification of weakly
preferred extensions (i.e. ⊆-maximal weakly admissible sets) is fixed-parameter tractable in
the size of the largest SCC of the graph, i.e. we present an algorithm for verifying preferred
extensions with a running time that scales exponentially with the size of the largest SCC
but polynomially with the size of the argumentation framework.

Our main contributions can be summarized as follows:

� Starting with the most general case we show that all standard decision problems for
weak-admissible based semantics (with the exception of the trivial skeptical weakly
admissible acceptance) are PSPACE-complete.

� We analyze the effect of restricting the AFs under consideration to certain graph-
classes. In most cases this renders the “weak” semantics to be computationally com-
parable to their Dung-style counterparts, which is a significant drop in their complex-
ity. In particular, we investigate symmetric, acyclic, bipartite, odd-cycle free, and
noeven AFs.

� We study to which extent SCC-recursiveness or splitting techniques can be applied
to weak admissibility based semantics. In particular, we show SCC-recursiveness of
weakly preferred semantics and develop approaches to compute weakly admissible
extensions SCC-wise as well.

This submission combines and extends several previously published works regarding
computational aspects of weak admissibility based semantics. The reduction which is used
to prove PSPACE-completeness of weakly admissible semantics was reported in (Dvořák,
Ulbricht, & Woltran, 2021); see also (Dvořák, Ulbricht, & Woltran, 2020). The paper
(Dvořák et al., 2021) also provides the basis for our investigation of symmetric, acyclic, odd-
cycle free, and noeven AFs. Crucial theoretical insights in the behavior of these subclasses
stem from (Baumann et al., 2020a, Section 6). SCC-recursiveness of weakly preferred
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semantics was reported in (Friese & Ulbricht, 2021). The present paper combines these
results, provides full proofs of all claims, significantly extends the overall presentation and
contains a more comprehensive selection of examples. Novel results in this article concern
fixed-parameter tractability (Corollary 5.9), SCC-wise computation of weakly admissible
semantics (Propositions 5.11 and 5.13) as well as splitting results (Section 5.2).

2. Background

Let us start by giving the necessary preliminaries.

2.1 Standard Concepts and Classical Semantics

We fix a non-finite background set U . An argumentation framework (AF) (Dung, 1995) is
a directed graph F = (A,R) where A ⊆ U represents a set of arguments and R ⊆ A × A
models attacks between them. We denote with F the set of all finite AFs over U ; we shall
consider finite AFs only. The union F ∪G of two AFs F = (A,R) and G = (B,S) is given
as (A ∪B,R ∪ S); the intersection F ∩G is the AF (A ∩B,R ∩ S ∩ (A ∩B ×A ∩B)).

Now assume F = (A,R). For S ⊆ A we let F↓S= (A ∩ S,R ∩ (S × S)). For a, b ∈ A,
if (a, b) ∈ R, then we say that a attacks b. An argument a attacks a set E if there is some
b ∈ E s.t. a attacks b. Analogously, E attacks a if there is some b ∈ E attacking a. A set
U ⊆ A is called unattacked if there is no a ∈ A\U attacking U . Moreover, E is conflict-free
in F (for short, E ∈ cf (F )) iff for no a, b ∈ E, (a, b) ∈ R. We say a set E classically defends
(c-defends) an argument a (in F ) if any attacker of a is attacked by some argument of E,
i.e. for each (b, a) ∈ R, there is c ∈ E such that (c, b) ∈ R.

Finally, for a given F = (B,S) we let A(F ) = B and R(F ) = S.

A semantics σ is a mapping σ : F → 22
U

where F 7→ σ(F ) ⊆ 2A, i.e. given an AF
F = (A,R) a semantics returns a subset of 2A; E ∈ σ(F ) is called a σ-extension of F . We
consider here admissible, complete, grounded, preferred, and stable semantics (abbr. adm,
co, gr , pr , stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ cf (F ).

1. E ∈adm(F ) iff E c-defends all its elements,

2. E ∈co(F ) iff E ∈ adm(F ) and, for any x c-defended by E, we have x ∈ E,

3. E ∈gr(F ) iff E is ⊆-minimal in co(F ),

4. E ∈pr(F ) iff E is ⊆-maximal in adm(F ).

5. E ∈stb(F ) iff E∈cf (A) and any a ∈ A \ E is attacked by E.

In the following, we abuse notation and let
⋃
S =

⋃
M∈S M for a set S of sets; in

particular,
⋃
σ(F ) is the union of all σ-extensions of F .

2.2 Weak Admissible-Based Semantics

The reduct is the central notion in the definition of weak admissible semantics (Baumann
et al., 2020b). For a compact definition, we use, given an AF F = (A,R), E+

F = {a ∈ A |
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E attacks a in F} as well as E⊕
F = E ∪ E+

F . The latter set is known as the range of E in
F . When clear from the context, we omit the subscript F .

Definition 2.2. Let F = (A,R) be an AF and let E ⊆ A. The E-reduct of F is the AF
FE = (E∗, R ∩ (E∗ × E∗)) where E∗ = A \ E⊕

F .

By definition, FE is the subframework of F obtained by removing the range of E as well
as corresponding attacks, i.e. FE = F ↓A\E⊕ . The intuition of the E-reduct is as follows.
Suppose the set E is considered accepted, the arguments in E+ are rejected and we are not
(yet) certain about the status of the remaining arguments. Then, the E-reduct contains
those arguments which belong to the latter case, i.e. the arguments whose status is not (yet)
decided. Weak admissibility formalizes the intuition that an argument y which attacks the
candidate set E needs to be a “serious” threat, for otherwise it can be disregarded. Whether
or not y is serious enough is decided by checking the reduct FE in a recursive fashion.

Definition 2.3. For an AF F = (A,R), E ⊆ A is called weakly admissible (or w-admissible)
in F (E ∈ admw(F )) if

1. E ∈ cf (F ) and

2. for any attacker y of E we have y /∈
⋃
admw

(
FE

)
.

The major difference between the standard definition of admissibility and the “weak”
one is that extensions do not have to defend themselves against all attackers: attackers
which do not appear in any w-admissible set of the reduct can be neglected.

Observe that the definition of admw(F ) is recursive since the second item makes use of
admw(FE). However, given E ̸= ∅, the reduct FE contains strictly less arguments than F .
Hence the recursion will always end with an empty AF (which does not contain any non-
empty set of arguments) or a self-attacker (which is not conflict-free); thus the definition
is well-defined. In the following, let us familiarize ourselves with weak admissibility using
some illustrative examples.

Example 2.4. Consider the following simple example:

a bc

F :

a bc

F {a} = F {b} :

While we observe {a} /∈ adm(F ), we can verify weak admissibility of {a} in F . Obviously,
{a} is conflict-free in F (condition 1). Since c is the only attacker of {a} in F {a} we have
to check c /∈

⋃
admw

(
F {a}) (condition 2). Since {c} is not conflict-free in the reduct

F {a} = ({c}, {(c, c)}) we find {c} /∈ admw
(
F {a}) yielding

⋃
admw

(
F {a}) = ∅. Hence,

c /∈
⋃
admw

(
F {a}), and thus {a} ∈ admw(F ). ⋄

Example 2.5. Now assume a is attacked by an odd cycle a1, a2, a3. Let us check whether
{a} ∈ admw(F ):
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a1

a2

a3F {a} : a

In fact, the only conflict-free set attacking a is {a3}. However, in the reduct (F {a}){a3} the
set {a2} is weakly admissible. Since a2 attacks a3, {a3} /∈ admw

(
(F {a}){a3}

)
:

a1

a2

a3(F {a}){a3} : a

We conclude that {a} ∈ admw(F ). ⋄

Let us consider another example illustrating the mechanisms of weak admissibility be-
yond self-defeating arguments.

Example 2.6. Consider the following AF F .

a1F :

a2

a3

a4

Let us verify—although this seems a bit surprising at first glance—that {a4} ∈ admw(F ).
To see this, we note that a2 is the only attacker in the corresponding reduct:

a1F {a4}:

a2

a3

a4

Now since a2 is attacked by a1, it stands no chance of being w-admissible in F {a4}, although
it is not a self-defeating argument. Thus {a4} ∈ admw(F ). ⋄

Although Example 2.6 may appear somewhat counter-intuitive, it is similar in spirit to
Example 2.5: in both cases, weak admissibility verifies whether a certain attacker can be
neglected. In Example 2.5, a3 does no harm since it is contained in a self-defeating odd
loop; in Example 2.6, a2 does no harm since it is defeated by the undisputed a1.

The following AF shows that weak admissibilty can model choices without using even
cycles. This observation will be useful later.

Example 2.7. Consider now an AF with two odd cycles sticking together.

aF :

b

d

e

f
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Let E = {a}. Then the reduct FE consists of an odd cycle only from which we already
know that it does not possess any non-empty weakly admissible extension. The same is
true for E′ = {e}. However, E ∪′ E is not weakly admissible since the reduct contains the
unattacked argument d. In summary, we obtain admw(F ) = {∅, {a}, {e}}. ⋄

Following the classical Dung-style semantics, weakly preferred extensions are defined as
⊆-maximal w-admissible extensions.

Definition 2.8. For an AF F = (A,R), E ⊆ A is called weakly preferred (or w-preferred)
in F (E ∈ prw(F )) iff E is ⊆-maximal in admw(F ).

In order to define the “weak” counterparts to Dung’s grounded and complete extensions,
the following notion of “weak defense” has been proposed in (Baumann et al., 2020b):

Definition 2.9. Let F = (A,R) be an AF. Given two sets E,X ⊆ A. We say E weakly
defends (or w-defends) X iff for any attacker y of X we have,

1. E attacks y, or (c-defense)

2. y /∈
⋃
admw

(
FE

)
, y /∈ E and X ⊆ X ′ ∈ admw(F ).

Now weakly complete and weakly grounded extensions can be defined analogously to
complete and grounded ones:

Definition 2.10. For an AF F = (A,R), E ⊆ A is called weakly complete (or just w-
complete) in F (E ∈ cow(F )) iff E ∈ admw(F ) and for anyX, s.t. E ⊆ X andX w-defended
by E, we have X ⊆ E.

A set E ⊆ A is called weakly grounded (or w-grounded) in F (E ∈ grw(F )) iff E is
⊆-minimal in cow(F ).

The following relations between weak admissibility semantics and their Dung-style coun-
terparts (Baumann et al., 2020b, Proposition 5.6) will be useful throughout the present
paper:

adm(F ) ⊆admw(F ) ⊆ cf (F )

prw(F ) ⊆cow(F ) ⊆ admw(F )

grw(F ) ⊆cow(F )

stb(F ) ⊆prw(F )

Moreover, as it is the case for the classical semantics, a set E ⊆ A is w-preferred in F iff it
is ⊆-maximal in cow(F ) (Baumann et al., 2020b, Theorem 5.3).

Towards a more convenient notion of weak defense, the following characterization has
been developed in (Baumann et al., 2020a); it is suitable in all cases that “matter”, i.e.
cases where w-completeness of a given set is to be verified:

Proposition 2.11. Let F be an AF and let E ∈ admw(F ). Then, for any X = E ∪̇D we
have that E w-defends X if

1. for any attacker y of D, y /∈
⋃

admw(FE), and
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2. there is a set D ⊆ D′ with D′ ∈ admw
(
FE

)
.

Example 2.12. Consider the AF F :

c dbaF :

Let us verify that E = {d} w-defends X = {b, d}. Since {d} itself is w-admissible, the
conditions of the above proposition are met. We thus consider the reduct FE :

c dbaFE :

Now D = {b} is not attacked by a w-admissible argument (since a is a self-attacker) and
is itself w-admissible in FE . Hence X = E ∪ D is w-defended by E. Thus {b} is not
w-complete (but of course {b, d} is). It is thus easy to verify that cow(F ) = {∅, {c}, {b, d}}.

⋄

Example 2.13. Recall Example 2.5. The empty set ∅ weakly defends {a} since both
conditions in Proposition 2.11 are clearly satisfied (by considering F ∅ = F ). We find
therefore that {a} is the unique w-complete extension of this AF. ⋄

Example 2.14. Regarding Example 2.7, ∅ weakly defends both {a} and {e}, but neither
of them defends any other non-empty set. Hence these are the two w-complete extensions
of the AF depicted in Example 2.7. ⋄

Throughout the paper, the following results will be frequently applied. The first one is
taken from (Baumann et al., 2020a, Corollaries 4.2 and 4.6, Theorem 4.13, Proposition 4.14);
the second is due to (Baumann et al., 2020a, Theorem 4.5).

Theorem 2.15. Let F = (A,R) be an AF and σ ∈ {admw, cow, grw, prw}. If E ∈ σ(F )
and E′ ∈ σ(FE), then E ∪ E′ ∈ σ(F ).

Theorem 2.16. Let F = (A,R) be an AF. Then E ∈ prw(F ) if and only if E ∈ cf (F ) and⋃
admw(FE) = ∅.

For more details regarding the definition and basic properties of weak admissibility we
refer the reader to (Baumann et al., 2020b).

2.3 Complexity Classes and Decision Problems

We assume the reader to be familiar with the basic concepts of computational complexity
theory (Arora & Barak, 2009; Papadimitriou, 1994) as well as the standard classes P (poly-
nomial time), NP (non-deterministic polynomial time) and coNP (complementary class to
NP). Moreover, we consider the class DP that contains those problems that can be solved
via an NP algorithm together with an coNP algorithm such that an instance is accepted iff it
is accepted by both the NP and the coNP algorithm. In the following, we briefly recapitulate
the concept of oracle machines and related complexity classes relevant for this work. To
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this end, let C denote some complexity class. By a C-oracle machine we mean a (polynomial
time) Turing machine which can access an oracle that decides a given (sub)-problem in C
within one computation step. We denote such machines as PC if the underlying Turing
machine is deterministic; and NPC if the underlying Turing machine is non-deterministic.
In this work we consider complexity classes using NP-oracles. First, the class ΣP

2 = NPNP

denotes the set of problems which can be decided by a non-deterministic polynomial time
algorithm that has (unrestricted) access to an NP-oracle. The class ΠP

2 = coNPNP is de-
fined as the complementary class of ΣP

2 , i.e. Π
P
2 = coΣP

2 . Finally, L (logarithmic space) and
PSPACE (polynomial space) contain the problems that can be solved using only logarithmic
or polynomial space of memory, respectively. Notice, that space complexity classes have
implicit bounds on the running time, i.e. problems in L can be solved in polynomial time
while problems in PSPACE can be solved in exponential time. We have:

L ⊆ P ⊆ NP
coNP

⊆ DP ⊆ ΣP
2

ΠP
2

⊆ PSPACE

Moreover, we sometimes consider problem parameters for a more fine-grained analysis, mak-
ing use of concepts from parameterized complexity (Cygan, Fomin, Kowalik, Lokshtanov,
Marx, Pilipczuk, Pilipczuk, & Saurabh, 2015). In particular we consider the class of fixed
parameter tractable problems (FPT) which contains the problems that can be solved in
O(f(k) · p(|I|), where f is an arbitrary computable function, k is a problem parameter, p
is a polynomial and |I| is the size of the instance. That is, the running time may scale ex-
ponentially (or even worse) w.r.t. the parameter but scales polynomially with the instance
size.

For an AF F = (A,R) and a semantics σ, we say an argument a ∈ A is credulously
accepted (skeptically accepted) in F w.r.t. σ if a ∈

⋃
σ(F ) (a ∈

⋂
σ(F )). The corresponding

decision problems for a semantics σ, given an AF F and argument a, are as follows:

� Credulous Acceptance (Credσ): Given an AF F = (A,R) and argument a ∈ A, is a
contained in some S ∈ σ(F )?

� Skeptical Acceptance (Skeptσ): Given an AF F = (A,R) and argument a ∈ A, is a
contained in each S ∈ σ(F )?

Furthermore we consider the following decision problems:

� Verification (Verσ): Given an AF F = (A,R) and a set S ⊆ A, is S ∈ σ(F )?

� Non-emptiness (NEmptyσ): Given an AF F = (A,R), is there a non-empty set S ⊆ A
such that S ∈ σ(F )?

3. Complexity Analysis

In this section, we investigate the complexity of the standard decision problems in argu-
mentation for the four semantics based on weak admissibility.

Let us start by building up some intuition about the complexity of weak admissibility
semantics. As for most semantics the verification problem is a suitable groundwork.
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Example 3.1. Consider the following AF F , adapted from the well-known standard trans-
lation from propositional formulas to AFs:

t

c1 c2 c3

x1 x̄1 x2 x̄2 x3 x̄3

Let us check whether E = {t} ∈ admw(F ). This is the case if none of the attackers c1, c2,
or c3 occur in a w-admissible extension of the reduct FE , which is obtained by removing
the argument t from F .

Now take c1. We see that c1 does not occur in a w-admissible extension in FE : It is
attacked by both x1 and x̄1 which are in turn both w-admissible in any relevant sub-AF of
F . Similarly, neither c2 nor c3 occur in a w-admissible extension of FE . Thus E ∈ admw(F ).

⋄

Although this example was quite straightforward, several observations can be made:

� weak admissibility does not appear to be a local property: the reason why E = {t}
is w-admissible in the previous example are the arguments x1, . . . , x̄3 which are not
contained in E; we also see that this example is quite small and can be extended to
chains of arbitrary length,

� unless there is some shortcut, several sub-AFs need to be computed, inducing a re-
cursion with depth in O(|A|) in the worst case,

� it is not clear at first glance whether deciding credulous acceptance is actually much
easier, because guessing a suitable set (here {t, x1, x2, x3}) might skip computationally
expensive recursive steps.

The main contribution of this paper is to formally prove that there are no shortcuts and no
suitable guessing in any case: All considered non-trivial problems are PSPACE-complete.
Our results are summarized in Table 1 together with the results for admissibility-based
semantics summarized by Dvořák and Dunne (2018).

3.1 Membership Results

We provide an algorithm that runs in PSPACE and closely follows the definition of w-
admissibility.

Lemma 3.2. Veradmw is in PSPACE.

Proof. An algorithm for verifying that E ∈ admw(F ) proceeds as follows: (1) test whether
E ∈ cf (F ); if not return false, (2) compute the reduct FE , (3) iterate over all subsets S
of FE that contain at least one attacker of E and test whether S is w-admissible; if so
return false; else return true. Notice that the last step involves recursive calls. However,
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Table 1: Complexity of classical and weak-admissible based semantics (“c” is used as shorthand for
“complete”).

σ Credσ Skeptσ Verσ NEmptyσ

adm NP-c trivial in P NP-c

co NP-c P-c in P NP-c

gr P-c P-c P-c in P

pr NP-c ΠP
2 -c coNP-c NP-c

admw PSPACE-c trivial PSPACE-c PSPACE-c

cow PSPACE-c PSPACE-c PSPACE-c PSPACE-c

grw PSPACE-c PSPACE-c PSPACE-c PSPACE-c

prw PSPACE-c PSPACE-c PSPACE-c PSPACE-c

the size of the considered AF is decreasing in each step and thus the recursion depth is
in O(|A|). Moreover, we only need to store the current AF as well as the set S to verify.
Finally, iterating over all subsets of an AF can be done in PSPACE as well. Hence, the
above algorithm is in PSPACE.

Given that verification is in PSPACE we can adapt standard algorithms to obtain the
PSPACE membership of the other problems. Notice that Skeptadmw is always false as the
empty-set is always w-admissible.

Proposition 3.3. For σ ∈ {grw, admw, cow, prw}, Credσ, Skeptσ, Verσ, and NEmptyσ can
be solved in PSPACE.

Proof. Veradmw ∈ PSPACE is by Lemma 3.2. The other memberships are by the following
algorithms that can be easily implemented in PSPACE with calls to other PSPACE problems,
e.g. Veradmw , and thus are themselves in PSPACE.

Verprw can be solved by first verifying that the set is w-admissible and then iterating
over all super-sets and verifying that they are not w-admissible.

Vercow ∈ PSPACE: To test whether a set E is w-complete, first test whether it is w-
admissible, then compute Cred =

⋃
admw(FE) (which is in PSPACE as we show below),

and finally test for each set D ⊆ A \ E whether it is w-defended by E. The latter can be
done by first testing whether Cred attacks D and then iterating over all D′ ⊋ D and test
D′ ∈ admw

(
FE

)
(which by the above is in PSPACE). If none of the sets D is w-defended

by E then E is w-complete and thus we obtain Vercow ∈ PSPACE. Vergrw ∈ PSPACE: To
test whether a set E is w-grounded, we first test whether it is w-complete, and then that
each E′ with E′ ⊊ E is not w-complete.

For Credσ with Verσ ∈ PSPACE: we iterate over all sets of the arguments that contain
the query argument and test whether the set is a σ-extension. As soon as we find a subset
that is a σ-extension we can stop and return that the argument is credulously accepted.
Otherwise if none of the sets is a σ-extension, then the argument is not credulously accepted.

For Skeptσ we iterate over all subsets of the arguments that do not contain the query
argument and test whether the set is a σ-extension. As soon as we find a subset that is a σ-
extension we can stop and return that the argument is not skeptically accepted. Otherwise
if none of the sets is a σ-extension, then the argument is skeptically accepted.
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For NEmptyσ we iterate over all non-empty subsets of the arguments and test whether
the set is a σ-extension. If one of them is a σ-extension we terminate and return true
otherwise we return false.

3.2 Hardness Results

We show hardness by a reduction from the PSPACE-complete problem of deciding whether a
QBF is valid. The problem remains PSPACE-complete if we consider QBFs of the following
form

Φ = ∀xn∃xn−1 . . . ∀x2∃x1 : ϕ(x1, x2, . . . , xn−1, xn).

Notice that Φ might start with a universal or existential quantifier and then alternates
between universal and existential quantifiers after each variable and ends with an existential
quantifier. Moreover, we can assume that ϕ is a propositional formula in CNF given by a set
of clauses C, i.e. ϕ =

∧
c∈C

∨
l∈c l where each l is a literal over the atoms {x1, x2, . . . , xn}.

We call a QBF starting with a universal quantifier a ∀-QBF and a QBF starting with
an existential quantifier an ∃-QBF. Finally, observe that we named variables in reverse
order to avoid renaming variables in our proofs by induction. We further assume that each
clause contains one of the literals x1,¬x1, in order to avoid empty clauses when eliminating
variables in the following proofs.

We start with a reduction that maps QBFs to AFs such that the validity of the QBF
can be read off by inspecting the w-admissible sets of the AF. We will later extend this
reduction to encode the specific decision problems under our considerations.

Reduction 3.4. Given a QBF Φ with propositional formula ϕ(x1, . . . , xn) over clauses C,
we define the AF GΦ = (A,R) with

A ={xi, x̄i, pi | 1 ≤ i ≤ n} ∪ {c | c ∈ C} and

R ={(xi, x̄i), (x̄i, xi) | 1 ≤ i ≤ n}∪
{(xi, xi+1), (xi, x̄i+1) | 1 ≤ i < n}∪
{(x̄i, xi+1), (x̄i, x̄i+1) | 1 ≤ i < n}∪
{(xi, c) | xi ∈ c ∈ C} ∪ {(x̄i, c) | ¬xi ∈ c ∈ C}∪
{(c, x1), (c, x̄1) | c ∈ C} ∪ {(pi, pi+1) | 1 ≤ i < n}∪
{(xi, pi), (x̄i, pi) | 1 ≤ i ≤ n}∪
{(pi, xi−1), (pi, x̄i−1) | 2 ≤ i ≤ n}∪{(p1, c) | c ∈ C}.

Example 3.5. Let us consider the valid QBF ∀x2∃x1 : ϕ with ϕ = c1 ∧ c2 = (¬x2 ∨ x1) ∧
(x2 ∨ ¬x1) and apply Reduction 3.4 to obtain an AF F . It will be convenient to think of
several layers, each one induced by a variable occurring in the QBF at hand. We thus have
two layers here, with xi and x̄i attacking each other in the expected way and each layer
attacked by its predecessor. The x-arguments attack the c-arguments in the natural way.
The c-arguments only attack x1 and x̄1. The arguments p1 and p2 induce odd cycles to
forbid certain possible extensions which will become clear later. Schematically, this looks
as follows. Thereby, we cluster the X-variables, i.e. Xi encapsulates xi and x̄i.
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X2 X1

p2 p1

C

In detail, Reduction 3.4 applied to our QBF yields the following AF:

x2

x̄2

x1

x̄1

p2 p1

c1

c2

Now regarding our QBF note that setting x2 to true requires x1 is to be true as well and
setting x2 to false requires x1 to be false. This translates to F as follows: Take E = {x̄2},
corresponding to setting x2 to false. The set E is not w-admissible in F . To see this,
consider the reduct FE :

x2

x2

x1

x1

p2 p1

c1

c2

Here {x̄1} (corresponding to ¬x1 in the QBF) is w-admissible in FE (even admissible) and
attacks x̄2 witnessing that E /∈ admw(F ). Similarly, {x2} is not w-admissible since it is
attacked by x1 in the corresponding reduct.

Let us now consider a QBF which evaluates to false. For this, we move from ϕ to
ϕ′ = C1 ∧ C2 = (¬x2 ∨ x1) ∧ (x2). Note that ϕ′ is obtained from ϕ by removing ¬x1
from C2. Consider the induced QBF ∀x2∃x1 : ϕ′. Let F ′ be the AF obtained by applying
Reduction 3.4. This time, E = {x̄2} is w-admissible: The reduct is the same as the one
depicted above, with the attack from x̄1 to c2 removed. Thus neither {x1} nor {x̄1} are
w-admssible in (F ′)E : The argument c2 occurs in both ((F ′)E){x1} and ((F ′)E){x̄1} and
hence witnesses that both arguments are not w-admissible in (F ′)E . This means in turn
that E = {x̄2} is w-admissible in F ′. ⋄

Example 3.6. For the sake of demonstrating our construction, let us assume our QBF
consists of three variables, i.e. consider ∃x3∀x2∃x1 : ϕ with ϕ = (¬x2 ∨ x1) ∧ (x2 ∨ ¬x1) as
above. The AF F induced by Reduction 3.4 is the following:
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x3

x̄3

p3

x2

x̄2

x1

x̄1

p2 p1

c1

c2

Now E = {x3} is w-admissible: The reduct F {x3} is the AF F from the previous example,
where both {x2} and {x̄2} are not w-admissible (recall that we consider the formula ϕ from
above). Thus E is w-admissible. ⋄

The previous examples hint at the following behavior of Reduction 3.4:

� if a QBF of the form ∀x2∃x1 : ϕ, evaluates to true then neither {x2} nor {x̄2} is
w-admissible,

� if a QBF of the form ∃x3∀x2∃x1 : ϕ, evaluates to true, then at least one of {x3} and
{x̄3} is w-admissible, and

� analogous reasoning applies to QBFs which evaluate to false.

We also want to mention that, e.g. in Example 3.6, the arguments x3 and x̄3 are the only
possible candidates for w-admissible extensions:

� p2, for example, is attacked by x2 and x̄2 in the corresponding reduct; this can only
be prevented by also including x1 or x̄1, which in turn are in conflict with p2,

� c1, for example, is attacked by p1 which can only be removed from the reduct by
including x1 or x̄1, but both are attacked by c1,

� x2, for example, is attacked by p3, but attacks x3, x̄3 and p2 which are the only
attackers of p3.

The following lemma formalizes that these observations are true in general.

Lemma 3.7. For a QBF Φ and each integer n we have the following:

1. Suppose Φ is of the form ∃xn∀xn−1 . . . ∃x1 : ϕ(x1, x2, . . . , xn). Then we have that
admw(GΦ) ∩ {{xn}, {x̄n}} ≠ ∅ if Φ is valid and admw(GΦ) = {∅} otherwise.

2. Suppose Φ is of the form ∀xn∃xn−1 . . . ∃x1 : ϕ(x1, x2, . . . , xn). Then we have that
admw(GΦ) = {∅} if Φ is valid and admw(GΦ) ∩ {{xn}, {x̄n}} ≠ ∅ otherwise.

Moreover, in both cases admw(GΦ) ⊆ {{xn}, {x̄n}, ∅}.

1416



Complexity of Weak Admissibility

We briefly sketch the main ideas of the proof. First, we have that all conflict-free sets
E that contain an argument a different from xn and x̄n yield a reduct GE

Φ with unattacked
argument b that attacks a in GΦ and thus E is not w-admissible. That is, {xn}, {x̄n},
and ∅ are the only candidates for being w-admissible. The remainder of the proof is then
by induction on the number of variables n, starting with n = 1. In the induction step we
exploit that, when considering one of the sets E = {xn} or E = {x̄n} respectively, we have
that the reduct GE

Φ corresponds to the AF G ′
Φ where Φ′ is the QBF we obtain from Φ when

eliminating the variable xn by setting it to true, false respectively, and simplifying the CNF
formula. That is, we remove the quantifier for xn and delete all clauses that contain xn,
¬xn respectively, and delete ¬xn, xn respectively, from the remaining clauses.

That is, we have that {xn} is weakly admissible in GΦ if and only if neither {xn−1} nor
{x̄n−1} is weakly admissible in G ′

Φ and as Φ′ has only n − 1 variables one can exploit the
induction hypothesis.

The full proof of the above proposition is by the following lemmas.

Lemma 3.8. For a QBF Φ with n quantifier alternations, admw(GΦ) ⊆ {{xn}, {x̄n}, ∅}.

Proof. Let E ∈ admw(GΦ).
Assume pi ∈ E for some i ≥ 2. Since E must be conflict-free, we have xi−1 /∈ E,

x̄i−1 /∈ E, and pi+1 /∈ E as well as xi /∈ E and x̄i /∈ E. Thus both xi and x̄i occur in the
reduct FE and do not have any attacker in FE . In this case E cannot be w-admissible
since pi ∈ E is attacked by {xi} and {x̄i} which are w-admissible in FE . So the assumption
pi ∈ E for some i ≥ 2 must be false.

Consider now p1 ∈ E. Similarly, if E ∈ cf (F ), then cj /∈ E for each j as well as x1, x̄1 /∈ E
and hence, p1 is attacked by x1 and x̄1 which are unattacked in FE ; contradiction.

Now assume cj ∈ E for some j. Since cj attacks both x1 and x̄1, {p1} is w-admissible
in FE which in turn attacks cj . Thus cj ∈ E is impossible.

Finally, if xi ∈ E or x̄i ∈ E for i ≤ n − 1, then either pi+1 is unattacked in FE (which
attacks both arguments) or pi ∈ E, xi+1 ∈ E, or x̄i+1 ∈ E (which contradicts E ∈ cf(F )).
Hence xi /∈ E; a contradiction.

Hence, none of these cases can occur, i.e. E ∈ {{xn}, {x̄n}, ∅}.

The remainder of the proof proceeds by induction on the number of variables: Lemma 3.9
is the base case and the consecutive lemmas constitute the induction step.

Lemma 3.9. For Φ = ∃x1 : ϕ(x1) we have that admw(GΦ)∩{{x1}, {x̄1}} ≠ ∅ iff Φ is valid.

Proof. By the above lemma it suffices to consider the sets {x1}, {x̄1}. The formula Φ is
valid iff x1 or ¬x1 appears in all clauses.

⇒: Assume {x1} is a w-admissible set but Φ is not valid, i.e. there is a c ∈ C such that
x1 ̸∈ c. By construction x1 attacks p1 and is attacked by c and thus c is unattacked in the
reduct and thus {c} is w-admissible in the reduct which is in contradiction to {x1} being
w-admissible. A similar reasoning applies to the case where {x̄1} is w-admissible but Φ is
not valid.

⇐: Assume that the formula is valid and w.l.o.g. assume that x1 appears in all clauses.
Then by construction x1 attacks all the other arguments in GΦ and thus {x1} is a w-
admissible set.
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In the following lemmas we will modify a CNF formula ϕ(x1, x2, . . . , xn) by setting a
variable to true or false. Here we use ϕ(x1, x2, . . . ,⊤) to denote the formula that we obtain
by deleting all clauses containing xn and removing ¬xn from the remaining clauses and
ϕ(x1, x2, . . . ,⊥) to denote the formula that we obtain by deleting all clauses containing ¬xn
and removing xn from the remaining clauses

Lemma 3.10. If Lemma 3.7 holds for ∃-QBFs with n − 1 variables then it also holds for
∀-QBFs with n variables.

Proof. Consider a ∀-QBF Φ = ∀xn∃xn−1 . . . ∃x1 : ϕ(x1, x2, . . . , xn). We have that Φ is
valid iff both Φ1 = ∃xn−1∀xn−2 . . . ∃x1 : ϕ(x1, x2, . . . ,⊤) and Φ2 = ∃xn−1∀xn−2 . . . ∃x1 :

ϕ(x1, x2, . . . ,⊥) are valid. Moreover, G
{xn}
Φ = GΦ1 and G

{x̄n}
Φ = GΦ2 .

First assume that Φ is valid and consider {xn} (the argument for {x̄n} is analogous). We

show that {xn} is not w-admissible. Consider G
{xn}
Φ = GΦ1 . By the induction hypothesis

we have that {xn−1} or {x̄n−1} is weakly admissible in G
{xn}
Φ and as both xn−1 and x̄n−1

attack xn we have that {xn} is not w-admissible.

Now assume that Φ is not valid and w.l.o.g. assume that Φ1 is not valid. By the induction

hypothesis we have that neither {xn−1} nor {x̄n−1} is weakly admissible in G
{xn}
Φ = GΦ1

and thus {xn} is w-admissible.

Lemma 3.11. If Lemma 3.7 holds for ∀-QBFs with n − 1 variables then it also holds for
∃-QBFs with n variables.

Proof. Consider an ∃-QBF Φ = ∃xn∀xn−1 . . . ∃x1 : ϕ(x1, x2, . . . , xn). We have that Φ is
valid iff one of Φ1 = ∀xn−1∃xn−2 . . . ∃x1 : ϕ(x1, x2, . . . ,⊤) and Φ2 = ∀xn−1∃xn−2 . . . ∃x1 :

ϕ(x1, x2, . . . ,⊥) is valid. Moreover, G
{xn}
Φ = GΦ1 and G

{x̄n}
Φ = GΦ2 .

First assume that Φ is valid and w.l.o.g. assume that Φ1 is valid. We show that {xn}
is w-admissible. Consider G

{xn}
Φ = GΦ1 . By the induction hypothesis we have that neither

{xn−1} nor {x̄n−1} is weakly admissible in G
{xn}
Φ and thus {xn} is w-admissible.

Now assume that Φ is not valid and and consider {xn} (the argument for {x̄n} is
analogous). By the induction hypothesis we have that {xn−1} or {x̄n−1} is weakly admissible

in G
{xn}
Φ and as both xn−1 and x̄n−1 attack xn we have that {xn} is not w-admissible.

We next extend our reduction by two further arguments ϕ and pn+1 in order to show
our hardness results.

Reduction 3.12. Given a ∀-QBF Φ = ∀xn∃xn−1 . . . ∃x1 : ϕ(x1, . . . , xn) we define FΦ =
GΦ∪({ϕ, pn+1}, {(ϕ, pn+1), (pn, pn+1), (pn+1, xn), (pn+1, x̄n), (xn, ϕ), (x̄n, ϕ)}).

Example 3.13. Recall the valid QBF from our first example: ∀x2∃x1 : ϕ with ϕ = C1∧C2 =
(¬x2∨x1)∧ (x2∨¬x1). Augmenting Reduction 3.4 with Reduction 3.12 yields the following
AF F :
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ϕ

p3

x2

x̄2

x1

x̄1

p2 p1

c1

c2

Note the similarity to Example 3.6: Basically, ϕ replaces the pair x3, x̄3 of arguments. Hence
it is easy to see that {ϕ} is w-admissible since the reduct F {ϕ} is again the first AF from
Example 3.5 possessing no w-admissible argument. ⋄

We now formally characterize the potential w-admissible sets in Reduction 3.12.

Lemma 3.14. For a QBF Φ, admw(FΦ) ⊆ {∅, {ϕ}}.

Proof. In comparison to Lemma 3.7, we are only left to consider pn+1. The assumption
pn+1 ∈ E ∈ admw(F ) yields an analogous contradiction: E ∈ cf (F ) implies ϕ, xn, x̄n /∈ E
and hence pn+1 is attacked by {ϕ} ∈ admw(FE).

Proposition 3.15. Given a ∀-QBF Φ = ∀xn∃xn−1 . . . ∃x1 : ϕ(x1, x2, . . . , xn) we have that
Φ is valid if and only if admw(FΦ) = {∅, {ϕ}}, and admw(FΦ) = {∅} otherwise.

Proof. We have that the empty-set is always w-admissible and by Lemma 3.14 that {ϕ} is

the only candidate for being a w-admissible set. Now consider {ϕ} and the reduct F
{ϕ}
Φ .

We have that F
{ϕ}
Φ = GΦ and xn and x̄n being the attackers of ϕ. By Lemma 3.7 we have

that {xn} or {x̄n} is w-admissible in the reduct iff Φ is not valid. Thus {ϕ} is w-admissible
iff Φ is valid.

Theorem 3.16. All of the following problems are PSPACE-complete: Credadmw , Veradmw ,
NEmptyadmw , as well as Credσ, Skeptσ, Verσ, NEmptyσ for any σ ∈ {cow, grw, prw}.

Proof. The membership results are by Proposition 3.3. The hardness results are all by
Reduction 3.12 and Proposition 3.15. It only remains to state the precise problem instances
that are equivalent to testing the validity of the ∀-QBF Φ. First, consider Credadmw =
Credcow = Credprw . In the AF FΦ we have that ϕ is credulously accepted w.r.t. w-admissible
semantics iff {ϕ} ∈ admw(FΦ) iff Φ is valid. Now, consider Veradmw and Verprw . We have
that {ϕ} ∈ admw(FΦ) iff {ϕ} ∈ prw(FΦ) iff Φ is valid. Next, consider Skeptprw . We
have that ϕ is skeptically accepted iff prw(FΦ) = {{ϕ}} iff Φ is valid. Moreover, for
NEmptyadmw = NEmptyprw , the only w-preferred/w-admissible extension is the empty-set
iff Φ is not valid.

For the remaining problems it suffices to show grw(FΦ) = cow(FΦ) = {{ϕ}} whenever
Φ is valid and otherwise, grw(FΦ) = cow(FΦ) = {∅}. Regarding the former, if Φ is valid,
then admw(FΦ) = {∅, {ϕ}}. We show that in this case, ∅ /∈ cow(FΦ). To this end we show
that ∅ w-defends {ϕ}. We may apply Proposition 2.11 to the w-admissible set E = ∅ and
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X = E ∪̇D = ∅ ∪ {ϕ} = {ϕ}, and see that ∅ w-defends {ϕ} since (1) no attacker of ϕ can
be w-admissible in FE

Φ = F ∅
Φ = FΦ, and (2) {ϕ} itself is w-admissible in FE

Φ = F ∅
Φ = FΦ.

If, on the other hand, Φ is not valid, then admw(FΦ) = {∅}, so the only candidate for a
w-complete or w-grounded extension is ∅. Since there is no other w-admissible set in the
reduct F ∅

Φ = FΦ, ∅ does not w-defend any set and is thus itself w-complete and hence w-
grounded. Hence, we obtain for σ ∈ {grw, cow} that Φ is valid iff ϕ is credulously, skeptically
respectively, accepted in FΦ, iff {ϕ} ∈ σ(FΦ) iff FΦ has a non-empty σ-extensions. Thus,
Reduction 3.12 provides a reduction from ∀-QBF to all of the considered problems, and as
it can be clearly performed in polynomial time, the PSPACE-hardness follows.

The results of this section are summarized in Table 2.

Table 2: Complexity of weak-admissible based semantics.

σ Credσ Skeptσ Verσ NEmptyσ

admw PSPACE-c trivial PSPACE-c PSPACE-c

cow PSPACE-c PSPACE-c PSPACE-c PSPACE-c

grw PSPACE-c PSPACE-c PSPACE-c PSPACE-c

prw PSPACE-c PSPACE-c PSPACE-c PSPACE-c

4. Complexity for Specific Graph-Classes

In the previous section we have shown the standard reasoning problems to be computa-
tionally hard. A common approach towards tractability is to consider AFs that have a
special graph structure (Dunne, 2007). To this end, we consider graph classes that have
been shown to be tractable fragments for the traditional argumentation semantics. As we
will see, some results follow from the fact that weak-admissible semantics coincide with
the standard semantics on certain classes of AFs. However, some cases require a dedicated
analysis.

4.1 Symmetric AFs

First, we consider the class of symmetric AFs (A,R) (Coste-Marquis, Devred, & Marquis,
2005) which require that if (a, b) ∈ R then also (b, a) ∈ R. In symmetric AFs we have that
conflict-free and admissible sets coincide and thus also w-admissible and conflict-free sets co-
incide (recall that we always have cf (F ) ⊇ admw(F ) ⊇ adm(F )). If we additionally assume
that there is no self-attack then all arguments are credulously accepted and an argument is
only w-defended if it is not attacked at all. That is, c-defence and w-defence coincide and
thus also complete and w-complete as well as grounded and w-grounded semantics coincide.

Lemma 4.1. For symmetric AFs F we have admw(F ) = adm(F ) and prw(F ) = pr(F ).
Moreover, if F has no self-attacks then also cow(F ) = co(F ) and grw(F ) = gr(F ).

By (Baumann et al., 2020b, Theorems 3.10, 5.14), we can remove self-attacking argu-
ments without changing the extensions of weakly-admissible based semantics and thus by
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the known complexity results for the standard semantics (Dvořák & Dunne, 2018) we obtain
that reasoning on symmetric AFs is in logarithmic space.

Proposition 4.2. For symmetric AFs and σ ∈ {grw, admw, cow, prw}, the problems Credσ,
Skeptσ, Verσ and NEmptyσ can be solved in L.

Table 3: Complexity of w-admissible semantics in symmetric AFs

σ Credσ Skeptσ Verσ NEmptyσ

grw in L in L in L in L

admw in L trivial in L in L

cow in L in L in L in L

prw in L in L in L in L

4.2 Acyclic AFs

Next we consider graph classes that are based on the absence of (certain types) of cycles.
First, if the AF under consideration is acyclic, then the unique preferred extension coincides
with the grounded one. Given the relationships between the classical semantics and our
“weak” ones, we may infer a similar result.

Definition 4.3. Given an AF F = (A,R). A sequence a1, a2, . . . , an, an+1 of arguments
with ai ∈ A, a1 = an+1 and (ai, ai+1) ∈ R for all i is called a cycle in F . If n is odd, then
it is an odd cycle. We call F acyclic if there is no cycle and odd-cycle free if there is no odd
cycle in F .

We will use the following known result from the literature regarding acyclic AFs.

Proposition 4.4 ((Dung, 1995), Theorem 30). If F is acyclic, then there is exactly one
complete extension E which is also grounded, preferred, and stable.

We next extend this result to semantics based on weak admissibility.

Proposition 4.5. If F is acyclic, then there is exactly one w-complete extension E which
is also w-grounded, w-preferred, complete, grounded, preferred, and stable.

Proof. Notice that the grounded extension G of an acyclic AF is the unique stable exten-
sion (Dung, 1995). Moreover, the grounded extension is contained in each w-complete and
thus in each w-preferred extension. As each stable extension is also w-preferred, we ob-
tain that G is the unique w-complete extension E which is also w-grounded, w-preferred,
complete, grounded, preferred, and stable.

Since the unique grounded extension is stable for acyclic AFs (Dung, 1995), this in
particular implies that the semantics coincide with their “weak” versions.

Corollary 4.6. For any acyclic AF F and any semantics σ ∈ {gr , pr , co} we have: σ(F ) =
σw(F ).
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We can now exploit the fact that the grounded extension is the only w-preferred exten-
sion and can be computed in polynomial time.

Proposition 4.7. For acyclic AFs and σ ∈ {grw, admw, cow, prw}, Credσ, Skeptσ, Verσ,
and NEmptyσ are in P. Moreover, the complexity results in Table 4 hold.

Proof. For σ ∈ {grw, cow, prw} the results are by Corollary 4.6 and the corresponding
results for the classical semantics (Dvořák & Dunne, 2018). Clearly, Credadmw = Credprw ,
NEmptyadmw = NEmptyprw and Skeptadmw is trivially false as the empty set is always
weakly admissible. To decide Veradmw for a set E we simply test whether it is a subset of
the unique grounded extension.

Table 4: Complexity of w-admissible semantics in acyclic AFs

σ Credσ Skeptσ Verσ NEmptyσ

grw P-c P-c in L in L

admw P-c trivial P-c in L

cow P-c P-c in L in L

prw P-c P-c in L in L

An interesting observation is that even in acyclic AFs w-admissible semantics dif-
fers from admissible sets which can already be seen by a simple chain like, e.g. F =
({a, b, c}, {(a, b), (b, c)}) with {c} ∈ admw(F ).

4.3 Odd-Cycle Free AFs

Next, let us consider odd-cycle free AFs. For the standard semantics, odd-cycle free AFs
are not a tractable fragment but Verpr becomes tractable and the complexity of Skeptpr
drops to coNP-complete (Dvořák & Dunne, 2018). For w-admissible based semantics we
have a similar effect with a more drastic drop in complexity.

To this end, we first provide characterizations that are crucial for the following complex-
ity investigations: (a) for odd-cycle free AFs the w-preferred and preferred extensions coin-
cide; and (b) for odd-cycle free AFs there is a unique w-grounded extension that consists of
the skeptically preferred accepted arguments. We then combine these characterization with
the complexity results for preferred semantics (Dvořák & Dunne, 2018) on odd cycle free
AFs and obtain that reasoning with w-admissible based semantics is NP-complete/coNP-
complete.

Let us first recall the result for standard semantics and odd-cycle free AFs (Dung, 1995,
Theorem 33 and Corollary 36).

Proposition 4.8. If F is odd-cycle free, then stb(F ) = pr(F ). In particular, stb(F ) ̸= ∅.

The main motivation for weak admissibility as well as weak defense was to reduce the
effect of self-defeating arguments on the acceptability of other arguments. We have already
seen that the deletion of such arguments does not influence the newly introduced seman-
tics (Baumann et al., 2020b). Furthermore, one might expect that classical semantics and
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their associated weak counterparts even coincide in the absence of self-defeating arguments.
Consider therefore the following example.

Example 4.9. Let F be an odd-cycle free AF as depicted below.

b c

a1F :

a2

Although surprising at first glance, {c} is a w-admissible extension of F . The intuitive
reason is that the definition of w-admissibility identifies b as a negligible argument since it
is not w-admissible in F {c}. Moreover, {c} defends neither {a1, c} nor {a2, c}, so it is even
w-complete. In summary, adm(F ) ̸= admw(F ) and co(F ) ̸= cow(F ). ⋄

The prediction of some arguments being negligible as we have seen in the previous
example renders some sets w-admissible/w-complete which are not classically admissi-
ble/complete, even in the absence of odd-cycles. In consideration of the next assertion
we can however guarantee that no further arguments are credulously accepted.

Proposition 4.10. For any odd-cycle free AF F, pr(F ) = prw(F ).

Proof. (⊆) Let E ∈ pr(F ). Since F is odd-cycle free, E is a stable extension, i.e. no
proper superset of E can be conflict-free and, as FE is the empty AF, E is a w-admissible
extensions. Thus E is w-preferred.

(⊇) Let Ew ∈ prw(F ). We show that F (Ew) is the empty AF, i.e. Ew is stable and
hence preferred. Assume the contrary, i.e. F (Ew) contains some arguments. Since this AF
is odd-cycle free as well, there is a non-empty complete extension (Dung, 1995, Lemma 34),
say E′. There is hence a w-complete extension of F (Ew), say (E′)w, with E′ ⊆ (E′)w. By
Theorem 2.15 we infer Ew ∪ (E′)w ∈ cow(F ), a contradiction.

Since credulous reasoning coincides for admissible, complete, and preferred semantics
(for both the classical as well as the weak versions), we can now infer the following result.

Corollary 4.11. For any odd-cycle free AF F and any semantics σ ∈ {adm, pr , co} we
have that

⋃
σ(F ) =

⋃
σw(F ).

However, the most interesting (and presumably most surprising) observation we are
going to make about odd-cycle free AFs is related to w-grounded semantics. More precisely,
it turned out that in absence of odd-cycles first, w-grounded semantics returns exactly one
unique extension and secondly, it coincides with the skeptical reasoning regarding classical
preferred semantics. This is similar in spirit to relatively grounded AFs (Dung, 1995,
Definition 31) where

⋂
pr(F ) is required to coincide with the grounded extension. Before

giving our result, we prove the following auxiliary lemma.

Lemma 4.12. For any odd-cycle free AF F and E ∈ admw(F ) there exists an extension
E∗ ∈ stb

(
FE

)
, such that E ∪ E∗ ∈ stb(F ).
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Proof. The AF FE is odd-cycle free as well with at least one stable extension E∗. By

Theorem 2.15, E∪E∗ ∈ admw(F ) ⊆ cf (F ) and by E∗ ∈ stb
(
FE

)
, the AF FE∪E∗

=
(
FE

)E∗

is empty; this together with conflict-freeness characterizes E ∪ E∗ ∈ stb(F ).

Theorem 4.13. For any odd-cycle free AF F we have that
⋂
pr(F ) is the unique w-

grounded extension, i.e. grw(F ) = {
⋂
pr(F )}

Proof. We show that Gw =
⋂
stb(F ) is the least w-complete extension. It then immediately

follows that

1. there is only one w-grounded extension,

2. grw(F ) ∋
⋂
stb(F ) =

⋂
pr(F ).

(w-admissibility) The set Gw is conflict-free because the stable extensions are conflict-
free. Now consider the reduct FG

w
. We observe that each stable extension E of F has

the form E = Gw ∪ E′, where E′ is a stable extension of FG
w
and vice versa, each stable

extension E′ of FG
w
extends to a stable extension of F . Let y be an attacker of Gw which

occurs in FG
w
. Attacking

⋂
stb(F ), y is attacked by each stable extension of F and hence,

it is attacked by each stable extension of FG
w
(Lemma 4.12). It is therefore attacked by

each preferred extension of FG
w
and can thus not occur in a w-admissible extension of FG

w
.

Since y was an arbitrary attacker of Gw occurring in FG
w
, Gw is w-admissible.

(w-complete) AssumeX satisfiesGw ⊆ X and is w-defended byGw. We setX = Gw ∪̇D
and apply Proposition 2.11, i.e.

1. for any attacker y of D, y is not w-admissible in FG
w
, and

2. there is a set D ⊆ D′ with D′ ∈ admw
(
FG

w)
.

For the sake of contradiction assume Gw ⊊ X and take x ∈ D. Since x /∈
⋂
stb(F ), there is

a stable extension E attacking x. As before, E = Gw ∪E′ where E′ is a stable extension of
FG

w
. So x is attacked by a y ∈ E′. As this contradicts the first item, we conclude X = Gw.
(least) We show: If Ew is w-complete, then Ew w-defends Gw∪Ew, implying Gw∪Ew ⊆

Ew by definition of w-completeness and hence Gw ⊆ Ew, i.e. Gw is the least w-complete
extension.

Let Ew ∈ cow(F ) and X = Ew ∪Gw = Ew ∪̇D. Note that we have D ⊆ Gw. We have
to show that

1. for any attacker y of D, y is not w-admissible in FE
w
, and

2. there is a set D ⊆ D′ with D′ ∈ admw
(
FE

w)
.

This can be seen as follows:

1. Let y be an attacker of D occurring in FE
w
. Then y attacks Gw =

⋂
stb(F ) and is

thus attacked by each stable extension of F . However, by Lemma 4.12 each stable
extension of FE

w
extends to a stable extension of F . Hence {y} cannot be extended

to a stable extension of FE
w
. It can thus not be extended to a w-preferred extension

of FE
w
and hence does not occur in

⋃
admw(FE

w
).
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φ

c1 c2 c3

φ̄

y1 ȳ1 y2 ȳ2 y3 ȳ3 y4 ȳ4

Figure 1: Illustration of the standard translation Gφ, for the propositional formula φ with clauses
{{y1, y2, y3}, {ȳ2, ȳ3, ȳ4)}, {ȳ1, ȳ2, y4}}.

2. We first observe that Ew cannot attack Gw; otherwise, Ew would be attacked by each
stable extension of F . However, there is at least one stable extension E = Ew∪E∗ with
E∗ ∈ stb(FE

w
) containing Ew (Lemma 4.12). Since Gw ⊆ E, this would contradict

conflict-freenes of E. So Ew does not attack Gw. In particular, D = D ∩ A(FEw
).

Since FE
w

is odd-cycle free, there is a stable extension D′ of FE
w
. We are left to

show D ⊆ D′. Since D = D ∩ A(FE
w
), there are only to cases: either D ⊆ D′

or D′ attacks D. Assume the latter is the case. Then D′ attacks
⋂
stb(F ). Since

D′ can be extended to a stable extension of F (again by Lemma 4.12), this yields a
contradiction.

By the known complexity results for the standard semantics (Dvořák & Dunne, 2018)
we obtain the following results for credulous and skeptical acceptance w.r.t. w-admissible
semantics in odd-cycle free AFs.

Proposition 4.14. For odd-cycle free AFs, Credσ is NP-complete for σ ∈ {admw, cow, prw},
and Skeptcow = Skeptgrw = Credgrw and Skeptpr are coNP-complete.

We next consider the verification problems. To this end we first consider a variant of
the standard translation from propositional logic to argumentation as used by Dvořák and
Dunne (2018).

Reduction 4.15. For a propositional formula φ in CNF given by a set of clauses C over
the atoms Y , we define the standard translation from φ as Gφ = (A,R), where

A = {φ, φ̄} ∪ C ∪ Y ∪ Ȳ
R = {(φ, φ̄)} ∪ {(c, φ) | c ∈ C}∪

{(x, c) | x ∈ c, c ∈ C} ∪ {(x̄, c) | x̄ ∈ c, c ∈ C}∪
{(x, x̄), (x̄, x) | x ∈ Y }

By (Dvořák & Dunne, 2018) we have that φ̄ is skeptically accepted in Gφ w.r.t. preferred
semantics iff φ is unsatisfiable. By Proposition 4.10 and Theorem 4.13 we obtain the
following lemma.
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Lemma 4.16. For a propositional formula φ in CNF and the associated AF Gφ we have
the following:

� φ̄ is skeptically accepted in Gφ w.r.t. w-preferred semantics iff φ is unsatisfiable.

� If φ is not a tautology, then no other argument than φ̄ in Gφ is skeptically accepted
w.r.t. w-preferred semantics.

� {φ̄} ∈ grw(Gφ) iff φ is unsatisfiable.

Proposition 4.17. For odd-cycle free AFs we have that Vergrw is DP-complete, Veradmw

is coNP-complete, Vercow is DP-complete, and Verprw is in L.

Proof. First consider Verprw ∈ L. As discussed above we have that w-preferred, preferred
and stable extensions coincide. We can thus exploit that Verstb ∈ L (Dvořák & Dunne,
2018, Table 1) to also verify w-preferred in L.

Next consider that Veradmw is coNP-complete. In order to verify that S ∈ admw(F )
one can proceed as follows: first test whether S is conflict-free, then compute the reduct
FE , and finally verify that none of the attackers of S is credulously accepted. The first
two steps are in polynomial time and the final step is in coNP. For hardness we use that
Credadmw is NP-hard for odd-cycle free AFs. So take some odd-cycle free AF F = (A,R)
and any a ∈ A. We construct the odd-cycle free AF F ′ = (A∪ {t}, R ∪ {(a, t)}) and obtain
that {t} ∈ admw(F ′) iff a is not credulously accepted in F ′ iff a is not credulously accepted
in F . We thus obtain that Veradmw is coNP-hard.

For Vergrw ∈ DP consider the following algorithm of a given set S: For each s ∈ S
we test whether it is skeptically accepted w.r.t. preferred semantics (∈ coNP) and for each
s ∈ A \ S we test whether it is not skeptically accepted w.r.t. preferred semantics (∈ NP).

For Vercow ∈ DP consider the following algorithm for a given set S: First test whether
S is w-admissible (this can be done in coNP) and then for each s ∈ A \ S test that is not
w-defended by S. To this end consider the odd-cycle free AF FS . We have that stable and
preferred extension coincide and thus an argument is skeptically accepted w.r.t. preferred
semantics iff it is not attacked by any admissible set. We now guess sets As for each s ∈ A\S
and then check whether they are admissible and attack s. If so, then we have that none of
the s ∈ A\S is defended as they are attacked by an accepted argument. Otherwise, if there
is an s such that there is no admissible set attacking it, we have s is skeptically accepted in
FS w.r.t. (w-)preferred semantics and thus defended by S in F . Notice that we can guess
and check all the sets As independently of each other and thus have an NP-procedure for
the second part. Combining the two parts we obtain a DP-procedure.

The DP-hardness for Vergrw and Vercow is obtained by the following reduction from the
DP-complete SAT-UNSAT problem. Given an instance (φ,ψ) of SAT-UNSAT, i.e. φ and ψ
are propositional formulas in CNF, we apply the standard translation to both in φ and ψ
and rename the arguments of the second AF such that the argument sets are disjoint. Let
Gφ, Gψ be the resulting AFs and consider the union Fφ,ψ = Gφ ∪Gψ. By Lemma 4.16 we
have that {t̄} is a w-grounded, w-complete respectively, extension of Fφ,ψ iff φ is satisfiable
and ψ is unsatisfiable iff (φ,ψ) is a valid SAT-UNSAT instance. That is, we have a reduction
from SAT-UNSAT to Vergrw and Vercow and thus those problems are DP-hard.

We now turn to the NEmpty problems.
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Table 5: Complexity of w-admissible semantics in odd-cycle free AFs

σ Credσ Skeptσ Verσ NEmptyσ

grw coNP-c coNP-c DP-c coNP-c

admw NP-c trivial coNP-c in L

cow NP-c coNP-c DP-c in L

prw NP-c coNP-c in L in L

Proposition 4.18. For odd-cycle free AFs we have that NEmptygrw is coNP-complete,
NEmptyadmw ∈ L, NEmptycow ∈ L, and NEmptyprw ∈ L.

Proof. The NEmptyσw ∈ L results are by the facts that odd-cycle free AFs have at least one
stable extension and this stable extension is w-admissible, w-complete and w-preferred and
that if the AF is non-empty, then the stable extension must contain at least one argument.

For NEmptygrw we consider the complementary problem of testing whether the unique
w-grounded extension is empty. That is, for each s ∈ A we have to show that it is not
skeptically accepted w.r.t. preferred semantics. We have that stable and preferred extension
coincide and thus an argument is skeptically accepted w.r.t. preferred semantics iff it is not
attacked by any admissible set. We now guess sets As for each s ∈ A and then check
whether they are admissible and attack s. If so, then we have that none of the s ∈ A
is skeptically accepted. Otherwise, if there is an s such that there is no admissible set
attacking it we have s is skeptically accepted w.r.t. preferred semantics and thus in the
w-grounded extension. The above is an NP-procedure for the complementary problem and
thus yields a coNP-procedure for NEmptygrw .

The coNP-hardness for NEmptygrw is by the following reduction from the coNP-complete
UNSAT problem. Given an instance φ of UNSAT, i.e. a propositional formula in CNF, we
apply the standard translation to φ and consider the resulting AF Gφ. By Lemma 4.16 we
have that the w-grounded extension is non-empty iff iff φ is unsatisfiable. Hence, NEmptygrw
is also coNP-hard.

Our results for odd-cycle free AFs are summarized in Table 5.

4.4 Even-Cycle Free AFs

Next we investigate the class of even-cycle free AFs (noeven AFs) (Dvořák & Dunne, 2018)
which allow to decide admissible based semantics in polynomial-time. We have that no-
even AFs have a unique preferred extension, which is however not true for w-preferred
extensions. Consider the AF F in Figure 2 which has only odd cycles. We have that
admw = {∅, {a}, {e}} and thus prw = {{a}, {e}} (moreover cow = grw = {{a}, {e}}).
We next show that noeven AFs are not a tractable fragment for weak admissibility-based
semantics. To this end we use the above AF F to adapt the standard translation from
propositional logic in order to obtain a noeven AF. That is we replace the mutual attacks
of the y arguments which model setting a variable to either true or false, by sub-AFs in
the style of Figure 2. Recall that we discussed this AF in Example 2.7. This yields the AF
depicted in Figure 3.
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a

b

d

e

f

Figure 2: Noeven AF with two prw extensions {a} and {e}.

Reduction 4.19. Given a propositional formula ϕ(x1, . . . , xn) =
∧
c∈C

∨
l∈c l we define the

AF Hϕ = (A,R) with A and R as follows.

A ={xi, x̄i, bi, di, fi | 1 ≤ i ≤ n} ∪ {c | c ∈ C} ∪ {t, t̄}
R ={(xi, bi), (bi, di), (di, xi), (di, x̄i), (x̄i, fi), (fi, di)

| 1 ≤ i ≤ n} ∪ {(c, t) | c ∈ C} ∪ {(t, t̄)} ∪
{(xi, c) | xi ∈ c ∈ C} ∪ {(x̄i, c) | ¬xi ∈ c ∈ C}

Lemma 4.20. For every propositional formula ϕ we have that

1. ϕ is satisfiable iff t is credulously accepted in Hϕ w.r.t. σ, for σ ∈ {grw, admw, cow, prw};
and

2. ϕ is unsatisfiable iff t̄ is skeptically accepted in Hϕ w.r.t. σ, for σ ∈ {grw, cow, prw}.

By the above, the NP-hard SAT problem can be reduced to credulous acceptance and
the coNP-hard UNSAT problem can be reduced to skeptical acceptance.

Proposition 4.21. For noeven AFs, Credσ is NP-hard for σ ∈ {grw, admw, cow, prw} and
Skeptτ is coNP-hard for τ ∈ {grw, cow, prw}.

Note that here we do not have yet results for matching upper bounds and leave this for
future work; we also do so for the problems Verσ and NEmptyσ.

4.5 Bipartite AFs

Finally, we consider the class of bipartite AFs. We have that bipartite AFs are a sub-
class of odd-cycle free AFs and thus we can again use the correspondence of w-preferred
and preferred semantics. Moreover, preferred semantics has been shown to be tractable on
bipartite AFs (Dunne, 2007), i.e., credulous and skeptical acceptance of an argument w.r.t.
preferred semantics can be decided in polynomial time (Dunne, 2007, Theorem 6).

t

c1 c2 c3

t̄

x1 x̄1 x2 x̄2 x3 x̄3

b1

d1
f1 b2

d2
f2 b3

d3
f3

Figure 3: Illustration of the AF Hϕ, for ϕ with clauses {{x1, x2, x3}, {x̄2, x̄3}, {x̄1, x̄2}}.
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Proposition 4.22. For bipartite AFs and σ ∈ {grw, admw, cow, prw}, the problems Credσ,
Skeptσ, Verσ, and NEmptyσ are in P and Skeptprw ∈ L

Proof. Let us first consider Credσ, Skeptσ: The results for prw are directly from the
corresponding results for pr in (Dunne, 2007, Theorem 6). Furthermore, we have that
Credgrw = Skeptgrw = Skeptprw and thus reasoning with grw is in P. The results for
admw, cow semantics are by its correspondences with the problems for grw or prw. For
Verσ, and NEmptyσ we first exploit that bipartite AFs are in particular odd-cycle free to
obtain the L membership results (cf. Table 5). Moreover, the unique grw can be computed
in polynomial time by computing the skeptically accepted arguments and thus also Vergrw ,
and NEmptygrw are in P. Finally, verifying is admw and cow is in P as the reduct of an
argument set in a bipartite AF is a bipartite AF and thus we can test in polynomial time
whether an extension is attacked by a weakly admissible set of its reduct and whether the
unique grw extension of the reduct is empty.

Table 6: Complexity of w-admissible semantics in bipartite AFs

σ Credσ Skeptσ Verσ NEmptyσ

grw P-c P-c in P in P

admw P-c trivial in P in L

cow P-c P-c in P in L

prw P-c P-c in L in L

5. Utilizing Graph-Specific Properties

Since reasoning with weakly admissible semantics is PSPACE-complete in general, potential
implementations will heavily benefit from techniques reducing the size of the input AF that
has to be processed. The removal of self-attackers (Baumann et al., 2020b, Theorem 3.10)
is a handy pre-processing step, but clearly not sufficient to handle large problem instances.
A possibly more promising approach is to partition a given AF into its strongly connected
components (SCCs).

However, as pointed out in previous work (Dauphin et al., 2020, Proposition 11), weakly
admissible, weakly complete, and weakly grounded semantics cannot be computed in the
way SCC-recursiveness is usually defined. On the other hand, we answer an open problem
(Dauphin et al., 2020, Open Question 2) affirmatively by showing that the technique from
(Baroni et al., 2005) can indeed be applied to prw.

In this section, we recall the basic definitions for SCC-recursiveness (Baroni et al., 2005),
discuss why admw extensions cannot be computed this way and point out the differences to
prw. Moreover, we discuss a workaround for admw which also has the property that, very
roughly speaking, the most relevant input value for the computation of extensions is no
longer the size of the given AF, but the size of its largest SCC. We conclude the section by
showing that prw(F ) can also be computed by applying the splitting technique (Baumann,
2011, Theorem 2), which can be seen as a simplification of SCC-recursiveness.
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5.1 SCC Recursiveness

Although the idea behind SCC-recursiveness is natural and intuitive, formalizing the re-
quired concepts is a quite technical endeavor at first glance. Therefore, let us recall the
basic intuition before introducing the technicalities. The first step is to cluster an AF ac-
cording the strongly connected components (SCCs). This yields a directed acyclic graph
(DAG). Now we consider some “initial” SCC S, i.e. an SCC which has no in-going edge from
another SCC according to our DAG. We then apply a base function σ̄ to S which returns
a set E of arguments which is a σ̄-extension of F ↓S (in a certain sense compatible with
previously chosen sets of arguments). This choice influences the other SCCs in our DAG,
so we need to re-calculate them which intuitively corresponds to calculating the reduct FE

and then removing arguments in S since we are finished with this SCC. The technical part
is that we need to keep in mind which arguments are attacked by S in a way that E can-
not provide any defense; therefore we make use of three different sets DF (S,E), PF (S,E),
and UF (S,E) (see below) in order to keep track of all required information. When this
procedure is done, we take the union over all extensions we have obtained by successive
applications of the base function σ̄; this union yields a σ-extension of the whole AF which
is why σ̄ is called base-function for σ.

Formally, given an AF F = (A,R) a strongly connected component (or SCC) is a maximal
set of arguments S s.t. in F↓S the following condition holds: For any two a1, an ∈ A (F↓S)
there is a sequence a1, . . . , an of arguments with ai ∈ S and (ai, aj) ∈ R. We denote by
SCCSF the set of all SCCs of F . For SCCs S and P , if there is some a ∈ P and b ∈ S
s.t. (a, b) ∈ R, then we call P a parent of S. By S≺ we denote all ancestors of S which are
induced by this parent relation (not including S itself). If S≺ = ∅, then S is called initial.
For an SCC S and E ⊆ A we consider the following sets:

� DF (S,E) = {a ∈ S | ∃P ∈ S≺, b ∈ E ∩ P : (b, a) ∈ R},

� PF (S,E) = {a ∈ S | ∃b ∈ P ∈ S≺ : (b, a) ∈ R, E does not attack b} \DF (S,E),

� UF (S,E) = S \ (DF (S,E) ∪ PF (S,E)).

Intuitively, DF (S,E) contains these arguments in S which are defeated by arguments in E
due to previously considered SCCs. The set PF (S,E) contains arguments that are attacked
by an argument in a previously considered SCC that is not counter attacked. The set
UF (S,E) contains the remaining arguments. That is, for admissibility-based semantics our
choice is restricted to arguments occurring in UF (S,E).

We let UPF (S,E) = UF (S,E) ∪ PF (S,E). We say a semantics σ is SCC-recursive if
for any AF F = (A,R), we have σ(F ) = σ̄(F,A), where for any AF F = (A,R) and any
C ⊆ A, σ̄(F,C) ⊆ 2A is given as follows: E ⊆ A satisfies E ∈ σ̄(F,C) iff

� if |SCCS(F )| = 1, then E ∈ σ̄b(F,C) for a “base function” σ̄b(F,C),

� otherwise, for all S ∈ SCCS(F ) it holds that E ∩ S ∈ σ̄(F↓UPF (S,E), UF (S,E) ∩ C).

Let us first consider an example illustrating why admw is not SCC-recursive and to gain
some intuition why this problematic mechanism does not apply to prw. The problem with
SCC-recursiveness is that it is sometimes impossible to tell which attacks are meaningful

1430



Complexity of Weak Admissibility

(that is, coming from a weakly admissible extension of the reduct FE) and which not. To
illustrate this, let us quickly compare an even and an odd cycle and then move to a simple
example consisting of just two SCCs. For F forming an odd cycle

a1F : a2 a3

there is no non-empty weakly admissible extension: For example, set E = {a1}. Then the
reduct FE consists of the unattacked argument a3 attacking a1; thus E /∈ admw(F ). In
contrast, the even cycle

a1F ′ : a2

has two non-empty extensions {a1} and {a2}; both are even stable and hence clearly weakly
admissible as well. The problem with SCC-recursiveness can now be seen as in the following
example.

Example 5.1. Consider the following AF F , consisting of two SCCs:

a3

a1F :

a2 b

S T

The only weakly admissible extension of the initial SCC S (consisting of the odd cycle
induced by a1, a2, and a3) is ∅, as we just saw. Regarding the second SCC T , {b} is an
extension; however, b receives an attack from an undefeated argument a2. In this case, b is
acceptable since a2 does not occur in any weakly admissible extension of F {b}. However, if
we turn the odd cycle into an even one

a1F ′ : a2 b

then suddenly {b} /∈ admw(F ′). However from the perspective of the second SCC T the
situation did not change: There is one argument with an input attack from an undecided
argument a2. ⋄

This is why admw is not SCC-recursive; but what is the catch for prw? To see the
difference we characterize prw with (Baumann et al., 2020a, Theorem 4.5): E ∈ prw(F ) if
and only if E ∈ cf (F ) and

⋃
admw

(
FE

)
= ∅; that is, if E is weakly preferred, then no

argument in the reduct FE is weakly admissible. This means, the unpredictable behavior
as illustrated in the previous example does not occur for prw. To see this, let us recall the
example from the point of view of weakly preferred semantics.

Example 5.2. Suppose F is given as before:

1431
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a3

a1F :

a2 b

S T

We start by considering the initial SCC S: The only weakly preferred extension is ∅. So,
moving to the second SCC T we know that no argument in S is acceptable and hence we
can be sure that {b} is acceptable in the whole AF; thus prw(F ) = {{b}} can be inferred.
In case of an even cycle,

a1F ′ : a2 b

the two weakly preferred extensions of the initial SCC are {a1} and {a2}; hence it is correctly
inferred that prw(F ′) = {{a1, b}, {a2}}. ⋄

Therefore, from an intuitive point of view, weakly preferred semantics are SCC-recursive
for the same reason as stable semantics are, which is explained in the following. Consider
some argument which is not in a given extension. For stable semantics, such arguments are
defeated and therefore do not play any role anymore. In case of weakly preferred semantics,
we know from Theorem 2.16 that these arguments do not occur in any weakly admissible
extension of the reduct. Due to the definition of weak admissibility this means that these
arguments can therefore be disregarded as well. The goal of the following considerations is
to formalize this intuition.

Lemma 5.3. Let F = (A,R) be an AF and U ⊆ A unattacked 1.

� If E ∈ admw(F ), then Eu = E ∩ U ∈ admw(F ).

� Assume E ⊆ U . Then for all sets U ′, U ′′, s.t. U ⊆ U ′ ⊆ A and U ⊆ U ′′ ⊆ A we have
that E ∈ admw(F↓U ′) iff E ∈ admw(F↓U ′′).

Proof. We show both claims simultaneously by induction over n = |A|. The base case n = 0
is trivial. We thus assume for a fixed integer n and |A| ≤ n the following:

If E ∈ admw(F ), then Eu = E ∩ U ∈ admw(F ). (IH-1)

If E ⊆ U , then ∀U ⊆ U ′, U ′′ ⊆ A : E ∈ admw(F↓U ′) iff E ∈ admw(F↓U ′′). (IH-2)

Now assume that F = (A,R) is given with |A| = n+ 1. Let U ⊆ A be unattacked.

� Let E ∈ admw(F ). By E ∈ cf (F ), Eu ∈ cf (F ) as well. Thus if Eu /∈ admw(F ),
then there is some E′ ∈ admw(FEu) attacking Eu ̸= ∅. In particular, E′ ∩ U ̸= ∅
must attack Eu since U is unattacked. By (IH-1), E′

u := E′ ∩ U ∈ admw(FEu), too.
Now consider FEu := (Au, Ru), the unattacked set Uu = U \ E⊕

u , U
′ = Au, and

U ′′ = Au \ E⊕. By (IH-2) we find E′
u ∈ admw

(
FE

)
(note that FE = FEu↓U ′′). This

contradicts E ∈ admw(F ).

1. Recall that a set U ⊆ A is called unattacked if there is no a ∈ A \ U attacking U .
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� Let E ⊆ U . As E = ∅ is trivial, we may assume E ̸= ∅ yielding access to the induction
hypothesis in the reduct. Let U ⊆ U ′, U ′′ ⊆ A. (⇒) Assume E ∈ admw(F ↓U ′). If
E /∈ admw(F↓U ′′) then there is some E′ ∈ admw((F↓U ′′)E) attacking E. By (IH-1),
E′
u = E′ ∩ U ∈ admw((F ↓U ′′)E) as well. Since U is unattacked, E′

u must attack E.
By (IH-2), E′

u ∈ admw((F ↓U ′)E) which is in contradiction with E ∈ admw(F ↓U ′).
(⇐) The reverse direction is by the same argument but exchanging the roles of U ′

and U ′′.

We continue by giving two auxiliary lemmas, the first is to establish the required con-
nection between consideration of the reduct of an SCC and the set F↓UPF (S,E). Recall that
UPF (S,E) = {a ∈ S | ∄b ∈ E \ S : (b, a) ∈ R}.

Lemma 5.4. Let F = (A,R) be an AF, E ⊆ A with E ∈ cf (F ) and S ∈ SCCSF . Then(
F↓UPF (S,E)

)E∩S
=

(
FE

)
↓UPF (S,E)

Proof. Let a ∈ S.

(⊆) If a /∈ A
((
FE

)
↓UPF (S,E)

)
, then either (a) there is some b ∈ E s.t. a ∈ {b}⊕, or (b)

there is some b ∈ E \ S s.t. (b, a) ∈ R. However, if (a) is not true, then neither is (b) so it
suffices to discuss (a).

Now consider two cases: (1) If b ∈ E \ S, then a does not occur in F↓UPF (S,E). (2) If
b /∈ E \ S, then b ∈ E ∩ S. Since E ∈ cf (F ), b occurs in F↓UPF (S,E). Since a ∈ {b}⊕, we
infer a /∈ A

(
(F↓UPF (S,E))

E∩S).
(⊇) If a /∈ A

(
(F↓UPF (S,E))

E∩S), then either (a) there is some b ∈ E \ S s.t. (b, a) ∈ R,
or (b) there is some e ∈ E ∩ S occurring in F↓UPF (S,E) with a ∈ {e}⊕.

If (a) is true, then a does not occur in FE and hence a /∈ A
((
FE

)
↓UPF (S,E)

)
. If (b) is

true, take e ∈ E ∩ S as described. From e ∈ E and a ∈ e⊕ we again infer that a does not
occur in FE .

Moreover, we need to be able to turn non-empty extensions of SCCs into non-empty
extensions of the whole AF and vice versa. To illustrate this, recall the AF

a3

a1F :

a2 b

S T

from before: Here we see that F possesses some non-empty weakly admissible extension
since the second SCC does ({b}). In this case, the initial SCC does not possess one, so
{b} ∈ admw(F ). If there was an SCC possessing some weakly admissible argument attacking
b, then we would move to this SCC and continue the argument inductively. For technical
reasons, we need to formalize this for the reduct FE for some extension E instead of F
itself. To this end we will use the directionality property of w-admissible and w-preferred
semantics, which we recall in the next lemma.
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Lemma 5.5 ((Baumann et al., 2020a; Dauphin et al., 2020)). For any AF F and U ⊆ A
unattacked we have (a) {E ∩ U | E ∈ admw(F )} = admw(F ↓U ) and (b) {E ∩ U | E ∈
prw(F )} = pr(F↓U ).

Lemma 5.6. For any AF F = (A,R), U ⊆ A unattacked, and admw(F↓U ) = {∅} we have
that admw(F ) = admw(F↓A\U ).

Proof. The proof is by induction on the size of B = A\U . If |B| = 0 the statement is trivially
true. For the induction step we assume that the claim holds for |B| ≤ n and show that then
it also holds for |B| = n+ 1. By definition ∅ ∈ admw(F ) as well as ∅ ∈ admw(F↓A\U ) and
thus it is sufficient to consider non-empty extensions.

(⇒) Consider non-empty E ∈ admw(F ). By admw(F↓U ) = {∅} and the directionality
property we have E ⊂ A \ U . Towards a contradiction assume that E ̸∈ admw(F ↓A\U ).
As E is conflict-free, there is a D ∈ admw(FE ↓A\U ) (note that FE ↓A\U= (F ↓A\U )E)
that attacks E. On FE we can apply the induction and obtain D ∈ admw(FE) which is in
contradiction to E ∈ admw(F ). Hence E ∈ admw(F↓A\U ).

(⇐) Consider non-empty E ∈ admw(F ↓A\U ). Towards a contradiction assume that

E ̸∈ admw(F ↓A\U ). As E is conflict-free, there is an D ∈ admw(FE) that attacks E. In

FE we can apply the induction hypothesis and obtain D ∈ admw(FE ↓A\U ) which is in
contradiction to E ∈ admw(F↓A\U ). Hence E ∈ admw(F ).

This yields the following:

Lemma 5.7. Let F = (A,R) and let E ⊆ A. There is an SCC S ∈ SCCSF with
admw

((
FE

)
↓UPF (S,E)

)
̸= {∅} if and only if admw

(
FE

)
̸= {∅}.

Proof. The proof is by induction on the number of SCCs. The statement clearly holds when
F is strongly connected, i.e. there is just one SCC. For the induction step we assume that
the claim holds if the number of SCCs is at most n and show that then it also holds if the
number of SCCs is n+ 1.

(⇒) Assume that there is such an SCC S with admw
((
FE

)
↓UPF (S,E)

)
̸= {∅}. First

consider the AF G = F↓⋃
P∈S≺ P which has at most n SCCs. If admw

((
GE

)
↓UPG(P,E)

)
=

admw
((
FE

)
↓UPF (P,E)

)
̸= {∅} for some P ∈ S≺, then by induction hypothesis we have

that admw
(
GE

)
̸= {∅}. As

⋃
P∈S≺ P is unattacked in F , we can apply the directionality

property and obtain that admw
(
FE

)
̸= {∅}.

Now consider the case where admw
(
GE

)
= {∅} and consider the AFH = F↓(S∪⋃P∈S≺ P ).

We have a non-empty E0 ∈ admw
(
HE↓UPH(S,E)

)
and by Lemma 5.6 we obtain E0 ∈

admw
(
HE

)
. As S ∪

⋃
P∈S≺ P is unattacked in F we can apply the directionality property

to obtain admw
(
FE

)
̸= {∅}.

(⇐) If admw
(
FE

)
̸= {∅}, then there is some w-preferred extension ∅ ≠ E0 ∈ admw

(
FE

)
.

Let S ∈ SCCSF be an SCC with E0 ∩ S ̸= ∅ s.t. E0 ∩ P = ∅ for any P ∈ S≺.
For the AF H = F ↓(S∪⋃P∈S≺ P ), by directionality we have that E0 ∩ S ∈ admw(HE).

Further by Lemma 5.6 we obtain E0 ∩ S ∈ admw
(
HE↓UPH(S,E)

)
which is equivalent to

E0 ∩ S ∈ admw
(
FE↓UPF (S,E)

)
.

Now we follow (Baroni et al., 2005), Section 5.2, where σ = stb is considered, with
adjustments to make it work for prw:
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Theorem 5.8. Let F = (A,R) be an AF. Then E ∈ prw(F ) iff for any SCC S ∈ SCCSF ,
E ∩ S ∈ prw(F↓UPF (S,E)).

Proof. (⇒) Let E ∈ prw(F ). Let S ∈ SCCSF .

(well-defined) It is clear that E ∩ S ⊆ UPF (S,E) since otherwise, E /∈ cf (F ). Thus
E ∩ S in an extension in F↓UPF (S,E).

(cf) We have that E ∩ S ∈ cf (F↓UPF (S,E)) due to E ∈ cf (F ).

(w-pref) Since E is w-preferred, FE does not contain any w-admissible argument. Now
assume E∩S is not w-preferred in F↓UPF (S,E). Since E∩S is conflict-free, this means there

must be a non-empty w-admissible extension in
(
F↓UPF (S,E)

)E∩S
. Hence by Lemma 5.4

there is a non-empty w-admissible extension in(
F↓UPF (S,E)

)E∩S
=

(
FE

)
↓UPF (S,E) .

Thus by Lemma 5.7 there is a non-empty w-admissible extension in FE , i.e. E /∈ prw(F );
a contradiction.

(⇐) We have to show that E ∈ cf (F ) and admw
(
FE

)
= {∅}. The former is clear since

each argument is chosen among UPF (S,E). Furthermore, in each SCC F we have that

{∅} = admw
(
(F↓UPF (S,E))

E∩S) = admw
((
FE

)
↓UPF (S,E)

)
yielding admw

(
FE

)
= {∅} by Lemma 5.7.

We can use the above characterization to give a fixed-parameter tractable algorithm
(w.r.t. size of the SCCs) for the verification problem. This is a significant improvement over
the PSPACE-hardness in the general case.

Corollary 5.9. Let F = (A,R) be an AF where each SCC of F contains at most k argu-
ments and E ⊆ A. Verifying whether E ∈ prw(F ) is in time O(kk · poly(|A|)).

Proof. By Theorem 5.8 we can consider each SCC S ∈ SCCSF separately and have to
check whether E ∩ S ∈ prw(F↓UPF (S,E)). Notice that the number of SCCs is in O(|A|) and
we can compute the SCCs S ∈ SCCSF as well as all the sub-AFs F↓UPF (S,E) in polynomial
time (poly(|A|)).

Now consider an SCC S, E′ = E ∩ S and G = (AG, RG) = F↓UPF (S,E). We know that
either (i) G is of size at most k − 1 or (ii) G is strongly connected and of size at most k.
If E′ has a conflict, then we are done, otherwise we have to check that

⋃
admw(GE

′
) = ∅

(cf. Theorem 2.16). We do that by iterating over all non-empty sets D ⊆ AG and testing
whether D ∈ admw(GE

′
). For the last step recall the straightforward algorithm for verifying

a weakly admissibility set:

1. test whether D ∈ cf (G); if not return false,

2. compute the reduct GD,

3. iterate over all subsets S of GD that contain at least one attacker of E and test
whether S is w-admissible; if so return false; else return true.
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Dvořák, Ulbricht & Woltran

Notice that the recursion depth of the algorithm is bounded by k−1 as the AF shrinks by at
least one argument in each call. In case (ii) we additionally have, as G is strongly connected,
that in the first call at least two arguments are removed. Now consider a branch of the
recursion tree. Such a branch is identified by the arguments that appear in the sets that
are tested at each of the recursion levels. That is, a branch is a partition of the arguments
AG into k sets, the first k−1 corresponding to the sets that are tested on the corresponding
recursion levels and the last set corresponds to the arguments that do not appear in any of
these sets. That is we have at most O(k|AG|) = O(kk) branches in the recursion tree and
thus the verification algorithm runs in time O(kk · poly(|k|)). In total, we need to run the
verification algorithm O(|A|) many times which give us a total time of O(kk ·poly(|A|)).

As already pointed out, admw is not SCC-recursive. However, in the following we
want to prove that there is a workaround for this problem, i.e. admw can be computed by
iteratively considering all SCCs of the given AF. The difference is that we require additional
information and therefore do not adhere by the properties proposed in the definition of SCC-
recursiveness.

Let us consider an example in order to understand the underlying intuition.

Example 5.10. Consider the following AF F :

y

x

a3

a1

a2 b c

S1 S2 S3

With the usual SCC-recursive scheme we cannot correctly decide whether {b} is weakly
admissible, although it is a w-admissible extension of the second SCC S2. However, {y, a1} ∈
admw(F {b}) shows that {b} /∈ admw(F ). This information can be extracted by inspecting
only w-admissible arguments of SCCs that have already been considered. ⋄

Indeed, the following result formalizes that one can verify weak admissibility of some
E ⊆ A by computing prw(FE) with the aforementioned SCC-recursive scheme and then
checking certain conditions for each SCC.

Proposition 5.11. Let F = (A,R) be an AF. Then E ∈ admw(F ) iff for any SCC S ∈
SCCSF , letting G =

⋃
P∈S≺

(
FE

)
↓P , we have that

� no extension E′ ∈ prw (G) attacks E ∩ S,

� the following two conditions must hold within S:

– E ∩ S ∈ cf (F↓UPF (S,E)),

– there is no E′ ∈ prw (G) s.t. there is E′′ ∈ prw
((

(FE)E
′
)
↓S

)
attacking E ∩ S.

Proof. (⇒) Let E ∈ admw(F ). Let S ∈ SCCSF .
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� Towards a contradiction assume that an extension D ∈ admw (G) attacks E ∩S, then
by directionality (see Lemma 5.5), there is a set D′ ∈ admw

(
FE

)
with D ⊆ D′ that

attacks E.

� Now let us turn to the arguments within S.

– E ∩ S ∈ cf (F↓UPF (S,E)) is clear as E ∈ cf (F ).

– Now suppose there is E′ ∈ prw (G) s.t. there is a weakly admissible extension

E′′ ∈ admw
((

(FE)E
′
)
↓S

)
attacking E ∩ S. We can now infer that E′ ∪ E′′ ∈

admw(FE), thus E∩S (and hence E) possesses some attacker in the correspond-
ing reduct; contradiction.

(⇐) Now suppose the described properties are satisfied. We have to show E ∈ admw(F ).
First observe that E is clearly conflict-free. Now consider the reduct FE and assume there
is some E′ ∈ prw(FE) attacking E. There must be some SCC S s.t. E′ attacks E ∩ S.
In case S is initial, the second or third condition must be false; therefore assume S is not
initial.

Let G =
⋃
P∈S≺

(
FE

)
↓P . Without loss of generality, we assume that for each P ∈ S≺

it is not true that E′ attacks E ∩P . In case some extension in admw(G) attacks E ∩ S, we
found a counterexample using the same arguments as in Lemma 5.7. Analogously, if there is

some E′ ∈ prw(G), then E′ ∈ admw(FE) as well. Now suppose E′′ ∈ admw
((

(FE)E
′
)
↓S

)
.

Since E′ ∈ prw(G), there is no weakly admissible argument in GE
′
. We therefore deduce

that E′ ∪ E′′ ∈ admw(FE); contradiction.

To be able to proceed as described in Proposition 5.11, we require all w-preferred ex-
tensions of the current reduct FE . This can be done iteratively due to Theorem 5.8: Given
S ∈ SCCSF and the w-preferred extensions of

⋃
P∈S≺

(
FE

)
↓P , we obtain the w-preferred

extensions of
⋃
P∈S≺

(
FE

)
↓P ∪(FE)↓S by augmenting each E′ ∈ prw

(⋃
P∈S≺

(
FE

)
↓P

)
with some E′′ ∈ prw

(
((FE)E

′
)↓S

)
.

Example 5.12. Recall the previous AF F with three SCCs S1 = {x, y}, S2 = {a1, a2, a3, b},
and S3 = {c}.

y

x

a3

a1

a2 b c

S1 S2 S3

Let us check whether E = {b} is weakly admissible. So regarding the initial SCC S1 we
consider E1 = ∅ since E∩S1 = ∅. The reduct (FE1)↓S1= F↓S1 has the w-preferred extensions
{x} and {y}. Now consider S2 and the extension E2 = {b}. We have F↓UPF (S,E)= F↓S2 .
Let us check the requirements:

� Neither {x} nor {y} attacks {b}.
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� Now consider S2:

– {b} ∈ cf (F↓UPF (S,E)) is also true, but:

– letting E′ = {y}, the AF (FE)E
′
has {a1} as unattacked set which attacks b.

y

x(FE)E
′
:

a3

a1

a2 b c

Therefore, our procedure rightfully detects that {b} /∈ admw(F ); the counterexample
{y, a1} ∈ admw(FE) is found.

Now we try E = {y, c}. For the initial SCC S1 we have E1 = {y}. Since E1 is w-
preferred in the initial SCC S1, we proceed. The reduct (FE1)↓S1 is empty and has no
non-empty w-preferred extension.

y

xF {y}:

a3

a1

a2 b c

Now consider S2 and the extension E2 = ∅. There is nothing to check so we only update
the w-preferred extensions of the reduct. Since {a1} is the only candidate, we now have
{a1} as the only w-preferred extension in the reduct (FE)↓S1 ∪ (FE)↓S2 .

Regarding S3, one can now check that {c} satisfies all requirements since {a1} defeats
the only attacker {b}. Therefore, we rightfully obtain {y, c} ∈ admw(F ). ⋄

The drawback of the technique we just mentioned is that computing prw(FE) is required.
In the following, we give an alternative characterization where the reduct only needs to be
examined for the current SCC. The difference is that prw(F ) is required instead of prw(FE).
In order to establish the following result, let us mention some technical background we are
going to utilize. First, if E = E′ ∪̇E′′ is conflict-free, then

(FE)E
′
= FE∪E′

= FE = FE
′∪E = (FE

′
)E

and moreover, the modularization property for admw works in both directions, i.e. if E =
E′ ∪̇E′′ with E′ ∈ admw(F ), then E ∈ admw(F ) if and only if E′′ ∈ admw(FE

′
). We also

recall that E ∈ prw(F ) iff E ∈ cf (F ) and
⋃
admw(FE) = ∅. From these properties it follows

that if E = E′ ∪̇E′′ with E′ ∈ admw(F ), then E ∈ prw(F ) if and only if E′′ ∈ prw(FE
′
).

Throughout the following proof, these properties are frequently used.

Proposition 5.13. Let F = (A,R) be an AF. Then E ∈ admw(F ) iff for any SCC S ∈
SCCSF , letting H = F ↓⋃

P∈S≺ P , we have that

� E ∈ cf (F ),
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� the following condition must hold within S:

– there is no E′ ∈ prw (H) with E ∩ (
⋃
P∈S≺ P ) ⊆ E′ s.t. E ∩S /∈ admw((FE

′
)↓S).

Proof. (⇒) Suppose the claim is not true for some SCC S. We show E /∈ admw(F ).
Without loss of generality assume E ∩A(H) ∈ admw(H). The case E /∈ cf (F ) is clear. So
suppose there is some E′ ∈ prw(H) with E∩ (

⋃
P∈S≺ P ) ⊆ E′ and E∩S /∈ admw((FE

′
)↓S).

First let us make the following observation: Letting E∗ = E′ \ E we have that E∗ is
weakly admissible inHE since E′ = (E∩A(H))∪E∗ and the fact that E∩A(H) ∈ admw(H).
Moreover, (HE)E

∗
= HE′

. Therefore, the existence of our w-preferred E′ yields some
E∗ ∈ admw(HE) with (HE)E

∗
= HE′

. SinceA(H) is unattacked in F and hence alsoA(HE)
in FE , our previous considerations yield E∗ ∈ admw(FE). Let us fix this E∗ = E′ \E. We
now consider the cases why E ∩ S /∈ admw((FE

′
)↓S) might hold.

1. Assume E ∩ S /∈ cf ((FE
′
)↓S). Since E ∈ cf (F ) this must be due to the fact that

some a ∈ E does not occur in (FE
′
)↓S . Since E ∈ cf (F ), E∗ must attack E ∩S; from

E∗ ∈ admw(FE) we infer E /∈ admw(FE).

2. Now suppose E ∩ S ∈ cf ((FE
′
)↓S), but there is some weakly admissible attacker in

E′′ ∈ admw(((FE
′
)E∩S)↓S). Since E′ ∈ prw(H), HE′

does not possess any non-empty
w-admissible extension. Since A(H) is unattacked, the same is true in FE

′↓⋃
P∈S≺ P .

From Lemma 5.6 we therefore deduce E′′ ∈ admw((FE
′
)E∩S ↓(S∪⋃P∈S≺ P )) and thus

by directionality and Lemma 5.3, E′′ ∈ admw((FE
′
)E∩S). Since

(FE
′
)E∩S = (FE∩A(H)∪E∗

)E∩S

holds, modularization yields E′′ ∪ E∗ ∈ admw(FE∩(A(H)∪S)) and finally by direction-
ality and Lemma 5.3, E′′ ∪ E∗ ∈ admw(FE). This yields E /∈ admw(F ).

We obtain E /∈ admw(F ), a contradiction to the initial assumption.

(⇐) Suppose E /∈ admw(F ). Let S be an SCC s.t. E ∩ S possesses w-admissible
attackers in FE and suppose the same is not true in H. Let E0 ∈ prw(FE) attack E ∩ S.
We distinguish two cases:

1. Suppose E0 ∩A(H) attacks E ∩S. By directionality EH := E0 ∩A(H) ∈ prw(HE) as
well. By modularization, E′ := (EH ∪ E) ∩A(H) ∈ prw(H). Since E′ attacks E ∩ S,
we obtain E ∩ S /∈ cf w((FE

′
)↓S) and thus E ∩ S /∈ admw((FE

′
)↓S) .

2. Otherwise, E0 ∩ S attacks E ∩ S. By SCC-recursiveness of prw, we have that E0 ∈
prw(FE) implies that E0 ∩ S ∈ prw(((FE)E0∩A(H))↓S). By choice of E′ as in case 1,
this is yields E0 ∩ S ∈ prw((FE

′
)E∩S↓S) showing E ∩ S /∈ admw((FE

′
)↓S).

We obtain E ∩ S /∈ admw((FE
′
)↓S), a contradiction to the initial assumption.

5.2 Splitting

In this section, we will briefly discuss splitting (Baumann, 2011). In accordance with the
previous section, we will see that the usual notion of splitting can be applied to weakly
preferred semantics.
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Definition 5.14. Let F1 = (A1, R1) and F2 = (A2, R2) be two AFs with
A1 ∩ A2 = ∅ and let R3 ⊆ A1 × A2. We call (F1,F2, R3) a splitting of the AF
F = (A1 ∪A2, R1 ∪R2 ∪R3).

Please note that the subframework F2 does not attack arguments in F1. Consider the
following example.

Example 5.15. Let F1 = (A1, R1) with A1 = {a, b} and R1 = {(a, b), (b, a)} as well as
F2 = (A2, R2) with A2 = {c, d} and R2 = {(c, d), (d, d)}, and let R3 = {(a, d), (b, c)}. Then,
(F1,F2, R3) is a splitting of the following AF.

a

b

F1

c

F2

d

⋄

The underlying idea of a splitting is as follows: Once we have computed an extension E1

of the AF F1, we want to construct a reduced version of F2 which reflects the acceptance of
E1. Then we compute an extension E2 of this reduced AF to obtain an extension E1 ∪ E2

of F . In the following we define how to reduce F2 for stable semantics.

The following theorem taken from (Baumann, 2011, Theorem 2) states that this obser-
vation is no coincidence. Indeed, we can indeed find stable extensions E of the whole AF F
by computing a stable extension E1 of F1 and merge it (in case of existence) with a stable
extension of the reduced version of F2.

Theorem 5.16. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F with
F1 = (A1, R1) and F2 = (A2, R2).

� If E1 ∈ stb(F1) and E2 ∈ stb(FE1 ∩ F2), then E1 ∪ E2 ∈ stb(F ).

� Vice versa, if E∈stb(F ), then E ∩A1∈stb(F1) and E ∩A2∈stb(FE1 ∩ F2).

In case of stable semantics we have that an extension E1 of the bottom part F1 attacks
any remaining argument in F1 by definition. This is definitely not true for all other semantics
considered in this article. This is a problem in case of admissibility-based semantics since
potential attackers of an extension E2 of the top part (namely the (E1, R3)-reduct of F2)
might be unattacked. Indeed, this is the main reason why the proposed splitting method
does not work for this family of semantics. We refer the reader to (Baumann, 2014, Example
4.5.) for an illustration. What about semantics based on weak admissibility? In case of
weakly preferred semantics we have that the reduct FE1

1 does not contain any non-trivial
weakly admissible set. Thus, possibly existing attackers of weakly preferred extensions
in FE1 ∩ F2 are not serious ones. Indeed, it turns out that this property is sufficient to
disregarded them providing us with a similar splitting result for weakly preferred semantics.
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Theorem 5.17. Let F = (A,R) be an AF and let (F1, F2, R3) be a splitting of F with
F1 = (A1, R1) and F2 = (A2, R2).

� If E1 ∈ prw(F1) and E2 ∈ prw(FE1 ∩ F2), then E1 ∪ E2 ∈ prw(F ).

� Vice versa, if E∈prw(F ), then E ∩A1∈prw(F1) and E ∩A2∈prw(FE1 ∩ F2).

Proof. The proof relies on the modularization property of w-admissible extensions and the
following characterization of prw: E ∈ prw(F ) iff E ⊆ cf (F ) and admw

(
FE

)
= {∅}.

� If E1 is a w-preferred extension of F1, then E1 is w-admissible in the whole AF F
(Lemma 5.3) and FE1

1 does not contain w-admissible arguments. By the latter, a
w-preferred extension E2 of FE1 ∩ F2 is w-admissible in FE1 and by modularization,
E1 ∪E2 ∈ admw(F ). Being a w-preferred extension of FE1 ∩F2, E2 does not tolerate

w-admissible arguments in the reduct, i.e.
(
FE1 ∩ F2

)E2 possesses no w-admissible
argument. We now show

FE1∪E2 ∩ F2 =
(
FE1 ∩ F2

)E2
.

– (⊆) Assume a ∈ A
(
FE1∪E2 ∩ F2

)
. Then a ∈ A(F2) such that it is neither

attacked by or contained in E1 nor E2. Hence a occurs in F2 and is not attacked

by E1, so a ∈ A(FE1 ∩F2). Since a is not attacked by E2, a ∈ A
((
FE1 ∩ F2

)E2
)

follows.

– (⊇) Now let a ∈ A
((
FE1 ∩ F2

)E2
)
. Hence a ∈ A(F2) such that a is not attacked

by or contained in E1. Since E1 ∪̇E2 is conflict-free, E2 ⊆ A(FE1) and by

E2 ⊆ A(F2) we get E2 ⊆ A(FE1 ∩ F2). So from a ∈ A
((
FE1 ∩ F2

)E2
)

we

conclude that a is not attacked by or contained in E2, either. So a ∈ A(F2) such
that neither E1 nor E2 attack or contain a, i.e. a ∈ A

(
FE1∪E2 ∩ F2

)
.

Thus there is no w-admissible argument in FE1∪E2 ∩F2 and since E1 ∈ prw(F1), there
is no w-admissible argument in FE1∪E2 ∩ F1, either. Thus E1 ∪ E2 is w-preferred.

� By directionality, E1 is w-admissible in F1 and by Theorem 2.15, E2 must be w-
admissible in FE1 . Finally E1 ∪ E2 being preferred means FE1

1 does not tolerate w-
admissible arguments and neither does FE1∪E2 ∩ F2 =(
FE1 ∩ F2

)E2 . By the former, E1 ∈ prw(F1) and by the latter, E2 ∈ prw(FE1 ∩
F2).

Example 5.18. Consider G1 and G2 as well as R3 = {(b, d), (a3, e)} as depicted below.
The triple (G1,G2, R3) is a splitting of the following AF G .

a1

a2

G1

a3 b

d

G2

e
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We obtain E1 = {b} as the unique w-preferred extension of G1. Moreover, E2 = {e} is the
unique w-preferred extension of GE1

1 ∩G2. Applying the splitting theorem yields E = {b, e}
as the only w-preferred extension of G. Indeed, E is conflict-free in G and moreover, the
attackers of E, namely d and a3 are either not contained in the three-cycle GE or not part
of any w-admissible extension since

⋃
admw

(
GE

)
= ∅.

a1

a2

GE1
1

a3 b

d

GE1
1 ∩G2

e

⋄

6. Conclusion

In this paper, we investigated the computational complexity of the standard reasoning
problems for weakly admissibility-based semantics. More specifically we examined the veri-
fication problem, the problem of deciding whether or not a given AF possesses a non-empty
extension, as well as credulous and skeptical acceptance of a given argument. It turns out
that all of them, except the trivial skeptical acceptance for admw, are PSPACE-complete in
general. The lower bound was proved by a suitable adjustment of the well-known standard
translation from propositional formulas to AFs, with some noteworthy novel features: i) the
argument ϕ representing whether or not the formula evaluates to true is not attacked by
the arguments Ci representing the clauses, but only by two of the variables, ii) the argu-
ments representing the variables occurring in the given formula attack each other forming
several layers in order to implement the quantifier alternation, iii) auxiliary arguments pj
are required to guide the simulation of the aforementioned alternation, and iv) none of the
arguments corresponding to variables in the QBF at hand are contained in a w-admissible
extension of the constructed AF; the important part of the construction is the interaction
of arguments which are not accepted.

The PSPACE-completeness of weakly admissibility-based semantics is in contrast to the
complexity of standard admissibility-based semantics which are located in the first two
levels of the polynomial hierarchy (Dvořák & Dunne, 2018). Moreover, this also holds for
semantics like cf2 (Baroni et al., 2005) or stage2 (Dvořák & Gaggl, 2016), that (a) follow
a similar endeavor of dealing with the acceptance w.r.t. odd-length cycles and (b) follow a
recursive approach. Notice that when verifying an extension, the SCC-recursive approach
can be easily resolved in an iterative fashion, which is in polynomial time and requires only
a linear number of calls to a base function, applied to verify parts of the extension on SCCs.
For cf2 or stage2 these base functions are of comparably low computational complexity and
thus these semantics remain in the first two levels of the polynomial hierarchy (Gaggl &
Woltran, 2013; Dvořák & Gaggl, 2016). On the other hand, in order to verify a weakly
admissible extension on a strongly connected graph, we have to make several recursive calls
on sub-graphs, which even makes evaluating the base function on a single SCC hard.
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In the light of this high computational complexity we investigated graph classes that
are known to yield computationally easier fragments for standard argumentation semantics,
i.e., symmetric, acyclic, odd-cycle free, noeven, and bipartite AFs. Our results show that for
some of these graph classes, there is a significant drop in the computational complexity. We
also show that weakly preferred semantics can be computed along the strongly connected
components. On the one hand this implies a fixed-parameter tractability result w.r.t. the
size of the biggest SCC of the AF and on the other hand it allows to use the results on
tractable fragments for SCCs that fall in such a tractable graph class even when the whole
AF does not belong to such a graph class. An interesting future work in this direction is
of course settling the exact complexity of weak-admissible based semantics for noeven AFs.
Moreover, we initiated the investigation of fixed-parameter tractable algorithms, but these
results need to be further developed.

The computational complexity of argumentation frameworks is not only well-understood
in terms of the standard problems, but also more involved aspects have been studied espe-
cially in the field of dynamics like enforcing a desired set of arguments (Wallner, Niskanen, &
Järvisalo, 2017; Niskanen, Wallner, & Järvisalo, 2018), incorporating new beliefs (Falappa,
Kern-Isberner, & Simari, 2009; Haret, Wallner, & Woltran, 2018) or repairing a semantical
collapse (Baumann & Ulbricht, 2019) and reasoning with incomplete argumentation frame-
works (Baumeister, Järvisalo, Neugebauer, Niskanen, & Rothe, 2021; Fazzinga, Flesca, &
Furfaro, 2020b). In light of the results obtained in this paper, reasoning problems like these
are now also expected to be PSPACE-complete. Future work could also involve confirm-
ing these conjectures. Another possible direction for further investigation is a comparison
of our insights with results concerning other variants of admissible semantics, e.g. in the
probabilistic setting (Baier, Diller, Dubslaff, Gaggl, Hermanns, & Käfer, 2021).

Needless to say, an actual implementation utilizing our theoretical results would con-
tribute to making weak admissibility ready for potential applications. A first step in that
direction has been done in (Dvořák et al., 2021), where a worst-case complexity-adequate
DATALOG encoding for weak-admissible semantics is presented. In particular due to the
considerable worst case complexity, another conceivable technique might be utilizing graph
convolutional networks as done in (Kuhlmann & Thimm, 2019; Malmqvist, Yuan, Nightin-
gale, & Manandhar, 2020) for Dung’s classical semantics, Although one has to keep in mind
that these approaches calculate approximate solutions, the results reported in these papers
are quite promising. Finally, we mention that the “weak” semantics have been further de-
veloped in (Dauphin, Rienstra, & van der Torre, 2021), which calls for an investigation on
its own.

Acknowledgements

This work was supported by the Vienna Science and Technology Fund (WWTF) through
project ICT19-065, the Austrian Science Fund (FWF) through project P30168, and the
German Federal Ministry of Education and Research (BMBF, 01/S18026A-F) by funding
the competence center for Big Data and AI “ScaDS.AI Dresden/Leipzig”.

1443
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Dvořák, Ulbricht & Woltran

Eiter, T., & Gottlob, G. (2006). Reasoning under minimal upper bounds in propositional
logic. Theoretical Computer Science, 369 (1-3), 82–115.

Falappa, M. A., Kern-Isberner, G., & Simari, G. R. (2009). Belief revision and argumenta-
tion theory. In Argumentation in Artificial Intelligence, pp. 341–360. Springer.

Fazzinga, B., Flesca, S., & Furfaro, F. (2020a). Embedding the trust degrees of agents
in abstract argumentation. In Giacomo, G. D., Catalá, A., Dilkina, B., Milano, M.,
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