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Abstract
We introduce in this survey the major concepts, models, and algorithms proposed so far to in-

fer causal relations from observational time series, a task usually referred to as causal discovery in
time series. To do so, after a description of the underlying concepts and modelling assumptions, we
present different methods according to the family of approaches they belong to: Granger causal-
ity, constraint-based approaches, noise-based approaches, score-based approaches, logic-based ap-
proaches, topology-based approaches, and difference-based approaches. We then evaluate several
representative methods to illustrate the behaviour of different families of approaches. This illus-
tration is conducted on both artificial and real datasets, with different characteristics. The main
conclusions one can draw from this survey is that causal discovery in times series is an active re-
search field in which new methods (in every family of approaches) are regularly proposed, and that
no family or method stands out in all situations. Indeed, they all rely on assumptions that may or
may not be appropriate for a particular dataset.

1. Introduction

Causality plays a central role in science and has been the subject of many debates among philoso-
phers, biologists, mathematicians and physicists, to name but a few. Causality is implicit in the logic
and structure of ordinary language and is embedded in our understanding mechanism that pushes
humans to invoke questions. Why is it dark? Why is the sea salty? What is the effect of exercise
on heart rate, of a vaccine on a particular disease? What is the effect of industrial pollution on the
environment? And so, as already advocated by Spirtes, Glymour and Scheines, in attempting to an-
swer such questions, both the baby and the scientist try to turn observations into causal knowledge
(Spirtes et al., 2001). Causality is indeed crucial for explanatory purposes since an effect can be
explained by its causes, regardless of the correlations it may have with other variables.

The recent decades have seen the development, from philosophers, mathematicians, and com-
puter scientists, of different models and methods to infer causal relations from data and to reason
on the basis of these relations (to, e.g., predict the effect of changing a particular medication). If
the first studies were dedicated to non temporal data, more and more studies now focus on time
series. Indeed, time series arise as soon as observations, from sensors or experiments, for example,
are collected over time. They are present in various forms in many different domains, as healthcare
(through, e.g., monitoring systems), Industry 4.0 (through, e.g., predictive maintenance and indus-
trial monitoring systems), surveillance systems (from images, acoustic signals, seismic waves, etc.)
or energy management (through, e.g. energy consumption data). The number of scientific publica-
tions dedicated to causality in time series as well as the number of tools developed in this context
have steadily increased to a point that it is difficult for non specialists to grasp the most important
approaches proposed so far.

The goal of this survey is twofold:
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Figure 1: Running example: a diamond structure with self causes.

• On the one hand, we want to introduce the major concepts, models, methods, and associated
algorithms proposed so far to infer causal relations from observational time series1, a task
usually referred to as causal discovery;

• on the other hand, we want to assess how different methods for causal discovery in time series
behave in practice.

Several surveys on causal discovery have recently been proposed (Guo, Cheng, Li, Hahn, &
Liu, 2020; Nogueira, Gama, & Ferreira, 2021; Glymour, Zhang, & Spirtes, 2019; Vowels, Camgöz,
& Bowden, 2021). However, most of them do not discuss time series and when they do, they focus
on Granger causality. In contrast, the current survey is dedicated to causal discovery in time series
and reviews all families of approaches proposed in this area.

The remainder of this survey is organized as follows. After a description of the underlying con-
cepts and modelling assumptions in Section 2, we present different methods according to the family
of approaches they belong to, using the same example, a diamond structure given in Figure 1,
for illustration purposes2: Granger causality (one of the first approaches proposed) in Section 3,
constraint-based approaches (one of the most popular approaches) in Section 4, noise-based ap-
proaches (another popular approach) in Section 5, and score-based approaches (with a long history
related to Bayesian networks) in Section 6. The main characteristics of representative methods
of the above families are summarized in Section 7. We then turn in Section 8 to other approaches
(logic-based, topology-based, and difference-based approaches) which differ from the previous ones
on several aspects. The behaviour of representative methods of different families3 is then illustrated
in Section 9. This illustration, conducting on both artificial and real datasets, with different charac-
teristics, shows that different families, and within a given family different methods, are adapted to
different situations so that there isn’t a single family or method that outperforms all the others in all
situations. Lastly, Section 10 concludes the survey.

2. Background

We first introduce in this section the basic notions underlying causal inference approaches prior
to present the different causal graphs used to represent causal relations within and between time
series. The main notations that will be used throughout this survey are summarized in Table 1. The
variables first considered here are standard random variables (the extension to time instants of time
series is direct).

1. In observational time series, the value of a variable is always determined by its causes, hence it is never set through
an intervention. Interventional data are not considered in this survey.

2. Note that, for simplicity, we consider that the method illustrated works ideally.
3. All these methods can be used through a Python routine available at https://github.com/ckassaad/causal_

discovery_for_time_series.
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Notation Description
Xc,X p,Xq,X r,ξ random variables and noise
XR set of random variables
d,N,T number of time series, of observations and of time points
X ,X p,X p

t multivariate time series {X 1, · · · ,X d}, pth time series X p,
X p at time t

X R,X R
t ,X R

T subset of time series from X , at time t, at all time points in T
L ,S latent variable, hidden selection variable

|= , ̸ |= independent, not independent
Pr(X = x),E(X) probability of X = x and expectation of X
I(X p;Xq) mutual information between X p and Xq

G causal graph
Adj(X p,G ), Adj(XR,G ) variables adjacent to X p in G , or adjacent to the set XR

Par(X p,G ) set of parents (set of causes) of X p in G
X−Y X is a neighbor of Y
Hom(X p

t−i,X
q
t ,G ) set of vertex pairs (X p

k−i,X
q
k )k homologous to (X p

t−i,X
q
t )

X → Y X is a cause of Y and Y is an effect of X
X ̸→ Y X is not a cause of Y
X ↔ Y X and Y have a common hidden confounder
Sepset(X p,Xq) seperation set of X p and Xq

Dsepset(X p,Xq) d-seperation set of X p and Xq

Table 1: Main notations used throughout this survey.

2.1 Preliminaries on Causal Inference

One of the goals of causal inference is to build a causal graph from observational data. As we will
see, the relations between a probability distribution and its representation as a graph are central to
this construction. It is however not always possible to infer a causal graph solely from observa-
tional data on which one can only compute correlations and statistical independencies4. One needs
additional assumptions to do so and the goal of this section is to present the main assumptions and
principles behind causal discovery approaches.

Xq

X p

X r

X p

Xq

X r

Figure 2: Two basic structures: a con-
founder (left) and a collider (right)

Let us first consider the two basic causal structures
given in Figure 2. The structure on the left corresponds
to a confounder, i.e. a variable that is a common cause
of two other variables. The figure on the right represents
a collider, i.e. a variable that is caused by two unrelated
variables. If the common cause X p in the confounder
structure was not observed, one would infer a spurious
correlation and a causal relation between Xq and X r as
these latter variables are independent only when conditioned on X p. One way to avoid such spurious
correlations is to assume that all common causes are measured.

Definition 1 (Causal Sufficiency, Spirtes et al., 2001) A set of variables is said to be causally suf-
ficient if all common causes of all variables are observed.

As a consequence, if one wants to focus on a few variables, one needs to make sure that all their
common causes are also taken into account.

4. Correlation is not causation, as the saying goes, meaning that a correlation does not necessarily correspond to a
causal relation.
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Under the assumption of causal sufficiency, most causal discovery algorithms assume that the
causal structure can be represented by a Directed Acyclic Graph (DAG)5 in which a directed edge
represents a relation from a cause to its effect. The absence of an edge between two variables means
that the variables are (conditionally) independent. In essence, a DAG represents a factorization of
the probability distribution over the variables in which the probability of a variable is conditioned
by its parents. For example, the joint probability distribution over X p,Xq,X r associated to Figure 2
(left) can be factorized as: P(X p,Xq,X r) = P(X p)P(Xq|X p)P(X r|X p). Whenever a probability
distribution can be factorized according to a given DAG, we say that the DAG and the probability
distribution are compatible.

There is a strong connection, for compatible graphs and probability distributions, between the
(conditional) independence/dependence of two variables and the topology of the graph. This con-
nection is based on the concept of d-separation, first introduced in the context of Bayesian networks.

Definition 2 (d-separation, Pearl, 1988) If G is a DAG in which X p and Xq are two vertices and
XR is a set of vertices, then X p and Xq are d-connected by XR in G if and only if there exists
an undirected path U between X p and Xq such that for every collider Xc on U, either Xc or a
descendant of Xc is in XR, and no non-collider on U is in XR. Otherwise, X p and Xq are d-separated
given XR.

There are two important probabilistic implications of d-separation in a DAG G (Spirtes et al.,
2001):

• If XR d-separates X p and Xq, then X p and Xq are independent given XR (X p |= Xq | XR) in all
probability distributions compatible with G ;

• If XR d-connects X p and Xq, then X p and Xq are dependent given XR in almost all probability
distributions compatible with G .

The reverse implication is not true on all compatible distributions as one can tune the parameters to
generate independencies along an unblocked path, such a tuning being however unlikely to occur in
practice.

Causal inference from observational data consists in first determining all (conditional) indepen-
dence and dependence relations between variables and then in constructing a graph compatible with
these relations. The following theorem states a necessary and sufficient condition for a DAG and a
probability distribution to be compatible.

Theorem 1 (Markov Condition, Pearl, 2000) A necessary and sufficient condition for a proba-
bility distribution to be compatible with a DAG G is that every variable be independent of all its
nondescendants (in G ), conditional on its parents.

When the DAG is interpreted causally, then the parents of a variable correspond to its direct
causes and one speaks in that case of the Causal Markov Condition (Spirtes et al., 2001). As
standard in causal discovery studies, we place ourselves in this latter case.

As we will discuss in more detail in Section 4, several DAGs can represent the same set of
conditional independencies and be compatible with the same probability distribution. This limits
the possibility to infer a causal graph from probabilities alone. Two main additional conditions
have thus been introduced so as to restrict the graphs considered from a given probability distri-
bution. The first one is the minimality condition, which requires that the graph does not contain
dependencies not present in the observational data.

Definition 3 (Minimality Condition, Pearl, 2000) A DAG G compatible with a probability distri-
bution P is said to satisfy the minimality condition if P is not compatible with any proper subgraph
of G .
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Figure 3: A causal graph that is unfaithful but minimal to its compatible distribution when the two
causal paths from X s to X r cancel out. For example, in the case where all causal relations are linear
and the coefficient associated to X s → X p is asp, the coefficient associated to X s → Xq is asq, the
coefficient associated to X p→ X r is apr, and the coefficient associated to Xq→ X r is −aspapr/asq.

The minimality condition is however not sufficient to restrict the set of possible causal struc-
tures. To see that, consider the causal graph in Figure 3. In the case where the contributions of
the two paths from X s to X r cancel out, then the graph in Figure 3 becomes unfaithful as X s and
X r become unconditionally independent whereas they are unconditionally dependent when the two
contributions do not cancel out. This is problematic and we say in such a case that the graph is
unfaithful according to the following definition.

Definition 4 (Faithfulness, Spirtes et al., 2001) We say that a graph G and a compatible proba-
bility distribution P are faithful to one another if all and only the conditional independence relations
true in P are entailed by the Markov condition applied to G .

Note that in both cases the graph and its compatible distribution satisfy the minimality condi-
tion. In fact, the minimality condition is weaker than faithfulness in the sense that faithfulness and
Markov conditions together entail minimality, whereas both minimality and Markov conditions do
not always entail faithfulness. The faithfulness condition serves as a methodological tool to infer
causal graphs and, in many studies, one aims at inferring faithful graphs with respect to the (con-
ditional) independence relations observed in the data. It is the condition usually adopted in works
aiming at inferring causal structures from observational data. If this condition does not hold, then,
in the absence of any other assumption, there is no guarantee that the inferred graph is close to the
true causal graph.

LX p

Xq X r

S
X p

Xq

X r

Figure 4: Illustration of hidden con-
founder (L) and hidden effect (S): on
the left when observing all the vari-
ables, and on the right the correspond-
ing MAG representation.

To conclude this presentation of the basic notions be-
hind causal inference, we consider the case where some
causes or effects may be unobserved (in which case the
causal sufficiency condition is not satisfied). Figure 4
(left) provides such an example in which the hidden cause
L is a hidden confounder (in that case the common cause
of Xq and X r) and the hidden effect S, also called selec-
tion bias variable, induces a dependence between X p and
X r. Indeed, as a selection variable is a variable on which
all observations are conditioned on, conditioning on S im-
plies conditioning on the collider Xq, which creates a cor-
relation between its causes X p and L; as L is a cause of
X r, any variable correlated to L is also correlated to X r.

L and S being unobserved, they cannot be represented in the final graph. However, one can
still try to assess their presence and adapt standard representations. This adaptation goes through
Maximal Ancestral Graphs (MAGS) (Richardson & Spirtes, 2002) which represent the presence of
hidden confounders and selection bias variables through different types of edges: bi-directed edges
(←→) in the graph represent the existence of a hidden confounder whereas undirected edges (−)

5. Note that DAGs can be generalized to Directed Graphs, referred to in the following as DiGraphs, where cycles are
allowed.
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represent unobserved selection bias variables that have been conditioned on rather than marginalized
over. MAGs6 are maximal in the sense that no additional edge may be added to the graph without
changing the independence model (Richardson & Spirtes, 2002). The notions introduced before can
readily be extended to MAGs.

Lastly, when the variables considered are temporal, then one can rely on the temporal priority
concept that goes back to Hume (1738) and is described by Rankin and McCormack (2013). In a
nutshell, it simply states that a cause precedes its effects.

Definition 5 (Temporal Priority) A causal relation between two variables is said to satisfy the
temporal priority if it is oriented in such a way that the cause occurred before its effect.

Temporal priority makes the process of causality asymmetric in time and is useful for orienting
a causal relation when one knows that two variables are causally related. That said, the difference
in time between two events associated to two time series may not be observed if the sampling fre-
quencies of the time series are small. It is thus possible that two events that occurred at different
time instants will be seen as instantaneous in the observational time series. Instantaneous causal re-
lations, sometimes called contemporaneous causal relations, correspond to causal relations between
causes and effects that occur at different time instants yet appear instantaneous.

2.2 Causal Graphs for Time Series
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Figure 5: Different causal graphs that one can infer from four time series: full time causal graph
(5a), window causal graph (5b) and summary causal graph (5c). Note that the first one gives more
information but cannot be inferred in practice, the second one is a schematic viewpoint of the full
behavior, whereas the last one give an overview and can be deduced from the window causal graph.

Causal discovery in time series aims at discovering, from observational data, causal relations
within and between d-variate time series X where, for a fixed t, each Xt is a vector (X 1

t , · · · ,X d
t )

in which each variable X p
t represents a measurement of the p-th time series at time t. There are

three ways to represent time series through a causal graph G = (V ,E) with V the set of vertices and

6. Similarly to DiGraphs, one can extend MAGs to take into account cycles and self loops.
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E the set of edges. The first is called a full time causal graph (also called infinite dynamic causal
graph by Malinsky & Spirtes, 2018) and represents a complete graph of the dynamic system, as
illustrated in Figure 5a.

Definition 6 (Full Time Causal Graph) Let X be a multivariate discrete-time stochastic process
and G = (V ,E) the associated full time causal graph. The set of vertices in that graph consists of
the set of components X 1, . . . ,X d at each time t ∈ Z. The edges E of the graph are defined as
follows: variables X p

t−i and X q
t are connected by a lag-specific directed link X p

t−i →X q
t in G

pointing forward in time if and only if X p causes X q at time t with a time lag of i > 0 for p = q
and with a time lag of i≥ 0 for p ̸= q.

It is usually not possible to infer general full time causal graphs as there usually is a single
observation for each time series at each time instant and it is common to rely on the so-called
Consistency Throughout Time (also referred to as Causal Stationarity by Runge, 2018) assumption.

Definition 7 (Consistency Throughout Time) A causal graph G = (V ,E) for a multivariate time
series X is said to be consistent throughout time if all the causal relationships remain constant in
direction throughout time.

When assuming consistency throughout time, the full time causal graph can be contracted to give a
finite graph which we call window causal graph. It is a representation of the causal graph through a
time window, the size of which equals the maximum lag relating time series in the full time causal
graph.

Definition 8 (Window Causal Graph) Let X be a multivariate discrete-time stochastic process
and G = (V ,E) the associated window causal graph for a window of size τ . The set of vertices in
that graph consists of the set of components X 1, . . . ,X d at each time t, . . . , t + τ . The edges E of
the graph are defined as follows: variables X p

t−i and X q
t are connected by a lag-specific directed

link X p
t−i→X q

t in G pointing forward in time if and only if X p causes X q at time t with a time
lag of 0≤ i≤ τ for p ̸= q and with a time lag of 0 < i≤ τ for p = q.

Figure 5b illustrates a window causal graph corresponding to the full time causal graph given in
Figure 5a with consistency throughout time. This graph encodes the following causal relations:
X s causes itself with a lag equal to 1, causes X p with a lag equal to 1 and causes X q with a
lag equal to 1; X p causes itself with a lag equal to 1, X q causes itself with a lag equal to 1, and
X p and X q cause X r with a lags equal to 0; X r causes itself with a lag equal to 1. Note that
the full time causal graph and the window causal graph are equivalent when assuming consistency
throughout time. When this assumption is not made, the only representation one can use is the
full time causal graph. Lastly, the window causal graph can be summarized into a summary causal
graph (see below), at the cost of losing information on the particular instants in the past at which
the causes occured.

In practice, it is often sufficient to know the causal relations between time series as a whole,
without knowing precisely the relations between time instants. In that case, one can further com-
press the causal graph in a summary graph (also called unit graph by Chu & Glymour, 2008) that
represents causal relations within and between time series without any time information. An exam-
ple of such a graph is given in Figure 5c. Note that since a summary causal graph is a summary of
the full time causal graph, it can contain cycles.

Definition 9 (Summary Causal Graph) Let X be a multivariate discrete-time stochastic process
and G = (V ,E) the associated summary causal graph. The set of vertices in that graph consists of
the set of time series X 1, . . . ,X d . The edges E of the graph are defined as follows: variables X p

and X q are connected if and only if there exists some time t and some time lag i such that X p
t−i

causes X q
t at time t with a time lag of 0≤ i for p ̸= q and with a time lag of 0 < i for p = q.

Summary graphs are in general less sensitive to possible variations in time and errors in estimating
time lags compared to full time and window causal graphs.
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2.3 When is a Method Truly Causal?

Most methods reviewed in this survey fit within the following, general form for the functional
model of any potential effect X q (this model is compatible with temporal priority (Def. 5) and
Consistency Throughout Time (Def. 7)):

∀t, X q
t = f (C q

t (X
r1), · · · ,C q

t (X
rq),ξ q

t ), (1)

where f denotes any real-valued multivariate function and ξ
q
t represents some noise independent

from all the causes of X q
t . C q = {X r1 , · · · ,X rq} is the set of time series which are causes of X q.

C q
t (X

r), for X r ∈ Cq, represents the time instants (i.e., time instants ≥ t) of X r which are causes
of X q

t . It can be written as:

C q
t (X

r) = {X r
t−γ1

, · · · ,X r
t−γKr
}, (2)

where Kr ∈Z+ and γ1, · · · ,γKr are integers such that γ1 > · · · > γKr ≥ 0. As past instants of a time
series can (and usually do) participate to the definition of the current instant, X q can of course be
a cause of itself. Methods usually differ on the assumptions made on f , C q

t () and the observational
data. Note however that few methods, as topology-based and difference-based methods (Section 8),
rely on a different modelling, based on differential equations (see also Blom et al., 2019).

Not all methods are deemed to recover true causal relations even though the distinction between
those which are and those which aren’t is not always clearcut. With the model above, a time series
correlated with X q and not in C q corresponds to a spurious correlation. At the finer grained level
of time instants, for a time series X r ∈ C q, any past instant of X r correlated with X q

t and not
in C q

t (X
r) also corresponds to a spurious correlation. Methods aiming at discovering summary

causal graphs may be interested in just the first type of correlations (between time series), whereas
methods aiming at discovering window causal graphs are usually interested in both types (between
time series and between time instants). In this survey, we say that a method is truly causal when
it aims at distinguishing spurious correlations from causal relations, be it at the level of time series
or at the finer grained level of time instants. In that case, we will use the standard vocabulary
of causality and say, for example, that a variable causes another variable. The pairwise Granger
method (Section 3), for example, is not truly causal and we say in that case that a variable Granger-
causes another variable. This is also the case for CCM causality and PAI causality (Definitions 15
and 16, Section 8.2) which do not clearly distinguish correlations and causal relations but mainly
focus on specific correlations. Multivariate and recent extensions of the Granger method however
aim at distinguishing spurious correlations and causal relations and are considered truly causal. This
is also the case for constraint-based, noise-based, score-based and logic-based approaches.

We now turn to the different approaches used to infer causal graphs between time series.

3. Granger Causality

Granger causality is one of the oldest concepts in causal inference, based on a statistical version
of Hume’s regularity theory (Hume, 1738) which states that causal relations can be inferred by
the experience of constant conjunctions between causes and effects, a cause preceding its effects7.
Probabilistic versions of Hume’s regularity theory, based on the probability raising principle (con-
ditioning on a cause increases the probability for the effect to appear), have been investigated by
different authors, among which one can cite Reichenbach (1956), Suppes (1970) and Eells (1991).
Granger (1969) proposed a statistical version that can be stated as:

Definition 10 (Granger Causality, Granger, 1980) A time series X p Granger-causes X q if past
values of X p provide unique, statistically significant information about future values of X q.

7. Originally, Granger causality was introduced for continuous time series. It has however been extended to temporal
point processes (Kim, Putrino, Ghosh, & Brown, 2011; Casile, Faghih, & Brown, 2021).
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Figure 6: Running example: structure inferred by the pairwise Granger method (an arbitrary order
has been chosen for the example).

For a given effect, the unique information contained in its causes and not in other variables allows to
optimally forecast the effect from its causes only. In addition, the temporal precedence constraints
it relies on prevents one from inferring the direction of "instantaneous" relations. Indeed, modifying
Granger causality by regressing X q

t using the past values of X q and X p, as well as X p
t to take

into account instantaneous effects, does not allow to decide which variable is the cause and which
the effect, as already noted by Granger (1988). Moreover, Granger Causality can be problematic in
dynamic systems with weak to moderate coupling, because separability (information about causes
is not contained in effects) is not always met (Granger, 1969; Sugihara, May, Ye, hao Hsieh, Deyle,
Fogarty, & Munch, 2012).

However, despite these downsides, Granger causality is generally considered as a valuable tool
that can improve the performance of prediction and was proven to be effective in many fields such
as econometrics (Hiemstra & Jones, 1994), neuroscience (Brovelli et al., 2004; Ding et al., 2006),
climate analysis (Papagiannopoulou et al., 2017; Zhang et al., 2011) to name but a few.

We provide below a more detailed description of standard Granger causality and its recent ex-
tensions.

3.1 Standard Pairwise Granger Causality

In its simplest version, under the assumption of stationary linear systems and to assess whether X p

Granger-causes X q, one considers the following autoregression model:

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q

t−i + ξ
q
t , (Mres)

and its augmented version:

X q
t = aq,0 +

τ

∑
i=1

aq,iX
q

t−i +
τ

∑
i=1

ap,iX
p

t−i + ξ
q
t , (Mfull)

where (ξ q
t )t are uncorrelated random variables with zero mean and variance σ2, (aq,i)1≤i≤τ and

(ap,i)1≤i≤τ are real coefficients, and τ corresponds to the optimal lag value. The model (Mres) is an
autoregressive model and is called the restricted model. It uses only past values of X q to predict
its current value. The model (Mfull) is an augmented version of the autoregressive model and is
called the full model. It uses both past values of X q and X p to predict the current value of X q.
If the full model is significantly more accurate than the restricted model, one can conclude that X p

Granger-causes X q. From a statistical viewpoint, a statistical test such as the F-test can be used to
determine whether the full model is significantly better than the restricted one, the null hypothesis
stating that X p does not Granger-cause X q. In practice, the optimal lag τ can be estimated using
any information criterion, as the Akaike or Schwartz information criteria.

Figure 6 illustrates the behaviour of this method which infers a summary causal graph. Starting
from an empty graph (with self causes), all relations between pairs of variables are iteratively tested.
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Algorithm 1 PWGC
Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags

Form an empty graph G with d nodes V
Standardize the data and check if it is covariance stationary
Find the optimal lag value τ ∈ {1, . . . ,τmax}
for X q ∈V do

Fit Mres: (X q
t−i)1≤i≤τ 7→X q

t and compute its residuals
for X p ∈V \{X q} do

Fit Mfull: (X p
t−i,X

q
t−i)1≤i≤τ 7→X q

t and compute its residuals
z = test to compare (Mfull) and (Mres)
if z < α then add edge X p→X q to G

Return the Summary DiGraph G

In a multivariate setting, a pairwise analysis can be performed using the bivariate approach
summarized in Algorithm 1. This approach does however not fully capture Granger’s original ideas
which assume that all relevant information is included in the analysis (Eichler, 2008). Furthermore,
a pairwise approach may lead to ambiguous results in terms of differentiating direct from mediated
causal relations (Ding et al., 2006), detecting for example a spurious correlation in a chaining of
three times series, which can be removed by conditioning on the common dependencies. To ad-
dress these problems, a direct extension of Granger causality to multivariate time series has been
proposed.

3.2 Multivariate Granger Causality

To overcome the problem of common confounders, all relevant information needs to be included
in the analysis. Let X = (X 1,X 2, · · · ,X d) be a d-dimensional time series. The multivariate
Granger causality, or conditional Granger causality (Geweke, 1982; Chen et al., 2004; Barrett et al.,
2010), makes use of the following restricted and full models, both based on a vector autoregressive
extension of the autoregressive model of the pairwise case:

X q
t = aq,0 +

d

∑
r=1
r ̸=p

τ

∑
i=1

ar,iX
p

t−i + ξ
q
t , (mvMres)

X q
t = aq,0 +

d

∑
r=1

τ

∑
i=1

ar,iX
r

t−i + ξ
q
t , (mvMfull)

where (ξ q
t )t are uncorrelated random variables with zero mean and variance σ2, aq,0 and (ar,i)1≤r≤d,1≤i≤τ

are real coefficients, and τ is as before the optimal lag. Here the full model (mvMfull) uses all obser-
vational time series whereas the restricted model (mvMres) uses all time series except X p. Anal-
ogously to the bivariate case, and as shown in Algorithm 2, if the full model is significantly more
accurate than the restricted model (through a statistical test), one concludes that X p Granger-causes
X q. This version is sound and usually yields better results; however, its computation overload is
such that in practice many studies rely on the pairwise version.

3.3 Extensions

In its original version, Granger causality cannot deal with non-stationary processes. A linear regres-
sion learning process with weighted distribution shifts, called linear WDS, was recently introduced
by Luo et al. (2015) to overcome this problem. In linear WDS, distribution shifts are detected by
analyzing the mean and standard deviation of the preceding points: a distribution shift is identified
at t if Xt ̸∈ [µ − kσ , µ + kσ ], where k is a parameter that controls the strength of the detection,
and µ and σ are respectively the mean and the standard deviation computed over a sliding window
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Algorithm 2 MVGC
Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags

Form an empty graph G with d nodes V
Standardize the data and check if it is covariance stationary
Find the optimal lag value τ ∈ {1, . . . ,τmax}
for X q ∈V do

Fit mvMfull: (Xt−i)1≤i≤τ 7→X q
t and compute its residuals

for X p ∈V \{X q} do
Fit mvMres: (Xt−i \{X p

t−i})1≤i≤τ 7→X q
t and compute its residuals

z = test to compare (mvMfull) and (mvMres)
if z < α then add edge X p→X q to G

Return the Summary DiGraph G

of past values. Samples are then divided into two subgroups, corresponding to normal samples
and samples with local distribution shifts. The cost function finally considered corresponds to a
weighted quadratic mean of these two subgroups.

Another drawback of Granger causality is related to its underlying linear assumption as associ-
ations are highly likely to be non-linear on real datasets. To overcome this, several extensions have
been proposed.

For example, Hiemstra and Jones (1994) state that time series X p does not Granger-cause times
series X q if for given values of a≥ 1,b≥ 1,m≥ 1 and ε > 0 one has:

Pr
(
∥X q

t :m−X q
s:m∥∞ < ε | ∥X q

t−a:a−X q
s−a:a∥∞ < ε ,∥X p

t−b:b−X p
s−b:b∥∞ < ε

)
= Pr (∥X q

t :m−X q
s:m∥∞ < ε | ∥X q

t−a:a−X q
s−a:a∥∞ < ε) .

with Xt :m = (Xt , · · · ,Xt+m−1); the infinite norm ∥.∥∞ corresponds to the maximal component
of the vector. A test with correlation-integral estimators is used to determine whether the above
equality holds or not.

An analogous causality testing procedure between univariate time series has been developed by
Bell et al. (1996). On top of a non parametric regression, an additive modeling framework is used
where the restricted and the full models are as follows:

X 2
t =

τ

∑
k=1

f2(X
2

t−k)+ ξ
X 2

t , (nlMres)

X 2
t =

τ

∑
k=1

f2(X
2

t−k)+
τ

∑
k=1

f1(X
1

t−k)+ ξ
X 2|X 1

t , (nlMfull)

where (ξt)t are uncorrelated random variables with zero mean and a variance σ2.
Following slightly different directions, Ancona et al. (2004) proposed to use radial basis func-

tions in the restricted and full models, whereas Chen et al. (2004) proposed a method, called ex-
tended Granger causality, which relies on local linear functions corresponding to the standard re-
stricted and full models applied on the points of the same neighborhood. The extended Granger
causality is defined as the average of those local Granger causality models. There is a trade-off
in this approach between considering large neighborhoods, which ensures representative estimates,
and considering small neighborhoods, for which the linearization is more valid.

In Marinazzo et al. (2008), the authors proposed to use kernel approximations of the nonlinear
models. Similarly, Sun (2008) used a kernel framework to infer the causality between multivariate
time series. Faes et al. (2008) introduced a nonlinear exogenous autoregressive (NARX) model, the
parameters of which are estimated through an optimal parameter search. This method is however
parametric, only applicable to bivariate interactions and only appropriate for nonlinearities up to the
third order as the number of model parameters that need to be estimated becomes computationally
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1-Attention Interpretation
2-Causal Validation
3-Delay Discovery

Ĝ

Figure 7: Neural network associated to TCDF: d independent CNNs (Nq)1≤q≤d , all having time
series X 1 · · ·X d of length T as input. For 1≤ q≤ d, the network Nq predicts X q by X̂ q, and also
outputs the kernel weights (Wq,p,k)1≤p≤d,1≤k≤K (where K represents the kernel size) and attention
scores (aq,p)1≤p≤d . After attention interpretation, causal validation and delay discovery, a temporal
causal graph is constructed.

intractable for higher orders. More recently, and still within the bivariate setting, Jiao et al. (2013)
proposed a universal estimation of directed information, and detailed how it can be used to infer
causal influences within the Granger causality framework. Even more recently, Nicolaou and Con-
standinou (2016) proposed a method based on Non-Parametric Multiplicative Regression (NPMR),
that detects causal relationships by using the error variances obtained from the NPMR model. Pa-
pagiannopoulou et al. (2017) presented a direct extension of the standard method by replacing the
linear models in the restricted and full models with non-linear models based on random forests.
Copulas have also been used to model nonlinear relations between values of time series as by Hu
and Liang (2014) and Kim et al. (2019). Lastly, and not surprisingly, several researchers have in-
vestigated the use of deep networks. The temporal causal discovery model (TCDF) represents such
an attempt. Because of the popularity of deep neural networks, we detail it below.

3.4 A Deep Learning Extension for Causal Discovery

The Temporal Causal Discovery Framework (TCDF), introduced by Nauta et al. (2019), learns
complex non linear causal relations between time series using deep neural networks with an at-
tention mechanism within dilated depthwise8 convolutional networks. It consists of d independent
attention-based CNNs (Nq)1≤q≤d , all with the same architecture but with a different target time se-
ries X q as illustrated in Figure 7. Each neural network outputs its prediction, attentions scores and
kernel weights which allow a causal interpretation of the results: a high attention on a time series
X p while forecasting a time series X q indicates that the former contains information that helps
better forecasting the latter.

Thus, for 1≤ q≤ d, the attention scores (aq,p)1≤p≤d of the attention mechanism indicate which
time series contains the most valuable information for prediction, and detect which ones are poten-
tially causally associated with the target time series X q. To interpret the attention scores causally,
the Softmax function σ is applied, followed by a semi-binarization step that filters out all atten-
tion scores that fall below a threshold sq. To determine sq, TCDF starts by ranking the attention
scores from high to low and then searches for the largest gap9 between two adjacent attention

8. A dilated convolution applies a kernel over an area while skipping values with a certain step size which increases
exponentially from a hidden layer to another depending on a chosen dilation coefficient. A depthwise convolution is
a type of convolution where a single convolutional filter is applied for each input channel. In this case, each channel
is a time series.

9. Additional constraints can be added; for more details see Nauta et al. (2019).
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Algorithm 3 TCDF
Require: X a d-dimensional time series of length T , number of hidden layers L, kernel size K,

dilation coefficient c, number of epochs, loss function and learning rate
τmax = 1+(K−1)∑

L
l=0 cl

Form an empty graph G with dτmax nodes V
for q ∈ {1, · · · ,d} do

Fit Nq : (Xt−i)1≤i≤τ 7→X q
t

Compute the attention scores aq and the kernel weights Wq

Sort the attention scores aq into b with decreasing order
Compute the biggest attention score sq associated to the largest gap in b
for p ∈ {1, · · · ,d} do

if σ(aq,p) > sq then
i = argmax(Wq,p,.)
Add edge X p

t−i→X q
t to G

for (X p
j−i,X

q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do add edge X p
j−i→X q

j to G

for X p
t−i ∈ Par(X q

t ,G ) do
Compute the loss of Nq on X where X p

t−i is permuted
if the loss increases significantly then

Remove edge X p
t−i→X q

t from G
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do remove edge X p
j−i→X q

j from G
Return the Window MAG G

scores. The threshold sq is then equal to the biggest attention score associated to that gap. To
distinguish causality-based from correlation-based attention, a causal validation step is applied:
potential causes are validated if the loss of a network, when removing the chronicity of a time
series using permutation, increases significantly when a variable is permuted. Once all causal
relations have been established for time series X q, TCDF detects their time delays by interpret-
ing the kernel weights (Wq,p,k)1≤p≤d,1≤k≤K which consist of d rows and K columns (where K is

L

X p X q

1 4
3

L

X p X q

4 4
0

Figure 8: How TCDF deals with hidden con-
founders. A red edge (left) indicates a wrong
causal relation discovered by TCDF, whereas
a red double edge (right) indicates that a true
causal relation is discovered. Numbers corre-
spond to delays.

the kernel size). Each row is associated to one
input time series and each column shows the im-
portance of each time delay of associated time
series.

As can be seen in Figure 7, TCDF can learn
self-causation since it includes the past of X q

when fitting Nq for 1 ≤ q ≤ d. It is also able
to detect hidden confounders if they have equal
delays to their effects with no additional cost
by simply assuming that bidirectional causal re-
lations cannot be instantaneous. For example,
TCDF is able to detect the presence of a hidden confounder in Figure 8 (right) but not in Figure 8
(left). A sketch of TCDF is presented in Algorithm 3.

One of the main drawbacks of TCDF is the number of hyperparameters it relies on (number of
hidden layers, kernel size, dilation coefficient, number of epochs, loss function and learning rate)
and the difficulty to tune them. In addition, unlike other methods, there is no direct way to set
the maximum number of lags as increasing the number of hidden layers (or the kernel size or the
dilation coefficient) leads to an increase in the number of time steps seen by the sliding kernel, and
so to an increase in the maximum delay.
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X p

X r

X q X p

X r

X q X p

X r

X q

Figure 9: Three equivalent structures

4. Constraint-Based Approaches

Constraint-based approaches exploit conditional independencies to build a skeleton between vari-
ables. This skeleton is then oriented according to a set of rules that define constraints on admissible
orientations. Central to these approaches is the notion of v-structures, or colliders, as these are the
only structures which can be oriented without ambiguity (an example of a v-structure is given in
Figure 2 (right), page 769). We first cover here the main algorithms assuming causal sufficiency,
corresponding to situations when all possible common causes are observed, prior to dealing with
situations without causal sufficiency, i.e., with hidden causes.

4.1 With Causal Sufficiency

The goal here is to exploit conditional independencies10 , obtained from observational data, to con-
struct the underlying causal graph which is typically represented by a directed acyclic graph (DAG)
in causally sufficient situations. The underlying causal graph is however not unique as several DAGs
can be used to represent the same set of conditional independencies. For example, the models in
Figure 9, borrowed from Verma and Pearl (1991), all represent the same independence relation
"X p is independent from X q given X r": X p |= X q|X r. This leads to the notion of Markov
equivalence class which corresponds to a set of DAGs that encode the same set of conditional inde-
pendencies. Verma and Pearl (1991) have shown that two DAGs are Markov equivalent if and only
if they have the same skeleton and the same v-structures. This notion of equivalence only relies on
the orientation of compelled edges, that is edges participating to v-structures or whose change in
orientation would lead to new v-structures. They can be represented by partially directed acyclic
graphs (PDAGs), in which some edges are not oriented, which can be useful when dealing with
situations in which it is difficult, or even impossible, to decide on an orientation. Given an equiv-
alence class of DAGs, Andersson et al. (1997), Chickering (2002) introduce the completed PDAG
(CPDAG) as the PDAG that consists of a directed edge for every compelled edge in the equivalence
class, and an undirected edge for all other edges. It turns out that a CPDAG uniquely represents
a Markov equivalence class. Thus, the goal of constraint-based, causal discovery algorithms can
finally be formulated as: construct, from observational data, the CPDAG that represents the Markov
equivalence class of a true causal graph.

For non temporal data, one of the oldest constraint-based algorithm is the SGS algorithm (Spirtes
et al., 1990), which has been proved to be consistent under independently, identically discributed
(i.i.d) observations assuming causal sufficiency. SGS starts with a full undirected graph connect-
ing all variables. In a second step, for each pair of vertices (X p,Xq), it finds (if possible) some
subset of vertices that makes them conditionally independent (the smallest such subset is referred
to as Sepset(X p,Xq)) and removes the edge between them if it is the case. It then orients undi-
rected edges by subsequently employing orientation rules to derive causal relations. The second
step of SGS makes it unusable in practice as the number of conditional independencies that needs
to be tested in a fully connected graph grows exponentially with the number of variables, while

10. Conditional independencies can be estimated in a parametric or nonparametric way. We provide here a general
explanation of the methods and postpone specific details on the statistical tests used in Section 9.2.
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it is known that conditional independencies are difficult to compute (Shah & Peters, 2020). The
Peter-Clark (PC) algorithm was introduced (Spirtes et al., 2001) to address this issue.

4.1.1 PETER-CLARK ALGORITHM FOR NON-TEMPORAL DATA

The PC algorithm aims at optimizing the number of computations necessary to assess whether two
variables are conditionally independent or not by considering conditioning variables that are likely
to be parents of the two variables. Even if it grows exponentially with the maximal degree of the
graph, large sparse graphs can be easily inferred using the PC algorithm.

Starting with a complete undirected graph G , the algorithm checks the dependency for all pairs
of vertices and removes or keeps links according to whether or not the two vertices are considered to
be independent. Then it checks the conditional independencies between dependent vertices by first
computing it for each adjacent pair X p and Xq in G and for each vertex X r (other than X p) adjacent
to Xq in G . If X r is able to remove the dependency between X p and Xq then the algorithm removes
the edge between them and adds X r to their separation set Sepset(p,q). Then, it gradually increases
the number of variables to condition on, and proceeds as above till a conditional independence is
found or all sets of vertices adjacent to Xq have been considered for the conditioning.
Once the skeleton has been constructed, the algorithm applies series of rules (Spirtes et al., 2001;
Colombo & Maathuis, 2014), starting by identifying v-structures using the so-called origin of
causality.

PC-Rule 0 (Origin of causality) For every triple X p−X r−Xq such that X p and Xq are not adja-
cent and X r /∈ Sepset(p,q), orient the triple as X p→ X r← Xq.

Triples of the form X p−X r−Xq such that X p and Xq are not adjacent are usually referred to as
unshielded triples in the causality literature. We do not use this term here so as to remain as simple
as possible in our exposition of the PC algorithm but will use it in the remainder of the paper.

When all v-structures have been identified using the above rule, the PC algorithm orients as
many of the remaining undirected edges as possible, by repeating the following rules until no other
changes can be made.

PC-Rule 1 In a triple X p → Xq−X r such that X p and X r are not adjacent, orient Xq−X r as
Xq→ X r.

PC-Rule 2 If there exist a direct path from X p to Xq and an edge between X p and Xq, then orient
X p→ Xq.

PC-Rule 3 Orient X p−Xq as X p→Xq whenever there are two paths X p−X r→Xq and X p−X s→
Xq.

A different orientation in PC-Rule 1 would lead to new v-structures, which is not possible as the
origin of causality should identify all v-structures. A different orientation in PC-Rule 2 would
lead to a cycle, whereas a different orientation in PC-Rule 3 would lead to either a cycle or a new
v-structure when orienting the remaining undirected edges.

From a theoretical viewpoint, the above procedure is sound and complete (Meek, 1995; An-
dersson et al., 1997) in the set of Markov equivalence graphs, where "sound" means that all causal
relations detected by the rules are correct, and "complete" that all possible causal relations in the
Markov equivalence class are detected by the algorithm.

Theorem 2 (Theorem 5.1 by Spirtes et al., 2001) Let the distribution of V be faithful to a DAG
G = (V ,E) and assume that we are given perfect conditional independence information about all
pairs of variables (X p,Xq) in V given subset S⊆V \{X p,Xq}. Then, the output of the PC-algorithm
is the CPDAG that represents G .
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Algorithm 4 PCMCI
Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags, α a

significance threshold
Form an oriented graph G with dτmax nodes V such that X p

t−i→X q
t for all X p

t−i,X
q

t ∈ V , i ∈
{1, · · · ,τmax}
for X q

t ∈V do
n = 0
while card(Par(X q

t ,G ))≥ n+ 1 do
for X p

t−i ∈ Par(X q
t ,G ) s.t. card(Par(X q

t ,G ) \X p
t−i) = n do

X R
I = first n variables of Par(X q

t ,G ) \{X p
t−i}

Compute yq,p the statistics that corresponds to the test X p
t−i |= X

q
t |X R

I and its p-value z
if z > α then

Remove edge X p
t−i→X q

t from G
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do remove edge X p
j−i→X q

j from G

Sort Par(Xq
t ,G ) by decreasing order of the statistics (yq,p)p

n = n+ 1
for X q

t ∈V do
for X p

t−i ∈ Par(Xq
t ,G ) s.t. card(Par(X p

t−i,G ))> 0 do
Compute z the p-value that corresponds to the test X q

t |= X
p

t−i | Par(X q
t ,G ) \ {X p

t−i} ∪
Par(X p

t−i,G )
if z > α then

Remove edge X p
t−i→X q

t
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do remove edge X p
j−i→X q

j from G
Return the window DAG G

Consistency of the PC algorithm has been discussed by Spirtes et al. (2001), Robins et al. (2003):
if the model is only faithful, uniform consistency cannot be achieved, but pointwise consistency can.
Kalisch and Bühlmann (2007), Zhang and Spirtes (2002) provide assumptions which render the PC-
algorithm uniformly consistent, for a number of nodes and neighbors increasing in a limited way
with respect to the sample size.

The main weakness of the original PC algorithm is that it is order dependent and thus not
stable. To tackle this issue, Colombo and Maathuis (2014) proposed to measure all conditional
independencies for a given cardinal before removing links in the undirected graph. This simple
modification renders the main procedure order-independent.

In the following, we detail three popular methods for time series based on the PC algorithms.
Other methods, as for example FASK (Sanchez-Romero et al., 2019), have also been proposed using
different orientation rules. They are however beyond the scope of the current survey.

4.1.2 TEMPORAL EXTENSION WITH MOMENTARY CONDITIONAL INDEPENDENCE TESTS

The PCMCI algorithm (Runge et al., 2019) is able to detect time lagged causal relations in a
window causal graph (see Figure 5c page 772 ). The method is divided into three steps. First, a
partially connected graph G is constructed, such that all pairs of nodes (X p

t−i,X
q

t ) are directed
as X p

t−i → X q
t if i > 0. The second step removes all unnecessary edges based on conditional

independencies, as done in PC, and takes into account the assumption of consistency throughout
time to remove homologous edges: for each edge X p

t−i → X q
t removed, all edges included in

Hom(X p
t−i,X

q
t ,G ) are removed as well, where Hom(X p

t−i,X
q

t ,G ) represents the set of instants
homologous to X p

t−i and X q
t , i.e., instants in X p and X q shifted by a lag of i from p to q (see

Section 2, Table 1). As the conditioning is based only on the parents of X q
t , one cannot control

false positives with large autocorrelations in X p
t−i. The third step deals with these autocorrelations

by using the Momentary Conditional Independence test (MCI). MCI conditions on the parents of
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Figure 10: Running example: structure inferred by PCMCI with instantaneous relations.

X q
t and the parents of X p

t−i while testing X p
t−i→X q

t . It is defined as follows: for m a measure of
dependence,

MCI(X p
t−i;X

q
t ) = m

(
X p

t−i;X
q

t
∣∣Par(X q

t )\{X p
t−i},Par(X p

t−i)
)

,

and estimates an interpretable notion of causal strength as it quantifies the causal effect on X q
t of

a hypothetical perturbation in X p
t−τ . Thus, the value of the MCI statistics allows to rank causal

links in large-scale settings. The algorithm is described in Algorithm 4. The method depends on the
significant rate α , which can be selected using the Akaike Information Criterion or cross validation.
The computational time is polynomial in the number d of time series and the maximum lag τmax.

PCMCI has been shown to be consistent (Runge et al., 2019). Note that both stages of PCMCI
can be flexibly combined with any kind of conditional independence tests. We rely in our experi-
ments (Section 9) on two measures used by Runge et al. (2019), namely the partial correlation and
the mutual information.

Instantaneous causal relations, which were not supported in the initial algorithm, have been
integrated by Runge (2020) by conducting separately the edge removal for lagged conditioning sets
and instantaneous conditioning sets. Lagged relations are treated as in PCMCI and instantaneous
relations are inferred using the PC-rules.

Figure 10 illustrates the different steps of this algorithm on our running example. Note that, here,
all edges in Step 2 are kept as all nodes in the window graph are dependent without conditioning.

4.1.3 TEMPORAL EXTENSION USING TRANSFER ENTROPY

Even if PC-based methods optimize the number of conditional independencies to be computed,
the conditioning sets might go up to the size of the entire network. In this respect, regardless
of the dimensionality of the sample space, the combinatorial search itself can be computationally
infeasible for moderate to large networks. One way to overcome this issue would be to use an
asymmetric measure such as transfer entropy (Schreiber, 2000), which can be defined as follows:

TE(X p
t →X q

t+1) = h(X q
t+1 |X

q
t )−h(X q

t+1 |X
q

t ,X p
t )
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Algorithm 5 oCSE
Require: X a d-dimensional time series of length T , α a significance threshold

Form an empty graph G with d nodes V
for X q ∈V do

z = ∞

while z > 0 and card(Par(X q,G ))< d do
for X p ∈V \Par(X q,G ) do

Compute zp the p-value that corresponds to the test CE(X p
t →X q

t+1 | Par(X q,G )t)> 0
p = argmaxr zr

if zp > α then add edge X p→X q to G
for X p ∈ Par(X q,G ) do

Compute z the p-value that corresponds to the test CE(X p
t → X q

t+1 | Par(X q,G )t \
{X p

t }) = 0
if z > α then remove edge X p→X q from G

Return the summary DiGraph G

where h(. | .) denotes the conditional entropy. However, this metric is limited to pairwise relations
and assumes that nodes are self causal. To overcome this, Sun et al. (2015) introduced the causation
entropy (CE), a generalization of the conditional transfer entropy to multivariate time series which
relaxes the self causation assumption. Causation entropy from a set of nodes P to the set of nodes
Q conditioned on the set of nodes R is defined as:

CE(X P
t →X Q

t+1 |X
R

t ) = h(X Q
t+1 |X

R
t )−h(X Q

t+1 |X
R

t ,X P
t ),

where P,Q,R are all subsets of {1, · · · ,d}. Sun et al. (2015) proved that the set of nodes that
directly causes a given node is the unique minimal set of nodes that maximizes causation entropy.
They propose the oCSE (optimal Causation Entropy) algorithm, summarized in Algorithm 5, to
find, for each node X p

t , the smallest set that maximizes the causation entropy. As they detect only
causation relations with time-lag of size 1, they consider stationary first-order Markov processes
with the following dynamics:

X q
t = fq(a1X

1
t−1,a2X

2
t−1, · · · ,adX

d
t−1,ξ p

t ),

where for all p ∈ {1, . . . ,d}, ap is the weight of the link from X p to X q. Note that the parents of
X q

t can only be attributed to the time t− 1, known as the Temporally Markov assumption: for all
t, Pr(Xt |Xt−1,Xt−2, · · · ) = Pr(Xt |Xt−1). oSCE starts by identifying nodes that form a superset
of the causal parents (including indirect and spurious causal connections): iteratively, it adds the
node with the largest CE, conditioning on the set of parents (which recursively increases). Then,
the second step consists in eliminating from the set of parents the ones deemed insignificant. This
algorithm strikes a tradeoff between computational cost and data efficiency. The second stage of the
algorithm is order dependent so results might vary depending on which of the potential parents is
treated first.

4.2 Without Causal Sufficiency

As explained in Section 2, hidden confounders and unobserved selection variables can be repre-
sented by maximal ancestral graphs (MAGs). They play the role of DAGs in situations when not
all variables are observed. As shown in Figure 4, page 771, the fact that two variables are related
through a common confounder is represented in a MAG by a double arrow, whereas the dependence
between two variables induced by an unobserved selection variable is represented by an undirected
edge. The equivalence between MAGs is slightly more complex than the one between DAGs and
makes use of the notion of discriminating paths.
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L1

X p Xq X r X s Xu Xv

L2

Xw

Figure 11: Causal graph with two hidden common causes (Spirtes et al., 2001)

Definition 11 (Discriminating path, Zhang, 2007) In a MAG, a path U between X p and Xq is a
discriminating path for X r if U includes at least three edges, X r is a non-endpoint vertex and is
adjacent to Xq, X p is not adjacent to Xq, and every vertex between X p and X r is a collider and a
parent of Xq.

Ali et al. (2005) and Zhang (2007) showed that two MAGs are Markov equivalent if and only if
they have the same adjacencies, the same unshielded colliders, and if a path U is a discriminating
path for a vertex X r in both graphs, then X r is a collider on the path in one graph if and only if
it is a collider on the path in the other. As shown by Richardson (1996), a Markov equivalent
class of MAGs can be described by a partially ancestral graph (PAG) which can contain up to six
types of edges: undirected (−), single arrow (→ or ←), double arrow (←→), undirected on one
side and undetermined on the other (−◦ or ◦−), directed on one side and undetermined on the other
(◦→ or←◦), and undetermined on both sides (◦−◦). In MAGs, the separation subset that ensures
independence between two vertices X p and Xq can include vertices that are neither parents of X p nor
of Xq. This leads to the notion of possible d-separation sets, in short Possible-Dsep sets, introduced
by Spirtes et al. (2001). We introduce here a symmetric version of Possible-Dsep sets that may lead
to a slower algorithm than the one based on the original asymmetric version of Spirtes et al. (2001)
but that simplifies the exposition of the overall procedure.

Definition 12 (Possible-Dsep Spirtes et al., 2001; Zhang, 2008) The Possible-Dsep set of two nodes
X p and Xq is the set of nodes XR that are such that ∀X r ∈ XR, X p ̸= X r (or Xq ̸= X r) and there
is an undirected path U between X p and X r (or between Xq and X r) such that for every subpath
< Xv,X s,Xw > on U, either X s is a collider on the subpath or Xv and Xw are adjacent.

In the graph presented in Figure 11, which displays two hidden comon causes between X p and
Xq and Xv and Xw, the set {Xq,X r,Xu,Xv} is a Possible-Dsep set for X p and Xw. It separates these
two time series. Note that Xq or Xv alone does not separate X p and Xw as there is still a path
relating X p and Xw. Xq and Xv together neither separate X p and Xw as conditioning on Xq creates a
dependence between X r and X p, and similarly for Xv and Xw, so that X p and Xw become dependent.

We now present the standard causal inference algorithm for non-temporal data without causal
sufficiency, referred to as FCI for fast causal inference, prior to describing extensions to time series.

4.2.1 FAST CAUSAL INFERENCE ALGORITHM FOR NON-TEMPORAL DATA

FCI starts, as the PC algorithm, by initializing the skeleton with all possible edges and by removing
the edges that are either independent or conditionally independent, first when conditioning with
Sepsets and then with Possible-Dsep sets. Ten orientation rules, described by, e.g., Zhang (2008),
are applied recursively11. As in PC, all colliders are first identified by Rule 0. One then orients as
many of the remaining undirected edges as possible, by repeating Rules 1 to 4.

FCI-Rule 0 (Origin of causality) For each unshielded triple X p∗−◦X r◦−∗Xq, if X r /∈ Sepset(p,q),
then orient the unshielded triple as a collider: X p∗→ X r←∗Xq.

11. In stating the 10 orientation rules, the meta-symbol −∗ is used as a wildcard that may stand for all three possible edge
marks: −,→,−◦.
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FCI-Rule 1 In an unshielded triple X p∗→X r◦−∗Xq, if X r ∈ Sepset(p,q) then orient the unshielded
triple as X p∗→ X r∗→ Xq.

FCI-Rule 2 If there exists a triple X p→ X r∗→ Xq or a triple X p∗→ X r→ Xq with X p ∗−◦Xq, then
orient the pair as X p∗→ Xq.

FCI-Rule 3 If there exists an unshielded triple X p∗→ X r ←∗Xq and an unshielded triple X p ∗−◦
X s ◦−∗Xq, and X s ∗−◦X r then orient the pair as X s→ X r.

FCI-Rule 4 If there exists a discriminating path between X p and Xq for X r, and X r ◦−∗Xq; then
orient X r ◦−∗Xq as X r→ Xq ; otherwise orient the triple as X s←→ X r←→ Xq.

The remaining rules make use of the notions of uncovered path, potentially directed path and circle
path. An uncovered path is a path in which every consecutive triple is unshielded. A potentially
directed path of length l is a path, which we assume to be represented, after re-indexing the vertices,
as V1, · · · ,Vl , that is such that an edge between two consecutive vertices Vi−1 and Vi has no arrow
on Vi−1’s side and has either an arrow or a circle on Vi’s side. A circle path is a potentially directed
path in which every edge on the path is of the form ◦−◦.

If selection bias is considered, FCI-Rules 5 to 7 are applied recursively to discover selection
variables. Then, FCI-Rules 8 to 10 are applied recursively to pick up directed edges missed by
FCI-Rules 0 to 4.

FCI-Rule 5 For every remaining X p◦−◦Xq, if there is an uncovered circle path U = ⟨X p,X r, · · · ,X s,Xq⟩
between X p and Xq such that X p and X s are not adjacent and Xq and X r are not adjacent, then ori-
ent X p ◦−◦Xq and every edge on U as undirected edges (-).

FCI-Rule 6 If X p−X r ∗−◦Xq (X p and Xq are not necessarily adjacent), then orient the triple as
X p−X r−∗Xq .

FCI-Rule 7 If X p−◦X r ◦−∗Xq, and X p and Xq are not adjacent, then orient the triple X p−◦X r−
∗Xq.

FCI-Rule 8 If X p→ X r→ Xq or X p−◦X r→ Xq, and X p◦→ Xq, then orient X p→ Xq .

FCI-Rule 9 If X p◦→ Xq, and U is an uncovered potentially directed path from X p to Xq such that
Xq and X r are not adjacent, then orient the pair as X p→ Xq .

FCI-Rule 10 Suppose X p◦→ Xq, X r → Xq ← X s, U1 is an uncovered potentially directed path
from X p to X r, and U2 is an uncovered potentially directed path from X p to X s . Let µ be the vertex
adjacent to X p on U1 (µ could be X r), and ω be the vertex adjacent to X p on U2 (ω could be X s). If
µ and ω are distinct, and are not adjacent, then orient X p◦→ Xq as X p→ Xq.

From a theoretical viewpoint, FCI is correct, sound, complete (Zhang, 2008) and consistent
(Colombo et al., 2012). One of the disadvantages of FCI, however, is that the conditional inde-
pendence tests given subsets of Possible-Dsep sets can become very large even for sparse graphs.
Really Fast Causal Inference (RFCI, Colombo et al., 2012) was introduced to solve this problem.
This algorithm avoids searching for Possible-Dsep sets by performing additional tests. The number
of these additional tests and the size of their conditioning sets remain reasonable for sparse graphs,
making RFCI much faster than FCI for sparse graphs.
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4.2.2 TEMPORAL EXTENSION THROUGH ADDITIVE NON-LINEAR TIME SERIES MODEL

Inspired by FCI, Chu and Glymour (2008) proposed a method that can deal with hidden confounders
when they are linear and instantaneous. Constraint-based methods originally use nonparametric
conditional independence tests that are subjects to the curse of dimensionality. To avoid this issue,
Chu and Glymour (2008) assumed additive non-linear time series models (ANLTSM) that can be
represented as:

X q
t = ∑

1≤p≤d,p̸=q
aq,pX

p
t + ∑

1≤p≤d,1≤l≤τ

fq,p,l(X
p

t−l)+
h

∑
r=1

bq,rU
r

t + ξt , (ANLTSM)

where bq,rs and aq,ps are constants, and fq,p,ls are smooth univariate functions. (U r
t )1≤r≤h and ξt are

unobserved multi-dimensional Gaussian white noise. ξt represents latent causes, which can only be
direct causes of the observable variables, while (U r

t )1≤r≤h, represents latent common causes. The
latter are allowed only for variables at the same time instant, and X p

t and X q
t have a latent common

cause U r
t if and only if there exists 1≤ r ≤ h such that bq,rbp,r ̸= 0.

Assuming additive non-linear time series models, Chu and Glymour (2008) test if two nodes
X p

t and X q
t are independent conditionally on the set S by estimating the conditional expectation

of X p
t given X q

t ∪S using additive regression models, and check if X q
t is a significant predictor

for X p
t using statistical tests such as the F-test (Bell et al., 1996) or the BIC scores (Huang & Yang,

2004). The insignificancy of the predictor implies that X p
t and X q

t are conditionally independent.
Using the above test in the FCI algorithm, one first identifies instantaneous causal relations.

Lagged causal relations X p
t−i→X q

t are then identified through one of the following two conditions:

(a) If X p
t−i and X q

t are still dependent given any subset of instantaneous direct causes of X q
t and

any subset of lagged neighbours and if X p
t−i is not adjacent to any other node at time t;

(b) Or if X p
t−τ and X q

t are still dependent given any subset of instantaneous relations and any
subset of lagged neighbours.

Finally, the remaining edges are oriented, whenever possible, by two additional rules that detect in-
stantaneous causes in unshielded triples by testing conditional independence with the third variable
given the past. This method has been shown to be consistent when the data is generated from an
ANLTSM.

4.2.3 TEMPORAL EXTENSION THROUGH WINDOW REPRESENTATIONS AND SVAR

Entner and Hoyer (2010) adapted FCI to time series by transforming the original time series Xt =
(X 1

t , · · · ,X d
t )1≤t≤T into a sample of random vectors with a sliding window of size τ . This leads

to the consideration of (T −τ +1) vectors of length τd on which the FCI algorithm can be applied.
Additionally, one makes use of temporal priority and consistency throughout time (time invariance)
to orient edges and restrict conditioning sets. Unlike FCI, this procedure, called tsFCI, neither
considers selection variables nor instantaneous relations. It is described in Algorithm 6.

Recently, Malinsky and Spirtes (2018) adapted this idea in a new algorithm called SVAR-FCI
that is based on FCI for multivariate time series and that allows instantaneous causal relations and
arbitrary latent confounding. Stationarity is further used to remove additional edges. The data
generation process is a structural vector autoregression (SVAR) model with latent variables.

4.2.4 TEMPORAL EXTENSION USING CONDITIONAL INDEPENDENCE TESTS

Very recently, Gerhardus and Runge (2020) extended PCMCI, introduced in Section 4.1.2, to LPCMCI
(for Latent PCMCI) to take into account latent variables, which contrasts with previous methods that
rather extend FCI. In LPCMCI, known parents are used as default conditions whereas non-ancestors
are not tested in conditioning sets. Furthermore, a new type of edge, with a middle mark, is used
to facilitate early orientation of edges. In a preliminary phase, ancestors are detected during the
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Algorithm 6 tsFCI
Require: X a d-dimensional time series of length T , τmax ∈N the window length

Form a complete undirected graph G with dτmax nodes V with all edges of the form ◦−◦
n = 0
while there exists X q

t ∈V such that card(Adj(X q
t ,G ))≥ n+ 1 do

for X q
t ∈V such that card(Adj(X q

t ,G ))≥ n+ 1 do
for X p

t−i ∈ Adj(X q
t ,G ) such that card(Adj(X q

t ,G ) \{X p
t−i}) ≥ n do

for X R
T ⊂ Adj(X q

t ,G )\{X p
t−i} such that card(X R

T ) = n do
(z,y) = test if X p

t−i |= X
q

t |X R
T

Compute z the p-value that corresponds to the test X p
t−i |= X

q
t |X R

T
if z > α then

Remove edge X p
t−i−X q

t from G
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do remove edge X p
j−i−X q

j from G

Sepset(X p
t−i,X

q
t ) = Sepset(X q

t ,X p
t−i) = X R

T
n=n+1

for each unshielded triple in G do apply F-Rule 0
for X q

t ∈V do
for X p

t−i ∈ Adj(X q
t ,G ) do

Compute z the p-value that corresponds to the test X p
t−i |= X

q
t | Possible-Dsep(X p

t−i,X
q

t )
if z > α then

Remove edge X p
t−i−X q

t from G
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do remove edge X p
j−i−X q

j from G

Sepset(X p
t−i,X

q
t ) = Sepset(X q

t ,X p
t−i) = Possible-Dsep(X p

t−i,X
q
t )

Reorient all edges as ◦−◦
for each adjacent pair (X p

t−i,X
q

t ) in G with i > 0 do orient the pair as (X p
t−i∗→X q

t )
for each adjacent pair (X p

t ,X q
t ) in G do orient the pair as (X p

t ←→X q
t )

for each unshielded triple in G do apply F-Rule 0
while no more edges can be oriented do apply FCI-Rules 1 to 10
Return the window PAG G

classical skeleton construction through additional orientation rules, easily adapted from the one in-
troduced in Section 4.2.1. Then, in a final phase, edges are re oriented using the same rules. This
algorithm is order independent, sound and complete.

5. Noise-Based Approaches

We focus now on a class of causal models called Functional Causal Models (FCM) (sometimes also
called Structural Equation Models, Wright, 1921; Pearl, 2000) which describe a causal system by
a set of equations, where each equation explains one variable of the system in terms of its direct
causes and some additional noise. For example, if X p is a cause of Xq, then there exists a function
fq that relates X p to Xq with some additional noise ξ q: Xq = fq(X p,ξ q).

Statistical noise is often considered as a nuisance that one has to live with, and is even thought
to mask causal relations. However, recent discoveries showed that not only noise does not obscure
causal relations, but it can be a valuable source of insight. To understand why noise can be helpful to
identify causal relations, let us start with a simple example borrowed from Climenhaga et al. (2019)
based on two random variables X p and Xq such that X p → Xq with the underlying relation Xq =
2X p + ξ q, where ξ q represents some noise. Given enough observations, one can detect a relation
between X p and Xq. However, without additional information, it is not possible to distinguish
between X p ← Xq and X p → Xq as the model can either be Xq = 2X p + ξ q or X p = Xq/2+ ξ p.
Nevertheless, if one assumes that the noise follows a uniform distribution on {−1,0,1}, then one
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X p Xq ξ q = Xq−2X p ξ p = X p−Xq/2
1 2 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
3 6 0 ∈ {−1,0,1} 0 ∈ {−1,0,1}
4 9 1 ∈ {−1,0,1} −0.5 ̸∈ {−1,0,1}

Table 2: Toy example to illustrate the use of the noise to detect causality. We observe data and
compute the two possible noise ξ p and ξ q coming from the models Xq = 2X p + ξ q and X p =
Xq/2+ ξ p. As we have assumed that the noise’s support is {−1,0,1}, only one model is feasible.
The first two columns correspond to observed values of X p and Xq.

can decide between those two models. Indeed, by computing the error terms ξ q = Xq− 2X p and
ξ p = X p−Xq/2 over the observations, we can easily check which of the two causal structures is
compatible with the distribution assumption we made on the noise, as shown in Table 2.

It turns out that similar conclusions can be reached if one replaces the strong assumption on the
noise distribution by the assumption of independence of mechanisms (potentially with noise) and
additional assumptions on the underlying model.

Principle 1 (Independent Mechanisms, Peters et al., 2017) The causal generative process of a
system’s variables is composed of autonomous modules that do not inform or influence each other.
In the probabilistic case, this means that the conditional distribution of each variable given its
causes (i.e., its mechanisms) does not inform or influence the other conditional distributions. In
case we have only two variables, this reduces to an independence between the cause distribution
and the mechanism producing the effect distribution.

The consequences of this principle are three-folds:

1. The underlying equations are assumed to be autonomous with respect to any external change
in one equation. In other words, changes in the generating process of one variable does not
imply changes in the generating process of the other variables.

2. The mechanism generating an effect from its cause contains no information about the mecha-
nism generating the cause (although the effect contains information about its cause). This can
also be interpreted as an independence between the cause and the noise of the effect. Back to
our example, it is easy to check that X p |= ξ q but Xq ̸ |= ξ p and so the real causal direction is
identifiable12.

3. Noises associated to different variables are mutually independent.

In the remainder, we focus on FCM models of the form Xq = fq(X p,ξ q) with X p |= ξ q.
It turns out that, in general, one cannot identify the underlying model solely from observations

of the joint distribution of the two variables, as stated in the following proposition.

Proposition 1 (Non-uniqueness of graph structures, Peters et al., 2017) For every joint distribu-
tion of two real-valued variables X p and Xq, there is an FCM given by Xq = fq(X p,ξ q), where X p is
independent from ξ q, and where fq is a measurable function and ξ q is a real-valued noise variable.

However, several studies have shown that, with additional assumptions on the models relating causes
and effects, one can identify the direction of the causal relation. We review here two such cases
which have led to extensions for time series.

12. Identifiability in this context refers to the fact that it is possible to infer causal relations from observational data.
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Figure 12: Running example: structured inferred by VarLiNGAM. The first line corresponds to
causal ordering, and the second line to graph pruning.

5.1 Vector Autoregressive Models

Shimizu et al. (2006) proposed a method for uniquely identifying causal structures based on purely
observational, continuous-valued data with the assumptions that the structural equation model is lin-
ear, acyclic, with non-Gaussian error terms (LiNGAM). When considering two variables, LiNGAM
is of the form:

X p = ξ
p,

Xq = ap,qX p + ξ
q with X p |= ξ q,

where ξ p and ξ q are non-Gaussian.
Assuming that there are no hidden confounders and all (or all but one) of the error terms are non-

Gaussian, the full generating model can be identified in the limit of an infinite sample (a property
known as asymptotic consistency).

Theorem 3 (Identifiability of linear non-Gaussian models, Peters et al., 2017) Assume that the
joint distribution of X p and Xq admits the linear model

Xq = ap,qX p + ξ
q, with X p |= ξ q,

with continuous random variables X p, ξ q, and Xq. Then, there exist aq,p ∈R and a random variable
X p such that

X p = aq,pXq + ξ
p, with Xq |= ξ p,

if and only if ξ p and Xq are Gaussian.

To detect causal relations, LiNGAM proceeds as follows. First of all, from the equation X =
AX+ξ , one obtains X =Bξ with B= (I−A)−1. LiNGAM uses a standard independent component
analysis algorithm to obtain an estimate of the mixing matrix B, and uses it to compute the matrix A.
Furthermore, Shimizu et al. (2011) proposed an algorithmic improvement of their original method
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that converges to the correct solution in a controlled number of steps depending on the number
of variables. The main idea is to find the causal order by constructing a regression model and by
checking whether residuals and predictors are independent or not. This step is done recursively by
first identifying the predictor that is the most independent from the residuals of its target variables,
i.e. all variables except the predictor. The same analysis is then performed recursively on those
residuals, which ensures to remove the effects of the previously identified predictors. One can then
construct a strictly lower triangular matrix A by following the ordering obtained above. The strength
of the connections Ai, j are estimated using some conventional covariance-based regression, such as
least squares. To get sparse causal models, one can further prune A by applying Adaptive Lasso
(Zou, 2006), which penalizes connections with an ℓ1 penalty.

We now present an extension of LiNGAM to time series.

5.1.1 USING LINEAR NON-GAUSSIAN ACYCLIC MODEL

Hyvärinen et al. (2010) introduced a temporal extension of LiNGAM, called VarLiNGAM, based
on a structural vector autoregressive model of the form:

Xt =
τ

∑
i=0

AiXt−i + et , (SVAR)

where the influences can be either instantaneous (τ = 0) or lagged, with a maximum time-delay of
τmax. This model can be rewritten as a vector autoregressive model without instantaneous effect,
with i > 0:

Xt =
τ

∑
i=1

MiXt−i + et . (VAR)

The above model, estimated through a least-square procedure, is used to obtain residuals of the
prediction of Xt . A standard LiNGAM analysis is then used on these residuals to obtain an instan-
taneous causal model A0. Finally, (Ai)i>0 are deduced by a reparametrization of (Mi)i>0:

Ai = (I−A0)Mi for all i ∈ {1, · · · ,d}.

An intensive illustration of this approach on economic data is provided by Moneta et al. (2013),
while Algorithm 7 further details its different steps. Figure 12 further illustrates on our running
example the ordering steps and the pruning process yielding a sparse graph.

Huang et al. (2015) extended VarLiNGAM by considering linear and nonlinear time-varying
models, both with unobserved confounders. For a multivariate time series Xt = (X 1

t , . . . ,X d
t ),

these models take the form:{
X i

t = ∑
d
j=1 ∑

P
p=1 ai jp

t X j
t−p +∑k ̸=i bik

t X k
t + gi

t + ξ i
t (VAR-t),

X i
t = f i(t,{X j

t−p} j,{X k
t }k ̸=i)+ ξ i

t (VAR-t-nl),

where ξ i
t are i.i.d. noise independent of the causes, ai jp

t represent the time-varying lagged causal
coefficients, bik

t give the instantaneous causal coefficients, and gi
t represent the causal influences

from unobserved confounders that are assumed to be smooth functions of time. The (non neces-
sarily linear) functions f i take into account time-varying causal relations as well as the influence
of confounders. Conditions to ensure identifiability for both models are provided, as well as a
non-parametric method to estimate the time-dependent causal models based on Gaussian processes.
Note that this formulation is more general than the classical vector autoregressive model, but is
based on the same steps as VarLiNGAM.

Geiger et al. (2015) has extended the vector autoregressive model for X to take into account
hidden components Z , while considering a lag of size 1:(

Xt

Zt

)
=

(
B C
D E

)(
Xt−1
Zt−1

)
+Nt ,
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Algorithm 7 VarLiNGAM
Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags, α a

significance threshold
Form an empty graph G with dτ nodes V
Find the optimal lag τ ∈ {1, · · · ,τmax}
Fit (VAR): X 7→X
Compute (Mτ)1≤τ≤τmax the coefficients of (VAR) and ξ = its residuals
S = {1, · · · ,d}
while card(S) > 1 do

for p ∈ S do
for q ∈ S\{p} do

Fit least squares regressions: ξ p 7→ ξ q and compute its residuals ε p,q

Compute yp the statistics that corresponds to the test ε p,. |= ξ p

p∗ = argminq∈S yp

S = S\{p∗}
for X q ∈X S for i ∈ {0, · · · ,τ} do add edge X p∗

t−i→X q
t to G

Construct a strictly lower triangular matrix A0 by following the order in G , and estimate the
connection strengths [A0]i, j by using some conventional covariance-based.
for i ∈ {1, · · · ,τ} do

Ai = (I−A0)Mi

Apply Adaptive Lasso on A
for i ∈ {0, · · · ,τ} do

for q ∈ {1, · · · ,d} do
for p ∈ {1, · · · ,d} do

if [Ai]p,q = 0 then remove edge X p
t−i→X q

t from G
Return the window DAG G

where the noise (Nt)t is i.i.d.. The authors showed that the model is identifiable when the noise
terms are mixtures of Gaussian and propose a variational EM algorithm to estimate the causal model
in that case. The model is also identifiable (up to scaling and permutation indeterminacies, because
scale and ordering of the components of Z are arbitrary) when there is no influence from X on Z .

Lastly, more recently, Lanne et al. (2017) generalized the initial VarLiNGAM model by consid-
ering graphs that can contain cycles. They further proved that the proposed model is identifiable
and introduced an estimation method based on maximum likelihood. The proposed estimator is
furthermore proven to be asymptotically efficient.

5.2 Additive Noise Models

Hoyer et al. (2009) showed that if the underlying causal structural equations are based on an additive
noise model (ANM) with nonlinear functions and that if the causal minimality condition holds,
then the true causal structure can in general be identified from the probability distribution of the
observational data, as stated in Theorem 4. This theorem makes use of the notion of smooth ANM,
i.e. an ANM of the form:

X p = ξ
p,

Xq = fq(X p)+ ξ
q with X p |= ξq.

such that ξ q and X p have strictly positive three times differentiable densities pξ q and pX p , and fq is
three times differentiable as well.

Theorem 4 (Identifiability of ANMs, Peters et al., 2017; Hoyer et al., 2009) Assume that the con-
ditional distribution of Xq | X p admits a smooth ANM, and that there exists xq ∈ R such that, for
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Algorithm 8 TiMINo
Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags, α a

significance threshold
Form an empty graph G with d nodes V
S = {1, · · · ,d}
while card(S) > 1 do

for X q ∈X S do
X R = X S \{X q}
Fit: (X q

t−τmax
, · · · ,X q

t−1,X R
t−τmax

, · · · ,X R
t ) 7→X q

t and compute its residuals ξ
q
t

Compute zq the p-value that corresponds to the test X R |= ξ
q
t

q∗ = argmaxq zq

q = q∗-th element of S
if zq > α then

S = S\{q}
for X p ∈X S do add edge X p→X q to G

else break and output: "I do not know, bad model fit"
for X q ∈V do

for X p ∈ Par(X q,G ) do
X R = Par(X q,G ) \{X p}
Fit: (X q

t−τmax
, · · · ,X q

t−1,X R
t−τmax

, · · · ,X R
t ) 7→X q

t and compute its residuals ξ
q
t

Compute z the p-value that corresponds to the test X R |= ξ
q
t

if z > α then remove edge X p→X q from G
Return the summary DAG G

almost all xp ∈R,
(log pξ q)′′(xq− fq(xp)) f ′q(xp) ̸= 0.

Then, the set of log densities log pX for which the obtained joint distribution PX p,Xq admits a smooth
ANM from Xq to X p is contained in a 3-dimensional affine space.

In the bivariate case, one can regress two models, one of Xq on X p and another of X p on Xq,
and test the independence with residuals to infer the causal direction. For the multivariate case, one
can adopt a pairwise strategy or use an adapted algorithm that can handle more than two variables
(Mooij et al., 2009).

We now introduce a well-known method based on ANM for time series.

5.2.1 TIMINO: TIMES SERIES MODEL WITH INDEPENDENT NOISE

A class of restricted FCM called Time Series Models with Independent Noise (TiMINo) is
studied by Peters et al. (2013). For a multivariate time series X whose finite dimensional dis-
tributions are absolutely continuous with respect to a product measure, we say that the time se-
ries satisfies a TiMINo if there exists τ > 0 such that for all p ∈ V there are sets Par(X p

0 ,G ) ⊆
V\{X p},Par(X p

k ,G ) ⊆V for 1≤ k ≤ τ such that for all t:

X p
t = fp(Par(X p

τ ,G )t−τ , . . . ,Par(X p
1 ,G )t−1,Par(X p

0 ,G )t ,ξ
p

t ), (TiMINo)

where ξ i
t are jointly independent over i and t and, for each i, i.i.d. in t. These models include

nonlinear and instantaneous effects, but the full time graph is required to be acyclic. Under some
particular form of fp (nonlinear function with additive Gaussian noise, linear function with additive
non-Gaussian noise, joint distribution faithful with respect to the full time graph, and acyclicity in
the summary graph), the summary graph can be recovered from the joint distribution of X . To infer
the causal graph in the additive noise case, statistical tests are conducted to look for independence
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between residuals and nodes so as to order the variables by parenting relations. Then, spurious links
are removed. Note that several fitting methods can be considered (e.g., linear model, generalized
additive model and Gaussian process regression are considered in the initial paper) as well as several
independence tests (e.g., cross-correlations or HSIC). Note that if the data does not satisfy the model
assumption, TiMINo falls into an agnostic state instead of drawing wrong causal conclusions. In
the case of two time series, an agnostic state can be interpreted as a possible detection of hidden
confounders.

6. Score-Based Approaches

In score-based approaches, a causal graph corresponds to a probabilistic (or Bayesian) network;
furthermore, a dynamic probabilistic (or dynamic Bayesian) network (DPN) is a probabilistic net-
work in which variables are time series. We make use of this terminology in this section. We also
want to make clear that there is no guarantee that the Bayesian network inferred by score-based ap-
proaches belongs to the equivalence class of the graph underlying the observed (stable) probability
distribution. Indeed, score-based methods aim at finding sparse structural equation models that best
explain the data, without any guarantee on the corresponding DAG (Kaiser & Sipos, 2021). This
contrasts with, e.g., constraint-based approaches.

The problem of learning a probabilistic network from observational data can be formulated as:
given a set of instances, find the network that best matches them. In score-based approaches, the
notion of best-match is based on a score that typically strikes a balance between the likelihood of
the data given the network and a penalty term related to the complexity of the network. Compared
to constraint-based approaches, score-based approaches have the advantage of assigning a score to
the network inferred, a score that can then be used to assess the validity of the network. However,
the solution obtained is in general suboptimal as finding a globally optimal network is known to
be NP-hard (Chickering, 1995). In addition, hidden variables have to be "postulated", a fact due to
the use of the Expectation-Maximization algorithm, and are not "discovered" as in constraint-based
methods.

A standard algorithm for inferring probabilistic networks is the Structural Expectation-Maximization
(SEM) algorithm, introduced by Friedman (1997). This algorithm combines parametric and struc-
tural modifications, the former aiming at finding better parameters and the latter at finding better
structures. This algorithm has been extended by Friedman (1998) to deal with scoring functions
based on true Bayesian scores, and by Friedman et al. (1998) to deal with dynamic probabilistic
networks.

A dynamic probabilistic network can be decomposed in a prior network, which provides depen-
dencies between variables in a given time stamp, and a transition network, which provides depen-
dencies over time. The transition networks considered by Friedman et al. (1998) are Markovian,
in the sense that Pr(Xt+1|X0, · · · ,Xt) = Pr(Xt+1|Xt) where X is a multivariate time series, and
stationary, meaning that Pr(Xt+1|Xt) is independent of t. These assumptions are limitations, as
high-order temporal dependencies are not considered, imposed by the complexity of the inference
process when they are removed. The Bayesian scores taken into account are the Bayesian informa-
tion criterion (BIC, Schwarz, 1978) and the Bayesian Dirichlet equivalence score (BDe, Heckerman
et al., 1995), based on Dirichlet priors on the structural parameters. At each iteration, the overall
process consists in first improving the parameters of the prior and transition networks, and then
searching over DPN structures using expected counts to select the best scoring structures. The
search over DPN structures is based on heuristics that typically consider neighboring structures of a
given structure, obtained by arc additions, removals and reversals. Experimental results obtained on
simulated data for traffic patterns, in which mixtures of different driving tendencies are considered,
as well as on molecular biology data, with the aim to infer the structure of regulatory pathways,
validate the SEM algorithm for DPNs in the context of noisy and missing data, provided of course
that the assumptions made are realistic, which is the case in the two applications retained.

794



A SURVEY ON CAUSAL DISCOVERY FOR TIME SERIES

Score

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Thresholding

X s
t−1 X s

t

X p
t−1 X p

t

X q
t−1 X q

t

X r
t−1 X r

t

Figure 13: Running example: a diamond structure inferred by DYNOTEARS.

Within the same framework and assumptions, Peña et al. (2005) proposed to use cross-validation
(CV) as the Bayesian score underlying the learning process. Indeed, one is typically interested in
finding DPNs (G , θ̂ ) that generalize well, where G is the underlying graph and θ̂ the maximum
likelihood (or maximum a posteriori) estimates of the parameters which define the transition prob-
abilities. One way to do so is to look for the DPN, trained on S instances, that maximizes the
expectation of the log-likelihood on any unseen instance DS+1: E[logPr(DS+1|G , θ̂ )]. As this ex-
pectation cannot be computed directly, the authors propose to use a cross-validation approach and
compute for each fold Dk of the training data D the quantity logPr(Dk|G , θ̂ ). The above expectation
can then be estimated by:

1
S

K

∑
k=1

logPr(Dk|G , θ̂ )

where S is the number of instances in D and K the number of folds. In practice, when there are
more than a few tens of nodes, one cannot do an exhaustive search over all graphs. The authors thus
relied on a greedy hill-climbing search that gradually improves a graph through a highest scoring
single edge addition or removal. This can be seen as a special case, with no reversal, of the greedy
equivalence search algorithm introduced by Meek (1997) and studied by Chickering (2002) who
proves the conjecture on which it is based. Furthermore, as CV may overfit (Ng, 1997), the authors
modified the hill-climbing search by adding an edge only if the improvement in CV is significant,
according to a statistical test. Experiments, conducted on data generated from random DPNs and
the Yeast dataset, show that the CV-based scoring method leads to models that generalize better than
those based on BIC and BDe for a wide range of sample sizes, in particular the range of sizes one
usually encounters in practice. One can also note another extension of SEM for fMRI data, referred
to as extended unified SEM, presented by Gates and Molenaar (2012) and based on a bilinear system
to describe brain regions of interest.

More recently, Pamfil et al. (2020) have proposed a method, named DYNOTEARS, which si-
multaneously estimates instantaneous and time-lagged relationships between time series through
d× d adjacency matrices W ,A1, · · ·Aτmax that respectively represent the importance of the relation
between two time series with a time lag 0 (instantaneous relations, W ), 1 (A1), ..., τmax (Aτmax). These
matrices are learned by minimizing the following penalized loss based on the Frobenius norm of
the residuals of a linear model:

f (W ,A) =
1

2d(T + 1− τmax)
∥Xt −X T

t W −X T
t+1:t+τmax

A∥2
F +λW∥W∥1 +λA∥A∥1, (Score)

where T denotes the transpose, ∥.∥1 stands for the element-wise ℓ1 norm and λW and λA represent
regularization constants. The causal graph is then obtained by successively considering all relations
at different time lags, as described in Algorithm 9. To avoid cycles, an acyclicity constraint on the
instantaneous adjacency matrix W is used, which is solved using an equivalent formulation based
on the trace exponential function (Zheng et al., 2020). This method is illustrated in Figure 13 on
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our running example. First, the best sparse window DAG is selected using a score. A thresholding
step is then used to prune some spurious correlations.

Algorithm 9 DYNOTEARS

Require: X a d-dimensional time series of length T , τmax ∈N the maximum number of lags, λA,
λW , α

W ,A = minW ,A f (W ,A) from (Score)
for wpq ∈W do

if wpq ≥ α then
Add X p

t → Xq
t to G

for (X p
j ,X q

j ) ∈ Hom(X p
t ,X q

t ,G ) do add edge X p
j →X q

j to G
for i ∈ {1, · · · ,τmax} do

for apq ∈ Ai do
if apq ≥ α then

Add X p
t−i→ Xq

t to G
for (X p

j−i,X
q
j ) ∈ Hom(X p

t−i,X
q

t ,G ) do add edge X p
j−i→X q

j to G
Return window DAG G

To reduce the computational complexity of inferring DPNs, Dojer (2006) showed that there ex-
ist, under three assumptions, polynomial algorithms to learn a globally optimal structure. Both the
minimum description length and the DBe scores are studied in this work. Vinh et al. (2011) extend
this approach to a score based on the mutual information test, leading to a model known as Glob-
alMIT. The first two assumptions considered by Dojer (2006) are related to the fact that the score can
be decomposed across variables and rewritten as the sum of a term penalizing the complexity of the
network and of a term explaining the data from the network. These are relatively mild assumptions
which hold for different scores. The third assumption is stronger and states that the complexity term
only depends on the cardinality of the set of parents for any variable. Unfortunately, this assumption
is not always met in practice. Another important limitation of this approach lies in the fact that the
degree of the polynomial controlling the complexity of the algorithm increases with the number of
examples in the training set.

Several authors have proposed hybrid approaches that aim at combining constraint-based ap-
proaches and score-based approaches, the former providing relatively efficient algorithms while the
latter providing scores on the inferred models and the possibility to directly orient pairs of nodes
(Dash and Druzdzel (1999), Claassen and Heskes (2012), Jabbari et al. (2017)13). Malinsky and
Spirtes (2018) also proposed a hybrid algorithm, called SVAR-GFCI, based on SVAR-FCI and on
the score-based GES method (Chickering, 2002).

In this latter line and dealing with time series, Sanchez-Romero et al. (2019) made use of a vari-
ant of the PC-stable algorithm (Colombo & Maathuis, 2014), known as the Fast Adjacency Search
stable (FAS-stable), to build a skeleton on which pairwise rules are used to orient edges. The over-
all process is referred to as FASK, for Fast Adjacency Skewness. The FAS-stable algorithm is an
order independent adjacency search that avoids spurious connections between parents of variables.
FAS-stable builds an undirected graph by iteratively testing conditional independencies; the BIC
criterion is used by Sanchez-Romero et al. (2019) for this testing. The orientation of two adjacent
nodes X p and X q in the graph obtained is then based on a score comparing the conditional cor-
relation of X and X q given X p > 0 with the one given X q > 0: if corr(X p,X q|X p > 0) >
corr(X p,X q|X q > 0), then X p→X q; otherwise, X q→X p. One important feature of FASK
is its ability to identify cycles, especially 2-cycles in between two variables which are obtained
when corr(X p,X q|X p > 0) > corr(X p,X q) and corr(X p,X q|X q > 0) > corr(X p,X q).
Note that Sanchez-Romero et al. (2019) also introduced a hybrid algorithm, referred to as the Two-

13. Jabbari et al. (2017) provides a brief survey of these studies.
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PWGC* S ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

3. Granger MVGC * S ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

TCDF* W ✓⊕ ✓ ✓⊕ ✓ ✓ ✗ ✓ ✗ ✗

PCMCI* W F ✓ ✗† ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

oCSE* S F ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

4. Constraint ANLTSM W F ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

-based tsFCI* W F ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓

SVAR-FCI W F ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5. Noise-based VarLiNGAM* W M ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

TiMINo* S M ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓

6. Score-based DYNOTEARS* W ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Table 3: Summary of the main characteristics of representative algorithms in all the families dis-
cussed in this survey. Methods with * are also illustrated in the experimental section (Section 9).
For causal graphs, S means that the method provides a summary causal graph whereas W means that
the method provides a window causal graph; F corresponds to faithfulness and M to minimality. For
a fixed method, check marks with ⊕ are mutually exclusive. A cross mark with † indicates that the
corresponding method was recently extended to handle the information given in the corresponding
column. An empty cell can either mean that the information given in the corresponding column was
not discussed by the authors of the corresponding method or that this information is not needed for
the corresponding method.

Step algorithm, combining again the FAS-stable algorithm but this time with an identification of the
causal relations based on independent component analysis.

7. Summary of the Main Methods Reviewed So Far

Table 3 displays the main characteristics of representative algorithms in all the families considered
so far. The characteristics retained concern:

• The assumptions made on the graph: does a method infer a window causal graph? If not, the
method directly infers a summary causal graph. Does the method rely on faithfulness, only
minimality or none of the two? Lastly, does the method rely on the causal Markov condition?

• The type of relations inferred: can a method infer instantaneous relations? Can a method
infer relations with a lag strictly greater than 1? Can a method infer self causes? Note that
the methods which do not infer self causes assume that self causes always exist.

• The treatment of confounders14: can a method detect confounders? Can it detect instanta-
neous hidden confounders? Can it detect lagged hidden confounders? Instantaneous hidden
confounders correspond to the situation where the two effects are instantaneous; the hidden
confounder can either be instantaneous or lagged.

14. As mentioned in Section 2, confounders play a major role in the identification of causal relations.
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• The type of underlying models: we use here two main categories corresponding to whether a
method relies on a model or not and whether the model is linear or not. In addition, we dis-
tinguish between methods that rely on few (less than 5) hyper-parameters and those that rely
on more than 5 hyper-parameters. This latter characteristic is an indication of the complexity
of fine-tuning a given method.

As one can note, most methods infer a temporal causal graph. It is of course possible to deduce
both window and summary causal graphs from a full time causal graph if the graph is consistent
throughout time (Section 2). This said, methods that directly aim at inferring a summary causal
graph may have advantage over methods that first infer a full time causal graph when considering
the summary graph only. Indeed, the former methods can be faster and directly aim at solving a
simpler problem. The distinction on the type of graphs inferred is thus not a way to rank causal
discovery methods; it just reflects the fact that the objectives differ from one method to the other.

The detection of instantaneous relations is important from a practical point of view as the differ-
ence in time between two events associated to two time series may not be observed if the sampling
frequencies of the time series are small. Roughly only half of the methods address this particular
problem15. Being able to detect relations with a gap greater than 1 is also important in practical
situations and only oCSE is restricted to a gap of 1. Methods that are not able to infer self causes
usually assume that self causes always exist, which seems reasonable in real-life examples.

Most methods (with the exception of the traditional Granger method PWGC) can detect con-
founders. However, only three of them (TCDF, ANLTSM and SVAR-FCI) can detect instantaneous
hidden confounders and only two (tsFCI and SVAR-FCI) can detect lagged hidden confounders.
More generally, very few methods can deal with hidden variables, which violates the causal suffi-
ciency assumption.

Regarding the type of underlying models, almost all methods rely on a particular model (ex-
cept PCMCI and oCSE). Among the methods relying on a model, roughly half of them rely on a
linear model. Concerning ANLTSM, if the underlying model considered is non-linear for observed
variables, it is linear for hidden ones. Relying on a specific model can be an advantage when the
data considered arises from a similar model. It can be of course a disadvantage when this is not the
case. We illustrate this point in Section 9. Lastly, as one can note, most models use few (less than
5) hyper-parameters, with the exception of TCDF which is based on deep neural networks.

8. Other Approaches

We present in this section three other families of methods which differ from the previous ones by
the type of data they use (discrete data for time series) or the type of models they rely on (dynamical
systems for topology-based and difference-based methods).

8.1 Logic-Based Approaches

Another approach that has been explored is the one based on logical formulas, enabling inference of
complex relationships. The most prominent framework is the one based on probabilistic computa-
tion tree logic (PCTL, Hansson & Jonsson, 1994) and its extension to numerical constraints, referred
to as PCTLc, that expresses temporal properties over continuous and discrete variables. This line of
research is exemplified in the work by S. Kleinberg (Kleinberg & Mishra, 2009; Kleinberg, 2011;
Huang & Kleinberg, 2015).

To allow readers to easily relate our description to the original papers it is based on, we rely in
this section on their notation. When continuous causes and effects are considered, one can consider
that c plays the role of X p > θp, where θp is a threshold on the values taken by X p, and e the role
of X q.

15. Note that the most recent version of PCMCI includes this possibility. We are discussing here the standard version.
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Two types of (boolean) formulas are considered in PCTLc: state formulas that describe prop-
erties of individual states, and path formulas that describe properties along sequences of states. A
particular relation in this formalism is the "leads-to" relation defined as:

c→≥r,≤s
≥p e

where [r,s] characterizes a window of time between c and e such as 1≤ r ≤ s≤ ∞ and r ̸= ∞. This
relation states that if c is true, then e will become true in between r and s time units with at least
probability p, where p is obtained by summing the probabilities of all paths from states where c is
true to states where e is true in the [r,s] time window. This relation can be extended to continuous
effects by considering the expected value E[e] of e. For example,

c→≥r,≤s
≥p [e > E[e]]

states that if c is true, then e will be increased in between r and s time units with at least probability
p. A similar relation for a possible decrease of e can of course be stated. As an illustration of this
relation, one can consider the use of a drug (c is true when the drug is used, and false otherwise)
and its effect resulting in a decrease of weight ([e < E[e]]).

Potential causes (similar to the prima facie causes of Suppes, 1970) are then defined in a way
reminiscent of the probability raising principle (Reichenbach, 1956; Suppes, 1970; Eells, 1991).

Definition 13 (Potential cause, Kleinberg, 2011) When both c and e are formulas, c is a potential
cause of e if the probability of c eventually occurring at some time is greater than zero, the proba-
bility of e is less than p and: c→≥r,≤s

≥p e. When c is a formula and e is a continuous values variable
taking values in R, c is a potential cause of e if, with c being earlier than c: E(e | c) ̸= E(e), where
the expectations are defined relative to time windows in which e occurs.

Kleinberg (2011) further measures the significance of potential causes so as to retain only those
causes deemed sufficiently significant for the effect. Let C denotes the set of potential causes of
a continuous variable e. The causal significance of a potential cause c of e is measured by the
difference of the conditional expectation of e when c is true and when c is false.

Definition 14 (Causal significance, Kleinberg, 2011) A potential cause c of a continuous effect e
is an ε-insignificant cause of e if |εavg(c,e)|< ε , where εavg(c,e) is defined by:

εavg(c,e) = ∑
x∈C\c

E[e | c∧ x]−E[e | ¬c∧ x]
|C\c|

.

A similar definition based on conditional probabilities is stated for effects that correspond to formu-
las. The overall approach to identify causes of an effect e is finally based on the identification of all
potential causes of e using Definition 13, followed by the filtering of the potential causes deemed
insignificant using Definition 14. Note that the complexity for computing εavg with d variables and
T timepoints is O(d3T ).

As an illustration, consider the toy example in Figure 14 from Kleinberg (2011) where p(e) is
uniform over the possible values of e. To determine if c is a potential cause of e in exactly one
time unit, we first compute E[e | c] = (0+ 5+ 3.5+ 0)/4 = 2.125 and E[e] = 1.9. c increased
the expected value of e which implies that c is a potential cause of e. To get the causal signifi-
cance, assuming c is the only potential cause of e, we compute E[e | ¬c] = (2+ 2)/2 = 2 therefore
εavg(c,e) = 2.125−2 = 0.125. Assuming this value is greater than ε , one can state that c is a signif-
icant cause of e. An illustration of how this approach can be used on real data is given by Kleinberg
(2011) with the data collected from Wharton Research Data Services (WRDS) that represents daily
returns and the set of stocks in 2007.
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Figure 14: Toy example: vc and e are two continuous variables. c and ¬c are a discretization of vc

such as c = vc ≤ 3 and ¬c = vc > 3

The above framework was later extended by (Huang & Kleinberg, 2015) to obtain a faster
procedure and overcome some of the problems associated with Definition 14. Indeed, there may
be causes of e that occur only with c∧ x or ¬c∧ x so that the difference between E[e | c∧ x] and
E[e | ¬c∧ x] may in practice not be large enough for c to be considered as a significant cause of e.
One way to solve this problem is to compute the contribution to e that comes solely from c, leading
to a new version of the causal significance measure of c for e, denoted α(c,e):

α(c,e) =
|T (e|c)|
N(e|c)

(E[e|c
∧

x∈C\c
¬x]−E[e|

∧
x∈C

¬x]).

C is as before the set of potential causes of e, |T (e|c)| is the number of unique timepoints where
e is measured in window [r,s] after each instance of c, and N(e|c) is the total number of such
timepoints. Let xi and x j be two elements of X , |T (e)| be the number of time points where e occurs
and let f (e|xi,x j) be defined by:

f (e|xi,x j) =
|T (e)|× |T (e|c)|

N(e|c)× (|T (e)|− |T (e|c))
.

Huang and Kleinberg (2015) showed that when (a) the causal relationships are linear and additive
(that is, the value of a variable at any time is given by the sum of the impact of its causes that
are present plus a constant), (b) the causal relationships are deterministic and constant (that is, c’s
impact on e is the same every time c occurs), (c) the value of a variable when no cause is present is
constant, (d) all genuine causes are measured, and (e) the matrix A defined by Ai j = f (e|xi,x j) is of
full rank, then α(c,e) is exactly the impact of c on e. Note that the complexity to compute α(c,e)
is now O(d2T ).

More recently, Bruto da Costa and Dasgupta (2021) formulated the problem of causal discovery
as learning a causal sequence that explains a target effect E which is considered to be Boolean (or
can be converted to Boolean). The sequences are learned using decision trees in which each path
from the root to a leaf represents a causal sequence and each node a predicate, which is chosen on
the basis of its utility in separating the cases where E is true from the cases where E is false.

8.2 Topology-Based Approaches

When considering a deterministic dynamic system (even a noisy one), Takens’ theorem (Takens,
1981) states that the phase space can be reconstructed through time-delayed observations from the
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system, which implies that the effect should help in predicting the cause, given that it must in some
way encode information about the cause. As the dynamic system is supposed to be deterministic,
there is an underlying manifold that governs its dynamics.

Inspired by this idea, Sugihara et al. (2012) suggested a new method, called Convergent Cross
Mapping (CCM) which tests for causality between X p and X q in the following sense:

Definition 15 (CCM causality, McCracken & Weigel, 2014) Given two time series X p and X q,
we say that X p CCM-causes X q if C(X q,X p)>C(X p,X q), where C(X p,X q) is the squared
Pearson correlation coefficient between the original time series X p and an estimate of X p made
using its convergent cross-mapping with X q.

As one can note, this method is grounded on dynamic system theory through the use of a convergent
cross-mapping, and can be interpreted as: two variables are CCM causally linked if they share a
common attractor manifold. However, it has been showed that CCM causality differs from true
causality (McCracken & Weigel, 2014). Moreover, it is possible to arrive at the conclusion that
both X p and X q are CCM causes of one another even though the true causal relation holds in only
one direction (Ye, Deyle, Gilarranz, & Sugihara, 2015).

To overcome these problems, a variant of CCM, called Pairwise Asymmetric Inference (PAI),
has been proposed by McCracken and Weigel (2014):

Definition 16 (PAI causality, McCracken & Weigel, 2014) Given two time series X p and X q

from the same attractor, we say that X p PAI-causes X q if C̃(X p,X pX q) > C̃(X q,X qX p),
where C̃(X p,X pX q) is the squared Pearson correlation coefficient between the original time
series X p and an estimate of X p made using its convergent cross-mapping with Xq and the past
of X p.

The reader may have noticed the similarity with Granger’s causality as past values of X p pro-
vide unique, statistically significant information about future values of X q. it is nevertheless still
grounded on dynamic systems through the use of the convergent cross-mapping.

Both CCM and PAI have been originally developed for bivariate analysis. In recent works, more
variables have been taken into account: Feng et al. (2019) proposed a Bayesian version of CCM
using deep Gaussian processes (DGPs), which are naturally connected with deep neural networks,
whereas Leng et al. (2020) proposed an extension of CCM through Partial Cross Mapping, PCM,
that is looking for conditional (in)dependencies.

8.3 Difference-Based Approaches

Difference-Based Causal Models (DBCMs) is a class of discrete-time dynamic models which repre-
sent all causal relations across time by means of difference equations driving changes in the system.
This means that all causal relations across time are due to a derivative causing a change in its integral
(cross-temporal restriction). Difference equations are supposed not to vary across time. DBCMs
are defined as follows.

Definition 17 (Difference-Based Causal Model, Voortman et al., 2010) A DBCM is a structural
equation model in which the set of variables is given by time series (evaluated on the first two time
points due to consistency thorough time of difference equations), and the set of equations is such
that there exists a cross-temporal parent of some variable if and only if the corresponding equation
is the integral equation for this variable.

A method, named Difference-Based Causality Learner (DBCL), has been developed in Voort-
man et al. (2010) to learn DBCMs which relies on faithfulness (this implies that the model does not
reach equilibrium). DBCL first finds relevant latent derivatives, computed by differences of vari-
ables, and then learns the contemporaneous structure using any correct causal discovery algorithm
under causally sufficient data.
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8.4 Drawbacks and Conclusion

The logic-based approach presented in Section 8.1 is interesting for inferring causes of effects that
can be either continuous or discrete (note that causes are always discrete). However, there is no
guarantee that the graph obtained with the cause-effect relations is in the equivalence class of the
causal graph underlying the observations. There is also no simple way to deal with latent variables
in this approach. In addition, the discretization of continuous variables for identifying causes is a
limiting factor as this process needs to rely on background knowledge provided by experts (Ma-
linsky & Danks, 2018). Topology-based methods presented in Section 8.2 are interesting when
considering deterministic dynamic systems. They however aim at discovering specific correlation
and the concepts of CMM and PAI causality they rely on render them not truly causal. For the
sake of completeness, we also discussed the difference-based approach (Section 8.3), even if this
approach has not been the subject of many studies in the causality literature. Furthermore it is not,
to our knowledge, widely used in practice.

For all these reasons, we do not include these methods in our experimental comparison.

9. Experimental Illustration

We present in this section an experimental comparison of the major causal discovery methods we
have reviewed. To do so, we first describe the selected evaluation measures and discuss the retained
methods as well as the artificial datasets corresponding to basic causal structures and the standard
real world benchmark we have considered. We then present the results of all experiments.

9.1 Evaluation Measures

Among all existing evaluation metrics to assess the quality of causal inference, as Structural Ham-
ming Distance (Peters & Bühlmann, 2015) or Frobenius norm (Shimizu et al., 2011), we use the
standard F1-score, referred to as F1 and defined by: F1 = 2TP/(2TP+ FP+ FN), where TP,FP
and FN respectively correspond to true positives, false positives and false negatives. This score can
be used to assess both the quality of the skeleton of the causal graph obtained and the quality of
the causal graph itself. In his latter case, we refer to this score as

−→
F1 to emphasize the fact that the

orientation of the edges is taken into account when comparing to a gold standard. Furthermore, the
F1 score is based on both precision and recall which measure different characteristics of a system.
We provide results in terms of precision and recall in the Supplementary Material.

9.2 Evaluated Methods

From the Granger family (Section 3), we retain the pairwise and multivariate methods (referred to as
PWGC and MVGC). The full model is compared to the restricted model using an F-test. We rely on
our implementation of PWGC and use for MVGC the code available at http://www.sussex.ac.
uk/sackler/mvgc/. In addition, we include in our comparison TCDF and rely for this method on
the implementation available at https://github.com/M-Nauta/TCDF. For the hyper-parameters
in this latter method, we used the values suggested by the authors: a kernel of size 4, a dilation
coefficient equal to 4, 1 hidden layer, a learning rate of 0.01, and 5000 epochs.

From the constraint-based family (Section 4), we retain PCMCI using both partial correlation
and mutual information to measure independence. Both scores are available in the implementation
provided at https://github.com/jakobrunge/tigramite. We also include oCSE, which we
implemented. In all those methods, mutual information is estimated using the k-Nearest Neigh-
bour method (Runge, 2018) and a permutation test is used to assess whether the mutual information
scores are significantly different from 0 or not. Finally, we also consider tsFCI, with the implemen-
tation provided at https://sites.google.com/site/dorisentner/publications/tsfci, in
which independence and conditional independence are tested respectively with tests of zero corre-
lation and zero partial correlation.
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Fork V-structure Mediator Diamond 7TS2H

X 1

X 2

X 3

X 1

X 2

X 3

X 1

X 2

X 3

X 1

X 2 X 3

X 4

X 1

X 2 X 3

X 4

X 5X 6

X 7

Table 4: Structures corresponding to the artificial datasets. A→ B means that A causes B and A←→
B represents the existence of a hidden common cause between A and B.

Among the noise-based approaches (Section 5), we retain VarLiNGAM and TiMINo, which
are respectively available at https://github.com/cdt15/lingam and http://web.math.ku.
dk/~peters/code.html. For VarLiNGAM, the regularization parameter in the adaptive Lasso is
selected using BIC, and no statistical test is performed as we directly use the value of the statistics.
TiMINo uses a test based on cross-correlation that can be derived from Brockwell and Davis (1986,
Thm 11.2.3.).

We have retained the most recent score-based method, namely DYNOTEARS (Pamfil et al.,
2020) available at https://github.com/quantumblacklabs/causalnex, the hyperparameters
of which are set to their recommended values (λW = λA = 0.05 and αW = αA = 0.01).

For all the methods, when doing a statistical test, we use a significance level of 0.05. Our
implementations of PWGC and oCSE are available at https://github.com/ckassaad/causal_
discovery_for_time_series; furthermore, all methods can be used through a Python routine
available at https://github.com/ckassaad/causal_discovery_for_time_series.

9.3 Datasets

The artificial datasets, available at https://dataverse.harvard.edu/dataverse/basic_causal_
structures_additive_noise, correspond to five basic causal structures presented in Table 4:
fork, v-structure, mediator, diamond, as well as to a nine nodes structure introduced by Spirtes et al.
(2001) and referred to as 7ts2h. In 7ts2h, seven nodes correspond to observational time series and
two to hidden common causes, represented by double arrows. The underlying generating process is
based on nonlinear functions between time series and linear relations for self causation, as defined
below:

∀q, X q
0 = 0; ∀t > 0, X q

t = aqq
t−1X

q
t−1 + ∑

(p,γ)
X

p
t−γ
∈Par(X q

t )

apq
t−γ f (X p

t−γ)+ 0.1ξ
q
t , (3)

where γ ≥ 0, a jq
t are random coefficients chosen uniformly in U ([−1;−0.1]∪ [0.1;1]) for all 1 ≤

j≤ d, ξ
q
t ∼N (0,

√
15) and f is a non linear function chosen at random uniformly between absolute

value, tanh, sine and cosine.
To evaluate the performance of the inference with respect to the length of the time series, we

make the length vary from 125 to 4000 time points. For each structure and each length, we generate
10 different datasets over which the performance of each method is averaged.

The real-world benchmark we have retained here is FMRI (Functional Magnetic Resonance
Imaging) which contains BOLD (Blood-oxygen-level dependent) datasets for 28 different underly-
ing brain networks (Smith et al., 2011)16. Each dataset contains the neural activity, based on the
change of blood flow, of at most 50 different regions. Each region corresponds to a time series
which contains between 50 and 5000 time points. Since not all the methods retained can handle

16. Original data: https://www.fmrib.ox.ac.uk/datasets/netsim/index.html
Preprocessed version: https://github.com/M-Nauta/TCDF/tree/master/data/fMRI
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more than a few times series, we excluded the larger dataset and make use here of the 27 datasets
that contain at most 15 time series. Note that these datasets are considered causally sufficient.

9.4 Numerical Results

Here we assess how the retained methods behave on the artificial datasets corresponding to basic
causal structures and on the FMRI benchmark.

9.4.1 ARTIFICIAL DATASETS

We are interested here in assessing the capacity of each method to identify correct summary and
window causal graphs. The overall results obtained by the different methods are given in Figure 15,
for the skeleton of the summary causal graph (right column), the summary causal graph (middle
column) and the window causal graph (right column). Note that the orientation in the window causal
graph relies (except for instantaneous relations) on temporal information so that the accuracy on the
skeleton of the window causal graph and on the window causal graph itself are almost identical. For
this reason, we solely present here the results on the window causal graph. The first four datasets
(fork, v-structure, mediator and diamond) are causally sufficient whereas the last one, 7ts2h, is not
as it contains two hidden variables. Only two methods, tsFCI and TCDF, are able to deal with this
latter dataset. They can infer both a summary and a window causal graph. Among all methods,
only five, namely TCDF, PCMCI (mi and pc), tsFCI and VarLiNGAM, aim at building both a
summary and a window causal graph. The remaining 5 methods, PWGC, MVGC, oCSE, TiMINo
and DYNOTEARS, directly infer a summary causal graph.

As one can note from Figure 15, for all methods and all datasets, the performance on the (skele-
ton of the) summary causal graph slightly increases with the number of time points considered and
reaches a plateau after roughly 250 time points have been considered. We attribute this to the fact
that the summary causal graph is a relatively simple structure in this case that can be inferred with-
out much information. The increase with the number of time points considered is more important
for the window causal graph which requires a certain amount of information for the inference to be
correct.

For all the causally sufficient structures, the performance obtained on the summary causal graph
(for both its skeleton and graph itself) is high (in between 0.8 and 1 in terms of F1 score) and compa-
rable for all methods, except for VarLiNGAM, TCDF and DYNOTEARS which do not perform as
well as the other methods. This is not really surprising for VarLiNGAM and DYNOTEARS as both
methods are based on a linear assumption whereas the generation process of the datasets consid-
ered is based on non-linear relations between different time series. Surprisingly, both the Granger
pairwise method and its multivariate extension have good performance, whereas they do not aim at
inferring true causality by definition. The best performing method overall on the summary graph
is oCSE, but the difference with other methods is not significant (with respect to a two sided t-test
with level 0.01). The results obtained on the window causal graph are lower than the ones obtained
on the summary causal graph and the difference between the methods are more marked. This is
not really surprising as the former graph is more complex than the latter one. The best performing
method here is PCMCI, and in particular the version based on mutual information (mi). Note how-
ever that this version is more computationally demanding (Runge et al., 2019) than the one based on
partial correlation (pc). Lastly, for 7ts2h, a dataset with hidden confounders, the applicable meth-
ods have difficulties in identifying both the summary and the window causal graphs. The problem
is definitely more complex and no satisfying solution has been proposed yet, even though TiMINo
reaches 0.6 and 0.5 in terms of F1 score on the summary causal graph and the window causal graph
respectively.

Self causes Among the methods we have reviewed, some (PWGC, MVGC, TiMINo) assume that
a time series always causes itself, which seems a reasonable assumption for time series, whereas
others (DYNOTEARS, oCSE, PCMCI, TCDF, tsFCI and VarLiNGAM) do not make such an as-
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Figure 15: Performance of all methods on the 5 artificial datasets. The results are computed over
10 runs for which we report the mean (± the standard deviation) of the F1 score without taking into
account the orientation of edges for the skeleton of the summary causal graph (left column), and
while taking into account the orientation of the edges for the summary (middle column) and window
(right column) causal graphs. The results are computed for various lengths of the time series: 125,
250, 500, 1000, 2000 and 4000 time points (a log-scale is used for the x-axis).
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Figure 16: Performance of all methods on the 5 artificial datasets for the inference of the summary
causal graph with two settings: excluding self causes (left column) and focusing only on self causes
(right column). The results are computed over 10 runs for which we report the mean (± the standard
deviation) of the F1 score taking into account the orientation of the edges. The results are computed
for various lengths of the time series: 125, 250, 500, 1000, 2000 and 4000 time points (a log-scale
is used for the x-axis).
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sumption and try to infer self causes as any other causes, which is more difficult a priori. As all
the artificial datasets we have considered contain self-causes (which represent roughly 50% of the
causal relations on each dataset), methods of the first type have an advantage over the ones of the
second type. To further compare all methods, we have examined the performance of each method in
two cases: one in which self causes are excluded and one in which only self causes are considered.
The results obtained are displayed in Figure 16. As one can note, the performance of all methods
when excluding self causes are lower than when considering all causes and the differences between
the methods are more important. oCSE outperforms, with a larger margin than before, all other
methods on the causally sufficient structures. In addition, VarLiNGAM obtains poor results which
makes sense as the relations between different time series in the datasets retained are not linear. On
self causes only, all methods but DYNOTEARS and TCDF perform very well and make no mistake
when the number of time points is sufficient. As mentioned before, an important difference between
self causes and causes between different time series is that the former are linear whereas the latter
are not (and are thus more difficult to identify). This explains the difference in performance between
the left and right columns of Figure 16 as well as the fact that VarLiNGAM, which relies on a linear
model, behaves well on self causes.

Limit cases We conclude this comparison by considering two limit cases, one in which the
Markov equivalence class contains more than one graph and one in which the faithfulness assump-
tion is no longer valid. For the first case, we generate a new fork structure in which all relations
are instantaneous, so that one cannot differentiate between common and intermediate causes (by
definition, the fork structure does not contain any collider). For the second case, we generate new
mediator and diamond structures in which all relations are linear with coefficients set in such a way
that different causal paths eliminate each other. This is obtained by setting, in Eq. (3), a13 =−a12a23

for mediator, following Zhalama et al. (2016), and a34 = −a12a23/a13 for diamond. In each case,
we exclude self causes and simulate 10 datasets each with 1000 time points.

Fork (Markov equi.) Mediator (unfaith.) Diamond (unfaith.)
F1

−→
F1 F1

−→
F1 F1

−→
F1

PWGC 0.12±0.24 0.05±0.15 0.28±0.37 0.12±0.27 0.32±0.28 0.14±0.23
MVGC 0.15±0.3 0.1±0.3 0.33±0.21 0.16±0.28 0.32±0.14 0.16±0.28
TCDF 0.39±0.42 0.34±0.37 0.74±0.12 0.4±0.22 0.48±0.21 0.33±0.17

PCMCImi 0.28±0.29 0.07±0.019 0.27±0.29 0.05±0.15 0.41±0.25 0.20±0.22
PCMCIpc 0.41±0.36 0.31±0.27 0.44±0.31 0.21±0.21 0.25±0.22 0.11±0.18

oCSE 0.18±0.28 0.12±0.24 0.05±0.15 0.05±0.15 0.12±0.18 0.08±0.16
tsFCI 0.71±0.29 0.44±0.17 0.88±0.09 0.55±0.04 0.86±0.03 0.55±0.03

VarLiNGAM 0.6±0.42 0.05±0.15 0.98 ±0.06 0.0±0.0 0.94±0.04 0.02±0.06
TiMINo 0.67±0.23 0.45±0.15 0.95±0.15 0.64±0.08 0.78±0.06 0.49±0.03

DYNOTEARS 0.00±0.00 0.00±0.00 0.41±0.29 0.37±0.26 0.29±0.33 0.29±0.33

Table 5: Results obtained on the two limit cases corresponding to a rich Markov equivalence class
and to unfaithful data. The first limit case is evaluated on the fork structure whereas the second one
is evaluated on both the mediator and diamond structures. We report the mean and the standard devi-
ation (over 10 runs) of the oriented and non-oriented F1 scores. Best results are in bold and methods
are grouped according to their family (Granger, constraint-based, noise-based, score-based).

The results (averaged over 10 runs) obtained by the different methods on these two limit cases
are displayed in Table 5. As one can see, the results differ from the ones obtained before and meth-
ods that rely strongly on faithfulness and causal sufficiency (as PCMCI and oCSE) now perform
poorly even though they were among the best methods before. Furthermore, all methods have diffi-
culties in orienting edges as the

−→
F1 score is systematically lower than the F1 score, the drop being

particularly important for most methods on the unfaithful datasets. The best method overall for
the
−→
F1 score is TiMINo. For the F1 score, the best method on fork is tsFCI, followed by TiMINo,
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and VarLiNGAM on the two unfaithful datasets, followed by either TiMINo or tsFCI. The good
behaviour of TiMiNo, and to a certain extent of TCDF which obtains consistent, good results on all
datasets for both measures, can be explained by the fact that these methods are not restricted to the
Markov equivalence class and do not rely on the faithfulness assumption. All in all, this experiment
confirms that different methods are adpated to different datasets according to the assumptions they
rely on.

9.4.2 REAL DATASET: FMRI

The results obtained for all methods on the real dataset FMRI are displayed in Table 6. In order
to compare all methods, we focus here on the summary graph, evaluating as before the capacity of
each method to retrieve a causal relation between two time series (i.e. to obtain a correct skeleton)
and to orient such relations. We also evaluate the method through their capacity to detect causal
relations between different time series (w/o self causes) and within a time series (self causes only).

All methods but TCDF are able to retrieve the skeleton of the summary causal graph, tsFCI and
VarLiNGAM being the two best methods here, reaching a F1 score above 0.8. For the summary
causal graph, VarLiNGAM is by far the best method which may suggest that the relations between
time series in FMRI may be well approximated by linear relations. Apart from that, the different
families of approaches perform similarly (even though some methods are worse than others in the
different families, as TCDF here). The same conclusion can be drawn when only causal relations
between different times series are considered. When considering self causes only (which amount to
roughly 50% of all causal relations) one can see that all methods perform very well (the methods
with a 1.00 in italics always assume self causes) except TCDF. Lastly, one can see that the standard
deviations vary from one method to the other. They are more important without self causes than
when considering self causes only and similar for the skeleton and the summary causal graph.

All in all, all families of approaches obtain more or less the same results on the summary causal
graph, with an advantage to the noise-based method VarLiNGAM on this dataset. As mentioned
before, this method relies on certain assumptions that seem to be appropriate for the FMRI dataset
considered here.

Sum. graph (skel.) Sum. graph Sum. graph (details)
W/o self causes Self causes only

PWGC 0.74±0.08 0.63±0.08 0.31±0.17 1.00±0.00
MVGC 0.76±0.09 0.59±0.11 0.24±0.18 1.00±0.00
TCDF 0.33±0.25 0.30±0.22 0.07±0.13 0.47±0.35

PCMCImi 0.67±0.14 0.59±0.13 0.22±0.19 0.90±0.19
PCMCIpc 0.72±0.11 0.64±0.12 0.29±0.20 0.96±0.13

oCSE 0.68±0.084 0.63±0.07 0.16±0.20 0.91±0.14
tsFCI 0.80±0.09 0.60±0.10 0.44±0.10 0.97±0.09

VarLiNGAM 0.84±0.16 0.71±0.17 0.49±0.28 0.92±0.22
TiMINo 0.75±0.13 0.56±0.12 0.32±0.11 1.00±0.00

DYNOTEARS 0.77±0.12 0.58±0.12 0.38±0.15 0.97±0.12

Table 6: Results for FMRI in terms of the F1 score (mean ± standard deviation) averaged over
the 27 networks of this dataset. For the skeleton of the summary causal graph (Sum. caus. graph
(skel.)), the orientation of the edges is not taken into account when computing the F1 score. The
third column (Sum. caus. graph (details)) illustrates the capacity of the methods to detect causal
relations between different time series (W/o self causes) and within a time series (Self causes only).
In this latter case, a 1.00 in italics indicates that the method assumes that self causes always exist.
Best results are in bold and methods are grouped according to their family (Granger, constraint-
based, noise-based, score-based).

808



A SURVEY ON CAUSAL DISCOVERY FOR TIME SERIES

10. Conclusion

We have presented in this survey different methods, pertaining to different families of approaches,
for causal discovery in time series. We furthermore have illustrated their behaviour through ex-
periments conducted on both artificial and real datasets for inferring either a window causal graph
or a summary causal graph. The families we have retained correspond to approaches à la Granger,
constraint-based approaches, noise-based approaches, score-based approaches logic-based approaches,
topology-based approaches, and difference-based approaches.

The main conclusions one can draw from this survey is that causal discovery in times series is an
active research field in which new methods (in every family of approaches) are regularly proposed,
and that no family or method stands out in all situations. Indeed, they all rely on assumptions that
may or may not be appropriate for a particular dataset. Constraint-based and noise-based methods
often come with theoretical guarantees on their optimality. If this is clearly an interesting feature,
these guarantees also rely on assumptions which are not always met in practice.

Several extensions to the methods we have presented have been, and still are, investigated. For
example, Gong et al. (2015) considers the problem of subsampling which amounts to recover rela-
tions between time instants that were not observed as their difference is smaller than the sampling
rate of the time series. Hyttinen et al. (2017) further studies the subsampling in the context of time
series with hidden variables. Gong et al. (2017) studies methods to infer causal relations on time
series which correspond to aggregate (local averages or sums of observations) of other time series.
Both Zhang et al. (2017) and Huang et al. (2019) address the problem of causal discovery and fore-
casting on non-stationary time series. Lastly, the problem of time series with different sampling
rates has partially been explored by Mogensen et al. (2018) through the consideration of continuous
time series. This is an important problem in practice that remains largely unexplored.

If causal discovery is an important aspect of the research conducted on causality in time series,
causal reasoning on causal graphs certainly opens the door to practical applications beyond the
reach of current tools. The reliance of causal reasoning on causal graphs explains the importance
of causal discovery and our focus on this aspect in this survey. As we have seen, causal discovery
in time series is a difficult problem and, facing the performance of the methods so far developed,
we believe that a promising approach is to have experts interact with causal discovery tools to infer
causal graphs that can then be used for reasoning and problem solving.

Appendix A. Additional Experimental Results

We provide in this section results in terms of precision and recall for the experiments described in
the main paper.

As one can note from Figure 17 and 18, for all methods and all datasets, the performance on the
skeleton of the summary causal graph slightly increases with the number of time points considered
and reaches a plateau after roughly 250 time points have been considered. Focusing on precision,
we observe a decrease in performance for VarLiNGAM and tsFCI when considering the oriented
graphs. This is not true for recall, which increases with the number of time points. For all the
causally sufficient structures, the performance obtained on the summary causal graph (for both its
non oriented and oriented versions) is particularly high (in between 0.8 and 1) in terms of precision
and comparable for all methods, TCDF and DYNOTEARS being slightly lower. The performance
obtained for the summary causal graph (skeleton and oriented) and the window causal graph in
terms of recall is a bit lower, but still on a good range for most of the methods (except for TCDF
and VarLiNGAM and DYNOTEARS). On can in particular notice that tsFCI is one of the best
methods in terms of recall, whereas it was one of the worst in terms of precision.

The results obtained for all methods on the real dataset FMRI are displayed in Table 7. In order
to compare all methods, we focus here on the summary graph, evaluating as before the capacity of
each method to retrieve a causal relation between two time series (i.e., to obtain a correct skeleton)
and to orient such relations (providing the summary causal graph). We also evaluate the method
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Figure 17: Performance of all methods on the 5 artificial datasets. The results are computed over 10
runs for which we report the mean (± the standard deviation) of the precision without taking into
account the orientation of edges for the skeleton of the summary causal graph (left column), and
while taking into account the orientation of the edges for the summary (middle column) and window
(right column) causal graphs. The results are computed for various lengths of the time series: 125,
250, 500, 1000, 2000 and 4000 time points (a log-scale is used for the x-axis).

through their capacity to detect causal relations between different time series (w/o self causes) and
within a time series (self causes only). As one can see, VarLiNGAM behaves quite well in terms
of precision, the difference with some constraint-based methods as PCMCImi being however small.
In termes of recall, tsFCI and DYNOTEARS obtain very good results (above 0.9), closely followed
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Figure 18: Performance of all methods on the 5 artificial datasets. The results are computed over
10 runs for which we report the mean (± the standard deviation) of the recall without taking into
account the orientation of edges for the skeleton of the summary causal graph (left column), and
while taking into account the orientation of the edges for the summary (middle column) and window
(right column) causal graphs. The results are computed for various lengths of the time series: 125,
250, 500, 1000, 2000 and 4000 time points (a log-scale is used for the x-axis).

by TiMINo. The three families of methods, constraint-based, noise-based and score-based, are thus
well represented in this case.
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Finally, it is interesting to point out that some methods are more precision-oriented, as they
detect few but relevant relations (TCDF, VarLiNGAM), whereas other methods are more recall-
oriented and focus on the detection of all relevant relations (tsFCI, DYNOTEARS).

Precision Sum. graph (skel.) Sum. graph Sum. graph (details)
W/o self causes Self causes only

PWGC 0.75±0.10 0.62±0.16 0.31±0.24 1.00±0.00
MVGC 0.73±0.17 0.57±0.18 0.22±0.17 1.00±0.00
TCDF 0.73±0.41 0.68±0.41 0.14±0.28 0.70±0.46

PCMCImi 0.84±0.14 0.73±0.16 0.32±0.29 1.0±0.0
PCMCIpc 0.80±0.13 0.61±0.14 0.37±0.28 1.0±0.0

oCSE 0.82±0.12 0.75±0.16 0.17±0.21 1.0±0.0
tsFCI 0.72±0.14 0.46±0.13 0.30±0.09 1.0±0.0

VarLiNGAM 0.90±0.11 0.73±0.17 0.48±0.27 0.96±0.18
TiMINo 0.71±0.21 0.49±0.22 0.28±0.18 1.00±0.00

DYNOTEARS 0.63±0.17 0.40±0.15 0.21±0.09 1.0±0.0
Recall Sum. graph (skel.) Sum. graph Sum. graph (details)

W/o self causes Self causes only
PWGC 0.77±0.17 0.71±0.16 0.44±0.32 1.00±0.00
MVGC 0.86±0.14 0.65±0.12 0.32±0.23 1.00±0.00
TCDF 0.24±0.21 0.22±0.18 0.06±0.12 0.38±0.33

PCMCImi 0.58±0.17 0.52±0.15 0.19±0.18 0.86±0.25
PCMCIpc 0.68±0.15 0.61±0.14 0.29±0.23 0.95±0.17

oCSE 0.62±0.16 0.58±0.15 0.19±0.29 0.86±0.2
tsFCI 0.95±0.10 0.94±0.10 0.92±0.17 0.96±0.13

VarLiNGAM 0.84±0.21 0.72±0.22 0.56±0.35 0.90±0.24
TiMINo 0.89±0.16 0.84±0.19 0.70±0.36 1.00±0.00

DYNOTEARS 0.97±0.11 0.95±0.13 0.91±0.26 0.99±0.03

Table 7: Results for FMRI in terms of precision and recall (mean ± standard deviation) averaged
over the 27 networks of this dataset. For the skeleton of the summary causal graph (Sum. caus.
graph (skel.)), the orientation of the edges is not taken into account when computing the measures.
The third column (Sum. caus. graph (details)) illustrates the capacity of the methods to detect causal
relations between different time series (W/o self causes) and within a time series (Self causes only).
In this latter case, a 1.00 in italics indicates that the method assumes that self causes always exist.
Best results are in bold and methods are grouped according to their family (Granger, constraint-
based, noise-based, score-based).
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