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Abstract

The Clique Partitioning Problem (CPP) is essential in graph theory with a number
of important applications. Due to its NP-hardness, efficient algorithms for solving this
problem are very crucial for practical purposes, and simulated annealing is proved to be
effective in state-of-the-art CPP algorithms. However, to make simulated annealing more
efficient to solve large-scale CPPs, in this paper, we propose a new iterated simulated
annealing algorithm. Several methods are proposed in our algorithm to improve simulated
annealing. First, a new configuration checking strategy based on timestamp is presented
and incorporated into simulated annealing to avoid search cycles. Afterwards, to enhance
the local search ability of simulated annealing and speed up convergence, we combine our
simulated annealing with a descent search method to solve the CPP. This method further
improves solutions found by simulated annealing, and thus compensates for the local search
effect. To further accelerate the convergence speed, we introduce a shrinking factor to
decline initial temperature and then propose an iterated local search algorithm based on
simulated annealing. Additionally, a restart strategy is adopted when the search procedure
converges. Extensive experiments on benchmark instances of the CPP were carried out,
and the results suggest that the proposed simulated annealing algorithm outperforms all
the existing heuristic algorithms, including five state-of-the-art algorithms. Thus the best-
known solutions for 34 instances out of 94 are updated. We also conduct comparative
analyses of the proposed strategies and show their effectiveness.

1. Introduction

Analyzing network structures is an important field in graph theory and data mining. Par-
ticularly identifying cliques (complete subgraphs) in a graph is a basic problem to specify
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cohesive structures with a wide range of practical applications, including community search
in social networks, logistics, and biological computing (Ouyang et al., 2020; Fox et al.,
2020; Alduaiji et al., 2018). However, identifying cliques from a graph cannot specify the
structure of the entire graph, so the Clique Partitioning Problem (CPP) was proposed and
discussed to analyze graph structures.

Given a complete edge-weighted undirected graph, a CPP is defined as to find a partition
of vertices of the graph that maximizes the sum of edge weights that belong to each subset
(clique). Since the problem has a strong relation with clustering in data mining (Wang et al.,
2004; Matsunaga et al., 2009), it is widely used in various applications. By partitioning
vertices into cliques, a number of important graphs from real-world applications, ranging
from social network analysis and biology to industrial fields, such as manufacturing systems
and logistics, can be well analyzed. In fact, the clique partitioning problem has received
great success in modeling and solving real-world problems (Oosten et al., 2001; Grötschel
& Wakabayashi, 1989; Dorndorf et al., 2008; Wang et al., 2006). As an example, in the
biology field, clique partitioning was used for classification, where partitioning features with
qualitative descriptions were discussed by Grötschel and Wakabayashi (1989). They also
provided some benchmark instances from biology, economics, and the political sciences.
It is also worth mentioning that Dorndorf (2008) employed the CPP to solve the airport
gate assignment problem. The problem is to assign flights to airport gates, which is a key
technique in airport scheduling. They modeled the assignment problem as a CPP, where
aircraft have to be assigned to clusters and aircraft in a cluster can be assigned to the
same gate. To avoid the conflict that two aircraft stay at a gate at the same time, a large
negative value was enforced on an edge weight. Another interesting application of the CPP
is flexible manufacturing systems. Wang et al. (2006) solved the group technology problem
by clique partitioning to group machines and parts together so that the time and cost can
be reduced.

1.1 Previous Works

We give a review of algorithms for the CPP in this subsection. Both exact algorithms and
heuristic algorithms were proposed and studied extensively. Exact algorithms are used to
find optimal solutions. Along this line, a number of exact algorithms have been proposed
in the last three decades. The main contributions include cutting plane-based algorithms
and branch-and-bound algorithms. Dorndorf and Pesch (1994) used a heuristic to compute
lower bounds and guide branching in a branch-and-bound algorithm. They showed their
method is better than other exact methods. Moreover, Ji and Mitchell (2007) used the
branch-and-price algorithm to solve the CPP, and proposed effective cutting planes in the
algorithm. They also indicated that their algorithm can solve randomly generated instances.
Later, Jaehn and Pesch (2013) proposed a novel branch-and-bound algorithm by using a
new upper bound based on the triangular restrictions. In addition, constraint propagation
techniques were incorporated into the algorithm to reduce search space.

However, exact methods sometimes spend much time to complete search on the whole
solution space to find and prove the best solution. Though they are able to guarantee the
optimality, exact methods fail to solve large-scale instances from real-world applications in
a reasonable time. An alternative way is to use heuristic algorithms. Heuristics, especially
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local search methods that move from solution to solution in the space of candidate solutions
by applying local changes, play an important role in solving NP-hard problems. For the
last decades, various heuristic algorithms have been proposed to find high-quality solutions
for large-scale instances in an acceptable time and computer memory (Wang et al., 2017;
Lu et al., 2020; Zhang et al., 2021; Lu et al., 2021; Bilandi et al., 2021). Among heuristic
algorithms, tabu search (Glover, 1989, 1990) and simulated annealing (Skiscim & Golden,
1983; Kirkpatrick et al., 1983), which solved many graph problems successfully (Palubeckis
et al., 2014; Bilandi et al., 2021; Lu et al., 2019), showed their efficiency in solving many
benchmark instances of the CPP. In the early work of (De Amorim et al., 1992), De Amorim
et al. applied tabu search and simulated annealing to this problem. They compared their
algorithms with commonly used heuristics, and showed the effectiveness of these heuristic
algorithms on a number of CPP instances which were not only generated randomly but also
from real-life problems. Based on tabu search, Brusco and Köhn proposed two versions of
new neighborhood search algorithms (Brusco & Köhn, 2009) and used a relocation algorithm
to improve the solution quality, and then proposed an embedded tabu search method.
The improved algorithm has a good performance for solving large and difficult instances
compared with simulated annealing and a tabu search-based algorithm.

Recent works that have been published mainly aim at solving large-scale instances.
Palubeckis et al. (2014) presented a new iterated algorithm, denoted by ITS, combining
the tabu strategy, local search, and solution perturbation procedures. They carried out
computational experiments and indicated that their algorithm can solve instances up to
2000 vertices efficiently, and outperforms existing methods. Later, Brimberg et al. (2017)
transformed the CPP to the maximally diverse grouping problem, and then solved it with a
skewed general variable neighborhood search algorithm (SGVNS). They showed significant
better results than other heuristics proposed previously (e.g., the tabu search algorithm
proposed by Brusco and Köhn (2009)), and they tested graph instances with 100 to 2000
vertices. Besides, Zhou et al. (2016) proposed a three-phase local search framework, called
CPP-P3, where a descent procedure, a tabu-based search phase and a directed perturbation
phase were incorporated into the algorithm. The algorithm was compared with an iterated
tabu search algorithm and SGVNS algorithm, and it has a good ability to deal with large
instances up to 5000 vertices. Hudry (2019) discussed a descent algorithm with a muta-
tion meta-heuristic to the CPP. The simple meta-heuristic was devised on the base of a
local search framework. The meta-heuristic was tested on a small set of benchmarks and
compared with a simulated annealing method, and is at least as efficient as the compara-
tive simulated annealing method, but there is a lack of comparisons with recently proposed
heuristic algorithms. Later, Hu et al. (2021) proposed a two-model local search algorithm
with a self-adaptive parameter mechanism called TMLS SA. They employed an exchange
strategy and a perturbation method to exploit solution space, where a self-adaptive ap-
proach was used to determine the number of perturbed pairs. The local search algorithm
was combined with a lock mechanism, which was used to prevent from immediately return-
ing to a visited state. They also showed that their algorithm has a comparable performance
with CPP-P3 and outperforms other existing algorithms on benchmark instances with 2000
vertices at most. Very recently, Lu et al. (2021) have proposed an evolutionary algorithm,
denoted by MDMCP, combining a crossover operator to improve individuals by preserving
good properties of parents and incorporating an effective simulated annealing algorithm to
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enhance local search. They tested a wide range of benchmarks, including most instances
used in previous experiments as well as some new large-scale instances whose vertex number
is up to 7000, and carefully analyzed experimental results, showing that MDMCP dominates
existing algorithms, such as ITS, SGVNS, CPP-P3.

1.2 Contributions

With the rapid growth of the Internet and data mining technology, graphs from real-world
applications are growing rapidly, and those graphs usually have a large number of vertices
and edges. Newly emerged massive graphs present a great challenge for CPP algorithms.
Though there have been some heuristic algorithms proposed recently to solve the CPP, they
are not good enough to deal with large-scale instances.

As we mentioned above, among those methods, simulated annealing, a local search
method allowing non-improving moves, performs well in solving the problem. It has been
incorporated into various meta-heuristics and shows good performance. However, the local
search ability of this technique can be further improved so that better solutions can be
found faster. In this paper, we propose several new methods to improve the simulated
annealing algorithm, and present a novel hybrid heuristic algorithm with the newly proposed
methods. We denote our new algorithm by SACC, which stands for two main techniques
it employs, i.e., Simulated Annealing and Configuration Checking. Our main contributions
are summarized as follows:

(1) An improved simulated annealing algorithm is proposed by incorporating a con-
figuration checking strategy to avoid searching in a local area repeatedly. The simulated
annealing algorithm for the CPP, though it can perform the non-improving moves to escape
a local space, still suffers from the cycling issues. The configuration checking strategy can
release local search algorithms from heavily cycling issues, and has been successfully applied
in a number of NP-hard problems from the satisfiability problem to graph problems (Luo
et al., 2013, 2015; Chu et al., 2017; Abramé et al., 2017; Chen et al., 2020; Wang et al.,
2021). However, the existing configuration checking strategy does not work effectively to
tackle complete graphs. Therefore, we propose a new form of configuration checking strat-
egy to deal with the CPP. Configurations of vertices are well-defined, and a vertex will be
forbidden to move to a certain cluster if its configuration is not changed. We also provide an
efficient implementation of the strategy with timestamp comparison, and discuss the time
complexity and space complexity of our new strategy.

(2) Though our new configuration checking strategy avoids cycling problems effectively,
when we use the simulated annealing algorithm in practice, it may only converge to a
local optimum within a fixed time budget, especially for solving large-scale CPP instances.
We propose an iterated approach that repeats simulated annealing to search for a better
solution. Additionally, to enhance the local search ability for solving large-scale graphs,
we employ a descent search method to search for a better solution around the solutions
found by the simulated annealing algorithm, and thus make local search more effective.
The combination of descent search method can usually find a better solution than the one
found by simulated annealing and thus it compensates for the relatively weak ability of local
search in simulated annealing.
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Based on the main methods mentioned above, we propose an iterated search frame-
work, incorporating the simulated annealing method with configuration checking and de-
scent search. Also, we propose a shrinking mechanism for initial temperature to accelerate
convergence speed. Hence, the effectiveness of the hybrid heuristic algorithm is enhanced.
In addition, a restart mechanism is employed if the hybrid heuristic algorithm fails to make
an improvement within a certain number of iterations. Extensive experiments are conducted
to evaluate our hybrid algorithm by testing benchmark instances previously used, with 7000
vertices at maximum. Computational experiments on 94 instances show that our SACC
outperforms the state-of-the-art algorithms, and the best-known solutions of 34 instances
were updated by it. Specifically, SACC dominates SGVNS, CPP-P3, and TMLS SA, and
finds better solutions than MDMCP for a large portion of instances. Also, additional anal-
yses are carried out to evaluate the strategies we propose, indicating that they can improve
the behavior of our hybrid heuristic algorithm.

The remainder of this paper is organized as follows. The next section introduces nota-
tions and definitions used in the paper. Section 3 proposes our new configuration checking
strategy based on timestamps, and an improved simulated annealing algorithm with the
strategy. In Section 4, we propose the framework of our iterated simulated annealing al-
gorithm, and explain our shrinking mechanism for the temperature factor to decline initial
temperature for iterating simulated annealing. Section 5 presents experimental evaluations
and comparative results with the state-of-the-art algorithms. Finally, we conclude our work.

2. Preliminaries

In this section, we provide notions and notations about the CPP used in this paper.

A complete edge-weighted undirected graph is defined as a triple G = (V,E,W ), where
V = {1, 2, ..., n} is the set of vertices and E is a set of edges containing all possible edges
between each pair of vertices. Each edge e = (i, j) ∈ E is associated with weight wij ∈ W ,
where i and j are the two vertices of the ends of edge e and wij is a real number, which is
usually defined as the similarity of vertices.

Given a complete edge-weighted undirected graph G = (V,E,W ), the CPP is to find
a partition that assigns all vertices of the given graph into k mutually disjoint subcliques
(clusters) such that the sum of the edge weights within clusters is maximized, where k is
an unfixed positive integer. Formally, we define C = (c1, c2, ..., ck) as a partition of the
vertices, where cf (1 ≤ f ≤ k) is a cluster including a subset of vertices of the graph G. The
objective function is defined as follow:

f(C) =
∑

c∈C(
∑

i,j∈c(wij)).

The goal is to maximize the function f(C).

In general case, the decision version of the CPP is NP-complete if the given graph has
both negative and positive edge weights (Wakabayashi, 1986), and if all the edge weights
are non-negative or non-positive, solving the problem becomes a trivial task.

It is also noted that in some works, the concept of clique partitioning problem refers
to another NP-hard problem that aims to partition the vertices of a given graph into the
minimum number of subsets such that each subset is a clique (Sundar & Singh, 2017).

1489



Gao, Lv, Liu, Cai & Ma

3. Simulated Annealing with Timestamp-based Configuration Checking

In this section, we first give a brief introduction to configuration checking and analyze why
the classic configuration checking cannot be used for the CPP solving. Then, we propose
a new version of configuration checking, called timestamp-based configuration checking, to
settle the cycling issue. Afterwards, we present our enhanced simulated annealing method
with the new configuration checking strategy.

3.1 The Configuration Checking Strategy

This subsection gives a brief introduction to configuration checking. The strategy has been
successfully deployed in many applications to improve local search algorithms since it was
first proposed by Cai et al. (2011). It is well known that many local search algorithms
suffer from an issue called cycling problem during search. Greedy local search strategies
may frequently visit a local optimum whose corresponding solution has been found recently
(Michiels et al., 2007). So a local search algorithm may revisit some sub-optimal solu-
tions and cost too much time on useless search. This may weaken its ability to find better
solutions, and sometimes the algorithm gets trapped in a local area, leading to early con-
vergence. To settle this issue, several strategies for forbidding cycling moves have been
proposed, such as random walk and non-improving moves in the local search algorithms.
Also, the tabu method proposed by Glover (1989, 1990) is a frequently used approach to
forbid a recent reverse change, and thus prevent returning back to a previous state. More-
over, the configuration checking strategy was proposed to handle the cycling problem. It
checks the configuration of a vertex and forbids a vertex to move back to its previous con-
figuration. For more detailed relationships of the configuration checking strategy and the
tabu method, we refer to (Cai et al., 2011). The configuration checking strategy has proven
effective to solve problems in graph theory and SAT problems (Cai & Su, 2013; Luo et al.,
2013, 2015; Wang et al., 2017; Zhang et al., 2021). The main idea of the configuration
checking strategy is to prevent a stochastic local search algorithm from revisiting the same
scenario by checking whether the states or neighbors’ states of a vertex have changed or not.
The configuration checking strategy stores search states for vertices, and forbids moving a
vertex back to a former state if its neighbors’ states do not change. A lot of experiments
show that the configuration checking strategy has achieved great success in many combi-
natorial optimization problems, such as SAT, the minimum vertex cover problem and the
maximum clique problem.

Though the configuration checking strategy is used in many local search algorithms
in graph theory, the graphs in those problems are usually not complete. For instance, in
the minimum vertex cover problem, the configuration is defined for each vertex as the set
of states of all its neighboring vertices, where the state of a vertex indicates whether the
vertex is included in the candidate solution. For example, given a graph with 4 vertices
v1, v2, v3 and v4, where v1 has two neighbors v2 and v4, suppose v2 and v3 are included
in the candidate solution (denoted by a vector [v1 = 0, v2 = 1, v3 = 1, v4 = 0]), and then
states of v1’s neighbors [v2 = 1, v4 = 0] compose its configuration. If v2 is selected and
moved out of the candidate solution, we say v2 changes its state and the vector changes
to [v1 = 0, v2 = 0, v3 = 1, v4 = 0], so the new configuration of v1 is [v2 = 0, v4 = 0].
However, this form of configuration is not suitable for the CPP local search algorithms,
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because the neighbors of a vertex are all the other vertices if a graph is complete, and
according to the configuration definition, the configuration of a vertex is the set of the
states of all the other vertices in the graph. In this case, configurations of all vertices
change if any move is made. Thus, configuration checking cannot forbid any move and the
cycling problem cannot be alleviated. The existing version of the configuration checking
strategy cannot work effectively for complete graphs. Therefore, it is desirable to propose
a new configuration checking strategy that can deal with complete graphs for the CPP.

3.2 Timestamp-based Configuration Checking Strategy

We propose a new configuration checking strategy to tackle the cycling problem in local
search of the CPP, and discuss how a timestamp can make the strategy be implemented
efficiently.

According to the definition of the CPP, a partition specifies each vertex to be put into a
cluster, so all vertices in a cluster compose a partial search state. We should avoid coming
back to a previous partial state because reducing cycles in local search may lead to reducing
cycles on the search state. Suppose a vertex v was moved out of a cluster c at a previous
step. If no new vertices have be moved to c since then, moving v back to c is useless as it
faces some old vertices and turns back to a previous partial state that has been visited. In
that case, a vertex cannot be moved back to a cluster if no new vertices are added to the
cluster. So, naturally, the configuration of a vertex w.r.t. a cluster should be all the other
vertices in the cluster at the moment of the vertex moving out of the cluster.

With the above discussion, we introduce the following notions to define a basic version
of the configuration of a vertex w.r.t. a cluster, and later we will discuss how to define a
timestamp-based version that can be implemented efficiently.

Definition 1 Given an undirected graph G = (V,E), and a partition C = (c1, c2, ..., ck), the
configuration of a vertex v ∈ V w.r.t. ci, denoted as config(v, ci), is the set of all vertices
in ci excluding v.

We say a configuration changes if a new vertex that was not included in the configuration
is added into it, i.e., config(v, c′i)\config(v, ci) 6= ∅, where c′i is the cluster ci after moving
some vertices.

Definition 2 The configuration of a vertex v w.r.t. a partition C, denoted as config(v, C),
is the set of the configurations of the vertex w.r.t. all clusters.

With the definitions of configurations, we can check whether a vertex can be moved
to another clique before moving the vertex. However, based on the form of configurations
defined above, storing configurations and checking the configuration of a vertex v are no
easy tasks. We need to compare the current configuration with the configuration at the
step of v moving out, and examine all vertices in a cluster in the worst case so as to find out
whether any has been moved since v was moved out of this cluster. The time complexity of
checking a configuration w.r.t. a cluster is O(|V |). Thus, this makes steps in the local search
too expensive to perform when solving large-scale instances with thousands of vertices.

To tackle this problem, we introduce timestamps to store changes in history configura-
tions, and then propose a timestamp-based configuration checking strategy to handle the
cycling issue in CPP solving. It is noted that when we examine the configuration of a
vertex v w.r.t. a cluster c, we only care about whether a new vertex has been added into
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c compared with the configuration at the moment of v’s last moving out. Therefore, we
do not need to store all vertices of a cluster and check which one is the newly added. We
only need to know whether there is any vertex added into c after v moved out. So a simple
way to achieve configuration check is to store when a vertex moves, and when a cluster is
updated by adding a vertex, hence configuration changes can be detected by comparing two
timestamps.

A local search algorithm improves the solutions iteratively, and makes a move of a
vertex at each step. So we can count the number of steps with a positive integer, namely
the timestamp of the step. Along this idea, we can define a vector with K timestamps
for each vertex, where K is the total number of clusters. A timestamp in the vector is
defined as the time that the vertex is moved out of a cluster. It is noted that there may be
K = n clusters (each vertex is a cluster) at most, so we need O(n2) space at worst to store
configurations of all vertices. To make configuration checking more efficient, we propose a
simple method to record changes. In fact, we can store the timestamps when vertices are
moved as well as the timestamps when states of clusters change, and compare timestamps
of a vertex and a cluster to check whether a state changes, instead of checking when a vertex
is moved out of a certain cluster.

Furthermore, from experimental observation, we can see the following case in simulated
annealing: a vertex may perform a decreasing move to another cluster, and at this time the
vertex is not stable. It cannot stay in the cluster for a long time, because when we select
it again, it will be always moved back to its original cluster through a non-decreasing move
since the original cluster is probably a better cluster for the vertex. Therefore, we do not
consider a decreasing move as a change of the target cluster. If we consider it as a change,
it may weaken the effort on avoiding move cycles, because the target cluster will come to a
previous partial state after the unstable vertex is moved back.

We take an example to illustrate the case. Figure 1 (a) provides a partition with 3
clusters. Suppose a vertex v1 in cluster 1 is moved out of it (suppose it is moved to cluster
3) at the moment t1, and then another vertex v2 in cluster 2 performs a decreasing move
to cluster 1 at the moment t2. Afterwards, clusters after changes is shown in Figure 1 (b).
At this time, if we consider the movement of v2 to cluster 1 as a change of cluster 1, then
moving v1 back to cluster 1 is not forbidden by configuration checking. However, v2 is not
stable in cluster 1, as it may return to cluster 2 by a non-decreasing move, so we will revisit
the previous state as shown in Figure 1 (c), if v1 is moved back at the moment t3 and
after that v2 returns to cluster 2. Hence, it may lead to a search cycle if the configuration
checking strategy does not forbid this case.

On the other hand, when we perform the simulated annealing method, we observed that
the algorithm sometimes revisits the best solution ever found because the solution is a local
optimum. To avoid search cycles around the local optimum, for a cluster c, it is desirable
to add a new vertex to c that does not belong to c in the best found solution, rather than to
move a vertex originally in c back. Therefore, the timestamp of a cluster c is the last time
that a new vertex not belonging to c in the best solution ever found is moved to c. So we
define tscluster(ci) as the moment when ci changes. It is a timestamp (positive integer) of
the last time that a vertex v (v /∈ ci in the partition Cb) is moved to ci with a non-decreasing
objective value, where Cb is the best solution ever found by the algorithm. Furthermore,
we define tsvertex(v) as the timestamp when v preforms a non-decreasing move.
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v1
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cluster 1
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cluster 2
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cluster 1
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cluster 2
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v1
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cluster 2

cluster 3
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Figure 1: An example of a move cycle

Then, we define a new form of configuration called timestamp-based configuration for a
single vertex w.r.t. a cluster ci as follow:

Definition 3 Given an undirected graph G = (V,E) and a partition C, the timestamp-
based configuration of a vertex v ∈ V w.r.t. ci ∈ C is a pair of timestamps (tsvertex(v),
tscluster(ci)).

We say v’s configuration w.r.t. ci changes if tsvertex(v) < tscluster(ci), and configu-
rations for all clusters compose the configuration of v. Hence, to store all configurations
of vertices, we should store timestamps when moving vertices, one timestamp for a vertex,
and timestamps when clusters change, one for a cluster, so it is clear that we need O(n)
space for the entire graph.

Based on the above discussion, we can perform configuration checking using the following
rules:
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• In the case that tsvertex(v) > tscluster(ci), the cluster ci does not change after the
step of tsvertex(v), so the move of v to ci is forbidden.

• In the case that tsvertex(v) < tscluster(ci), the cluster ci has changed after the step
of tsvertex(v), so the move of v to ci is allowed.

Given a vertex and a cluster, checking whether the move of the vertex to the cluster
is forbidden can be done in O(1) time. Therefore, checking configuration changes is an
efficient operation, and the configuration checking strategy can be incorporated into a local
search algorithm without much extra time and space.

3.3 Configuration Checking Enhanced Simulated Annealing for CPP

As we discussed in previous sections, some versions of simulated annealing algorithms
showed good performance to solve the CPP in previous works, since they can find high-
quality solutions efficiently. In this subsection, we improve simulated annealing by incorpo-
rating our timestamp-based configuration checking strategy so as to further forbid search
cycles, and thus present an improved simulated annealing method.

The framework of simulated annealing used in our algorithm is derived from the version
in (Lu et al., 2021). Algorithm 1 depicts the detailed procedure of the proposed simulated
annealing.

Before explaining the procedure, we define some functions for describing operations in
our simulated annealing algorithm. We denote the cluster that v is currently in by c(v),
and define the candidate cluster set as candi(v) = C ∪{∅}\{c(v)}, in which the cluster may
be either a cluster in C excluding c(v) or a new empty cluster.

The algorithm starts from the input partition. It initializes the configurations tsvertex(v)
with timestamp 0, and tscluster(ci) with timestamp 1, so all vertices are not forbidden at
the beginning. Then, it searches for a better solution iteratively. With the initial temper-
ature, it selects a vertex in each iteration and tries to move it to another cluster. Suppose
the algorithm selects the vertex v, then it calls the function BestCluster() to find the best
move with the maximum increment after moving v. We will explain the function in detail
later. Line 8 computes C ′ that is the result of function move(C, v, cb), which is defined as a
function that returns the partition by moving v to cb in C, where cb ∈ candi(v) is the target
cluster. The new partition C ′ is then compared with the current one, and the increment of
the objective value is calculated, denoted as ∆.

Thereafter, we have two cases to be discussed: ∆ is a non-negative number and oth-
erwise. On the one hand, the first case is a non-decreasing move. So, according to the
configuration checking principle, after moving the selected vertex, the algorithm will up-
date the timestamp of the moved-to cluster as well as the timestamp of the vertex (line 11).
On the other hand, if the move declines the objective value, the standard simulated anneal-
ing algorithm allows to make such a move with a probability according to control parameters
(i.e., the acceptance probability is calculated with ∆ and the current temperature).

After performing the vertex movement, it comes to updating the best solution. If a better
solution is found, we apply the descent search method DescentSearch(C), with the aim of
further enhancing the solution to find a local optimum (line 14). The descent algorithm is
employed under the following consideration. With the fact that simulated annealing accepts
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Algorithm 1: SA with timestamp-based configuration checking SA CC(C, Tinit)

Input: a partition C, an initial temperature Tinit
Output: the resultant partition Cb

1 set the temperature as the initial value Tinit;
2 Cb ← C;
3 set timestamp ts← 1, and initialize configurations by ts;
4 while not reaching termination condition do
5 ts← ts+ 1;
6 select a vertex v randomly; cb ← BestCluster(C, v);
7 if cb = null then continue;
8 C ′ ← move(C, v, cb); ∆ ← f(C ′)− f(C);
9 if ∆ ≥ 0 then

10 C ← move(C, v, cb);
11 update tsconfig(v) and tscluster(cb) by ts;

12 else
13 with an acceptance probability, C ← move(C, v, cb);

14 if f(C) > f(Cb) then Cb ← DescentSearch(C) ;
15 update the temperature and other control parameters of simulated annealing;

16 return Cb;

17 Function BestCluster(C, v)
18 cb ← null; ∆b ← the minimum possible increment;
19 foreach cluster c′ in candi(v) do
20 C ′ ← move(C, v, c′); ∆ ← f(C ′)− f(C);
21 if tscluster(c′) < tsvertex(v) and ∆ < 0 then continue;
22 if ∆ > ∆b then
23 ∆b ← ∆; cb ← c′;

24 return cb;

worse moves of vertices, it may escape a local area and miss a local optimum. Therefore,
even if the current solution is a new better solution, it may still not be locally optimal. We
employ a descent search method to further optimize the best found solution, and accelerate
searching for better solutions in the local area around the current best solution.

Finally, the algorithm updates the temperature and control parameters (line 15). The
temperature is cooled down after each iteration. We use the same termination condition as
used in (Lu et al., 2021), and parameters for controlling the simulated annealing algorithm
are set to the same values as MDMCP, since the parameters were well-tuned and MDMCP
was proved to work well for the CPP.

The function BestCluster() aims to find the best cluster not forbidden by the config-
uration checking strategy in candi(v). Given a partition C and a vertex v, BestCluster
examines each cluster and finds the best cluster for v. For each cluster c′, it computes the
increment of moving v to c′. We do not forbid a good move that does not decrease the
goal, so if ∆ is non-negative, the algorithm compares the increment with ∆b, and update
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Algorithm 2: Function DescentSearch(C)

Input: a partition C
Output: the improved partition C

1 impr ← true;
2 while impr = ture do
3 impr ← false;
4 foreach vertex v do
5 cb ← c(v); fb ← f(C);
6 foreach cluster c′ in candi(v) do
7 if f(move(C, v, c′)) > fb then
8 cb ← c′; fb ← f(move(C, v, c′));

9 if cb 6= c(v) then
10 C ← move(C, v, c′); impr ← true;

11 return C;

∆b if c′ is a better cluster (lines 22-23). However, if moving to c′ declines the goal, we
should check whether the move is forbidden by the configuration checking strategy, so it
performs configuration checking and examines whether the timestamp of c′ is older than
the timestamp of v. If so, it will skip c′ and try the next cluster (line 21).

The descent search method is depicted in Algorithm 2. It selects a vertex randomly.
After the selection, the method tries to move the vertex to all the other clusters, and
the cluster with the largest increment is picked out as the target cluster. If moving the
vertex to the cluster can improve the objective value, the algorithm updates the current
solution. Selection and move are repeated until there is no vertex move that can improve
the objective. The descent search method is another essential difference from the existing
simulated annealing algorithms.

4. Framework of the Enhanced Simulated Annealing Algorithm

As discussed previously, a simulated annealing algorithm is a probabilistic technique for ap-
proximating the global optimum, but the solution produced by a run of simulated annealing
in a fixed amount of time is usually not the global best solution and there probably exist
some better solutions the algorithm cannot find. To enhance the ability of search diversity
and intensification, we further augment the simulated annealing algorithm with an iterated
local search framework, a shrinking mechanism and a restart strategy, and thus present an
enhanced simulated annealing algorithm in this section.

Generally speaking, a local search algorithm should have a good ability to find the high-
quality solution in a local solution space quickly, and can also search the entire space so as
to find the global optimum. To achieve this goal, our algorithm uses an iterated local search
framework, where a shrinking mechanism is introduced to speed up convergence. Moreover,
the improved simulated annealing method is desirable to exploit a large solution space and
aim at finding a high-quality solution, so we use a restart strategy when the local search
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algorithm gets trapped in a local optimum and the best found solution cannot be updated
further. Algorithm 3 depicts the detailed procedure, which is the top level of the iterated
simulated annealing algorithm, called SACC.

SACC first initializes a partition Cres as an empty set (line 1), then performs search
strategies repeatedly until a predefined termination condition is satisfied. We use a simple
criterion (i.e., cutoff time) as the termination criterion. In each iteration, it generates a
random solution and initializes parameters used in local search. After that, it comes to
the iteration step. It will repeat calling simulated annealing until the initial temperature
of simulated annealing declines to 0 (line 5). Here, we stipulate that when Tinit declines
below 1% of its first call of simulated annealing, the algorithm can stop the iteration, since
with such a low initial temperature simulated annealing cannot accept a decreasing move,
and thus it converges quickly. In the inner while loop (lines 5-7), the simulated annealing
with configuration checking (the function SA CC(C, Tinit)) is performed iteratively. If Tinit
declines to a certain value, SACC stops its iteration of simulated annealing and restarts the
algorithm. It returns the new solution if it can find a better one or returns the original one
if no improvement can be made.

Moreover, we introduce our shrinking mechanism for SA CC. At beginning, we hope
the algorithm explores a large solution space, but as the search goes on, we hope it has a
good convergence speed. Thus, after each iteration we shrink the search space gradually in
order to accelerate convergence. According to our experimental observation, the parameter
Tinit determines the convergence speed of the simulated annealing strategy. With a smaller
initial temperature, a call of simulated annealing will converge more quickly. Based on this
consideration, we control the process of simulated annealing through the variants of initial
temperature for each SA CC call. Therefore, after each iteration, we decrease the initial
temperature Tinit by a predefined factor αtemp (line 7). As Tinit decreases, the search space
of SA CC becomes smaller. Hence the entire algorithm can achieve a faster convergence.
We will analyze the factor αtemp in the experimental part.

Additionally, we employ a restart strategy to begin a new search with a new randomly
generated initial solution (line 10). This method can force the algorithm to explore a new
solution space if it has been trapped in a local optimum. We will analyze the efforts made
by the restart strategy in the experimental part and show detailed results.

5. Computational Experiments

In this section, we performed an extensive computational experiment to evaluate the new
algorithm. We carried out computational experiments on a number of benchmark instances,
analyzed strategies and parameters carefully, and made an extensive comparison with CPP
algorithms recently published in the literature, as well as variants of our algorithm including
several versions of configuration checking strategies.

5.1 Experiment Settings

We perform all experiments in parallel on a workstation with two AMD EPYC 7763 CPUs
(2.45GHz and 128 processors) and 1024GB RAM, running Ubuntu 20.04.4 LTS. All algo-
rithms were executed 20 times independently for each instance. To study the effectiveness
of our algorithm and provide a fair comparison, we implemented our algorithm in C++
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Algorithm 3: The framework of iterated local search algorithm SACC

Input: a clique partition problem G = (V,E,W )
Output: the best partition result Cres

1 Cres ← ∅;
2 while not reaching termination condition do
3 C ← a random initial solution;
4 compute initial temperature, denoted as Tinit;
5 while Tinit declines to 0 do
6 C ← SA CC(C, Tinit); // Simulated Annealing with Configuration Checking
7 Tinit ← Tinit × αtemp;

8 if Cres = ∅ or f(C) > f(Cres) then
9 Cres ← C;

10 reset control parameters and restart search;

11 return Cres;

language, and compiled it with gcc 9.4.0 under the option -O3. There is a parameter to
control the speed of convergence in our algorithm. We set it as follow: αtemp = 0.98.

We will analyze the parameter setting in following experiments. Moreover, in the part
of our simulated annealing algorithm we use the same parameter values as MDMCP does.

We take 5 existing algorithms proposed recently to make a careful analysis and compar-
ison. The 5 algorithms are: ITS (Palubeckis et al., 2014), SGVNS (Brimberg et al., 2017),
CPP-P3 (Zhou et al., 2016), TMLS SA (Hu et al., 2021) and MDMCP (Lu et al., 2021).
Hu et al. (2021) and Lu et al. (2021) have shown respectively that their algorithms perform
better than CPP-P3, SGVNS and ITS, but there is no comparison between TMLS SA and
MDMCP. The C++ source codes of comparative algorithms (ITS, CPP-P3, TMLS SA and
MDMCP) are provided by their authors. Those algorithms were compiled with the same
compiler and the same option. The SGVNS algorithm was provided as a binary file by its
authors.

We set all algorithms with the same cutoff times as those used in Lu et al. (2021). The
cutoff times are set depending on the size of the instances. The more vertices in an instance,
the more time is given for searching. The detailed cutoff values are listed in Table 1.

Table 1: Cutoff time of instances in seconds

#vertices cutoff time(s)
100-300 200
400-500 500
700-800 1000

1000 2000
1500 4000

2000-2500 10000
3000-7000 20000
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We consider the set of benchmarks that include all instances tested in the previous 5
algorithms to be compared. There are 94 instances in total with the number of vertices
varying from 100 to 7000. In what follows, we give a brief introduction to these benchmarks.

Charon and Hudry (Charon & Hudry, 2006) and Brusco and Kohn (Brusco & Köhn,
2009) provided 13 small instances, where 7 instances (rand100-100, rand300-100, rand500-
100, rand300-5, zahn300, sym300-50, and regnier300-50) are from (Charon & Hudry, 2006);
and 6 instances (rand200-100, rand400-100, rand100-5, rand200-5, rand400-5, and rand500-
5) are from (Brusco & Köhn, 2009). Among the instances, the number of vertices is 500 at
most, where the weights of edges are randomly chosen between -5 and 5 (or between -100
and 100) with a uniform distribution.

Palubeckis et al. (2014) generated 20 instances by setting the number of vertices to 500.
They also tested 15 large-scale instances that have more than 1000 vertices.

Zhou et al. (2016) provided 5 instances with 500 vertices with edge weights drawn
from Gaussian distribution N(0, 52). The prefix of the 5 instances is “gauss”. Moreover,
they provided 10 other instances prefixed by “unif”, with 700 or 800 vertices, and the edge
weights following the uniform distribution in the range of [-5, 5].

Furthermore, we consider the instances of Unconstrained Binary Quadratic Program-
ming (UBQP) (Kochenberger et al., 2014) in the OR-Lib. The instances were tested by Lu
et al. (2021), where the number of vertices is up to 7000.

We divide the 94 instances into two sets, where the small set includes all instances with
less than 1000 vertices, and the large set contains the instances with more than or equal to
1000 vertices. All instances can be downloaded from the webpages: https://github.com/helloz
hilu/MDMCP and https://leria-info.univ-angers.fr/˜jinkao.hao/cpp.html.

For each algorithm and each instance, we report the objective value of the best solution
fbest and the average objective favg of 20 runs of the algorithm. We also record the time
cost on finding the best solution for each run, and calculate the average time over 20 runs
for each instance. In addition, we count the hit time of finding the best solution over 20
runs.

5.2 Comparison with the State-of-the-art Algorithms

In this subsection, we evaluate the effectiveness of our new algorithm. Comparisons are
made between our new algorithm and the state-of-the-art algorithms.

First, we analyze the best solutions found by each algorithm and hit times that reach
the best solution over 20 runs. Also, we list the best-known solutions found so far, which are
reported by Lu et al. (2021), or contributed by our algorithm, as well as other comparative
algorithms.

Computational results of 94 instances are divided into two sets. Table 2 and Table 3
demonstrate the detailed results. Table 2 shows the first set of instances (small instances).
For the small instances, all algorithms listed in the table are able to find equally good
solutions, which are also the best solutions ever found, because these instances are relatively
easy to solve. It is also seen that algorithms can achieve 20 hit times for half of those
instances. This indicates that most runs can find the solutions equal to the best-known
solutions, and there is no significant difference among the comparative algorithms on small
instances.
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Table 2: Best solutions over 20 runs and hit times of comparative algorithms on small
instances

SACC MDMCP TMLS SA CPP-P3 SGVNS ITS
instance best fbest hit fbest hit fbest hit fbest hit fbest hit fbest hit
rand100-5 1407 1407 19 1407 20 1407 20 1407 20 1407 20 1407 20
rand100-100 24296 24296 20 24296 20 24296 20 24296 20 24296 20 24296 20
rand200-5 4079 4079 20 4079 20 4079 13 4079 20 4079 19 4079 20
rand200-100 74924 74924 20 74924 20 74924 19 74924 20 74924 18 74924 20
rand300-5 7732 7732 20 7732 20 7732 8 7732 20 7732 13 7732 18
rand300-100 152709 152709 20 152709 20 152709 20 152709 20 152709 20 152709 20
sym300-50 17592 17592 20 17592 20 17592 7 17592 20 17592 15 17592 20
regnier300-50 32164 32164 20 32164 20 32164 20 32164 20 32164 20 32164 20
zahn300 2504 2504 20 2504 20 2504 10 2504 20 2504 20 2504 20
rand400-5 12133 12133 20 12133 20 12133 11 12133 20 12133 17 12133 19
rand400-100 222757 222757 20 222757 20 222757 19 222757 20 222757 16 222757 17
rand500-5 17127 17127 20 17127 20 17127 20 17127 20 17127 12 17127 11
rand500-100 309125 309125 3 309125 9 309125 9 309125 3 309125 1 309125 1
p500-5-1 17691 17691 20 17691 20 17691 20 17691 20 17691 2 17691 1
p500-5-2 17169 17169 20 17169 10 17169 6 17169 19 17169 2 17169 6
p500-5-3 16816 16816 9 16816 20 16816 2 16816 4 16814 1 16816 2
p500-5-4 16808 16808 20 16808 20 16808 22 16808 20 16808 12 16808 16
p500-5-5 16957 16957 20 16957 20 16957 20 16957 20 16957 11 16957 17
p500-5-6 16615 16615 20 16615 20 16615 16 16615 20 16615 9 16615 11
p500-5-7 16649 16649 20 16649 19 16649 7 16649 19 16649 1 16649 3
p500-5-8 16756 16756 20 16756 18 16756 20 16756 20 16756 17 16756 14
p500-5-9 16629 16629 20 16629 20 16629 20 16629 20 16629 7 16629 5
p500-5-10 17360 17360 20 17360 20 17360 20 17360 20 17360 12 17360 20
p500-100-1 308896 308896 18 308896 18 308896 19 308896 19 308896 4 308896 11
p500-100-2 310241 310241 18 310241 8 310241 16 310241 13 310241 2 310241 5
p500-100-3 310477 310477 20 310477 8 310477 19 310477 20 310477 3 310477 5
p500-100-4 309567 309567 20 309567 12 309567 9 309567 16 309567 1 309567 1
p500-100-5 309135 309135 20 309135 20 309135 20 309135 19 309135 9 309135 12
p500-100-6 310280 310280 20 310280 20 310280 20 310280 19 310280 17 310280 18
p500-100-7 310063 310063 20 310063 20 310063 14 310063 20 310063 9 310063 19
p500-100-8 303148 303148 20 303148 20 303148 20 303148 20 303148 12 303148 14
p500-100-9 305305 305305 20 305305 20 305305 20 305305 20 305305 15 305305 16
p500-100-10 314864 314864 20 314864 20 314864 20 314864 20 314864 5 314864 18
gauss500-100-1 265070 265070 19 265070 18 265070 20 265070 19 265070 3 265070 3
gauss500-100-2 269076 269076 19 269076 20 269076 16 269076 16 269076 5 269076 4
gauss500-100-3 257700 257700 12 257700 17 257700 5 257700 9 257700 3 257700 1
gauss500-100-4 267683 267683 20 267683 20 267683 18 267683 19 267683 8 267683 11
gauss500-100-5 271567 271567 20 271567 20 271567 20 271567 20 271567 9 271567 16
unif700-100-1 515016 515016 20 515016 20 515016 18 515016 15 515016 3 514895 2
unif700-100-2 519441 519441 20 519441 20 519441 17 519441 20 519441 7 519441 5
unif700-100-3 512351 512351 19 512351 8 512351 16 512351 15 512351 10 512351 1
unif700-100-4 513582 513582 20 513582 17 513582 20 513582 18 513582 16 513582 1
unif700-100-5 510585 510585 8 510585 3 510585 5 510585 1 510585 4 510234 3
unif800-100-1 639675 639675 20 639675 18 639675 3 639675 7 639675 4 639491 1
unif800-100-2 630704 630704 20 630704 19 630704 12 630704 4 630704 6 630628 1
unif800-100-3 629375 629375 1 629108 7 629108 2 629108 6 629375 1 628639 1
unif800-100-4 624728 624728 7 624728 6 624728 7 624728 9 624728 3 623907 1
unif800-100-5 625905 625905 16 625905 20 625905 3 625905 3 625905 3 625481 1
total/avg 233175.7 868 233170.1 835 233170.1 708 233170.1 792 233175.6 447 233119.2 492

However, as the number of vertices increases, our algorithm SACC has a better perfor-
mance than others. In Table 3, it is easy to see that our algorithm finds the best solutions
for large-scale instances, providing 44 best solutions among all algorithms. Other algorithms
can produce better solutions for only a few instances. For example, MDMCP provides 8 best
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solutions, TMLS SA provides only 4, and others find fewer best solutions. SGVNS cannot
solve instances with more than 2000 vertices due to its memory allocation mechanism, so we
mark N/A in the table. It is also worth to mention that our algorithm performs better for
all instances with 2500 vertices or more except for b2500.9. Besides, our algorithm performs
better than others on hit times, and for each large-scale instance, we can see the number of
hits of our algorithm is the highest. So it is clear that our algorithm has a good ability to
solve large-scale graphs.

Moreover, our algorithm updates 34 best-known solutions, and all of them are large-scale
instances containing no less than 1000 vertices.

In the following, we discuss the average results over 20 runs. Also, we record solution
time, i.e., the runtime cost by an algorithm at the last time updating the best found solution.
We calculate the average runtimes (in seconds) and list them together with average solutions
in Table 4 and Table 5.

Similar to the former tables, there are only small differences in solving the first instance
set, since for most instances all algorithms can achieve the same performance. SACC
achieves a slightly better average solution in total than others. But results of the second
instance set in Table 5 are different. It is clear that our algorithm has the best average
value for 42 instances among all algorithms, MDMCP performs best on 4 instances, and
others are worse than MDMCP and ours.

Moreover, there are only tiny differences in average runtime among these algorithms.
SACC is slightly faster than MDMCP, where the average runtime of SACC is 7388.5s and
7850.7s for MDMCP. Although TMLS SA has the smallest average runtime in total (i.e.,
6581.1s) but its average solution quality is not satisfactory, so TMLS SA converges too early.
Besides, both the runtime and solution quality of ITS are not comparable with others.

Further, we show statistical analysis of computational results. As we mentioned above,
SACC and MDMCP do not have a statistical difference on small instances, because most
small instances are solved effectively and these algorithms can always find the best-known
solutions. Therefore, we only analyze the second instance set (large instances).

We perform Wilcoxon signed-rank test with a significance level of 99%. Table 6 gives the
p-value by testing SACC against others. The row “avg” is the results of average solutions
over 20 runs, and the row “best” means the best found solutions over 20 runs. Clearly, the
table indicates our algorithm is significantly better than others, because the p-values are
all smaller than 0.01. Here we do not calculate the p-value against SGVNS because it fails
to solve most instances in the second instance set.

Also, we draw box and whisker plots of the results to visualize summary statistics. We
calculate the gap between an algorithm’s result and the best result of all algorithms for each
instance (the ratio of the difference between the best result and an algorithm’s result to the
best result). Figure 2 and Figure 3 depict the gaps, where Figure 2 is the gap between the
average solution and the best solution of all algorithms, and Figure 3 is the gap between
the best solution produced by an algorithm and the best of all algorithms. From the figures
we can see that SACC has the smallest gaps to the best values, and the differences between
our algorithm and others are significant. The figures also confirm the results reported in
the existing works, which concluded that MDMCP and TMLS SA are better than other
previous algorithms.
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Table 3: Best solutions over 20 runs and hit times of comparative algorithms on large-scale
instances

SACC MDMCP TMLS SA CPP-P3 SGVNS ITS
instance best fbest hit fbest hit fbest hit fbest hit fbest hit fbest hit
p1000-1 885281 885281 5 885016 2 885281 1 885016 3 885281 1 883885 1
p1000-2 881751 881751 14 881751 12 881751 8 881751 1 881751 2 879916 2
p1000-3 866488 866488 3 866488 1 866488 1 866441 1 866383 1 864309 2
p1000-4 869374 869374 20 869374 8 869374 16 869374 5 869374 12 866548 1
p1000-5 888960 888960 2 888960 1 888950 1 888878 2 888861 1 887727 1
p1500-1 1619470 1619470 2 1619421 1 1619271 1 1619281 1 1619016 1 1615258 1
p1500-2 1649778 1649778 16 1649778 1 1649248 1 1649066 1 1649702 1 1644753 1
p1500-3 1611197 1611197 11 1611184 1 1611050 1 1609115 1 1609370 1 1604369 1
p1500-4 1641933 1641933 16 1641933 9 1641751 1 1641751 1 1641848 2 1637038 1
p1500-5 1595627 1595627 20 1595627 5 1595472 1 1594013 1 1595627 1 1588522 1
p2000-1 2508005 2508005 3 2507942 1 2507831 1 2506692 1 2507427 1 2497193 1
p2000-2 2495994 2495994 1 2494812 1 2494553 1 2492237 1 2493102 1 2485489 1
p2000-3 2544136 2543724 3 2543679 1 2543731 1 2543195 1 2544136 1 2536071 1
p2000-4 2528721 2528721 8 2528681 1 2527931 1 2525060 1 2526925 1 2518833 1
p2000-5 2514009 2514009 2 2512457 1 2511765 1 2509681 1 2511154 1 2504236 1
b2500.1 1064366 1064366 1 1063386 1 1061822 1 1059641 1 N/A N/A 1054601 1
b2500.2 1064428 1064428 2 1064142 1 1062852 1 1060845 1 N/A N/A 1054727 1
b2500.3 1083209 1083209 1 1082193 1 1080746 1 1079814 1 N/A N/A 1073870 1
b2500.4 1066258 1066258 1 1065356 1 1064415 1 1063700 1 N/A N/A 1059365 1
b2500.5 1066226 1066226 1 1065007 1 1064507 1 1062485 1 N/A N/A 1057916 1
b2500.6 1067531 1067531 1 1066629 1 1065825 2 1063660 1 N/A N/A 1056756 1
b2500.7 1068324 1068324 1 1067566 1 1067313 1 1064457 1 N/A N/A 1057995 1
b2500.8 1070534 1070534 1 1070072 1 1069304 1 1068167 1 N/A N/A 1062615 1
b2500.9 1071460 1071447 1 1071460 1 1070082 1 1067336 1 N/A N/A 1062298 1
b2500.10 1066871 1066871 2 1066771 1 1065944 1 1063011 1 N/A N/A 1057894 1
p3000.1 3259900 3259900 6 3258378 1 3256471 1 3252394 1 N/A N/A 3233145 1
p3000.2 4101652 4101652 1 4100246 1 4093370 1 4091478 1 N/A N/A 4076479 2
p3000.3 4122814 4122814 6 4122405 1 4117624 1 4115631 1 N/A N/A 4090761 1
p3000.4 4588584 4588584 7 4588352 1 4585296 1 4580716 1 N/A N/A 4555927 1
p3000.5 4639266 4639266 1 4638953 1 4629046 1 4627606 1 N/A N/A 4599415 1
p4000.1 5021579 5021579 1 5016051 1 5011199 1 4998104 1 N/A N/A 4970023 1
p4000.2 6381090 6381090 2 6377704 1 6366674 1 6353441 1 N/A N/A 6335155 1
p4000.3 6388024 6388024 1 6386642 1 6365419 1 6362378 1 N/A N/A 6333558 1
p4000.4 7127592 7127592 1 7122180 1 7110855 1 7101030 1 N/A N/A 7055869 1
p4000.5 7048838 7048838 1 7048183 1 7042514 1 7011064 1 N/A N/A 6970690 1
p5000.1 7011355 7011355 1 7004710 1 6993503 1 6970941 1 N/A N/A 6922474 1
p5000.2 8848190 8848190 1 8838082 1 8822227 1 8801127 1 N/A N/A 8742862 1
p5000.3 8978790 8978790 1 8975477 1 8946060 1 8923086 1 N/A N/A 8860487 1
p5000.4 9951747 9951747 1 9946401 1 9922806 1 9905517 1 N/A N/A 9823737 1
p5000.5 9842989 9842989 1 9831557 1 9809376 1 9795784 1 N/A N/A 9705216 1
p6000.1 9217584 9217584 1 9207435 1 9185247 1 9169654 1 N/A N/A 9060203 1
p6000.2 11729985 11729985 1 11714145 1 11683518 1 11660212 1 N/A N/A 11508249 1
p6000.3 13058463 13058463 1 13038071 1 13008406 1 12968645 1 N/A N/A 12848247 1
p7000.1 11638146 11638146 1 11615327 1 11595488 1 11575917 1 N/A N/A 11408433 2
p7000.2 14697515 14697515 1 14685148 1 14622821 1 14595665 1 N/A N/A 14401012 1
p7000.3 16391377 16391377 1 16386765 1 16324992 1 16277903 1 N/A N/A 16004301 1
total/avg 4561630.1 176 4558302.1 77 4549134.1 69 4540793.4 53 N/A N/A 4502574.5 50

5.3 Analysis on Strategies

In this subsection, we analyze our configuration checking strategy as well as the descent
search method. We test several versions of our algorithms with (without) the introduced
strategies and a modified configuration checking strategy, aiming at providing an insightful
analysis on effects of the strategies.
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Table 4: Average behavior of comparative algorithms on small instances

SACC MDMCP TMLS SA CPP-P3 SGVNS ITS
instance favg runtime favg runtime favg runtime favg runtime favg runtime favg runtime
rand100-5 1406.4 0.0 1407.0 0.2 1407.0 0.6 1407.0 0.0 1407.0 0.2 1407.0 0.0
rand100-100 24296.0 0.1 24296.0 0.5 24296.0 11.3 24296.0 0.1 24296.0 1.6 24296.0 0.0
rand200-5 4079.0 5.0 4079.0 6.9 4078.2 40.8 4079.0 2.4 4079.0 23.7 4079.0 4.6
rand200-100 74924.0 5.9 74924.0 6.6 74910.2 47.0 74924.0 3.3 74896.3 51.5 74924.0 4.6
rand300-5 7732.0 14.9 7732.0 33.0 7728.1 76.0 7732.0 9.8 7730.6 61.9 7731.7 81.8
rand300-100 152709.0 0.5 152709.0 0.7 152709.0 12.9 152709.0 1.0 152709.0 5.8 152709.0 2.8
sym300-50 17592.0 38.4 17592.0 25.2 17587.2 77.7 17592.0 19.7 17590.5 49.4 17592.0 61.8
regnier300-50 32164.0 0.1 32164.0 0.3 32164.0 0.1 32164.0 0.1 32164.0 0.5 32164.0 0.2
zahn300 2504.0 2.3 2504.0 1.7 2503.4 28.5 2504.0 1.9 2504.0 13.3 2504.0 4.8
rand400-5 12133.0 30.7 12133.0 59.1 12129.5 228.2 12133.0 29.9 12132.8 207.4 12132.4 103.3
rand400-100 222757.0 65.0 222757.0 25.6 222747.0 159.9 222757.0 39.5 222716.5 196.5 222734.9 232.7
rand500-5 17127.0 45.6 17127.0 136.4 17127.0 27.0 17127.0 108.1 17124.0 112.0 17119.8 271.7
rand500-100 308914.2 38.2 308995.1 153.3 309010.3 150.5 308937.9 105.3 308841.6 209.1 308891.8 142.3
p500-5-1 17691.0 25.1 17691.0 28.8 17691.0 80.6 17691.0 107.5 17681.5 159.2 17678.4 224.4
p500-5-2 17169.0 19.5 17167.5 91.6 17166.9 148.3 17168.9 145.4 17158.3 183.1 17161.3 240.7
p500-5-3 16815.5 133.7 16816.0 177.8 16811.6 215.8 16815.1 152.7 16804.0 213.3 16813.3 171.2
p500-5-4 16808.0 15.4 16808.0 40.3 16808.0 29.9 16808.0 38.3 16795.7 139.3 16806.0 281.5
p500-5-5 16957.0 17.0 16957.0 42.2 16957.0 40.3 16957.0 33.2 16951.8 178.1 16956.4 183.1
p500-5-6 16615.0 25.6 16615.0 87.7 16614.3 109.5 16615.0 52.1 16610.8 250.9 16612.6 200.8
p500-5-7 16649.0 78.6 16648.9 105.9 16643.7 179.5 16648.9 127.2 16630.9 187.2 16639.9 285.1
p500-5-8 16756.0 29.6 16755.7 157.7 16756.0 44.8 16756.0 28.7 16752.3 156.8 16752.7 267.7
p500-5-9 16629.0 47.1 16629.0 119.6 16629.0 104.4 16629.0 61.8 16617.7 195.6 16620.0 348.4
p500-5-10 17360.0 5.2 17360.0 4.8 17360.0 17.0 17360.0 9.2 17359.5 143.7 17360.0 125.0
p500-100-1 308895.1 142.9 308895.1 101.1 308895.6 146.0 308895.7 160.5 308880.1 136.5 308878.7 146.9
p500-100-2 310233.2 185.8 310194.2 99.3 310225.4 98.9 310217.0 187.7 310063.8 153.4 310036.7 267.4
p500-100-3 310477.0 39.1 310441.6 102.3 310474.1 129.4 310477.0 145.4 310260.9 118.6 310329.8 288.4
p500-100-4 309567.0 106.5 309542.0 200.5 309508.2 217.5 309526.8 147.1 309316.7 123.6 309330.5 245.0
p500-100-5 309135.0 38.5 309135.0 26.6 309135.0 40.4 309126.3 150.8 308976.5 126.2 309080.7 251.6
p500-100-6 310280.0 33.8 310280.0 20.3 310280.0 41.2 310260.0 150.7 310227.7 250.9 310235.5 185.5
p500-100-7 310063.0 117.2 310063.0 145.8 310045.6 130.7 310063.0 42.2 310020.1 213.8 310060.1 204.6
p500-100-8 303148.0 100.1 303148.0 66.1 303148.0 71.2 303148.0 84.5 302868.2 164.6 302981.4 242.3
p500-100-9 305305.0 12.8 305305.0 5.6 305305.0 10.3 305305.0 25.2 305270.4 163.7 305283.3 216.6
p500-100-10 314864.0 14.1 314864.0 17.0 314864.0 49.2 314864.0 15.5 314799.5 146.3 314853.2 159.5
gauss500-100-1 265059.9 122.1 265049.8 103.6 265070.0 105.7 265059.9 141.5 264841.0 118.4 264853.3 246.9
gauss500-100-2 269067.9 169.8 269076.0 91.7 269067.6 135.3 269061.6 110.4 268845.2 194.0 268928.0 242.5
gauss500-100-3 257619.2 221.9 257667.5 141.8 257691.5 134.5 257607.9 176.1 257340.9 163.8 257204.6 166.3
gauss500-100-4 267683.0 41.2 267683.0 17.2 267678.6 137.4 267674.8 83.7 267608.5 139.2 267312.5 193.9
gauss500-100-5 271567.0 12.1 271567.0 6.5 271567.0 98.2 271567.0 32.5 271502.7 262.7 271540.0 233.0
unif700-100-1 515016.0 142.5 515016.0 207.1 514985.3 303.0 514835.5 412.8 514391.5 351.0 513821.2 485.0
unif700-100-2 519441.0 152.6 519441.0 110.9 519276.1 341.2 519441.0 325.0 518395.1 456.8 518458.1 531.6
unif700-100-3 512310.4 349.1 511870.1 514.9 512038.5 246.9 512061.2 441.8 511676.4 505.4 510137.9 491.6
unif700-100-4 513582.0 125.5 513440.6 455.1 513582.0 52.0 513561.4 280.7 513292.3 277.6 511523.8 489.1
unif700-100-5 510454.2 341.0 510402.4 236.8 510361.7 441.1 510325.0 554.9 510068.9 405.7 509533.0 579.4
unif800-100-1 639675.0 152.9 639672.8 410.6 639371.1 516.2 639616.0 413.8 639175.2 387.0 638474.1 520.1
unif800-100-2 630704.0 209.9 630703.9 348.4 630652.3 446.7 630647.8 405.1 630287.6 510.4 629373.2 546.9
unif800-100-3 629049.1 459.4 629002.4 621.5 628740.2 484.6 628863.6 420.5 628495.1 401.8 627353.6 513.5
unif800-100-4 624366.2 368.2 624440.0 452.1 624499.7 364.2 624434.8 451.4 624171.4 575.5 622700.0 601.0
unif800-100-5 625846.2 289.3 625905.0 233.3 625603.1 280.6 625548.6 483.3 625228.4 449.3 624196.0 618.2
avg 233149.9 95.6 233139.0 125.9 233122.9 142.8 233125.0 144.2 232990.8 198.7 232795.1 248.0

Three modified versions of SACC are proposed here by using various combination of
strategies:

• SAiter is the version that employs the iteration of simulated annealing, and does not
use the configuration checking strategy and the DescentSearch method, i.e., SACC
excluding the configuration checking strategy and the descent search method.

• SAdesc is the version that performs DescentSearch but does not trigger the configu-
ration checking strategy. State in another way, the configuration checking strategy is
disabled in the function BestCluster, and thus the algorithm will choose the cluster
with the maximum increment.
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Table 5: Average behavior of comparative algorithms on large-scale instances

SACC MDMCP TMLS SA CPP-P3 SGVNS ITS
instance favg runtime favg runtime favg runtime favg runtime favg runtime favg runtime
p1000-1 885029.5 721.1 884749.2 801.4 884871.4 766.1 884371.8 1162.2 883910.3 1037.7 881247.7 989.9
p1000-2 881525.8 872.7 881480.9 1076.5 880980.5 504.1 880544.2 1045.7 880191.7 990.6 878439.3 1106.6
p1000-3 866227.6 916.3 866296.2 1188.8 865866.8 973.1 865420.4 1081.2 865094.5 1058.7 862338.8 916.8
p1000-4 869374.0 464.1 868770.2 971.1 869281.1 782.4 868593.1 922.2 868592.3 948.8 864603.5 990.6
p1000-5 888579.9 924.2 888508.9 1143.9 888347.5 498.7 888214.0 914.9 888211.2 823.8 885730.0 1120.8
p1500-1 1619461.9 1530.4 1619270.3 1840.8 1617088.6 1639.6 1616768.2 1837.7 1615599.2 2446.9 1610283.0 2621.5
p1500-2 1649333.2 1539.3 1648963.9 2400.1 1646984.5 1805.9 1646900.7 1989.3 1644636.0 1768.8 1640417.1 2450.9
p1500-3 1610649.3 1718.4 1610114.6 2572.7 1607384.6 1797.0 1607018.5 2266.2 1606870.2 2324.0 1599411.2 2221.1
p1500-4 1641724.9 1576.3 1641854.1 2188.5 1639167.4 1749.0 1638996.0 2257.2 1637994.2 1716.9 1630857.5 2300.9
p1500-5 1595627.0 1309.2 1594744.4 2225.3 1593969.5 1807.4 1592413.7 2347.4 1591863.6 1876.5 1584605.2 2252.9
p2000-1 2507580.0 4554.2 2506411.2 7026.0 2503658.6 4906.8 2501897.5 5487.6 2502584.2 5161.7 2490738.0 5636.9
p2000-2 2494752.5 4941.9 2494057.1 4565.7 2489496.8 4789.3 2489264.3 5003.3 2488469.9 4746.8 2477793.1 6256.2
p2000-3 2543164.8 4569.3 2542872.0 4463.1 2539138.5 3943.9 2538463.2 5915.2 2539021.0 4649.6 2527159.0 5868.6
p2000-4 2528048.7 5477.7 2527830.9 5552.3 2522811.8 4577.1 2522707.0 5489.9 2522935.0 5684.2 2512500.2 5810.3
p2000-5 2512017.8 4579.1 2510457.3 4876.2 2508388.0 5750.5 2505609.3 5765.8 2508007.0 6140.6 2496996.3 5851.8
b2500.1 1062794.0 5848.9 1061252.3 5282.8 1059512.0 4106.8 1057873.1 5453.5 N/A N/A 1051512.6 6177.7
b2500.2 1063377.8 5763.8 1062422.9 6429.2 1060141.5 5170.1 1059020.6 6323.2 N/A N/A 1052115.2 6925.4
b2500.3 1082297.1 5638.5 1081398.3 5744.8 1078579.0 5714.4 1077071.2 6100.5 N/A N/A 1070640.5 5260.9
b2500.4 1065600.6 5552.0 1064954.9 4841.3 1062677.5 4363.5 1061263.6 5392.2 N/A N/A 1055368.0 5696.4
b2500.5 1065391.8 5276.5 1064078.5 5416.8 1062385.8 4168.1 1059844.4 5905.1 N/A N/A 1053858.1 6589.1
b2500.6 1066423.0 5875.5 1065527.1 5761.1 1063387.8 4675.2 1060998.3 6367.8 N/A N/A 1055080.3 6062.5
b2500.7 1067665.9 5829.0 1066829.7 5021.2 1065031.3 5225.7 1063393.7 5986.3 N/A N/A 1056204.9 5794.1
b2500.8 1070132.1 4884.2 1069331.8 5934.6 1066753.4 4528.6 1065768.4 4905.6 N/A N/A 1057983.6 6463.2
b2500.9 1070680.9 6026.6 1070233.3 4073.8 1067694.7 3468.3 1066106.4 6003.0 N/A N/A 1058917.8 5970.7
b2500.10 1066642.8 6269.2 1066198.7 5873.3 1062170.4 4576.9 1060604.2 6662.7 N/A N/A 1053105.7 6780.5
p3000.1 3258066.2 11183.4 3255182.0 12807.0 3249355.1 9767.1 3245084.5 11840.7 N/A N/A 3224769.1 10887.3
p3000.2 4100589.8 7834.2 4097360.2 9271.0 4089067.7 11281.3 4084435.2 12989.9 N/A N/A 4063505.5 12358.0
p3000.3 4121662.7 10118.1 4118719.0 12549.0 4107593.4 9324.4 4104790.5 11256.5 N/A N/A 4078299.4 13977.0
p3000.4 4586545.0 10629.6 4585094.5 11321.7 4572942.2 10953.9 4569794.8 12908.1 N/A N/A 4539313.9 14110.3
p3000.5 4632508.0 11996.0 4633187.6 12553.7 4618095.3 10505.1 4615328.8 12593.8 N/A N/A 4586673.4 12508.5
p4000.1 5015852.0 12193.2 5011392.5 11190.4 4996223.4 9149.6 4988841.6 12144.9 N/A N/A 4953857.1 14423.1
p4000.2 6375097.9 10459.3 6371684.0 11933.8 6353129.4 11243.1 6342676.0 13771.3 N/A N/A 6301585.4 13316.7
p4000.3 6382777.9 12274.8 6383783.8 13528.5 6354013.5 8310.8 6351079.8 15000.3 N/A N/A 6301181.6 13781.7
p4000.4 7123288.1 10903.2 7116888.0 13672.2 7099920.3 9006.3 7088911.9 11429.4 N/A N/A 7034381.1 15453.2
p4000.5 7043396.7 11178.2 7037057.3 12325.8 7018026.2 10249.4 7002004.6 13423.2 N/A N/A 6948567.1 17632.1
p5000.1 7005544.5 10423.0 6998458.6 13932.6 6976279.1 10152.7 6955997.9 12480.3 N/A N/A 6893235.1 14477.7
p5000.2 8838727.6 12713.2 8829379.9 14344.4 8800679.8 9307.2 8783998.3 14357.2 N/A N/A 8694258.2 16054.0
p5000.3 8969701.8 12415.1 8965445.3 13783.6 8929892.9 11598.8 8910271.6 16165.2 N/A N/A 8824513.8 16180.6
p5000.4 9944681.4 11769.9 9933111.9 12401.8 9906679.3 10087.5 9886947.4 12987.6 N/A N/A 9775197.6 15188.3
p5000.5 9836746.4 11898.0 9823943.3 11772.7 9789355.8 10673.6 9775388.4 13935.8 N/A N/A 9664859.0 15906.7
p6000.1 9206922.5 10307.6 9201348.9 10543.6 9164910.2 12163.4 9139816.5 16278.2 N/A N/A 9024459.5 15073.0
p6000.2 11719095.2 12689.4 11706646.8 12360.8 11659342.9 8478.4 11633754.3 16390.6 N/A N/A 11485554.4 14626.6
p6000.3 13042774.6 12847.6 13027470.7 14030.2 12984775.4 12155.0 12943624.1 13369.3 N/A N/A 12762380.6 16039.8
p7000.1 11625022.6 14583.9 11605625.1 12905.6 11563759.6 10738.3 11532784.8 15131.4 N/A N/A 11350953.1 14583.9
p7000.2 14683896.6 15121.2 14671977.6 15121.0 14594817.8 11169.0 14559221.1 16207.6 N/A N/A 14299194.0 15202.7
p7000.3 16379753.1 13676.9 16361097.8 11513.4 16285208.6 14128.6 16239420.1 13211.9 N/A N/A 15925156.1 14651.8
avg 4557972.9 7388.5 4554205.7 7850.7 4539561.6 6581.1 4531158.6 8488.2 N/A N/A 4483473.9 9011.9

Table 6: The p-value of Wilcoxon signed-rank test

MDMCP TMLS SA CPP-P3 ITS
avg 5.813E-08 3.523E-09 3.523E-09 3.523E-09
best 5.905E-08 1.772E-08 7.616E-09 3.523E-09

• SAdesc&fullcc is the version stipulating that the configuration checking strategy up-
dates timestamps not only after a vertex performs a better move and also after a
decreasing move. Therefore, the algorithm does not forbid a vertex to move back to
a cluster as long as a new vertex is added to the cluster.

We only list and analyze the experimental results on large-scale instances. Table 7 and
8 list the comparative results, showing the best solutions found and average solutions, re-
spectively. First, from the tables, it can be seen that SAiter can obtain good solutions,
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Figure 2: The box plot of gaps between the average solutions found and the best solution
of all algorithms.
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Figure 3: The box plot of gaps between the best solutions produced by an algorithm and
the best solution of all algorithms.

and by combining the descent search method the algorithm SAdesc shows a good ability
to find better solutions, as it produces more best found solutions over 20 runs compared
with SAiter. Moreover, our configuration checking strategy further improves the quality of
solutions. It produces the most number of the best found solutions, and more importantly,
it can improve average solutions greatly, since we find it performs better on 29 instances
compared with SAiter whereas SAiter only has 16 better average solutions. Additionally,
we can see the configuration checking strategy has a better performance than the full con-
figuration checking strategy. Though they achieve similar results for the best solutions over
20 runs, SACC has far better average results than SAdesc&fullcc, because SACC has 29
better average solutions and SAdesc&fullcc only has 17 better solutions. As a result, it
confirms that configuration checking has essential effects on improving searching behavior
in our simulated annealing algorithm. It is noted that the average runtime of finding the
best solution and hit time are similar among all versions in comparison here.
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Table 7: Comparative analysis of strategies (best solution)

SACC SAiter SAdesc SAdesc&fullcc

instance fbest hit fbest hit fbest hit fbest hit

p1000-1 885281 5 885281 5 885281 6 885281 4
p1000-2 881751 14 881751 12 881751 13 881751 14
p1000-3 866488 3 866488 2 866488 1 866587 1
p1000-4 869374 20 869374 20 869374 19 869374 20
p1000-5 888960 2 888960 1 888960 1 888960 2
p1500-1 1619470 2 1619470 4 1619470 6 1619470 6
p1500-2 1649778 16 1649778 17 1649778 19 1649778 20
p1500-3 1611197 11 1611197 8 1611197 11 1611197 14
p1500-4 1641933 16 1641933 13 1641933 14 1641933 15
p1500-5 1595627 20 1595627 17 1595627 16 1595627 19
p2000-1 2508005 3 2508005 4 2508005 1 2508005 1
p2000-2 2495994 1 2495099 4 2495099 5 2495522 1
p2000-3 2543724 3 2544728 1 2544728 1 2543724 2
p2000-4 2528721 8 2528721 9 2528721 11 2528721 9
p2000-5 2514009 2 2514009 1 2512730 3 2512730 3
b2500.1 1064366 1 1063663 1 1064063 2 1064366 1
b2500.2 1064428 2 1064267 1 1064270 1 1064176 1
b2500.3 1083209 1 1083209 1 1082582 1 1082582 1
b2500.4 1066258 1 1066124 3 1066148 1 1066138 1
b2500.5 1066226 1 1066207 1 1066169 1 1066174 1
b2500.6 1067531 1 1067214 1 1067214 1 1067214 1
b2500.7 1068324 1 1068566 1 1068391 3 1068576 1
b2500.8 1070534 1 1070151 1 1070534 1 1070151 3
b2500.9 1071447 1 1071497 2 1071646 1 1071411 1
b2500.10 1066871 2 1066818 5 1066871 3 1066871 1
p3000.1 3259900 6 3259900 3 3259900 5 3259900 2
p3000.2 4101652 1 4101652 1 4102907 1 4102182 1
p3000.3 4122814 6 4122814 6 4122814 5 4122814 4
p3000.4 4588584 7 4588584 5 4588584 3 4588584 8
p3000.5 4639266 1 4639203 1 4639266 3 4639203 2
p4000.1 5021579 1 5018049 1 5019636 1 5021579 1
p4000.2 6381090 2 6381289 1 6381090 1 6381289 1
p4000.3 6388024 1 6387931 1 6387703 1 6388075 1
p4000.4 7127592 1 7128292 1 7130335 1 7130397 1
p4000.5 7048838 1 7048838 2 7048838 3 7048838 4
p5000.1 7011355 1 7011160 1 7010819 1 7010728 1
p5000.2 8848190 1 8847591 1 8845424 1 8850743 1
p5000.3 8978790 1 8975219 1 8978405 1 8977584 1
p5000.4 9951747 1 9957492 1 9954155 1 9953586 1
p5000.5 9842989 1 9845604 1 9845791 1 9842523 1
p6000.1 9217584 1 9211365 1 9215077 1 9218467 1
p6000.2 11729985 1 11728425 1 11730979 1 11733007 1
p6000.3 13058463 1 13049086 1 13055387 1 13056965 1
p7000.1 11638146 1 11636377 1 11638414 1 11638591 1
p7000.2 14697515 1 14699831 1 14690280 1 14699943 1
p7000.3 16391377 1 16403924 1 16408045 1 16398054 1

total/avg 4561630.1 176 4561538.3 168 4561758.2 177 4561942.8 179

1506



Improving Simulated Annealing for Clique Partitioning Problems

Table 8: Comparative analysis of strategies (average values)

SACC SAiter SAdesc SAdesc&fullcc

instance favg runtime favg runtime favg runtime favg runtime

p1000-1 885029.5 721.1 885055.9 818.4 884965.1 782.1 885008.6 692.2
p1000-2 881525.8 872.7 881396.9 897.9 881480.3 1002.5 881513.8 1035.4
p1000-3 866227.6 916.3 866341.9 1031.1 866332.2 989.8 866226.7 884.8
p1000-4 869374.0 464.1 869374.0 796.6 869315.8 418.6 869374.0 543.7
p1000-5 888579.9 924.2 888644.5 1079.1 888626.0 726.6 888590.2 759.2
p1500-1 1619461.9 1530.4 1619438.1 1534.9 1619443.9 1408.5 1619448.9 1847.3
p1500-2 1649333.2 1539.3 1649408.0 1126.9 1649669.5 1155.4 1649778.0 1125.6
p1500-3 1610649.3 1718.4 1610266.9 1649.9 1610524.6 1647.5 1610712.5 1994.8
p1500-4 1641724.9 1576.3 1641869.3 2118.3 1641796.7 1511.3 1641865.0 1696.0
p1500-5 1595627.0 1309.2 1595449.5 1099.3 1595442.1 1245.3 1595575.2 967.6
p2000-1 2507580.0 4554.2 2507249.6 4252.7 2506798.7 3244.8 2507173.3 4848.2
p2000-2 2494752.5 4941.9 2494610.7 3729.0 2494673.0 5446.7 2494638.2 5108.2
p2000-3 2543164.8 4569.3 2543227.5 5659.5 2543106.8 3748.8 2543223.2 4862.8
p2000-4 2528048.7 5477.7 2528291.5 4358.8 2528236.5 5047.8 2528029.5 4167.0
p2000-5 2512017.8 4579.1 2512122.5 4788.6 2511870.5 4684.4 2511555.4 4900.5
b2500.1 1062794.0 5848.9 1062549.2 5421.1 1062515.3 5129.4 1063028.9 4064.4
b2500.2 1063377.8 5763.8 1063138.9 6135.9 1063103.0 5203.4 1063367.8 4932.4
b2500.3 1082297.1 5638.5 1082363.8 5213.2 1082226.1 4896.4 1082264.8 6504.4
b2500.4 1065600.6 5552.0 1065546.7 5696.7 1065574.8 4494.4 1065575.8 5544.6
b2500.5 1065391.8 5276.5 1065368.3 6392.6 1065262.5 5656.9 1065178.1 5243.6
b2500.6 1066423.0 5875.5 1066228.5 4701.0 1066315.4 4554.5 1066238.7 5403.1
b2500.7 1067665.9 5829.0 1067590.1 6001.7 1067789.1 4447.8 1067610.6 4898.3
b2500.8 1070132.1 4884.2 1069864.7 6176.7 1070088.4 4162.9 1069995.2 5801.5
b2500.9 1070680.9 6026.6 1070885.3 5460.4 1070885.2 6020.5 1070745.5 4911.9
b2500.10 1066642.8 6269.2 1066350.6 5370.4 1066710.8 4855.3 1066725.5 4705.0
p3000.1 3258066.2 11183.4 3257578.8 10780.1 3258301.8 9738.9 3257704.6 11949.7
p3000.2 4100589.8 7834.2 4100194.4 9594.5 4099885.4 10448.9 4100413.3 10330.7
p3000.3 4121662.7 10118.1 4121518.4 10408.9 4121490.1 8718.1 4121658.0 9592.7
p3000.4 4586545.0 10629.6 4585722.7 11987.0 4586788.4 10171.0 4588239.3 8315.9
p3000.5 4632508.0 11996.0 4632387.5 9999.0 4635045.8 11352.1 4634180.2 10044.8
p4000.1 5015852.0 12193.2 5014831.5 12145.0 5014662.1 10701.4 5016110.9 14694.6
p4000.2 6375097.9 10459.3 6376106.8 12181.7 6375746.2 13047.0 6376087.5 11352.7
p4000.3 6382777.9 12274.8 6382529.3 11754.3 6383128.0 8323.4 6384337.0 10219.7
p4000.4 7123288.1 10903.2 7122700.1 10689.2 7124126.6 11907.2 7123640.9 8934.3
p4000.5 7043396.7 11178.2 7043585.1 10176.5 7042997.2 8361.2 7043758.4 10454.7
p5000.1 7005544.5 10423.0 7005712.1 10131.7 7005114.9 13943.7 7005480.1 11934.0
p5000.2 8838727.6 12713.2 8835880.0 11345.6 8838666.3 12922.0 8836915.0 11259.1
p5000.3 8969701.8 12415.1 8966558.3 9486.2 8967739.7 11716.2 8969847.7 11109.8
p5000.4 9944681.4 11769.9 9946227.4 9546.3 9944565.7 11772.4 9944450.3 11764.1
p5000.5 9836746.4 11898.0 9835513.1 13162.7 9835994.0 11695.6 9835772.1 11533.2
p6000.1 9206922.5 10307.6 9203278.2 12758.4 9207502.4 14146.5 9207097.3 14443.4
p6000.2 11719095.2 12689.4 11720868.7 11560.1 11718643.1 11517.4 11717781.7 13593.7
p6000.3 13042774.6 12847.6 13039451.5 13040.6 13042969.2 12337.8 13042665.5 12789.2
p7000.1 11625022.6 14583.9 11622482.3 14468.7 11621696.1 13920.6 11622668.0 16010.5
p7000.2 14683896.6 15121.2 14682257.6 14211.8 14679237.0 13992.4 14682901.8 14375.5
p7000.3 16379753.1 13676.9 16381407.0 12976.0 16381195.3 12923.2 16377952.3 13279.9

total 4557972.9 7388.5 4557596.1 7259.0 4557788.0 7090.0 4557893.6 7291.8
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5.4 Parameter Analysis

In the SACC algorithm, there is a parameter αtemp. It controls the speed of convergence and
determines iteration behavior. In the following, we analyze whether the SACC algorithm is
robust under the control parameter. Twelve instances are selected for parameter analysis:
rand300-5, rand500-100, p500-5-3, gauss500-100-3, unif700-100-2, unif800-100-4, p1000-1,
p1500-3, p2000-1, p2000-4, b2500.3, and p4000.1. The control parameter αtemp specifies
the decreasing speed of initial temperature in each call of simulated annealing, so the fol-
lowing experiments are performed to show whether the control parameter αtemp impacts on
effectiveness of SACC. We set αtemp to 6 values ranging from 1.0 to 0.90 by decrement at
0.2, and run SACC to solve the 12 instances over 20 runs. The accumulated objective value
of the 12 instances for each run is calculated. Figure 4 illustrates the box plot. In fact,
αtemp is not sensitive when it is set to 0.98, 0.96, 0.94, 0.92, 0.90, but without the method of
the shrinking mechanism that declines initial temperature each call of simulated annealing,
the algorithm cannot get comparable performance, as we can see when we set αtemp to 1.0
the results are clearly worse than the results with αtemp = 0.98. When varying αtemp from
0.98 to 0.90, there is a slight change on the results, and we choose 0.98 as it has the best
average value (15364344.15), and αtemp = 0.92 gets the second best value (15364182.6).
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Figure 4: The box plot of the accumulated objective values of 12 instances by varying values
of parameter αtemp

5.5 Analysis on the Restart Mechanism

Finally, we analyze the restart mechanism in our algorithm. We selected 4 instances (p1000-
1, p1500-1, p2000-1 and p4000.1) to show how often restart is performed and the efforts
of the restart mechanism. Here we call the procedure of lines 3-9 in Algorithm 3 a run of
iterated simulated annealing. We then count the runtime and the objective value for each
run of iterated simulated annealing as two variables, 100 runs for each instance, and draw
scatter plots to show the relationship between the variables. The results are illustrated
in Figure 5, where the x-axis is the runtime and the y-axis is the objective value. Each
point represents a run of iterated simulated annealing without a restart. Four sub-figures
show the distributions of the points for the 4 instances, respectively. Clearly, the points
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are scattered all over the graph, so those sub-figures show that there is no linear positive
relation between runtimes and the objective values, and there is no correlation between the
two variables. Moreover, without the restart mechanism, the algorithm will converge early.
For example, in Figure 5 (a), it takes about 80-130s to complete a run of iterated simulated
annealing, so more than 10 times restarts will be performed for SACC when solving p1000-
1. However, for the instance p4000.1 (Figure 5 (d)), it needs more time to complete search
until the temperature T decreases to 0, since a single run always requires more than 3000s
at most. Without the restart mechanism, SACC sometimes cannot get satisfactory results,
and thus the restart mechanism is necessary for our algorithm.

80 90 100 110 120 130 140

time(s)

8.82

8.825

8.83

8.835

8.84

8.845

8.85

8.855

o
b

je
c
ti
v
e

 v
a

lu
e

×10
5

(a) p1000-1

180 200 220 240 260 280 300 320 340

time(s)

1.612

1.613

1.614

1.615

1.616

1.617

1.618

1.619

1.62

o
b

je
c
ti
v
e

 v
a

lu
e

×10
6

(b) p1500-1

350 400 450 500 550 600 650

time(s)

2.496

2.498

2.5

2.502

2.504

2.506

2.508

2.51

o
b

je
c
ti
v
e

 v
a

lu
e

×10
6

(c) p2000-1

1800 2000 2200 2400 2600 2800 3000 3200 3400

time(s)

4.995

5

5.005

5.01

5.015

5.02

o
b

je
c
ti
v
e

 v
a

lu
e

×10
6

(d) p4000.1

Figure 5: Scatter plots for 4 instances: p1000-1, p1500-1, p2000-1 and p4000.1

Overall, with the above comparative experiments, it is clear that our algorithm has a
better performance than all the comparative algorithms, which have been proposed recently.
On the other hand, the comparative analysis of strategies employed in our algorithm con-
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firms that our newly proposed strategies are effective, and they can improve the performance
of our algorithm.

6. Conclusion

The clique partitioning problem is a classic combinatorial optimization problem and is
used to model many practical problems from real-life application, such as clustering, social
network analysis and manufacturing system. In the last three decades, many heuristics
and local search algorithms, as well as exact algorithms, have been presented to solve this
problem. In this paper, we propose an iterated simulated annealing algorithm to solve the
clique partitioning problem maximizing the total weights within clusters. In the algorithm,
one of the most important components is the simulated annealing algorithm combined
with configuration checking. We propose a new configuration check strategy that avoids
simulated annealing trapping in search cycling, and thus it enhances the ability of global
searching and prevents simulated annealing from revisiting some states that have been
visited recently. Furthermore, another component of our algorithm is the descent search
method. It is used to search a large neighborhood with the aim of finding a better solution
near the solution found by simulated annealing so far, and thus it compensates for the local
search ability of simulated annealing, which may miss some better solutions. In addition,
we integrate a restart mechanism into our algorithm.

We carried out extensive experiments to evaluate our algorithm, and compared our
algorithm with the state-of-the-art algorithms for the CPP. We employ benchmark instances
tested by the previous algorithms. There are 94 instances in total with 7000 vertices at
maximum. With the same limited time as set in (Lu et al., 2021), each instance is solved
20 times, and the best and average objective value, and runtimes to find the best solution
were counted, respectively. From the comparative results, we can conclude that our local
search algorithm has the best performance on most instances among all existing algorithms,
because it can produce the best solutions for most large-scale instances, and average results
of our algorithm are also better than others. In addition, we analyze our strategies in the
algorithm. We show that the configuration checking strategy is effective and the descent
search method improves solution quality. Finally, we analyze parameter settings and the
efforts of the restart strategy. Future works will include studies on combining other meta-
heuristics to solve the CPP more efficiently.
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