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Abstract

There has been a surge in research in multimodal machine translation (MMT), where
additional modalities such as images are used to improve translation quality of textual
systems. A particular use for such multimodal systems is the task of simultaneous machine
translation, where visual context has been shown to complement the partial information
provided by the source sentence, especially in the early phases of translation. In this
paper, we propose the first Transformer-based simultaneous MMT architecture, which has
not been previously explored in simultaneous translation. Additionally, we extend this
model with an auxiliary supervision signal that guides the visual attention mechanism
using labelled phrase-region alignments. We perform comprehensive experiments on three
language directions and conduct thorough quantitative and qualitative analyses using both
automatic metrics and manual inspection. Our results show that (i) supervised visual
attention consistently improves the translation quality of the simultaneous MMT models,
and (ii) fine-tuning the MMT with supervision loss enabled leads to better performance
than training the MMT from scratch. Compared to the state-of-the-art, our proposed
model achieves improvements of up to 2.3 BLEU and 3.5 METEOR points.

1. Introduction

Simultaneous machine translation (MT) aims at providing a computational framework that
reproduces how human interpreters perform simultaneous interpretation. In this task, the
duty of the interpreter is to translate speech in near real-time, by constantly maintaining
a balance between the time needed to accumulate sufficient context and the translation
latency the listeners experience in return. This streaming property is what differentiates
simultaneous MT from the conventional MT approaches, which process complete source
sentences. Traditional work in simultaneous translation have dealt with this streaming
property by relying on syntactic or heuristic constraints (Bub et al., 1997; Ryu et al., 2006;
Bangalore et al., 2012) to determine the amount of waiting prior to committing a partial
translation. Similar approaches have also been explored using state-of-the-art neural MT
(NMT) architectures (Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017),
such as rule-based deterministic policies implemented at (greedy) decoding time (Cho &
Esipova, 2016) or the wait-k policy which sequentially switches between reading a new
word and committing a translation (Ma et al., 2019). Adaptive policies, which attempt to
learn when to read or commit depending on the context, have also been explored mostly
through reinforcement learning-based techniques (Gu et al., 2017; Alinejad et al., 2018; Ive
et al., 2021).
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In this work, we focus on the translation quality aspect of the simultaneous translation
framework and explore whether input contexts other than the linguistic signal can improve
the performance of simultaneous MT models. Although such additional information may
naturally occur in human simultaneous interpretation through the a priori knowledge of
factors such as the topic, speaker or even the venue of the speech, in a computational model
any additional context should be explicitly and carefully integrated to explore different in-
ductive biases during model learning. Therefore, to mimic the availability of multiple input
modalities for simultaneous MT, we follow the multimodal machine translation (MMT)
framework where the objective is to translate image descriptions into different languages,
by integrating the images themselves as additional context (Specia et al., 2016; Sulubacak
et al., 2020). Intuitively, the expectation is that as long as there is a correlation between
the language and the visual semantics, this way of grounding language can help antici-
pate future context for better translation quality, and even reduce the latency for adaptive
policies.

Although relatively few, several works have explored a similar framework to analyse the
benefits of visual grounding to simultaneous MMT: Caglayan et al. (2020a) and Imankulova
et al. (2020) approached the problem by integrating visual features into the encoder and/or
the decoder of recurrent MMT architectures and coupling them with deterministic wait-k
policy (Ma et al., 2019) and rule-based decoding algorithms (Cho & Esipova, 2016). Ive
et al. (2021) introduced reinforcement learning (RL)-based adaptive policies for recurrent
MMT architectures.

In this paper, we first propose a Transformer-based (Vaswani et al., 2017) simultaneous
MMT model where regional features extracted from a state-of-the-art object detector (An-
derson et al., 2018), are fused with the source language representations using an attention
based cross-modal interaction (CMI) layer. To implement simultaneous multimodal trans-
lation, we adopt the prefix training approach (Niehues et al., 2018; Arivazhagan et al.,
2020) and evaluate its performance along with the deterministic wait-k policy (Ma et al.,
2019). Next, we propose a novel approach to simultaneous MMT to improve the grounding
– and therefore the anticipation – ability of our model. The proposed method involves
supervising the alignment between the source language representations and the image re-
gions, through the use of labelled phrase-region correspondences. We devise two multi-task
learning settings to enable the visual supervision: (i) fine-tuning a pre-trained MMT for
a fixed number of epochs, or (ii) training the MMT from scratch. We perform extensive
experiments on the three different language pairs (English→{Czech,French,German}) of
the Multi30k dataset (Elliott et al., 2016) and conduct thorough quantitative and quali-
tative analyses to understand the potential impacts of attention supervision. Our results
show that (i) prefix training achieves substantially better scores than the wait-k approach,
(ii) supervised visual attention consistently improves the translation quality of the MMT
models, and (ii) fine-tuning the MMT offers better performance than training the MMT
from scratch. Finally, our supervised models achieve up to 2.3 BLEU (Papineni et al.,
2002) and 3.5 METEOR (Denkowski & Lavie, 2014) points improvements over the current
state-of-the-art on Multi30k dataset.

The remaining of the paper is organised as follows: we provide a detailed account of
literature in § 2 and describe our methodology and resources in § 3. In § 4, we present
the quantitative and qualitative results across different language pairs and test sets of
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A baseball player in a black shirt
just tagged a player in a white shirt.

Un joueur de baseball en maillot noir vient de
toucher un joueur en maillot blanc.

Une joueuse de baseball en maillot noir vient de
toucher une joueuse en maillot blanc.

Figure 1: Multimodal machine translation (MMT) can help disambiguate the source sen-
tence when translating into gender-marked languages. The example is taken from
the Multi30k dataset (Elliott et al., 2016).

Multi30k. Finally, we conclude our work in § 5 with a discussion on possible directions for
future research.

2. Related Work

The primary goal of Multimodal Machine Translation (MMT) is to improve the quality
of machine translation (MT) by incorporating information from additional sources such as
images or videos (Sulubacak et al., 2020). Of these two approaches, image-guided MMT
(Figure 1) is substantially more researched than the video-guided MMT, simply due to
the availability of more training resources. Since this paper heavily relies on image-guided
MMT, we begin this section with a detailed literature overview on MMT first, and then
continue with simultaneous MT.

2.1 Multimodal Machine Translation

Attentive models. Inspired by the success of the textual attention (Bahdanau et al.,
2015) in NMT models, a considerable amount of research has focused on coupling visual
attention and textual attention altogether to perform image-guided MMT. These works gen-
erally encode the images using state-of-the-art CNN models pre-trained on large computer
vision datasets such as ImageNet (Deng et al., 2009). This way, an image is represented as
a set of convolutional feature maps of size K ×K × C i.e. each output channel Ci encodes
activations across a uniformly partitioned K×K grid. Using these features, Caglayan et al.
(2016), Calixto et al. (2017) explore shared and separate attention mechanisms to compute
a cross-modal latent representation in the multi-modal space. In addition to the language
context computed by the textual attention, the translation decoder is now also conditioned
on the multi-modal representation. As a follow-up, Libovickỳ and Helcl (2017) proposed var-
ious extensions, of which the hierarchical attention variant gained popularity. This method
weighs the relevance of textual and visual contexts using a third attention mechanism, in-
stead of simpler fusion strategies such as addition or concatenation. Libovickỳ et al. (2018)
later adapted these extensions to Transformer-based (Vaswani et al., 2017) NMT models
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to enable image-guided Transformer MMTs. Although the majority of the approaches in
attentive MMT rely on decoder-side visual attention, encoder-side grounding was also ex-
plored, but only for recurrent architectures: Delbrouck and Dupont (2017) propose adding
a visual attention layer in the encoder, where its states act as the query and the visual
features are taken as keys and values.

Simple grounding. Finally, another line of work investigates the use of pooled visual
representations (∈ RC) for image-guided MMT, instead of the dense convolutional feature
maps. These approaches usually initialise the hidden state of the encoder and/or the decoder
in the model, using a projection of the visual feature vector (Calixto et al., 2016; Calixto
& Liu, 2017; Caglayan et al., 2017). Multi-task learning is also explored (Elliott & Kádár,
2017; Zhou et al., 2018) using these simple vectorial representations, where the model is
tasked with the reconstruction of visual features using the encoder’s output.

2.2 Supervision of Attention

Previous work has explored whether supervising the encoder-decoder attention can improve
the alignment and translation quality of text-only NMT systems. Liu et al. (2016), Mi
et al. (2016) investigate supervising the attention of a recurrent NMT model by adding
an alignment loss which is jointly optimised alongside the negative log-likelihood objective.
Garg et al. (2019) later extend this to Transformers-based text-only NMT models, showing
that supervising a single attention head from the cross-attention layers of the decoder,
can outperform existing alignment models without a significant degradation in translation
quality.

Recently, Nishihara et al. (2020), Specia et al. (2021) investigate a multimodal co-
attention mechanism (Lu et al., 2016) in the encoder, which first uses an affinity matrix to
capture the relationship between the source tokens and image features and then computes
the visual and textual attention weights. Specia et al. (2021) explore the impact of supervis-
ing the visual attention weights using ground-truth alignments obtained from the Flickr30k
Entities dataset (Plummer et al., 2015) and show that their multimodal systems are better
at disambiguating words, compared to their text-only baseline system. For Nishihara et al.
(2020), the improvements are marginal unless cross-language alignments are also supervised
in addition to the visual attention.

2.3 Simultaneous Machine Translation

Early works in simultaneous neural MT (SiMT) explore using a pre-trained full-sentence
NMT model at test time, by relying on specific decoding approaches designed for simultane-
ous interpretation. Of these, Cho and Esipova (2016) propose a greedy decoding algorithm
with two different waiting criteria based on simple heuristics which determine whether the
model should READ a source token or WRITE a target one. Rather than relying on hand-
crafted heuristics, several works investigate using Reinforcement Learning (RL) to learn an
adaptive policy which maximises the translation quality and minimises the delay/latency.
Satija and Pineau (2016) train an agent using Deep Q-Learning while Gu et al. (2017)
rely on the policy gradient algorithm (Williams, 1992). Alinejad et al. (2018) later extend

1062



Supervised Visual Attention for Simultaneous MMT

the latter by adding a PREDICT action, which enriches the available context by utilising
predictions of future source tokens.

A drawback of the approaches discussed so far is the discrepancy between training
and test times of the underlying NMT model: the model being trained on full-sentence
source contexts, are later exposed to partial contexts at test time. Dalvi et al. (2018)
propose mitigating this by fine-tuning the model using either chunked segments or prefix
pairs. Next, Ma et al. (2019) explore a fixed wait-k policy which can be used at both
training and test times, with the model initially reading k source tokens before proceeding to
alternate between writing a single target token and reading a source one. Later, Arivazhagan
et al. (2019) extend this to an adaptive policy using an advanced attention mechanism in a
Recurrent NMT model and a weighted latency loss, while Ma et al. (2020) further develop
this for the multi-head attention used in Transformers. More recently, Arivazhagan et al.
(2020) investigate whether training a model on prefix pairs and re-translating previously
emitted target words at decoding time improves translation quality or not. Their results
show that augmenting the training data with prefix pairs can outperform the wait-k trained
systems, with re-translation further increasing the quality.

An alternative method for obtaining an adaptive policy is to train a policy model using
Supervised Learning and ground-truth action sequences which Zheng et al. (2019) propose
generating using a pre-trained NMT Transformer model, with the ideal action being a
WRITE when the ground truth target word is ranked within the top k next word candidates,
or READ otherwise. Arthur et al. (2021) rely on a statistical word alignment system to
obtain the ground-truth actions and use them to jointly train the translation and policy
models.

Simultaneous MMT. Previous work in simultaneous MMT mostly rely on rule-based
strategies (Cho & Esipova, 2016; Ma et al., 2019) on the Multi30k dataset for recurrent
MMT models. Of these approaches, Imankulova et al. (2020) explored the wait-k policy
using a recurrent MMT equipped with a hierarchical multimodal attention. Specifically,
for each k, they first conduct a textual pre-training (i.e. without the visual features) un-
til convergence, and then fine-tune the checkpoint with visual features enabled. Caglayan
et al. (2020a) conducted a study where they compare object classification and object detec-
tion features for two different multimodal architectures: decoder-level visual attention and
encoder-level visual attention. As for the simultaneous translation part, they explore both
wait-k and rule-based decoding (Cho & Esipova, 2016) methods. Finally, Ive et al. (2021)
attempted to learn a multimodal policy through reinforcement learning, for deciding the
READ/WRITE actions during simultaneous translation.

Our work resembles to Caglayan et al. (2020a) as we explore the deterministic wait-
k policy along with the object detection features extracted from salient regions. We also
add another policy to our inventory and more importantly, we investigate the impact of
supervising the visual attention using human-labelled annotations.

3. Method

This section presents the approaches explored in this work. We first begin with a descrip-
tion of the text-only Transformers NMT (Vaswani et al., 2017) and how we extended it to
accommodate simultaneous translation. Next, we describe our baseline multimodal Trans-
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former architecture that incorporates visual attention. Finally, we introduce our approach
to supervise the visual attention in simultaneous MMT.

In what follows, the source sentence and target sentence tokens are denoted with x =
[x1, x2, . . . , xN ] and y = [y1, y2, . . . , yM ], respectively.

3.1 Transformer-based NMT

Transformers NMT (Vaswani et al., 2017) are the state-of-the-art sequence-to-sequence
architectures equipped with deep encoder and decoder stacks that rely heavily on feed-
forward layers in contrast to recurrent NMTs (Sutskever et al., 2014; Bahdanau et al.,
2015). Combined with the use of self-attention layers, these changes allow for (i) better
gradient dynamics during training and thus deeper architectures, and (ii) different inductive
biases than the left-to-right processing nature of recurrent NMTs. The overall diagram of
a Transformers-based NMT is given in Figure 2. In the following, we briefly explain the
encoder and the decoder blocks of Transformers.

3.1.1 Encoder

The transformer encoder f() encodes the source sentence x into a latent representation
h = f(x) using a series of operations. The basic block in the encoder transforms the input
using a self-attention layer followed by a feed-forward layer. Layer normalisation (Ba et al.,
2016) and residual connections (He et al., 2016) are incorporated to achieve stability and
improved training dynamics. This basic block (shown in the left part of Figure 2) is further
replicated B times in a vertical fashion so that each layer consumes the output of the
previous one. The inputs to the first layer are the embeddings of the source sentence tokens
x = [x1, x2, . . . , xN ], additively shifted by positional encodings. The latter is crucial to
embed the positional information of words into the embeddings so that the representation
is not invariant to the word order. The output of the last encoder layer is passed through
a final layer normalisation.

3.1.2 Attention

A key aspect of the Transformer architecture is the extensive use of several types of atten-
tion layers. In its simplest form, the attention mechanism (Bahdanau et al., 2015) allows
computing the weighted sum of a set of vectors V ∈ RN×D where the weights are obtained
based on dot product scores between keys K ∈ RN×D and queries Q ∈ RN×D. The scores
are then normalised with the softmax operator to produce a valid probability distribution
and finally multiplied with V as follows:

A(Q,K,V) = softmax

(
QKT

√
D

)
V (1)

To further enrich the learned representations, multiple attention representations are
computed in parallel, by supplying different projections of queries, keys and values as inputs
to each attention function A(i) (Equation 2). With n attention heads, the final multi-head
attention output is computed by projecting the concatenation of all attention head outputs

1064



Supervised Visual Attention for Simultaneous MMT

Figure 2: The architecture of a Transformers NMT (Vaswani et al., 2017): each block is
repeated B times to create a deep model. This is the more stable “pre-norm”
variant (Wang et al., 2019) where layer normalisation is applied prior to each
sub-layer. The dashed lines denote the residual connections.

as follows:

A(i) = A(W
(i)
q Q,W

(i)
k K,W

(i)
v V) (2)

MHA(Q,K,V) = WoConcat([A(1), . . . ,A(n)]) (3)

In the Transformer-based NMT, each encoder block includes a multi-head self-attention
layer to capture the relationship between different source positions. Additionally, the de-
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coder uses (i) masked multi-head self-attention to model the causal relationship between
each position and the ones preceding it and (ii) cross-attention to integrate source semantics
crucial to perform the translation. In fact, the only difference between self-attention and
cross-attention is that the former sets Q = K = V to the output of the previous layer
whereas the latter uses the output of the encoder to set K = V = f(x) (Figure 2).

3.1.3 Decoder

Once the source sentence is encoded into the latent representation h, the decoder sequen-
tially generates the target sentence in an auto-regressive way. This means that the proba-
bility of the next target token (P (yt|y<t,h)) is conditioned on the history (y<t) of target
words predicted so far, in addition to the source sentence semantics encoded in h. In this
formulation, the whole decoder can be thought as a building block that implements the
aforementioned probability term P ().

In terms of computation, a decoder block is very similar to an encoder one except that
(i) the self-attention is now masked to enforce that the decoder is causal i.e. it does not
mistakenly look at future positions and (ii) a secondary multi-head attention known as
cross-attention, integrates information from the encoder through the latent sentence
representations h (§ 3.1.2). Finally, we train the model in an end-to-end way and minimise
the negative log-likelihood of the sentence pairs in the training set D:

LMT = −
|D|∑
i

log
(
P (y(i)|x(i))

)
where P (y|x) =

|y|∏
t=1

P (yt|y<t,h) (4)

3.1.4 Our Baseline

We use the Base Transformer (Vaswani et al., 2017) configuration in all our experiments,
where both the encoder and decoder have 6 layers (B = 6 in Figure 2), each attention layer
has 8 heads, the model dimension is 512 and the feed forward layer size is 2048. Additionally,
we share the parameters of the target and output language embedding matrix (Press & Wolf,
2017). We should note that our implementation applies the “pre-norm” (Wang et al., 2019)
formulation where the layer normalisation is placed prior to each sub-layer rather than after,
to increase stability.

During training, we optimise the models using Adam (Kingma & Ba, 2014) and decay
the learning rate with the noam scheduler (Vaswani et al., 2017). The initial learning rate,
β1 and β2 are 0.2, 0.9 and 0.98, respectively. The learning rate is warmed up for 4,000 steps.
We use a batch size of 32, apply label smoothing with ϵ = 0.1 (Szegedy et al., 2016) and
clip the gradients so that their norm is 1 (Pascanu et al., 2014). We train each system 3
times with different random seeds for a maximum of 100 epochs, with early stopping based
on the validation METEOR (Denkowski & Lavie, 2014) score, which is the official metric
used in all shared tasks in MMT (Barrault et al., 2018). The best checkpoint with respect
to validation METEOR is selected to decode test set translations using the greedy search
algorithm.
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Encoding

Decoding Wait k tokens

Read
Write

...

... ... ... ...

Figure 3: wait-k decoding (Ma et al., 2019): Initially, the decoder waits k words to be
read before committing the first translation. Afterwards, the algorithm switches
back and forth between read and write actions until the end-of-sentence marker
is generated by the decoder.

3.2 Simultaneous NMT

This section describes the different training strategies that are used in this work to realise
simultaneous machine translation. Following the notation from Ma et al. (2019), we first
define a function g(t) that returns the number of source tokens read so far by the encoder,
at a particular decoding timestep t. By definition, 0 ≤ g(t) ≤ |x| for all values of t. We can
formulate this by modifying Equation 4 so that the source representation now depends on
g(t) as follows:

P (y|x) =

|y|∏
t=1

P (yt|y<t, f(x≤g(t))) (5)

This generalisation allows us to define the conventional full sentence (consecutive) NMT as
well, by using a constant function g(t) = |x| for all t and all sentence pairs.

3.2.1 Wait-k Decoding

The wait-k policy (Ma et al., 2019) simply amounts to selecting a particular function gk(t)
that depends on a pre-determined k value. This value determines the number of source
tokens to be initially read by the encoder, before beginning the translation decoding process.
Afterwards, the algorithm switches back and forth between read and write actions until the
end-of-sentence marker (EOS) is predicted by the decoder. Mathematically speaking, the
definition of gk(t) is as follows:

gk(t) = min(k + t− 1, |x|) (6)

The wait-k decoding algorithm is a fixed-delay policy because the translator always lags
behind the speaker by k tokens. According to Ma et al. (2019), this policy is inspired by
human interpreters who intuitively wait for some context to accumulate prior to starting
the translation. For our multimodal purposes, having a fixed policy rather than an adaptive
one is useful as fixed latency allows focused systematic analysis of quality improvements. A
depiction of the algorithm is given in Figure 3.

Traditionally, the encoder in the Transformer NMT is bi-directional due to the self-
attention mechanism which allows each position to attend to each other one. In the simul-
taneous translation framework, however, this can be challenging as it implies that every time
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Algorithm 1: Prefix training (Niehues et al., 2018; Arivazhagan et al., 2020)

inputs : The current mini-batch B
output: The modified mini-batch B̂

1 B̂ ← []
2 for (x,y) in B do
3 c ∼ Uniform(0, 1) // Apply truncation with p = 0.5
4 if c < 0.5 then
5 lx ∼ Uniform(1, |x|) // Randomly sample a source prefix length

6 ly ← Round

(
lx.|y|
|x|

)
// Keep the same proportion for the target

7 ly ← max(2, ly) // Always include the BOS token

8 else
9 x̂← x; ŷ← y // No truncation

10 end

11 B̂.append((x̂, ŷ))

12 end

a new source token is read, the encoder’s representation h would need to be recomputed,
leading to a quadratic runtime cost with respect to the source sentence length. Instead,
we implement an uni-directional encoder following Elbayad et al. (2020), by employing a
masked self-attention in the encoder. This prevents future positions that are not read so
far from being attended to, similar to the self-attention layers in the decoder block.

3.2.2 Simultaneous-aware Training

A simple way to perform simultaneous NMT is by first training a consecutive NMT model
(i.e. g(t) = |x|) and then translating the test sets following the wait-k policy, where for
each k we would use a different choice of gk(t) at inference time. We refer to this approach
as wait-k decoding. However, this creates a discrepancy between training and testing
time, as the model will be exposed to partial source sentences at test time, although it was
always trained on full sentences. For this reason, Ma et al. (2019) also proposed to use the
same gk(t) function at both training and inference time, an approach that we refer to as
wait-k training. We follow this approach for our initial set of experiments.

Furthermore, we adopt a second simultaneous-aware training recipe called prefix train-
ing (Niehues et al., 2018; Arivazhagan et al., 2020) which employ a simple data processing
strategy to mitigate the aforementioned exposure bias between training and testing time.
Specifically, for each sentence pair (x,y) in the mini-batch, we flip a fair coin to decide
whether we will consider it for truncation or not. If it is considered, we first randomly sam-
ple a prefix length lx for the source sentence and truncate the corresponding target sentence
with the same proportion as the source side (Algorithm 1). Unlike wait-k training which
requires training a separate model for each value of k, we train a single prefix model and
decode the final checkpoint using wait-k decoding across different values of k.
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Figure 4: Transformer-based multimodal encoder for simultaneous NMT: The upper
stream encodes visual features, whereas the bottom one is the usual Transformer
encoder for the input sentence. Dashed lines denote a collection of vectors.

3.3 Multimodal NMT

In this section, we describe our take on integrating visual information to our consecutive
and simultaneous NMT models. For that, we reformulate the encoder-attention variant
of Caglayan et al. (2020a) for Transformer-based models. In what follows, we first describe
the visual feature extraction pipeline and then present our multimodal NMT architecture
in detail.

3.3.1 Visual Features

To represent visual semantics, we explore regional object-detection features extracted using
the popular bottom up top down (BUTD) approach (Anderson et al., 2018). BUTD combines
the Faster R-CNN object detector (Ren et al., 2015) with a ResNet-101 backend (He et al.,
2016) to perform feature extraction. We use the provided model1 which is pre-trained on
the large-scale Visual Genome dataset (Krishna et al., 2017). Having 1,600 object labels in
its inventory, the BUTD detector is quite rich and for that reason has been used in most
previous work in cross-modal pre-training (Lu et al., 2019; Tan & Bansal, 2019).

For our purposes, we use the default settings of the detector and extract 36 regional
features per each image. In other words, alongside the language representation x ∈ RN×D

of a given source sentence, the associated image is represented with a set of regional features
v ∈ R36×2048. The BUTD extractor is not further trained/fine-tuned during model training.

1. https://hub.docker.com/r/airsplay/bottom-up-attention
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3.3.2 Multimodality

Our multimodal MT approach reformulates the encoder-attention variant of Caglayan
et al. (2020a) for Transformer-based architectures. The main motivation for implementing
an encoder-side cross-modal interaction is the nature of the simultaneous MT problem:
since the source context is partial and grows gradually, the additional visual information
can complement the missing context and allow the model to anticipate target words in a
grounded way. Moreover, incorporating cross-modality at encoder side is also crucial for our
second set of experiments regarding the supervision of the visual attention module, which
aims at better language grounding (§ 3.3.3).

Figure 4 summarises the overall architecture of our MMT model, where the upper stream
implements the visual representation module. This module (i) extracts the set of regional
feature vectors v ∈ R36×2048, (ii) projects them to the D-dimensional space yielding v′ ∈
R36×D and finally (iii) employs a multi-head2 attention layer for cross-modal interaction
(CMI). The key, value, query configuration of the cross-modal attention determines the
nature of the interaction i.e. we set K = V = v′ whereas the query Q receives the text
encoder’s output. This way, we get a cross-modal representation out of the attention layer
which computes the weighted sum of regional feature projections (V) based on the similarity
between language representations (Q) and regional features (K). Since this output is a
linear combination of visual vectors only, we augment it with the text encoder’s outputs
using element-wise addition, similar to a residual connection. A final layer normalisation is
applied on top to obtain the multimodal encoding h = f ′(x, I). The rest of the architecture
is the same as Figure 2 in the sense that h is passed to the cross-attention layer of the
decoder.

3.3.3 Supervising the Visual Attention

The cross-modal relationship between language and visual representations in attentive MMT
models is generally learned in an unsupervised way, as the MMT model is only trained
through a sequence-to-sequence cross-entropy objective. This is also the approach that we
followed for our MMT model in § 3.3.2.

In this section, we are interested in whether explicit supervision of the visual atten-
tion could introduce an inductive bias so that the anticipation ability – and therefore the
translation quality – of our simultaneous MMT models is further improved. We devise
a multi-task learning scheme where in addition to the cross-entropy objective used for
the MT task (Equation 4), we employ an auxiliary loss which tries to bring together the
cross-modal attention distribution M′ computed by the CMI module and the ground-truth
alignment M. An illustration of the predicted attention and its ground-truth distribution
is provided in Figure 5.

Ground-truth alignments. In order to supervise the visual attention during training,
we require a labeled dataset of phrase-region annotations for the Multi30k dataset. Since
the Multi30k dataset is derived from the Flickr30k image captioning dataset, we rely on
the Flickr30k Entities dataset (Plummer et al., 2015) which provides human-annotated
bounding boxes for noun phrases in the English image captions. For instance in Figure 5,

2. Throughout this work, we set the number of heads to 1 for the cross-modal interaction module.
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MMT's cross-attention distribution M'
KL divergence loss

Ground-truth alignment distribution M

Figure 5: Cross-modal supervision of attention: The attention distribution from the model
is pulled towards the ground-truth alignment matrix obtained from the Flickr30k
entities dataset, using KL-divergence. Greyed out token positions do not con-
tribute to the loss.

we can see that each of the phrases “a girl”, “a jean dress” and “a raised balance

beam” is mapped to a bounding box3 that denotes the object referred.

Since the ground-truth regions are different from the regions predicted by the pre-trained
BUTD detector (§ 3.3.1), we re-extract regional features using the same pre-trained BUTD
detector but from the set of regions provided by the Entities dataset. On average, we end
up with 4.3 bounding box annotations per image, which is substantially lower compared
to the fixed number of 36 regions that we extracted from the pre-trained BUTD detector.
Finally, we should note that the Entities dataset does not provide any annotations for the
test2017 and testCOCO test splits of Multi30k dataset.

Training. For a given source sentence x with N words, first an alignment matrix M ∈
RR×N is formed where R denotes the total number of ground-truth bounding box annota-
tions for the overall sentence. We set M[i,j] = 1 if the word xj is associated with the region
i. If k > 1 region associations exist for the word xj , the probability mass assigned to each
region becomes 1/k. The columns of the matrix that refer to words without any bounding
box associations are not taken into account when computing the final alignment loss.

Alignment loss. The Kullback-Leibler (KL) divergence is a measure of how much a given
probability distribution Q differs from a reference distribution P . In other words, minimising
the KL-divergence between the predicted cross-modal attention distribution (Q) and the
ground-truth alignments from the entities dataset (P ) allows the model to generate a visual
attention distribution that is closer to the human-labeled annotations. The final multi-task

3. The number of bounding boxes for a given noun phrase is not limited to one.
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English German French Czech

Split Words Len Words Len Words Len Words Len # Sents

train 380K 13.1 364K 12.6 416K 14.4 298K 10.3 29,000

val 13.4K 13.2 13.1K 12.9 14.6K 14.4 10.4K 10.2 1,014

test2016 13.0K 13.1 12.2K 12.2 14.2K 14.2 10.5K 10.5 1,000

test2017 11.4K 11.4 10.9K 10.9 12.8K 12.8 - - 1,000

testCOCO 5.2K 11.4 5.2K 11.2 5.8K 12.5 - - 461

Table 1: Multi30k dataset statistics: “Words” denote the total number of words in a split
whereas “Len” is the average number of words per sentence in that split.

objective combines the MT loss and the alignment loss with coefficients α = β = 1:

L = αLMT + βDKL

(
P = M || Q = M′) (7)

Fine-tuned supervision. In addition to training the supervised MMT from scratch, we
also experiment with taking the best checkpoints of the MMT models with unsupervised
visual attention (α = 1, β = 0) and fine-tuning them with the alignment loss enabled
(α = β = 1). For these particular variants, we disable the learning rate scheduling and
lower the learning rate to 1e − 5. We track performance with respect to validation set
METEOR and keep the best checkpoint for further decoding of the test sets.

3.4 Dataset

We use the Multi30k dataset (Elliott et al., 2016)4, which is a multi-lingual extension
to the Flickr30k image captioning dataset (Young et al., 2014). Specifically, Multi30k
provides a training set of 29,000 examples where each example corresponds to an image
I and its English caption x from Flickr30k, extended with the German translation y of
the English caption. In other words, both training and testing samples are triplets in the
form of {I,x,y}. The dataset is later extended with French (Elliott et al., 2017) and
Czech (Barrault et al., 2018) translations, making it the standard dataset for work on
MMT, simultaneous MMT (Caglayan et al., 2020a; Imankulova et al., 2020), as well as
other multilingual multimodal tasks.

We experiment with all three language pairs, namely, English→German, English→Czech
and English→French. The training, validation and the test2016 test sets are available for
all language directions, whereas the test sets test2017 and testCOCO sets are only available
for German and French. The latter test set is specifically designed (Elliott et al., 2017) to
contain at least one ambiguous word per image caption where images are selected from
the COCO dataset (Chen et al., 2015) instead of the in-domain Flickr30k dataset. Some
common statistics of the dataset are provided in Table 1.

Preprocessing. We use Moses tools (Koehn et al., 2007) to lowercase, punctuation-
normalise and tokenise the sentences with hyphen splitting option enabled. We then create

4. https://github.com/multi30k/dataset
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2016 2017 COCO

Cons Tr Pref Cons Tr Pref Cons Tr Pref

k
=

1 En-Cs 17.1 13.0 22.4 - - - - - -

En-De 40.3 41.3 48.8 37.2 35.8 43.2 35.9 33.3 39.6

En-Fr 59.5 58.7 63.0 55.6 52.6 58.0 52.6 48.9 53.7

k
=

2 En-Cs 21.2 19.0 24.1 - - - - - -

En-De 46.7 48.7 52.4 42.4 42.4 46.3 41.3 39.4 42.4

En-Fr 66.9 66.3 68.1 62.0 60.7 62.5 58.7 56.7 58.4

k
=

3 En-Cs 23.9 23.3 26.5 - - - - - -

En-De 51.4 51.8 53.9 46.0 45.1 47.8 44.4 41.4 43.6

En-Fr 71.4 71.3 71.5 65.9 65.4 65.2 61.1 59.8 60.1

Table 2: METEOR comparison of consecutive training (Cons), wait-k training (Tr) and
prefix training (Pref) approaches for unimodal simultaneous MT. All systems
are decoded with the wait-k policy where k ∈ {1, 2, 3}. The scores are averages
of three runs with different seeds. Best systems are indicated in bold typeface.

word vocabularies using the training subset of each language. The resulting English, French,
German and Czech vocabularies have 9.8K, 11K, 18K and 22.2K words, respectively. We
do not use sub-word segmentation approaches to avoid their potential side effects for simul-
taneous MT and to be able to analyse the grounding capability of the models more easily
when it comes to cross-modal attention. We note that word-level MT performs as well as
sub-word segmentation on this particular dataset, according to (Caglayan, 2019).

4. Results

4.1 Unimodal Simultaneous MT

Our first set of experiments focus on how different training regimes impact the transla-
tion quality for Transformer-based unimodal (i.e. text-only) simultaneous MT. For this, we
compute METEOR scores of English-Czech, English-German and English-French MT sys-
tems, across three different test sets of Multi30k. Table 2 summarises the results obtained
by performing wait-k decoding policy with k ∈ {1, 2, 3}, across the methods described in
§ 3.2.

First, we observe that the prefix training method yields substantially higher METEOR
scores than the other two approaches in general. wait-k training achieves the lowest quality
across all language pairs and test sets, an observation in line with the previous findings of
Caglayan et al. (2020a). Overall, the quantitative results corroborate our initial hypothesis
regarding the exposure bias between training and test time (§ 3.2.2) and show that the
prefix training is indeed a good choice in-between the full-sentence (consecutive) training
and the aggressive wait-k training approaches.

For English-Czech particularly, we observe that when k = 1, wait-k training is con-
siderably worse (⇓4.1 Meteor) than the other approaches. We hypothesise that the lower
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SRC: A woman holding a bowl of food in a kitchen.

CS: Muž v červeném triku drž́ı své j́ıdlo.
DE: Ein Frau hält eine schüssel mit Essen in einer Küche.
FR: Un femme tenant un bol de nourriture dans une cuisine.

Table 3: Examples showing the effect of the lack of context for the decoder early in the
sentence when using wait-1 decoding: greyed out words are those that have not
been read or written yet. Red and blue indicate incorrect and correct translations,
respectively.

scores for the English-Czech pair in general is likely to be caused by the fact that, unlike
English, German and French, Czech has no articles preceding a noun. This means that
when generating the first word of the Czech translation, the probability distribution will
always generate the same word, which is likely to be the most common target sentence
prefix in the training set. This is illustrated in Table 3 where the Czech model translates
“woman” as “Muž” (man) whereas the German and French models are able to read the
source word “woman” just before translating it5. We believe that the incorporation of the
visual modality would allow simultaneous MT models to handle such cases in a better way.

Finally, although the lack of context affects all three methods at decoding time, the
reason why wait-k training lags dramatically behind the other two for Czech is related to
the fact that, wait-k training is ineffective in terms of leveraging the training resources,
especially when the vocabulary is sparse. This makes Czech the most challenging pair across
the pairs explored as its vocabulary has 22K unique tokens compared to 11K for French.

4.2 Multimodal Simultaneous MT

Based on the more promising results of the prefix training regime for the unimodal MT
experiments, from now on we focus on prefix training across all multimodal experiments.
We begin by analysing the impact of incorporating visual information into our Transformer-
based simultaneous NMT models, following the architecture described in § 3.3.2. Table 4
compares METEOR scores between the baseline unimodal NMT and the MMT models
across all language pairs and test sets.

Overall, our encoder-based cross-modal interaction method improves METEOR scores
up to +1.5 points (En-Fr 2016) when compared to unimodal NMT models. This shows
that the addition of the visual modality is beneficial for simultaneous MT, especially in
low latency scenarios. In particular, consistent quality improvements are observed on the
testCOCO test split, which (i) does not come from the Flickr30k distribution and (ii) contains
more ambiguous words by construction.

For certain language pairs such as English→Czech and English→German, the addi-
tional modality brings little to no improvements, especially on the test2016 test set. How-
ever, we will observe different trends once we add supervision (§ 4.2.1). Finally, the En-

5. Although the same issue also affects the article choices for gender-marked languages such as French and
German, the arbitrary choices are more likely to match the correct article in the target language, since
the number of possible translations for articles is much smaller.
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En-Cs En-De En-Fr

2016 2016 2017 CC 2016 2017 CC

k
=

1 Baseline Nmt 22.4 48.8 43.2 39.6 63.0 58.0 53.7

+ Images 21.9 48.8 43.3 39.7 64.5 58.2 54.2

k
=

2 Baseline Nmt 24.1 52.4 46.3 42.4 68.1 62.5 58.4

+ Images 24.4 52.1 46.4 43.1 69.0 63.2 58.6

k
=

3 Baseline Nmt 26.5 53.9 47.8 43.6 71.5 65.2 60.1

+ Images 26.5 53.5 47.8 44.1 71.8 65.7 60.4

Table 4: METEOR comparison of unimodal and multimodal simultaneous MT under the
prefix training framework: the scores are averages of three runs with different
seeds. Best systems are indicated in bold typeface.

glish→French language pair benefits the most from the visual modality on average, in
terms of METEOR scores. We find it interesting that as the lexical diversity of the target
language (i.e. sparsity of the training set vocabulary) increases, the improvements due to
multi-modality decrease. This hints at the fact that the improvements can be more pro-
nounced if the models are (pre-)trained on larger linguistic resources, an exploration that
we leave to future work.

4.2.1 Supervised Attention

Our next set of experiments aim to understand whether guiding the alignment between the
visual features and source words during training helps improve the translation and ground-
ing ability of the MMT models. We carry out two different experiments: first, we train
a multimodal simultaneous translation model from Scratch, using both the translation
and attention losses. As an alternative, we also experiment with a Fine-Tuned version
of the best (unsupervised visual attention) MMT checkpoints with a reduced learning rate
(§3.3.3).

The METEOR scores for supervision experiments are reported in Table 5. Overall,
the scores highlight that (i) both variants of supervision are beneficial to the MMT models,
which now show more consistent improvements over both the baselines and the MMT models
with unsupervised visual attention and (ii) the Fine-Tuned model produces consistently
higher scores, with improvements of up to 1.9 METEOR points (En-Fr 2016) with respect
to the unimodal baseline.

Interestingly, the Fine-Tuned variant always outperforms the Scratch models. One
possible explanation for this is that training the MMT model from scratch with both objec-
tives might bias the encoder towards producing representations that align well with image
regions, but not necessarily optimal for the MT decoder. To get a better insight on this,
we performed a small study where we repeated the supervision experiments by lowering the
alignment loss weight from β = 1 to β ∈ {0.1, 0.5}. The results showed that although there
are cases where tuning the coefficient yields improved scores for some language pairs, the
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En-Cs En-De En-Fr

2016 2016 2017 CC 2016 2017 CC

k
=

1
Baseline Nmt 22.4 48.8 43.2 39.6 63.0 58.0 53.7

+ Images 21.9 48.8 43.3 39.7 64.5 58.2 54.2

+ Sup (Scratch) 21.8 48.8 43.1 39.3 64.3 58.6 53.8

+ Sup (Fine-Tuned) 22.5 49.2 43.5 39.9 64.9 58.9 54.8

k
=

2

Baseline Nmt 24.1 52.4 46.3 42.4 68.1 62.5 58.4

+ Images 24.4 52.1 46.4 43.1 69.0 63.2 58.6

+ Sup (Scratch) 24.4 52.3 46.1 42.3 69.2 63.1 57.9

+ Sup (Fine-Tuned) 24.4 52.9 46.8 43.0 69.5 63.9 58.9

k
=

3

Baseline Nmt 26.5 53.9 47.8 43.6 71.5 65.2 60.1

+ Images 26.5 53.5 47.8 44.1 71.8 65.7 60.4

+ Sup (Scratch) 26.6 53.7 47.7 43.1 71.9 65.4 59.7

+ Sup (Fine-Tuned) 27.0 54.3 48.4 43.8 72.5 66.4 60.5

Table 5: The impact of attention supervision with respect to baseline NMT and MMT
systems: METEOR scores are averages of three runs with different seeds. Best
systems are indicated in bold typeface.

scores are not as consistent as β = 1 across different wait-k decodings and test sets. We
leave further exploration of this to future work.

4.2.2 Prefix Translation Accuracy

Automatic evaluation metrics are often not very suitable for tasks such as image captioning
or MMT, as they can fail to capture non-systematic & minor changes (Caglayan et al.,
2020b). This issue is even more pronounced in simultaneous translation, where models are
more likely to make mistakes early in the translation (due to limited source context), which
could have a negative impact in the overall translation quality. In this section, we provide
an analysis focused on the translation accuracy of source prefixes. Specifically, we count the
number of matches between the first n words of each translation and its reference sentence,
and divide it by the number of test set sentences.

Figure 6 shows the unigram prefix accuracy of each wait-k decoded simultaneous MT
model, across the three language pairs explored. The results reveal several things: (i) the
supervision is globally beneficial, although its contribution diminishes as k increases, and
(ii) although not reflected by the METEOR scores (Table 5), the incorporation of the visual
modality (and further supervision) boosts the accuracies for English→Czech substantially
(especially for wait-1). For the latter, this amounts to a 25% relative improvement by the
Fine-tuned supervision with respect to the baseline NMT. Similar trends were observed
for bigram and trigram accuracy for English→Czech and English→French.
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Figure 6: Unigram prefix accuracy of simultaneous wait-k variants: the numbers are ob-
tained from the test2016 test set, averaged across three runs.

4.2.3 Comparison to State-of-the-art

Finally, we conclude our quantitative analyses by comparing the performance of our best
MMT models to state-of-the-art in simultaneous multimodal MT. Table 6 provides a sum-
mary of the results in terms METEOR and also BLEU (Papineni et al., 2002), since some
previous work only reports the latter. Recall that (i) Imankulova et al. (2020) and Caglayan
et al. (2020a) rely on recurrent models rather than Transformers, (ii) use different visual
features and (iii) train their models using either consecutive or wait-k approaches rather
than our best prefix training methodology.

According to Table 6, the scores clearly show that when combined with the Fine-Tuned
attention supervision variant, our Transformer-based MMT models achieve state-of-the-art
BLEU and METEOR scores across the board, with the exception of English→German with
larger k. For this language direction, our wait-2 and wait-3 systems slightly lag behind
Caglayan et al. (2020a) in terms of BLEU. This is probably due to our reliance on METEOR
for early-stopping and best checkpoint selection rather than the perplexity, which was used
by Caglayan et al. (2020a).

4.3 Qualitative Insights

In this section, we conduct further analysis focusing on qualitative aspects of the trained
MMT models in terms of visual understanding.

4.3.1 Grounding Ability

We begin our analyses by measuring the grounding ability of our MMT systems on the
test2016 test set, for which we have ground-truth region-phrase annotations from Flickr30k
dataset (§ 3.4). More formally, we obtain the cross-modal attention weights from our models
during the translation decoding of the test set sentences. Next, similar to Rohrbach et al.
(2016) and Wang and Specia (2019), we compute the intersection over union (IoU) between
the most-attended region and the ground-truth bounding box. If multiple ground-truth
boxes exist for a given phrase, we take the ground-truth box that yields the maximum
IoU score. Table 7 provides a summary of the results across the language pairs explored.
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En-Cs En-De En-Fr

BL MT BL MT BL MT

k
=

1
Imankulova et al. (2020) 9.1 - 19.9 - 32.5 -

Caglayan et al. (2020a) (Dec Att) - - 21.2 45.9 42.1 64.5

Caglayan et al. (2020a) (Enc Att) - - 21.3 44.7 41.7 64.6

Our Best 12.5 22.5 21.4 49.4 42.9 64.9

k
=

2

Imankulova et al. (2020) - - - - - -

Caglayan et al. (2020a) (Dec Att) - - 28.1 50.4 49.2 68.7

Caglayan et al. (2020a) (Enc Att) - - 27.6 49.7 49.2 69.1

Our Best 16.1 24.4 28.0 52.9 51.5 69.5

k
=

3

Imankulova et al. (2020) 19.4 - 28.8 - 44.0 -

Caglayan et al. (2020a) (Dec Att) - - 32.2 53.7 54.6 71.8

Caglayan et al. (2020a) (Enc Att) - - 31.4 53.1 54.8 72.0

Our Best 21.8 27.0 31.3 54.3 56.2 72.5

Table 6: Comparison of our best MMT system (fine-tuned supervised attention) with other
state-of-the-art simultaneous MMT models on the test2016 set. Best systems are
indicated in bold typeface. BL and MT denote BLEU and METEOR, respectively.

Unsurprisingly, we notice that the MMT models with unsupervised visual attention obtain
the lowest grounding accuracy across the board. The supervision from Scratch achieves
the highest accuracy, surpassing the models with unsupervised visual attention by 18%
on average. The Fine-Tuned supervision approach seems also quite helpful in terms of
grounding, with accuracies slightly lagging (around 2%) behind the Scratch systems.
Another interesting observation is that the grounding ability does not seem to depend on the
choice of target language, e.g. all Fine-Tuned MMT models achieve around 89% accuracy.
This is to be expected, since during training, the source sentences and the provided regions
never change across different language directions.

4.3.2 Performance on Butd Regions

The previous experiment relied on regional features that were extracted from the ground-
truth bounding boxes at training, inference and evaluation. To understand whether the
grounding ability generalises across features extracted from non-gold regions, we now
switch to the 36 region proposals that we extracted from the pre-trained BUTD object
detector (§ 3.3.1). Instead of working in the visual coordinate space, which may be noisy
due to the fine-grained nature of bounding box annotations, given that BUTD also provides
a wider range of object categories, we also measure the grounding ability in the linguistic
space. Specifically, instead of the coordinates of the BUTD and ground-truth regions, we
use the predicted object label ŷ (from the BUTD detector) and the ground-truth noun anno-
tation y, respectively. We then compute exact match accuracy (Em) and cosine similarity6

6. For the cosine similarity approach, we ensure maximum correspondence by lemmatising both words using
the NLTK toolkit (Bird & Loper, 2004).
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En-Cs En-De En-Fr

Mmt 73.8% (± 0.7) 72.1% (± 0.8) 75.4% (± 1.0)

+ Sup (Fine-Tuned) 89.8% (± 0.6) 89.4% (± 0.7) 89.0% (± 2.0)

+ Sup (Scratch) 92.2% (± 0.2) 92.3% (± 0.1) 91.9% (± 0.2)

Table 7: Grounding ability of wait-1 simultaneous MMT systems using features from the
ground-truth region annotations. The scores presented are intersection over unions
(IoU) on the test2016 set, averaged across three runs.

En-Cs En-De En-Fr

IoU Cos Em IoU Cos Em IoU Cos Em

Mmt 23.1% 0.416 9.8% 20.6% 0.403 8.4% 28.5% 0.488 18.3%

+ Sup (Fine-Tuned) 42.5% 0.581 26.6% 42.0% 0.578 26.1% 41.4% 0.572 25.4%

+ Sup (Scratch) 44.3% 0.593 27.6% 44.3% 0.590 27.4% 44.4% 0.589 27.2%

Table 8: Grounding ability of wait-1 simultaneous MMT systems using the 36 BUTD
region proposals: IoU, Cos and Em denote intersection-over-union, cosine simi-
larity and exact match accuracy, respectively. The scores are obtained from the
test2016 test set and averaged across three runs.

(Cos) between the lowercased versions of these words, by using pre-trained GloVe (Pen-
nington et al., 2014) word embeddings.

Table 8 reports all three metrics averaged across three runs of each model. We observe
that all three metrics show the same trend across model types. Regardless of the variant
type, the incorporation of attention supervision dramatically improves the ratio of exact
matches by up to 17% in absolute terms. We also see that, unlike the previous experiment
where the models were provided the human-labelled regions (Table 7), here we have at least
the English→French MMT model with unsupervised visual attention which obtains much
better grounding scores than the other two language directions. Now that the models are
given way more regions (36) than the human-labelled scenario (∼4.3), we think these results
are more representative for the final grounding ability of these models. As expected, these
results are a lot lower than Table 7 since (i) we had a lot fewer bounding boxes per image
in that case and (ii), the BUTD bounding boxes are different from the gold ones, meaning
that even if the model focused on a similar part of the image, the IoU score will be lower
than 1.

4.3.3 Visualising the Attention

Our main motivation to supervise the visual attention was to guide the model on learning
cross-modal visual-linguistic alignments. After quantifying their ability to do so using met-
rics such as IoU and cosine similarity, we now visualise the impact of supervision on two
real examples. Figure 7 shows that the MMT models with unsupervised visual attention
(on the left) are already good at attending on relevant regions to some extent. However,
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+supervision

Figure 7: Regional attention examples produced by the MMT model with unsupervised
visual attention (left) and the Fine-Tuned variant (right): Green check marks
show cases where supervision fixes incorrect word & region alignments.
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there are still cases of misalignment: in the first example, none of the words in the phrase
“raised balance beam” are aligned with the actual region showing the beam. Similar skews
also happen in the second example such as the word baseball getting aligned with the region
apple. The Fine-Tuned variants (on the right) not only fix these cases of misalignments
but also provide much more confident attention distributions. This is particularly evident in
the attention probabilities of nouns which, unlike connectives or verbs, have corresponding
ground-truth bounding boxes.

4.4 Translation Examples

Finally, we now present qualitative translation examples from our simultaneous MT systems,
to highlight both the strengths and weaknesses of the models explored. Figure 8 shows an
example for each language direction, using the wait-1 decoded NMT, MMT and supervised
MMT systems. For the first example in Czech, we see that the NMT system hopelessly
relies on dataset biases to always generate “Muž (man)” when the definite article “a” is the
only observed word at source side. Although the MMT with unsupervised visual attention

Src a woman is playing volleyball.
Nmt muž se d́ıvá na volejbal.

(man looks at volleyball.)
Mmt žena v b́ılém oblečeńı hraje volejbal.

(woman in white clothes playing volleyball.)
Sup žena jde po ulici hraje volejbal.

(woman goes down the street playing volleyball.)
Sup+ žena, která hraje volejbal.

(woman playing volleyball.)

Src a woman with long hair is at a graduation ceremony.
Nmt ein frau mit langen haaren sitzt bei einem olympischen spielen bei einer konferenz.

(a woman with long hair sitting at an olympic game at a conference.)
Mmt ein frau mit langen haaren ist an einem partner-konzert.

(a woman with a long hair is in a partner concert.)
Sup eine frau mit langen haaren hält sich an einer konferenz vor.

(a woman with a long hair is sitting in front of a conference.)
Sup+ eine frau mit langen haaren steht an einem lutscher-bahnhof.

(a woman with a long hair stands at a German railway.)

Src a woman is holding a small white statue.
Nmt un femme est en train de tenir une petite statue blanche.

(a woman is holding a small white statue.)
Mmt un femme fait de la petite femme blanche.

(a woman makes the little white woman.)
Sup une femme fait un signe à un petit homme blanc.

(a woman makes a sign to a small white man.)
Sup+ une femme est en train de tenir une petite statue blanche.

(a woman is holding a small white statue.)

Figure 8: wait-1 translation examples from all model variants: Sup and Sup+ denote the
Scratch and Fine-Tuned variants of attention supervision, respectively. blue
and red colors indicate correct and wrong lexical choices. “Google Translate”
output for each non-English hypothesis is shown in grey.
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and the supervision from scratch (Sup) both pick the correct translation “Žena (woman)”,
they somewhat hallucinate the continuation. In contrast, the fine-tuned supervision (Sup+)
generates the correct translation without any errors. For the German example, all models
struggle to translate “graduation ceremony” into German. Interestingly, they all pick words
that refer to places such as “concert” or “conference” rather than purely random lexical
choices, hinting at the fact that the models may be relying more on visual information than
the language signal. In addition, NMT and the non-supervised MMT also commit an error
when translating “a” into German i.e. they both pick the masculine form “ein” instead of
“eine”. The supervised models are better to integrate visual features in this case, as they
correctly pick “eine”. Finally, the French example shows similar patterns to the German
one as well: only the supervised models are able to pick the correct article form “une” and
it is the fine-tuned variant that translates the whole sentence in a correct way. If we further
look at examples of wait-3 simultaneous MT models and contrast the Scratch and Fine-
Tuned variants (Figure 9), we observe that both variants are more or less equivalent when

Src three dogs play with each other out in the field.
Sup tři psi si spolu hraj́ı ve sněhu se třemi psy.

(three dogs playing together in the snow with three dogs.)
Sup+ tři psi si spolu hraj́ı venku na poli.

(three dogs playing together outside in the field.)

Src a gray and white dog jumping over standing water in the sand.
Sup ein grau-weißer hund steht im wasser und springt über das wasser.

(a gray and white dog stands in the water and jumps over the water.)
Sup+ ein grau-weißer hund springt über das wasser im sand.

(a gray and white dog leaps over the water in the sand.)

Src a man is blowing into a plastic ball.
Sup un homme porte des lunettes dans un ballon en plastique.

(a man wears glasses in a plastic ball.)
Sup+ un homme est en train de souffler dans une balle en plastique.

(a man is blowing into a plastic ball.)

Figure 9: wait-3 translation examples comparing two variants of attention supervision:
Sup and Sup+ denote the Scratch and Fine-Tuned variants, respectively.
blue and red colors indicate correct and wrong lexical choices. “Google Translate”
output for each non-English hypothesis is shown in grey.
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translating the early parts of the sentences but the Scratch models commit critical errors
in overall, when the final translations are taken into account.

5. Conclusions

In this paper, we proposed the first Transformer-based simultaneous multimodal MT model
and extended it with an auxiliary supervision signal that guides the visual attention mech-
anism using ground-truth phrase-region alignments. We performed extensive experiments
on the three language pairs of the Multi30k dataset and upon conducting thorough quanti-
tative and qualitative analyses, we showed that (i) supervised visual attention consistently
improves the translation quality of the MMT models, and (ii) fine-tuning the MMT with
the supervision loss results in better performance than training the MMT from scratch.
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