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Abstract

An important aspect of multi-agent systems concerns the formation of coalitions that
are stable or optimal in some well-defined way. The notion of popularity has recently re-
ceived a lot of attention in this context. A partition is popular if there is no other partition
in which more agents are better off than worse off. In this paper, we study popularity,
strong popularity, and mixed popularity (which is particularly attractive because exis-
tence is guaranteed by the Minimax Theorem) in a variety of coalition formation settings.
Extending previous work on marriage games, we show that mixed popular partitions in
roommate games can be found efficiently via linear programming and a separation oracle.
This approach is quite universal, leading to efficient algorithms for verifying whether a
given partition is popular and for finding strongly popular partitions (resolving an open
problem). By contrast, we prove that both problems become computationally intractable
when moving from coalitions of size 2 to coalitions of size 3, even when preferences are
strict and globally ranked. Moreover, we show that finding popular, strongly popular, and
mixed popular partitions in symmetric additively separable hedonic games and symmetric
fractional hedonic games is NP-hard. Together, these results indicate strong boundaries to
the tractability of popularity in both ordinal and cardinal models of hedonic games.

1. Introduction

Coalitions and coalition formation have been a central concern of game theory, ever since the
publication of von Neumann and Morgenstern’s Theory of Games and Economic Behavior
in 1944. The traditional models of coalitional game theory, in particular TU (transferable
utility) and NTU (non-transferable utility) coalitional games, involve a formal specification
of what each group of agents can achieve on their own. Drèze and Greenberg (1980) noted
that in many situations this is not feasible, possible, or even relevant to the coalition for-
mation process, as, e.g., in the formation of social clubs, teams, or societies. Instead, in
coalition formation games, the agents’ preferences are defined directly over the coalition
structures, i.e., partitions of the agents in disjoint coalitions. Formally, coalition formation
can thus be considered as a special case of the general social choice setting, where the
agents entertain preferences over a special type of alternatives, namely coalition partitions
of themselves, from which one or more need to be selected. In most situations it is natural
to assume that an agent’s appreciation of a partition only depends on the coalition he is a
member of and not on how the remaining agents are grouped. Popularized by Bogomolnaia
and Jackson (2002), much of the work on coalition formation now concentrates on these
so-called hedonic games.

The main focus in hedonic games has been on finding and recognizing partitions that
satisfy various notions of stability—such as Nash stability, individual stability, or core

©2022 AI Access Foundation. All rights reserved.



Brandt & Bullinger

stability—or optimality—such as Pareto optimality, utilitarian welfare maximality, or egal-
itarian welfare maximality (see Aziz & Savani, 2016, for an overview). In this paper, we
focus on the notion of popularity (Gärdenfors, 1975), which has the flavor of both stability
and optimality. A partition is popular if there is no other partition that is preferred by a
majority of the agents. Moreover, a partition is strongly popular if it is preferred to every
other partition by some majority of agents. Popularity thus corresponds to the notion of
weak and strong Condorcet winners in social choice theory, i.e., candidates that are at least
as good as any other candidate in pairwise majority comparisons. Just like stability notions,
popularity is based on the idea that a subset of agents breaks off in order to increase their
well-being. However, since the new partition has to make at least as many agents better
off than worse off, popularity also has the flavor of optimality. According to the standard
reference Algorithmics of Matching Under Preferences, “popular matchings [. . . ] have been
an exciting area of research in the last few years” (Manlove, 2013, p. 333). A recent survey
on popular matchings is provided by Cseh (2017).

In contrast to Pareto optimal partitions, popular partitions are not guaranteed to exist.
We therefore also consider mixed popular partitions, as proposed by Kavitha, Mestre, and
Nasre (2011) and whose existence follows from the Minimax Theorem. A mixed popular
partition is a probability distribution over partitions p such that there is no other mixed
partition q such that the expected number of agents who prefer the partition returned by
p to q is at least as large as the other way round. Mixed popular partitions are a special
case of maximal lotteries, a randomized voting rule that has recently gathered increased
attention in social choice theory (Fishburn, 1984; Brandl, Brandt, & Seedig, 2016; Brandl
& Brandt, 2020; Brandl, Brandt, & Stricker, 2022).

We study the computational complexity of popular, strongly popular, and mixed popular
partitions in a variety of hedonic coalition formation settings including additively separable
hedonic games, fractional hedonic games as well as hedonic games where the coalition size
is bounded. The latter includes flatmate games (which only allow coalitions of up to three
agents) and roommate games (which only allow coalitions of up to two agents). Our main
findings can also be found in Tables 1 and 2 in the conclusion and are summarized as follows.

• Generalizing earlier results by Kavitha et al. (2011), we show how mixed popular
partitions in roommate games can be computed in polynomial time via linear pro-
gramming and a separation oracle on a subpolytope of the matching polytope for
non-bipartite graphs.1 This stands in contrast to a recent result showing that com-
puting popular partitions in roommate games is NP-hard (Faenza, Kavitha, Power,
& Zhang, 2019; Gupta, Misra, Saurabh, & Zehavi, 2019).

• As corollaries we obtain that verifying popular partitions (Biró, Irving, & Manlove,
2010), finding Pareto optimal partitions (Aziz, Brandt, & Harrenstein, 2013a), and
finding strongly popular partitions can all be done in polynomial time in roommate
games, even when preferences admit ties. The latter statement resolves an acknowl-
edged open problem.2

1. The results by Kavitha et al. (2011) only hold for house allocation and marriage markets and require
extra work to be extended to roommate markets. See Section 2 for more details.

2. See, for example, Biró et al. (2010) and Manlove (2013): “A third open problem is the complexity of
finding a strongly popular matching (or reporting that none exists), for an instance of RPT [Roommate
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• We provide the first negative computational results for mixed popular partitions and
strongly popular partitions by showing that finding these partitions in flatmate games
is NP-hard. Moreover, it turns out, that verifying whether a given partition is popular,
strongly popular, or mixed popular in flatmate games is coNP-complete. All of these
results hold for strict and globally ranked preferences, where coalitions appear in the
same order in each individual preference ranking. This is interesting insofar as finding
popular partitions in roommate games becomes tractable under the same restrictions.

• We prove that computing popular, strongly popular, and mixed popular partitions is
NP-hard in symmetric additively separable hedonic games and symmetric fractional
hedonic games. Furthermore, we show coNP-completeness of all corresponding verifi-
cation problems.

• Many of our hardness reductions follow a general scheme that might be of broader
interest beyond the scope of popularity. Specifically, we merely embed the combi-
natorial structure of an NP-hard problem (in our case the incidence structure of a
covering instance) into the leaves of an object similar to a binary tree. Within this
tree, we can propagate all relevant information for the property under consideration
(e.g., popularity) to the root agent of the tree, which then acts as a decision taker in
our reduction. Hence, checking exponentially many partitions relevant to popularity
reduces to checking one specific agent.

2. Related Work

Gärdenfors (1975) first proposed the notions of popularity and strong popularity in the
context of marriage games. He showed that popular matchings (or “majority assignments”
in his terminology) need not exist when preferences are weak, but that existence is guar-
anteed for strict preferences because every stable matching is popular. As a consequence,
the well-known Gale-Shapley algorithm efficiently identifies popular matchings in marriage
games with strict preferences. Kavitha and Nasre (2009), Huang and Kavitha (2011), and
Kavitha (2014) provide efficient algorithms for computing popular matchings that satisfy
additional properties such as rank maximality or maximum cardinality. For weak prefer-
ences, computing popular matchings is NP-hard, even when all agents belonging to one side
have strict preferences (Biró et al., 2010; Cseh, Huang, & Kavitha, 2015).

In the more restricted setting of house allocation (henceforth housing games), Abraham,
Irving, Kavitha, and Mehlhorn (2007) proposed efficient algorithms for finding popular
allocations of maximum cardinality for both weak and strict preferences. Mahdian (2006)
proved an interesting threshold for the existence of popular allocations: if there are n agents
and the number of houses exceeds αn with α ≈ 1.42, then the probability that there is a
popular allocation converges to 1 as n goes to infinity.

For roommate games with weak preferences, NP-hardness of computing popular match-
ings follows from the above-mentioned hardness results for marriage games. It was recently

Problem with Ties]” (Biró et al., 2010, p. 107); “Our last open problem concerns the complexity of the
problem of finding a strongly popular matching, or reporting that none exists, given an instance of SRTI
[Stable Roommates with Ties and Incomplete lists], which is unknown at the time of writing” (Manlove,
2013, p. 380).

571



Brandt & Bullinger

shown that this problem is still NP-hard when preferences are strict (Gupta et al., 2019;
Faenza et al., 2019; Cseh & Kavitha, 2018). Also, finding a maximum-cardinality popular
matching in instances where popular matchings are guaranteed to exist is NP-hard (Brandl
& Kavitha, 2018).

There are less results on strongly popular matchings. It is known from Gärdenfors (1975)
that a strongly popular matching has to be a unique popular matching and that every
strongly popular matching is stable in roommate and marriage games. Based on these
insights, Biró et al. (2010) showed that strongly popular matchings in roommate games
and marriage games with strict preferences can be found efficiently by first computing an
arbitrary stable matching and then checking whether it is strongly popular. The case of
weak preferences was left open and little progress has been made since then. Király and
Mészáros-Karkus (2017) recently gave an algorithm for finding strongly popular matchings
in marriage games where preferences are strict, except that agents belonging to one side
may be completely indifferent. In housing games, a matching is strongly popular if and only
if it is a unique perfect matching. Hence, strongly popular matchings in housing games can
be found in polynomial time. All of the above mentioned results on strong popularity,
including the open problem, follow from our Corollary 3.

Mixed popular matchings were introduced by Kavitha et al. (2011) who also showed
how to compute a fractional popular matching in housing games and marriage games,
which can then be translated into a mixed popular matching via a Birkhoff-von Neumann
decomposition. This is possible in bipartite settings because every fractional matching is
implementable as a probability distribution over deterministic matchings. When moving
from marriage markets to roommate markets, this does not hold anymore. For example, a
matching involving three agents where every pair of agents is matched with probability 1/2
is not implementable. Huang and Kavitha (2017) have shown that in marriage games with
strict preferences, the popular matching polytope is half-integral and that half-integral
mixed popular matchings can be computed in polynomial time. No such matchings are
guaranteed to exist when preferences are weak. They also apply the same techniques to
roommate games in order to compute an optimal half-integral solution over the bipartite
matching polytope in the case of strict preferences. However, the resulting solutions may
again fail to be implementable. Apart from that, their methods heavily rely on computing
stable matchings, which may be intractable when preferences are weak. By contrast, our
results in Section 4.2.1 are based on the matching polytope for non-bipartite graphs via
odd-set constraints and allow both to deal with ties and to efficiently compute a solution
that is implementable using LP methods (Proposition 5).3 The axiomatic properties of
mixed popular matchings such as efficiency and strategyproofness were investigated by
Aziz, Brandt, and Stursberg (2013c), Brandt, Hofbauer, and Suderland (2017), and Brandl,
Brandt, and Hofbauer (2017).

To the best of our knowledge, popularity, strong popularity, and mixed popularity have
not been studied for coalition formation settings that go beyond coalitions of size 2 except for

3. The journal version of the paper by Huang and Kavitha (2017), which appeared after the conference
version of our paper, also independently considers the non-bipartite matching polytope and briefly out-
lines how to compute mixed popular matchings (Huang & Kavitha, 2021). However, some important
subtleties such as how to retain deterministic matchings from the fractional solution (our Proposition 5)
are not considered.
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a theorem by Aziz, Brandt, and Seedig (2013b, Th. 15) who claimed that checking whether a
partition is popular in ASHGs is NP-hard and that verifying whether a partition is popular
is coNP-complete. However, the proof of the first statement is incorrect.4 We substantially
modified the reduction to prove a stronger statement and independently proved a stronger
statement for the verification problem.

3. Preliminaries

Let N be a finite set of agents. A coalition is a non-empty subset of N . By Ni we denote
the set of coalitions agent i belongs to, i.e., Ni = {S ⊆ N : i ∈ S}. A coalition structure,
or simply a partition, is a partition π of the agents N into coalitions, where π(i) is the
coalition agent i belongs to. A mixed partition is a set p = {(π1, p1), . . . , (πk, pk)}, where πi
s a partition for every i ∈ {1, . . . , k}, and (p1, . . . , pk) represents a probability distribution.
A mixed partition is interpreted as a randomization over partitions.

A hedonic game is a pair (N,≿), where ≿ = (≿i)i∈N is a preference profile specifying
the preferences of each agent i as a complete and transitive preference relation ≿i over Ni.
If ≿i is also anti-symmetric we say that i’s preferences are strict. Otherwise, we say that
preferences are weak. We denote by S ≻i T if S ≿i T but not T ≿i S—i.e., i strictly
prefers S to T—and by S ∼i T if both S ≿i T and T ≿i S—i.e., i is indifferent between S
and T . In hedonic games, agents are only concerned about their own coalition. Accordingly,
preferences over coalitions naturally extend to preferences over partitions as follows: π ≿i π

′

if and only if π(i) ≿i π
′(i).

Sometimes, we consider strict preferences, which are obtained from weak preferences by
breaking ties arbitrarily. To express such preferences succinctly, given a set X of alterna-
tives, we denote by X≻ an arbitrary, but fixed strict preference order of the alternatives
in X. For example, a ≻ {b, c}≻ ≻ d could be replaced by a ≻ b ≻ c ≻ d. For simplicity,
one can assume that ties are broken lexicographically. When referring to index sets, such
as sets of players, we use the shorthand [k] for {1, . . . , k} and [k, l] for {k, . . . , l}.

Two basic properties of partitions are Pareto optimality and individual rationality.
Given a hedonic game (N,≿), a partition π is Pareto optimal if there is no partition π′

such that π′ ≿j π for all agents j and π′ ≻i π for at least one agent i. A coalition S ∈ Ni is
individually rational for agent i if she prefers the coalition to staying alone, i.e., C ≿i {i}.
A Partition π is individually rational if π(i) ≿i {i} for all i ∈ N . The rationale behind
individual rationality is that agents cannot be forced into a coalition.

Individual rationality is also the crucial ingredient of a succinct representation of he-
donic games where only the preferences over individually rational coalitions are considered
(Ballester, 2004). A hedonic game (N,≿) is represented by Individually Rational Lists of
Coalitions (IRLC) via the game (N,≿′) where ≿′ is a preference profile such that ≿′

i is the
restriction of ≿i to individually rational coalitions in Ni. In this case, (N,≿) is called a
completion of (N,≿′). This representation of games is useful to obtain meaningful hardness
results because the size of the naive representation of a hedonic game is exponential in the

4. The reduction fails because for a Yes-instance of Exact 3-Cover, the partition π claimed to be popular
for the ASHG it maps to is not popular: the partition π′ = {{ys, zs1, z

s
2} : s ∈ S} ∪ {{br1, ar

2} : r ∈
R} ∪ {{br2, ar

1, a
r
3} : r ∈ R} is more popular.
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number of agents while the IRLC representation may only require polynomial space if the
number of individually rational coalitions is small enough.

In order to define popularity and strong popularity, let N(π, π′) be the set of agents who
prefer π over π′, i.e., N(π, π′) = {i ∈ N : π(i) ≻i π

′(i)}, where π, π′ are two partitions of N .
For any subset M ⊆ N of agents and partitions π, π′ of N , ϕM (π, π′) = |N(π, π′) ∩M | −
|N(π′, π) ∩M | is called the popularity margin on M with respect to π and π′. If M = {i}
is a singleton set, we use the shorthand notation ϕi instead of ϕ{i}. On top of that, we
define the popularity margin of π and π′ as ϕ(π, π′) = ϕN (π, π′). Then, π is called more
popular than π′ if ϕ(π, π′) > 0. Furthermore, π is called popular if, for all partitions π′,
ϕ(π, π′) ≥ 0, i.e., no partition is more popular than π. Also, π is called strongly popular if,
for all partitions π′ ̸= π, ϕ(π, π′) > 0, i.e., π is more popular than every other partition.
Note that there can be at most one strongly popular partition in any hedonic game.

For a hedonic game (N,≿) in IRLC representation, a partition π is called popular if
it is popular in the completion of (N,≿) where, for each agent, all coalitions that are not
individually rational are gathered in a single indifference class that is less preferred than the
singleton coalition. This definition of popularity generalizes the definition of popularity that
is used for marriage games by Kavitha et al. (2011), and adds the appropriate perspective
on individual rationality.5 Note that a popular partition need not be individually rational.

Many hedonic games do not admit a popular partition. However, existence can be
guaranteed by introducing randomization via mixed partitions, i.e., probability distributions
over partitions. Let therefore two mixed partitions p = {(π1, p1), . . . , (πk, pk)} and q =
{(σ1, q1), . . . , (σl, ql)} be given, where (p1, . . . , pk), (q1, . . . .ql) are probability distributions.
We define the popularity margin of p and q as their expected popularity margin, i.e.,

ϕ(p, q) =

k∑
i=1

l∑
j=1

piqjϕ(πi, σj).

Clearly, the definition of popularity carries over to the extension of ϕ. As first observed by
Kavitha et al. (2011), mixed popular partitions always exist, because they can be interpreted
as maximin strategies of a symmetric zero-sum game (see also Fishburn, 1984; Aziz et al.,
2013c).

Proposition 1. Every hedonic game admits a mixed popular partition.

Proof. Every hedonic game can be viewed as a finite two-player symmetric zero-sum game
where the rows and columns of the two players are indexed by all possible partitions
π1, . . . , πB|N| and the entry at position (i, j) of the game matrix is ϕ(πi, πj). There, B|N |
denotes the Bell number. By the Minimax Theorem (von Neumann, 1928), the value of
this game is 0 and therefore, any maximin strategy, whose existence is guaranteed, is pop-
ular.

5. The IRLC representation ignores preferences over coalitions that are not individually rational. However,
in contrast to core stability or Nash stability, these preferences can affect whether a partition is popular or
not. In order to circumvent this problem, one could strengthen the definition of popularity by requiring
that a coalition needs to be popular for all extensions of the IRLC represented preferences. All our
results also hold for this notion, because we construct individually rational partitions for which the two
notions of popularity coincide.
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Before stating and proving our results, we illustrate the most important concepts by
means of an example.

Example 1. Consider a hedonic game (N,≿) with N = {a, b, c, d} where preferences are
given in IRLC representation:

• N ≻a {a, b} ≻a {a, c} ≻a {a, d} ≻a {a}

• N ≻b {b, c} ≻b {b, a} ≻b {b, d} ≻b {b}

• {c, a} ≻c {c, b} ≻c {c, d} ≻c N ≻c {c}

• {d, a} ∼d {d, b} ∼d {d, c} ≻d N ≻d {d}

π0

π1

π2

π3

1

1
1

Then, the Pareto optimal partitions (which are the only ones relevant for popular-
ity) are π0 = {N}, π1 = {{a, b}, {c, d}}, π2 = {{a, c}, {b, d}}, and π3 = {{a, d}, {b, c}}.
Their popularity margins are depicted right of the preferences, where a dashed line de-
notes indifference with respect to popularity. In particular, π0 is the only (deterministic)
popular partition and there is no strongly popular partition. Further, the mixed partition
p = {(π1, 1/3), (π2, 1/3), (π3, 1/3)} is mixed popular. It holds that ϕ(p, π0) = ϕ(p, π1) =
ϕ(p, π2) = ϕ(p, π3) = 0.

4. Results

Our results are divided into three subsections. We first show some basic properties and
relationships between the different notions of popularity. Then, we analyze popularity in
ordinal hedonic games (such as flatmate and roommate games) and cardinal hedonic games
(such as additively separable and fractional hedonic games), respectively.

4.1 Basic Relationships

Clearly, a strongly popular partition is also popular and a popular partition, interpreted
as a probability distribution with singleton support, is mixed popular. Furthermore, every
coalition structure in the support of a mixed popular partition is Pareto optimal. This
already follows from a more general statement by Fishburn (1984, Prop. 3). We give a
simple proof for completeness.

Proposition 2. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition. Then, for
every i ∈ [k] with pi > 0, πi is Pareto optimal.

Proof. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition and fix i ∈ [k] such
that pi > 0. Assume for contradiction that π′

i is a Pareto improvement over πi. De-
fine p′ = {(π1, p1), . . . , (πi−1, pi−1), (π

′
i, pi), (πi+1, pi+1), . . . , (πk, pk)}. Note that ϕ(π′

i, p) =∑k
j=1,j ̸=i pjϕ(π

′
i, πj)+piϕ(π

′
i, πi) ≥

∑k
j=1,j ̸=i pjϕ(πi, πj)+piϕ(π

′
i, πi) >

∑k
j=1,j ̸=i pjϕ(πi, πj)+

piϕ(πi, πi) = ϕ(πi, p).

Then, ϕ(p′, p) =
∑k

j=1,j ̸=i pjϕ(πj , p) + piϕ(π
′
i, p) >

∑k
j=1,j ̸=i pjϕ(πj , p) + piϕ(πi, p) =

ϕ(p, p) = 0.

Hence, p is not mixed popular, a contradiction.
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We thus have the following relationships between strong popularity (sPop), popularity
(Pop), partitions in the support of any mixed popular partition (supp(mPop)), and Pareto
optimality (PO):

sPop =⇒ Pop =⇒ supp(mPop) =⇒ PO.

The concepts printed in boldface are guaranteed to exist. As a consequence, hardness
results for computing Pareto optimal partitions imply hardness of computing mixed popular
partitions (though not for popular partitions since they need not exist). Mixed popular
partitions also satisfy probabilistic strengthenings of Pareto optimality based on stochastic
dominance and pairwise comparisons (Aziz, Brandl, Brandt, & Brill, 2018).

The existence problems for popular and strongly popular partitions are naturally con-
tained in the complexity class Σp

2. The verification problems are contained in coNP. The
following relationship turns out to be helpful for deducing the complexity of verifying mixed
popular partitions from the respective result for popular partitions.

Proposition 3. Let a class of hedonic games be given such that the verification problem of
popular partitions is coNP-hard. Then, the verification problem of mixed popular partitions
is coNP-hard.

Proof. Let C be a class of hedonic games and let (G, π) be an instance of the deterministic
verification problem, i.e. G ∈ C is a hedonic game and π a partition of the agents of G.
By linearity of π′ 7→ ϕ(π, π′), π is popular if, and only if, it is mixed popular. Hence, the
embedding of the deterministic into the mixed case gives the desired reduction for coNP-
hardness.

Hence, whenever hardness results are obtained for the verification of popularity, they
transfer automatically to mixed popularity. Conversely, polynomial-time algorithms for
mixed popularity can be used to efficiently verify whether a partition is popular.

Also, since partitions have polynomial size (with respect to the number of agents), we can
use more popular partitions as polynomial-size certificates to No-instances of the verification
problem. This shows membership in coNP in the deterministic case and can also be applied
for mixed popularity. Indeed, whenever there exists a more popular mixed coalition, then
there exists also a more popular deterministic one. If p is a mixed partition for a game
G and p′ = {(π′

1, p
′
1), . . . , (π

′
k, p

′
k)} is more popular, then 0 < ϕ(p′, p) =

∑k
i=1 p

′
iϕ(π

′
i, p).

Consequently, for some i ∈ [k], ϕ(π′
i, p) > 0.

Popular partitions are not only Pareto optimal, but it also suffices to compare a partition
against Pareto optimal partitions when checking for popularity. This is useful when proving
popularity of a given partition, for example in hardness reductions.

Proposition 4. A partition π is popular if and only if, for all Pareto optimal partitions
π′, ϕ(π, π′) ≥ 0. In addition, π is strongly popular if and only if, for all Pareto optimal
partitions π′ ̸= π, ϕ(π, π′) > 0.

Proof. We show that the respective popularity margin with Pareto optimal partition deter-
mine popularity.

This follows from the fact that for every two partitions π, π̂, and a Pareto optimal Pareto
improvement π′ of π̂, it holds that ϕ(π, π̂) ≥ ϕ(π, π′). If we investigate strong popularity,
it can happen that π′ = π, but in this case ϕ(π, π̂) > 0 by Pareto dominance.
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4.2 Ordinal Hedonic Games

In this section we investigate hedonic games in IRLC representation. Important subclasses
of these games are defined by restricting the size of individually rational coalitions using a
global constant. We thus obtain flatmate games as games in which only coalitions of up to
three agents are individually rational and roommate games as games in which only coalitions
of size 2 are individually rational. More restrictions are obtained by partitioning the set
of agents into two groups, say, into males and females, and even further by additionally
demanding that one group of agents is completely indifferent, say, by assuming that they
are objects such as houses. A marriage game is a roommate game where the agents can
be partitioned in two sets such that the only individually rational partitions are formed
with agents from the other set. A housing game is a marriage game where all agents
belonging to one set of the partition are completely indifferent. In roommate games (and
their subclasses), partitions are referred to as matchings. All of these classes permit IRLC
representations with size bounded polynomially with respect to the number of the agents.
We have the following inclusion relationships.6

Housing ⊊ Marriage ⊊ Roommates ⊊ Flatmates ⊊ IRLC.

Finally we consider a severe preference restriction in coalition formation. A preference
profile admits globally ranked preferences if there exists a common (global) ranking ≿ of all
coalitions in 2N \ {∅} and each individual preference relation ≿i is the restriction of ≿ to
Ni.

Under globally ranked preferences, the intractability of computing popular matchings
in roommates games with strict preferences (Gupta et al., 2019; Faenza et al., 2019; Cseh
& Kavitha, 2018) breaks down. In fact, it is known that under these preferences, every
roommate game admits a stable matching, which can furthermore be efficiently computed
(Abraham, Leravi, Manlove, & O’Malley, 2008). Since every stable matching also happens
to be popular for strict preferences (see Section 2), this implies that computing popular
matchings in roommates games becomes tractable. By contrast, all hardness results for
flatmate games that will be shown in Section 4.2.2 hold even when preferences are globally
ranked. This confirms the robustness of these results and underlines the crucial difference
between settings with coalitions of size 2 and coalitions of size 3.

In our reductions, we consider hedonic games in globally ranked IRLC representation
that are further restricted. All coalitions C in the reduced instances are either individually
rational for all agents in C or for none. Hence, the global ranking of coalitions can be
compactly represented by omitting all coalitions C that are ranked below any of the singleton
coalitions consisting of one of the members of C. Any such coalition is Pareto dominated
and therefore irrelevant for popularity (Proposition 4).

When defining global rankings we will often connect rankings over subsets of coalitions
with each other. To simplify the exposition, we introduce the notion of the join of two
preference relations ≿1 and ≿2 over two disjoint sets (of coalitions) C1 and C2, respectively,
as the preference relation join(≿1,≿2) = ≿1 ∪ ≿2 ∪ C1 × C2 over the set C1 ∪ C2. In
other words, two sets X,Y ∈ C1, C2 are in relation join(≿1,≿2) if X,Y ∈ Ci and X ≿i Y
for some i ∈ [2], or if X ∈ C1 and Y ∈ C2. We extend this definition recursively to the

6. Note that the inclusion between housing games and marriage games does not hold for strict preferences.
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join of relations ≿1, . . . ,≿k over pairwise disjoint sets C1, . . . , Ck as join(C1, . . . , Ck) =
join(join(C1, . . . , Ck−1), Ck) for k ≥ 3. Note that the join operation is not commutative.

4.2.1 Roommate Games

We start by investigating mixed popularity in roommate games by an LP-based approach,
which will later have important consequences for popular and strongly popular matchings.

Kavitha et al. (2011) showed that mixed popular matchings in housing games and mar-
riage games can be found in polynomial time. However, as explained in Section 2, their
algorithm cannot directly be applied to roommate games. In this section, we show how to
obtain an algorithm for the more general class of roommate games.

To introduce our matching notation, we fix a graph G = (N,E) where the vertex set is
the set of agents and there is an edge between two vertices if the corresponding coalition
of size 2 is individually rational for both agents. For technical reasons, it is useful to
restrict attention to the case of perfect matchings, i.e., matchings in which every vertex is
matched with some vertex. Similarly to the construction by Kavitha et al. (2011), this can
be achieved by introducing worst-case partners wa for every agent a with {a,wa} ∼a {a}.
These worst-case partners are not individually rational for all other original agents, and are
indifferent among all other agents themselves. They mimic the case when an agent remains
unmatched and do not affect the popularity of a partition. In graph-theoretic terms, this is
equivalent to adding a loop to every vertex. If some loop is contained in a perfect matching,
this means that the agent is matched to herself, or in other words, remains unmatched.

We now establish a relationship between mixed matchings and fractional matchings,
where the latter are defined as points in the (perfect) matching polytope PMat ⊆ [0, 1]E ,
defined as follows (Edmonds, 1965).

PMat = {x ∈ RE :
∑

e∈E,v∈e
x(e) = 1 ∀v ∈ N,

∑
e∈{{v,w}∈E : v,w∈C}

x(e) ≤ |C| − 1

2
∀C ⊆ N, |C| odd,

x(e) ≥ 0 ∀e ∈ E}

The main constraint is often called odd set constraint and ensures that, for every odd set
of agents C, the weight of the fractional matching restricted to these agents is at most
(|C| − 1)/2, where this quantity is equal to the maximum cardinality that any matching on
the set C may have.

Given a matching M , denote by χM ∈ PMat its incidence vector. We obtain a cor-
respondence of mixed matchings and fractional matchings by mapping a mixed match-
ing p = {(M1, p1), . . . , (Mk, pk)} to the fractional matching xp =

∑k
i=1 piχMi . Note that

xp ∈ PMat by convexity. Since we only want to operate on the more concise matching
polytope, we need to ensure that we can recover a mixed matching efficiently. The follow-
ing proposition, which is based on general LP theory, can be seen as an extension of the
Birkhoff-von Neumann theorem to non-bipartite graphs.

578



Finding and Recognizing Popular Coalition Structures

Proposition 5. Let G = (N,E) be a graph and x ∈ PMat a vector in the associated
matching polytope. Then, a mixed matching p = {(M1, p1), . . . , (Mk, pk)} such that xp = x
can be found in polynomial time.

Proof. The separation problem for the matching polytope PMat can be solved in polynomial
time, i.e., the class of matching polytopes is solvable. Therefore, given a graph G = (N,E)
and a vector x ∈ PMat we can find a convex combination of extreme points of PMat that
yield x in polynomial time (Grötschel, Lovász, & Schrijver, 1981, Th. 3.9). A combinatorial
algorithm to address this problem was proposed by Padberg and Wolsey (1984).

Since the extreme points of the matching polytope are the incidence vectors of matchings
(Edmonds, 1965), this is a mixed matching whose corresponding fractional matching is x.

To be able to operate on fractional matchings only, we seek to define popularity of
fractional matchings equivalent to popularity of mixed matchings that induce them. Popular
fractional matchings can be described as feasible points of a (non-empty) subpolytope of the
matching polytope. The separation problem for the subpolytope can be solved efficiently
using a modification of McCutchen’s algorithm for determining the unpopularity margin of
a matching (McCutchen, 2008).

To this end, we need to define the popularity margin for fractional matchings. Given
x, y ∈ PMat , we define their popularity margin as

ϕ(x, y) =
∑
a∈N

∑
i,j∈NG(a)

x(a, i)y(a, j)ϕa(i, j)

where NG(a) = {v ∈ N : {v, a} ∈ E} is the neighborhood of a in G and

ϕa(i, j) =


1 if i ≻a j

−1 if i ≺a j

0 if i ∼a j

.

Imagine that the matchings x and y independently match agent a to agent i and j
with probability x(a, i) and y(a, j), respectively. Then, we can interpret the quantity
x(a, i)y(a, j)ϕa(i, j) as the probability of agent a being matched to i through x and to
j through y times the characteristic function of agent a’s binary preference between these
two matching partners. Then,

∑
i,j∈NG(a) x(a, i)y(a, j)ϕa(i, j) is the expected preference of

agent a between matchings x and y, and ϕ(x, y) is the expected popularity margin of the
preferences of all agents.

Next, we relate the popularity margins of both worlds. The proof of the next proposition
is identical to the corresponding statement for marriage games by Kavitha et al. (2011). For
the sake of self-containment, we state its proof in the appendix. All other missing proofs
can also be found in the appendix.

Proposition 6. Let p and q be mixed matchings. Then,

ϕ(p, q) = ϕ(xp, xq).

In particular, p is popular if and only if for all matchings M , ϕ(xp, χM ) ≥ 0.
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As a consequence, mixed popular matchings correspond precisely to the feasible points
of the polytope

PPop = {x ∈ PMat : ϕ(x, χM ) ≥ 0 for all matchings M}.

It remains to find a feasible point of the popularity polytope PPop . By adopting the
auxiliary graph in McCutchen’s algorithm for non-bipartite graphs, we can find a matching
M minimizing ϕ(x, χM ) by solving a maximum weight matching problem (McCutchen,
2008). This solves the separation problem for PPop .

Proposition 7. The separation problem for PPop can be solved in polynomial time.

We are now ready to prove the following theorem.

Theorem 1. Mixed popular matchings in roommate games with weak preferences can be
found in polynomial time.

Proof. By Proposition 7 and by means of the Ellipsoid method (Khachiyan, 1979), we can
find a fractional popular matching in polynomial time. This can be translated into a mixed
popular matching by leveraging Proposition 5.

Theorem 1 has a number of interesting consequences. Since every mixed popular match-
ing is Pareto optimal, we now have an LP-based algorithm to find Pareto optimal matchings
for weak preferences as an alternative to combinatorial algorithms like the Preference Re-
finement Algorithm by Aziz et al. (2013a).

Corollary 1. Pareto optimal matchings in roommate games with weak preferences can be
found in polynomial time.

Biró et al. (2010) provided a sophisticated algorithm for verifying whether a given match-
ing is popular. An efficient LP-based algorithm for this problem follows from Theorem 1.

Corollary 2. It can be verified in polynomial time whether a given matching in a roommate
game is popular.

Finally, the linear programming approach allows us to resolve the open problem of
finding strongly popular matchings when preferences are weak.

Corollary 3. Finding a strongly popular matching or deciding that no such matching exists
in roommate games with weak preferences can be done in polynomial time.

Proof. If a strongly popular matching exists, it is unique. In particular, it is the unique
mixed popular matching. Given a (deterministic) matching M , we can check in polynomial
time if it is strongly popular. We can apply the reduction of Proposition 7 and check whether
the maximum weight matching amongst the matchings different to M on the auxiliary graph
has negative weight (in which case the matching M is strongly popular) or not. Note that
every matching different to M is contained in at least one (incomplete) graph obtained by
deleting an edge from M , while M is not contained in any such graph. Hence, we simply
compute a maximum weight matching for every graph obtained by deleting exactly one edge
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from M in the auxiliary graph. The maximum weight matching amongst these matchings
has the highest weight amongst matchings different from M .

The algorithm to compute a strongly popular matching if one exists first computes a
fractional popular matching. If it does not correspond to a deterministic matching, there
exists no strongly popular matching. Otherwise, it is deterministic and, as described above,
we can check if it is strongly popular. If this is the case, we return it. If not, there exists
no strongly popular matching.

As shown in the previous proof, the verification problem for strongly popular matchings
in roommate games can also be solved efficiently.

4.2.2 Flatmate Games

It turns out that moving from coalitions of size 2 to size 3 renders all search problems
related to popular partitions intractable. For mixed popular partitions, we can leverage the
relationship to Pareto optimal partitions. Aziz et al. (2013a, Th. 5) have shown that finding
Pareto optimal partitions in flatmate games with weak preferences is NP-hard. Since mixed
popular partitions are guaranteed to exist (Proposition 1) and satisfy Pareto optimality
(Proposition 2), this immediately implies the NP-hardness of computing mixed popular
partitions by means of a Turing reduction.7

Theorem 2. Computing a partition in the support of a mixed popular partition in flatmate
games with weak preferences is NP-hard.

For strict preferences, the same method does not work. Pareto optimal partitions can
always be found efficiently by serial dictatorship. Therefore, we will give direct reductions
that yield hardness for strong popularity and mixed popularity in flatmate games with
strict preferences. The reduction for popularity is a bit more involved and will be given
afterwards. All of these reductions are based on a common type of flatmate games that
evolve from instances of the NP-complete problem Exact 3-Cover (Karp, 1972). An instance
(R,S) of Exact 3-Cover (X3C) consists of a ground set R together with a set S of 3-element
subsets of R. A Yes-instance is an instance such that there exists a subset S′ ⊆ S that
partitions R.

Before presenting the proof, we want to discuss our proof strategy which is very generic
and also key to many hardness reductions for cardinal hedonic games in Section 4.3. We
want to describe the essential properties satisfied by reduced instances of our reduction. We
say that a class of games satisfies property PP (for popularity propagation) if there exists
a polynomial-time reduction from X3C that constructs for every instance (R,S) a game
(N,≿) together with a special agent x ∈ N , and a partition π∗ such that for every partition
π ̸= π∗, it holds that

1. ϕ(π∗, π) ≥ 1,

2. if π∗(x) ∩ π(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a Yes-instance,

3. for all y ∈ N , π∗(y) ≻y {y}, and

7. Using the same argument, one can transfer further results on Pareto optimality (Aziz et al., 2013a), e.g.,
for room-roommate games or three-cyclic matching games.
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4. π∗(x) ≻x C for all C ∈ Nx \ {π∗(x)}.

In addition, if (R,S) is a Yes-instance, then there exists a partition π′ with

5. ϕ(π∗, π′) = 1, and

6. π′(x) = {x}.

The first condition guarantees that π∗ is strongly popular and with the second condition,
strong popularity is unaffected when adding one or two auxiliary agents that only have an
effect on x. The third condition is only needed for the proofs concerning fractional hedonic
games with non-negative utility functions, but it also holds for all other classes investigated.
It ensures that every agent is part of an individually rational coalition, and in fact prefers
her coalition in π∗ over staying alone. The forth condition says that x is in her unique top-
ranked coalition under the partition π∗. The last two properties ensure that we can obtain
a more popular partition by adding auxiliary agents that form a new coalition with x.

In this section, we will exemplify a reduction satisfying property PP for flatmate games.
We will first describe the reduced flatmate games, then prove the first two items of property
PP in Lemma 1. Then, we provide a lemma for global rankedness of the game, and finally
give the actual reductions which implicitly construct the partition π′ from property PP.

To this end, consider an instance (R,S) of X3C. Let k = min{k ∈ N : 2k ≥ |R|} be the
smallest power of 2 that is larger than the cardinality of R. We define a flatmate game on

vertex set N =
⋃k

j=0Nj , where Nj =
⋃2j

i=1A
i
j consists of 2j sets of agents Ai

j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [|R|],

• Ai
k = {aik, bik, cik, yi1, yi2} for i ∈ [|R|+ 1, 2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

Similar names of agents suggest that these agents are going to play the same role in the
reduction. The preferences are designed in a way such that if there exists no 3-partition
of R through sets in S, then there exists a unique best partition that assigns more than half
of the agents a top-ranked coalition. Otherwise, there exists a partition that puts exactly all
the other agents in one of their top coalitions. We order the set R in an arbitrary but fixed
way, say R = {r1, . . . , r|R|} and for a better understanding of the proof and the preferences,
we label the agents bik = ri for i ∈ [|R|]. If we view the set of agents N as k + 1 levels of
agents, then the ground set R of the instance of X3C is identified with some specific agents
in the top level k. Preferences of the agents are as follows. Recall that X≻ denotes an
arbitrary, but fixed strict preference order of the alternatives in X. We define

• {yi1, yi2} ≻yi1
{yi1}, i ∈ [|R|+ 1, 2k],

• {bik, yi2} ≻yi2
{yi1, yi2} ≻yi2

{yi2}, i ∈ [|R|+ 1, 2k],

• {aik, bik, cik} ≻aik
{aik, a

i+1
k , δ

(i+1)/2
k−1 } ≻aik

{aik}, i ∈ [2k] odd,
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• {aik, bik, cik} ≻aik
{aik, a

i−1
k , δ

i/2
k−1} ≻aik

{aik}, i ∈ [2k] even,

• {aij , βi
j , γ

i
j} ≻aij

{aij , bij , cij} ≻aij
{aij}, j ∈ [0, k − 1], i ∈ [2j ],

• {{bik, bvk, bwk } : {ri, rv, rw} ∈ S for v, w ∈ [|R|]}≻ ≻bik
{aik, bik, cik} ≻bik

{bik}, i ∈ [|R|],

• {bik, yi2} ≻bik
{aik, bik, cik} ≻bik

{bik}, i ∈ [|R|+ 1, 2k],

• {bij , c
2i−1
j+1 , c2ij+1} ≻bij

{aij , bij , cij} ≻bij
{bij}, j ∈ [0, k − 1], i ∈ [2j ],

• {aij , bij , cij} ≻cij
{cij , c

i+1
j , b

(i+1)/2
j−1 } ≻cij

{cij}, j ∈ [k], i ∈ [2j ] odd,

• {aij , bij , cij} ≻cij
{cij , c

i−1
j , b

i/2
j−1} ≻cij

{cij}, j ∈ [k], i ∈ [2j ] even,

• {a10, b10, c10} ≻c10
{c10},

• {αi
j , β

i
j} ≻αi

j
{αi

j , α
i+1
j , δ

(i+1)/2
j−1 } ≻αi

j
{αi

j}, j ∈ [k − 1], i ∈ [2j ] odd,

• {αi
j , β

i
j} ≻αi

j
{αi

j , α
i−1
j , δ

i/2
j−1} ≻αi

j
{αi

j}, j ∈ [k − 1], i ∈ [2j ] even,

• {α1
0, β

1
0} ≻α1

0
{α1

0},

• {βi
j , γ

i
j , a

i
j} ≻βi

j
{βi

j , α
i
j} ≻βi

j
{βi

j}, j ∈ [0, k − 1], i ∈ [2j ],

• {γij , δij} ≻γi
j
{βi

j , γ
i
j , a

i
j} ≻γi

j
{γij}, j ∈ [0, k − 1], i ∈ [2j ],

• {δij , α
2i−1
j+1 , α2i

j+1} ≻δij
{δij , γij} ≻δij

{δij}, j ∈ [0, k − 2], i ∈ [2j ], and

• {δik−1, a
2i−1
k , a2ik } ≻δik−1

{δik−1, γ
i
k−1} ≻δik−1

{δik−1}, i ∈ [2k−1].

The structure of the flatmate game is illustrated in Figure 1 for the case k = 3. We
will be particularly interested in coalitions of the types {aij , bij , cij}, {αi

j , β
i
j}, {γij , δij}, and

{yi1, yi2} which are marked by undirected edges. These coalitions form the partition π∗ of
Lemma 1 that we need later to investigate for strong and mixed popularity in the respective
reductions. The directed edges indicate that an agent at the tail of the arrow needs to form
a coalition with the agent at the tip of the arrow in order to improve from her coalition
of the above type. The ground structure of the set of agents can be viewed as a binary
tree of triangles depicted by the circular-shaped vertices. The important property of this
tree is that whenever a coalition of the type {aij , bij , cij} gets dissolved, there can only be an

improvement in popularity for the agents in Ai
j if they propagate changes in the partition

upwards within this tree. This is achieved for agents bij directly through the binary tree

and for agents aij with help of the auxiliary agents {αi
j , β

i
j , γ

i
j , δ

i
j} that are depicted as

diamond-shaped vertices.
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Figure 1: Schematic of the reduction for flatmate games with strict preferences. There is
an edge between two agents if they are in the coalition π∗ defined in Lemma 1.
Directed edges indicate improvements from π∗. The gray edges suggest a 3-
elementary set in S.

Lemma 1. Let an instance (R,S) of X3C be given and define the corresponding flat-
mate game as above. Consider the partition π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪
{{αi

j , β
i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {{yi1, yi2} : i ∈ [|R| + 1, 2k]}. Let π ̸= π∗

be an arbitrary partition of agents distinct from π∗. Then ϕ(π∗, π) ≥ 1. In addition, if
c10 ∈ N(π∗, π), then ϕ(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗).

Proof. Let an instance (R,S) of X3C be given and define the corresponding flatmate game
as above. Let π∗ be defined as in the lemma and π ̸= π∗ another partition. We recursively
define the following sets of agents: for i ∈ [2k], T i

k = Ai
k and for j = k − 1, . . . , 0, i ∈ [2j ],

T i
j = Ai

j ∪ T 2i−1
j+1 ∪ T 2i

j+1. We will prove the following claim by induction over j = k, . . . , 0.

For every i ∈ [2j ] holds: Assume there exists an agent x ∈ T i
j with π(x) ̸= π∗(x). Then

ϕT i
j
(π∗, π) ≥ 1. If even π(aij) ̸= π∗(aij), then ϕT i

j
(π∗, π) ≥ 3∨{bik : i ∈ [2k]}∩T i

j ⊆ N(π, π∗).

Note that the claim implies ϕT i
j
(π∗, π) ≥ 0 in any case. Clearly, the assertion of the

lemma follows from the case j = 0.
We frequently use the facts that for all j ∈ [0, k − 1], i ∈ [2j ],

• αi
j /∈ N(π, π∗) and if βi

j ∈ N(π, π∗), then αi
j ∈ N(π∗, π), and
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• γij /∈ N(π, π∗) and if δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

The case j = k and i ∈ [2k] is immediate (using a similar fact for agents yi1 and yi2 in
the case i ∈ {|R|+ 1, . . . , 2k}).

For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. We will essentially prove
that changing the coalitions in Ai

j causes severe loss in popularity, unless we propagate

changes to substructures via bij or δij . Assume first that there exists an agent x ∈ T i
j with

π(x) ̸= π∗(x) but no such agent in Ai
j . Then, x ∈ T 2i−1

j+1 ∨ x ∈ T 2i
j+1 and the claim follows

by induction. Assume therefore that there exists an agent x ∈ Ai
j with π(x) ̸= π∗(x). Note

that ϕAi
j
(π, π∗) ≤ 1.

First consider the case that π(aij) ̸= π∗(aij). If bij ∈ N(π, π∗), we can apply induction

for T 2i−1
j+1 and T 2i

j+1 and we are done, because by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 4∨ {bik : i ∈

[2k]} ∩ (T 2i−1
j+1 ∪ T 2i

j+1) ⊆ N(π, π∗). We may therefore assume that bij ∈ N(π∗, π). Then,

ϕAi
j
(π∗, π) ≥ 3 or aij ∈ N(π, π∗). In the latter case, ϕAi

j
(π∗, π) ≥ 3 unless δij ∈ N(π, π∗).

Finally, if δij ∈ N(π, π∗), then the claim follows by induction for T 2i−1
j+1 and T 2i

j+1, because
ϕT i

j
(π∗, π) = ϕAi

j
(π∗, π) + ϕT 2i−1

j+1
(π∗, π) + ϕT 2i

j+1
(π∗, π) ≥ 1 + 1 + 1 = 3.

It remains the case that π(x) ̸= π∗(x) for x ∈ {αi
j , γ

i
j} while π(aij) = π∗(aij). If π(α

i
j) ̸=

π∗(αi
j), then ϕAi

j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π∗, π) ≥

0 ∧ π(δij) = {δij , α
2i−1
j+1 , α2i

j+1} and the claim follows by induction.

In the next lemma, we prove that the preferences used in the construction are even
globally ranked.

Lemma 2. Let an instance (R,S) of X3C be given and define the corresponding flatmate
game as above. Then, the preferences are globally ranked.

Proof. The global preferences are composed of preferences ≻0, . . . ,≻k over the sets of coali-
tions C0, . . . , Ck, where Cj is essentially the set of coalitions that is individually rational for

some agent in Ai
j for some i ∈ [2j ]. More formally, Ck =

⋃2k

i=1{C ⊆ N : ∃v ∈ Ai
k : C ≿v {v}}

and, for j = k − 1, . . . , 0, Cj =
⋃2j

i=1{C ⊆ N : ∃v ∈ Ai
j : C ≿v {v}} \ Cj+1. Note that this

separates coalitions by level, and Cj ∩ Cj′ = ∅ for j ̸= j′. In particular, coalitions of the
types {δij , α

2i−1
j+1 , α2i

j+1}, {δik−1, a
2i−1
k , a2ik }, and {bij , c

2i−1
j+1 , c2ij+1} that involve agents of two lev-

els are added to the coalitions of the higher level. The global ranking is given in succinct
form over

⋃k
j=0Cj as join(≻0, . . . ,≻k). It can be extended to a full global ranking by

adding coalitions that are not individually rational for one of its members at the bottom.
It remains to specify these subrankings. The preferences over sets of coalitions can always
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be arbitrary. The ranking ≻k is given as

{{yi1, yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{bik, yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{yi1}, {yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{bik, bvk, bwk } : {ri, rv, rw} ∈ S for v, w ∈ [|R|]}≻

≻k{{bik} : i ∈ [2k]}≻

≻k{{aik, bik, cik} : i ∈ [2k]}≻

≻k{{bik−1, c
2i−1
k , c2ik }, {δik−1, a

2i−1
k , a2ik } : i ∈ [2k−1]}≻

≻k{{aik}, {cik} : i ∈ [2k]}≻

For j ∈ [k − 1], the ranking ≻j is given as

{{γij , δij} : i ∈ [2j ]}≻

≻j{{aij , βi
j , γ

i
j} : i ∈ [2j ]}≻

≻j{{aij , bij , cij}, {αi
j , β

i
j} : i ∈ [2j ]}≻

≻j{{bij−1, c
2i−1
j , c2ij }, {δij−1, α

2i−1
j , α2i

j } : i ∈ [2j−1]}≻

≻j{{aij}, {bij}, {cij}, {αi
j}, {βi

j}, {γij}, {δij} : i ∈ [2j ]}≻

Finally, ≻0 is given as

{γ10 , δ10} ≻0 {a10, β1
0 , γ

1
0} ≻0 {{a10, b10, c10}, {α1

0, β
1
0}}≻

≻0{{a10}, {b10}, {c10}, {α1
0}, {β1

0}, {γ10}, {δ10}}≻

The individual preferences are clearly induced by the global ranking.

We are now ready to apply the two lemmas for the desired reductions.

Theorem 3. Deciding whether there exists a strongly popular partition in flatmate games
is coNP-hard, even if preferences are strict and globally ranked.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we define a hedonic
game on agent set N ′ = N ∪ {z} where the agents N are as in the above construction with
the identical preferences except changing the preferences of c10 to {a10, b10, c10} ≻c10

{c10, z} ≻c10

{c10}, and {c10, z} ≻z {z}. In particular, for every agent in N \{c10}, coalitions together with z
are not individually rational. Note that |N ′| = 3

∑k
j=0 2

j+4
∑k−1

j=0 2
j+2(2k−|R|−1)+1 =

12 · 2k − 2 · |R| − 8 = O(|R|) and the reduction is in polynomial time.
Consider the partition σ∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi

j , β
i
j}, {γij , δij} : j ∈

[0, k−1], i ∈ [2j ]}∪{{yi1, yi2} : i ∈ [|R|+1, 2k]}∪{{z}} = π∗∪{{z}} for the partition π∗ from
Lemma 1. Let σ ̸= σ∗ be given and define π = (σ \ σ(z)) ∪ {σ(z) \ {z}}, i.e. the partition
on the agent set N , where z left her coalition. Note that due to the preferences of agents
in N , ϕ(π∗, π) ≤ ϕN (σ∗, σ). We investigate the popularity margin of σ∗ and σ by a case
distinction over the possible coalitions for agent z using the knowledge of Lemma 1 about
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the relationship of the partitions π∗ and π. If σ(z) = {z}, then ϕ(σ∗, σ) = ϕ(π∗, π) ≥ 1.
If σ(z) = {c10, z}, then ϕ(σ∗, σ) ≥ −1 + ϕ(π∗, π) ≥ −1 + 1 ≥ 0. Otherwise, ϕ(σ∗, σ) =
1 + ϕ(π∗, π) ≥ 1. It follows directly that σ∗ is popular and hence there exists a strongly
popular partition if and only if σ∗ is strongly popular. We will prove that this is the case
if and only if the instance of X3C is a No-instance.

Assume that there exists no 3-partition of R through sets in S. The only case above,
where the popularity margin is not strictly positive, is if σ(z) = {z, c10}, but in this case
π(c10) = {c10} and it follows that ϕ(σ∗, σ) ≥ −1 + ϕ(π∗, π) ≥ −1 + 3 ≥ 2. Hence, σ∗ is
strongly popular.

Conversely, assume that there exists a 3-partition S′ ⊆ S of R. Define

σ′ ={{bvk, bwk , bxk} : {rv, rw, rx} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R|+ 1, 2k]}
∪ {{δik−1, a

2i−1
k , a2ik } : i ∈ [2k−1]} ∪ {{bij , c2i−1

j+1 , c2ij+1}, {aij , βi
j , γ

i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {z, c10}}.

It is easily checked that ϕ(σ′, σ∗) = 0.
Indeed, N(σ′, σ∗) = {bik : i ∈ [2k]} ∪ {βi

j , δ
i
j , a

i
j : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {yi2 : i ∈

[|R|+1, 2k]}∪{z}. Therefore, |N(σ′, σ∗)| = 2k+4
∑k−1

j=1 2
j+2k−(|R|+1)+1 = 6·2k−|R|−4 =

1
2 |N

′|. Hence, ϕ(σ′, σ∗) ≥ 0 and equality follows from popularity of σ∗. Therefore, there
exists no strongly popular partition.

A similar reduction as in Theorem 3 also works for mixed popularity. Then, however, we
need two auxiliary agents to control the switch between a strongly popular and non-popular
partition.

Theorem 4. Computing a mixed popular partition in flatmate games is NP-hard, even if
preferences are strict and globally ranked.

Popular partitions are guaranteed to exist in roommate games with strict and globally
ranked preferences (Abraham et al., 2008). We show by means of a counterexample that
this is no longer the case when moving from roommate to flatmate games. This example
game will serve as a crucial gadget to prove the hardness of computing popular partitions.

Proposition 8. There exists a flatmate game with strict and globally ranked preferences
which does not admit a popular partition.

Proof. Consider N = {x1, x2, x3} ∪ {zj1, z
j
2 : j ∈ [4]}, and preferences induced by the global

ranking ≻ given by {{x1, zj1, z
j
2} : j ∈ [4]}≻ ≻ {{x2, zj1, z

j
2} : j ∈ [4]}≻ ≻ {{x3, zj1, z

j
2} : j ∈

[4]}≻ ≻ ({{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]})≻. We claim that there exists no popular
partition. By Proposition 2, we only need to consider Pareto optimal partitions. Let π
be any Pareto optimal partition. Then π is individually rational. We will show how to
obtain a more popular partition. By the pigeon hole principle, there exists j ∈ [4] with
{zj1}, {z

j
2} ∈ π. If there exists i ∈ [3] with {xi} ∈ π, then creating the coalition {xi, zj1, z

j
2}

is more popular.
Otherwise, we may assume that for some {j1, j2, j3} ⊆ [4], π(xi) = {xi, zji1 , z

ji
2 }, for

i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new partition π′ by

forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 }, leaving zj11 and zj12 in singleton coalitions.
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Then, N(π′, π) ⊇ {zji1 , z
ji
2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , zj12 }. Hence,

ϕ(π′, π) ≥ 1.

The idea is to replace the agents xi of this example by the gadget of Lemma 1 to obtain
a hardness result.

Theorem 5. Deciding whether there exists a popular partition in flatmate games with strict
and globally ranked preferences is coNP-hard.

Proof. Given an instance (R,S) of X3C, we construct the flatmate game (N,≿) with strict
and globally ranked preferences as follows. We take 3 copies (Ni,≿i) of the game of
Lemma 1, where ≿i are the strict and globally ranked preferences of Lemma 2. Denote
the special partition and agent of the lemma by π∗

i and xi = c10i, respectively. Also, de-
note the set of coalitions ranked by ≿i with C ′

i and define Ci = C ′
i \ {{xi}}. We set

N = N1 ∪ N2 ∪ N3 ∪ {zj1, z
j
2 : j ∈ [4]}. To define global preferences, we define preferences

over C4 = {{xi, zj1, z
j
2} : i ∈ [3], j ∈ [4]} ∪ {{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]}.

{{x1, zj1, z
j
2} : j ∈ [4]}≻

≻4{{x2, zj1, z
j
2} : j ∈ [4]}≻

≻4{{x3, zj1, z
j
2} : j ∈ [4]}≻

≻4({{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]})≻

The global ranking is given over
⋃4

j=1Cj as ≿ = join(≿1,≿2,≿3,≿4) in succinct form.

We claim that there exists a popular partition if and only if (R,S) is a No-instance of
X3C.

If (R,S) is a No-instance, consider π∗ =
⋃3

i=1 π
∗
i ∪ {{zjk} : k ∈ [2], j ∈ [4]}. Let π be

any other partition. Let I = {i ∈ [3] : π∗(xi) ̸= π(xi) and define N ′ = N1 ∪ N2 ∪ N3 and
Z = {zj1, z

j
2 : j ∈ [4]}. We have ϕN ′(π∗, π) ≥ 3|I| (due to Lemma 1) while ϕZ(π, π

∗) ≤ 2|I|.
Hence, π∗ is more popular than π if |I| ≥ 1. In the case |I| = 0, it holds ϕN ′(π, π∗) ≤ 0
while ϕZ(π, π

∗) ≤ 0 and as π ̸= π∗, one of the inequalities must be strict.

Now assume that (R,S) is a Yes-instance of X3C and assume for contradiction that π
is popular (and hence Pareto optimal). Then, for i ∈ [3], i ∈ I. Indeed, if i /∈ I, then
π restricted to Ni must be π∗

i (otherwise, π∗
i is more popular). There exists j ∈ [4] with

π(zj1) ̸= {x1, zj1, z
j
2} and by Pareto optimality {zj1}, {z

j
2} ∈ π. We obtain a more popular

partition π′ by replacing the coalitions of Ni ∪ {zj1, z
j
2} by the partition of the proof of

Theorem 4 for the subgame (Ni,≿i).

It remains the case that I = [3]. We may assume that for some {j1, j2, j3} ⊆ [4], π(xi) =
{xi, zji1 , z

ji
2 }, for i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new

partition π′ by removing zj41 , zj42 from their coalitions and forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 },
leaving zj11 and zj12 in singleton coalitions.

Then, N(π′, π) ⊇ {zji1 , z
ji
2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , zj12 }. Hence,

ϕ(π′, π) ≥ 1, a contradiction.

588



Finding and Recognizing Popular Coalition Structures

To conclude the section, we deal with the problem of verifying whether a given partition
is popular or strongly popular. The respective results follow directly from the constructions
of the hardness of existence.

Theorem 6. Verifying whether a given partition in a flatmate game with strict and globally
ranked preferences is popular is coNP-complete.

Proof. In the proof of Theorem 5, the partition π∗ is popular if and only if (R,S) is a
No-instance of X3C.

Theorem 7. Verifying whether a given partition in a flatmate game is strongly popular is
coNP-complete, even if preferences are strict and globally ranked.

Proof. In the proof of Theorem 3, the partition π∗ is strongly popular if and only if (R,S)
is a No-instance of X3C.

We would like to remark a strong relationship of the existence and verification problems.
Our general proof strategy for the coNP-hardness of existence problems is to provide an
instance of a game together with a partition that is (strongly) popular if and only if the
constructed game arises from a No-instance of the NP-hard source problem (this is the
partition π∗ of property PP). If the game is based on a Yes-instance, there is no (strongly)
popular partition. In other words, all relevant questions on (strong) popularity can be
answered with this given partition.

Consequently, we actually prove coNP-hardness for a restriction of the verification prob-
lem that is only allowed to ask for verification of partitions that have to be (strongly) pop-
ular if such a partition exists. Clearly, the hardness of this restricted problem implies both
hardness of the verification and the existence problem. The latter follows from the simple
reduction that maps tuples (G, π) of a game and a partition to the game G. Instead of
giving the reduction for this unifying problem, we prefer not to introduce this restricted
verification problem, and to keep the focus on the problems that we are actually interested
in. Still, the same phenomenon will occur again for the proofs regarding cardinal hedonic
games in the next section.

4.3 Cardinal Hedonic Games

Important subclasses of hedonic games that admit succinct representations are based on
cardinal utility functions. For one, there are additively separable hedonic games (Bogomol-
naia & Jackson, 2002), where the utility that an agent associates with a coalition is the
sum of utilities he ascribes to each member of the coalition. On the other hand, there are
fractional hedonic games (Aziz, Brandl, Brandt, Harrenstein, Olsen, & Peters, 2019), where
the sum of utilities is divided by the number of agents contained in the coalition.

In the following, let vi(j) denote the utility that agent i associates with agent j. Based
on these utilities and the underlying class of games, we will deduce the utility vi(S) that i
associates with some coalition S ∈ Ni. The preferences of i over two coalitions S, T ∈ Ni

are then given by assuming that S ≿i T if and only if vi(S) ≥ vi(T ). A hedonic game (N,≿)
is an additively separable hedonic game (ASHG) if there is (vi(j))i,j∈N such that, for every
agent i, the preferences ≿i are induced by the cardinal utilities given by vi(S) =

∑
j∈S vi(j).
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Figure 2: Instance of an additively separable hedonic game with no popular partition.
Omitted edges have weight −K.

The hedonic game (N,≿) is a fractional hedonic game (FHG) if there exists (vi(j))i,j∈N
such that, for every agent i, the preferences ≿i are induced by the cardinal utilities given
by vi(S) = (

∑
j∈S vi(j))/|S|, for S ⊆ N . We focus on symmetric ASHGs and FHGs,

i.e., games for which vi(j) = vj(i) for all i, j ∈ N and denote the symmetric utilities by
v(i, j) = vi(j) = vj(i).

All hardness results in this section are obtained by rather involved reductions from X3C.

4.3.1 Additively separable hedonic games

We start by having a look at an example of an ASHG that contains no popular partition
and that will be used as a gadget in the hardness construction. There are smaller ASHGs
without a popular partition, but the instance of the proposition satisfies further properties
required for the reduction of Theorem 8 to work. All games considered in this section only
contain a single negative weight, whose absolute value is large enough to ensure that certain
coalitions will not form.

Proposition 9. Let 0 < ϵ < 1 and K ≥ 4. Consider the following ASHG, depicted in
Figure 2 with agent set N = {a1, a2, a3, b1, b2, b3, c1, c2} and utilities given by v(ai, c1) =
2, v(ai, c2) = 1, v(ai, bi) = ϵ, v(bi, c2) = 0 for all i ∈ [3] and v(x, y) = −K for all other
values not defined, yet. Then, there exists no popular partition.

Proof. Assume for contradiction that π was a popular partition. Then the following facts
hold:

• ai /∈ π(aj), i ̸= j,

• ai /∈ π(bj), i ̸= j,

• bi /∈ π(bj), i ̸= j, and

• c1 /∈ π(c2), c1 /∈ π(bj).
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In all of these cases, dissolving the coalition in question would be more popular, because all
but possibly one agent in the coalition have negative utility and an agent with non-negative
utility can only be contained in the coalition if it contains at least 3 agents. Note that K
is larger than the sum of positive weights incident to any agent and therefore its utility is
negative once it is in a coalition with an agent that gives negative utility.

Now, for every j, exactly one of the following holds: c1 ∈ π(aj) or bj ∈ π(aj). In fact,
both cannot hold as excluded above. If none holds, then π(aj) ⊆ {aj , c2} and we could
delete bj from her coalition (making no agent worse) and add it to π(aj), resulting in a
more popular partition.

Next, for i ∈ [2], there exists j with ci ∈ π(aj). Otherwise, there existed k with
π(ak) ⊆ {ak, bk} and removing bk and adding ci is more popular.

Thus, up to symmetry, the only possibility is π = {{a1, c1}, {b1}, {a2, c2, b2}, {a3, b3}}.
But then {{a2, c1}, {b2}, {a3, c2, b3}, {a1, b1}} is more popular. Hence, π was not popular.

We now discuss the proof strategy for showing that computing popular partitions in
symmetric ASHGs is NP-hard.

For a reduction from X3C, given an instance (R,S), we have R-gadgets for every element
of the ground set R and S-gadgets for every 3-elementary set in S. The gadgets for elements
of R rely on the ASHG of Proposition 9. The gadget for a set s ∈ S consists of three agents
that are very happy in a coalition of their own, but one of them is linked to the R-gadgets
corresponding to the agents in s and can simultaneously prevent the agents in these R-
gadgets from voting down a partition. This is of course at the expense of the happiness of
agents in the S-gadgets and can only happen if all three R-gadgets are simultaneously dealt
with. This is where we achieve the correspondence of the covering with 3-partitions, which
we can read off from the coalitions of the agents in S-gadgets.

Theorem 8. Checking whether there exists a popular partition in a symmetric ASHG is
NP-hard.

The verification problem for ASHGs turns out to be coNP-complete. The proof of
Theorem 9 is simpler than Aziz et al.’s ((2013b)) proof of a weaker statement for ASHGs
that do not have to be symmetric.

Theorem 9. Checking whether a given partition in a symmetric ASHG is popular is coNP-
complete.

The reductions for coNP-hardness of mixed and strong popularity as well as popularity
on ASHGs rely on the idea of property PP which we already employed in Lemma 1. The
next lemma establishes this property and is subsequently applied to prove the next four
theorems. Note that it is not possible to leverage the relationship of mixed popularity and
Pareto optimality, because Pareto optimal partitions can be found in polynomial time for
symmetric ASHGs (Bullinger, 2020).

Lemma 3. The class of symmetric ASHGs satisfies property PP.

We obtain several hardness results.
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Theorem 10. Checking whether there exists a strongly popular partition in a symmetric
ASHG is coNP-hard.

Theorem 11. Verifying whether a given partition in a symmetric ASHG is strongly popular
is coNP-complete.

Theorem 12. Computing a mixed popular partition in a symmetric ASHG is NP-hard.

We even obtain coNP-hardness of the existence of popular partitions which makes it
unlikely that the existence problem for symmetric ASHGs is in NP (otherwise coNP =
NP) and, together with Theorem 8, might be seen as evidence that this problem is even
Σp
2-complete.

Theorem 13. Checking whether there exists a popular partition in a symmetric ASHG is
coNP-hard.

4.3.2 Fractional hedonic games

We now turn to FHGs. In general, reduction proofs for FHGs tend to be more complicated
than for ASHGs, because utility functions are not additive. On top of that, negative utilities
have very different consequences in ASHGs and FHGs. In ASHGs with non-negative utility
functions, the grand coalition will form under any set of reasonable assumptions because it
is the best possible coalition for all agents. The same is not true for FHGs, which incentivize
small coalitions by having the size of a coalition in the denominator of utility functions.
Hence, in contrast to ASHGs, FHGs are meaningful in the absence of negative utilities and
it is therefore desirable to prove hardness results that even hold for non-negative utilities.

Before investigating popularity, we quote a useful proposition about the structure of
top-ranked coalitions in FHGs.

Proposition 10 (Bullinger (2020)). Let a FHG (N,≿) be given and let i ∈ N be an agent.
Let µ be the utility of a top-ranked coalition of agent i. Then, the top-ranked coalitions of
agent i are precisely the coalitions of the form {i} ∪ {j ∈ N : vi(j) > µ} ∪W for W ⊆ {j ∈
N : vi(j) = µ}.

In other words, every top-ranked coalition of agent i consists precisely of all agents j
whose utility vi(j) exceeds a certain threshold.

Now, we consider the existence and verification problem for popular partitions in frac-
tional hedonic games. The strategy is similar to the case of ASHGs. Again, there exist
gadgets for every element of R and the sets in S. The R-gadgets rely on rather simple
graphs, namely stars.

We define by Sk the star graph with k leaves, i.e., Sk
∼= G, where G = (V,E) with

V = {c, l1, . . . , lk}, E = {{c, lj} : j ∈ [k]}. We say that an FHG is induced by Sk if its agent
set is N = V , and symmetric, binary utilities are given by v(i, j) = 1 if {i, j} ∈ E and
v(i, j) = 0, otherwise, where i, j ∈ N . The next proposition classifies, which star graphs
induce FHGs admitting popular partitions. The boundary cases are illustrated in Figure 3.

Proposition 11. Let k ∈ N and consider the FHG induced by Sk.
For k ≤ 5, the (sub-)partition (of) π = {{c, l1, l2, l3}, {l4}, {l5}} is popular. For k ≥ 6,

Sk admits no popular partition.
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c
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l4 l5
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Figure 3: FHGs induced by stars. For stars with 5 leaves, a popular partition π exists (left).
This is not the case for stars with more leaves (right). For instance, the grand
coalition is more popular than partition π′.

Proof. The first part is easily seen.

For the second assertion, let k ≥ 6 and assume that π was a popular partition. Then,
|π(c)| ≤ 4, since otherwise we obtain a more popular partition if one leaf leaves π(c). But
in this case, the grand coalition is more popular (having c and at least k − 3 leaves better
off).

Using stars as gadgets, we can prove the next theorem.

Theorem 14. Checking whether there exists a popular partition in a symmetric FHG is
NP-hard, even if all utilities are non-negative.

The hardness proof for the verification problem for FHGs is a more involved version of
the proof for ASHGs.

Theorem 15. Checking whether a given partition in a symmetric FHG is popular is coNP-
complete, even if all utilities are non-negative and the underlying graph is bipartite.

The graphs used in the proof of Theorem 15 have girth 6. This is in contrast to the
polynomial-time algorithm by Aziz et al. (2019) for computing the core in FHGs with girth
at least 5.

As in the case of ASHGs, we now consider strong and mixed popularity for FHGs. First,
we derive property PP for FHGs. The underlying graph is almost identical to the one for
ASHGs, which might be surprising, because the utilities for ASHGs and FHGs induced by
the same graph will in general cause very different preferences over coalitions. However, all
coalitions that actually matter for the particular instance we consider are of size 2 and 3
and therefore the different game models behave very similarly.

Lemma 4. The class of symmetric FHGs with non-negative utility functions satisfies prop-
erty PP.
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The proof of the hardness of the existence of strongly popular partitions on FHGs is
very similar to the case of ASHGs, but there are some subtle differences regarding the
preferences of the additional agent.

Theorem 16. Checking whether there exists a strongly popular partition in a symmetric
FHG is coNP-hard, even if all utilities are non-negative.

Theorem 17. Verifying whether a given partition in a symmetric FHG is strongly popular
is coNP-complete, even if all utilities are non-negative.

Theorem 18. Computing a mixed popular partition in a symmetric FHG is NP-hard, even
if all utilities are non-negative.

As for ASHGs, we can pinpoint the complexity of the existence of popular partitions
more exactly. The general proof idea is the same, but the case analyses are simpler, because
we can choose positive utilities of the auxiliary agents, which can never help the original
agents in the copies of the game in Lemma 4.

Theorem 19. Checking whether there exists a popular partition in a symmetric FHG is
coNP-hard, even if all utilities are non-negative.

5. Conclusion

We have investigated the computational complexity of finding and recognizing popular,
strongly popular, and mixed popular partitions in various types of ordinal hedonic games
and cardinal hedonic games. Tables 1 and 2 summarize our results and give an overview of
the complexity for computing a respective partition. In the tables, NP-hardness refers to in-
tractability of the corresponding search problem, which follows directly from NP-hardness
or coNP-hardness of the existence problem via a Turing reduction. Note that both NP-
hardness and coNP-hardness of the existence problem for popularity hold for flatmate
games, ASHGs, and FHGs, where the NP-hardness for flatmate games follows from the
hardness for roommate games. It is open whether these problems are even Σp

2-complete.
Whenever we obtain hardness of an existence problem, the corresponding verification prob-
lem is coNP-complete. For mixed popularity, this follows from Proposition 3.

Two important factors that govern the complexity of computing these partitions in or-
dinal hedonic games are whether preferences may contain ties and whether coalitions of size
3 are allowed. When preferences are weak, computing mixed popular and strongly popular
partitions is only difficult for representations for which we cannot even compute Pareto op-
timal partitions efficiently. For strict preferences, however, Pareto optimal partitions can be
found efficiently while computing popular, mixed popular, and strongly popular partitions
remains intractable. These results are quite robust and all results for flatmate games hold
even when preferences are globally ranked, while this restriction allows for tractability of
popularity under strict preferences in roommate games. It can be shown that our hardness
results remain intact for tripartite matching (with strict and globally ranked preferences),
where the agents can be partitioned into three groups and individually rational coalitions
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weak preferences strict preferences

PO mPop sPop Pop PO mPop sPop Pop

IRLC in P
Flatmates NP-h.a NP-h. (Th. 2) NP-h. (Th. 3) NP-h. (Th. 4) NP-h. (Th. 3)

Roommates in Pb in P (Th. 1) in P (Cor. 3) in P (Th. 1) in Pd NP-h.g

Marriage NP-h.e in Pf

Housing in Pc in P in Ph in P in Pc

Table 1: Complexity of finding popular and Pareto optimal partitions in various classes of
hedonic games. New results are highlighted in gray and implications are marked
by gray arrows. NP-hardness of computing a popular or strongly popular partition
always follows by a Turing reduction from the existence problem.
a: Aziz et al. (2013a, Th. 5), b: Aziz et al. (2013a, Th. 7), c: Abraham et al. (2007,

Th. 3.9), d: Biró et al. (2010, Th. 6), e: Biró et al. (2010, Th. 11), Cseh et al. (2015,

Th. 2), f : Gärdenfors (1975, Th. 3), g: Gupta et al. (2019, Th. 1.1), Faenza et al. (2019,

Th. 4.6), Cseh and Kavitha (2018, Th. 2), h: Kavitha et al. (2011, Th. 2); the result by

Kavitha et al. also holds for marriage games and weak preferences; these cases are implied

by our Th. 1.

PO PO/IR mPop sPop Pop

symmetric ASHGs in Pa NP-h.a NP-h. (Th. 12) NP-h. (Th. 10) NP-h. (Th. 8, 13)

symmetric FHGs in P (0/1)a NP-h.a NP-h. (Th. 18) NP-h. (Th. 16) NP-h. (Th. 14, 19)

Table 2: Complexity of finding popular and Pareto optimal partitions in cardinal hedonic
games. New results are highlighted in gray. NP-hardness of computing a popular
or strongly popular partition always follows by a Turing reduction from the exis-
tence problem. Pareto optimal partitions in FHGs can be computed in polynomial
time for (0/1)-preferences.
a: Bullinger (2020, Th. 5.1, 5.1, 6.2, 6.4)

may only contain at most one agent of each group.8 An interesting avenue for future re-
search is to consider the three notions of popularity in further restrictions of flatmate games
such as room-roommate games or three-cyclic matching games.9 Notably, the related exis-
tence problem for stable three-dimensional matchings has also been shown to be NP-hard
(Lam & Plaxton, 2019).

Our positive results for roommate games are obtained via a single linear programming
approach that unifies a number of existing results and exploits the relationships between
the different types of popularity. On the other hand, both in flatmate games and cardinal
hedonic games, our hardness results are based on the same central idea, formalized via

8. The reduction for this result changes the source problem for the reduction in Lemma 1 to 3-Dimensional
Matching instead of Exact 3-Cover, and consists essentially of finding the tripartition of the agent set in
the existing reduction by placing the agents corresponding to the elements of the ground set of a source
instance the right way in the top layer in Figure 1.

9. Some advances in this direction were recently made by Cseh and Peters (2022).
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property PP. All of these classes of hedonic games contain games with a strongly popular
partition together with an agent that can govern the switch between strong popularity and
non-popularity by joining different sets of additional auxiliary agents. As a consequence,
results for all types of popularity and for both existence and verification problems can be
extracted from the same reduction.10

Since mixed popular partitions always exist, the natural computational problem is the
search problem. We have shown that intractability of this problem can be inferred from
corresponding results on Pareto optimality. Moreover, we prove the hardness of computing
mixed popular partitions in classes of games in which Pareto optimal partitions can be
found efficiently.11 In all our reductions, it is already hard to compute some (deterministic)
partition in the support of a mixed popular partition, i.e., a subset of Pareto optimal
partitions.
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Appendix A. Omitted Proofs

The appendix contains all omitted proofs.

A.1 Ordinal Hedonic Games

We introduce a useful notation for the next two propositions. Given a matching M and an
agent a, denote by M(a) the agent, a is matched with.

Proposition 6. Let p and q be mixed matchings. Then,

ϕ(p, q) = ϕ(xp, xq).

In particular, p is popular if and only if for all matchings M , ϕ(xp, χM ) ≥ 0.

Proof. Let p and q be two mixed matchings. By extending them with some matchings of
probability 0, we may assume that both are defined on the same set of matchingsM1, . . . ,Mk

as p = {(M1, p1), . . . , (Mk, pk)} and q = {(M1, q1), . . . , (Mk, qk)}. We derive that

10. The careful reader might have noticed that we do not extract the proofs of the verification problem for
ASHGs and FHGs from this general approach. While this is also possible, we have obtained independent
proofs which hold for a more restrictive variant of FHGs, and allow the comparison with existing results
about the complexity of computing partitions in the core.

11. Note that the complexity of Pareto optimality in FHGs under arbitrary symmetric weights is still open.
As indicated in Table 2, Bullinger (2020) only settles the problem for some restricted classes of FHGs
including binary utilities.
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ϕ(p, q) =
k∑

s,t=1

psqtϕ(Ms,Mt)

=
k∑

s,t=1

psqt
∑
a∈N

ϕa(Ms(a),Mt(a))

=

k∑
s,t=1

psqt
∑
a∈N

∑
i,j∈NG(a)

χMs(a, i)χMt(a, j)ϕa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

(
k∑

s=1

psχMs(a, i)

)(
k∑

t=1

qtχMt(a, j)

)
ϕa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

xp(a, i)xq(a, i)ϕa(i, j)

= ϕ(xp, xq).

This proves the desired equality.

Proposition 7. The separation problem for PPop can be solved in polynomial time.

Proof. Assume that a vector x ∈ RE is given. The separation problem for the match-
ing polytope can be solved in polynomial time. For the popularity constraints, we assign
weights wx to the edges of the underlying graph such that for all matchings M on G,
wx(M) = ϕ(χM , x). Therefore, their separation problem turns into finding a maximum
weight matching, which can be done in polynomial time.

We define the weights by letting

wx(i, j) =
∑

a∈NG(i)

x(i, a)ϕi(j, a) +
∑

a∈NG(j)

x(j, a)ϕj(i, a)

and compute

ϕ(χM , x) =
∑
a∈N

∑
i,j∈NG(a)

χM (a, i)x(a, j)ϕa(i, j)

=
∑
a∈N

∑
i,j∈NG(a)

χM (a, i)x(a, j)ϕa(i, j)

=
∑
a∈N

∑
j∈NG(a),i=M(a)

x(a, j)ϕa(i, j).
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On the other hand,

wx(M) =
∑

{i,j}∈M

 ∑
b∈NG(i)

x(i, b)ϕi(j, b) +
∑

b∈NG(j)

x(j, b)ϕj(i, b)


=

∑
{i,j}∈M

 ∑
b∈NG(i),j=M(i)

x(i, b)ϕi(j, b) +
∑

b∈NG(j),i=M(j)

x(j, b)ϕj(i, b)


=

∑
a∈N,a matched

∑
j∈NG(a),i=M(a)

x(a, j)ϕa(i, j)

=
∑
a∈N

∑
j∈NG(a),i=M(a)

x(a, j)ϕa(i, j)

The last equation is due to the fact that the inner sum is empty for unmatched agents
in M . Putting everything together, we conclude that ϕ(χM , x) = wx(M), which completes
the proof.

Theorem 4. Computing a mixed popular partition in flatmate games is NP-hard, even if
preferences are strict and globally ranked.

Proof. We provide a Turing reduction from X3C to the problem of finding a partition in the
support of a mixed popular partition together with its probability in this mixed partition.

Given an instance X3C, we construct a very similar game as in the proof of Theorem 3.
We have N ′ = N ∪ {z1, z2} where the agents N are as in the above construction with
identical preferences, except for changing the preferences of agent c10 to {a10, b10, c10} ≻c10

{c10, z1, z2} ≻c10
{c10}, and {c10, z1, z2} ≻zi {zi} for i ∈ [2]. By a case distinction similar to

the one in the proof of Theorem 3 and using Lemma 1, it follows that the partition π∗ =
{{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi

j , β
i
j}, {γij , δij} : j ∈ [0, k], i ∈ [2j ] odd} ∪ {{yi1, yi2} : i ∈

[|R| + 1, 2k]} ∪ {{z1}, {z2}} is strongly popular if there exists no 3-partition of R through
sets in S. Therefore the unique mixed popular partition assigns probability 1 to π∗.

On the other hand, assume that there exist a 3-partition S′ ⊆ S of R. Define π =
{{bvk, bwk , bxk} : {rv, rw, rx} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R|+ 1, 2k]} ∪ {{δik−1, a

2i−1
k , a2ik } : i ∈

[2k−1]}∪{{bij , c
2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k−1], i ∈ [2j ]}∪{{δij , α

2i−1
j+1 , α2i

j+1} : j ∈ [k−2], i ∈
[2j ]} ∪ {{α1

0}, {z1, z2, c10}}. It is easily checked that ϕ(π, π∗) = 1. Therefore, there exists no
mixed popular partition that assigns probability 1 to π∗.

We can solve X3C by computing a partition π in the support of a mixed popular partition
and checking its probability in case π = π∗.

A.2 Additively separable hedonic games

Next, we consider the existence problem for ASHGs.

Theorem 8. Checking whether there exists a popular partition in a symmetric ASHG is
NP-hard.
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ai
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V i

V j

V kzs1 zs2

10 10s = {i, j, k}

Figure 4: Schematic of the reduction of the existence problem for ASHGs. Edges of weight
0 and of negative weight are omitted.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.

Let (R,S) be an instance of X3C. This can be reduced to an instance (N,≿), where
(N,≿) is an ASHG defined in the following way.

Let N = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2 : r ∈ R} ∪ {ys, zs1, zs2 : s ∈ S} and edge weights as

• v(ari , c
r
1) = 2 and v(ari , c

r
2) = 1, v(ari , b

r
i ) = ϵ, v(bri , c

r
2) = 0 for all i ∈ [3] and r ∈ R,

• v(ar3, a
r′
3 ) = 0, v(br3, a

r′
3 ) = 0, v(br3, b

r′
3 ) = 0 for all s ∈ S and r, r′ ∈ s,

• v(ar3, y
s) = 5 and v(br3, y

s) = 0 for all s ∈ S and r ∈ R such that r ∈ s,

• v(ys, zs1) = v(ys, zs2) = 10 and v(zs1, z
s
2) = 0 for all s ∈ S, and

• v(x, y) = −40 for all other valuations not defined.

In order to enable the reduction, we can, for example, choose ϵ = 1
2 . A schematic of

the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 4. We abbreviate
in the figure and the rest of the proof V r = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2}, where r ∈ R,
and W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV

r,WS = ∪s∈SW
s and

A3 = {ar3 : r ∈ R}.
We show that there exists a popular partition of (N,≿) if and only if (R,S) is a Yes-

instance of X3C.

Assume (R,S) is a Yes-instance of X3C. Then, there exists S′ ⊆ S such that S′ is a par-
tition of R. Consider the partition π = {{ar1, cr1} : r ∈ R}∪{{ar2, br2, cr2} : r ∈ R}∪{{br1} : r ∈
R} ∪ {{ys, ai3, a

j
3, a

k
3, b

i
3, b

j
3, b

k
3} : s = {i, j, k} ∈ S′} ∪ {W s : s ∈ N \ S′} ∪ {{zs1, zs2} : s ∈ S′}.

We claim that π is popular.

Assume for contradiction that π′ is more popular than π.

We first prove the following two claims:
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1. Let r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Then, |N(π, π′)∩
V r| − |N(π′, π) ∩ V r| ≥ 1.

2. Let r ∈ R. If |{ys : s ∈ S} ∩ π′(ar3)| ≤ 1 then, |N(π, π′)∩ V r| − |N(π′, π)∩ V r| ≥ 0. If
|{ys : s ∈ S} ∩ π′(ar3)| ≥ 2 then, |N(π, π′) ∩ V r| − |N(π′, π) ∩ V r| ≥ −1.

We start with the proof of the first claim.

Let therefore r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Since
r ∈ R is fixed, we omit the superscript r for proving this claim. We know that a3 ∈ N(π, π′)
and b2, b3 /∈ N(π′, π) We distinguish several cases:

• First, consider the case that c1 ∈ π′(a1). Then, b1, a2 /∈ N(π′, π). In addition, we may
assume a1 /∈ N(π′, π), because otherwise c1, c2 ∈ N(π, π′) and the claim is true.

If ci ∈ N(π′, π), then c3−i /∈ N(π′, π) and either (a1 ∈ N(π, π′)∨ a2 ∈ N(π, π′))∧ b3 ∈
N(π, π′) or a1, a2 ∈ N(π, π′). In every case, |N(π′, π)| ≤ 2 and |N(π, π′)| ≥ 3 and the
claim follows.

Hence, we may assume that ci /∈ N(π′, π) and no agent can be in N(π′, π). In this
case, the claim follows.

• Second, assume c1 ∈ π′(a2). Then, a1, b2 ∈ N(π, π′). If a2 /∈ N(π′, π), then it has a
negative neighbor, i.e., a2 ∈ N(π, π′). We have |N(π, π′)| ≥ 4, |N(π′, π)| ≤ 3.

Hence, a2 ∈ N(π′, π). As a consequence, c1 /∈ N(π′, π) and c2 /∈ N(π′, π) ∨ b1 /∈
N(π′, π) and we conclude with |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2.

• Third, assume c1 ∈ π′(a3). Then, a1, b3 ∈ N(π, π′). If c2 ∈ π′(a3), then c1, c2, a2 ∈
N(π, π′) and we conclude with |N(π, π′)| ≥ 6. If c2 /∈ π′(a3), then {a1, a3, b3} ⊆
N(π, π′) and a2, b2 /∈ N(π′, π) and either b2 ∈ N(π, π′) or c2 /∈ N(π′, π).

• Finally, assume c1 /∈ π′(a1)∪π′(a2)∪π′(a3). Then a1, c1 ∈ N(π, π′) and a2 /∈ N(π′, π)∨
c2 /∈ N(π′, π). Hence, |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2. This concludes the proof of the
first claim.

Before we prove the second claim, we argue that we can assume without loss of generality
that for all r ∈ R, π′(ar3)∩V r ⊆ {ar3, br3}∨{ys : s ∈ S}∩π′(ar3) = ∅. Indeed, if both conditions
are not met, then leaving with ys ∈ {ys : s ∈ S} ∩ π′(ar3) and forming a coalition with W s

yields a partition π′′ with the following properties:

• |N(π′′, π) ∩ (N \W s)| ≥ |N(π′, π) ∩ (N \W s)| − 1 (Note that the only agent that is
not still better off is possibly ar3 since the other ar

′
3 are worse off since they would get

negative utility in π′(ar3).),

• |N(π, π′′) ∩ (N \W s)| ≥ |N(π, π′) ∩ (N \W s)|+ 1 (the only candidate is again ar3),

• |N(π′′, π) ∩W s| ≥ |N(π′, π) ∩W s|+ 3 if π(ys) ̸= W s, and

• |N(π, π′′) ∩W s| ≥ |N(π, π′) ∩W s| − 3 if π(ys) = W s.
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Other changes in W s cannot occur at the same time and we conclude ϕ(π′′, π) ≥ ϕ(π′, π)
(in fact the inequality is strict).

For the second claim, this means that if some ys ∈ π′(ar3) we can consider π′ modified
such that ys leaves her coalition. This can only decrease the size of N(π′, π)∩V r if |{ys : s ∈
S} ∩ π′(ar3)| ≥ 2 and cannot increase the size of N(π, π′) ∩ V r by more than 1. Hence, the
claim follows from the first case.

We define the set of critical subsets s ∈ S as Y c = {s ∈ S : ∃r ∈ R with ys ∈ π′(ar3)}
and the set of happy R gadgets as Rh = {r ∈ R : |{ys : s ∈ S} ∩ π′(ar3)| ≥ 2}.

We know that for every ys ∈ Y c at most 3 of the ar3 do not satisfy the condition of the
first claim. Hence, a total of max{|R| − 3|Y c| + |Rh|, 0} of the agents ar3 does so. Putting
together the claims yields

|N(π, π′) ∩ V R| − |N(π′, π) ∩ V R|
≥ max{|R| − 3|Y c|+ |Rh|, 0} − |Rh| ≥ |R| − 3|Y c|.

(1)

We claim that in addition

|N(π′, π) ∩WS | − |N(π, π′) ∩WS | ≤ |R| − 3|Y c|. (2)

The idea to prove this inequality is that every agent ys has to decide whether the agents
in W s or the ar3 with r ∈ s should be happy. Without loss of generality, we can assume
that for all s ∈ S, π(ys) ∩ A3 = ∅ or π(ys) ∩ W s = {ys}. Indeed, if both conditions are
not met, then leaving with ys and forming a coalition with W s yields a partition π′′ with
ϕ(π′′, π) ≥ ϕ(π′, π).

To prove Equation (2) note that W s ⊆ N(π, π′) ∩ WS for every s ∈ Y c such that
π(ys) = W s. In other words, |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.

In addition, the only agents that get better in WS can be in a W s such that π(ys) ̸= W s

and ys /∈ Y c. This is, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) ̸= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) ̸= W s}|+ |{s ∈ Y c : π(ys) ̸= W s}|
− |{s ∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

Combining Equation (1) and Equation (2) yields |N(π, π′)|− |N(π′, π)| ≥ 0, contradict-
ing the assumption that π′ was more popular than π.

It remains to prove that every popular partition yields a 3-partition of R with sets in
S. Therefore, assume that π is a popular partition in (N,≿). The partition will be found
by checking intersections of π(ys) ∩A3 as captured in the following claims:

1. For all r ∈ R there exists a unique s ∈ S with ys ∈ π(ar3). For this s holds that r ∈ s.

2. For all s ∈ S holds: (∃i ∈ s : ai3 ∈ π(ys)) ⇒ (∀j ∈ s, aj3 ∈ π(ys)).
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If the claim is true, S′ = {s ∈ S : A3 ∩ π(ys) ̸= ∅} covers R due to existence and is a
partition due to uniqueness and the second claim that ensures that either all three or none
of the agents in A3 corresponding to elements in s are present in a coalition π(ys).

We start to show the existence part of the first claim which will follow directly from the
property that N |V r contains no popular partition (Proposition 9).

Assume for contradiction that there exists a r ∈ R such that for all s ∈ S holds
ys /∈ π(ar3). We obtain a more popular partition in two steps. First, we modify π such
that for all agents in v ∈ V r we split their coalition into π(v) ∩ V r and V r \ π(v). This
cannot decrease the utility of any agent. Application of Proposition 9 yields a more popular
partition locally on V r that can be extended to the whole N via the remaining (modified)
coalitions in π.

For the uniqueness part assume for contradiction that there is r ∈ R and s ̸= s′ ∈ S
with {ys, ys′} ⊆ π(ar3). We distinguish two cases.

First, assume that |π(ar3)∩A3| ≤ 3. Then, there exists (without loss of generality using
symmetry amongst s and s′) an agent r′ ∈ R with r′ ∈ s and ar

′
3 /∈ π(ar3). Then, the partition

π′ obtained from π by removing the agents in W s from their partitions in π and letting
them form a coalition is more popular. Indeed, |N(π, π′)| ≤ 2 (the two remaining agents at3
with t ̸= r′ and t ∈ s are the only ones to possibly loose utility) and W s ⊆ N(π′, π).

Second, assume that |π(ar3) ∩A3| ≥ 4. Then, there exists an agent u ∈ A3 ∩ π(ar3) with
u /∈ s. The same partition π′ as in the first case yields |N(π, π′)| ≤ 3 and |N(π′, π)| ≥
|W s ∪ {u}| = 4.

In both cases, we have found a more popular partition, a contradiction.

Finally, for the second claim, in the case that there exists a s ∈ S with 1 ≤ |{j ∈ s :
aj3 ∈ π(ys)}| ≤ 2, the same rearrangement of coalitions (i.e., forming the coalition W s) is
more popular.

Theorem 9. Checking whether a given partition in a symmetric ASHG is popular is coNP-
complete.

Proof. The problem is in coNP, because a more popular partition serves as a polynomial-
time certificate for a No-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an ASHG (N,≿) given by N = R ∪
{s1, s2, s3 : s ∈ S} ∪ {b1, b2, b3} and weights as

• v(i, s3) = 1 for i ∈ s, s ∈ S,

• v(s1, s3) = v(s2, s3) = 4 for s ∈ S,

• v(sj , bj) = 1 for s ∈ S, j ∈ [2],

• v(b1, b3) = v(b2, b3) = α for |R|
3 − 1 < α < |R|

3 ,

• v(i, j) = 0 for i, j ∈ R, v(s1, s2) = 0 for s ∈ S, and v(b1, b2) = 0, and

• v(x, y) = −max{12, |S|+ |R|/3} for all agents x, y ∈ N such that no utility is defined,
yet.
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Figure 5: Schematic of the reduction for the verification problem of popular partitions on
symmetric ASHGs. Edges without explicit weight have weight 1. Omitted edges
for agents in R have weight 0. All other omitted edges have weight −12. The
partition π marked in gray is the one under consideration for verification.

One can choose, e.g., α = (|R| − 1)/3, but for the reduction, only the above bounds
matter. We introduce some useful notation for the proof. Denote V s = {s1, s2, s3} for
s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV

s.

The partition in question is π = {V s : s ∈ S} ∪ {{r} : r ∈ R} ∪ {B}. We claim that
(R,S) is a Yes-instance of X3C if and only if π is not popular for the ASHG given by G.

If (R,S) is a Yes-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, N(π′, π) = R∪{b1, b2} and N(π, π′) = ∪s∈S′V s∪{b3}. Hence, π′ is more popular
than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes ϕ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition
of R. Note that the negative weight is chosen so large that agents in a coalition linked by
negative utility are always worse off.

First, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Assume for contradiction that
for j ∈ [2], sj ∈ N(π′, π). Then, {sj , s3, bj} ⊆ π′(sj) ⊆ V s ∪ {bj}. Thus, s3−j , s3, bj , b3 ∈
N(π, π′).

We form a new coalition π′′ from π′ by having the coalitions V s and B (these agents
leave their coalitions in π′) and all other coalitions remain the same. We consider two cases:

• If |π′(b3−j) ∩ V | ≤ 1, then b3−j ∈ N(π, π′). (We used that |R| ≥ 6.) We have that
s3, s3−j , b1, b2, b3 ∈ N(π, π′)\N(π, π′′), s2 ∈ N(π′, π)\N(π, π′′) and possibly the agent
t ∈ π′(b3−j) ∩ V yields t ∈ N(π′, π) ∩N(π, π′′). Hence, ϕ(π′′, π) > ϕ(π′, π).
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• Otherwise, π′(b3−j)∩V ⊆ N(π, π′), but possibly b3−j ∈ N(π′, π)\N(π, π′′) in addition.
However, ϕ(π′′, π) > ϕ(π′, π) remains valid.

In any case, we derived a contradiction to the maximality condition on π′.
If s3 ∈ N(π′, π), then {s1, s2} ⊆ π′(s3), s ∩ π′(s3) ̸= ∅, and π′(s3) ⊆ V s ∪ s (here s ⊆ R

is the set of R-agents corresponding to elements of the set s). Hence, forming a coalition
π′′ by leaving with the agents in s moves these agents and s1, s2 out of N(π, π′), while only
removing s3 from N(π′, π). Hence, we again contradict the maximality of ϕ(π′, π).

For the rest of the analysis, we narrow down the possible more popular partitions to a
very specific situation that corresponds to 3-partitions. The idea is basically that whenever
we ‘sacrifice’ a set V s of agents, we can improve only 3 agents in R. Due to the boundaries
on α, we will cross the threshold, where we can have a popularity margin of precisely 1
exactly at the moment when we gathered |R|

3 neighbors for b1 and b2 in order to improve
these.

We introduce the sets RI = R ∩N(π′, π) and SC = {s ∈ S : π′(s3) ∩ R ̸= ∅}. Our goal
is to prove |R| = |RI | = 3|SC |.

For s ∈ SC holds V s ⊆ N(π, π′) (which follows for s3 since s3 /∈ N(π′, π)). Consequently,
|N(π, π′) ∩ V | ≥ 3|SC |. In addition, |N(π′, π) ∩R| = |RI | ≤ 3|SC | and ϕB(π

′, π) ≤ 1.
If |RI | < 3|SC |, then ϕ(π, π′) = ϕB(π, π

′)+ϕV (π, π
′)+ϕR(π, π

′) ≥ −1+3|SC |−(|RI |) =
3|SC | − |RI | − 1 ≥ 0 and π′ is not more popular. We conclude that |RI | = 3|SC |.

Before we conclude the proof, we show two auxiliary claims:

1. If B ⊆ π′(b3), then b1 /∈ N(π′, π) or b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) or |{s ∈ S : sj ∈ π′(bj)}| ≥ |R|
3 .

The first claim follows from the fact that if bj forms a coalition with an agent outside B
that gives her positive utility, then b3−j cannot be both in this coalition and improve her

utility. The second claim follows from vπ(bj) = α > |R|
3 − 1.

We are ready to prove |R| = 3|SC |. We consider the agents in B. The only possibility
for ϕ(π′, π) > 0 is that ϕB(π

′, π) ≥ 1 which can only happen if {b1, b2} ⊆ N(π′, π). Due to

the auxiliary claims, there exists j ∈ {1, 2} with |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|
3 .

If s∗ ∈ {s ∈ S : sj ∈ π′(bj)} \ SC , then s∗j ∈ N(π, π′) (using |R| ≥ 6, i.e., |π′(bj) ∩ {s ∈
S : sj ∈ π′(bj)}| ≥ 2).12

Consequently, ϕ(π, π′) = ϕB(π, π
′)+ϕV (π, π

′)+ϕR(π, π
′) ≥ −1+(3|SC |+1)−3|SC | ≥ 0,

a contradiction. Therefore, {s ∈ S : sj ∈ π′(bj)} ⊆ SC and |R|
3 ≤ |{s ∈ S : sj ∈ π′(bj)}| ≤

|SC | = |RI |
3 ≤ |R|

3 .
Consider the set S′ = SC . Then, SC covers R since RI = R. In addition, since

|R| = 3|SC |, every agent r ∈ R is present in exactly one s ∈ SC . Hence, S
′ is a partition of

R with sets in S. In total, (R,S) is a Yes-instance of X3C.

We first prove the existence of the graph that underlies the subsequent reductions for
ASHGs. It satisfies similar properties as the flatmate game considered in Lemma 1. How-
ever, for the reduction to work, we need two sets of auxiliary agents. The first set corre-
sponds to the 3-elementary sets in S of an instance (R,S) of X3C, while the second set

12. This argument is stronger than what is needed for ASHGs, but it is needed for the case of FHGs.
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consists of two agents that allow the agents in the top-level not corresponding to elements
of R to improve their coalition.

Lemma 3. The class of symmetric ASHGs satisfies property PP.

Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We

define an ASHG on vertex set N = {ys1, ys2 : s ∈ S}∪{y1, y2}∪
⋃k

j=0Nj , where Nj =
⋃2j

i=1A
i
j

consists of 2j sets of agents Ai
j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|}, and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
symmetric preferences as

• v(ys1, y
s
2) = 6k + 8 for all s ∈ S,

• v(ys2, b
i
k) = 2k + 3 if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k + 3, i ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],

– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αi
j , β

i
j) = j + 1, v(βi

j , γ
i
j) = 0,

– v(βi
j , a

i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.5, and

• v(g, h) = −M − 1 for all g, h ∈ N such that the utility is not defined, yet, where M
is the maximum utility any agents could receive by the previous utilities.

605



Brandt & Bullinger

Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi
j , β

i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪

{{y1, y2}} ∪ {{ys1, ys2} : s ∈ S} and x = c10.
Now consider a partition π ̸= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ]

holds:

1. If {bij , aij} ∩ π(cij) = ∅, then ϕT i
j
(π∗, π) ≥ 1 and ϕT i

j
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ∩ T i

j ⊆
N(π, π∗).

2. If αi
j /∈ N(π, π∗) and there exists an agent z ∈ T i

j with π(z) ̸= π∗(z). Then
ϕT i

j
(π∗, π) ≥ 1.

We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for
all s ∈ S, ys1 /∈ N(π, π∗) and if ys2 ∈ N(π, π∗), then ys1 ∈ N(π∗, π). We can therefore focus on
T 1
0 and have ϕ(π∗, π) ≥ ϕT 1

0
(π∗, π). Define ρ = {C∩T 1

0 : C ∈ π} and ρ∗ = {C∩T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π ̸= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to ϕT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies ϕ(π∗, π) ≥ 1.

If ρ ̸= ρ∗, we use the claim for the case j = 0 and observe that αi
0 /∈ N(π, π∗). Hence,

ϕ(π∗, π) ≥ 1 also holds in this case.
It needs still to be shown that if π(x)∩π∗(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a Yes-

instance. Assume therefore that π(x)∩π∗(x) = {x}. By the first part of the induction claim,
we conclude that ϕT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done in the

former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if, for every
i ∈ 1, . . . , |R|, there exists an si ∈ S with ysi2 ∈ π(bik). Define S′ = {s ∈ S : π(ys2) ∩ {bik : i ∈
[2k]} ̸= ∅}. Now fix s ∈ S′. Then, it holds that ys1 /∈ π(ys2), because otherwise agents bik ∈
π(ys1) are worse off than in π∗. In particular, ys1 ∈ N(π∗, π). Now, if at most two of the agents
bik corresponding two elements i ∈ s are in the coalition of ys2, then ys2 ∈ N(π∗, π). Together,
ϕ(π∗, π) ≥ ϕ{y1,y2}(π

∗, π) + ϕ{ys1,ys2}(π
∗, π) +

∑
s′∈S\{s}+ϕ{ys′1 ,ys

′
2 }(π

∗, π) + ϕT 1
0
(π∗, π) ≥ 0 +

2 + 0 + 1 = 3. It remains the case that π(ys2) = {ys2, bik, b
j
k, b

w
k } for every s ∈ S′ with

s = {i, j, w}. But then, S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, we observe that if Ai

k∩N(π, π∗) ̸= ∅, then clearly ϕAi
k
(π∗, π) ≥ 1.

In addition, if {bik, aik} ∩ π(cik) = ∅, then {aik, cik} ⊆ N(π∗, π) and bik ∈ N(π∗, π) ∪N(π, π∗).
For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there

exists an agent z ∈ T i
j with π(z) ̸= π∗(z) but no such agent in Ai

j . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Ai
j with π(z) ̸= π∗(z).

We make the following observations.

• If αi
j ∈ N(π, π∗), then βi

j ∈ N(π∗, π).

606



Finding and Recognizing Popular Coalition Structures

• If βi
j ∈ N(π, π∗), then αi

j ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).

• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) ̸= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c2i−1
j+1 , c2ij+1}, then ϕAi

j
(π, π∗) ≤ 1 (with the above observations),

while by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.

– Otherwise, cij ∈ π(bij). Then ϕAi
j
(π∗, π) ≥ 1 or aij ∈ N(π, π∗). The second

case can only occur for π(aij) = {aij , βi
j , γ

i
j}. Hence, ϕAi

j
(π∗, π) ≥ 1 or π(δij) =

{δij , α
2i−1
j+1 , α2i

j+1}. But then ϕAi
j
(π∗, π) ≥ −1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 and we

are done.

• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows ϕAi
j
(π∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore ϕAi

j
(π∗, π) ≥ 1 and we are done.

• Since π(cij) ̸= π∗(cij), we can assume that cij ∈ N(π∗, π).

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βi
j , γ

i
j}, then ϕAi

j
(π∗, π) ≥ 3 or π(δij) = {δij , α

2i−1
j+1 , α2i

j+1}. In the

latter case, ϕAi
j
(π∗, π) ≥ 1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βi
j ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αi
j ∈ N(π∗, π) and in total ϕAi

j
(π∗, π) ≥ 3. In the latter case, again, ϕAi

j
(π∗, π) ≥

3 or π(δij) = {δij , α
2i−1
j+1 , α2i

j+1} and the case is similar as before.

• It remains that aij , b
i
j , c

i
j ∈ N(π∗, π) in which case ϕAi

j
(π∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αi
j /∈ N(π, π∗). If π(αi

j) ̸= π∗(αi
j), then αi

j , β
i
j ∈ N(π∗, π) and consequently

ϕAi
j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π, π∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α2i

j+1} ≠ ∅ and the claim follows by induction.
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For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, ys2}, {ys1} : {rv, rw, rx} = s ∈ S′} ∪ {{ys1, ys2} : s ∈ S \ S′}

∪ {{b|R|+1
k , . . . , b2

k

k , y2}, {y1}} ∪ {{δik−1, a
2i−1
k , a2ik } : i ∈ [2k−1]}

∪ {{bij , c2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {c10}}.

It is easily checked that ϕ(π′, π∗) = 1 and c10 forms a singleton coalition with c10 ∈ N(π∗, π′).

Theorem 10. Checking whether there exists a strongly popular partition in a symmetric
ASHG is coNP-hard.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric ASHG of Lemma 3 on agent set N with utility function v together with the parti-
tion π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N} and

α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ = N ∪{z}
where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z, x) = α/2, and
v′(z, y) = −M − 1 for y ∈ N \ {x}. Note that by Lemma 3, this reduction is in poly-
nomial time.

Consider the partition σ∗ = π∗ ∪ {{z}} and let σ ̸= σ∗ be given and define π =
(σ \ σ(z)) ∪ {σ(z) \ {z}}, that is, the partition of agent set N where z leaves her coalition.
We argue first that ϕN (σ∗, σ) ≥ ϕ(π∗, π) unless π(x) = π∗(x). Clearly, if z leaves a coalition,
only the agent x can be worse. Now recall that x receives her unique top-ranked coalition
in π∗, which means that x forms a coalition precisely with all agents that yield her positive
utility. By the choice of v(x, z), the only coalition of x that z is part of and that is not
worse for x, is π∗(x) ∪ {z}. Hence, the only case that the preferences of x over σ∗ and σ is
affected by z is if π(x) = π∗(x).

We perform a case distinction over the coalitions of z to investigate the popularity margin
between σ∗ and σ. First, if σ(z) = {z}, then ϕ(σ∗, σ) > 0 by Lemma 3. If σ(z) = {z, x},
then ϕ(σ∗, σ) ≥ −1+ϕ(π∗, π) ≥ 0 There, we can use the lemma again to see that the latter
inequality is strict if (R,S) is a No-instance. Otherwise, z ∈ N(σ∗, σ). If π(x) ̸= π∗(x),
then ϕ(σ∗, σ) ≥ 1 + ϕ(π∗, π) ≥ 1. We can therefore assume that π(x) = π∗(x). If π = π∗,
then ϕ(σ∗, σ) = ϕσ∗(z)(σ

∗, σ) > 0. If π ̸= π∗, then ϕ(σ∗, σ) ≥ 1 − 1 + ϕ(π∗, π) > 0, where
the −1 accounts for the case that x may be worse off in π compared to σ. Note that it can
not be the case that x is both better off in σ and worse off in π, since the only relevant
coalition σ(x) = π∗(x) ∪ {z}. Together, it follows that σ∗ is popular and it is a strongly
popular partition if (R,S) is a No-instance.

If (R,S) is a Yes-instance, then σ∗ is the only candidate that might be strongly popular.
Consider the partition π′ from Lemma 3 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ∗) = 1 + ϕ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 11. Verifying whether a given partition in a symmetric ASHG is strongly popular
is coNP-complete.
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Proof. In the proof of Theorem 10, the partition σ∗ is strongly popular if, and only if, (R,S)
is a No-instance of X3C.

Theorem 12. Computing a mixed popular partition in a symmetric ASHG is NP-hard.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 3 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N}

and α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ =
N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z1, z2) =
v′(z1, x) = v′(z2, x) = α/3 > 0, and v′(zi, y) = −M − 1 for i ∈ [2], y ∈ N \ {x}. Note that
by Lemma 3, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ ̸= σ∗ be given and define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a No-instance. We will
prove that ϕ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.

If σ(z1) = {z1, z2}, then by Lemma 3, ϕ(σ∗, σ) = ϕ(π∗, π) > 0, because π ̸= π∗.
Otherwise, assume without loss of generality that x ∈ σ(z1). Since x receives her top-
ranked coalition in π∗ and the utility provided by agents zi is sufficiently small, ϕN (σ∗, σ)−
ϕ(π∗, π) ≥ −1, where equality can only hold for π∗(x) = π(x). Now, if π(z1) ⊆ {x, z1, z2},
then ϕ(σ∗, σ) ≥ −2 + ϕ(π∗, π) ≥ 1. If there exists y ∈ N \ {x} with y ∈ σ(z1), then
z1, z2 ∈ N(σ∗, σ) and it follows ϕ(σ∗, σ) ≥ 2 − 1 + ϕ(π∗, π) > 0. In particular, the unique
mixed popular partition consists of σ∗ with probability 1.

Now assume that (R,S) is a Yes-instance. Consider the partition π′ from Lemma 3
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
z1, z2 ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 2+ ϕ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case σ = σ∗.

Theorem 13. Checking whether there exists a popular partition in a symmetric ASHG is
coNP-hard.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 3 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{

∑
w∈N : v(y,w)>0 v(y, w) : y ∈ N}

and α = minw∈N : v(x,w)>0 v(x,w) > 0. For i ∈ [2], let Ni = {yi : y ∈ N} be two copies of
N . Accordingly, let π∗

i be their respective copies of π∗.

We define a symmetric ASHG on agent set N ′ = N1 ∪ N2 ∪ Z where Z = {zjk : k ∈
[2], j ∈ [3]}. Define Zj = {zj1, z

j
2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = α/7, v′(zjk, x2) = α/8 for k ∈ [2], j ∈ [3],

609



Brandt & Bullinger

• v′(zj1, z
j
2) = α for j ∈ [3], and

• v′(u, y) = −M − 1 for every pair of agents u, y ∈ N ′ such that their utility is not
defined, yet.

Note that by Lemma 3, this reduction is in polynomial time.
First assume that (R,S) is a No-instance. Then, σ∗ = π∗

1 ∪π∗
2 ∪{Zj : j ∈ [3]} is popular.

To prove this, let σ be an arbitrary partition and define πi = {σ(y) ∩ Ni : y ∈ Ni} be the
coalitions restricted to Ni. For each j ∈ [3], we can assume that σ(zjk) = Zj or there exists a
i ∈ [2] with Zj∩σ(xi) ̸= ∅. Otherwise, one can obtain a Pareto-improvement σ′ over σ and it
suffices to prove that ϕ(σ∗, σ′) ≥ 0. Indeed, if σ(zjk) = {zjk} for k ∈ [2], then creating Zj is a

Pareto-improvement. On the other hand, if {z3−k, x1, x2}∩σ(zjk) = ∅ and |σ(zjk)| ≥ 2, then

leaving her coalition with zjk yields a Pareto-improvement over σ. Hence, if x1, x2 /∈ σ(zjk),

then zj3−k ∈ σ(zjk) and putting all potential further agents in the coalition into a singleton
coalition would yield a Pareto improvement. Hence, we have already substantially restricted
the coalitions of agents in a Zj .

Next, we argue that we may assume that it does not happen that σ(zjk) = {zjk}. In

this case, there exists an i ∈ [2] with zj3−k ∈ σ(xi). We form a partition σ′ by adding zjk
to σ(zj3−k) = σ(xi). This yields a Partition with N(σ∗, σ) ⊆ N(σ∗, σ′) and N(σ′, σ∗) ⊆
N(σ, σ∗), hence ϕ(σ∗, σ′) ≥ ϕ(σ∗, σ), and it suffices to consider the popularity margin
between σ∗ and σ′.

By a similar argument, we can assume that σ(xi) ⊆ Z ∪Ni (putting all agents outside
Z ∪Ni into singleton coalitions has the same effect).

We can therefore partition the agent set N ′ into sets of the type Zj such that σ(zj1) = Zj ,
of the type Ni such that Z ∩σ(xi) = ∅, and of the type Ni ∪σ{xi} such that Z ∩σ(xi) ̸= ∅.
For the first type, ϕZj (σ∗, σ) = 0 and by Lemma 3, ϕNi(σ

∗, σ) ≥ 0 for the second type of
sets. We prove that ϕNi∪σ{xi}(σ

∗, σ) ≥ 0 if Z ∩ σ(xi) ̸= ∅.
If σ(xi) ⊆ Z ∪ {xi}, then xi ∈ N(σ∗, σ) and ϕσ(xi)\{xi}(σ

∗, σ) ≥ −2. As a consequence,
ϕNi∪σ(xi)(σ

∗, σ) ≥ −2 + ϕ(π∗
i , πi) ≥ 0 by Lemma 3.

Otherwise, Z ∩ σ(xi) ⊆ N(σ∗, σ) and the only agent in Ni that can be worse off in πi
compared to σ is xi. Note that the utilities are designed so that xi /∈ N(σ, σ∗)∩N(π∗, π). It
follows ϕNi∪σ(xi)(σ

∗, σ) = ϕNi(σ
∗, σ)+ϕσ(xi)∩Z(σ

∗, σ) ≥ ϕNi(σ
∗, σ)+1 ≥ −1+ϕ(π∗

i , πi)+1 ≥
0.

Together, it is shown that σ∗ is popular.
Conversely, assume that (R,S) is a Yes-instance and assume for contradiction that σ is

popular and define πi = {σ(y)∩Ni : y ∈ Ni} as above. The Pareto-improvements of the first
implication show that for all j, Zj ∈ σ or σ(xi)∩Zj ̸= ∅. Define I = {i ∈ [2] : Z∩σ(xi) ̸= ∅}.
The first crucial step is to prove that for all i ∈ I, it holds that there exists a j ∈ [3] with
σ(xi) = {xi} ∪ Zj .

Let therefore i ∈ I. First, σ(xi)∩Ni = {xi} since otherwise splitting σ(xi) into singleton
coalitions is more popular. In addition, x3−i /∈ σ(xi). If this happens and |σ(xi) ∩ Z| ̸= 2,
then splitting into singleton coalitions is more popular. On the other hand, if |σ(xi)∩Z| = 2,
there exists j∗ ∈ [3] with Zj∗ ∈ σ. We form the partition σ′ by leaving her coalition with x1
and forming {x1, zj

∗

1 , zj
∗

2 }. Then, {x1, x2, zj
∗

1 , zj
∗

2 } ⊆ N(σ′, σ) while N(σ, σ′) ⊆ σ(xi) ∩ Z.
Hence, σ′ is more popular.
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Hence, σ(xi) ⊆ Z ∪ {xi}. If for j ̸= j′, Zj ∩ σ(xi) ̸= ∅ and Zj′ ∩ σ(xi) ̸= ∅, then
dissolving σ(xi) is again more popular. Finally, if |σ(xi) ∩ Z| = 1, we find again a j∗ ∈ [3]

with Zj∗ ∈ σ. We form the partition σ′ by forming π(xi) ∩ Z and {xi, zj
∗

1 , zj
∗

2 } which is
more popular.

The next step is to show that I = {1, 2}. Assume for contradiction that Z ∩ σ(xi) = ∅.
Then we can assume that for all y ∈ Ni, σ(y) ⊆ Ni. If πi ̸= π∗

i , then replacing πi by
π∗
i is more popular (by Lemma 3). Otherwise πi = π∗

i and we consider the partition π′
i

of the last part of Lemma 3 for Ni. By the pigeon hole principle, there exists a j∗ ∈ [3]

with Zj∗ ∈ σ. We obtain σ′ = (σ \ (πi ∪ {Zj∗})) ∪ ((π′
i \ {{xi}}) ∪ {{xi, zj

∗

1 , zj
∗

2 }}). Then,
ϕ(σ′, σ) = ϕNi∪Zj∗ (σ′, σ) = −1 + 2 = 1 and σ′ is more popular.

Together, we can assume that there exist j1, j2 ∈ [3] with σ(xi) = {xi, zji1 , z
ji
2 }, for i ∈ [2].

Let j3 ∈ [3] \ {j1, j2} be the third index. Note that Zj3 ∈ σ. Define σ′ = (σ \ {σ(zj1) : j ∈
[3]}) ∪ {{x1, zj21 , zj22 }, {x2, zj31 , zj32 }, Zj1}. Then, N(σ′, σ) = Zj2 ∪ Zj3 while N(σ, σ′) = Zj1 .
Hence, σ′ is more popular.

All in all, it is shown that there exists no popular partition if (R,S) is a Yes-instance.
This concludes the proof of the theorem.

A.3 Fractional Hedonic Games

Theorem 14. Checking whether there exists a popular partition in a symmetric FHG is
NP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.
Let (R,S) be an instance of X3C. We transform it into an FHG (N,≿) defined by the

graph G = (N,E) that is given as follows:
N = {cr, lrj : r ∈ R, j ∈ [6]} ∪ {ys, zsj : s ∈ S, j ∈ [2]} and E = ER ∪EC ∪E6 ∪ES where

ER = {{cr, lrj} : r ∈ R, j ∈ [6]}, EC = {{lr6, ys} : s ∈ S, r ∈ s}, E6 = {{lr6, lt6} : r ̸= t, r, t ∈
s for s ∈ S}, ES = {{ys, zsj}, {zs1, zs2} : s ∈ S, j ∈ [2]}. The edge set EC connects the gadgets
for the ground set and the subsets for the X3C instance.

The weights are 1, except v(e) = 1
2 for e ∈ EC and v(e) = 1

4 for e ∈ E6. A schematic of
the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 6.

We show that there exists a popular partition of (N,≿) if and only if (R,S) is a Yes-
instance of X3C.

Assume (R,S) is a Yes-instance of X3C. Then, there exists S′ ⊆ S such that S′ is a
partition of R. Consider the partition π = {{cr, lr1, lr2, lr3} : r ∈ R} ∪ {{lrj} : r ∈ R, j =

4, 5}∪ {{ys, li6, l
j
6, l

k
6} : s = {i, j, k} ∈ S′}∪ {{zs1, zs2} : s ∈ S′}∪ {{ys, zs1, zs2} : s ∈ S \S′}. We

claim that π is popular.
Assume for contradiction that π′ is more popular than π and let π′ be with ϕ(π′, π)

maximal. We will prove that ϕ(π, π′) ≥ 0, deriving a contradiction.
We introduce some notation for the proof. Let V r = {cr, lrj : j ∈ [6]}, where r ∈ R,

and W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV
r,WS = ∪s∈SW

s and
A6 = {lr6 : r ∈ R} and Y c = {s ∈ S : ∃a ∈ A6 with a ∈ π′(ys)}.

To derive a contradiction, we prove several claims.

1. Let r ∈ R such that, for all s ∈ S with r ∈ s, it holds that ys /∈ π′(lr6). Then,
ϕV r(π, π′) ≥ 1.
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Figure 6: Reduction for existence problem of popular partitions in FHGs. The schematic
displays the part of the network corresponding to one specific set s = {i, j, k}.

2. There exist no r ∈ R, s, s′ ∈ S with s ̸= s′ and {ys, ys′} ⊆ π′(lr6).

3. For all s ∈ S, it holds that π′(ys) ∩W s = {ys} or π′(ys) ⊆ W s.

4. For all r ∈ R, ϕV r(π, π′) ≥ 0.

5. It holds that ϕWS (π′, π) ≤ |R| − 3|Y c|.

The first claim says that we need sufficient external influence for V r to be ‘locally’
popular. The second and third claim give insight on the structure of potential more popular
partitions. The forth claim shows that we locally do best for every V r. The final claim
calculates the tradeoff between forming a coalition W s and joining the agents in V r.

In order to complete the proof from the claims, we apply Claims 1 and 4 to obtain
ϕV R(π, π′) ≥ max{0, |R| − 3|Y c|} ≥ |R| − 3|Y c|. Combining this inequality with the one of
Claim 5 yields ϕ(π, π′) ≥ 0.

The first claim is a straightforward case distinction considering π′(cr). Observe that by
construction of her neighboring agents, lr6 ∈ N(π, π′) or lr6 ∈ π′(cr). This property makes lr6
play an equivalent role compared to the agents lr5 and lr4 in the analysis.

We proceed with the second claim. Therefore, assume for contradiction that r ∈
R, s, s′ ∈ S with s ̸= s′ and {ys, ys′} ⊆ π′(lr6). We denote C = π′(lr6) for this part.
We claim that we can change π′ while strictly increasing ϕ(π′, π). This is done by forming
a partition π′′ that consists of coalitions W t whenever yt ∈ C. The agents outside WS in
C form a coalition of their own. Other coalitions are not changed.

• Let t ∈ S with yt ∈ C. If π(yt) = W t, then W t ⊆ N(π, π′). This is immediate for the
ztj . In addition, by assumption on C, at least 3 agents are present, and the utility is

estimated as vyt(π
′) ≤ max{

1
2
3 ,

3
2
4 ,

5
2
5 ,

6
2
6 ,

7
2
7 } = 1

2 < 2
3 = vyt(π)

• If π(yt) ̸= W t, then zt1, z
t
2 /∈ N(π′, π) and yt /∈ N(π′, π) ∨ (∃i : zti ∈ N(π, π′)).
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Define Y = |{t ∈ S : yt ∈ C}|. These first two insights yield, that ϕ{W s:s∈Y }(π
′′, π) ≥

3|Y | + ϕ{W s:s∈Y }(π
′, π). There is an increase of at least 6 by the assumption that

{ys, ys′} ⊆ C.

• The only agents that can decrease (π′′, π) compared to (π′, π) are in A6. Note that
if a ∈ A6 ∩ C has at most one neighbor in Y , then for some p (the number of

neighbors in A6), va(π
′) =

1
2
+ p

4
3+p < 1

4 = va(π). Define the improving agents in A6

via I = C∩A6∩N(π′, π) and the non-worsened agents as I ′ = C∩A6 \(I ∪N(π, π′)).

– If |I| ≤ 2, then ϕC∩A6(π
′′, π) ≥ ϕC∩A6(π

′, π) − 4 (the agents in I each counted
twice for being worse instead of better off).

– If |I| ≥ 3, we know that |Y | ≥ 3 (otherwise, three agents in I are incident to the
same two yt, but then in the instance of X3C, we had two identical 3-elementary
sets). This means for any a ∈ A6 ∩ C that has exactly two neighbors in Y that

for some p, va(π
′) ≤ 1+ p

4
4+p = 1

4 . Hence, a /∈ N(π′, π).

Agents in I need therefore three neighbors in Y and agents in I ′ two. Since every
agent in Y has at most three neighbors, this accumulates to |Y | ≥ |I|+ 2

3 |I
′|.

Consequently, for M = C ∩ (A6 ∪WS),

ϕ(π′′, π) = ϕN\M (π′′, π) + ϕC∩A6(π
′′, π) + ϕWS∩C(π

′′, π)

≥ ϕN\M (π′, π) + ϕC∩A6(π
′, π)− 2|I| − |I ′|+ ϕWS∩C(π

′, π) + 3|Y |
> ϕ(π′, π).

In both cases, we contradict the maximality of ϕ(π′, π).
The third claim is proven similarly, but we have to refine some calculation of the previous

claim, since we do not get the same lower bounds for the denominators of the utilities.
Assume for contradiction that s ∈ S with π′(ys) ∩A6 ̸= ∅ and π′(ys) ∩W s ̸= ∅. We set

C = π′(ys).

• First, we argue that we may assume that A6 ∩ C ∩ N(π′, π) = ∅. Otherwise, by the
previous claim, if lr6 ∈ A6 ∩C ∩N(π′, π), then cr ∈ C. Consequently, lrj ∈ N(π, π′) for

j ∈ [3] and cr ∈ N(π, π′). The latter is due to vcr(π
′) ≤ 6

9 < 3
4 = vcr(π). Also, there

exists j ∈ {4, 5} : lrj /∈ C or lr6 /∈ N(π′, π). Indeed, if the first is wrong, then for some

p, vlr6(π
′) ≤ 1+ 1

2
+ p

4
6+p = 1

4 = vlr6(π). Hence resetting the coalition within V r to π yields

a coalition contradicting the maximality of ϕ(π′, π).

• Now, we consider two cases. First assume that π(ys) ̸= W s. We claim that rear-
ranging π′ by means of removing agents of W s from π′(ys) improves ϕ(π′, π). Indeed,
zsj /∈ N(π′, π), but they will be after the rearrangement, and ys ∈ N(π′, π) afterwards.

Also, for all a ∈ A6 ∩ C, va(π
′) ≤

1
2
+ p

4
p+3 < 1

4 and these agents are already worse off in

the original π′.

• If π(ys) = W s, the same holds for agents in A6 ∩ C. Since W s ⊆ N(π, π′), the same
rearrangement improves ϕ(π′, π).
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We proceed with the next claim and fix r ∈ R. We may assume that for some s,
ys ∈ π′(lr6) (since the other case is already covered in the first claim). In addition, if
cr /∈ π′(lr6), then lr6 /∈ N(π′, π) (by the previous claims). In this case, the coalition π
restricted to V r \ {lr6} is popular and the claim is true.

Denote C = π′(lr6) and assume therefore cr ∈ C. We also know that {lr1, lr2, lr3} ∩
N(π′, π) = ∅ and |{lr1, lr2, lr3} ∩N(π, π′)| ≥ 2. Consequently, if {lr4, lr5} ∩C = ∅, we are done.
If {lr4, lr5} ∩ C ̸= ∅, {lr1, lr2, lr3} ⊆ N(π, π′). Hence, in the final case, |N(π′, π)| ≤ 3 while
|N(π, π′)| ≥ 3 and the claim is true.

For the fifth claim, we consider the coalitions in π for different ys:

• IfW s = π(ys), thenW s∩N(π′, π) = ∅ (by Claim 3) and if s ∈ Y c, thenW s ⊆ N(π, π′).
This gives |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.

• If W s ̸= π′(ys) and s ∈ Y c, then W s ∩ N(π′, π) = ∅ (again using Claim 3). Conse-
quently, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) ̸= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) ̸= W s}|+ |{s ∈ Y c : π(ys) ̸= W s}|
− |{s ∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

This proves the final claim and we have proved that Yes-instances of X3C map to popular
partitions of the FHG.

For the reverse implication, assume that π is a popular partition. We exhibit the coali-
tions of the agents in A6.

1. For all r ∈ R, there exists a unique s ∈ S with ys ∈ π(lr6). For this s holds that r ∈ s.

2. For all r ∈ R, |A6 ∩ π(lr6)| = 3.

If the claims are true, S′ = {s ∈ S : A6 ∩ π(ys) ̸= ∅} covers R due to existence and is a
partition due to uniqueness and the fact, that uniqueness and the second claim imply that
the coalition of the unique ys must contain precisely li6 for i ∈ s.

We start with the first claim. Existence is clear because otherwise the subpartition of
π on V r (possibly restricted to V r) is popular on V r, contradicting Proposition 11.

For uniqueness, assume for contradiction that there is r ∈ R and s ̸= s′ ∈ S with
{ys, ys′} ⊆ π(lr6). We obtain a more popular coalition π′ as follows: remove the agents in
W s from their partitions in π and let them form a coalition. Then W s ∪ {ys′} ⊆ N(π′, π)
and N(π, π′) ⊆ {lr6 : r ∈ s}. Hence, π′ is more popular.

For the second claim, we know due to uniqueness in the first claim that |A6∩π(lr6)| ≤ 3.
Assume for contradiction that |A6 ∩ π(lr6)| < 3 and let ys ∈ π(lr6). Then, the same coalition
π′ as in the proof of the previous claim is more popular. This time, W s ⊆ N(π′, π) and
N(π, π′) ⊆ {lr6 : r ∈ s}, hence by assumption |N(π, π′)| ≤ 2.
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Figure 7: Schematic of the reduction for the verification problem of popular partitions on
bipartite FHGs. The bipartition is indicated by the shapes of the agents. The
partition π under consideration is marked in gray.

Theorem 15. Checking whether a given partition in a symmetric FHG is popular is coNP-
complete, even if all utilities are non-negative and the underlying graph is bipartite.

Proof. First of all, the verification problem is in coNP, because a more popular partition
serves as a polynomial-time certificate for a No-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an FHG (N,≿) given by the underlying
graph G = (N,E) depicted in Figure 7 and defined as:

N = R∪{s1, s2, s3 : s ∈ S}∪{b1, b2, b3}, E = {{s3, r} : r ∈ R∩s}∪{{s1, s3}, {s2, s3} : s ∈
S} ∪ {{sj , bj} : s ∈ S, j ∈ [2]} ∪ {{b1, b3}, {b2, b3}}.

The symmetric weights v are given as

• v(i, s3) =
1
2 if i ∈ s,

• v(s1, s3) = v(s2, s3) = 1 for s ∈ S,

• v(sj , bj) =
1
4 for s ∈ S, j ∈ [2], and

• v(b1, b3) = v(b2, b3) = α for 3(|R|−3)
4|R| < α < 3|R|

4(|R|+3) .

One can choose α with a size bounded polynomially in the input size. For the reduction,
only the above bounds matter. We introduce the same notation as in the proof for ASHGs.
Denote V s = {s1, s2, s3} for s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV

s.
G is bipartite with bipartition (R∪{s1, s2 : s ∈ S}∪ {b3}, {s3 : s ∈ S}∪ {b1, b2}) and all

weights on present edges are positive.
The verification problem is asked for the partition π = {V s : s ∈ S}∪{{r} : r ∈ R}∪{B}.

We claim that (R,S) is a Yes-instance of X3C if and only if π is not popular for the FHG
given by G.
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If (R,S) is a Yes-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, for j ∈ [2], vbj (π
′) =

1
4
|S′|

|S′|+1 = |R|
4(|R|+3) > α

3 = vbj (π). Since all agents in R have

clearly improved their utility, R ∪ {b1, b2} ⊆ N(π′, π) (and in fact equality holds here).
Moreover, the utilities of agents in V s for s ∈ S \ S′ have not changed. Consequently,
N(π, π′) ⊆ ∪s∈S′V s ∪ {b3}. Hence, π′ is more popular than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes ϕ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition
of R.

First, we make the observation that if bj ∈ N(π′, π) for j ∈ [2], then b3 ∈ N(π, π′).
Hence, ϕB(π

′, π) ≤ 1.
Second, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Clearly, s3 /∈ N(π′, π) (by

construction, since she receives a top coalition with respect to the given utilities). Assume
for j ∈ [2], sj ∈ N(π′, π). Then, π′(sj) = {sj , s3, bj}. Note that both neighbors of sj are
needed to improve utility, but no other agent may be present since for |π′(sj)| ≥ 4 follows

vsj (π
′) ≤

5
4
4 < 1

3 = vsj (π). In addition, s3−j , b3 ∈ N(π, π′).
We form a new coalition π′′ from π′ by having the coalitions V s and B and all other

coalitions remain the same. The exact same case distinction for b3−j as in the case of
ASHGs yields a contradiction to the maximality condition on π′.

The remainder of the proof follows a similar strategy as the one for ASHGs, but some
arguments are more tedious.

To make this more formal, we introduce the sets RI = R ∩N(π′, π) of agents in R that
form a coalition with a neighbor in π′ and SC = {s ∈ S : π′(s3) ∩R ̸= ∅}. The latter is the
set of critical sets in S whose corresponding agents s3 form a coalition with agents in R.
We split it into SC,1 = {s ∈ S : |π′(s3) ∩R| = 1} and SC,2 = SC \ SC,1.

We have the following facts:

• For s ∈ SC , s3 ∈ N(π, π′).

• For s ∈ SC,1, s1 ∈ N(π, π′) ∨ s2 ∈ N(π, π′).

• For s ∈ SC,2, s1 ∈ N(π, π′) ∧ s2 ∈ N(π, π′).

Consequently, |N(π, π′) ∩ V | ≥ 2|SC,1| + 3|SC,2|. In addition, |N(π′, π) ∩ R| = |RI | ≤
|SC,1|+ 3|SC,2|.

If SC,1 ̸= ∅, then ϕ(π, π′) = ϕB(π, π
′) + ϕV (π, π

′) + ϕR(π, π
′) ≥ −1 + 2|SC,1|+ 3|SC,2| −

(|SC,1| + 3|SC,2|) = |SC,1| − 1 ≥ 0 and π′ is not more popular. We conclude that SC,1 = ∅
or equivalently SC = SC,2.

A similar calculation excludes the case |RI | < 3|SC,2| which means |RI | = 3|SC,2|.
We claim that in fact |R| = 3|SC | = 3|SC,2|. Before we prove this, we show the same

two auxiliary claims as for ASHGs.

1. If B ⊆ π′(b3) then b1 /∈ N(π′, π) ∨ b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) ∨ |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|
3 .
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For the first claim, assume that B ⊆ π′(b3) and b1, b2 ∈ N(π′, π). Denote pj = |{s ∈
S : sj ∈ π′(b3)}|. We know that pj ≥ 1, since otherwise bj /∈ N(π′, π).

The function x 7→ 3(x−3)
4x is monotonically increasing for x > 0. Thus, by the lower

bound on α, we know that α > 3
8 (using |R| ≥ 6).

Let j ∈ [2] with pj = min{pj , p3−j}. Then |π′(b3)| ≥ 3 + 2pj . We compute vbj (π) −

vbj (π
′) = α

3 − α+
pj
4

3+2pj
=

pj
3(3+2pj)

(2α− 3
4) > 0. Hence, bj /∈ N(π′, π), a contradiction.

For the second claim, let j ∈ [2] with bj ∈ N(π′, π) and assume bj /∈ π′(b3). Similarly

as before, let p = |{s ∈ S : sj ∈ π′(bj)}|. Note that vbj (π) = α
3 > |R|−3

4|R| = 1
4

|R|
3

−1(
|R|
3

−1
)
+1

.

Therefore, vbj (π) < vbj (π
′) ≤ 1

4
p

p+1 only if p > |R|
3 − 1 and since p is an integer, this implies

p ≥ |R|
3 .

The remainder of the proof is identical to the one for ASHGs (Theorem 9).

Lemma 4. The class of symmetric FHGs with non-negative utility functions satisfies prop-
erty PP.

Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We
define a symmetric FHG with non-negative utility functions on vertex set N = {ys1, ys2 : s ∈
S} ∪ {y1, y2} ∪

⋃k
j=0Nj , where Nj =

⋃2j

i=1A
i
j consists of 2j sets of agents Ai

j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|} and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
preferences.

• v(ys1, y
s
2) =

21
10(k + 1) for all s ∈ S,

• v(ys2, b
i
k) =

3
2(k + 1) if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k+2(k + 1), i ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) =

2
3(k + 1), i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],
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– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αi
j , β

i
j) = j + 1, v(βi

j , γ
i
j) =

j
2 ,

– v(βi
j , a

i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.6, and

• v(g, h) = 0 for all g, h ∈ N such that the utility is not defined, yet.

Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi
j , β

i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪

{{y1, y2}} ∪ {{ys1, ys2} : s ∈ S} and x = c10.
Now consider a partition π ̸= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ]

holds:

1. If {bij , aij} ∩ π(cij) = ∅, then ϕT i
j
(π∗, π) ≥ 1 and ϕT i

j
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ∩ T i

j ⊆
N(π, π∗).

2. If αi
j /∈ N(π, π∗) and there exists an agent z ∈ T i

j with π(z) ̸= π∗(z). Then
ϕT i

j
(π∗, π) ≥ 1.

We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for
all s ∈ S, ys1 /∈ N(π, π∗) and if ys2 ∈ N(π, π∗), then ys1 ∈ N(π∗, π). We can therefore focus on
T 1
0 and have ϕ(π∗, π) ≥ ϕT 1

0
(π∗, π). Define ρ = {C∩T 1

0 : C ∈ π} and ρ∗ = {C∩T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π ̸= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to ϕT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies ϕ(π∗, π) ≥ 1.

If ρ ̸= ρ∗, we use the claim for the case j = 0 and observe that αi
0 /∈ N(π, π∗). Hence,

ϕ(π∗, π) ≥ 1 also holds in this case.
It needs still to be shown that if π(x) ∩ π∗(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a

Yes-instance. Assume therefore that π(x)∩ π∗(x) = {x}. By the first part of the induction
claim, we conclude that ϕT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done

in the former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if,
for every i ∈ 1, . . . , |R|, there exists an si ∈ S with ysi2 ∈ π(bik). Indeed, if this is not

the case, then the utility of bik is bounded by
2(k+1)+ 2λ

3
(k+1)

3+λ = 2
3(k + 1) = vbik

(π∗), where

λ = |{bjk : j ∈ [|R|]} ∩ (π(bik) \ {bik})|. Note that the equality is true for every λ ≥ 0. Hence,
bik /∈ N(π, π∗).

Define S′ = {s ∈ S : π(ys2) ∩ {bik : i ∈ [|R|]} ≠ ∅}. Now fix s ∈ S′ and define C = π(ys2).
We deal first with the case that ys1 ∈ C and let ri ∈ R with bik ∈ C. We claim that

aik, c
i
k ∈ C. Otherwise, for some λ ≥ 0, vbik

(π) ≤
3
2
(k+1)+(k+1)+ 2λ

3
(k+1)

4+λ < 2
3(k+1) = vbik

(π∗),

and bik /∈ N(π, π∗), which is a contradiction. Hence, aik, c
i
k ∈ C. If ys2 ∈ N(π∗, π), we are
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done, because then ϕ(π∗, π) ≥ ϕ{y1,y2}(π
∗, π)+ϕ{ys1,ys2}(π

∗, π)+
∑

s′∈S\{s}+ϕ{ys′1 ,ys
′

2 }(π
∗, π)+

ϕT 1
0
(π∗, π) ≥ 0 + 2 + 0 + 1 = 3. Now, if C ∩ {bjk : j ∈ [|R|]} = {bik}, then vys2(π) ≤

21
10

(k+1)+ 3
2
(k+1)

5 < 21
20(k + 1) = vys2(π

∗), but we already excluded that. Thus, there is i′ ̸= i

with bi
′
k ∈ C. It is easy to see that bi

′
k ∈ N(π∗, π), which is contradicting our assumption that

{bik : i ∈ [2k]} ⊆ N(π, π∗). This concludes the case that ys1 ∈ C and we assume henceforth
that, for all s ∈ S′, ys1 /∈ C.

Let I = s∩{ri ∈ R : bik ∈ C} the set of members of s whose corresponding agents are in

the coalition C. If |I| ≤ 2, then vys2(π) ≤
6
2
(k+1)

3 = k+1 < 21
20(k+1) = vys2(π

∗). However, it is

already excluded that ys2 ∈ N(π∗, π). Hence, |I| = 3. In other words, π(ys2) = {ys2, bik, b
j
k, b

w
k }

with s = {i, j, w}. We conclude that S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, fix i ∈ [2k] and assume that Ai

k /∈ π. We observe that if Ai
k ∩

N(π, π∗) ̸= ∅, then clearly ϕAi
k
(π∗, π) ≥ 1. If Ai

k ∩N(π, π∗) = ∅, then {aik, cik} ⊆ N(π∗, π)

and ϕAi
k
(π∗, π) ≥ 1. If in addition {bik, aik} ∩ π(cik) = ∅, then bik ∈ N(π∗, π) ∪N(π, π∗) and

the first part of the claim follows.
For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there

exists an agent z ∈ T i
j with π(z) ̸= π∗(z) but no such agent in Ai

j . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Ai
j with π(z) ̸= π∗(z).

We make the following observations.

• If αi
j ∈ N(π, π∗), then βi

j ∈ N(π∗, π).

• If βi
j ∈ N(π, π∗), then αi

j ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).

• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) ̸= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c2i−1
j+1 , c2ij+1}, then ϕAi

j
(π, π∗) ≤ 1 (with the above observations),

while by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.

– Otherwise, cij ∈ π(bij) and π(bij)∩{c2i−1
j+1 , c2ij+1} ≠ ∅. Then ϕAi

j
(π∗, π) ≥ 1 or aij ∈

N(π, π∗). We only need to consider the second case. Assume for contradiction
that aij ∈ π(bij). Then, π(bij) ∩ {βi

j , γ
i
j} ̸= ∅ (otherwise, aij ∈ N(π∗, π)). Then,

vbij
(π) ≤ 3j+4

5 < 2j+2.5
3 = vbij

(π∗), contradicting our assumption on bij (note

that we used that π(bij) ̸⊇ {c2i−1
j+1 , c2ij+1}). Therefore, aij /∈ π(bij) and therefore

π(aij) = {aij , βi
j , γ

i
j}. Hence, ϕAi

j
(π∗, π) ≥ 1 or π(δij) = {δij , α

2i−1
j+1 , α2i

j+1}. But

then ϕAi
j
(π∗, π) ≥ −1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 and we are done.
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• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows ϕAi
j
(π∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore ϕAi

j
(π∗, π) ≥ 1 and we are done.

• Since π(cij) ̸= π∗(cij), we can assume cij ∈ N(π∗, π)

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βi
j , γ

i
j}, then ϕAi

j
(π∗, π) ≥ 3 or π(δij) = {δij , α

2i−1
j+1 , α2i

j+1}. In the

latter case, ϕAi
j
(π∗, π) ≥ 1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βi
j ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αi
j ∈ N(π∗, π) and in total ϕAi

j
(π∗, π) ≥ 3. In the latter case, again, ϕAi

j
(π∗, π) ≥

3 or π(δij) = {δij , α
2i−1
j+1 , α2i

j+1} and the case is similar as before.

• Note that aij is not indifferent between π(aij) and π∗(aij), because π(aij) ̸= π∗(aij). It

remains that aij , b
i
j , c

i
j ∈ N(π∗, π), in which case ϕAi

j
(π∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αi
j /∈ N(π, π∗). If π(αi

j) ̸= π∗(αi
j), then αi

j , β
i
j ∈ N(π∗, π) and consequently

ϕAi
j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π, π∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α2i

j+1} ≠ ∅ and the claim follows by induction.

For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, ys2}, {ys1} : {rv, rw, rx} = s ∈ S′} ∪ {{ys1, ys2} : s ∈ S \ S′}

∪ {{b|R|+1
k , . . . , b2

k

k , y2}, {y1}} ∪ {{δik−1, a
2i−1
k , a2ik } : i ∈ [2k−1]}

∪ {{bij , c2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {c10}}.

It is easily checked that ϕ(π′, π∗) = 1 and that c10 forms a singleton coalition with
c10 ∈ N(π∗, π′).

Theorem 16. Checking whether there exists a strongly popular partition in a symmetric
FHG is coNP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric, non-negative FHG of Lemma 4 on agent set N with utility function v together with
the partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG
on agent set N ′ = N ∪ {z} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z, x) = vx(π

∗)/2, and v′(z, y) = 0 for y ∈ N \{x}. Note that by Lemma 4, this reduction
is in polynomial time.
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Consider the partition σ∗ = π∗∪{{z}} and let a partition σ ̸= σ∗ of N ′ be given. Define
π = (σ\σ(z))∪{σ(z)\{z}}. Note that every agent y ∈ N \{x} can only improve her utility
if z leaves her coalition. In addition, the utility v(x, z) is designed so that x still receives
her unique top-ranked coalition in σ∗ (apply Proposition 10). Hence, ϕN (σ∗, σ) ≥ ϕ(π∗, π).

We consider the popularity margin between σ∗ and σ by a case distinction. If π ̸= π∗,
then ϕ(σ∗, σ) ≥ −1+ϕ(π∗, π) ≥ 0 and ϕ(σ∗, σ) > 0 if (R,S) is a No-instance. On the other
hand, if π = π∗, then σ(z) ̸= {z} (since σ ̸= σ∗). As vy(π

∗) > 0 for all y ∈ N , we know
that |σ(z) \ {z}| ≥ 2 and y ∈ N(σ∗, σ) for all y ∈ σ(z) \ {z} (by design of the utilities, this
holds in particular for agent x). Hence, ϕ(σ∗, σ) = ϕσ(z)(σ

∗, σ) ≥ −1 + |σ(z) \ {z}| > 0

It follows that σ∗ is popular and it is a strongly popular partition if (R,S) is a No-
instance.

If (R,S) is a Yes-instance, then σ∗ is the only candidate that might be strongly popular.
Consider the partition π′ from Lemma 4 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 1 + ϕ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 17. Verifying whether a given partition in a symmetric FHG is strongly popular
is coNP-complete, even if all utilities are non-negative.

Proof. In the proof of Theorem 10, the partition σ∗ is strongly popular if, and only if, (R,S)
is a No-instance of X3C.

Theorem 18. Computing a mixed popular partition in a symmetric FHG is NP-hard, even
if all utilities are non-negative.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric FHG of Lemma 4 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG on
agent set N ′ = N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z1, z2) = vx(π

∗)/2, v′(z1, x) = v′(z2, x) = vx(π
∗)/3 > 0, and v′(zi, y) = 0 for i ∈ [2], y ∈

N \ {x}. Note that by Lemma 4, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ ̸= σ∗ be given. Define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a No-instance. We will
prove that ϕ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.

Note that as in the proof of Theorem 16, it holds that ϕN (σ∗, σ) ≥ ϕ(π∗, π). Now, for
i ∈ [2] holds that zi ∈ N(σ∗, σ) unless σ(zi) ∈ {{z1, z2, x}, {z1, z2}}. If σ(zi) = {z1, z2},
then ϕ(σ∗, σ) = ϕ(π∗, π) ≥ 1, because π ̸= π∗. On the other hand, σ(zi) = {z1, z2, x},
then π(x) ∩ π∗(x) = {x} and it follows that ϕ(σ∗, σ) ≥ −2 + ϕ(π∗, π) ≥ 1 (where the
last inequality uses Lemma 4). It remains the case that z1, z2 ∈ N(σ∗, σ) and we obtain
ϕ(σ∗, σ) ≥ 2 + ϕ(π∗, π) ≥ 2. Together, the partition σ∗ is strongly popular and therefore,
the unique mixed popular partition consists of σ∗ with probability 1.

Now assume that (R,S) is a Yes-instance. Consider the partition π′ from Lemma 4
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
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z1, z2 ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 2+ ϕ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case that σ = σ∗.

Theorem 19. Checking whether there exists a popular partition in a symmetric FHG is
coNP-hard, even if all utilities are non-negative.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider the
symmetric FHG with non-negative utility functions of Lemma 4 on agent set N with utility
function v together with the partition π∗ and the special agent x ∈ N . Set α = vx(π

∗). For
i ∈ [2], let Ni = {yi : y ∈ N} be two copies of N . Accordingly, let π∗

i be their respective
copies of π∗.

We define a symmetric ASHG on agent set N ′ = N1 ∪ N2 ∪ Z where Z = {zjk : k ∈
[2], j ∈ [3]}. Define Zj = {zj1, z

j
2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = 2α/5, v′(zjk, x2) = α/3 for k ∈ [2], j ∈ [3],

• v′(zj1, z
j
2) = α/2 for j ∈ [3], and

• v′(u, y) = 0 for every pair of agents u, y ∈ N ′ such that their utility is not yet defined.

By Lemma 4, this reduction is in polynomial time.

First assume that (R,S) is a No-instance. We claim that σ∗ = π∗
1 ∪π∗

2 ∪{Zj : j ∈ [3]} is
popular. To prove this, let σ ̸= σ∗ be an arbitrary partition and define πi = {σ(y)∩Ni : y ∈
Ni} be the coalitions restricted to Ni. Let k ∈ [2] and j ∈ [3]. The first key insight is
that if there exists y ∈ σ(zjk) \ (Zj ∪ {x1, x2}), then zjk ∈ N(σ∗, σ). Assume that such an

agent y exists. Observe that the only agents that provide positive utility to zjk are zj3−k, x1,

and x2. The maximum utility that under these circumstances can be obtained for zjk is if

σ(zjk) = {zjk, z
j
3−k, x1, y} and even in this case v

zjk
(σ) =

α
2
+ 2α

5
4 = 9α

40 < α
4 = vzik

(σ∗).

We will use this insight to show that we can assume for every k ∈ [2], j ∈ [3] that
σ(zjk) ⊆ Zj ∪ {x1, x2}. Fix again k ∈ [2], j ∈ [3] and assume otherwise. Then, σ(zjk)∩ (Zj ∪
{x1, x2}) ⊆ N(σ∗, σ). This follows for agents in Zj from what we have just shown before,
and for agents xi by the design of their utilities and the fact that they received a top-ranked
coalition in π∗

i and by Proposition 10 in σ∗. We modify σ by leaving the coalition with

the agents in Zj , that is, we define σ′ = (σ \ σ(zjk)) ∪ {σ(zjk) \ Zj , σ(zjk) ∩ Zj}. Then,
N(σ∗, σ′) ⊆ N(σ∗, σ) and N(σ, σ∗) ⊆ N(σ′, σ∗), which implies that ϕ(σ∗, σ) ≥ ϕ(σ∗, σ′)
and it suffices to consider σ′ and show a non-negative popularity margin for that partition.

We are ready to compute the popularity margin. Therefore, define I = {i ∈ [2] : σ(xi)∩
Z ̸= ∅}. Note that for i ∈ [2], ϕNi(σ

∗, σ) ≥ ϕ(π∗
i , πi). Furthermore, if i ∈ I, then πi(xi) ∩

Ni = {xi} and |Z ∩ σ(xi)| ≤ 2. It follows that ϕ(σ∗, σ) = ϕN1(σ
∗, σ) + ϕN2(σ

∗, σ) +
ϕZ(σ

∗, σ) ≥
∑

i∈I ϕNi(π
∗
i , πi) +

∑
i/∈I ϕNi(π

∗
i , πi) + ϕZ(σ

∗, σ) ≥ 3|I| − |{z ∈ Z : σ(z) ∩
{x1, x2} ≠ ∅}| = 3|I| − 2|I| ≥ 0. Hence, σ∗ is popular.
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Conversely, assume that (R,S) is a Yes-instance and assume for contradiction that σ is
popular and define πi = {σ(y) ∩Ni : y ∈ Ni} as above.

The overall proof strategy is as follows. First, we show that for k ∈ [2] and j ∈ [3],
σ(zjk) ∈ {Zj , Zj ∪ {x1}, Zj ∪ {x2}}. Then we show, that for i ∈ [2], there exists j ∈ [3] with
Zj ∪ {xi} ∈ σ. Finally, we perform a cyclic exchange of such coalitions.

Let k ∈ [2] and j ∈ [3] and define C = σ(zjk). The first crucial step is to show that
C ⊆ {x1, x2} ∪ Zj . To see this, assume for contradiction that there exists an agent y ∈
C \ ({x1, x2} ∪ Zj). We may assume that vy(σ) > 0, since otherwise leaving the coalition
with y yields a Pareto-improvement. Recall, that we have shown in the first part of the proof
that, under these circumstances, v

zjk
(Zj) > v

zjk
(σ). The same holds for zj3−k in both the case

that zj3−k ∈ C and zj3−k /∈ C. Define σ′ = (σ\{σ(zj1), σ(z
j
2)})∪{σ(z

j
1)\{z

j
1}, σ(z

j
2)\{z

j
2}, Zj}.

Then {zj1, z
j
2, y} ⊆ N(σ′, σ), while N(σ, σ′) ⊆ {x1, x2}. Hence, σ′ is more popular, which is

a contradiction. It follows that C ⊆ {x1, x2} ∪ Zj .
Next, we claim that zj3−k ∈ σ(zjk). Assume otherwise. If one of zjk and zj3−k is in a

singleton coalition, it is a Pareto improvement to form σ(zjk) ∪ σ(zj3−k). Otherwise, there

exists i ∈ [2] with σ(zjk) = {xi, zjk} and if σ(zj3−k) = {zj3−k, x3−i}. Hence, if zj3−k leaves her

coalition and joins σ(zjk), we obtain a more popular partition.
Define I = {i ∈ [2] : Z ∩ σ(xi) ̸= ∅} and let i ∈ I. We claim that there exists j ∈ [3]

with σ(xi) = {xi} ∪ Zj . Let k ∈ [2], j ∈ [3] with zjk ∈ σ(xi). We already know that
then Zj ⊆ σ(xi) ⊆ Zj ∪ {x1, x2}. Furthermore, by the pigeon hole principle, for some
j′ ∈ [3] \ {j} holds Zj′ ∈ σ. Assume for contradiction that x3−i ∈ σ(xi). Then, σ′ = (σ \
{σ(xi), Zj′})∪{Zj ∪{x1}, Zj′ ∪{x2}} is more popular. Indeed, N(σ′, σ) = {x1, x2, zj

′

1 , z
j′

2 },
while N(σ, σ′) = Zj .

The remainder of the proof is identical to the proof for ASHGs, namely we show that
I = {1, 2} and find a more popular partition even in this case.

All in all, it is shown that there exists no popular partition if (R,S) is a Yes-instance.
This concludes the proof of the theorem.
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