
Journal of Artificial Intelligence Research 75 (2022) 489-539 Submitted 10/2021; published 10/2022

Planning with Perspectives – Decomposing Epistemic
Planning using Functional STRIPS

Guang Hu ghu1@student.unimelb.edu.au

Tim Miller tmiller@unimelb.edu.au

Nir Lipovetzky nir.lipovetzky@unimelb.edu.au

School of Computing and Information Systems

The University of Melbourne, Australia

Abstract

In this paper, we present a novel approach to epistemic planning called planning with
perspectives (PWP) that is both more expressive and computationally more efficient than
existing state-of-the-art epistemic planning tools. Epistemic planning — planning with
knowledge and belief — is essential in many multi-agent and human-agent interaction
domains. Most state-of-the-art epistemic planners solve epistemic planning problems by
either compiling to propositional classical planning (for example, generating all possible
knowledge atoms or compiling epistemic formulae to normal forms); or explicitly encoding
Kripke-based semantics. However, these methods become computationally infeasible as
problem sizes grow. In this paper, we decompose epistemic planning by delegating reasoning
about epistemic formulae to an external solver. We do this by modelling the problem using
Functional STRIPS, which is more expressive than standard STRIPS and supports the
use of external, black-box functions within action models. Building on recent work that
demonstrates the relationship between what an agent ‘sees’ and what it knows, we define
the perspective of each agent using an external function, and build a solver for epistemic
logic around this. Modellers can customise the perspective function of agents, allowing new
epistemic logics to be defined without changing the planner. We ran evaluations on well-
known epistemic planning benchmarks to compare an existing state-of-the-art planner, and
on new scenarios that demonstrate the expressiveness of the PWP approach. The results
show that our PWP planner scales significantly better than the state-of-the-art planner
that we compared against, and can express problems more succinctly.

1. Introduction

In this paper, we present an approach to epistemic planning called planning with perspectives
(PWP) that is radically different to existing work. PWP exploits recent advances in auto-
mated planning using the Functional STRIPS language (Geffner, 2000; Frances & Geffner,
2015). The key insight used in PWP is to delegate reasoning about epistemic formulae to
external functions in Functional STRIPS. External functions are arbitrary functions imple-
mented in a programming language that can be called during planning. We formalise a logic
that allows the external reasoner to determine the knowledge, including nested knowledge,
of all agents using just the state passed to it by the planner.

In many scenarios, autonomous agents need to plan about the knowledge or beliefs of
other agents in the environment. This concept is known as epistemic planning (Bolander
& Andersen, 2011), a research topic that brings together the knowledge reasoning and
planning communities.

c©2022 AI Access Foundation. All rights reserved.

Hu, Miller, & Lipovetzky

Epistemic logic is a formal account to perform inferences and updates about an agent’s
own knowledge and beliefs, including group and common knowledge in the presence of mul-
tiple agents (Hintikka, 1962). Epistemic planning is concerned about action theories may
allow modelers reasoning not only about variables representing the state of the world, but
also the beliefs and knowledge that other agents have about those variables. Therefore,
epistemic planning intends to find the best course of action, taking into account practi-
cal performance considerations when reasoning about knowledge and beliefs (Bolander &
Andersen, 2011). Bolander and Andersen (2011) first used event-based models to study
epistemic planning in both single and multi agent environments, and gave a formal defi-
nition of epistemic planning problems using Dynamic Epistemic Logic (DEL) (Bolander,
2017).

There are typically two frameworks in which epistemic planning is studied. The first
is to use DEL. This line of research investigates the decidability and complexity of epis-
temic planning and studies what type of problems it can solve (Bolander, 2014; Bolander,
Jensen, & Schwarzentruber, 2015; Bolander, 2017) The second is to extend existing plan-
ning languages and solvers to epistemic tasks (Muise, Belle, Felli, McIlraith, Miller, Pearce,
& Sonenberg, 2015a; Muise, Miller, Felli, Pearce, & Sonenberg, 2015b; Kominis & Geffner,
2015, 2017; Wan, Yang, Fang, Liu, & Xu, 2015; Huang, Fang, Wan, & Liu, 2017; Le, Fabi-
ano, Son, & Pontelli, 2018; Wan, Fang, & Liu, 2021). In this paper, we take the latter
direction.

Epistemic planning is undecidable in the general case. Thus, one of the main challenges
of epistemic planning concerns computational efficiency. The dominant approach in this
area relies on compilations. These solutions pre-compile epistemic planning problems into
classical planning problems, using off-the-shelf classical planners to find solutions (Muise
et al., 2015a, 2015b; Kominis & Geffner, 2015, 2017); or pre-compile the epistemic formulae
into specific normal forms for better performance during search (Huang et al., 2017; Wan
et al., 2021). Such approaches have been shown to be fast at planning, but the compilation
is computationally expensive. For example, from Muise et al.’s (2015a) results, the planner
takes less than a second to solve all of their small benchmark problems, but for some
problems, the compilation time is more than half a minute as the problem size increases.

To mitigate the complexity of epistemic planning, this paper presents two contributions.
In Section 3, we propose a model of epistemic logic that extends recent insights in defining
what an agent knows as a function of what it “sees” (Cooper, Herzig, Maffre, Maris, &
Régnier, 2016; Gasquet, Goranko, & Schwarzentruber, 2014). Cooper et al. (2016) define
seeing relations for agent i as a modal operator Si that “sees” whether a proposition is true.
Then they define knowledge K for agent i of a proposition p as Kip ↔ p ∧ Sip; that is, if
p is true and agent i sees p, then it knows p. Thus, the seeing modal operator is equiv-
alent to the ‘knowing whether’ operator in epistemic logic (Fan, Wang, & van Ditmarsch,
2015; Miller, Felli, Muise, Pearce, & Sonenberg, 2016). We generalise the notion of seeing
relations to perspective functions, which are functions that determine which variables an
agent sees in its environment. The domain of variables can be discrete or continuous, not
just propositional. The intuition behind perspective functions is similar to seeing relations,
however, we show that by changing the definition of perspective functions, we can estab-
lish new epistemic logics, such as Big Brother Logic (Gasquet et al., 2014), a logic about
visibility and knowledge in two-dimensional Euclidean planes.

490

Epistemic Planning with Perspectives

In Section 4, we show how to integrate perspective functions within functional STRIPS
models as external functions (Francès, Ramı́rez, Lipovetzky, & Geffner, 2017). External
functions are black-box functions implemented in any programming language (in our case,
C++), that can be called within action models. Epistemic reasoning is delegated to external
functions, where epistemic formulae are evaluated lazily, avoiding the exponential blow-up
from epistemic formulae present in other compilation-based approaches. This delegation
effectively decomposes epistemic reasoning from search, and allows us to implement our
approach in any functional STRIPS planner that supports external functions. Further, the
modeller can implement new perspective functions that are tied to specific domains, and our
model will use those functions to evaluate desired epistemic relations, effectively defining
new external solvers. We show that perspective functions can be generic and implement
many different variants of epistemic logic, such as Kripke semantics (Fagin, Halpern, Moses,
& Vardi, 2003), Muise et al. (2015a)’s finite-depth, propositional epistemic logic (Muise
et al., 2015a) or observability relations (Le et al., 2018); however, our experience suggests
that tailoring perspective functions to specific domains results in more understandable and
elegant models that can be solved more efficiently.

In Section 5, we evaluate our PWP approach against a state-of-the-art epistemic plan-
ning approach (Muise et al., 2015a) and against Cooper et al. (2016)’s Gossip problem
solver (Cooper et al., 2016). In our experiments, we use a width-based functional STRIPS
planner (Francès et al., 2017) that is able to evaluate the truth value of epistemic fluents
with external solvers, and solve a wide range of epistemic problems efficiently, including
but not limited to, nested knowledge, distributed knowledge and common knowledge. We
compare our approach to a state-of-the-art epistemic planner that relies on a compilation
to classical planning (Muise et al., 2015a). We implement three benchmarks problems,
Corridor (Kominis & Geffner, 2015), Gossip (Cooper et al., 2016), and Grapevine (Muise
et al., 2015a) to compare the computational performance, and model two new domains, Big
Brother Logic and Social-media Network, to examine the expressiveness of our model. The
results show that, unlike in the compilation-based approaches, execution time on epistemic
reasoning increases polynomially in the depth of nesting, rather than exponentially.

2. Background and Related Work

In this section, we present the necessary background and discuss related work in three main
areas: (1) classical planning; (2) epistemic logic; and (3) epistemic planning.

2.1 Classical Planning

Planning is the model-based approach to action selection in artificial intelligence, where
the model is used to reason about which actions an agent should take to achieve some
objective, such as reaching a goal (Geffner & Bonet, 2013). Models vary depending on the
assumptions imposed on the dynamics of the world, from classical planning models where all
actions have deterministic instantaneous effects and the world is fully known, up to temporal
and POMDP models, where actions have durations and belief distributions about the state
of the world respectively. Models are described concisely through declarative languages such
as STRIPS and PDDL (Fikes & Nilsson, 1971; Haslum, Lipovetzky, Magazzeni, & Muise,
2019), general enough to allow the encoding of different problems, while at the same time

491

Hu, Miller, & Lipovetzky

revealing important structural information that allow planners to scale to large problems.
In fact, most planners rely on exploiting the structure revealed in the action theory to guide
the search of solutions, from the very first general problem solver (Simon & Newell, 1963)
up to the latest computational approaches based on SAT, and heuristic search (Rintanen,
2012; Richter & Westphal, 2010; Lipovetzky & Geffner, 2017).

However, declarative languages like STRIPS and PDDL have limited the scope of plan-
ning, as certain environments representing planning models are difficult to encode declara-
tively, but are easily defined through simulators such as the Atari video games (Bellemare,
Naddaf, Veness, & Bowling, 2013). Thus, an extension of STRIPS, Functional STRIPS has
been proposed by Geffner (2000), which allows modelling simulators with external func-
tions. Consequently, a new family of width-based planners (Lipovetzky & Geffner, 2012,
2014, 2017) have been proposed, broadening the scope of planning and scaling even when
the planning model is described through black-box simulators, only requiring the exposure
of the state variables, but not imposing any syntax restriction on the action theory (Francès
et al., 2017). Importantly, the denotation of some symbols can be given procedurally as
external functions, which can be implemented in programming languages such as C/C++.

In this paper we focus on a model of epistemic planning that extends the classical
planning model as a tuple S = 〈S, s0, SG, Act, A, f, c〉 where S is a set of states, s0 ∈ S
is the initial state, SG ⊆ S is the set of goal states, Act is the set of actions, A(s) is the
subset actions applicable in state s, f is the transition function so that f(a, s) represents
the state s′ that results from doing action a in the state s, and c(a, s) is a cost function.
The solution to a classical planning model S, called a plan, is a sequence of actions that
maps the initial state into a goal state, i.e., π = 〈a0, . . . , an〉 is a plan if there is a sequence
of states s0, . . . , sn+1 such that ai ∈ A(si), si+1 = f(ai, si) for i = 0, . . . , n and sn+1 ∈ SG.
The cost of plan π is given by the sum of action costs c(ai, si) and a plan is optimal if there
is no plan with smaller cost.

As a language that can model classical planning, STRIPS can represent a classical
planning problem as a tuple P = 〈F,O, I,G〉, where: F is the set of all possible facts or
propositions, O the set of all operators, I ⊆ F a set of all true facts in the initial situation,
and G ⊆ F a set of facts that needs to be true as the goal conditions. Since there is
no customised operator cost in STRIPS, the plan is optimal if there is no plan with less
operators taken.

action move(?x - location ?g - ghost)

prec (valid loc ?x)

effs (assign (loc ?g) ?x)

(when (has pacman ?x) (not (has pacman ?x)))

Figure 1: Example STRIPS action of a ghost move action

In addition to STRIPS, the Planning Domain Definition Language PDDL (Haslum
et al., 2019) is commonly used to model planning problems. A standard PDDL model
contains two files: a domain file and a problem file. The domain specifies the descriptions
of propositions (predicates) and operators (actions). The action description covers the
parameters, precondition and effects. The problem gives the objects, initial state and
goal condition. The set of all propositions or operators can be grounded by mapping the

492

Epistemic Planning with Perspectives

objects with the descriptions. As syntactic sugar, PDDL allows using conditional effect
(when-effect) to avoid redundant descriptions for similar actions. An example can be found
in Figure 1. Instead of having two descriptions of the actions when a ghost moves into a
location with or without pacman, the modeller can model this with single action description
by using conditional effect.

Besides the model, a solver, which is also called a planner, plays another important role
in planning by applying algorithms, usually search algorithms, to generate a solution for
the modelled problem. One of the most successful computational approaches to planning is
heuristic search. Besides a search algorithm, the key feature which distinguishes planners
is the heuristic function (Helmert & Domshlak, 2009). To achieve good performance, the
heuristic functions should be as informed as possible. For example, the widely used planner,
LAMA, uses a landmark-based heuristic derived from the model (Richter & Westphal, 2010)
along with other delete-relaxation heuristics (Geffner & Bonet, 2013). The downside is that
most heuristics require the model to be encoded in STRIPS or PDDL, and this restricts the
expressiveness of the models significantly.

The standard classical planning languages and solvers do not support the use of pro-
cedures or external theories. The first theoretical research that solve this problem is from
Geffner (2000)’s Functional STRIPS language (F-STRIPS), where the denotation of (non-
fluent) function symbols can be given using external functions. In addition, Dornhege,
Eyerich, Keller, Trüg, Brenner, and Nebel (2009b) proposed an extension of the PDDL
language (PDDL/M) that uses a similar idea called semantic attachments. They apply
this idea by integrating with existing heuristic search-based planners. Their approach is
widely used for robotic motion planning (Dornhege, Gissler, Teschner, & Nebel, 2009c;
Gaschler, Petrick, Khatib, & Knoll, 2018; Kaelbling & Lozano-Pérez, 2012; Bajada, Fox,
& Long, 2015). Planning Modulo Theories were introduced by Gregory, Long, Fox, and
Beck (2012), an idea inspired by SAT Modulo Theories (Nieuwenhuis, Oliveras, & Tinelli,
2006), where specialized theories were integrated too with a heuristic search planner. The
reason why functions are not “first-class citizens” in planning languages is that there was no
clear way to deal with them that is both general and effective. Most planning approaches
ground all functions, which allows them to convert the problem to a classical propositional
planning problem that can be solved using a classical planner, but recently, a new family of
algorithms called BFWS(R) have been proposed as a new width-based planning (Lipovet-
zky & Geffner, 2012). The BFWS(R) family of planners (Francès et al., 2017) have been
shown to scale up even in the presence of functional symbols defined procedurally1.

Any classical F-STRIPS (Francès et al., 2017) problem can be represented by a tuple
(V,D,O, I,G,F), where V and D are variables (named as functions in the language) and
domains, O, I, G are operators, initial state and goal conditions. The set of external func-
tions, F, allows the planner to handle problems that cannot be defined as a propositional
classical planning task, such as those whose effects are too complex to be modelled by propo-
sitional fluents, or even those whose actions and effects have some unrevealed corresponding
relations.

Consider the example in Figure 2, adapted from (Francès et al., 2017), which models
an action to move Pacman between locations. External functions start with the @ charac-

1. The planner is available through https://github.com/aig-upf/2017-planning-with-simulators. We
used options --driver sbfws --options bfws.rs=none

493

Hu, Miller, & Lipovetzky

action move(?x - location ?p - pacman)

prec (@validMove (loc ?p) ?x)

effs (assign (loc ?p) ?x)

(forall (?g - ghost) (@move ghost (loc ?g) ?x))

Figure 2: Example F-STRIPS action of a pacman move action

ter. In this example, @validMove is an external function that checks whether the move is
valid, encoding Pacman’s maze implicitly. @move ghost encodes the deterministic move-
ment strategy followed by all ghosts, a strategy that depends on Pacman’s Manhattan
distance. @validMove was used for convenience as a maze can be expressed easily with
propositional logic, but encoding the ghost movements is not trivial (Francès et al., 2017).

External functions are arbitrary functions that can be written in any language. Thus,
verifying the correctness and termination of the external function is the task of the modeller.

2.2 Epistemic Logic

In this section, we give the necessary preliminaries for epistemic logic – the logic of knowl-
edge. Knowledge in a multi-agent system is not only about the environment, but also
about the agents’ knowledge about the environment, and of agents’ knowledge of others’
knowledge about the environment, and so on.

Fagin et al. (2003) provides a formal definition of epistemic logic as follows. Given a
countable set of all primitive propositions Prop = {p1, p2, ...} and a finite set of agents
Agt = {a1, a2, ...}, the syntax for epistemic logic is defined as:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kiϕ,

in which p ∈ Prop and i ∈ Agt.
Kiϕ represents that agent i knows proposition ϕ, ¬ means negation and ∧ means con-

junction. Other operators such as disjunction and implication can be defined in the usual
way.

Fagin et al. (2003) define the semantics of epistemic logic using Kripke structures, as
standard in modal logic. A Kripke structure is a tuple M = (W,π,R1, . . . , Rn) where:

• W is a non-empty set of all possible worlds;

• π is an interpretation function such that π(w) : Prop → {true, false} defines which
propositions are true and false in world w ∈W ; and

• R1, . . . , Rn represents the accessibility relations over worlds for each of the n agents
in Agt.

Given a world w and a proposition p, the evaluation of p over w is π(w)(p). p is true in
w if and only if π(w)(p) is true. Ri for agent i is a binary relation over worlds. For any pair
of worlds v and w, if (w, v) ∈ Ri, then we say that agent i cannot distinguish between v
and w when in world w. In other words, the world v and w are equivalent to agent i if and
only if (w, v) ∈ Ri. With this definition of Kripke structures, we can define the semantics
of knowledge.

494

Epistemic Planning with Perspectives

Given a world w, a proposition p, a propositional formula ϕ and a Kripke model M , the
truth of two basic formulae are defined as follows:

(M,w) � p iff π(w)(p) = true

(M,w) � Kiϕ iff (M,v) � ϕ for all v such that (v, w) ∈ Ri

Standard propositional logic rules define conjunction and negation. (M,w) � Kiϕ is
defined by formula ϕ being true at all worlds v reachable from w via the accessibility
relation Ri. This allows knowledge to be nested; for example, KaKbp represents that
agent a knows that agent b knows p, which means p is true at all worlds reachable by
applying accessibility relation Ra followed by Rb. To be specific, (M,w) � KaKbϕ is true if
and only if (M, v) � Kbϕ for all v such that (v, w) ∈ Ra, which means (M,v′) � ϕ for all v′

such that (v′, v) ∈ Rb, for all v such that (v, w) ∈ Ra. This idea generalises to an arbitrary
level of nested knowledge.

From these basic operators, the concept of group knowledge can be defined. For this,
the grammar above is extended to:

ϕ ::= p | ϕ ∧ ϕ | ¬ϕ | Kiϕ | EGϕ | DGϕ | CGϕ,

in which p ∈ Prop, i ∈ Agt, and G is a non-empty set of agents such that G ⊆ Agt.
EGϕ represents that everyone in group G knows ϕ and CGϕ represents that it is com-

monly known in group G that ϕ is true, which means that everyone knows ϕ, and everyone
knows that everyone knows ϕ, ad infinitum. DGϕ represents distributed knowledge, which
means if all agents in G pooled their knowledge together, they would know ϕ, even though
it may be that no individual in the group knows ϕ.

The semantics for these group operators are defined as follows:

(M,w) � EGϕ iff (M,w) � Kiϕ for all i ∈ G
(M,w) � CGϕ iff (M,v) � ϕ for all v that are G−reachable
(M,w) � DGϕ iff (M,v) � ϕ for all v such that (w, v) ∈

⋂
i∈GRi

By definition, (M,w) � EGϕ holds if and only if ϕ is known by all agents in G. World v
is G−reachable from w if w can reach v within k steps of accessible relations, or for some k
where k ≥ 1 (Fagin et al., 2003). Common knowledge (M,w) � CGϕ holds if and only if in
all worlds v that are G−reachable by following the accessibility relations of all agents in G,
ϕ is true. For distributed knowledge, (M,w) � DGϕ holds if and only if in all the possible
worlds that all agents from G agree possible, ϕ is true. It might be easier to think in the
reverse direction: we say DGϕ is true in (M,w) if and only if we eliminate worlds that any
agent in G knows to be impossible, and ϕ is true in all the remaining possible worlds.

2.2.1 Seeing and Knowledge

Recently Gasquet et al. (2014) noted the relationship between what an agent sees and
what it knows. They define a more specific task of logically modeling and reasoning about
cooperating tasks of vision-based agents, which they call Big Brother Logic (BBL). Their
framework models multi-agent knowledge in a continuous environment of vision, which
has many potential applications such as reasoning over camera inputs, autonomous robots
and vehicles. They introduce the semantics of their model and its extensions on natural
geometric models.

495

Hu, Miller, & Lipovetzky

In their scenario, agents are stationary cameras in a Euclidean plane R2, and they
assume that those cameras can see anything in their sight range, and they do not block
others’ sight. They extend Fagin et al. (2003)’s logic by noting that, at any point in time,
what an agent knows, including nested knowledge, can be derived directly from what it
can see in the current world. Instead of Kripke frames, they define a geometric model as
(pos, dir, ang), in which:

• pos : Agt→ R2

• dir : Agt→ U

• ang : Agt→ [0, 2π)

where U is the set of unit vectors of R2, the pos function gives the position of each agent,
the dir function gives the direction that each agent is facing, and the function ang gives
the angle of view for each agent. Those functions are defined for every agent.

A model is defined as (pos, ang,D,R), in which pos and ang are as above, D is the
set of possible dir functions and R is the set of equivalence relations, one for each agent a,
defined as:

Ra = {(dir, dir′) ∈ D2 | for all b 6= a, dir(b) = dir′(b)}

The definition above shows the equivalence relation for agent a between the worlds (pos, dir, ang)
and (pos, dir′, ang), that if in two direction functions that all agents except a have the exact
same directions, then those two direction functions are indistinguishable to a.

In this context, standard propositional logic is extended with the binary operator a . b,
which represents that “a sees b”. This is defined as:

(pos, ang,D,R), dir � a . b iff pos(b) ∈ Cpos(a),dir(a),ang(a)

in which Cpos(a),dir(a),ang(a) is the field of vision that begins at pos(a) from direction dir(a)

and covers ang(a)
2 degrees in both clockwise and counter-clockwise directions.

a1

(0.0, 0.0)
a2

(4.2, 0.0)
b1

(−2.1, 0.0)
b2

(2.1, 0.0)
b3

(6.2, 0.0)

b4
(2.1, 1.9)

Figure 3: Example for Big Brother Logic

Figure 3 shows an example with two agents, a1 and a2, and model ((0.0, 0.0), 60◦, D,R)
and ((4.2, 0.0), 60◦, D,R) respectively, along with four objects, b1, b2, b3 and b4. Based on
the current world, for agent a1, we have:

496

Epistemic Planning with Perspectives

(pos, ang,D,R), dir � a1 . a2; (pos, ang,D,R), dir � a1 . b2; and, (pos, ang,D,R), dir �
a1 . b3.

From this, Gasquet et al. (2014) show the relationship between seeing and knowing. For
example, Ka(b . c) is defined as a . b ∧ a . c ∧ b . c.

Gasquet et al. (2014) also define a common knowledge operator, in a similar manner
to that of Fagin et al. (2003)’s definition based on G−reachable worlds. In Figure 3, the
formula C{a1,a2}a1 . b2 holds by their definition, because a1 and a2 can both see b2, and can
both see each other. From those, we can deduce based on laws of geometry that a1 can see
“a2 can see b2” as a1 can see both a2 and b2, and a2 can see b2. Furthermore, from the
previous statement, and a2 can see a1, we get that a2 can see “a1 can see ‘a2 can see b2’ ”,
etc. Thus, some common knowledge has been established.

Cooper et al. (2016) generalise this idea to seeing propositions, rather than just seeing
other agents in a Euclidean plane. This means that agents can see properties about the
world, and can see and know whether other agents see these properties. This is flexible
enough to model, for example, whether agents see the same value of a traffic light or
whether agents see that others see the same value of a traffic light. They add an extra type
of formulae α that describes formulae (propositions) that can be seen:

α ::= p | Siα
ϕ ::= α | ϕ ∧ ϕ | ¬ϕ | Kiϕ,

in which p ∈ Prop (the set of propositional variables) and i ∈ Agt. The grammar of α
defines visibility relations. Siα reads as “agent i sees α”. Note the syntactic restriction
that agents can only see atomic propositions or nestings of seeing relationships that see
atomic propositions.

From this, they note the equivalences Kip↔ p∧Sip and Ki¬p↔ ¬p∧Sip. To be specific,
they disallow Si¬p. This tight correspondence between seeing and knowing is intuitive: an
agent knows p is true if p is true and the agent can see the variable p. Such a relationship
is the same as the one between knowing something is true and knowing whether something
is true (Miller et al., 2016; Fan et al., 2015; Petrick & Bacchus, 2002).

Comparing these two bodies of work, Gasquet et al. (2014) use a geometric model to
represent the environment and derive knowledge from this by checking the agents’ line of
sight. Their idea formalises the notation that “seeing is believing”. However, their logic
is constrained only to vision in physical spaces. While in Cooper et al. (2016)’s world, the
seeing operator applies to propositional variables, and thus visibility can be interpreted more
abstractly; for example, “seeing” (hearing) a message over a telephone. This connection
between seeing and knowing is similar to the idea of sensing actions in partially-observable
planning (Dornhege et al., 2009c; Dornhege, Eyerich, Keller, Trüg, Brenner, & Nebel, 2009a;
Gaschler et al., 2018; Kaelbling & Lozano-Pérez, 2012; Bajada et al., 2015; Le et al., 2018;
Cooper, Herzig, Maris, Perrotin, & Vianey, 2020; Kominis & Geffner, 2015, 2017; Fabiano,
Burigana, Dovier, & Pontelli, 2020), as seeing/sensing generates new knowledge. However,
sensing actions are actions, whereas the idea of ‘seeing’ is a relation over properties of states.
Further, our work looks at nested knowledge in the framework of epistemic planning, which
is a generalisation of partially-observable planning (Bolander & Andersen, 2011).

This paper generalises seeing relations to perspective functions, which are domain-
dependent functions defining what agents see in particular worlds. The result is more

497

Hu, Miller, & Lipovetzky

flexible than seeing relations, and allows Big Brother Logic to be defined with a simple
perspective function, as well as new perspective functions for new logics; for example, Big
Brother Logic extended to three-dimensional planes, or visibility of messages on a social
network.

2.3 Epistemic Planning

Bolander and Andersen (2011) introduce the concept of epistemic planning, for both single
agent and multi-agent domains.

Their planning framework is defined in dynamic epistemic logic (DEL) (Van Ditmarsch,
van Der Hoek, & Kooi, 2007), which has been shown to be undecidable in general, but
decidable with (non-epistemic) propositional preconditions (Bolander et al., 2015). In
addition, for DEL model checking, they also proved PSPACE-hardness of the plan verifica-
tion problem. This formalism has been used to explore theoretical properties of epistemic
planning; for example, Engesser, Bolander, Mattmüller, and Nebel (2017) used concepts
of perspective shifting to reason about other agents’ contributions to joint goals. Along
with implicit coordination actions, their model can solve some problems elegantly without
communication between agents.

Since epistemic planning is formalised in DEL, there has been substantial work on DEL-
based planning. However, in this paper, our focus is on the design, implementation, and
evaluation of planning tools, rather than on logic-based models of planning. Therefore, we
focus on related work on planning tools and evaluation on benchmarks.

Several researchers in the planning field focus on leveraging existing planners to solve
epistemic problems. Muise et al. (2015a) proposed an approach to multi-agent epistemic
planning with nested beliefs, non-homogeneous agents, co-present observation, and the abil-
ity for one agent to reason as if it were the other. They compile an epistemic logic problem
into a classical planning problem by grounding epistemic fluents into propositional fluents
and using additional conditional effects of actions to enforce desirable properties of beliefs.

Muise et al. (2015a) define MEP as a tuple 〈P,A, Ag, I,G〉, where, similar to STRIPS,
P is the set of propositions (facts), A is the set of actions (operators), I is the initial
state, G is the set of goal-conditions, and Ag is the set of agents. They handle epistemic
relations as epistemic literals following the grammar: “φ ::= p | Biφ | ¬φ”. The literal
“Biφ” reads as “agent i believes φ”. Two limitations of this approach are: a finite depth
of nested beliefs; and no disjunction. Muise et al. (2015a) take three processes to convert
their model to STRIPS and keep their solution sound and complete. First, they maintain
the deductive closure by removing negations and adding logical consequences of all positive
effects. Second, they address uncertainty by removing the belief of l’s negation in an
unobservable effect as well as any other beliefs that can be used to deduce l. Finally, they
apply conditioned mutual awareness to conditional effects to enrich their model to handle
belief update on different levels.

They evaluate their approach on the Corridor (Kominis & Geffner, 2015) problem and
the Grapevine problem, a combination of Corridor and Gossip (Herzig & Maffre, 2015).
Their results show that their approach is able to solve the planning task within a typically
short time, but the compilation time to generate fluents and conditional effects is exponential
in both the number of agents and the maximum depth of epistemic relations.

498

Epistemic Planning with Perspectives

Kominis and Geffner (2015) adapt methods from partially-observable planning for rep-
resenting beliefs of a single agent, and convert that method to handle multi-agent settings.
Their idea is to maintain the problem’s Kripke structure. By their definition (adapting
STRIPS), an epistemic planning problem P is a tuple 〈A,F, I,O,N,U,G〉. In their model,
A is the set of agent identifiers, I is a set of possible initial states rather than just one
initial state in STRIPS. Then, instead of tracking the problem by only updating actual
states, they combine the Kripke structure with the state at time step t and possible initial
states by using beliefs, B(t). A set of beliefs B(t) contains a set of B(si, t) for each possible
initial state si. And in each B(s, t), there are the actual state v(s, t) and indistinguishable
relations ri(s, t) between current state and possible initial state for each agent i. By doing
so, they are able to construct the Kripke structure from the initial state for each agent.

To keep the Kripke structure during the search, they define three kinds of action sets:
O, N and U . O represents all physical actions, which is the same O as in classical planning.
The operator updates the actual current state s based on deterministic transition functions.
The action set N denotes a set of sense actions, which can be used to infer knowledge.
The sense actions will iterate on each agent and remove the inconsistent belief relations
according to the given formula, which they adapt from Levesque (1996). The last action
set U is used to update beliefs according to the fact ϕ. The update will keep the possible
previous state that agrees with ϕ and delete the rest.

They convert epistemic planning problems to classical planning problems using standard
compilation techniques for partially-observable planning. They evaluate their model on the
Muddy Children, Sum and Word Rooms (Kominis & Geffner, 2015) domains. As far as
we can tell from their experiments, they keep the depth of the epistemic relation fixed at
one and vary the number of agents or the number of rooms. Their results show that their
model is able to solve all cases presented with different suitable planners. However, from
their result, there is an exponential growth on the time consumption due to the increased
scale of the problems. In addition, following their approach, the modeller must specify the
sense action for each pair of (i, ϕ) and update action for each ϕ.

Since Kominis and Geffner (2015) and Muise et al. (2015a)’s approach the problem
in a similar way (compilation to classical planning) their results are similar in general.
However, the methods they used are different. Therefore, their work and results have
diverse limitations and strengths. For Muise et al. (2015a)’s work, they managed to model
nested beliefs without explicit or implicit Kripke structures, which means they can only
represent literals, while Kominis and Geffner (2015)’s work is able to handle arbitrary
formulae. Furthermore, Muise et al. (2015a)’s model does not have the strict common
initial knowledge setting found in Kominis and Geffner (2015), and does not have the
constraint that all action effects are commonly known to all the agents. Therefore, Muise
et al. (2015a)’s model allows them to model belief, rather than knowledge. In other words,
they can handle different agents having different beliefs about the same fluent.

More recently, rather than compiling epistemic planning problems into classical plan-
ning, Huang et al. (2017) build a native multi-agent epistemic planner, and propose a general
representation framework for multi-agent epistemic problems (Huang et al., 2017). They
consider the multi-agent epistemic planning problem from a third person point of view.
Based on a well-established concept of belief change algorithms (both revision and update
algorithms), they design and implement a planner called MEPK to encode belief change as

499

Hu, Miller, & Lipovetzky

the result of planning actions. They evaluate their approach with Grapevine, Hexa Game
and Gossip, among others. From their results, it is clear that their approach can handle a
variety of problems, and performance on some problems is better than other approaches.
While this approach is different from Kominis and Geffner (2015) and Muise et al. (2015a),
it still requires a compilation phase before planning to re-write epistemic formula into a
specific normal form called alternating cover disjunctive formulae (ACDF) (Hales, French,
& Davies, 2012). The ACDF formula is worst-case exponentially longer than the original
formula. The results show that this step has a similar computational burden as either
Kominis and Geffner (2015) or Muise et al. (2015a).

In addition to Kominis and Geffner (2015), Baral, Gelfond, Pontelli, and Son (2015)
also explore “sensing” actions. They define an action language mA∗ that encodes Kripke
structures using three components: the actual world; the beliefs of each agent about the
actual world; and the beliefs of each agent about the beliefs of the other agents. Compared
to Kominis and Geffner’s work, they provide a theoretical foundation for developing an
epistemic planner using action language, while Kominis and Geffner convert their action
language into classical PDDL.

Le et al. (2018) build two epistemic forward planners named EFP and PG-EFP. They
define their planning problem based on mA∗ as a tuple (AG,F , A,O), where AG is the set
of agent identifiers and F is the set of fluents. Action set A and observability statement set
O compose the actions and effects. In their A, they specify preconditions and three possible
effects: ontic, sensing and announcement, which works as follows: ontic effects change the
state (actual world); sensing actions reveal truth value of some fluent f ; and, announcement
actions announce the truth value of some fluent f , which affects set O. In the set O, they
propose two kinds of observations: fully observable actions by observes; and partially-
observable by aware of . Their semantics are defined by transition functions, which can
handle three types of agents’ awareness of the execution of one action: fully, partially and
oblivious. They implement those two planners based on their model with different search
algorithms, BFS and heuristic search for EFP and PG-EFP respectively. They propose
the definition of an epistemic planning graph, and use it as their main data structure in
the search. As for PG-EFP, they derive heuristic values directly from the structure of the
epistemic planning graph. They compared their planners against Muise et al. (2015a)’s and
Huang et al. (2017)’s solutions on Corridor, Collaboration-and-communication (Kominis &
Geffner, 2015), and Assembly Line (Huang et al., 2017). From their comparison, we find
EFP does not suffer from the exponential blow up on the depth of the epistemic relations,
but it is affected by the length of the plan. As for PG-EFP, it does perform better than
EFP on several problems, but the expressiveness is not as good as EFP.

Overall, our PWP approach to planning differs from traditional epistemic planning
approaches as we do not compile epistemic planning problems into classical planning prob-
lems (Muise et al., 2015a; Kominis & Geffner, 2015), which means our model does not
require a costly pre-compilation step. Compared to more recent work (Huang et al., 2017;
Le et al., 2018), our approach works on any F-STRIPS planner.

In addition, PWP is implemented using F-STRIPS (a state based language) rather than
an action language. Further, our approach can have continuous domains, supports common
and distributed knowledge, and has no limit on the depth of epistemic formula.

500

Epistemic Planning with Perspectives

3. Epistemic Logic using Perspectives

In this section, we define the syntax and semantics of our agent perspective model, including
distributed and common knowledge. We present a sound and complete semantics with an
exponential time entailment operator, and a tractable version of this logic that is sound, and
is complete for a wide-class of queries, including for queries able to be specified in planning
languages like PDDL. The intuition behind the logic is from Big Brother Logic (Gasquet
et al., 2014) and Cooper et al. (2016)’s seeing operators.

3.1 Language

Extending Cooper et al. (2016)’s idea of seeing propositional variables, our model is based
on a model of functional STRIPS (F-STRIPS) (Geffner, 2000), which uses variables and
domains, rather than standard propositions found in classical planning. We allow agents
to see variables with discrete and continuous domains, and knowledge is derived from what
variables they see.

Definition 3.1. A signature is a tuple Σ = (Agt, V,Dv1 , . . . Dvn , R), in which Agt is a finite
set of agent identifiers, V is a finite set of variables such that Agt ⊆ V (agent identifiers
can be used as variables), Dvi is a possibly infinite domain of constant symbols, one for
each variable vi ∈ V , and R is a finite set of predicate symbols. Domains can be discrete
or continuous. We define D =

⋃
v∈V Dv.

The language L(Σ) is defined by the grammar:

ϕ ::= r(t1, . . . , tk) | ¬ϕ | ϕ ∧ ϕ | Siv | Siϕ | Kiϕ,

in which r ∈ R, terms t1, . . . , tk ∈ V ∪D ∪Agt, i ∈ Agt, and v ∈ V . A relation r is a k-ary
propositional relation; Siϕ is a visibility formula that means agent i sees the truth value of
formula ϕ, Siv is a visibility formula that means that agent i sees the value of the variable
v, and Kiϕ is a knowledge formula. Operators ¬ and ∧ are defined in the standard way.
We call a formula with no conjunction a modal literal. The function vars(ϕ) returns all
variables in ϕ. For readability, we use just L to represent L(Σ) for the remainder of this
paper.

The important concept in this logic, adapted from Cooper et al. (2016) and (Gasquet
et al., 2014), is “seeing a proposition”. Let ϕ be a proposition, “agent i knows whether ϕ”
can be represented as “agent i sees ϕ”. The interpretation on this is: either ϕ is true and i
knows that; or, ϕ is false and i knows that. With higher-order observations added, it gives
agent i the ability to reason about whether other agents knows whether proposition ϕ is
true, without i knowing whether ϕ is true itself; e.g. SiSjϕ.

We include Kiϕ in the grammar, but in fact, it is simply shorthand and can be defined
as:

Kiϕ ↔ ϕ ∧ Siϕ

That is, agent i knows ϕ if agent i sees ϕ and also ϕ is true. Similarly, if agent i knows
ϕ, then it means that it is true (because it is knowledge, not belief), and that they must be
able to see that it is true. This definition of knowledge is consistent with the relationship
between knowledge and seeing identified by Cooper et al. (2016).

501

Hu, Miller, & Lipovetzky

Consider the example Big Brother Logic domain in Figure 3 and assume value(b1)
is false and all objects’ (b?) positions are commonly known to all agents. The formula
Sa2value(b1) can be read as “agent a2 sees variable value(b1)”, and it means agent a2

knows b1’s value, whatever that value is. The formula Ka2 [value(b1)=false] can be read as
“agent a2 knows variable value(b1) is false”, which represents a2 knows b1’s value is false.
Further, agent a1 does not know b1’s value, so we can say ¬Ka1Ka2 [value(b1)=false]. How-
ever, with the seeing relation, the formulaKa1Sa2 [value(b1)] holds, since both Sa1Sa2 [value(b1)]
and Sa2 [value(b1)] hold.

3.2 Semantics

In this section, we outline semantics for our logic: one sound and complete semantics that
has exponential time complexity, and a sound but incomplete semantics with polynomial
time complexity. The key part of the semantics is the use of states of the form {v1 =
e1, . . . , vk = ek}, rather than possible worlds found in Kripke semantics, and the use of
perspective functions rather than Kripke relations. Perspective functions are of the form
fi(s), where i ∈ Agt and s is a state. The expression fi(s) simply specifies which variables
valuation vi = ek in s agent i is able to see. By enforcing particular constraints on the
perspective functions, we get nice tractability results for the logic.

Definition 3.2. A model M is defined as M = (Agt, V,Dv1 , . . . , Dvk , π, f1, . . . , fn), in which
Agt, V , Dvi are as in Definition 3.1. A state s : V → D is a mapping from variables to
values. A global state is a total function (a complete assignment for all variables in V),
while a local state is a partial function (some variables may not be assigned). We use s(vi)
to represent the value of vi in s. If variable vi is not in the domain of local state s, then
s(vi) = null. The set of all states (local and global) is denoted as S, while the set of all
global states is SG (S. The set of all models is denoted M.

π is an interpretation function π : S × R → {true, false} that determines whether the
atomic term r(t1, . . . , tn) is true in s. π is undefined if any of its argument ti is a variable
in V that is not also in dom(s).

Finally, f1, . . . , fn : S → S are the agents’ perspective functions, one for each agent in
Agt. A perspective function, fi : S → S is a function that takes a state and returns a subset
of that state, which represents the part of that state that is visible to agent i.

For example, given a state s = {v1 = e1, v2 = e2}, then f1(s) = {v2 = e2} specifies that
agent 1 cannot see variable v1 or, by definition, its value, but can see variable v2 and its
value. These functions can be nested, such that f2(f1(s)) represents agent 1’s perspective
from agent 2’s perspective, which can be just a subset of agent 1’s actual perspective.

The following properties must hold on fi for all i ∈ Agt and s ∈ S:

(1) fi(s) ⊆ s
(2) fi(s) = fi(fi(s))

(3) If s ⊆ s′, then fi(s) ⊆ fi(s
′)

Property (1) ensures that each agent can only see true values of variables. Later, we see
that this ensures that knowledge is always true. Property (2) ensures that an agent sees
what it sees. Property (3) is a monotonicity constraint.

502

Epistemic Planning with Perspectives

Given this definition of a model, we first define the following semantics for our language,
which we call the näıve semantics, where s is a local or global state:

(a) (M, s) � r(t1, . . . , tk) iff π(s, r(t1, . . . , tk)) = true

(b) (M, s) � φ ∧ ψ iff (M, s) � φ and (M, s) � ψ

(c) (M, s) � ¬ϕ iff (M, s) 6� ϕ
(d) (M, s) � Siv iff v ∈ dom(fi(s))

(e) (M, s) � Siϕ iff (M,fi(s)) � ϕ or (M,fi(s)) � ¬ϕ

The semantics for relational terms and propositional operators are straightforward, but
the semantics for seeing is worth discussion. The semantics for Siv, which means agent i
sees variable v, is defined by stating that agent i sees v iff v is in the domain of state fi(s).
The semantics for Siϕ is defined as: either ϕ is true from agent i’s perspective, or ¬ϕ is
true from agent i’s perspective.

However, the näıve semantics suffers from two problems (hence the name ‘näıve’), both
related to the problem of having local states. First, the semantics are ill-defined. For Siϕ,
fi(s) can be a local state, which is only a partial assignment of variables. If a variable v is
not visible in fi(s), then any proposition that uses v will default to false. It is reasonable to
say that if an agent cannot see a variable in a proposition, then it cannot see the truth value
of that proposition. However, this causes problems with formulae such as seeing tautologies
or contradictions. For example, the formula M, s � Si(v = e ∨ ¬(v = e)) will evaluate to
false if v is not in the domain of fi(s). However, v = e ∨ ¬(v = e) is clearly a tautology, so
agent i should always see that it is true.

Second, the semantics of ¬ϕ uses a closed-world assumption. However, when s is a local
state (partial), for any formula ϕ that refers to a variable not in s, we should be unable
to prove ϕ or ¬ϕ. Defining ¬ϕ as the inability to prove ϕ means that Siϕ is a tautology:
either ϕ or ¬ϕ will always be true.

3.2.1 Non-näıve Semantics

To handle the issue of local states, we define the expression g[s] to mean function override:
g[s](v) = s(v) when v ∈ dom(s) and g(v) otherwise.

Using this, we extend the semantics for Siϕ to handle non-visible variables. This new
semantics states that whenever a variable v is not visible, we evaluate it against every
possible global value it could hold. Formally:

(e*) (M, s) � Siϕ iff for all g ∈ SG, (M, g[fi(s)]) � ϕ
or for all g ∈ SG, (M, g[fi(s)]) � ¬ϕ

The effect of evaluating ϕ (and ¬ϕ) under g[fi(s)] for every g means that ϕ (and ¬ϕ) is
evaluated under fi(s), but quantifying over every possible value for variables not in fi(s).
This solves the issues with the näıve semantics.

The time complexity of the näıve semantics is Θ(n × |ϕ|), in which n is the maximum
depth of a nested query in ϕ, and |ϕ| is the size of the formula. However, for the non-näıve
semantics for Siϕ, we need to iterate over all SG global states, meaning the worst-case
complexity is Θ(n × |SG|). Note that for models with infinite domains (e.g. continuous
variables), SG is infinite. Of course, in practice we need only iterate over any variables in

503

Hu, Miller, & Lipovetzky

ϕ that are not in dom(fi(s)), and we can also re-write the formula into CNF and solve for
any unreferenced variables.

As already noted, the näıve semantics is unsound and incomplete, however, the non-
näıve semantics is both sound and complete. It is straightforward to show this by simply
defining Kripke structures corresponding to our models.

For each model M = (Agt,D,Dv1, . . . , Dvk, π, f1, . . . fn), we can map to a corresponding
Kripe structure M ′ = (S, π,R1, . . . , Rn). First, we map states to worlds: each global state
g ∈ SG corresponds to a world in W. Second, perspective functions are mapped to Kriple
relations: given a perspective function fi(s), the corresponding Kripke relation Ri can be
constructed by taking each global state g and its corresponding world w, and defining
(u,w) ∈ Ri for every u ∈ W such that u and w agree on all variables in dom(fi(s)).
Effectively, this means that for any variable v ∈ fi(g), all reachable worlds in Ri(w) will
agree on v, and for any variable v /∈ fi(g), there will be at least one reachable world for
every e ∈ Dv. So, an agent can either know the value of a variable, or know nothing about
the value of the variable.

Therefore, the set of reachable worlds Ri(w) corresponds to the set of states {g[fi(s)] |
g ∈ SG}, which is precisely the set of states that are evaluated in the semantics of Siϕ. Given
that the Kripke-based semantics for Kiϕ assesses all reachable worlds in Ri(w), and given
the equivalence Siϕ↔ (Kiϕ ∨Ki¬ϕ), our non-näıve semantics are sound and complete.

3.3 Ternary Semantics

In this section, we show how to implement this logic using a ternary logic semantics. This
semantics aims to overcome the weaknesses of the näıve semantics, while providing a poly-
nomial time complexity for entailment.

We take the concept from Levesque (1998) for reasoning about knowledge bases with
incomplete information, in which propositions can be 1 (true), 0 (false), or 1

2 (unknown),
in which 1

2 is interpreted as: unable to be proved as either true or false. In our semantics,
proposition statements about variables that are not in a local state are given the value 1

2 .
Like Levesque (1998), we prove that the semantics are complete for a wide-class of formulae
based on logically separable formula.

Following the notation by Levesque (1998), we define the semantics using a function
T ∈ (M× S) × L → {0, 1, 1

2}, which takes the knowledge base (a model and state pair
(M, s) where s can be local or global) and a formula ϕ, and returns 1 for true, 0 for false,
and 1

2 for unknown. In order to systematically handling unknown seeing relation in a
partial state, we request the agent identifier i be part of the state.

Function T is defined as follows, omitting the model M for readability:

504

Epistemic Planning with Perspectives

(a) T [s, r(t1, . . . , tk)] = 1 if π(s, r(t1, . . . , tk)) = true;
0 if π(s, r(t1, . . . , tk)) = false;
1
2 otherwise

(b) T [s, φ ∧ ψ] = min(T [s, φ], T [s, ψ])

(c) T [s,¬ϕ] = 1− T [s, ϕ]

(d) T [s, Siv] = 1
2 if i /∈ dom(s) or v /∈ dom(s)

0 if v /∈ dom(fi(s))
1 otherwise

(e) T [s, Siϕ] = 1
2 if T [s, ϕ] = T [s,¬ϕ] = 1

2 or i /∈ dom(s);
0 if T [fi(s), ϕ] = T [fi(s),¬ϕ] = 1

2 ;
1 otherwise

The definitions of (d) and (e) deserves some discussion. For (d), we cannot reason about
whether agent i sees variable v or not if at least one of the following holds: v is not visible
in the current state, or the agent i is not visible in the current. In both cases, T [s, Siv] is
1
2 . Otherwise, T [s, Siv] is 1 or 0 depending on whether v is in i’s perspective fi(s) or not
respectively.

As for (e), T [s, Siϕ] = 1
2 in a local state s if and only if not both ϕ’s visibility and agent

i’s observability can be evaluated. In short, we cannot prove that i sees the value of ϕ if we
cannot prove ϕ ourselves; or alternatively, we cannot see if i sees ϕ if the agent itself cannot
reason about i’s visibility. If we reflect on the definition of (M, s) � Siϕ, we note that any
evaluation of Siϕ is done in a global state that is ‘anchored’ by the ‘for all g ∈ SG’ in the
non-näıve semantics. This first part of the definition handles this for local states.

The second part of the definition says that T [s, Siϕ] = 0 when T [fi(s), ϕ] = T [fi(s),¬ϕ] =
1
2 . What this means is that Siϕ is false when neither ϕ nor ¬ϕ can be proved in fi(s), be-
cause one or more variables in ϕ are not visible. In fact, we need only test one of these: if
ϕ cannot be proved (T [s, ϕ] = 1

2), then by definition, T [s,¬ϕ] = 1 − T [s, ϕ] = 1
2 as well.

Note that in both the first and second parts, not all variables in ϕ need to be visible for ϕ
or ¬ϕ to be proved. For example, Si(v = 1 ∨ u = 2) where fi(s) = [u = 2]. Even though v
is not visible, the truth value of (v = 1 ∨ u = 2) can be seen because u = 2 can be proved.

Finally, the third part of the definition says that T [s, Siϕ] = 1 if neither of the first two
cases hold. So, if either ϕ or ¬ϕ can be proved in state fi(s) (one of them returns 0 or 1),
then ϕ can be seen, as in the non-näıve semantics; otherwise, it cannot be seen.

Definition 3.3. (Soundness and completeness, adapted from Levesque (1998).) Consider
a function h : (M×S)× L → {0, 1, 1

2}. Then:

• h is sound iff for every M ∈M, s ∈ S, and ϕ ∈ L, if h[(M, s), ϕ] = 1 then (M, s) � φ
and if h[(M, s), ϕ] = 0 then (M, s) � ¬φ;

• h is complete iff for everyM ∈M, s ∈ S, and ϕ ∈ L, if (M, s) � φ then h[(M, s), ϕ] = 1
and if (M, s) 6� φ then h[(M, s), ϕ] = 0.

Clearly the function T is incomplete compared to the non-näıve semantics, because it
returns 1

2 for some queries. However, in the remainder of this section, we show that this
logic is sound, and we characterise precisely when the logic is complete.

First, we introduce the following lemma.

505

Hu, Miller, & Lipovetzky

Lemma 3.1. Given a formula ϕ ∈ L, then:

• if T [s, ϕ] = 1
2 , then there exists a global state g ∈ SG, such that T [g[s], ϕ] 6= 1

2 ;

• if T [s, ϕ] = 1, then for all global states g ∈ SG, T [g[s], ϕ] = 1; and

• if T [s, ϕ] = 0, then for all global states g ∈ SG, T [g[s], ϕ] = 0.

Effectively, this lemma means that T returns 0 or 1 for any global state. If T cannot
prove ϕ is true or false, then it must be due to reference to a variable that is not visible
in some partial state, as this is the only way that 1

2 is introduced by T . By ‘completing’
the state, we make ϕ (or ¬ϕ) provable. The latter two propositions state that, once ϕ is
proved, even in a partial state, adding more information cannot change the outcome.

Theorem 3.1. (Soundness of T). Let M ∈ M be a model, s ∈ S be a (local or global)
state, and ϕ ∈ L a formula. If T [(M, s), ϕ] = 1 then (M, s) � ϕ, and if T [(M, s), ϕ] = 0
then (M, s) 6� ϕ.

Proof. We prove this inductively on the structure of ϕ.

Case (a): The case of r(t1, . . . , tk) is straightforward as the semantics of T and � are
both defined using π. The only case where they disagree is then T [s, r(t1, . . . , tk)] = 1

2 ,
which can only happen when s is a local state.

Case (b): Assume T [s, ϕ ∧ ψ] = 1. Therefore, T [s, ϕ] = 1 and T [s, ψ] = 1 from the
definition of T . By induction, (M, s) � ϕ and (M, s) � ψ. Therefore, from the definition of
�, we have that (M, s) � ϕ ∧ ψ.

Now, assume T [s, ϕ ∧ ψ] = 0. Therefore, T [s, ϕ] = 0 or T [s, ψ] = 0 from the definition
of T . By induction, (M, s) 6� ϕ or (M, s) 6� ψ. Therefore, from the definition of �, we have
that (M, s) 6� ϕ ∧ ψ. This holds even if either T [s, ϕ] = 1

2 or T [s, ψ] = 1
2 , and the other is

0. That is, provided that one of ϕ or ψ evaluates to 0, we know that ϕ ∧ ψ evaluates to 0
irrelevant of the other.

Case (c): Assume T [s,¬ϕ] = 1. Therefore, T [s, ϕ] = 0 from the definition of T . By
induction, (M, s) 6� ϕ and therefore from the definition of � we have that (M, s) � ¬ϕ. The
case for T = 0 is just the reverse.

Case (d): The definitions of Siv for T is follows the same definition in �. The only case
they disagree is when T [s, Siv] = 1

2 , which can only happen in a local state.

Case (e): Assume T [s, Siϕ] = 1. Therefore, from the definition of T , we have that
T [s, ϕ] ∈ {0, 1} (recall that T [s,¬ϕ] = 1 − T [s, ϕ] by definition), and T [fi(s), ϕ] ∈ {0, 1}
(so T [fi(s),¬ϕ] = 1 − T [fi(s), ϕ]). From Lemma 3.1, this implies that for all g ∈ SG,
T [g[fi(s)], ϕ] ∈ {0, 1} or for all g ∈ SG, T [g[fi(s)],¬ϕ] ∈ {0, 1}. By induction, this means
that for all g ∈ SG, either (M, g[fi(s)]) � ϕ or (M, g[fi(s)]) � ¬ϕ. Therefore, from the
definition of �, we have that (M, s) � Siϕ.

Now, assume T [s, Siϕ] = 0. Therefore, from the definition of T , we have that T [fi(s), ϕ] =
T [fi(s),¬ϕ] = 1

2 . From Lemma 3.1, it must be that there exists g ∈ SG, such that
T [g[fi(s)], ϕ] ∈ {0, 1} and there exists g ∈ SG, such that T [g[fi(s)],¬ϕ] ∈ {0, 1}. By
induction, this means that there exists g ∈ SG, such that (M, g[fi(s)]) � ϕ and there exists
g ∈ SG, (M, g[fi(s)]) � ¬ϕ. Therefore, from the definition of �, we have that (M, s) 6� Siϕ.

506

Epistemic Planning with Perspectives

Next, we characterise when the logic is complete. To show this, we first introduce the
concept of logical separability.

Definition 3.4. (Logical separability) Adapted from Levesque (1998), a set of formulae Γ
is logically separable iff for every satisfiable set of literals L, if L ∪ Γ is unsatisfiable, then
L ∪ {ϕ} is unsatisfiable for some literal ϕ ∈ Γ.

This property captures whether there are any joint logical relations hidden in a set of
formulae. Intuitively, given a logically-separable set of formulae, we cannot infer anything
new by combining the formula in that set than we can from those items individually.

A contradiction is a simple example of a non-logically-separable formula. For example,
let Γ be {p,¬p}, and L be a singleton set containing any proposition q other than p or ¬p.

Clearly, both {p, q} and {q,¬p} are satisfiable, which means Γ is not logically separable.

Definition 3.5. (Normal form NF , adapted from (Lakemeyer & Lespérance, 2012)) We
define the normal form NF ⊆ L as the smallest set of formula where each formula ϕ ∈ L
adheres to the following gramma:

ϕ ::= r(t1, . . . , tk) | ¬ϕ | ϕ ∧ ϕ′ | Siv | Siϕ
ψ ::= r(t1, . . . , tk) | ¬ψ | ψ ∧ ψ′,

where the set {ψ,ψ′} is logically separable. This represents a normal form in which non-
separable formulae are only permitted outside of Si operators, and Si operators cannot be
nested. For any query, such as Siϕ in NF , ϕ must be non-separable.

Theorem 3.2. (Completeness of T). Let M ∈M be a model, s ∈ S be a (local or global)
state, and ϕ ∈ NF . Then, if (M, s) � ϕ then T [(M, s), ϕ] = 1, and if (M, s) 6� ϕ then
T [(M, s), ϕ] = 0.

Proof. We prove this inductively on the structure of ϕ.
Case (a): As with soundness, the case of r(t1, . . . , tk) is straightforward as the semantics

of T and � are both defined using π, and they disagree only when T [s, r(t1, . . . , tk)] = 1
2 .

Case (b): Assume that (M, s) � ϕ∧ψ. From the definition of �, we have that (M, s) � ϕ
and (M, s) � ψ. By induction and that ϕ∧ψ ∈ NF , we have that T [s, ϕ] = 1 and T [s, ψ] = 1.
Therefore, from the definition of T , we have that T [s, ϕ ∧ ψ] = 1.

Now, assume that (M, s) 6� ϕ ∧ ψ. From the definition of �, we have that (M, s) 6� ϕ or
(M, s) 6� ψ. By induction and that ϕ ∧ ψ ∈ NF , we have that T [s, ϕ] = 0 or T [s, ψ] = 0.
There, from the definition of T , we have that T [s, ϕ ∧ ψ] = 0.

If ϕ ∧ ψ /∈ NF , then the completeness does not hold because there are cases when, for
example, (M, s) 6� ϕ but T [s, ϕ] = 1

2 ; for example, if ϕ ≡ p ∧ ¬p, but p is not visible in s.
Case (c): Assume (M, s) � ¬ϕ. From the definition of �, we have that (M, s) 6� ϕ. By

induction, this means that T [s, ϕ] = 0, and therefore from the definition of T , we have that
T [s,¬ϕ] = 1. The case for (M, s) 6� ¬ϕ is just the reverse.

Case (d): Similar to soundness, the definitions of Siv for T is follows the same definition
in �. The only case they disagree is when T [s, Siv] = 1

2 .
Case (e): Assume that (M, s) � Siϕ. Note that ϕ ∈ NF , therefore it must be that

s is global for the case Si. From the definition of �, we have that either for all g ∈ SG,

507

Hu, Miller, & Lipovetzky

(M, g[fi(s)]) � ϕ or for all g ∈ SG, (M, g[fi(s)]) � ¬ϕ. By induction and ϕ ∈ NF , we have
that for all g ∈ SG, T [g[fi(s)], ϕ] = 1 or for all g ∈ SG, T [g[fi(s)],¬ϕ] = 1. If one of these
two expressions hold for all g ∈ SG, then they must also hold for all g[s] because fi(s) ⊆ s.
Therefore, either T [s, ϕ] = T [s,¬ϕ] = 1

2 , in which case T [s, Siϕ] = 1
2 ; or T [s, ϕ] ∈ {0, 1},

in which case T [s, Siϕ] = 1. In this first instance, if T [s, ϕ] = T [s,¬ϕ] = 1
2 , then s must

be a partial state, in which case, Siϕ must be occurring within another Sj operator, so
Siϕ /∈ NF .

Now, assume that (M, s) 6� Siϕ. From the definition of �, we have that there exists
g ∈ SG, such that (M, g[fi(s)]) � ϕ and there exists g ∈ SG, such that (M, g[fi(s)]) � ¬ϕ.
By induction and ϕ ∈ NF , we have that there exists g ∈ SG, such that T [g[fi(s)], ϕ] = 1
and there exists g ∈ SG, such that T [g[fi(s)],¬ϕ] = 1. From Lemma 3.1 and ϕ ∈ NF , it
must be that T [fi(s), ϕ] = T [fi(s),¬ϕ] = 1

2 . Therefore, from the definition of T , we have
that T [s, Siϕ] = 0; therefore case (e) and the theorem hold.

Definition 3.6. (Normal form NF+) We define the normal form NF+ ⊆ L as the smallest
set of formula where each formula ϕ ∈ L adheres to the following grammar:

ϕ ::= r(t1, . . . , tk) | ¬ϕ | ϕ ∧ ϕ′ | Siv | Siψ
ψ ::= r(t1, . . . , tk) | ¬ψ | ψ ∧ ψ′ | Siv | Siψ

where {ψ,ψ′} is logically separable. This is the same as NF , except that seeing operators
can be nested.

Theorem 3.3. (Soundness and completeness of T in global states). LetM ∈M be a model,
g ∈ SG be global state, and ϕ ∈ L be a formula in NF+. Then, if T [(M, g), ϕ] = 1 then
(M, s) � ϕ, and if T [(M, g), ϕ] = 0 then (M, s) 6� ϕ; and if (M, s) � ϕ then T [(M, s), ϕ] = 1,
and if (M, s) 6� ϕ then T [(M, s), ϕ] = 0.

Proof. This is a small extension to the proofs of Theorems 3.1 and 3.2, which prove the
case for local and global states in NF . Thus, we just need to prove the case for nested
seeing operators, which is the only difference between NF and NF+. The proof for
Theorem 3.1 already holds for this, however, not in the proof for completeness where if
T [s, ϕ] = T [s,¬ϕ] = 1

2 , then T [s, Siϕ] = 1
2 , but that this can only occur in a local state,

which implies Siϕ must be within another seeing operator. For the global case, however,
we have that T [g, ϕ] = T [g,¬ϕ] = 1

2 . From the definition of T , this can only occur if ϕ
refers to a variable not in g, which is not possible because g is global, therefore, the theorem
holds.

Finally, we discuss the potential implementation of our ternary semantics. Classical
planning languages do not support ternary propositional logic. However, as proven in
Theorem 3.3, our semantics is complete and sound for global states. Therefore, for a global
state, our semantics always returns true or false; and never returns 1

2 . This admits a
wide class of formulae suitable for many planning tasks, which are a superset of admissible
formulae in planning languages such as PDDL. That is, epistemic relations are modelled as
propositions in the planning language, and their truth values are reasoned externally with
our ternary semantics (including value 1

2 when nested relations are reasoned.) Therefore, the
completeness and soundness of solving an planning task is equivalent with the completeness
and soundness of our ternary semantics.

508

Epistemic Planning with Perspectives

3.4 Group Knowledge

From the basic visibility and knowledge definitions, in this section, we define group opera-
tors, including distributed/common visibility and distributed/common knowledge.

3.4.1 Language

We extend our language with group operators:

ϕ ::= ψ | ¬ϕ | ϕ ∧ ϕ | Siα | Kiϕ | ESGα | EKGϕ | DSGα | DKGϕ | CSGα | CKGϕ,

in which G is a set (group) of agents, and α2 is a variable v or formula ϕ.

Group formula ESGα is read as: everyone in group G sees a variable or formula α, and
EKGϕ represents that everyone in group G knows ϕ. DKG is the distributed knowledge
operator, equivalent to DG in Section 2.2, while DSG is its visibility counterpart: someone
in group G sees. Finally, CKG is common knowledge and CSG common visibility: “it is
commonly seen”.

As with the equivalence Kiϕ↔ ϕ ∧ Siϕ, we define the following equivalences:

EKGϕ ↔ ϕ ∧ ESGϕ ↔
∧

i∈GKiϕ

DKGϕ ↔ ϕ ∧DSGϕ
CKGϕ ↔ ϕ ∧ CSGϕ.

As such, we define the semantics only for the remaining operators.

3.4.2 Non-näıve Semantics of Group Knowledge

Given a model M and state s, we extend our non-näıve semantics to include the group
operators as follows:

(f) (M, s) � ESGα iff for all i ∈ G, (M, s) � Siα

(g) (M, s) � DSGv iff v ∈ dom(
⋃

i∈G fi(s))

(h) (M, s) � DSGϕ iff for all g ∈ SG, (M, g[s′]) � ϕ
or for all g ∈ SG, (M, g[s′]) � ¬ϕ, where s′ =

⋃
i∈G fi(s)

(i) (M, s) � CSGv iff v ∈ dom(cf (G, s))

(j) (M, s) � CSGϕ iff for all g ∈ SG, (M, g[s′]) � ϕ
or for all g ∈ SG, (M, g[s′]) � ¬ϕ, where s′ = cf (G, s).

in which cf (G, s) is the state reached by applying composite function
⋂

i∈G fi until it reaches
its fixed point. That is, the fixed point s′ such that cf (G, s′) = cf (G,

⋂
i∈G fi(s

′)).

3.4.3 Ternary Semantics of Group Knowledge

From the non-näıve semantics, it is straightforward to extend function T of the ternary
semantics to handle group knowledge, given agent identifier i is part of the state:

2. We use α for simplicity

509

Hu, Miller, & Lipovetzky

(f) T [s, ESGα] = min({T [s, Siα] | i ∈ G})
(g) T [s,DSGv] = 1

2 if v 6⊆ dom(s) or ∀i ∈ G, i /∈ dom(s);
0 if v /∈ dom(

⋃
i∈G fi(s));

1 otherwise
(h) T [s,DSGϕ] = 1

2 if T [s, ϕ] = T [s,¬ϕ] = 1
2 or ∀i ∈ G, i /∈ dom(s)

0 if T [s′, ϕ] = T [s′,¬ϕ] = 1
2 , where s′ =

⋃
i∈G fi(s);

1 otherwise

(i) T [s, CSGv] = 1
2 if v 6⊆ dom(s) or ∃i ∈ G, i /∈ dom(s);
0 if v /∈ dom(cf (G, s));
1 otherwise

(j) T [s, CSGϕ] = 1
2 if T [s, ϕ] = T [s,¬ϕ] = 1

2 or ∃i ∈ G, i /∈ dom(s);
0 if T [s′, ϕ] = T [s′,¬ϕ] = 1

2 , where s′ = cf (G, s);
1 otherwise

It is straightforward to see that the complexity of T with these new definitions is still
Θ(n× |ϕ|).

Theorem 3.4. (Soundness and completeness of T for group operators) Let M ∈ M be a
model, g ∈ SG be global state, and ϕ ∈ L be a formula in NF+. Then, if T [(M, g), ϕ] =
1 then (M, s) � ϕ, and if T [(M, g), ϕ] = 0 then (M, s) 6� ϕ; and if (M, s) � ϕ then
T [(M, s), ϕ] = 1, and if (M, s) 6� ϕ then T [(M, s), ϕ] = 0.

Proof. We prove this inductively on the structure of ϕ.

Soundness, case (f): Assume T [s, ESGα] = 1. From the definition of T , the minimum
of all T [s, Siα] for i ∈ G is 1, which means that T [s, Siα] = 1 for all i ∈ G. By induction,
this means that for all i ∈ G, (M, s) � Siα. Therefore, from the definition �, we have that
(M, s) � ESGα.

Now, assume T [s, ESGα] = 0. This means that for some i ∈ G, T [s, Siα] = 0. By
induction, we have that (M, s) 6� Siα for some i ∈ G. Therefore, from the definition of �,
we have that (M, s) 6� ESGα.

Completeness, case (f): Assume (M, s) � ESGα. From the definition of �, this means
that for all i ∈ G, (M, s) � Siα. By induction, we have that for all i ∈ G, T [s, Siα] = 1.
Clearly, the minimum of T [s, Siα] for any i ∈ G is 1, therefore, we have that T [s, ESGα] = 1.

Now, assume (M, s) 6� ESGα. From the definition of �, this means that there exists an
i ∈ G, such that (M, s) 6� Siα. By induction, this means that there exists an i ∈ G, such
that T [s, Siα] = 0. If T [s, Siα] = 0 for at least one i ∈ G, then the minimum T [s, Siα] must
be 0, therefore, we have that T [s, ESGα] = 0.

Cases (g)-(j) are all straightforward mappings from the proofs of Theorems 3.1, 3.2,
and 3.3. The unknown relation which is caused by agent now becomes none of agent’s
observability (g, h) and all agents’ observability (i, j) respectively. Besides the unknown
relation, the structure of proofs is identical, with just the replacement of fi(s) with

⋃
i∈G fi(s)

and cf (G, s) respectively.

Reasoning about common knowledge and common visibility is more complex than other
modalities. Common knowledge amongst a group is not only that everyone in the group
shares this knowledge, but also everyone knows others know this knowledge, and so on, ad

510

Epistemic Planning with Perspectives

infinitum. The infinite nature of this definition leads to definitions that are intractable in
some models.

However, in our perspective logic, common knowledge is much simpler. This is based
on the fact that each time we apply the composite perspective function

⋂
i∈G fi(s), the

resulting state is either a proper subset of s or is s. By this intuition, we can evaluate
common visibility/knowledge in a bounded number of steps.

The fixed point is a recursive definition. However, the following theorem shows that
this fixed point always exists, and the number of iterations is bounded by the size of |s|,
the state to which it is applied.

Theorem 3.5. Function cf (G, s) converges on a fixed point s′ = cf (G, s′) within |s| itera-
tions.

Proof. In each iteration of cf , either
⋂

i∈G fi(s) = s or
⋂

i∈G fi(s) (s because of the property
that fi(s) ⊆ s. If the former, we have reached the fixed point. For the latter, a maximum
of |s| such iterations are possible, by which point the fixed-point has been reached, even if
it is empty, in which there there is no common knowledge.

For each of the iterations, there are |G| local states in group G that need to be applied
in the generalised intersection calculation, which can be done in polynomial time, and there
are at most |s| steps. So, a poly-time algorithm for function cf exists.

3.5 Example Logics

Our logic is expressive enough to represent several well-known epistemic logics, including
epistemic logic based on Kripke semantics, as we show in this section. For simplicity, we
note the variable and its value as a tuple (v, e) in this session.

Example 3.1. (Kripke semantics) We can simulate Kripke semantics as follows. The set
of variables V = W , where W is the set of worlds in a Kripke model. Therefore, a state
s represents the set of possible worlds. The domain of variables is not relevant. The
perspective function fi(s) returns the set of possible worlds according to agent i, so is just
equivalent to Ki. The evaluation function π(s)(r(t1, . . . , tk)) is then just defined as being
true if and only if ∀w ∈ dom(s), r(t1, . . . , tk)) holds in the world corresponding to w.

The downside of this is that while the complexity is still polynomial in the number of
states, the number of states is exponentially larger than the set of propositions (or variables)
in the underlying problem, which is as difficult to solve as if using Kripke semantics. Instead,
using a domain-specific representation would often be more suitable. We show an example
of this for the Muddy Children problem in Section 4.3.

The reader may have noted that if the perspective function fi(s) returns the set of
possible worlds according to agent i, then the property fi(s) ⊆ s on perspective functions
is violated. A trick around this is to instead use a state s to represent the set of impossible
worlds. So, a global state g would contain all variables except those representing the current
world w in Kripke semantics. Then, fi(s) returns the set of impossible variables according
to agent i, and the evaluation function is defined as ∀w /∈ dom(s), r(t1, . . . , tk)) holds (note
the ∈ replaced by /∈).

511

Hu, Miller, & Lipovetzky

For example, given a state in our original model s = {x = 1} and dom(x) = {1, 2, 3}.
The inversed state for Kripke semantics s′ would be {nx2, nx3}.Then, given agent a and
agent b’s perspectives are {nx2} and {nx3} respectively, their distribute knowledge would
still be the union {nx2, nx3}.

Example 3.2. (Proper Epistemic Knowledge Bases (PEKBs) and Cooper et al. (2016)’s
seeing logic)

PEKBs (Muise et al., 2015b; Lakemeyer & Lespérance, 2012) and Cooper et al. (2016)’s
seeing logic are closely related, and our logic can represent both using the same represen-
tation as Cooper et al. (2016)’s.

In this representation, V is the set of all modal literals up to a maximum depth of k. If
k = 2, there is just one proposition p, and two agents i and j, then V = {p, Sip, Sjp, SiSip,
SiSjp, SjSip, SjSjp}. A state s represents the set of propositions that are true. The domain
is not relevant. The perspective function fi(s) = {(α, e) | (Siα, e) ∈ s}. The evaluation
function π(s)(p) is true if and only if p ∈ dom(s).

For Cooper, Herzig, Maffre, Maris, Perrotin, and Régnier (2021)’s JSα operator, which
means that all agents jointly see literal α (the operator CSG in our logic), we can use the
same encoding as Cooper et al. (2021) by adding a variable JSα for each literal α. We then
define fi(s) = {(α, e) | (Siα, e) ∈ s ∨ JSα ∈ s}.

A compact way to represent this logic is to have one variable ip for each proposition p.
The domain of each variable is a bit vector that represents each value in {p, Sip, Sjp, SiSip,
SiSjp, SjSip, SjSjp, JSp}.

In their PEKB-based planner, Muise et al. (2015a) introduce the concept of ‘always
known’ propositions, which are propositions that are common knowledge in a problem.
This reduces the size of the compiled classical planning problem because these propositions
do not have to be expanded.

Common knowledge can be represented in the PWP approach by ensuring that any
commonly-known variable is included in all agents’ perspective functions; or at least, all
agents who are part of the group. For any agent a ∈ G, where G is the group who commonly
know some proposition about variables v1, . . . vn, we can define fa(s) as:

fa(s) = {v | a . v, v ∈ s} ∪ {v1, . . . , vn}

Any propositions about the variables v1, . . . vn are commonly known by all agents in
a ∈ G because they are part of the fixed point for cf .

Example 3.3. (Big Brother Logic (BBL) (Gasquet et al., 2014)) In BBL, the set of variables
V is xi, yi ∈ R, diri ∈ U and angi ∈ (0, 2π) for each agent i where U is the set of unit
vectors for R2. These variables represent the Cartesian coordinates, the direction the agent
is facing, and its angle of vision respectively. The perspective function is defined as:

fi(s) = {(v, e) ∈ s | i . v ∨ v ∈ {xj , yj , angj} where j ∈ Agt}

512

Epistemic Planning with Perspectives

where i.v is defined as in Section 2.2.1 and e is the value of v in s. i.v can be implemented
using the following, assuming that (xj , yj) represents the location of the target agent j:(

| arctan(
|s(yi)−s(yj)|
s(xi)−s(xj))− s(diri)| ≤ s(angi)

2

)
∨(

| arctan(
|s(yi)−s(yj)|
s(xi)−s(xj))− s(diri)| ≥ 360◦−s(angi)

2

) (1)

Therefore, perspective function fi(s) takes all agents’ locations, directions and vision
angles, and returns all the variables that belong to those agents that fall inside these regions.
The predicate v ∈ {xj , yj , angj} captures that the locations and angles of all agents are
common knowledge, as in the original Big Brother Logic. Therefore, for all agents j, we
have that xj , yj , angj ∈ fi(s), and therefore xj , yj , angj ∈ fi(s) ⊆ cf(G, s).

As we outline in the next section, in our planning framework, perspective functions
are implemented using external functions in F-STRIPS. In our case, the external functions
are implemented in C++. This brings flexibility, such as the ability to implement the
expression in Equation 1. If it were possible to encode this function using propositions
in classical planning, we assert that the resulting encoding would be difficult, error prone,
and difficult for a reader to understand. However, implementing the above in C++ is
straightforward to implement and straightforward for a reader.

4. Epistemic Planning with Perspectives

In this section, we define our model of planning with perspectives (PWP), encode it within
a planner, and solve some well-known epistemic planning benchmarks. Two key aspects
in planning are the planning language and solver (planner). We use F-STRIPS as the
modelling language, and BFWS(R0) (Francès et al., 2017) as the planner. Using F-STRIPS
with external functions allows us to decompose the planning task from the epistemic logic
reasoning.

The intuition behind the PWP model is that the action model is specified using a
planning language, and queries specified in epistemic logic are implemented as F-STRIPS
external functions. External functions are functions that can be called from within an F-
STRIPS model, but whose semantics are defined external to the PDDL model and can be
implemented in languages outside of the planning language.

4.1 F-STRIPS Encoding

External functions are arbitrary functions that can be written in any language. Thus,
verifying the correctness and termination of the external function is the task of the modeller.
In our implementation, external functions are programmed in C++ for scalability and
flexibility.

As defined in Section 3, an epistemic logic model is defined as M = (Agt, V,Dv1 , . . . , Dvk ,
π, f1, . . . , fn). To show how to implement F-STRIPS with our model, we now give a
proper definition of all the epistemic planning problems that can be handled as a tuple
(Agt, V,D,O, I,G,F) in our approach, where: Agt is a set of agent identifiers; V is a set
of variables that covers the physical and the epistemic state; D = Dv1 ∪ . . . ∪ Dvn is the

513

Hu, Miller, & Lipovetzky

domain of variables; O, I and G differ from their counterparts in F-STRIPS only by adding
epistemic formulae in preconditions, conditions, and goals, which will be interpreted in the
following part of this section; and F are the set of external functions.

In the PWP approach, the main external functions are of the form (@check ?v1 . . .?vn ?q),
where q is the epistemic relation and v1, . . . , vn are variables. These evaluate the truth value
for q based on the given current state. For readability, we represent the validation of the
epistemic relation by using (@check ?q) only for the remainder of the paper, omitting the
variables. In the implementation, the modeller decides which variables are needed as the
input to the external functions.

There are two major ways to embed epistemic formulae in a planning problem: using the
formulae as preconditions and conditions (on conditional effects) in operators O; or using
the formulae as epistemic goals in G. These formulae are evaluated using the semantics in
Section 3.

Defining preconditions and goals with desirable epistemic formulae is straightforward.
For example, in Figure 3, if we want “agent a1 knows a2 sees b1” to be true, we could simply
set the goal to be Ka1Sa2b1.

An important part of the modelling is to represent the state with a planning language,
and update it accordingly with each action taken. Particularly important is to update
the state with information that is sufficient to determine what each agent sees, such as the
position, direction, and angle in Big Brother Logic. For non-visual domains, using encodings
similar to the PEKB encoding in Example 3.2 is possible as this is a general encoding. In
this case, the update will need to ensure that the relevant seeing variables are updated
correctly.

4.2 Perspective Functions

External functions in F-STRIPS take variables as input, and return a result based on that
input. This is the key aspect that allows us to separate epistemic reasoning from planning.

Recall from Section 3.2 that each agent i has a perspective function, fi : S → S, which
takes a state and returns the local state from the perspective of agent i. In most problems
we have modelled, the perspective function is the same for all agents, but the framework
allows each agent to have its own perspective function implementation.

Given fi for each agent, our library of external functions has implementations for Ki and
Si, their group knowledge counterparts, and propositional logic operators. The modeller
simply needs to provide the perspective functions for their domain, if a suitable one is not
already present in our library.

As an example, consider the Big Brother Logic domain. Here, the state of the world
includes the x-y coordinates of each agent, the direction they are facing, and the angle they
can see. The perspective function in Equation 1 is implemented in C++. The semantics of
the epistemic logic are implemented as external functions, and remain the same regardless
of the perspective function that is used.

When an epistemic formula is evaluated, the planner calls the related epistemic logic
external function. Instead of generating all truth values at the pre-compilation phase or
storing entire knowledge structures, the planner evaluates epistemic queries lazily. In other
words, the epistemic logic reasoning task is moved from the planner to the external func-

514

Epistemic Planning with Perspectives

tions. The underlying planner has no concept of epistemic logic, and simply uses its search
algorithm to find the goal.

Despite having general representations such as PEKBs (see Example 3.2), in our expe-
rience, using domain-specific perspective function results in shorter, more elegant models
that are more straightforward to specify and verify. We give the external function for BBL
domain here, and several examples in Section 5.

Example 4.1. External function for BBL domain

In Figure 3, global state s covers the whole flat field. Local state fa1(s) is the blue area,
and fa2(s) is the yellow area, which means in agent a1’s perspective, the “visible” world is
the blue area, and for agent a2, the “visible” world is only the yellow area. Furthermore, in
agent a1’s perspective, what agent a2 sees can be represented by the intersection between
those two coloured areas, which is actually fa2(fa1(s)). The interpretation is that, agent a1

only considers state l = fa1(s) as the “global state”, and inside that state, agent a2’s
perspective is fa2(l).

To be more specific about perspective functions, assume the global state s in the BBL
example contains all variables for {a1, a2, b1, b2, b3, b4}3, such as locations, the directions
agents are facing, and etc. Based on the current setup, we can implement fi for any agent i
with the Euclidean geometric calculation given in Equation 1 in Example 3.3. By applying
this perspective function on all variables in the given state (could be a local state when
evaluate nested perspective), we can filter out all unseen variables for the agent and get its
perspective based on the given state.

Then, for any epistemic query ϕ, such as Sa1b2, the external function (@check ?ϕ) takes
all variables {a1, a2, b1, b2, b3, b4} and the query ϕ as input. By applying the above perspec-
tive function fa1 on the given state, we can retrieve agent a1’s perspective ({a1, a2, b2, b3, b4})
over the current state. Since b2 is in the perspective, the external function will return 1,
which means (@check ?ϕ) will be evaluated as 1 (true) by the F-STRIPS planner. Let
another query ψ be Sa1b1. Following the exact same approach, since b1 is not in agent a1’s
perspective, the external function will return 0 (false), so ψ is false.

4.3 Expressiveness

The intuitive idea about perspective functions is based on what agents can see, as deter-
mined by the current state. The relation between t = fi(s) and s corresponds roughly to
Kripke accessibility relations (s, t) ∈ Ri. Perspective functions return one partial world
that the agent i is certain about, rather than a set of worlds that i considers possible. The
advantage is that applying a perspective function provides us with only one state, rather
than multiple states in Kripke semantics, preventing the explosion in model size.

However, the reduced complexity loses information on “uncertain” variables. That is,
variables that an agent has some information about, but not complete information. The-
oretically, fi(s) is equivalent to

⋂
t∈W (s, t) ∈ Ri from Kripke semantics. This eliminates

disjunctive knowledge about variables; the only uncertainty being that an agent does not

3. a1, a2, b1, b2, b3, b4 here in the set are not variables. They are simplified representations of the group of
variables that belong to that agent or that object, such as a1 represents x a1, y a1, dir a1, ang a1.

515

Hu, Miller, & Lipovetzky

see a variable. For example, in the well-known Muddy Children4 problem (Fagin et al.,
2003), the knowledge is not only generated by what each child can see by the others’ ap-
pearance, which is modelled straightforwardly using perspective functions, but also can be
derived from the questions made by their parent and the response by other children. From
their perspective, they would know exactly m children are dirty, which can be handled by
our model, as they are certain about it. While by the k-th time the parent asked and no one
responds, they can use induction and get the knowledge that at least k children are dirty.
By considering that there are two possible worlds, where the number of dirty children is m
or m+1, Kripke structures keep both possible worlds for m+1 steps. If we use a variable to
represent the number of possible muddy children, our model cannot keep these two worlds.
Therefore, although our model can handle preconditions and goals with disjunction, such
as Ki [(v = e1) ∨ (v = e2)], it cannot store such disjunction in its “knowledge base”.

Despite this, we can still represent the muddy children problem in our logic. Instead
of m representing the number of dirty children, we can model it as a series of propositions
indicating the number of dirty children, such asm0, . . . ,mn. To model uncertain information
about m, the underlying perspective function could eliminate all the propositions that the
agent is certain to be false. To be specific, if propositions m3 and m4 remain in agent i’s
perspective of the world, then, i knows m is either 3 or 4. Therefore, the children asking
their parent for the kth time will result in removal of mk from the state until all the children
only have mm in their local state. This is similar to how Kripke semantics are encoded in
Example 3.1, but also show that being able to customise perspective functions to specific
domains can be useful.

A comparison on expressiveness between our model and other approaches is given in
Table 1.

Nested Depth CK DK Continuous Disjunctive
Domains Knowledge

PWP Model Y U Y Y Y Y/N
Muise et al. (2015a) Y B N N N N
Kominis and Geffner (2015) Y B N N N Y
Huang et al. (2017) Y U I5 N N Y
Le et al. (2018) Y U I5 N N Y

Table 1: Expressiveness Comparison over Epistemic Planning Approaches, where CK and
DK represent whether the model supports common and distributed knowledge. ‘I’ means
this approach can handle common knowledge indirectly, such as modeling common knowl-
edge by public announcement (Le et al., 2018), or using a group of nested knowledge to
approximate common knowledge (Huang et al., 2017). For depth, ‘U’ means no bound on
the depth of queries, while ‘B’ means there is a fixed bound.

There are four major points of difference that we identify: (1) Our perspectives model
can handle domains in which the depth of epistemic relations are unbounded. Each level of

4. There are n children, and m of them with mud on their forehead. They can all see each others’ foreheads,
but not their own. To help them find out whether themselves are muddy or not, their parent can help
them by asking one question to them all for k times: do you know whether you are muddy or not?

516

Epistemic Planning with Perspectives

nesting is handled by a set operation from the perspective function iteratively when checking
desired epistemic relations; while in other approaches, the nested epistemic relations are
changed due to actions, which means they need to specify the effects on all epistemic
relations in operators. However, since Kominis and Geffner (2015), Le et al. (2018) keep
the Kripke structure in their approach, we are unsure about whether their approaches are
practically capable of modeling unbounded domains or not. In Muise et al. (2015a)’s work,
the depth also needs to be defined first as they need to generate all possible epistemic
relations as atoms. (2) Reasoning about group knowledge is handled by our model using a
union operation on the agent’s perspective of state for distributed knowledge; and, the fixed
point of intersections on nested agents’ perspectives for Common Knowledge. Therefore,
distributed and common knowledge result naturally from the visibility of variables. (3) Our
model has the potential to handle continuous domains in both logical reasoning and problem
description. While the functional STRIPS planner we use for experiments allows only
discrete variables, the external functions reason about continuous properties in the Big
Brother domain. Further, our approach would work on functional STRIPS planners that
support continuous variables (Ramirez, Papasimeon, Lipovetzky, Benke, Miller, Pearce,
Scala, & Zamani, 2018). (4) Our model does not handle disjunctive knowledge, but could
do so by modeling pairs of each variable and all its possible values as propositions, such as
“x=5 ∨ x=4”. However, by doing so, we would lose the efficiency and some expressiveness,
such as the support for continuous variables.

One possible objection is that it may be difficult to model perspective functions, because
one must understand epistemic effects. However, it is important to note that in existing
approaches, the modeller either needs to model epistemic effects as part of action effects, or
must understand and be restricted to the assumptions in the underlying epistemic planning
language; or both. Either way, the details of how actions affect knowledge must be modelled
somewhere. In our case, we delegate these to perspective functions, which are more flexible
than propositional approaches, because at the base case, one can implement a perspective
function that has the same assumptions as any existing propositional approach. This can
then be used for other domains.

5. Experiments & Results

In this section, we evaluate our approach on several problems: Corridor (Kominis & Geffner,
2015), Grapevine (Muise et al., 2015a), Big Brother Logic (BBL) (Gasquet et al., 2014),
Social-media Network (SN) and Gossip (Baker & Shostak, 1972). Corridor, Grapevine,
and Gossip are well-known epistemic planning problems, which we use to compare actual
performance of our PWP model against two state-of-the-art approaches in epistemic plan-
ning. BBL is a model of the Big Brother Logic in a two-dimensional continuous domain,
which we use to demonstrate the expressiveness of PWP. The Social-media Network prob-
lem demonstrates group knowledge operators, modelling information sharing over a digital
social network platform. PWP has an advantage on those epistemic planning problems
where knowledge can be derived from the ontic states. We also evaluate PWP on problems
in which agents can have ‘memory’ about knowledge, such as the canonical ‘Gossip’ domain.

The source code of our implementation along with all experiments can be found at
https://github.com/guanghuhappysf128/benchmarks.

517

Hu, Miller, & Lipovetzky

5.1 Benchmark Problems

In this section, we briefly describe the corridor and grapevine problems, which are bench-
mark problems that we use to compare against Muise et al. (2015a)’s epistemic planner,
and is currently the state-of-the-art in epistemic planning.

Corridor The corridor problem was originally presented by Kominis and Geffner (2015).
It models selective communication among agents. The basic setup is in a corridor of rooms,
in which there are several agents. An agent is able to move around adjacent rooms, sense
the secret in a room, and share the secret. The rule of communication is that when an
agent shares the secret, all the agents in the same room or adjacent rooms then know the
secret. The goals in this domain are to have some agents knowing the secret and other
agents not knowing the secret. The perspective function is simply that a secret variable is
‘visible’ to an agent (which models it hearing the secret) if they are in the same room or
adjacent rooms when the secret is shared.

Grapevine Grapevine, proposed by Muise et al. (2015a), is a similar problem to Corridor.
With only two rooms available for agents, the scenario makes sharing secrets while hiding
from others more difficult. The basic setup is each agent has their own secret, and they can
share their secret among everyone in the same room. Since there are only two rooms, the
secret is only shared within the room. The basic actions for agents are: moving between
rooms and sharing their secrets. The emphasis of this domain is on sharing one’s secret to
others without being noticed. This is the same as in the Corridor domain, except we change
the seeing rules so that an agent sees a variable if and only if they are in the same room
when the secret is shared.

5.1.1 Encoding

Both the Corridor and Grapevine domains are modeled similar to standard propositional
planning problems. The only difference is that the locations for movable agents are modeled
by functions (variables in the BWFS planner) rather than propositions, which increases the
readability and flexibility for the external functions. The desired epistemic formulae are
modeled by Boolean query ‘indicators’. Each of the indicator is a Boolean variable that
records the truth value for an epistemic formula which is in the format of a JSON string. For
example, a query entry in Grapevine domain ‘{“query info”:{“id”:“p1”,“query”:“ck
1,2 sct 1:value:2”}}’ represents CK1,2 sct1=2. This separates the epistemic language
from F-STRIPS. The truth values for query indicators can be modified by conditional
effects in actions, such as shout in Corridor and share in Grapevine. For example, in
those actions, all query indicators are evaluated by calling external functions. We only
update the corresponding indicators if the epistemic formulae hold in the current state. An
example action shout is listed as below:

action shout(x)
prec sct=1, loc(a)=x
effs (forall (?q - query) (when (= (@check ?q) 1) (assign (fact ?q) 1))

The conditional effects assigns the truth value to each query (goal) ?q to record its
value. That is, for any positive epistemic relations, its query variable should be 1 when

518

Epistemic Planning with Perspectives

checking the goal state, while for any negative epistemic relations, its query variable should
keep being 0. While this is somewhat inelegant, it would be straightforward to take any
existing epistemic planning language and compile into this format.

5.1.2 External Functions

The input of the @check function would be the location of each agent and the query itself.
The agent’s perspective function for Corridor and Grapevine are similar. The visibility of
secrets for both domains depends on the location of the agent whose perspective is modelled.
Therefore, both rules take the location of the speaking agent and the hearing agent, and
returns all variables whose locations are the same location (for the Grapevine domain);
or the locations are the same or in adjacent rooms (for the Corridor domain). Given the
function loc(i) that returns the location of an agent using the rooms as a sequence of
numbers, we can define this formally as follows:

Corridor domain: fi(s) = {v′ | v′ ∈ s ∧ |loc(v′)− loc(i)| ≤ 1}
Grapevine domain: fi(s) = {v′ | v′ ∈ s ∧ loc(v′) = loc(i)}.

5.1.3 Results

To evaluate computational performance of PWP, we compare to Muise et al. (2015a)’s
PDKB planner. Their planner has been used to compare on Corridor and Grapevine do-
mains against many others’ solutions (Kominis & Geffner, 2015; Huang et al., 2017; Le
et al., 2018). From their results and results from Huang et al. (2017) and Le et al. (2018),
it is fair to say that PDKB is a state-of-the-art planner. Although the PDKB approach
is for belief, rather than knowledge, it can still be used as a suitable baseline for problems
in which the agent’s belief cannot be incorrect, and thus can simulate knowledge for these
domains. In addition, to test how the performance is influenced by the problem, we create
new problems that varied some of the parameters, such as the number of agents, the number
of goal conditions and also the depth of epistemic relations.

The PDKB planner converts an epistemic planning problem into a classical planning
problem, which generates a significant number of propositions when the depth of epistemic
relations or the number of agents increases. We tried to submit the converted classical
planning problems to the same planner that is used by our PWP model, the BFWS(R0)
planner, to maintain a fair comparison. However, in this domain, there was not a significant
performance difference with respect to the original planner used by Muise et al. (2015a),
the FF planner.

We ran the problems with both planners on a Linux machine with 8 CPUs (Intel Core
i7-7700K CPU @ 4.20GHz × 8) and 16 gigabytes of memory. We measure the number of
atoms (fluents) and the number of nodes generated during the search to compare the size of
the same problem modelled by different methods. We also measured the total time for both
planners for solving the problems, and the time they take for reasoning about the epistemic
relations, which corresponds to the time taken to call external functions for our solution
(during planning), and the time it takes to convert the epistemic planning problems into
classical planning problems in the PDKB solution (before planning).

Table 2 shows the results for the Corridor and Grapevine problems, in which |Agt|
specifies the number of agents, d the maximum depth of a nested epistemic query, |G| the

519

Hu, Miller, & Lipovetzky

Parameters PWP PDKB

|Agt| d |G| |Atom| |Gen| |Calls| TIME(s) |Atom| |Gen| TIME(s)
Calls Total Compile Total

Corridor

3 1 2 15 8 24 0.001 0.002 54 21 0.148 0.180
7 1 2 15 15 72 0.002 0.004 70 21 0.186 0.195
3 3 2 15 8 24 0.002 0.004 558 21 0.635 0.693
6 3 2 15 15 72 0.006 0.007 3810 21 5.732 6.324
7 3 2 15 15 72 0.007 0.008 5950 21 9.990 11.130
8 3 2 15 15 72 0.008 0.009 8778 21 14.140 15.680
3 4 2 15 8 24 0.003 0.004 3150 21 3.354 3.752
3 5 2 15 8 24 0.002 0.003 18702 21 25.690 29.540

Grapevine

4 1 4 358 23 144 0.003 0.005 96 11 0.428 0.468
4 2 4 358 23 144 0.005 0.007 608 11 2.885 3.178
4 1 8 370 270 2144 0.044 0.048 96 529 0.381 0.455
4 2 8 370 270 2144 0.077 0.079 608 1234 3.450 4.409
4 3 8 370 270 2144 0.136 0.138 4704 14 28.660 30.720
8 1 2 600 18 24 0.001 0.006 312 5 3.025 3.321
8 2 2 600 18 24 0.001 0.007 4408 5 54.350 58.800
8 1 4 606 43 144 0.005 0.011 312 11 2.546 2.840
8 2 4 606 43 144 0.009 0.014 4408 11 55.330 59.780
8 1 8 618 1068 4448 0.158 0.171 312 2002 2.519 3.752
8 2 8 618 1068 4448 0.257 0.269 4408 4371 54.900 228.100
8 3 8 618 1068 4448 0.460 0.466 − − − −

Table 2: Results for the Corridor and Grapevine Problems

number of goals, |Atom| the number of atomic fluents, |Gen| the number of generated nodes
in the search, and |Calls| the number of calls made to external functions. The symbol “−”
represents there is no result within a 10-minute time limit. In the Grapevine tests, to
eliminate any influence from the different length of the plan on the computation time, we
increase the depth of the goal while keeping the solution the same. Therefore, with the
same number of agents and size of the goal condition, the problems have the same solution.
Evidence of this is that the number of the search nodes generated and the number of the
external function calls remains static across problems.

From the results, it is clear that the complexity of the PDKB approach grows exponen-
tially on both the number of the agents and the depth of epistemic relations (the planner
went over the 10-minute time boundary in the final Grapevine problem). The complexity
of the pre-compilation for the PDKB planner is O(2|Agt|·D), in which |Agt| is the number
of agents and D is the maximum depth of any modal formula in the modal. The search
complexity is then the same as classical planning, which we model as O(|Gen|), in which
Gen is the set of states that are generated to solve the problem. Using PWP, the number
of features and depth do not have a large impact. However, epistemic reasoning in our
approach (the number of calls to the external solver), has a significant influence on the

520

Epistemic Planning with Perspectives

performance. Since the F-STRIPS planner we use checks each query in goal conditions at
generation of each node in the search (O(|Gen|)), the time complexity for epistemic logic
reasoning is in O(|Gen| · |G| · |Agt| · |V |2), in which G is the set of goals and V is the size
of the state6.

Although the search part of the problem is still NP-hard, the empirical computational
cost of epistemic reasoning is significantly lower than the compilation in the PDKB approach
in most of the test cases. In fact, using our encoding, none of the problems exceed even
half a second, while for the PDKB approach, many do, some running for close to a minute.

5.2 Big Brother Logic

Big Brother Logic (BBL) is a problem first discussed by Gasquet et al. (2014). The basic
environment is on a two-dimensional space called “Flatland” without any obstacles. There
are several stationary and transparent cameras; that is, cameras can only rotate, and do
not have volume, so they do not block others’ vision. In our scenario, we allow cameras to
also move in Flatland.

5.2.1 Encoding

Figure 4 visualises the problem setup. Let a1 and a2 be two cameras in Flatland. Camera
a1 is located at (5, 5), and camera a2 at (15, 15). Both cameras have a 90◦ range. Camera
a1 is facing north-east, while camera a2 is facing south-west. There are three objects with
values o1 = e1, o2 = e2 and o3 = e3, located at (1, 1), (10, 10) and (19, 19) respectively. For
simplicity, we assume only camera a1 can move or turn freely, and a2, o1, o2 and o3 are
fixed. The locations of these stationary objects and agents are common knowledge.

Let all the desired epistemic relation queries be a set of propositions Q, this problem
can be represented by the tuple (V,D,O, I,G,F), where:

• V = {x, y, dir, q} for i ∈ Agt;

• D : D(x)=D(y)={−20, . . . , 20}, D(dir)={−180, . . . , 180}, and D(q)={0, 1}, where
q ∈ Q;

• O : move(dx, dy) and turn(d), where dx, dy ∈ {−2, . . . , 2} and d ∈ {−45, . . . , 45};

• I = [x = 5, y = 5, dir = 45];

• G = {q = 1}; and

• F : (@check q) 7→ {true, false};

in which q is a goal query, which we describe later. Variables x and y represent coordinates
of camera a1, and dir determines which way a1 is facing. Since a2 and all other objects
are fixed, we can model them in an external state handled by the external functions, which
lightens the domain and reduces the state space. However, we could also model the positions
of these as part of the planning model if desired.

6. In the worst case, we need to check common knowledge on a state, there are at most |V | (maximum size
of the state) iterations, and each iteration contains |Agt| amount of set operations on the global state or
a local state (maximum |V |).

521

Hu, Miller, & Lipovetzky

a1

(5,5)

a2

(15,15)

o2

(10,10)

o1

(1,1)

o3

(19,19)

Figure 4: Example for Big Brother Logic setup

We need to check the knowledge queries in the actions (precondition, conditions), or
goals. Both action move(dx, dy) and action turn(d) can change all of agents’ perspectives,
and therefore, can influence knowledge.

5.2.2 External Functions

Inputs to the external functions would be the query (in the format of our language described
in Section 3) and current state (x, y and dir are the only changing variables in this case).
The output is the evaluated truth value of the query. The perspective function is similar to
the one in Example 3.3, except that because the angle and position of all agents except a1

are known, it can be simplified to just:

BBL domain: fi(s) = {v′ | v′ ∈ s ∧ i . v′}

Since the BBL domain is in a two-dimensional continuous environment, encoding in
other epistemic planners would not be straightforward. First, a propositional approach
could not be taken because there are an infinite number of propositions corresponding to
the continuous variables in the domain. Second, the arithmetic operators and trigonometric
functions would need to be encoded propositionally, which we believe would prove tedious
and error-prone.

5.2.3 Goal Conditions

As for the goal conditions, some queries q can be achieved for the problem in Figure 4
without executing any actions because they hold in the initial state, such as the following,
assuming that o1, o2, and o3 have values e1, e2, and e3 respectively:

522

Epistemic Planning with Perspectives

1. Single Knowledge query: Ka1o3=e3 ∧ ¬Ka2o3=e3

2. Nested Knowledge query: Sa1Sa2o3 ∧ ¬Ka1Sa2o3

3. Group Knowledge query: EKa1,a2o2=e2 ∧ ¬EKa1,a2o3=e3

4. Distributed Knowledge query: DKa1,a2o1=e1 ∧ ¬DKa1,a2o1=e3

5. Common Knowledge query: CKa1,a2o2=e2 ∧ CKa1,a2Sa1o3

From goal 2, although Sa1Sa2o3 is true because a1 can see a2’s location, range of vision
and direction, so a1 knows whether a2 can see o3, the formula Ka1Sa2o3 is false because a2

cannot see o3.

For goal 5, CKa1,a2Sa1o3 holds in the initial state because the common local state for a1

and a2 would be the location of all three values, both a1 and a2 and the value of o2. Then,
Sa1o3 holds based on the common local state.

In addition, there are some queries that can be achieved through valid plans:

1. EKa1,a2o1=e1: move(−2,−2), move(−2,−2)

2. CKa1,a2o1=e1: move(−2,−2), move(−2,−2)

3. Sa1Sa2o1 move(−2, 2), move(−2, 2)

4. Sa1o3 ∧ ¬Sa2Sa1o3: move(−2, 1), move(−2, 2), move(−2, 2), move(−2, 2),
move(−2, 2), move(−2, 2)

5. ¬Ka1Sa2Sa1o3 ∧ Sa1o3: move(−2, 1), move(−2, 2), move(−2, 2), move(−2, 2),
move(−2, 2), move(−2, 2), turn(−45)

The first plan is clear. There is more than one way to let both of them know value o1,
and the planner returns the optimal solution. The second plan is also intuitive: to achieve
common knowledge in a BBL problem, they need to both see the item and both see each
other. The difference between the next two are not straightforward. To avoid a2 seeing
whether a1 can see o1, the cheapest plan returned by planner was for a1 to move out of a2’s
eye sight. The last one is the most difficult to solve. Not only should a1 see o3, but also
a1 should know that originally a2 cannot see that a1 sees o3. This is done by decomposing
the query into three facts: “a1 sees o3“;“a2 cannot see whether a1 sees o3“; and, “a1 can
see that whether a2 can see whether a1 sees o3“.

5.2.4 Results

Table 3 shows the results for our problems in the BBL domain, where |Exp| represents the
number of nodes expanded and |P | indicates the length of the plan. A plan length of “∞”
means that the problem is unsolvable – no plan exists. While the perspective function in
BBL depends on a geometric model based on agent’s position, direction and facing angle, the
results show that with proper usage of our F-STRIPS planner, we can represent continuous
domains. Our epistemic solver is able to reason about other agents’ epistemic states (vision)
and derive plans based on these for non-trivial goals that we believe would be tedious and
error-prone to encode propositionally, if possible at all given the continuous domain. This
demonstrates that our PWP model can handle important problems in vision-based domains.
As far as we know, there is no current epistemic planner that can handle problems at this
level of expressiveness.

523

Hu, Miller, & Lipovetzky

Moreover, this expressiveness bridges the gap between high-level abstract planning
spaces and low-level motion spaces, which has a great potential for application in hybrid-
planning (Ramirez et al., 2018).

Parameters Performance

|Agt| d |G| |P | |Gen| |Exp| |Calls| TIME(s)
Goal

calls Total

BBL01 2 1 1 0 1 0 2 0.000 0.001 Ka1o2

BBL02 2 1 1 2 115 2 232 0.007 0.009 Ka1o1

BBL03 2 1 1 ∞ 605160 all 1210320 39.822 87.126 Ka2o3

BBL04 2 2 1 2 115 2 232 0.015 0.017 Ka1Ka2o1

BBL05 2 1 1 0 1 0 2 0.000 0.002 DKa1,a2{o1, o2, o3}
BBL06 2 1 1 0 1 0 2 0.000 0.002 EKa1,a2o2

BBL07 2 1 1 2 115 2 232 0.018 0.020 EKa1,a2{o1, o2}
BBL08 2 1 1 0 1 0 2 0.000 0.002 CKa1,a2o2

BBL09 2 1 1 2 115 2 232 0.034 0.037 CKa1,a2{o1, o2}
BBL10 2 2 1 2 115 2 232 0.026 0.028 Ka1DKa,b{o1, o2, o3}
BBL11 2 2 2 6 4559 120 17807 0.592 0.620 Sa1o3 ∧ ¬Sa2Sa1o3

BBL12 2 3 2 7 5254 127 30196 0.969 1.011 Sa1o3 ∧ ¬Ka1Sa2Sa1o3

Table 3: Experimental Results for PWP on the BBL domain

5.3 Social-media Network

The Social-media Network (SN) domain is an abstract network based on typical social media
platforms, in which agents can befriend each other to read their page, post on friend’s
page and view their friend list. We extend two-way one-time communication channels
from a classical gossip problem (Cooper et al., 2016) into two-way, all-time communication
channels, and add the concept of secret messages. By decomposing secrets into messages
and posting through an agent’s friendship network, we model how secrets can be shared
between a group of individuals not directly connected without anyone else on the network
knowing the secret, and some secrets can be shared within a group excepting for some
individuals. The former could be spies sharing information with each other through the
resistance’s personal page, and the latter could be a group arranging a surprise party for a
mutual friend.

5.3.1 Example and Encoding in F-STRIPS

Let a, b, c, d, e be five agents in the SN, with friendship links shown in Figure 5. Their friend
relations are represented by full lines between each agent. The dotted lines are referenced
later for illustration purposes.

Let g be a friend of all agents that wants to share a secret. We assume the social network
is in g’s perspective directly, and the network is fixed. Let the epistemic queries be the set

524

Epistemic Planning with Perspectives

a

b

c

d e

Figure 5: Example for Social-media Network

of propositions Q, and p1, p2, p3 be three parts of the secret P . Any problems in this setup
can be represented by a tuple (A, V,D,O, I,G,F), where:

• A = {a, b, c, d, e}

• V = {(friended i j), (post p) (q) | i, j ∈ A, p ∈ P, q ∈ Q}

• D : D(friended i j) = D(q) = {0, 1}, D(post p) = A, where i, j ∈ A, p ∈ P, q ∈ Q

• O : post(i, p), where i ∈ A, p ∈ P

• I = { (friended a b) = 1, (friended a c) = 1, (friended a d) = 1, (friended b e) = 1,
(friended c d) = 1, (friended d e) = 1 }

• G: see below

• F : (@check q) 7→ {true, false}

The variable (friended i j) represents whether i and j are friends with each other.
Action (post i p) specifies that the message p is posted on agent i’s page. The initial state
I represents the friendship relations in Figure 5, with no message posted yet. Similarly, the
action post is the only source for epistemic relation changes.

5.3.2 External Functions

Each agent is able to view all posts on their friends’ pages and also view the friend list of
their friends. In this example, agent a is able to read every post on agent c’s homepage,
and a knows c is friended with a and d. With this information, a is able to deduce that any
post p on a’s or d’s homepage is also readable for c, which in another format is “KaKcp”.

525

Hu, Miller, & Lipovetzky

The perspective function depends on the friendship network. For example, consider
the global state s = {a, b, c, d, e, (post p1) = b}, where for simplicity, a, b, c, d, e represents
whether the respective agent’s page is visible, p1 is a social media post from b, and the
friend relationship is as shown in Figure 5. We have fa(s) = {a, b, c, d, (postp1) = b}; fd(s) =
{a, c, d, e}; and d’s perspective in a’s perspective of world s will be fd(fa(s)) = {a, c, d},
since e is not in a’s perspective. Similarly, fe(fa(s)) will be empty. We formally define the
perspective function as:

SN domain: fi(s) = {v′ | v′ ∈ s ∧ (friend i j) ∧ ((post v′)=j ∨ v′=j)}

We have not seen this domain or anything similar modelled in any existing approach.
The epistemic relation would be a problem for most approaches, as it involves distributed
knowledge and common knowledge. The network itself could be modelled by other ap-
proaches, however, the group knowledge that we reason about depends on the network. It
is not clear to us how existing approaches could compactly model the effect on knowledge
when the friendship network changes. In our approach, the perspective function gives us
this information and is straightforward to implement in C++.

5.3.3 Goal Conditions

Goals that we tested are shown in Table 4. For some epistemic formulae between a and
b, since they are friends, simply posting the message in either of their personal pages is
sufficient to establish common knowledge about the information in that post. But for goals
about the shared knowledge between a and e, for example, EKa,ep1, the message needs to
be posted on the page of a mutual friend, such as agent b. In addition, since a and e are
not friends, in each of their perspectives of the world, there is no information (variables)
describing each other. Therefore, neither EKa,eEKa,ep1 nor CKa,ep1 is possible without
changing the network structure.

Some goals are secretive:

1. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3)
Plan: post(a,p1), post(a,p2), post(c,p3)

2. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3) ∧ ¬Kc(p1 ∧ p2 ∧ p3)
Plan: post(a,p1), post(b,p2), post(c,p3)

The aims are to share the whole secret (p1∧p2∧p3) with a without b knowing the whole
secret — it can know at most two out of three propositions p1, p2, and p3. Some parts of
it, such as p3, need to be shared in the page that b does not have access to. In the second
example, agent c must also not know the secret, the secret now needs to be posted in a way
that b and c do not see some parts respectively, while a sees all the parts.

Finally, we look into those two desired scenarios in the introduction of SN for sharing
with a spy (goal 3) and organising a surprise party for agent a (goal 4):

526

Epistemic Planning with Perspectives

3. Goal: Ka(p1 ∧ p2 ∧ p3) ∧ ¬Kb(p1 ∧ p2 ∧ p3) ∧ ¬Kc(p1 ∧ p2 ∧ p3) ∧
¬Kd(p1 ∧ p2 ∧ p3) ∧ ¬Ke(p1 ∧ p2 ∧ p3)

Plan: post(a,p1), post(b,p2), post(c,p3)

4. Goal: ¬Ka(p1 ∧ p2 ∧ p3) ∧Kb(p1 ∧ p2 ∧ p3) ∧Kc(p1 ∧ p2 ∧ p3)∧
Kd(p1 ∧ p2 ∧ p3) ∧Ke(p1 ∧ p2 ∧ p3)

Plan: unsolvable

Sharing a secret to some specific individual without anyone else knowing the secret can
be done with the current network. However, if we alter the problem by adding a friend
relation between b and c, and apply the same goal conditions as above, no plan would be
found by the planner, because c sees everything a can see, and there is no way to share
some information to a without c seeing it.

For sharing a secret surprise party for agent a among all the agents without a knowing
it, the messages need to shared in such a way that a is not able to get a complete picture
of the secrets. In the setup of the problem from Figure 5, since a sees everything seen by c,
there is no way to hold a surprise party without a knowing it. However, by adding a friend
relation between e and c (SN14 in Table 4), the planner returns with the plan: post(e,p1),
post(e,p2), post(e,p3).

5.3.4 Results

Parameters Performance

|Agt| d |G| |P | |Gen| |Exp| |Calls| TIME(s)
Goal

calls Total

SN01 5 1 1 1 16 2 84 0.003 0.004 Kip1

SN02 5 2 1 1 16 2 84 0.005 0.006 KiKjp1

SN03 5 1 1 1 16 2 84 0.005 0.006 EKi,jp1

SN04 5 1 1 3 216 92 6572 1.007 1.015 EKi,jPs
SN05 5 1 1 3 216 92 6572 1.048 1.056 DKi,jPs
SN06 5 1 1 1 16 2 84 0.008 0.009 CKi,jp1

SN07 5 1 1 ∞ 216 all 15552 1.030 1.050 CKi,kp1

SN08 5 1 1 3 216 92 6572 0.420 0.429 KiPs
SN09 5 1 2 3 232 93 13288 0.815 0.829 KiPs ∧ ¬KjPs
SN10 5 1 3 3 565 175 37644 2.484 2.530 KiPs ∧ ¬Kj,kPs
SN11 5 1 5 3 816 251 90100 5.720 5.810 KiPs ∧ ¬KotherPs
SN12 5 1 5 ∞ 2160 all 777600 53.191 54.004 KiPs ∧ ¬KotherPs
SN13 5 1 2 ∞ 432 all 62208 9.809 9.895 ¬KiPs ∧KotherPs
SN14 5 1 2 3 216 92 13144 2.436 2.454 ¬KiPs ∧KotherPs

Table 4: Experiment Results for PWP on the Social-media Network domain.

Table 4 shows the result for our problems in the social-media network domain, where Ps
represents (p1∧p2∧p3) andKgϕmeans

⋂
i∈gKiϕ. The results show that our PWP model can

handle a variety of knowledge relations at the same time within reasonable time complexity,

527

Hu, Miller, & Lipovetzky

although we acknowledge that the lengths of the plans are not long by comparison to some
classical planning benchmarks, it is clear that the computational burden comes from the
epistemic reasoning. In addition, our results show the correlation between the number of
expanded/generated nodes and the number of external function calls, which correlates with
each other as well as total time.

5.4 Gossip

The Gossip problem is a canonical epistemic planning problem proposed by Baker and
Shostak (1972). The original version contains a group of people, with each knowing a
secret. They can communicate with each other by telephone. At each call, they will learn
what each other knows at that moment, including direct knowledge about a secret and
nested knowledge about others’ knowledge. The key problem is: what is the minimum
number of telephone calls that have to be performed before everyone knows all the secrets?
We also experiment with other goals, such as everyone knows that everyone knows all the
secrets.

Different from the previous epistemic planning problems we experiment with in this
paper, the knowledge generated in the gossip problem depends on the current knowledge
of each agents, rather than just the current world state itself. As such, we need to encode
this knowledge in our state. We demonstrate two different encodings with a simple example
(suppose there are three agents a, b and c, each of them has their own secret a′, b′ and
c′ respectively): one similar to the PEKB encoding in Example 3.2, and a novel encoding
based on actions.

5.4.1 State-based Approach Encoding

The Gossip problem can be represented by a tuple (V,D,O, I,G,F), where:

• V = {Is}

• D : dom(Is) = {0, . . . , 2|Agt||d|+1 − 1}

• O : call(x, y), where x, y ∈ Agt

• I = discussed below

• G = discussed below

• F = (@check Is q) 7→ {true, false}

The problem contains one variable, Is, and the domain is a set of bit vectors of size
|Agt||d|+1, in which d is the maximum depth of nested knowledge. Each bit in the vector
represents a single proposition, such as Sip, as outlined in Example 3.2. Is represents
knowledge about secret s. In our implementation, the set is described by a large binary
integer. To query a seeing formula, we simply look at the bit at the corresponding index in
the bit vector Is.

For the call operator, we implement the handling of ‘seeing update’ to an external
function, which is more compact and elegant than encoding directly in the actions, which
would be equivalent to the encoding outlined by Muise et al. (2015a). Therefore, the external

528

Epistemic Planning with Perspectives

function would update the state based on the current state and the current action. Consider
the example of update in Table 5, where the number of agents is 3 and the depth is 2, and
Is represents truth value of:
{Kaa

′, Kab
′, Kac

′, KaKba
′, KaKbb

′, KaKbc
′, KaKca

′, KaKcb
′, KaKcc

′, KbKaa
′, KbKab

′,
KbKac

′, Kba
′, Kbb

′, Kbc
′, KbKca

′, KbKcb
′, KbKcc

′, KcKaa
′, KcKab

′, KcKac
′, KcKba

′,
KcKbb

′, KcKbc
′, Kca

′, Kcb
′, Kcc

′}.

Index Action Is in binary Is in decimal

0 Initial State 100000000000010000000000001 67117057
1 call(a,b) 110110000110110000000000001 113467393
2 call(a,c) 111110111110110000111110111 132080119
3 call(b,c) 111110111111111111111111111 132120575
4 call(a,b) 111111111111111111111111111 134217727

Table 5: Example for Si Updating

The size of the state space depends on the number of possible epistemic relations, which
is bound by |Agt|d. Although this approach is näıve, the computational complexity of the
solution would be the same as the approach proposed by Muise et al. (2015b). However,
we found a limitation when we experimented with this: the grounding of actions by the
planner was prohibitively expensive, in some cases running out of memory.

Can we do better? It seems unnecessary to store propositions that are never used to
solve the problem. Therefore, we propose another approach, which takes advantage of the
F-STRIPS planning language.

5.4.2 Action-based Approach Encoding

The intuition behind the action-based encoding is that we can calculate the epistemic effects
of actions using external functions. In this solution, we store the sequence of calls that have
been made, and then calculate the epistemic state from this sequence.

The Gossip problem can be described as a tuple7, (V,D,O, I,G,F), where

• V = {As}

• D : dom(As) = {0, . . . , (|Agt| · (|Agt| − 1)/2)|p| − 1}

• O : call(x, y′), where x, y ∈ Agt

• I = {As = 0}

• G = discussed as below

• F = { (@check As q) } 7→ {true, false}

The set of variables V in this approach is a bit vector (represented as an integer) used
to record the action sequence that the planner has applied to reach the current expanding

7. The bound of the D depends on the length of the plan, while the maximum length of the plan, |p|, is
bound by (d+ 1) · (|Agt| − 1) according to Cooper, Herzig, Maffre, Maris, and Régnier (2019)’s proof.

529

Hu, Miller, & Lipovetzky

node. Since Cooper et al. (2019) prove that even with one way communication, any gossip
problem with |Agt| and d depth can be solved with (d+1)(|Agt|−1) calls, we know that this
is the upper bound of plan length. Using the same example as above, for a gossip problem
based on above setup and depth of 2, the domain for As is from 0 to 36. Therefore, the
initial state would be As = 0, since no one has made any call yet.

The effect of the action is encoded using an external function Γ : S×A→ S, which is a
visibility update function. The planner calls Γ(As, a), where As is the bit vector representing
the history h of actions so far, and a is the current action. Then, Γ(As, a) returns a new
bit vector A′s that represents h · 〈a〉 — the concatenation of h and a.

For an epistemic query, the perspective function applies ‘actions’ encoded in As to
calculate the current epistemic state.

We implemented two versions of this. The Full implementation näıvely implements the
scheme above. The Relative implementation takes advantage of the ability to parameterise
perspective functions fi by only encoding As with propositions that are relevant for the
epistemic goal formula. For example, consider the epistemic goal KcKba

′. This would
result in |Agt||d|+1 = 27 epistemic relations in the Full encoding. When generating epistemic
formula, we start with the secret first. Since any epistemic formula related with b′ or c′ will
be irrelevant to the query, we need not encode any epistemic relations about those secrets.
So, the maximum number of epistemic relations at level 1 is |Agt|, because with one secret
a′ and |Agt| agents, the greatest number of epistemic formulae can be generated is in the
case of each agent sees that secret.

Iteratively, we do the same for the next level, from |Agt| amount of formulae, we select
the one, Kba

′ (1/|Agt|). There are at most |Agt| new epistemic formulae that can be
generated to know this one formula. With each depth, we drop all the old formulae except
the one relative formula and generating |Agt| amount of new epistemic formulae. Therefore,
the complexity for a single modal literal would be in O(|Agt| · |depth|). The worst case is
all agents knowing all agents’ secrets, and nested up to the level of depth, which would be
equivalent to the Full representation.

In our experiments, we compare these three methods — state-based, action-based (full)
and action-based (relative) — with the baseline of Cooper et al. (2019)’s method using their
tool for generating their Gossip Generator8. Their generator compiles Gossip problems into
classical planning problems, but is not a general epistemic planning tool. However, this is a
suitable baseline as it allows us to evaluate solving Gossip problems using a state-of-the-art
approach. To compare the performance directly, we use the BFWS(R0) planner to generate
the results.

5.4.3 Results

For the experiments, we run all approaches with 3 agents. Then, given that the performance
of the action-based (relative) approach dominates our other approaches, we only run this
encoding with the number of agents greater than 3.

From the Table 6, problems G2, G4, G6 and G8 are four types of test cases that address
classical gossip problem goals. Since the aim in the classical gossip problem is to have each

8. Downloadable from https://github.com/FaustineMaffre/GossipProblem-PDDL-generator

530

Epistemic Planning with Perspectives

Parameters State Action (full) Action (relative) Gossip Generator

d |g| |p| |calls| TIME(s) |calls| TIME(s) |calls| TIME(s) TIME(s)
calls Total calls Total calls Total |p| Compile Total

G1-3 2 1 2 12 0.00 0.00 12 0.00 0.00 44 0.00 0.00 2 0.00 0.01
G2-3 2 9 4 126 0.00 0.00 102 0.00 0.01 989 0.02 0.02 2 0.00 0.02
G3-3 3 1 3 M M M 12 0.00 0.01 266 0.00 0.01 1 0.00 0.06
G4-3 3 27 5 M M M 422 0.37 0.37 3644 0.11 0.12 5 0.00 0.06
G5-3 4 1 4 M M M 34 0.06 0.07 724 0.01 0.02 3 0.01 0.26
G6-3 4 81 6 M M M 1625 15.54 15.55 13624 0.69 0.72 7 0.01 0.24
G7-3 5 1 4 M M M 38 0.43 0.43 724 0.01 0.02 4 0.04 1.76
G8-3 5 243 7 M M M 4845 333.90 334.00 47194 3.58 3.67 11 0.04 0.96
G1-4 2 1 2 − − − − − − 18 0.00 0.00 2 0.01 0.05
G2-4 2 16 7 − − − − − − 1935 0.06 0.07 7 0.01 0.06
G3-4 3 1 3 − − − − − − 26 0.00 0.00 3 0.01 0.43
G4-4 3 64 7 − − − − − − 11848 0.63 0.66 10 0.01 0.26
G5-4 4 1 3 − − − − − − 104 0.00 0.01 3 0.10 2.60
G6-4 4 256 9 − − − − − − 54711 4.49 4.61 14 0.10 1.57
G7-4 5 1 4 − − − − − − 484 0.02 0.03 4 0.25 31.82
G8-4 5 1024 11 − − − − − − 286288 38.82 39.40 22 0.25 9.72
G1-5 2 1 2 − − − − − − 126 0.00 0.01 2 0.01 0.09
G2-5 2 125 9 − − − − − − 12911 0.60 0.63 10 0.01 0.11
G3-5 3 1 3 − − − − − − 2288 0.08 0.09 3 0.03 1.65
G4-5 3 625 11 − − − − − − 68531 5.51 5.68 15 0.03 0.91
G5-5 4 1 3 − − − − − − 3888 0.17 0.19 4 0.15 83.12
G6-5 4 3125 13 − − − − − − 400627 55.00 56.14 22 0.15 7.61
G7-5 5 1 6 − − − − − − 116030 7.53 7.97 4 0.99 450.63
G8-5 5 15625 15 − − − − − − 2370575 546.68 558.51 32 0.99 59.72

Table 6: Experiment Results for the Gossip domain, where M means the planner ran out of
memory, and − means we did not run it because it would clearly exceed the memory limit.

agent know about others’ knowledge, the size of the goal is |Agt||depth|. The problem types
G1, G3, G5 and G7 are for comparison to show how depth affects single-goal problems.

For the results, the state-based approach is limited by the planner. The F-STRIPS
planner we use handles function variables as integers. Therefore, for the problem with
length larger than three, the possible state Is’s maximum value is 227 − 1. Because the
F-STRIPS planner we use grounded actions, this results in most of the problems exceeding
the maximum memory allocation on our Linux machine. These are indicated by M . Both
action-based approaches are able to handle gossip problems with larger depth than the
state-based approach. However, updating only relative knowledge prunes a large amount
of knowledge formulae that are not going to be checked, reducing total execution time.
Compared to Cooper et al. (2019)’s approach, our approach has similar performance on the
problems with full goals, and perform slightly better on the problem with single goals, as
it will not generate irrelevant epistemic relations.

5.5 Discussion

Overall, the experiment results show that our solution outperforms Muise et al. (2015a)’s
encoding solution, which is the state-of-the-art for epistemic planning problems. As it can
be seen from the results in both Corridor and Grapevine domains, the number of agents

531

Hu, Miller, & Lipovetzky

and the depth of epistemic relations do not increase the computation time as rapidly as the
PDKB planner.

In terms of expressiveness, our PWP approach can handle a variety of complex epistemic
relations, such as nested knowledge, distributed knowledge and common knowledge, and
epistemic logic reasoning with continuous domains. This can be found in the scenarios of
BBL and SN domains. In addition, even for the problem with epistemic relations embedded
in the state, such as Gossip domain, our model also shows that it can handle various
problems regardless of the limitations from the planner itself.

The results show that the computation time depends heavily on how many times the
external functions are called, which is actually determined by the number of generated nodes
and expanded nodes. Moreover, the amount of nodes involved in the search is affected by
standard factors in search, such as plan length, the algorithm used by the planner, and the
difficulty of the problem itself.

The results also show that the external solver takes up a large part of the execution
time. This is a prototype implementation and this represents an opportunity for perfor-
mance optimisation of our code base, and supports the claim that customisable perspective
functions are valuable.

6. Conclusions

In this work, we introduce a new epistemic planning model called Planning with Prefer-
ences (PWP), driven by the intuition: ‘seeing is believing’. The PWP model can evaluate
epistemic formulae, even nested, distributed or common epistemic formulae, based on the
simple concept of defining an agent’s perspective. By separating the planning task from
epistemic reasoning with F-STRIPS, we propose an expressive and flexible solution for most
of the epistemic planning problems without an expensive pre-compilation step. We imple-
ment our model on well-known epistemic planning benchmarks and two new scenarios. The
results not only show that our model can solve the epistemic benchmarks efficiently, but
also demonstrate the variety of epistemic relations that can be handled. Our work is the
first to delegate epistemic reasoning to an external solver.

For future work, there are three ways to extend our model. The first is to extend the
model to belief rather than knowledge, which would increase the expressiveness of PWP.
The success of our PWP model is dependent on the property fi(s) ⊆ s for perspective
functions, which implies knowledge cannot be false. However, to extend PWP to handle
belief, including false belief, instead of only tracking the visible variables and their values
(which are always the true values), we need to reason about the possible values for any
variable (both visible and invisible) for any agent, including those that could be incorrect.
Therefore, property (1) of perspective functions would not hold, which means we no longer
get the nice properties of nested modal operators. Our intuition, which is similar to Scherl
and Levesque (2003)’s work, is to maintain the agents’ current knowledge as belief until
it becomes updated. Second, we can improve our model by allowing simplified disjunctive
knowledge in the state. This would allow PWP to support partial information on variables,
such as v = e1 ∨ v = e2 in the state of the world. Finally, investigating the relationship
between event models in dynamic epistemic logic and our external functions is another
direction for future work. Instead of seeing variables and evaluating epistemic relations

532

Epistemic Planning with Perspectives

based on those variables, one could allow agents to ‘seeing’ actions and gain knowledge
from observing actions, which would lead us to a different perspective on decomposing and
solving epistemic planning problems.

Acknowledgements

The authors thank Andreas Herzig for his insightful discussions on the link between knowl-
edge and seeing, and for inspiring the idea of the social network domain.

References

Bajada, J., Fox, M., & Long, D. (2015). Temporal planning with semantic attachment
of non-linear monotonic continuous behaviours. In Yang, Q., & Wooldridge, M. J.
(Eds.), Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 1523–1529.
AAAI Press.

Baker, B. S., & Shostak, R. E. (1972). Gossips and telephones. Discrete Mathematics, 2 (3),
191–193.

Baral, C., Gelfond, G., Pontelli, E., & Son, T. C. (2015). An action language for multi-agent
domains: Foundations. CoRR, abs/1511.01960.

Bellemare, M., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade learning environ-
ment: An evaluation platform for general agents.. JAIR, 47.

Bolander, T. (2014). Seeing is believing: Formalising false-belief tasks in dynamic epistemic
logic. In Proceedings of the European Conference on Social Intelligence (ECSI-2014),
Barcelona, Spain, November 3-5, 2014., pp. 87–107.

Bolander, T. (2017). A gentle introduction to epistemic planning: The DEL approach. In
Proceedings of the Ninth Workshop on Methods for Modalities, M4M@ICLA 2017,
Indian Institute of Technology, Kanpur, India, 8th to 10th January 2017., pp. 1–22.

Bolander, T., & Andersen, M. B. (2011). Epistemic planning for single and multi-agent
systems. Journal of Applied Non-Classical Logics, 21 (1), 9–34.

Bolander, T., Jensen, M. H., & Schwarzentruber, F. (2015). Complexity results in epistemic
planning. In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pp.
2791–2797.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., Perrotin, E., & Régnier, P. (2021). A
lightweight epistemic logic and its application to planning. Artif. Intell., 298, 103437.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., & Régnier, P. (2016). A simple account
of multi-agent epistemic planning. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands -
Including Prestigious Applications of Artificial Intelligence (PAIS 2016), pp. 193–201.

Cooper, M. C., Herzig, A., Maffre, F., Maris, F., & Régnier, P. (2019). The epistemic gossip
problem. Discrete Mathematics, 342 (3), 654–663.

533

Hu, Miller, & Lipovetzky

Cooper, M. C., Herzig, A., Maris, F., Perrotin, E., & Vianey, J. (2020). Lightweight par-
allel multi-agent epistemic planning. In Calvanese, D., Erdem, E., & Thielscher, M.
(Eds.), Proceedings of the 17th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pp.
274–283.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2009a). Semantic
attachments for domain-independent planning systems. In Proc. ICAPS.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2009b). Semantic
attachments for domain-independent planning systems. In Gerevini, A., Howe, A. E.,
Cesta, A., & Refanidis, I. (Eds.), Proceedings of the 19th International Conference on
Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, September
19-23, 2009. AAAI.

Dornhege, C., Gissler, M., Teschner, M., & Nebel, B. (2009c). Integrating symbolic and
geometric planning for mobile manipulation. In 2009 IEEE International Workshop
on Safety, Security Rescue Robotics (SSRR 2009), pp. 1–6.

Engesser, T., Bolander, T., Mattmüller, R., & Nebel, B. (2017). Cooperative epistemic
multi-agent planning for implicit coordination. In Proceedings of the Ninth Workshop
on Methods for Modalities, M4M@ICLA 2017, Indian Institute of Technology, Kanpur,
India, 8th to 10th January 2017., pp. 75–90.

Fabiano, F., Burigana, A., Dovier, A., & Pontelli, E. (2020). EFP 2.0: A multi-agent
epistemic solver with multiple e-state representations. In Beck, J. C., Buffet, O., Hoff-
mann, J., Karpas, E., & Sohrabi, S. (Eds.), Proceedings of the Thirtieth International
Conference on Automated Planning and Scheduling, Nancy, France, October 26-30,
2020, pp. 101–109. AAAI Press.

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (2003). Reasoning About Knowledge.
MIT Press, Cambridge, MA, USA.

Fan, J., Wang, Y., & van Ditmarsch, H. (2015). Contingency and knowing whether. Rew.
Symb. Logic, 8 (1), 75–107.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 1, 27–120.

Frances, G., & Geffner, H. (2015). Modeling and computation in planning: Better heuristics
for more expressive languages. In Proc. ICAPS.

Francès, G., Ramı́rez, M., Lipovetzky, N., & Geffner, H. (2017). Purely declarative action
descriptions are overrated: Classical planning with simulators. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pp. 4294–4301.

Gaschler, A., Petrick, R. P. A., Khatib, O., & Knoll, A. C. (2018). Kaboum: Knowledge-level
action and bounding geometry motion planner. J. Artif. Intell. Res., 61, 323–362.

Gasquet, O., Goranko, V., & Schwarzentruber, F. (2014). Big brother logic: logical modeling
and reasoning about agents equipped with surveillance cameras in the plane. In
International conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’14, Paris, France, May 5-9, 2014, pp. 325–332.

534

Epistemic Planning with Perspectives

Geffner, H. (2000). Functional Strips: A More Flexible Language for Planning and Problem
Solving, pp. 187–209. Springer US, Boston, MA.

Geffner, H., & Bonet, B. (2013). A Concise Introduction to Models and Methods for Auto-
mated Planning. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Gregory, P., Long, D., Fox, M., & Beck, J. C. (2012). Planning modulo theories: Extending
the planning paradigm. In McCluskey, L., Williams, B. C., Silva, J. R., & Bonet,
B. (Eds.), Proceedings of the Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19, 2012.
AAAI.

Hales, J., French, T., & Davies, R. (2012). Refinement quantified logics of knowledge and
belief for multiple agents. Advances in Modal Logic, 9, 317–338.

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. (2019). An Introduction to the
Planning Domain Definition Language. Morgan & Claypool.

Helmert, M., & Domshlak, C. (2009). Landmarks, critical paths and abstractions: What’s
the difference anyway?. In Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23,
2009.

Herzig, A., & Maffre, F. (2015). How to share knowledge by gossiping. In Multi-Agent
Systems and Agreement Technologies - 13th European Conference, EUMAS 2015, and
Third International Conference, AT 2015, Athens, Greece, December 17-18, 2015,
Revised Selected Papers, pp. 249–263.

Hintikka, J. (1962). Knowledge and Belief. Ithaca: Cornell University Press.

Huang, X., Fang, B., Wan, H., & Liu, Y. (2017). A general multi-agent epistemic planner
based on higher-order belief change. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pp. 1093–1101.

Kaelbling, L. P., & Lozano-Pérez, T. (2012). Unifying perception, estimation and action for
mobile manipulation via belief space planning. In IEEE International Conference on
Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul, Minnesota, USA,
pp. 2952–2959. IEEE.

Kominis, F., & Geffner, H. (2015). Beliefs in multiagent planning: From one agent to many.
In Proceedings of the Twenty-Fifth International Conference on Automated Planning
and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015., pp. 147–155.

Kominis, F., & Geffner, H. (2017). Multiagent online planning with nested beliefs and dia-
logue. In Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23,
2017., pp. 186–194.

Lakemeyer, G., & Lespérance, Y. (2012). Efficient reasoning in multiagent epistemic log-
ics. In ECAI 2012 - 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System Demonstrations
Track, Montpellier, France, August 27-31 , 2012, pp. 498–503.

535

Hu, Miller, & Lipovetzky

Le, T., Fabiano, F., Son, T. C., & Pontelli, E. (2018). EFP and PG-EFP: epistemic forward
search planners in multi-agent domains. In Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2018, Delft, The
Netherlands, June 24-29, 2018., pp. 161–170.

Levesque, H. J. (1996). What is planning in the presence of sensing?. In Clancey, W. J.,
& Weld, D. S. (Eds.), Proceedings of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
AAAI 96, IAAI 96, Portland, Oregon, USA, August 4-8, 1996, Volume 2, pp. 1139–
1146. AAAI Press / The MIT Press.

Levesque, H. J. (1998). A completeness result for reasoning with incomplete first-order
knowledge bases. In KR, pp. 14–23.

Lipovetzky, N., & Geffner, H. (2012). Width and serialization of classical planning prob-
lems. In ECAI 2012 - 20th European Conference on Artificial Intelligence. Including
Prestigious Applications of Artificial Intelligence (PAIS-2012) System Demonstrations
Track, Montpellier, France, August 27-31 , 2012, pp. 540–545.

Lipovetzky, N., & Geffner, H. (2014). Width-based algorithms for classical planning: New
results. In ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 Au-
gust 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014), pp. 1059–1060.

Lipovetzky, N., & Geffner, H. (2017). A polynomial planning algorithm that beats LAMA
and FF. In Proceedings of the Twenty-Seventh International Conference on Automated
Planning and Scheduling, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23,
2017., pp. 195–199.

Miller, T., Felli, P., Muise, C. J., Pearce, A. R., & Sonenberg, L. (2016). ‘Knowing whether’
in proper epistemic knowledge bases. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pp. 1044–
1050.

Muise, C. J., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R., & Sonenberg, L.
(2015a). Planning over multi-agent epistemic states: A classical planning approach. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January
25-30, 2015, Austin, Texas, USA., pp. 3327–3334.

Muise, C. J., Miller, T., Felli, P., Pearce, A. R., & Sonenberg, L. (2015b). Efficient rea-
soning with consistent proper epistemic knowledge bases. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems, AAMAS
2015, Istanbul, Turkey, May 4-8, 2015, pp. 1461–1469.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories:
From an abstract davis–putnam–logemann–loveland procedure to dpll (t). Journal of
the ACM (JACM), 53 (6), 937–977.

Petrick, R. P. A., & Bacchus, F. (2002). A knowledge-based approach to planning with
incomplete information and sensing. In Ghallab, M., Hertzberg, J., & Traverso, P.
(Eds.), Proceedings of the Sixth International Conference on Artificial Intelligence
Planning Systems, April 23-27, 2002, Toulouse, France, pp. 212–222. AAAI.

536

Epistemic Planning with Perspectives

Ramirez, M., Papasimeon, M., Lipovetzky, N., Benke, L., Miller, T., Pearce, A. R., Scala,
E., & Zamani, M. (2018). Integrated hybrid planning and programmed control for
real time uav maneuvering. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1318–1326. IFAAMAS.

Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime
planning with landmarks. J. Artif. Intell. Res., 39, 127–177.

Rintanen, J. (2012). Planning as satisfiability: Heuristics. Artificial Intelligence, 193, 45–86.

Scherl, R. B., & Levesque, H. J. (2003). Knowledge, action, and the frame problem. Artif.
Intell., 144 (1-2), 1–39.

Simon, H., & Newell, A. (1963). GPS: a program that simulates human thought. Computers
and Thought, 1 (1), 279–293.

Van Ditmarsch, H., van Der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic, Vol.
337. Springer Science & Business Media.

Wan, H., Fang, B., & Liu, Y. (2021). A general multi-agent epistemic planner based on
higher-order belief change. Artif. Intell., 301, 103562.

Wan, H., Yang, R., Fang, L., Liu, Y., & Xu, H. (2015). A complete epistemic planner
without the epistemic closed world assumption. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pp. 3257–3263.

7. Appendix

7.1 Code Examples

7.1.1 Corridor

Here is an code example for seeing function in Corridor:

bool s e e s (i n t agent l oc , i n t t a r g e t l o c)
{

re turn abs (agent l oc−t a r g e t l o c)<=1;
} ;

7.1.2 Grapevine

Here is an code example for seeing function in Grapevine:

bool s e e s (i n t agent l oc , i n t t a r g e t l o c)
{

re turn a g e n t l o c==t a r g e t l o c ;
} ;

7.1.3 BBL

Here is an code example for seeing function in BBL:

537

Hu, Miller, & Lipovetzky

bool s e e s (i n t agent x , i n t agent y , i n t agent d i r ,
i n t agent range , i n t ta rge t x , i n t t a r g e t y)

{

bool r e s u l t = f a l s e ; // d e f a u l t cannot s e e s
i n t d e l t a x = t a r g e t x − agent x ;
i n t d e l t a y = t a r g e t y − agent y ;
i n t d i r =0;

i f (d e l t a x == 0)
{

i f (d e l t a y > 0) d i r = 90 ;
e l s e i f (d e l t a y == 0) r e s u l t = true ;
e l s e d i r =−90;

}
e l s e
{

d i r = (i n t) (atan2 (de l ta y , d e l t a x)∗180/ PI) ;
}
i n t d e l t a d i r = abs (d i r − a g e n t d i r) ;
i f (d e l t a d i r > 180) d e l t a d i r = 360 − d e l t a d i r ;
i f (d e l t a d i r <= agent range /2) r e s u l t = true ;

r e turn r e s u l t ;
}

7.1.4 Social-media Network

Here is an code example for seeing function in SN:

bool s e e s (i n t agent , i n t t a r g e t)
{

re turn agent . f r i e n d i d s . count (t a r g e t . pa r en t id)
} ;

7.2 Examples

7.2.1 Common Knowledge

The form of the common knowledge between two agents a and b does not only rely on
the intersection on both agent’s perspectives, but also rely on the intersection on both
agent’s nested perspective over that intersections, etc, until we reached a fixed point, which
one intersection l of agent’s nest perspectives is the same as the intersection on agent’s
perspectives over l. An common example is provided as follows:

The classic example is the Byzantine Generals: 2 generals who cannot directly commu-
nicate must decide on when to attack their common enemy, each general will attack only

538

Epistemic Planning with Perspectives

if the 2 generals have common knowledge of the time of the attack, but such (infinitely-
nested) common knowledge cannot be attained by sending a messenger back and forth k
times between the the generals since on the last trip the messenger could fail to arrive.

Let a and b be two generals, pa and pb be messages they want to send to each other.
For simplicity, let’s set the maximum nested depth is 4. The initial state is:
{pa, KaKaKapa, pb, KbKbKbpb}.

By sending the messenger from a to b, the current state now becomes:
{pa, KaKaKapa, pb, KbKbKbpb, KbKbKbpa, KbKbKapa, KbKaKapa}.

After that, let b send messenger back, the state becomes:
{pa, KaKaKapa, KaKaKapb, KaKaKbpb, KaKbKbpb, KaKbKapa, KaKbKbpa,

KaKaKbpa, pb,KbKbKbpb, KbKbKbpa, KbKbKapa, KbKaKapa}.

Then, let’s apply the perspective functions on the current state:
fa(s) = {KaKapa,KaKapb,KaKbpb,KbKbpb,KbKapa,KbKbpa,KaKbpa, }
fb(s) = {KbKbpb,KbKbpa,KbKapa,KaKapa}.

If we query common knowledge, we must evaluate their intersection s′, which is:
{KbKbpb,KbKbpa,KbKapa,KaKapa}.

But for common knowledge, we need to apply perspective functions until we each ter-
mination. Applying another layer of perspective function on s′:

fa(s′) = {Kapa} and fb(s
′) = {Kbpb,Kbpa,Kapa}

Their intersection s′′ is {Kapa}.
Since s′ 6= s′′, we must apply another layer of perspective function, and then we will get

their intersection becomes empty set, which is their common knowledge. As the intersection
is empty, there is no common knowledge between a and b.

Overall, their nth perspective function intersection would be the sender’s local perspec-
tive over k − nth messenger sending. Their perspectives are never the same between the
time k − nth and k − n − 1th, and it terminates as empty. Thus, they will never achieve
common knowledge by sending messenger back and force.

539

