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Abstract
We consider the problem of reaching a propositional goal condition in fully-observable non-

deterministic (FOND) planning under a general class of fairness assumptions that are given explic-
itly. The fairness assumptions are of the form A/B and say that state trajectories that contain infinite
occurrences of an action a from A in a state s and finite occurrence of actions from B, must also
contain infinite occurrences of action a in s followed by each one of its possible outcomes. The
infinite trajectories that violate this condition are deemed as unfair, and the solutions are policies
for which all the fair trajectories reach a goal state. We show that strong and strong-cyclic FOND
planning, as well as QNP planning, a planning model introduced recently for generalized planning,
are all special cases of FOND planning with fairness assumptions of this form which can also be
combined. FOND+ planning, as this form of planning is called, combines the syntax of FOND
planning with some of the versatility of LTL for expressing fairness constraints. A sound and com-
plete FOND+ planner is implemented by reducing FOND+ planning to answer set programs, and
its performance is evaluated in comparison with FOND and QNP planners, and LTL synthesis tools.
Two other FOND+ planners are introduced as well which are more scalable but are not complete.

1. Introduction

FOND planning is planning with fully observable, non-deterministic state models specified in com-
pact form where a goal state is to be reached (Cimatti, Pistore, Roveri, & Traverso, 2003). In its
most common variant, strong-cyclic planning, one is interested in policies that reach states from
which the goal can be reached following the policy (Cimatti, Roveri, & Traverso, 1998; Daniele,
Traverso, & Vardi, 1999). In another common variant, strong planning (Cimatti, Roveri, & Traverso,
1998), one is interested in policies that reach a goal state in a bounded number of steps. Each form
of FOND planning is adequate under a suitable fairness assumption; in the case of strong plan-
ning, that non-determinism is adversarial (or “unfair”); in the case of strong-cyclic planning, that
non-determinism is fair, in that none of the possible outcomes of a non-deterministic action can be
skipped forever.1

FOND planning has become increasingly important as a way of solving other types of problems
such as probabilistic (MDP) planning, where actions have a probabilistic effect on states (Bert-

1. In Section 2, we elaborate on the distinction between adversarial and strong-cyclic planning.
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sekas & Tsitsiklis, 1996; Geffner & Bonet, 2013), LTL planning, where goals to be reached are
generalized to temporal conditions that must be satisfied possibly by plans with cycles (Calvanese,
De Giacomo, & Vardi, 2002; Camacho, Bienvenu, & McIlraith, 2019; Aminof, De Giacomo, Mu-
rano, & Rubin, 2019), and generalized planning, where plans are not for single instances but for
collections of instances (Srivastava, Immerman, & Zilberstein, 2011a; Hu & De Giacomo, 2011),
and they can be obtained from suitable abstractions encoded as Qualitative Numerical Planning
(QNP) problems (Srivastava, Zilberstein, Immerman, & Geffner, 2011b; Bonet & Geffner, 2020).

A critical limitation of strong, strong-cyclic, and QNP planners, is that the fairness assumptions
are implicit in their models and solvers, and as a result, cannot be combined. These combinations,
however, are often needed (Camacho & McIlraith, 2016; Ciolek, D’Ippolito, Pozanco, & Sardiña,
2020), and indeed, a recent FOND planner handles combinations of fair and adversarial actions
in what is called Dual FOND planning (Geffner & Geffner, 2018). In this work, we go beyond
this integration by also enabling the representation and combination of the conditional fairness
assumptions that underlie QNP planning. This is achieved by extending FOND planning with a
general class of fairness assumptions that are given explicitly as part of the problem. The fairness
assumptions are pairs A/B of sets of actions A and B that say that state trajectories that contain
infinite occurrences of actions a from A in a state s, and finite occurrences of actions from B, must
also contain infinite occurrences of action a in the state s followed by each one of its possible
outcomes. The infinite trajectories that violate this condition are regarded as unfair. The solutions
of a FOND problem with conditional fairness assumptions of this type, called a FOND+ problem,
are the policies for which all fair state trajectories reach the goal.

We show that strong, strong-cyclic, and QNP planning, are all special cases of FOND+ planning
where the fairness assumptions underlying these models can be combined. FOND+ planning ex-
tends the syntax and semantics of FOND planning with some of the versatility of the LTL language
for expressing fairness constraints. The conditional fairness assumptions A/B correspond to the
LTL formulas (�♦(s∧a)∧ (¬�♦

∨
b∈B b))⊃

∧
i�♦(a∧ s∧◦Ei), one for each action a ∈ A, each

state s, and each possible outcome Ei of the action a, where s stands for the conjunction of literals
that s makes true.2 However, unlike LTL synthesis and planning that are 2EXP-Complete (Pnueli
& Rosner, 1989; Camacho et al., 2019; Aminof, De Giacomo, & Rubin, 2020), FOND+ planning
is in NEXP (non-deterministic exponential time).

A planner for FOND+ is obtained by reducing FOND+ planning over the explicit state space to
an elegant answer set program (ASP), a convenient and high-level alternative to SAT (Brewka, Eiter,
& Truszczyński, 2011; Lifschitz, 2019; Gebser, Kaminski, Kaufmann, & Schaub, 2012), using the
facilities provided by the CLINGO ASP solver (Gebser, Kaminski, Kaufmann, & Schaub, 2019). The
performance of this ASP-based planner is evaluated in comparison with FOND and QNP planners,
and LTL synthesis tools.

This paper extends the conference paper of Rodriguez, Bonet, Sardiña, and Geffner (2021) with
proofs, additional examples, and two new FOND+ planners that scale up better but are incomplete.
The paper is organized as follows. We review first strong and strong-cyclic FOND planning, and

2. For state s and action a in A, the LTL formula (implication) (�♦(a∧ s)∧¬(�♦
∨

b∈B b)) ⊃
∧

i�♦(a∧ s∧◦Ei)
holds at time (index) k in trajectory τ when either the antecedent does not hold or the consequent holds. The formula
is constructed with the LTL connectives “always” (�), “eventually” (♦), and “next” (◦). The antecedent does not
hold when the action a is not applied at state s infinitely often (i.e., ¬�♦(a∧ s)) or when infinitely often some action
in B is applied (i.e., �♦

∨
b∈B b). Likewise, the consequent holds when each effect Ei of action a immediately follows

the application of a in s infinitely often (i.e.,
∧

i�♦(a∧ s∧◦Ei)).
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QNP planning. We introduce then FOND+ planning, where the assumptions underlying these mod-
els are stated explicitly and combined, and present a description of the ASP-based FOND+ planner,
an empirical evaluation, some working examples, and the incomplete planners.

2. FOND Planning

A FOND model is a tuple M = 〈S,s0,SG,Act,A,F〉, where S is a finite set of states, s0 ∈ S is the
initial state, SG ⊆ S is a non-empty set of goal states, Act is a set of actions, F(a,s) is the set of
successor states when action a is executed in state s, and A(s)⊆ Act is the set of actions applicable
in state s, such that a ∈ A(s) iff F(a,s) 6= /0. A FOND problem P is a compact description of a
FOND model M(P) in terms of a finite set of atoms, so that the states s in M(P) correspond to
truth valuations over the atoms, represented by the set of atoms that are true. The standard syntax
for FOND problems is a simple extension of the STRIPS syntax for classical planning. A FOND
problem is a tuple P = 〈At, I,Act,G〉 where At is a set of atoms, I ⊆ At is the set of atoms true in the
initial state s0, G is the set of goal atoms, and Act is a set of actions with atomic preconditions and
effects. If Ei represents the set of positive and negative effects of an action in the classical setting,
action effects in FOND planning can be deterministic of the form Ei, or non-deterministic of the
form oneof (E1, . . . ,En).

A policy π for a FOND problem P is a partial function mapping non-goal states into actions.
A policy π for P defines a set of, possibly infinite, compatible state trajectories s0,s1,s2, . . ., also
called π-trajectories, where si+1 ∈ F(ai,si) and ai = π(si) for i≥ 0. A trajectory τ compatible with
π is maximal if it is infinite, or is finite of the form τ = s0, . . . ,sn, for some n ≥ 0, and either sn is
the first state in the sequence being a goal state, π(sn) 6∈ A(sn) (i.e., the action prescribed at sn is
not applicable), or π(sn) = ⊥ (i.e., no action is prescribed). Likewise, the policy π reaches a state
s if there is a π-trajectory s0, . . . ,sn where s = sn, and π reaches a state s′ from a state s if there is a
π-trajectory s0, . . . ,sn where s = si and s′ = s j for 0≤ i≤ j ≤ n. A state s is recurrent in trajectory
τ if it appears an infinite number of times in τ . The strong and strong-cyclic solutions or policies
are usually defined as follows:

Definition 1 (Solutions). A policy π is a strong solution for a FOND problem P if all the maximal
π-trajectories reach a goal state, and it is a strong-cyclic solution if π reaches a goal state from
any state reached by π .

The strong solutions correspond also to the strong-cyclic solutions that are acyclic; namely,
where the policies π do not give rise to π-trajectories that can visit a state more than once. Alterna-
tively, strong and strong-cyclic solutions can be understood in terms suitable notions of fairness that
establish which π-trajectories are deemed possible. If we say that a policy π solves problem P when
all the fair π-trajectories reach the goal, then in strong planning, all π-trajectories are deemed fair,
while in strong-cyclic planning, all π-trajectories are deemed fair except those containing a recurrent
state s that is followed a finite number of times by a successor s′ ∈ F(π(s),s).

In order to make this alternative “folk” characterization of strong and strong-cyclic planning
explicit, let us say that all the actions in strong FOND planning are adversarial (or “unfair”), and
that all the actions in strong-cyclic FOND planning are fair. The state trajectories that are deemed
fair in each setting can then be expressed as follows:
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Definition 2. If all the actions are adversarial, all π-trajectories are fair. If all the actions are fair,
a π-trajectory τ is fair iff states s that occur an infinite number of times in τ , are followed an infinite
number of times by each possible successor s′ of s given π , s′ ∈ F(π(s),s).

Provided with these notions of fairness, strong and strong-cyclic solutions can be characterized
equivalently as:

Theorem 3. A policy π is a strong (resp. strong-cyclic) solution of a FOND problem P iff all the
maximal fair trajectories compatible with π in P reach the goal, under the assumption that all
actions are adversarial (resp. fair).

Proof. Under the assumption that all actions are adversarial, the class of π-trajectories coincide
with the class of fair π-trajectories. Hence, π is a strong solution according to Def. 1 iff all the
maximal fair π-trajectories reach the goal.

For strong-cyclic planning, observe that an infinite π-trajectory τ is fair iff τ visits each state
that is reachable from any recurrent state in τ . We use this observation to show the contrapositive of
the two implications involved in the iff. First, if there is a maximal fair trajectory that does not reach
the goal, by the observation, there is a state s that is reachable from the initial state and that is not
connected to a goal; i.e., π is not strong-cyclic according to Def. 1. Second, if π is not strong-cyclic,
there is a state s that is reachable from the initial state and that is not connected to the goal, and thus
there is a maximal fair π-trajectory that does not reach a goal; i.e., π does not solve P.

Methods for computing strong and strong-cyclic solutions for FOND problems have been de-
veloped based on OBDDs (Cimatti et al., 2003), explicit forms of AND/OR search (Mattmüller,
Ortlieb, Helmert, & Bercher, 2010), classical planners (Muise, McIlraith, & Beck, 2012), and SAT
(Chatterjee, Chmelı́k, & Davies, 2016). Some of these planners actually handle a combination of
fair and adversarial actions, in what is called Dual FOND planning (Geffner & Geffner, 2018).

3. QNP Planning

Qualitative numerical planning problems (QNPs) were introduced by Srivastava et al. (2011b) as
a model for generalized planning, that is, planning for multiple classical instances at once. QNPs
have been used since in other works (Bonet, De Giacomo, Geffner, & Rubin, 2017; Bonet, Frances,
& Geffner, 2019) and have been analyzed in depth by Bonet and Geffner (2020).

The syntax of QNPs is an extension of STRIPS problems P = 〈At, I,O,G〉 with negation where
At is a set of ground (Boolean) atoms, I is a maximal consistent set of literals from At describing
the initial situation, G is a set of literals describing the goal situation, and O is a set of (ground)
actions with precondition and effect literals. A QNP Q = 〈At,V, I,O,G〉 extends a STRIPS problem
with a set V of numerical variables X that can be decremented or incremented qualitatively; i.e.,
by indeterminate positive amounts, without making the variables negative. A numerical variable X
can appear in action effects as X↑ (increments) and X↓ (decrements),while literals of the form X =0
or X >0 (an abbreviation of X 6=0) can appear everywhere else (initial situation, preconditions, and
goals). The literal X >0 is a precondition of all actions with X↓ effects.

A simple example of a QNP is Q = 〈At,V, I,O,G〉 with At = {p}, V = {n}, I = {¬p,n>0},
G = {n=0}, and actions O = {a,b} given by

a = 〈p,n>0;¬p,n↓〉 and b = 〈¬p; p〉
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where 〈C;E〉 denotes an action with preconditions C and effects E. Thus action a decrements n
and negates p that is a precondition of a, and b restores p. This QNP represents an abstraction of
the problem of clearing a block x in Blocksworld instances with stack/unstack actions that include a
block x. The numerical variable n stands for the number of blocks above x, and the Boolean variable
p stands for the robot gripper being empty. A policy π that solves Q can be expressed by the rules:

if p and n>0, do a and if ¬p∧n>0, do b .

A key property of QNPs is that while numerical planning is undecidable (Helmert, 2002), qual-
itative numerical planning is not. Indeed, a sound and complete, two-step method for solving QNPs
was formulated by Srivastava et al. (2011b): the QNP Q is converted into a standard FOND problem
P = TD(Q) and its (strong-cyclic) solutions are checked for termination. The QNP solutions are in
correspondence with the strong-cyclic plans of the direct translation P = TD(Q) that terminate.
Moreover, since the number of policies that solve P is finite, and the termination of each can be
verified in finite time, plan existence for QNPs is decidable. More recent work has shown that the
complexity of QNP planning is the same as that of FOND planning by introducing a polynomial
reduction from the former into the latter, and another in the opposite direction (Bonet & Geffner,
2020).

We do not need to get into the formal details of QNPs but it is useful to review the direct trans-
lation TD of a QNP Q into a FOND problem P = TD(Q), and the notion of termination (Srivastava
et al., 2011b). Concretely, the translation TD replaces each numerical variable n by a Boolean atom
pn that stands for the (Boolean) expression n = 0. Then, occurrences of the literal n = 0 in the
initial situation, action preconditions, and goals are replaced by pn, while occurrences of the literal
n > 0 in the same contexts are replaced by ¬pn. Likewise, effects n↑ are replaced by effects ¬pn,
and effects n↓ are replaced by non-deterministic effects oneof (pn,¬pn). Actions in the FOND prob-
lem P = TD(Q) with effects ¬pn (i.e., n > 0) are said to “increment n,” while actions with effects
oneof (pn,¬pn) (i.e., either n > 0 or n = 0) are said to “decrement n,” even if there are no numerical
variables in P but just Boolean variables. This information needs to be preserved in the translation
P = TD(Q), as the semantics of P is not the semantics of FOND problems as assumed by strong or
strong-cyclic planners.

4. Termination and SIEVE

A policy π for the FOND problem P = TD(Q) is said to terminate if all the state trajectories in
P that are compatible with the policy π and with the fairness assumptions underlying the QNP Q,
are finite. Termination is the result of the absence of cycles in the policy that can be traversed
forever, under the QNP assumption that numerical values are non-negative and decrements cannot
be asymptotically small and tend to zero (Bonet & Geffner, 2020). Thus a cycle that includes an
action that decrements a numerical variable and none that increments it must eventually terminate.

The procedure called SIEVE (Srivastava et al., 2011b) provides a sound and complete termi-
nation test that runs in time that is polynomial in the number of states reached by the policy. SIEVE

can be understood as an efficient implementation of the following procedure that operates on the
policy graph G(P,π) determined by a FOND problem P and a policy π , where the nodes are the
states s that can be reached in P via the policy π , and the edges correspond to the state transitions
(s,s′) that are possible given the policy π; i.e., s′ ∈ F(π(s),s).
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Starting with the graph G = G(P,π), SIEVE iteratively removes edges from G until G becomes
acyclic or does not admit further removals. In each iteration, an edge (s,s′) is removed from G if
π(s) is an action that decrements a variable x that is not incremented along any path in G from s′

back to s. SIEVE accepts the policy π iff SIEVE renders the resulting graph G acyclic. It can be
shown that the resulting graph G is well defined (i.e., it is the same independently of the order in
which edges are removed), and that SIEVE removes an edge (s,s′) when it cannot be traversed by
the policy an infinite number of times.

It is useful to capture the logic of SIEVE in terms of an inductive definition that considers states
instead of edges:

Definition 4 (QNP Termination). Let π be a policy for the FOND problem P = TD(Q) associated
with the QNP Q. The policy π terminates in P iff every state s that is reachable by π in P terminates,
where a state s terminates iff:3

1. there is no cycle on node s (i.e., no path from s to itself),

2. every cycle on s contains a state s′ that terminates, or

3. π(s) decrements a variable x, and every cycle on s containing a state s′ for which π(s′) incre-
ments x, also contains a state s′′ that terminates.

Theorem 5. Let Q be a QNPs and π a policy. Then, SIEVE accepts the policy graph G(P,π) iff
policy π terminates in P, where P = TD(Q).

Proof. Since the resulting graph of executing SIEVE does not depend on the order in which edges
are removed, we can consider any execution of SIEVE.

Forward implication. For a variable x that will be clear from context, let us say that the state s is
forbidden if π(s) increments x. Let e0,e1, . . . ,em be the sequence of edges removed by SIEVE along
some execution. We show by induction that the state si in the edge ei = (si,s′i) removed by SIEVE

is terminating. SIEVE removes e0 because π(s0) decrements a variable x and there is no forbidden
state in any path from s′0 to s0; i.e., there is no cycle on s0 that contains a forbidden state. Thus,
condition 3 holds trivially and s0 terminates.

Let us now assume that the claim holds for the first k iterations of SIEVE, and let us consider
the (k+ 1)-st iteration. Edge ek+1 is removed because π(sk+1) decrements a variable x and there
are no forbidden states on any path from s′k+1 to sk+1 in the current graph. That is, either there is no
such cycle containing sk+1 in the original graph, or all cycles that contain forbidden states have been
“broken” by the removal of previous edges. In the first case, condition 1 applies and sk+1 terminates.
In the second case, by inductive hypothesis, all such cycles contain a state s′ that terminates, and by
condition 3, sk+1 terminates as well.

Finally, if the graph resulting from running SIEVE is acyclic, all states that have not yet been
labeled as terminating can be labeled as such using conditions 1 or 2. On the other hand, if the
resulting graph is not acyclic, it is easy to see that the states in any such cycle cannot be labeled as
terminating.

3. This inductive definition and the ones below imply that there is a unique sequence of state subsets S0,S1, . . . ,Sk such
that Si+1 is Si augmented with all the states that can be added to Si when assuming that the only terminating states
are those in Si.

892



FOND PLANNING WITH EXPLICIT FAIRNESS ASSUMPTIONS

Backward implication. Let us say that state s is simple in a graph if there is no cycle that contains
s. Let S0,S1, . . . ,Sk be the state subsets associated with the inductive definition (cf. footnote 3). We
construct an execution e0,e1, . . . ,em of SIEVE. If s in S0, either there is no cycle involving s, or π(s)
decrements a variable that is not incremented on any cycle that involves s. In the former case, s is
simple in the original graph, while in the latter case, SIEVE removes all edges (s,s′) that originate at
s and thus yields a graph in which s is simple. Hence, after processing S0, we construct an execution
of SIEVE that yields a graph G0 in which all states in S0 are simple. Let us assume that we have
such an execution that yields a graph Gi where all states in S0 ∪ ·· · ∪ Si are simple. We show that
the execution can be extended such that it yields a graph Gi+1 where all states in S0∪ ·· ·∪Si+1 are
simple. If s in Si+1, either all cycles involving s contain a terminating state, or π(s) decrements a
variable x and any cycle that contains s and a forbidden state, also contains a state s′ that terminates.
By inductive hypothesis, in the former case, s is already simple in Gi and remains so. For the latter
case, if there is a cycle that contains s and a forbidden state, it also contains a terminating state s′,
which, by inductive hypothesis, is simple in Gi. Therefore, Gi has no cycle that contains s and a
forbidden state, and SIEVE removes all edges that leave s. Finally, observe that the final graph Sk
rendered by the constructed execution of SIEVE admits no further edge removals. Indeed, as shown
in the previous part, if SIEVE could remove a further edge (s,s′), s would be terminating.

Therefore, to finish, if all reachable states are labeled as terminating, the constructed execution
of SIEVE yields a graph Gk where all reachable states are simple; i.e., an acyclic graph. On the other
hand, if some reachable state s is not terminating, it is easy to see that Gk has a cycle that contains s
and no further edge removal by SIEVE is possible; i.e., SIEVE does not yield an acyclic graph.

Since solutions to QNPs Q are known to be the strong-cyclic policies of the FOND problem P =
TD(Q) that are accepted by SIEVE (Srivastava et al., 2011b; Bonet & Geffner, 2020), the solutions
for Q can also be expressed as:

Theorem 6. A policy π is a solution to a QNP Q iff π is a strong-cyclic solution of P = TD(Q) that
terminates.

Proof. The result is direct given that π is a solution of Q iff π is a strong-cyclic solution for P
accepted by SIEVE (Srivastava et al., 2011b; Bonet & Geffner, 2020), and the equivalence between
SIEVE acceptance and the notion of policy termination in Theorem 5.

The characterization that results from this theorem has been used to verify QNP solutions but
not for computing them. Indeed, the only available complete QNP planner is based on a polynomial
reduction of QNP planning into strong-cyclic FOND planning that avoids the termination test (Bonet
& Geffner, 2020).

5. FOND+ Planning

In this section, we move from strong, strong-cyclic, and QNP planning to the FOND+ setting where
the fairness assumptions underlying these models can be explicitly stated and combined. A FOND+

planning problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of fairness assumptions:

Definition 7. A FOND+ problem Pc = 〈P,C〉 is a FOND problem P extended with a set C of (con-
ditional) fairness assumptions of the form Ai/Bi, i = 1, . . . ,n and where each Ai is a set of non-
deterministic actions in P, and each Bi is a set of actions in P disjoint from Ai.
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The fairness assumptions play no role in constraining the state trajectories that are possible by
following a policy π , the so-called π-trajectories:

Definition 8. A state trajectory compatible with a policy π for the FOND+ problem Pc = 〈P,C〉 is
a state trajectory that is compatible with π in the FOND problem P.

However, while in strong and strong-cyclic FOND planning all actions are considered as adver-
sarial and fair, respectively, in the FOND+ setting, each action is labeled fair or unfair depending
on the assumptions in C and the trajectory where the action occurs. We define what it means for an
action a = π(s) to behave “fairly” in a recurrent state s of an infinite π-trajectory as follows:

Definition 9. The occurrence of the action π(s) in a recurrent state s of a π-trajectory τ associated
with the FOND+ problem Pc = 〈P,C〉 is fair if for some fairness assumption A/B ∈C, it is the case
that π(s) ∈ A and all the actions in B occur finitely often in τ .

The meaning of a conditional fairness assumption A/B is that the actions a ∈ A can be assumed
to be fair in any recurrent state s of a π-trajectory τ , provided that the condition on B holds in τ;
namely, that actions in B do not occur infinitely often in τ . Otherwise, if any action in B occurs
infinitely often in τ , then a is said to be unfair or adversarial. Once actions π(s) occurring in
recurrent states s are “labeled” in this way, the standard notion of fair trajectories (Definition 2)
extends naturally to FOND+ problems:

Definition 10. A π-trajectory τ for a FOND+ problem Pc = 〈P,C〉 is fair if for every recurrent state
s in τ where the action π(s) is fair and every possible successor s′ of s due to action π(s) (i.e.,
s′ ∈ F(π(s),s)), state s is immediately followed by state s′ in τ an infinite number of times.

The solution of FOND+ problems can then be expressed in a standard way as follows:

Definition 11 (FOND+ Solutions). A policy π solves the FOND+ problem Pc = 〈P,C〉 if the maximal
π-trajectories that are fair reach the goal.

A number of observations can be drawn from these definitions. Let us say that one wants to
model a non-deterministic action a whose behavior is fair in that it always displays all its possible
effects infinitely often in every recurrent state s such that π(s) = a. To do so, we consider a fairness
constraint A/B in C such that a ∈ A and B is empty. On the other hand, to model an adversarial
action b, one whose behavior is not fair (may not yield all its effects infinitely often in a recurrent
state s with π(s) = b), we do not include b in any set A. This immediately suggests the way to
capture standard strong and strong-cyclic planning as special forms of FOND+ planning:

Theorem 12. The strong solutions of a FOND problem P are the solutions of the FOND+ problem
Pc = 〈P, /0〉.

Proof. Notice that policies are not defined on goal states, and thus there are no infinite π-trajectories
that reach a goal, for any policy π . If π is a strong solution for P, there are no infinite π-trajectories
and thus all maximal π-trajectories are finite and goal reaching; i.e., π solves Pc.

On the other hand, if π solves Pc, by definition, the maximal π-trajectories that are fair reach the
goal. Since there are no constraints, any infinite π-trajectory is fair and non-goal reaching, and thus,
if there is any such trajectory, π cannot solve Pc. Therefore, all maximal π-trajectories are finite and
goal reaching; i.e., π is a strong solution for P.
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Theorem 13. The strong-cyclic solutions of a FOND problem P are the solutions of the FOND+

problem Pc = 〈P,{A/ /0}〉, where A is the set of all the non-deterministic actions in P.

Proof. Let π be a policy for P and let τ be an infinite π-trajectory in P. Since B is empty, any action
π(s) in A for a recurrent state s in τ is fair (cf. Definition 9). Thus, by Definition 10 and that A
contains all the non-deterministic actions, τ is fair in P iff τ is fair in Pc, and by Theorem 3, π is a
strong-cyclic solution for P iff π solves Pc.

Similarly, QNP problems are reduced to FOND+ problems in a direct way, using both the head
A and the condition B in the fairness assumptions A/B in C:

Theorem 14. The solutions of a QNP problem Q are the solutions of the FOND+ problem Pc =
〈P,C〉 where P = TD(Q) and C is the set of fairness assumptions Ai/Bi, one for each numerical
variable xi in Q, such that Ai contains all the actions in P that decrement xi, and Bi contains all the
actions in P that increment xi.

Proof. Let Q be a QNP problem, let Pc = 〈P,C〉 be the FOND+ problem associated with Q where
P = TD(Q), and let π be a policy for Q (and P).
Forward direction. Let us assume that π solves Q and suppose it does not solve Pc. Then, there
is a maximal fair (cf. Definition 10) π-trajectory τ that does not reach the goal. The trajectory τ

must be infinite as otherwise π would not be strong-cyclic. Let R be the set of recurrent states in
τ . If s in R and the occurrence of π(s) is fair, the state s is followed infinitely often in τ by each
s′ ∈ F(π(s),s). However, the fairness of π(s) implies that there is a fairness assumption A/B in C
such that π(s) ∈ A, and π(s′) ∈ B for no s′ ∈ R. This implies that the variable x associated with
the assumption A/B reaches the value of zero and τ cannot be infinite. Therefore, the occurrence
of π(s) for any state s in R must be unfair; namely, for any A/B in C, if π(s) ∈ A then π(s′) ∈ B
for some s′ ∈ R. We have shown that if R contains a state where variable x is decremented, R also
contains a state where x is incremented. Since there is at least one state in R where a variable is
decremented, no recurrent state in τ is terminating (cf. Definition 4), and thus π does not solve Q.
Therefore, π must solve Pc.
Backward direction. Let us assume that π solves Pc and suppose it does not solve Q. Observe that
π must be strong-cyclic as otherwise it is easy to construct a maximal, non-goal reaching, and fair
π-trajectory in Pc, contradicting the assumption that π solves Pc. Hence, π does not terminate in Q;
namely, there is an infinite π-trajectory τ in P such that for the set R of its recurrent states, if π(s)
decrements a variable x for some s∈ R, there is another state s′ ∈ R such that π(s′) increments x. On
the other hand, R must contain a state s such that π(s) decrements some variable since such actions
are the only ones that can generate a cycle in P. Then, by the definition of the fairness assumptions
in C, no occurrence of the action π(s) for a state s in R is fair. Thus, τ is fair in Pc contradicting the
assumption that π solves Pc. Therefore, π must solve Q.

6. Example: Conditional Fairness

By explicitly stating the fairness assumptions underlying strong, strong-cyclic, and QNP planning,
FOND+ planning integrates these planning models as well. We illustrate the new possibilities with
an example.

Let P be a FOND problem with state set {s0,s1,s2,g}, two non-deterministic actions a and b,
initial and goal states being s0 and g, respectively. Action a can only be applied in state s0, leading
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Figure 1: Example model for FOND problem P with 4 states, non-deterministic actions a and b,
and goal state g.

to either s1 or s2, whereas action b can be applied only in s1 and s2, leading, in both cases, to
either s0 or g; see Figure 1. The FOND problem P admits a single policy, namely, π(s0) = a and
π(s1) = π(s2) = b, which we analyze in the context of different FOND+ problems Pi = 〈P,Ci〉 that
can be built on top of P using different sets of fairness assumptions Ci. For convenience, in the sets
Ci, we use a/b to denote the fairness assumption {a}/{b}, and a to denote the assumption {a}/ /0.
The marks ’3’ and ’7’ express that the policy π solves or does not solve, resp., the FOND+ problem
Pi, where Ci is:

7 C1 = {}; a and b are adversarial.

3 C2 = {a,b}; a and b are fair.

7 C3 = {a}; a is fair and b is adversarial.

3 C4 = {b}; b is fair and a is adversarial.

7 C5 = {a/b}; a is conditionally fair on b; b adversarial.

7 C6 = {a,b/a}; QNP like: a : x1↓,x2↑ and b : x2↓.

3 C7 = {b,a/b}; QNP like: b : x1↓,x2↑ and a : x2↓.

7 C8 = {a/b,b/a}; QNP like: a : x1↓,x2↑ and b : x2↓,x1↑.

The subtle cases are the last four. The policy π does not solve P5 because there are trajectories
like τ = s0,s1,s0, s2,s0,s1,s0, . . . that are fair but do not reach the goal. The reason is that while
a/b ∈ C5, the occurrences of the action a = π(s0) in the recurrent state s0 in τ are not fair. Thus,
both a and b have an adversarial semantics in τ . The policy π does not solve P6 either, because in
the same trajectory τ , the action a is fair in s0 as a ∈ C6 but b is not fair in either s1 or s2, as the
assumption b/a is in C6 but a occurs infinitely often in τ . As a result, τ is fair but non-goal reaching
in P6. The situation is different in P7, where b is fair and a is unfair. Here, τ is unfair, as any other
trajectory in which some or all the states s0, s1, and s2 occur infinitely often. This is because b being
fair in s1 and s2 means that the transitions (s1,g) and (s2,g) cannot be skipped forever, and the goal
must be reached eventually. Finally, in P8, the trajectory τ becomes fair again, as both a and b are
adversarial in τ .
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7. Termination and SIEVE+ for FOND+

We now consider the computation of policies for FOND+ problems. Initially, we look for a pro-
cedure to verify if a policy π solves a problem Pc = 〈P,C〉, and then transform this verification
procedure into a synthesis procedure.

The solutions for FOND+ problems are policies that terminate in the goal, a termination con-
dition that combines and goes beyond the solution concept for QNPs that only requires goal reacha-
bility (strong-cyclicity) and termination (finite trajectories). The termination condition for FOND+

planning can be expressed as follows:

Definition 15 (FOND+ Termination). Let π be a policy for the FOND+ problem Pc = 〈P,C〉. State
s in P terminates (when π is run on Pc) iff

1. s is a goal state in P;

2. s is fair and some successor state s′ ∈ F(π(s),s) terminates; or

3. s is not fair, F(π(s),s) is non-empty, and all states s′ ∈ F(π(s),s) terminate;

where state s is fair if π(s) ∈ A for some assumption A/B in C, and every π-trajectory that connects
s to itself and contains a state s′ with π(s′) ∈ B, also contains a state s′′ that terminates.

FOND+ termination expresses a procedure similar to SIEVE, that we call SIEVE+, that keeps
labeling states s as terminating (the same as removing all edges from s in the policy graph) until no
states are left or no more states can be labeled. The key difference with SIEVE is that the removals
are done backward from the goal as captured in Definition 15. This is strictly necessary for SIEVE+

to be a sound and complete procedure for FOND+ problems:

Theorem 16. A policy π solves the FOND+ problem Pc = 〈P,C〉 iff all the states s that are reachable
by π terminate according to Definition 15.

Proof. Let S0,S1, . . . be the chain of state subsets labeled as terminating corresponding to Defini-
tion 15 (cf. footnote 3). For a state subset R, π(R) denotes the set {π(s) : s ∈ R}.
Backward implication. For a proof by contradiction, let us assume that every reachable state
terminates, and let us suppose that π does not solve Pc; i.e., there is a maximal and fair non-goal
reaching π-trajectory τ . We consider two cases.
Case 1: τ = s0,s1, . . . ,sn is finite. Since τ is maximal and sn is not a goal, F(π(sn),sn) is empty.
Therefore, sn cannot terminate contradicting the assumption.
Case 2: τ is infinite. Let R be the set of recurrent states in τ , let j be the minimum index such that
R∩S j 6= /0, and let s be a state in R∩S j. Clearly, j > 0 since S0 is the set of goal states and τ does
not reach such states. We further consider two subcases:

• s is not fair according to Definition 15. Then, every state s′ in F(π(s),s) must belong to some Sk
for k < j. This is impossible by the choice of j.

• s is fair according to Definition 15. That is, for some constraint A/B, π(s) ∈ A, and if π(R)∩B 6=
/0, R must contain a state s′′ ∈ Sk for k < j. Since the latter is impossible by the choice of j,
π(R)∩B = /0. This implies that the occurrence of the action π(s) is fair in the trajectory τ (cf.
Definition 9), and thus that s is followed in τ by each of its possible successors s′ ∈ F(π(s),s)
infinitely often; i.e., F(π(s),s) ⊆ R. However, by Definition 15, some such successor s′ must
terminate (i.e., s′ ∈ Sk for k < j), something that is impossible by the choice of j.
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Forward implication. For a proof by contradiction, let us assume that π solves Pc, and let us
suppose that there is a reachable state s that does not terminate. We are going to construct an infinite
π-trajectory τ that is fair and does not reach a goal, contradicting the assumption.

First observe that s is not a goal state and thus it must have successor states. If s is fair (cf.
Definition 15), every state s′ ∈ F(π(s),s) does not terminate, whereas if s is not fair, some state
s′ ∈ F(π(s),s) does not terminate. It is then easy to see that we can construct an infinite π-trajectory
τ ′ seeded at s such that for the set R of its recurrent states:

1. no state in R terminates,

2. if s′ in R is fair, it is followed infinitely often by each s′′ ∈ F(π(s′),s′), and

3. if s′ in R is not fair, it is followed infinitely often by each s′′ ∈ F(π(s′),s′) that does not terminate,
but there is s′′ in F(π(s′),s′) that does not follows s′ infinitely often.

Since the state s is reachable by π , we can construct a π-trajectory τ that reaches s from the initial
state s0 of P and that then follows τ ′. The set of recurrent states for τ is the set R of recurrent state
for τ ′; in particular, R does not contain a goal state. We finish by showing that τ is fair.

We do so using Definitions 9 and 10 for fair actions and fair trajectories respectively. Let s′ be
a state in R such that the action π(s′) is fair in τ; in particular, π(s′) ∈ Ai for some index i. If the
state s′ is fair (cf. Definition 15), F(π(s′),s)⊆ R by construction of τ . Else, if s′ is not fair, we show
below that the occurrence of the action π(s′) is not fair in τ . Hence, in both cases, the trajectory τ

is fair.
For the last bit, by Definition 15, if s′ is not fair, there is a cycle τ ′′ that a) passes over s′,

b) contains a state s′′ with π(s′′) ∈ Bi, and c) does not contain a terminating state. Hence, by
construction of τ , R contains all the states in τ ′′. However, since there is some state in F(π(s′),s′)
that is not in R, the occurrence of π(s′) in τ is not fair.

8. FOND+ and Dual FOND Planning

FOND+ planning subsumes Dual FOND planning where fair and adversarial actions are combined
as follows:

Definition 17 (Geffner & Geffner, 2018). A Dual FOND problem is a FOND problem where the
non-deterministic actions are labeled as either fair or adversarial. A policy π solves a Dual FOND
problem P iff for all reachable state s, π(s) ∈ A(s), and there is a function d from reachable states
into {0, . . . , |S|} such that

1. d(s) = 0 for goal states,

2. d(s′)< d(s) for some s′ ∈ F(π(s),s) if π(s) is fair, and

3. d(s′)< d(s) for all s′ ∈ F(π(s),s) if π(s) is adversarial.

For showing that the Dual FOND semantics coincides with the semantics of a fragment of
FOND+ planning and for capturing the meaning of the d(·) function above, let us recast this defini-
tion as a termination procedure:

Definition 18 (Dual FOND Termination). Let π be a policy for the Dual FOND problem P. A state
s in P terminates iff
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1. s is a goal state,

2. π(s) is fair and some s′ ∈ F(π(s),s) terminates, or

3. π(s) is adversarial, all states s′ ∈ F(π(s),s) terminate, and F(π(s),s) is non-empty.

This termination procedure captures indeed the semantics of Dual FOND problems:

Theorem 19. π is a solution to a Dual FOND problem P iff for every non-goal state s reachable by
π , π(s) ∈ A(s) and s terminates according to Definition 18.

Proof. If π is a solution for P, there is a minimal function d that satisfies Definition 17, and that
can be used to construct a chain S0,S1, . . . of state subsets by Si = {s : s is reachable and d(s) = i}.
It is not difficult to check that such a chain corresponds to the unique chain of subsets entailed by
Definition 18. Likewise, for a policy π that entails such a chain S0,S1, . . . of terminating states that
cover all reachable states, the function d on states, defined by d(s) = i for the minimum i such that
s ∈ Si, satisfies Definition 17.

The only difference between the termination for Dual FOND and the one for FOND+ (Def. 15)
is that in the former the fair and adversarial labels are given, while in the latter they are a function of
the explicit fairness assumptions and policy. The function d(·) above captures indeed one ordering
in which the states reached by the policy can be labeled as terminating. It is easy to show that Dual
FOND problems correspond to the class of FOND+ problems with conditional fairness assumptions
A/B with empty conditions B:

Theorem 20. A policy π solves a Dual FOND problem P′ iff π solves the FOND+ problem Pc =
〈P,C〉 where P is like P′ without the action labels, and C = {A/B} where A contains all the actions
labeled as fair in P′, and B is empty.

Proof. By Theorems 19 and 16, it is enough to show that for every π-reachable and non-goal state
s in P′, s terminates according to Definition 18 iff s terminates according to Definition 15. Yet, this
is direct since for the unique constraint A/B in C, it is easy to see that a state s is fair according to
Definition 15 iff π(s) is a fair action in P′. With this observation, Definition 18 becomes exactly
Definition 15.

9. FOND-ASP: An ASP-based FOND+ Planner

The characterization of FOND+ planning given in Theorem 16 allows for a transparent and direct
implementation of a sound and complete FOND+ planner. For this, the planner hints a policy π

and then each state reachable by π is checked for termination using Definition 15. The problem of
looking for a policy that satisfies this restriction can be expressed in SAT, although we have found
it more convenient to express it as an answer set program, a convenient and high-level alternative
to SAT (Brewka et al., 2011; Lifschitz, 2019; Gebser et al., 2012), using the facilities provided by
CLINGO (Gebser et al., 2019).

The code for the back-end of the ASP-based FOND+ planner is shown in Figure 2. The front-
end of the planner, not shown, parses an input problem Pc = 〈P,C〉 and builds a flat representation
of Pc in terms of a number of ground atoms that are shown in capitalized predicates in the figure.
The code in the figure and the facts representing the problem are fed to the ASP solver CLINGO,
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which either returns a (stable) model for the program or reports that no such model exists. In the
former case, a policy that solves Pc is obtained from the atoms pi(S,A) made true by the model.4

The set of ground atoms providing a flat representation of the problem Pc contains the atoms
STATE(s), ACTION(a), and TRANSITION(s,a,s') for each (reachable) state s, ground action a and
transition s′ ∈ F(a,s) found in a reachability analysis from the initial state s0. In addition, the set
includes the atoms INITIAL(s0), GOAL(s) for goal states s, and ASET(i,a) and BSET(i,b) for a
fairness assumption Ai/Bi in C if a ∈ Ai and b ∈ Bi respectively.

The program for the FOND+ problem Pc is denoted as T (Pc), while T (Pc,π) is used to refer
to the program T (Pc) but with the line 2 in Figure 2 replaced by facts pi(s,a) when π(s) = a for
a given policy π , and the integrity constraint in line 28 removed. A model M for T (Pc) encodes a
policy πM where πM(s) = a iff pi(s,a) holds in M. The formal properties of the FOND-ASP planner
are as follows:

Theorem 21. Let PC = 〈P,C〉 be a FOND+ problem, and let π be a policy for P. Then,

1. There is a unique stable model M of T (Pc,π), and terminates(s) ∈M iff s terminates (Defini-
tion 15).

2. The policy π solves Pc iff the model M for T (Pc,π) satisfies the integrity constraint in line 28
in Figure 2.

3. M is a model of T (Pc) iff M is the model of T (Pc,πM) and M satisfies the integrity constraints.
Thus, FOND-ASP is a sound and complete planner for FOND+.

4. Deciding if T (Pc,π) has a model is in P; i.e., FOND-ASP runs in non-deterministic exponential
time.

Proof (sketch). Part 1. A model M of a program T is stable iff it is a minimal model of the so-called
reduct TM of T , which means that M can be constructed inductively, bottom-up, assuming and veri-
fying the stability condition; namely, that the atoms that are not in M have no well-founded support
in TM (Gelfond & Lifschitz, 1988; Lifschitz, 2019). In our program, this inductive construction
yields a sequence of atom sets M0,M1, . . . over the atoms connected/2, blocked_paths/2 (and
hence blocked_cycles/2), fair/1, terminate/1, and reachable/1 that is uniquely determined
by the policy π , such that their union satisfies the stability condition. We note that the check on
all cycles over a state s via a state s′ in Definition 15 is achieved by blocked_cycles/2, which
verifies that either all paths from s to s′ or from s′ to s include a terminating state (lines 8 and 9).
This is complete as otherwise there would be a cycle not passing through any terminating state.
Note that blocked_cycle(S,T) holds when there is no cycle on S passing through T, and that
blocked_paths(S,S) holds iff state S is deemed terminating.

Parts 2 & 3. By Theorem 16, π solves Pc iff M is the unique model of T (Pc,π) and M satisfies
the integrity constraints. From this, part 3 is straightforward.

4. The way in which the atoms fair/1 are defined to verify that all relevant cycles are “blocked” differs slightly from
the one used by Rodriguez et al. (2021), which contains a subtle bug that is a result of using negative conditions in
the body of conditional literals. These negative conditions are avoided in the current encoding.
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1 % policy; edges and connectedness compatible with policy

2 { pi(S,A) : ACTION(A) } = 1 :- STATE(S), not GOAL(S).

3 edge(S,T) :- pi(S,A), TRANSITION(S,A,T).

4 connected(S,S) :- STATE(S).

5 connected(S,T) :- connected(S,X), edge(X,T).

6
7 % all cycles on S via T are blocked (contain terminating states)

8 blocked_cycles(S,T) :- blocked_paths(S,T).

9 blocked_cycles(S,T) :- blocked_paths(T,S).

10
11 % there is no (S,T)-path or all such paths have a terminating state

12 blocked_paths(S,T) :- STATE(S), STATE(T), not connected(S,T).

13 blocked_paths(S,T) :- connected(S,T), terminates(S).

14 blocked_paths(S,T) :- connected(S,T), terminates(T).

15 blocked_paths(S,T) :- S != T, connected(S,T),

16 blocked_paths(X,T): edge(S,X), S != X.

17
18 % for some A/B, pi(S) in A and each cycle on S that passes

19 % via T with pi(T) in B contains a terminating state

20 fair(S) :- pi(S,A), ASET(A,I), blocked_cycles(S,T): pi(T,B), BSET(B,I).

21
22 % terminating states

23 terminates(S) :- GOAL(S).

24 terminates(S) :- fair(S), edge(S,T), terminates(T).

25 terminates(S) :- not fair(S), edge(S,_), terminates(T): edge(S,T).

26
27 % reachable states must terminate

28 :- reachable(S), not terminates(S).

29 reachable(S) :- INITIAL(S).

30 reachable(S) :- reachable(X), not GOAL(X), edge(X,S).

Figure 2: The concise encoding of ASP-based FOND+ planner FOND-ASP in CLINGO. The
FOND+ problem is specified through the predicates STATE/1, ACTION/1, INITIAL/1, GOAL/1,
TRANSITION/3, ASET/2 and BSET/2, where ASET(I,A) (resp. BSET(I,A)) iff action A belongs to
Ai (resp. Bi) in the fairness assumption Ai/Bi. In CLINGO, the syntax “P: <cond>” (e.g, line 25)
stands for the implicitly universally quantified conditional “if <cond> then P”.

Part 4. A model for T (Pc,π) can be constructed by calculating the terminating states for the policy
graph for π . This can be done in time that is polynomial in the size of the policy graph which lower
bounds the size of T (Pc). FOND-ASP builds T (Pc) in exponential time, then guesses a policy π in
linear time in the size of T (Pc), and finally checks if T (Pc,π) has a model in time that is polynomial
in the size of T (Pc).

10. Complexity

A direct consequence of Theorem 21 is that the plan-existence decision problem for FOND+ is
in NEXP (i.e., non-deterministic exponential time). Since FOND problems are easily reduced to
FOND+ problems (Theorem 13) and the plan-existence for FOND is EXP-Hard (Littman, Gold-
smith, & Mundhenk, 1998; Rintanen, 2004), plan-existence for FOND+ is EXP-Hard as well. We
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go = 〈p>0,n>0; p↓, t↑〉
home = 〈t>0; t↓, p↑〉

pick = 〈¬H, p=0;H〉
deliver = 〈H, t=0,n>0;¬H, p,n↓, p↑〉

QNP Actions

¬H, p>0 ⇒ go

¬H, p=0 ⇒ pick

H, t>0 ⇒ home

H, t=0 ⇒ deliver

QNP Policy

Figure 3: A policy π (bottom right) for the QNP abstraction for Delivery and the corresponding
policy graph (left) on the direct translation TD(Q), where initial state shown in yellow and goal state
in green. QNP actions are also shown (top right) as pairs 〈C;E〉 where C are the preconditions
and E the effects. The fairness assumptions are C1 = go/{home,deliver}, C2 = home/go, and
C3 = deliver.

conjecture that the NEXP bound is loose and that plan-existence for FOND+ is EXP-Complete. In
contrast, LTL planning and synthesis is 2EXP-Complete (Pnueli & Rosner, 1989).

Theorem 22. The plan-existence problem for FOND+ problems is in NEXP and it is EXP-Hard.

Proof. Inclusion. On input problem Pc = 〈P,C〉, the state space for P is constructed explicitly and
a policy π for Pc is guessed in non-deterministic exponential time. Then, by Theorem 21, the logic
program T (Pc,π) has a model iff π solves Pc. Deciding whether T (Pc,π) has a model can be done
in time polynomial in the size of the program. Hardness. By Theorem 13, A FOND problem can
be reduced in polynomial time to a FOND+ problem. The claim follows by the EXP-Hardness of
the plan-existence problem for FOND (Rintanen, 2004).

11. Example: The Delivery Problem

The FOND+ problem Delivery stands of the direct translation TD(Q) with the corresponding fairness
assumptions for a QNP abstraction Q of all classical planning problems where packages in a grid
must be picked up, one by one, and delivered to a target cell (Bonet & Geffner, 2020). The QNP
Q has one Boolean feature H that captures whether the agent holds a package, and 3 numerical
features p, t and n, where p is the distance to a nearest package, t is the distance to the target cell,
and n counts the number of packages to be delivered. On the other hand, Q has 4 actions. The action
go that moves the agent towards a nearest package, the action home that moves the agent towards
the target cell, the action pickup that picks up the package that is in the same cell as the agent,
and the action deliver that deliver the package being held by the agent to the target cell. The QNP
abstraction models these actions as follows: go has precondition {p>0,n>0} and effect {p↓, t↑},
home has precondition {t>0} and effect {t↓, p↑}, pickup has precondition {¬H, p=0} and effect
{H}, and deliver has precondition {H, t=0,n>0} and effect {¬H,n↓, p↑}.
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The fairness assumptions that are needed for obtaining solutions for the QNP Q when solving the
FOND problem TD(Q) are C1 = go/{home,deliver}, C2 = home/go, and C3 = delivery, expressed
with the notation used in the previous example; e.g., C3 stands for {delivery}/ /0. These assumptions
are obtained by the decrement/increment effects in the actions as described in Theorem 14.

The right side of Figure 3 shows the policy that makes the agent to travel between package
locations and the target cell, while picking up and delivering packages, until no undelivered package
remains, and the left side shows the corresponding policy graph for the direct translation TD(Q).

Rather than explaining how the solver finds the policy, we provide the intuition of how the
program in Figure 2 verifies the policy, labeling the states in the graph as terminating, in order (as
the resulting stable models of the program must be well-founded):

1. Initially, the goal state s6 is labeled as terminating by the rule in line 23.

2. The state s4 is labeled as terminating by the rule in line 24 as the condition fair(S) holds trivially
by the assumption C3 = delivery.

3. Both s2 and s3 are also labeled as fair because π(s2) = π(s3) = home and all the cycles C that
contain a state where go is applied, also contain the state s4 that is terminating. Hence, s2 is
labeled as terminating because it is connected to s4, and immediately afterwards, s3 is labeled as
terminating because it is connected to s2.

4. It follows then that s1 is also terminating as its single successor s2 is terminating. Indeed, it is
irrelevant whether states s with deterministic actions π(s) are treated as fair or not when their
unique successors have been already labeled as terminating.

5. Finally, s0 and s5 are labeled as fair as both execute the action go that appears in the set A of the
assumption C1 = go/{home,deliver}, and the two actions home and deliver are only executed
in states already labeled as terminating. Hence, since s1 is terminating and is successor of both,
both s0 and s5 become terminating.

12. Experiments

We tested FOND-ASP on three classes of problems:5 FOND problems, QNPs, and more expressive
FOND+ problems that do not fit in either class and that can only be addressed using LTL engines.
On each class, we compare FOND-ASP with the FOND solvers FOND-SAT (Geffner & Geffner,
2018) and PRP (Muise et al., 2012), the QNP solver QNP2FOND (Bonet & Geffner, 2020) using
FOND-SAT and PRP as the underlying FOND solver, and the LTL-synthesis tool STRIX (Lutten-
berger, Meyer, & Sickert, 2020). The pure (strong and strong-cyclic) FOND problems are those in
the FOND-SAT distribution, the QNPs are those by Bonet and Geffner (2020), and two new families
of instances that grow in size with a parameter. For more expressive FOND+ planning problems,
four new families of problems are introduced that extend the new QNPs with fair and adversarial ac-
tions, with only some being solvable. The domain and goals of these problems are encoded in LTL
in the usual way, while the fairness assumptions A/B are encoded as described in the introduction.
In all the experiments, time and memory bounds of 1/2 hour and 8GB are enforced.

5. Planner and problems available at https://github.com/idrave/fond-asp
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The results are detailed below. In summary, we observe the following. For pure FOND bench-
marks, FOND-ASP does not compete with specialized planners like PRP or FOND-SAT as these prob-
lems span (reachable) state spaces that are just too large. For QNPs, on the other hand, FOND-ASP

does better than FOND-SAT but worse than PRP on the FOND translations. For expressive FOND+

problems, where these planners cannot be used at all, FOND-ASP performs much better than STRIX

on both solvable and unsolvable problems.

12.1 FOND Benchmarks

FOND-ASP managed to solve a tiny fraction of the benchmarks used for strong and strong-cyclic
planning in the FOND-SAT distribution. The number of reachable states in these problems is large
(tens of thousands of states, or more) and the size of the grounded ASP program is quadratic in that
number. In general, this seems to limit the scope of FOND-ASP to problems with no more than one
thousand states approximately, as suggested by the results in Table 1. We have observed however
that sometimes FOND-ASP manages to solve strong planning problems with more than 100,000
states. This may have to do with CLINGO’s grounder or with the state space topology; we do not
know the exact reason yet.

12.2 QNP Problems

The two families of QNPs involve the numerical variables {xi}n
i=1 that have all positive values in the

initial state. The goal is to achieve xn = 0. Problems in the QNP1 family are solved by means of n
sequential simple loops, while problems in the QNP2 family are solved using n nested loops. The ac-
tions for problems in QNP1 are b = 〈¬p; p〉, a1 = 〈p;¬p,x1↓〉, and ai = 〈p,xi−1=0;¬p,xi↓〉 for 1 <
i≤ n, while those for QNP2 are b = 〈¬p; p〉, a1 = 〈p;¬p,x1↓〉, and ai = 〈p,xi−1=0;¬p,xi−1↑,xi↓〉,
1 < i≤ n.

Table 1 shows the results for values of n in {2,3, . . . ,10} and different planners, along with the
number of reachable states in each problem. As it can be seen, QNP2FOND/PRP is the planner that
scales best, followed by FOND-ASP, QNP2FOND/FOND-SAT, and STRIX at the end. As mentioned,
the performance of FOND-ASP is harmed by a large number of reachable states. While the number of
states for the FOND translation produced by QNP2FOND is much larger, as the translation involves
extra propositions, this number does not necessarily affect the performance of FOND planners like
FOND-SAT and PRP that can compute compact policies. It is also interesting to see how quickly the
performance of the LTL engine STRIX degrades; it cannot even solve qnp1-06 which has 14 states.
The table also shows results for QNP problems that capture abstractions for 4 generalized planning
problems, all of which involve small state spaces (Bonet & Geffner, 2020).

12.3 More Expressive FOND+ Problems

The third class of instances consists of four families of problems obtained from the two QNP
families above. The new problems are not “pure” QNPs, as they also involve actions with non-
deterministic effects on Boolean variables that can be adversarial or fair. Thus, these problems
cannot be translated into FOND problems for the use of planners such as PRP or FOND-SAT. For
each family QNP1 and QNP2, two new families f 01 and f 11 of problems are obtained by replacing
the action b = 〈¬p; p〉 by the non-deterministic action b′ = 〈¬p;oneof {p,¬p}〉, leaving the actions
ai untouched. Since the action b′ does not appear in any fairness assumption, it is adversarial and
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QNP2FOND

problem #states FOND-SAT PRP STRIX FOND-ASP

qnp1-02 6 0.08 0.09 3.35 0.00
qnp1-03 8 0.13 0.11 2.63 0.00
qnp1-04 10 0.28 0.14 5.21 0.00
qnp1-05 12 0.60 0.14 98.34 0.01
qnp1-06 14 1.27 0.15 — 0.01
qnp1-07 16 2.54 0.15 — 0.01
qnp1-08 18 5.54 0.17 — 0.01
qnp1-09 20 12.96 0.21 — 0.02
qnp1-10 22 26.70 0.19 — 0.02

qnp2-02 8 0.20 0.18 2.33 0.00
qnp2-03 16 1.77 0.30 2.31 0.01
qnp2-04 32 10.00 0.58 14.25 0.04
qnp2-05 64 50.24 1.15 885.37 0.20
qnp2-06 128 302.80 2.53 — 1.26
qnp2-07 256 1,969.35 4.02 — 7.14
qnp2-08 512 — 6.96 — 54.37
qnp2-09 1,024 — 13.22 — ***
qnp2-10 2,048 — 21.94 — ***

Clear 4 0.23 0.13 1.53 0.00
On 16 3.69 0.20 3.01 0.01
Delivery 12 4.07 0.27 1.50 0.01
Gripper 12 15.43 1.61 2.47 0.02

Table 1: Results for three families of QNPs for QNP2FOND paired with the FOND solvers FOND-
SAT and PRP, STRIX (QNP translated to LTL), and FOND-ASP. Entries ’—’ and ’***’ denote out of
time and memory, respectively. Time is in seconds.

thus no problem in the class f 01 has a solution as the “adversary” may always choose to leave p
false. The family f 11 is obtained on top of f 01 by adding two additional Booleans q and r, and
two actions c = 〈¬q;r,oneof {q,¬q}〉 and d = 〈r;q,¬r〉 such that: 1) the actions ai are modified by
adding q as precondition and ¬q as effect, and 2) the fairness assumption A/B with A = {b′} and B
empty is added. The problems in f 11 thus involve the QNP-like actions ai, the fair action b′, and
the adversarial action c, and they all have a solution.

Table 2 shows the result for FOND-ASP and STRIX as these are the only solvers able to handle
the combination of fairness assumptions. As it can be seen, FOND-ASP scales better than STRIX on
all of these problems, the solvable ones (families f 11) and the unsolvable ones (families f 01).

We finally tested FOND-ASP over the 7 problems considered in a recent approach to program
synthesis over unbounded data structures (Bonet, De Giacomo, Geffner, Patrizi, & Rubin, 2020).
Although the original specifications are in LTL, these can be all expressed in FOND+ using different
types of conditional fairness assumptions. The problems are solved easily by both FOND-ASP and
STRIX as their reachable state spaces are very small.
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f 01 (unsolvable) f 11 (solvable)

problem #states STRIX FOND-ASP #states STRIX FOND-ASP

qnp1- f xx-02 6 3.44 0.00 24 6.07 0.03
qnp1- f xx-03 8 2.42 0.01 32 6.20 0.04
qnp1- f xx-04 10 4.13 0.01 40 98.58 0.07
qnp1- f xx-05 12 93.85 0.01 48 — 0.11
qnp1- f xx-06 14 — 0.01 56 — 0.14
qnp1- f xx-07 16 — 0.01 64 — 0.19
qnp1- f xx-08 18 — 0.01 72 — 0.25
qnp1- f xx-09 20 — 0.02 80 — 0.39
qnp1- f xx-10 22 — 0.02 88 — 0.34

qnp2- f xx-02 8 3.22 0.00 32 5.85 0.04
qnp2- f xx-03 16 2.25 0.01 64 8.16 0.21
qnp2- f xx-04 32 11.38 0.04 128 236.89 1.55
qnp2- f xx-05 64 873.09 0.21 256 — 15.45
qnp2- f xx-06 128 — 1.25 512 — 46.67
qnp2- f xx-07 256 — 12.13 1,024 — ***
qnp2- f xx-08 512 — 39.56 2,048 — ***
qnp2- f xx-09 1,024 — *** 4,096 — ***
qnp2- f xx-10 2,048 — *** 8,192 — ***

Table 2: Results for four families of solvable/unsolvable FOND+ problems obtained from the QNPs
in Table 1 by adding non-deterministic actions and conditional fairness assumptions. These prob-
lems are handled only by STRIX and FOND-ASP. Entries ’—’ and ’***’ denote out of time and
memory, respectively. Time is in seconds.

13. Two Incomplete FOND+ Planners

The main limitation of the FOND-ASP planner is the size of the grounded encoding (i.e., the size of
the program after grounding), which grows as O(|S|2×B) where |S| is the number of states, and B is
the average number of possible state successors; i.e., the number of states s′ that may follow a state
s after an action. This is indeed the number of rules that follow the grounding of the rule in line 15
in Figure 2. This quadratic growth on the size of the state space explains why the planner solves all
instances with no more than 512 states but none of the instances with 1,024 states or more. In order
to deal with larger state spaces we introduce two small variations of the base FOND+ planner that
replace the quadratic factor |S|2 by a linear factor |S|. The new planners are sound but no longer
complete, and we illustrate this difference with an example. On the other hand, the two incomplete
planners solve all the FOND+ problems considered so far, thus scaling up to larger instances.

The quadratic growth in the encoding of FOND-ASP results from lines 4–20 in the code of FOND-
ASP (Figure 2) that check if a state s is fair when π(s) ∈ A for an assumption A/B. This is done
by checking if the policy cycles involving the state s and states s′ where π(s′) ∈ B also include a
terminating state (i.e., atom blocked_cycles(s,s') is true). The two incomplete planners FOND-
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1 % fairc /1: occurrence of actions in A_i are fairc for assumption A_i/B_i

2 % if B_i is empty , or actions in B_i only applied at terminating states

3 fairc(I) :- ASET(I,_), { BSET(I,B) } = 0.

4 fairc(I) :- BSET(I,_), terminates(S): pi(S,B), BSET(I,B).

5
6 % fair(S) if pi(S) in A for some A/B and all occurences of actions in A

7 % are fairc

8 fair(S) :- pi(S,A), ASET(I,A), fairc(I).

9
10 % termination on states with an action in set A for some assumption A/B

11 terminates(S) :- pi(S,A), ASET(_,A), edge(S,U), S != U,

12 terminates(T): edge(S,T), T != S.

Figure 4: Planner FOND-ASP2. Lines shown replace lines 4–20 in FOND-ASP (Figure 2). The size
of the resulting grounded encoding is O(|S|×B), dominated by the rule in line 11, unlike the size
of the encoding generated by FOND-ASP, which is O(|S|2×B), where B is the average number of
states s′ that may follow a state s.

ASP2 and FOND-ASP3 provide a sound but incomplete approximation of this condition that avoids
the consideration of either cycles or paths.

The FOND-ASP2 planner replaces lines 4–20 in FOND-ASP by the lines shown in Figure 4. In
the new code, a state s where π(s)∈ A for some fairness assumption A/B is deemed fair, if the states
s′ where π(s′) ∈ B are all terminating, even if there are no cycles involving s and s′. In addition,
however, FOND-ASP2 makes a second change in the code: a state s is deemed as terminating if
π(s) ∈ A for some assumption A/B and all its successors s′ different than s are terminating. This
change makes a difference only when s is a possible successor of itself (i.e., self-loops). The new
rule is sound because if π(s) ∈ A for some assumption A/B, any cycle involving a state s′ where
π(s′) ∈ B must involve one of the children s′′ of s different than s itself, as π(s) ∈ A and A and B
are assumed to be disjoint. Thus, if all such children are terminating (traversed a finite number of
times only), the state s is fair, according to the definitions, and hence terminating as well, in spite of
the self-loop. Indeed, the new rule for terminates/1 (line 11 in Figure 4) is implied by the original
FOND-ASP code (Figure 2), and the new rule for fair/1 in FOND-ASP2 is just a restriction of the
rules for fair/1 in the original FOND-ASP code.

Theorem 23. The FOND+ planner FOND-ASP2 is sound.

Proof. First observe that soundness easily follows if one can show that the set of states labeled as
fair (resp. terminating) by FOND-ASP2 is a subset of the states labeled as fair (resp. terminating)
by FOND-ASP. Indeed, FOND-ASP2 is unsound iff it labels a state as terminating when it is not
(according to FOND-ASP). Yet, this is impossible if the above inclusions hold since the requirements
for non-fair states to be labeled as terminating are more demanding than those for fair states.

The inclusion of the fair/terminating states is shown inductively. Initially, only states s with
π(s) ∈ A for some assumption A/ /0 are labeled as fair, while only goal states are labeled as termi-
nating. In both cases, it is easy to see that such states attain the same labels by FOND-ASP.

Consider now fixed subsets F and T of fair and terminating states, respectively, calculated
by FOND-ASP2. Let s be a state that becomes fair using F and T . It must be via the rule in
line 4. Yet then, by induction, it is easy to see that s would have been labeled as fair too by FOND-
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ASP. Likewise, let s be a state that becomes terminating using F and T . If s becomes labeled as
terminating by the rules in FOND-ASP, it is also labeled as terminating by FOND-ASP, given the
inductive hypothesis and the very first observation. Finally, if s becomes labeled as terminating by
the rule in line 11, it is also labeled as terminating by FOND-ASP. Indeed, there are two cases: either
s is fair or not. In the first case, FOND-ASP labels s as terminating if it has a successor s′ that is
terminating, something that is granted since s has a successor s′ that is in T . In the second case,
all successors of s must be terminating. This is guaranteed for all successors of s that are different
from s. Hence, we are only left to consider the case when s is a successor of itself and s is not
fair as per FOND-ASP. This case however is impossible since then there is an assumption A/B such
that π(s) ∈ A, and all successors of s different from s are terminating. Therefore, by FOND-ASP, all
cycles that go through a successor s′ 6= s are “blocked,” that is, include a terminating state. Thus, s
is not fair only because π(s) ∈ B, which contradicts the assumption that A and B are disjoint.

The second incomplete planner FOND-ASP3 replaces the same lines 4–20 in Figure 2 by the
lines shown in Figure 5. The resulting planner is more subtle than the previous ones, as it considers
the propositional structure of the states; namely, the Boolean variables of the problem and their
truth values in the different states. Technically, in addition to the rules for determining when a state
s is terminating (i.e., s cannot be traversed an infinite number of times), FOND-ASP3 includes rules
for determining when a variable (atom) K is terminating, in that K cannot change its truth value
an infinite number of times under the policy. More precisely, a variable K is deemed terminating
(line 11) if the policy never “flips” the truth value of K or it does so only in states that are terminating.
A variable K flips its truth value in a state s (lines 7 and 8) if there is a state transition (s,s′)
compatible with the action π(s) where K changes its truth value (from true to false, or vice-versa).
A state s is then deemed fair by FOND-ASP3 when π(s) ∈ A for an assumption A/B, and the states
s′ where an action in B is performed (i.e., π(s′) ∈ B) are either terminating (as in FOND-ASP2) or
differ from s in the value of a terminating variable K (lines 28 and 29, together with lines 20–23,
in Figure 5). This last case is new and rules out the possibility of infinite cycles comprising states s
and s′ that differ in the value of a terminating variable.

Theorem 24. The FOND+ planner FOND-ASP3 is sound.

Proof. In FOND-ASP3, a variable K flips in a state s if there is a state transition (s,s′) compatible
with the action π(s) where K changes its value, and it is terminating if there are no actions that flip
K, or such actions only occur in terminating states (line 11 in Figure 5). A state s is regarded as
fair when π(s) ∈ A for an assumption A/B, and the states s′ for which π(s′) ∈ B, are terminating
(lines 20–23), or such states s′ differ from s in the value of a terminating variable K (lines 28–29).
In the induction, we need to show that the intuitive meaning of terminating states s and variables
K is captured; namely, that terminating states are traversed a finite number of times only, and that
terminating variables flip a finite number of times too. Initially, this is clearly true for the goal states
that are terminating. Then, given a set of terminating states and variables, we need to show that
the rules in the program preserve this meaning. It can be shown that fairc(i) is true if there is
an assumption Ai/Bi such that all the states s′ where π(s′) ∈ Bi are terminating. Then, if fairc(i)
holds, fair(s) is true for π(s) ∈ Ai. This is sound as the general definition says that s is fair if
π(s) ∈ Ai and every cycle involving s and states s′ where π(s′) ∈ Bi must include a terminating
state, which in this case, are the s′ states themselves. It is thus left to show that lines 28 and 29 are
sound as well. The first rule says that s is fair if π(s) ∈ Ai, there is a terminating variable K that is
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1 % definition of eff/4

2 eff(S,K,A,0) :- TRANSITION(S,A,T), not VAL(T,K).

3 eff(S,K,A,1) :- TRANSITION(S,A,T), VAL(T,K).

4
5 % flips /3: policy action in S may flip value of variable K to true/false

6 atom(K) :- VAL(_,K).

7 flips(S,K,1) :- pi(S,A), not VAL(S,K), eff(S,K,A,1).

8 flips(S,K,0) :- pi(S,A), VAL(S,K), eff(S,K,A,0).

9
10 % terminates_var /1: var K can only flip a finite number of times

11 terminates_var(K) :- X=0..1, atom(K), terminates(S): flips(S,K,X).

12
13 % fairc /1: B_i is empty or all states where an action in B_i is applied

14 % can only be traversed finitely often (actions in A_i are fair)

15 fairc(I) :- ASET(I,_), { BSET(I,B) } = 0.

16 fairc(I) :- BSET(I,_), terminates(S): pi(S,B), BSET(I,B).

17
18 % fairc /3: all states with value V (true/false) of variable K where an

19 % action in B_j is applied can only be traversed finitely often

20 fairc(I,K,1) :- atom(K), BSET(I,_),

21 terminates(S): pi(S,B), BSET(I,B), VAL(S,K).

22 fairc(I,K,0) :- atom(K), BSET(I,_),

23 terminates(S): pi(S,B), BSET(I,B), not VAL(S,K).

24
25 % fair(S) if for some A/B, pi(S) in A and each cycle over S that passes

26 % over X such that pi(X) in B contains a terminate state

27 fair(S) :- pi(S,A), ASET(I,A), fairc(I).

28 fair(S) :- pi(S,A), ASET(I,A), terminates_var(K), VAL(S,K), fairc(I,K,1).

29 fair(S) :- pi(S,A), ASET(I,A), terminates_var(K), not VAL(S,K),

30 fairc(I,K,0).

Figure 5: Planner FOND-ASP3. Lines shown replace lines 4–20 in FOND-ASP (Figure 2). In this
code, VAL(S,K) is true if atom K is true in state S, while eff(S,K,A,0) (resp., eff(S,K,A,1))
is true if some state transitions at s associated with action A makes K false (resp., true). VAL/2

atoms are part of the input, while eff/4 atoms are derived from the input in lines 2–3. The code
allows to conclude that a state s is fair by reasoning over the variables, without having to consider
either cycles or paths that include s. The size of the grounded encoding generated by FOND-ASP3
is O(|S|× |At|), dominated, among others, by the rules in lines 20 and 28 (recall that At is the set of
domain atoms in the planning problem).

true in s, and through the rule for fairc/3, that all the states s′ such that π(s′) ∈ Bi and where K
is true, are terminating. This does not rule out non-terminating states s′′ where π(s′′) ∈ Bi and K is
false; yet such states s′′ differ from s in the value of the terminating variable K, therefore any cycle
involving s and any such s′′ must include a state that is terminating. As a result, the rule captured by
line 28 is sound. The soundness of the rule captured by line 29 is established in the same way with
the sole difference that K is false in the states s and s′′.

Experimental results of the two incomplete planners FOND-ASP2 and FOND-ASP3 are shown
in comparison with complete planner FOND-ASP in Tables 3 and 4. In the these tables we can see
that the two incomplete planners manage to solve all the problems considered, while scaling much
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FOND-ASP FOND-ASP2 FOND-ASP3

problem #states time mem time mem time mem

qnp1-02 6 0.00 39.60 0.02 39.57 0.02 39.20
qnp1-03 8 0.00 39.72 0.04 39.68 0.02 39.34
qnp1-04 10 0.00 39.83 0.02 39.80 0.04 39.47
qnp1-05 12 0.01 39.88 0.03 39.92 0.03 39.67
qnp1-06 14 0.01 40.10 0.04 40.08 0.04 39.84
qnp1-07 16 0.01 40.17 0.03 40.14 0.04 39.84
qnp1-08 18 0.01 40.18 0.03 40.16 0.06 39.89
qnp1-09 20 0.02 40.24 0.05 40.22 0.05 40.14
qnp1-10 22 0.02 40.48 0.05 40.45 0.07 40.42

qnp2-02 8 0.00 39.45 0.02 39.70 0.02 39.14
qnp2-03 16 0.01 39.65 0.04 39.90 0.03 39.40
qnp2-04 32 0.04 40.04 0.06 40.30 0.08 39.86
qnp2-05 64 0.20 40.38 0.18 40.65 0.21 40.80
qnp2-06 128 1.26 68.09 0.53 42.68 0.49 43.44
qnp2-07 256 7.14 248.46 1.18 47.48 1.37 48.90
qnp2-08 512 54.37 1047.1 4.10 51.07 4.67 57.42
qnp2-09 1,024 *** *** 15.12 65.07 302.74 97.83
qnp2-10 2,048 *** *** 58.17 97.40 134.83 219.96

Clear 4 0.00 39.56 0.02 39.50 0.01 39.58
On 16 0.01 39.76 0.03 39.69 0.04 39.88
Delivery 12 0.01 39.94 0.03 39.86 0.04 40.13
Gripper 12 0.02 40.15 0.04 40.08 0.03 40.30

Table 3: Comparison of FOND-ASP against the two incomplete variants on the same problems from
Table 1. Entries ’—’ and ’***’ denote out of time and memory, respectively. Time is in seconds
and memory in MB.

better in terms of memory. Indeed, FOND-ASP solves all problems with at most 512 states and
then yields memory outs, while FOND-ASP2 and FOND-ASP3 manage to solve problems with up to
2,048 states, producing then time outs.

14. Example: Incomplete Planners

In order to give an intuition of the power and limitations of the two new planners, we first describe
how FOND-ASP2 and FOND-ASP3 manage to label all reachable states in the Delivery problem
from Section 11, and then given an example on which the new planners do not find a solution, while
FOND-ASP does.
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FOND-ASP FOND-ASP2 FOND-ASP3

problem #states time mem time mem time mem

qnp1- f 11-02 24 0.03 39.62 0.08 39.96 0.07 39.58
qnp1- f 11-03 32 0.04 39.75 0.07 40.24 0.10 39.83
qnp1- f 11-04 40 0.07 40.21 0.10 40.77 0.12 40.57
qnp1- f 11-05 48 0.11 40.34 0.15 40.95 0.14 41.50
qnp1- f 11-06 56 0.14 41.16 0.16 41.73 0.18 42.61
qnp1- f 11-07 64 0.19 42.12 0.16 42.69 0.14 43.92
qnp1- f 11-08 72 0.25 43.22 0.18 43.79 0.18 45.35
qnp1- f 11-09 80 0.39 44.44 0.23 45.03 0.22 46.98
qnp1- f 11-10 88 0.34 45.84 0.26 46.41 0.29 47.54

qnp2- f 11-02 32 0.04 39.64 0.11 40.01 0.07 39.72
qnp2- f 11-03 64 0.21 40.13 0.20 40.66 0.19 40.51
qnp2- f 11-04 128 1.55 63.32 0.68 42.86 0.52 43.38
qnp2- f 11-05 256 15.45 232.96 1.88 47.60 1.67 48.54
qnp2- f 11-06 512 46.67 950.44 10.35 50.09 6.49 57.42
qnp2- f 11-07 1,024 *** *** 448.04 61.89 22.77 78.28
qnp2- f 11-08 2,048 *** *** — 87.21 — 184.34
qnp2- f 11-09 4,096 *** *** — 139.55 — 424.16
qnp2- f 11-10 8,192 *** *** — 249.13 — 978.36

Table 4: Comparison of FOND-ASP against the two incomplete variants FOND-ASP2 and FOND-
ASP3 over instances of the solvable family qnp2- f 11 from Table 2. Entries ’—’ and ’***’ denote
out of time and memory, respectively. Time is in seconds and memory in MB.

14.1 Delivery

In Section 11, we discussed how FOND-ASP labels all states reachable with the policy as terminating
by reasoning about cycles in the context of the fairness assumptions C1 = go/{home,deliver},
C2 = home/go, and C3 = deliver FOND-ASP2 and FOND-ASP3 achieve the same result but without
reasoning about cycles or paths, something that makes them more scalable but incomplete.

FOND-ASP2 labels states s6 and s4 in the same way as FOND-ASP: state s6 because it is a
goal state, and s4 because, according to FOND-ASP2, it is fair (due to assumption C3 and π(s4) =
delivery) and connected to s6. On the other hand, the reasoning for states s2 and s3 is now different.
The action π(s2) = π(s3) = home yields the set of successors {s3,s4} for both s2 and s3. Hence,
the new rule for termination (line 11 in Figure 4) applies at s3, since s4 is already terminating
and π(s3) ∈ A3 (note the rule ignores the self-loop at s3). Afterwards, as the successors of s2
(i.e., s3 and s4) have been labeled as terminating, s2 is then labeled terminating as well. The only
successor of state s1, via deterministic action π(s1) = pick, is the terminating state s2, so s1 will
also be deemed terminating. The termination of s0 follows, once again, from the new rule for
terminates/1 in FOND-ASP2, since go ∈ A1 and s1 is terminating (self-loop ignored). Finally, s5
becomes terminating since all its successor states (i.e., s0 and s1) are terminating.

The reasoning of FOND-ASP3 is different in that it deals with state variables in addition to states.
As before, the goal state s6 is terminating while s4 with π(s4) = deliver is fair and terminating
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because of the assumption C3. With that, we conclude that variable H, which tells whether the agent
holds a package, will be deemed as a terminating variable, as it changes from true to false only
in terminating state s4 (line 11 in Figure 5). This means that H can “flip” its value only a finite
number of times. With H is marked as terminating, states s2 and s3 where π(s2) = π(s3) = home
are labeled as fair (line 28 in Figure 5) because of the assumption C2 = home/go and the fact that
the go action is only executed at states where ¬H holds (i.e., fairc(I,K,1) holds). Since s2 and s3
are fair and connected to s4 that is terminating, both are labeled as terminating (line 24 in Figure 2).
This triggers the labeling of s1 as terminating, as the only successor s2 is terminating, regardless
whether s1 is fair or not. Finally, states s0 and s5, in which go is executed, are labeled as fair via rule
in line 29 of Figure 5, because of the assumption C1 = go/{home,deliver}, the fact that variable
H is terminating, and the fact that actions home and deliver are only executed in states where the
value of H is different from that in s0 and s5. Right afterwards, both states are also then deemed
terminating since they have a successor, namely, state s1, that is terminating.

Putting it all together, all reachable states are deemed terminating and integrity constraint in
line 28 of Figure 2 is met in both FOND-ASP2 and FOND-ASP3.

14.2 Incompleteness

We illustrate the incompleteness of the planners with a counterexample. For simplicity, there
is just one applicable action at each state, and hence, a single policy to consider. The prob-
lem, shown in Figure 6, consists of the variables x and y, the actions a = 〈¬x,¬y;oneof{¬x,x}〉,
b = 〈x,¬y;oneof{¬x,x},y〉 and c = 〈x,y;¬y〉, and the fairness assumptions C1 = a/b and C2 = b/a.
The initial and goal states are s0 = {¬x,¬y} and s2 = {¬x,y}.

It is easy to see that FOND-ASP labels all states as terminating: s2 since it is a goal state; s1
since π(s1) = b but in no state reachable from s1, a is applied; s3 since π(s3) = c is deterministic
and its unique successor is s1; and s0 since π(s0) = a and in no cycle involving s0 the action b
is applied. On the other hand, FOND-ASP2 is unable to label s1 nor s3 as terminating as neither
of them is fair (s1 because fairc does not hold for C2 = b/a, and s3 because π(s3) = c does not
appear in any assumption), and each such state has the other as successor. FOND-ASP3 exhibits a
similar limitation; it cannot establish that either x or y are terminating variables because there are
state transitions from s0, s1, and s3 that flip the value of the variables, and none of these states can
be shown to be terminating.

The fact that FOND-ASP2 and FOND-ASP3 manage to solve all the problems used to evaluate
FOND-ASP illustrates that these planners are powerful, despite their incompleteness. It is easy to
come up with examples that one planner can solve and the other cannot but it also simple to combine
the two planners into one, still incomplete, and unable to solve the last example. The practical
suggestion is to try the complete planner first, and if it fails due to memory, to try the incomplete
planners, that appears to do fairly well in the variety of FOND+ problems that we have tried, while
consuming an amount of memory that grows linearly with the size of the state space rather than
quadratic. The problem of designing a complete FOND+ planner that does not expand the full state
space first, as it is done by more scalable FOND planners, is left as an open challenge that is beyond
the scope of this work. Such a complete planner would establish the EXP-Completeness of FOND+

planning.
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s1

x̄,y

s2

x,y
s3

a

a b

b

c

Figure 6: A simple problem solved by FOND-ASP but not by FOND-ASP2 or FOND-ASP3. FOND-
ASP2 is unable to label {s1,s3} as terminating since none of them is fair and each one if a successor
of the other, while FOND-ASP3 is unable to establish that either of the variables is terminating.

15. Related Work

This work is related to three threads: SAT-based FOND planning, QNPs, and LTL synthesis. The
SAT-based FOND planner by Chatterjee et al. (2016) expands the state space in full, like FOND-ASP,
but a more recent version computes compact policies and provides support for Dual FOND planning
(Geffner & Geffner, 2018). We have used answer set programs as opposed to CNF encodings
exploiting their high-level modeling language, the natural support for inductive definitions, and the
competitive performance of CLINGO (Gebser et al., 2019). FOND-ASP is also a novel QNP planner
which can handle non-deterministic effects on Boolean variables. The formulation actually brings
QNP planning into the realm of standard FOND planning by dealing with the underlying fairness
assumptions explicitly.

The use of fairness assumptions connects also to works on LTL planning and synthesis (Ca-
macho et al., 2019; Aminof et al., 2019), and to works addressing temporally extended goals (De
Giacomo & Vardi, 1999; Patrizi, Lipovetzky, & Geffner, 2013; Camacho, Triantafillou, Muise,
Baier, & McIlraith, 2017; Camacho et al., 2019; Aminof et al., 2020). Our work can be seen as
a special case of planning under LTL assumptions (Aminof et al., 2019) that targets an LTL frag-
ment that is relevant for FOND planning and is computationally simpler. While it is possible to
express FOND+ tasks as LTL syntheses problems, and we have shown how to do that, it remains to
be seen whether the task can be expressed in a restricted LTL fragment that admits more efficient
techniques. While the strong fairness assumption on action effects that is required cannot be directly
encoded in GR(1) (Bloem, Jobstmann, Piterman, Pnueli, & Sa’ar, 2012), strong-cyclic FOND plan-
ning has been encoded in Büchi Games (D’Ippolito, Rodrı́guez, & Sardiña, 2018), a special case of
GR(1). It remains to be investigated whether that encoding can be extended to deal with conditional
fairness.

The conditional fairness assumptions handled in FOND+ planning could be used to extend the
power of LTL planning over finite traces (De Giacomo & Vardi, 2015). Fairness assumptions are
constraints on infinite trajectories and thus cannot be expressed in LTL f , but at the same time, the
fairness assumptions considered in this work do not appear to require the full complexity of LTL
planning over infinite traces either. In principle, it would be of interest to consider LTL planning
over finite traces under the explicit fairness assumptions handled in FOND+ planning.

16. Summary

We have formulated an extension of FOND planning that makes use of explicit fairness assumptions
of the form A/B where A and B are disjoints sets of actions. While in Dual FOND planning actions
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are labeled as fair or unfair, in FOND+ planning these labels are a function of the trajectories and
the fairness assumptions: an action a ∈ A is deemed fair in a recurrent state if a suitable condition
on B holds. In this way, FOND+ generalizes strong, strong-cyclic, Dual FOND planning, and also
QNP planning, which is actually the only planning setting, excluding LTL planning, that makes use
of the conditions B. We have implemented an effective FOND+ planner by reducing the problem
to answer set programs using CLINGO, and evaluated its performance in relation to FOND and
QNP planners, which handle less expressive problems, and LTL synthesis tools, which handle more
expressive ones. At the same time, we have introduced two incomplete variants of the planner that
are sufficiently powerful to solve all the problems considered in this work by scaling up much better
in terms of memory. Finally, we have shown that FOND+ is in NEXP but leave as an open problem
whether it is in EXP like FOND and QNP planning.
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