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Abstract
This paper addresses a data integration problem: given several mutually consistent datasets

each of which measures a subset of the variables of interest, how can one construct a probabilistic
model that fits the data and gives reasonable answers to questions which are under-determined by
the data? Here we show how to obtain a Bayesian network model which represents the unique
probability function that agrees with the probability distributions measured by the datasets and oth-
erwise has maximum entropy. We provide a general algorithm, OBN-cDS, which offers substantial
efficiency savings over the standard brute-force approach to determining the maximum entropy
probability function. Furthermore, we develop modifications to the general algorithm which en-
able further efficiency savings but which are only applicable in particular situations. We show that
there are circumstances in which one can obtain the model (i) directly from the data; (ii) by solving
algebraic problems; and (iii) by solving relatively simple independent optimisation problems.

1. Introduction

It is increasingly common to collect multiple datasets, involving hundreds of variables and thou-
sands of observations, to address a single problem. Different datasets tend to measure different
variables, even when the datasets are collected with the same application in mind. For instance, it
is common in systems pharmacology—and indeed in systems medicine more generally—to have
datasets measuring proteomics, transcriptomics, metabolomics, clinical data, and patient-reported
outcomes, and for these datasets to have very few variables in common; see, e.g., Bai and Abernethy
(2013); De Pretis et al. (2021); Tricco et al. (2016). How do we integrate all this data?

One approach to data integration is motivated by Objective Bayesian Epistemology (OBE),
which holds that a rational agent ought to adopt as a representation of her degrees of belief the
probability function with maximum entropy, P †, from all those probability functions that fit her
evidence. The entropy of a probability function is a measure of the extent to which it equivocates
between possible outcomes, and this approach is usually justified on the grounds that P † is the
function that fits the evidence but is maximally non-committal or equivocal in other respects (Jaynes,
2003; Williamson, 2010; Landes and Williamson, 2016).

In this paper, we apply OBE to the situation in which the agent’s body of evidence consists of a
collection of datasets (and nothing else). We take all variables to be discrete and we assume that the
datasets have been gathered in such a way that, when a variable occurs in more than one dataset, it
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is genuinely the same variable, with the same number of values, measured in the same way, in each
dataset in which it occurs. Furthermore, we assume that the datasets are large and reliable enough
that each dataset distribution provides an accurate estimate of the frequency distribution of the mea-
sured variables, and that they are consistent in the sense that these marginal frequency distributions
are satisfiable by some joint probability function defined on the set V of all the variables measured
by the datasets.1

The agent’s belief function P † will be defined on the algebra generated by this larger set V of
variables. OBE holds that P † should agree with each marginal distribution of measured frequencies,
and should otherwise have maximum entropy. (To the extent that the dataset distributions only
approximate the corresponding marginal frequency distributions, the maximum entropy function
P † which agrees with the dataset distributions should be thought of as an approximation to the
belief function warranted by OBE (Williamson, 2017, §4).)

In general, finding the function in a convex set of probability functions which has maximum
entropy is a computationally hard optimisation problem (Paris, 1994, Chapter 10). Indeed, this
has been viewed as a criticism of the maximum entropy approach (Pearl, 1988, p. 463). In this
paper, we employ Bayesian networks to reduce the dimension of the problem in typical cases, and
thereby reduce its complexity. A Bayesian net representation of the probability function P † which
is motivated by OBE is called an Objective Bayesian Net or OBN (Williamson, 2005b). In this
paper we develop a general algorithm, OBN-cDS, which generates an OBN and does so efficiently
in typical cases, and we show that this algorithm is preferable to a brute-force approach to entropy
maximisation. Furthermore, we explore particular situations in which one can generate an OBN
faster than is possible even by OBN-cDS: this leads to algorithms OBN-2cDS and OBN-ccDS that
are tailored to these situations.

In the next section, we briefly review related work. In Section 3, we present the general algo-
rithm for constructing an OBN, OBN-cDS, and we discuss its complexity in Section 4. We then
present algorithms which run faster but are only applicable in particular situations. In Section 5
and Section 6, we consider cases in which we can find an OBN without solving any optimisation
problem at all, by determining the OBN instead directly from the datasets: in Section 5 we consider
the two dataset case, which we generalise to centred datasets in Section 6. Section 7 presents cases
in which the OBN cannot be inferred directly from the data but can be constructed by solving an
algebraic problem—again, without the need for numerical optimisation. In Section 8, we delin-
eate a class of scenarios in which one can construct an OBN by solving relatively few independent
optimisation problems and we also give a graph-theoretical characterisation of this class.

This contribution adds to the state-of-the-art in the following ways: (a) it develops the OBE
approach to data integration, (b) it shows how Bayesian net algorithms can be used to determine
a maximum entropy probability function more efficiently, (c) it explores algebraic means to solve

1. There is a sense in which a collection of datasets can never be inconsistent—after all, they are just observations.
However, inconsistencies can indeed arise between their measured frequency distributions, because these are assumed
to be marginal distributions of some joint data-generating distribution, defined over the domain V as a whole. Thus,
the datasets are inconsistent when they impose mutually contradictory constraints on this distribution, i.e., when no
such joint distribution exists (cf. Remark 28).

Note that consistency is a stronger condition than the requirement that the measured marginal distributions
agree on variables in common. Due to different sample sizes, sampling bias and stochastic noise, real world datasets
are rarely consistent, even in this weaker sense. In real world applications, agreement on joint domains may be
achieved by taking weighted means of measured marginals with weights equal to the proportions of observations in
the different datasets, or via more sophisticated meta-analyses.
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OBJECTIVE BAYESIAN NETS FOR INTEGRATING CONSISTENT DATASETS

the maximum entropy optimisation problem and (d) it provides philosophical underpinnings for a
particular kind of ‘statistical matching’ technique (see below).

2. Related Work

This paper rests on three main strands of previous research.

First, we build on previous research which demonstrates the importance of maximising entropy
for determining a rational belief function, i.e., for OBE. This connection was originally made by
Jaynes (1957) and was defended by Tribus (1969); Rosenkrantz (1977); Paris and Vencovská (1997,
1990); Williamson (2010); Grove et al. (1994) and Landes and Williamson (2013, 2015) among oth-
ers. This first strand of previous research establishes the need for computing the maximum entropy
function. The importance of the maximum entropy approach to AI has been explored by, among
others, Adamčı́k (2016); Paris (2014); Caticha (2014, 2013); Thimm et al. (2010); Balasubrama-
nian (2005); Halpern and Koller (2004); Kern-Isberner (1998); Kern-Isberner and Rödder (2004);
Kern-Isberner and Lukasiewicz (2004); Berger et al. (1996).

Second, while several steps have been taken to render determining the maximum entropy func-
tion more efficient (e.g., Cheeseman, 1983; Goldman, 1987; Goldman and Rivest, 1988; Ormoneit
and White, 1999; Balestrino et al., 2006; Abramov, 2010; Chen et al., 2010; Landes and Williamson,
2016), this is a computationally hard problem, as demonstrated in the context of OBE by Maung
and Paris (1990). For example, if P6=NP then it is not possible to approximate the maximum entropy
function in polynomial time on a deterministic Turing machine (Paris, 1994, Theorem 10.6). This
casts doubt on whether one can hope to approximate the maximum entropy function in problems
with large numbers of variables—these problems occur regularly in systems medicine, for instance.

Third, the extensive literature on Bayesian networks demonstrates that, although probabilistic
inference is NP-complete in the worst case, one can employ Bayesian nets to reason much more
efficiently in typical cases (see, e.g., Pearl, 1988; Neapolitan, 1990). Thus, Williamson (2005a,b)
developed the OBN approach of using Bayesian nets to represent maximum entropy probability
functions, in order to render inference more tractable in typical cases, if not in the worst case.
This was applied to systems medicine by Nagl et al. (2008). This paper further develops the OBN
approach: it uses Bayesian nets to render maximum entropy methods more efficient in typical cases.

Some other strands of work, which might be thought to be closely related, actually tackle rather
different problems. For example, Paris (2005) considers the use of maximum entropy to deter-
mine conditional probabilities that are missing from a causal Bayesian network. In contrast, here
we use non-causal Bayesian networks to represent maximum entropy distributions. Lukasiewicz
(2000) applies the principle of maximum entropy to select a unique joint probability distribution
from the set of all joint probability distributions specified by a credal network. (A credal network
can be thought of as a generalisation of a Bayesian network with intervals of probabilities rather
than precise probabilities.) In contrast, we seek a Bayesian network that represents such a joint
distribution. Meta-analysis is a statistical method which seeks to combine findings from different
studies (Borenstein et al., 2009). However, whereas meta-analysis typically seeks the overall effect
of a treatment, i.e., to assess a single causal relationship, here the task is to determine and represent
a joint probability distribution. Another strand of research is concerned with inferring causal rela-
tionships, rather than rational degrees of belief, from multiple datasets (Danks, 2002; Danks et al.,
2008; Triantafillou et al., 2010; Tsamardinos et al., 2012; Tillman and Spirtes, 2011; Tillman and
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Eberhardt, 2014; Triantafillou and Tsamardinos, 2015; Bareinboim and Pearl, 2016; Mayo-Wilson,
2019). Discovery of causal relationships is a very different problem to the one we tackle here.

Statistical methods for handling missing data are more closely related to the present work: if
one concatenates several datasets that measure overlapping sets of variables, then one is left with a
single dataset with lots of missing values. Little and Rubin (2014, p. 19-20) identify four types of
methods for handling missing data. First, one might discard those lines of the concatenated dataset
which contain missing values. This would be inadequate in our context, where all the lines will
contain missing values. The second method involves the use of weighting procedures; these apply
to values that are missing in survey responses, which is not the case here, since we presume that
all attempted measurements were successful. Third, imputation-based procedures attempt to fill in
missing data by direct extrapolation from the values that are actually present. The fourth method
is to build a model and sample from that model to fill in missing data. In our context, these latter
two methods could play the following role: first one can apply such a method to fill in the missing
data; then one can apply standard methods for learning a Bayesian network from complete data to
represent a joint distribution on the domain as a whole. However, adopting this sort of two-step
procedure is undesirable because the first step—filling in the missing data—is unreliable when a
large proportion of values are missing, as is the case in our context. Our approach avoids this error-
prone step: in this paper we learn a model of the joint distribution directly from the data that is
present.

The present work can also be viewed as an instance of statistical matching: the problem of inte-
grating datasets which measure different sets of variables and which sample different individuals.2

D’Orazio et al. (2006) distinguish two approaches to statistical matching. The ‘micro’ approach
aims to produce a single dataset covering the domain as a whole from all the individual datasets
that measure subsets of variables, by synthetically producing extra data. This is the missing-data
approach outlined above. On the other hand, the ‘macro’ approach to statistical matching uses the
given datasets to produce a joint distribution over the domain as a whole. The approach of this paper
is a ‘macro’ approach: here the joint distribution is the maximum entropy distribution. This is an
approach not considered by D’Orazio et al. (2006) or Vantaggi (2008), who focus on the special
case of two datasets. Endres and Augustin (2016) develop an approach to statistical matching that
builds a joint distribution by assuming various conditional probabilistic independencies.

However, in applications with many datasets it can be hard to justify conditional probabilistic
independence assumptions between sets of variables measured by different datasets. The maximal
entropy approach avoids this problem because it does not make any such independence assumptions.
On the other hand, the use of the maximum entropy function does guarantee that certain probabilistic
independencies obtain and the OBN exploits this feature to reduce the dimension of the entropy
maximisation problem. The maximum entropy approach can thus be thought of as providing a
principled way of avoiding ad hoc independence assumptions.

3. The General Algorithm OBN-cDS

In this section, we present a general algorithm for finding an OBN, given evidence that takes the
form of consistent datasets DS1, DS2, . . . , DSh. The algorithm is called OBN-cDS for its ability
to construct an OBN from consistent datasets.

2. See Nielsen (2016); Schleicher et al. (2020) for reviews of the applicability of different matching approaches to
concrete problems.
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3.1 Notation and Motivation

Notation is aligned with Williamson (2005a).

Definition 1 (Variables and Assignments). Variables are denoted by (sometimes subscripted) upper
case lettersA,B,C, the set of all variables by V 6= ∅. V has size n ≥ 2 and variables have arbitrary
finite arity greater or equal than two. Let #V denote the number of states of V . In case all variables
are binary, we have 2n = #V . We denote by Vi the set of variables measured by dataset DSi.

An assignment of values to a set of variables U ⊆ V is written as u@U and the value of
variable A ∈ U under assignment u is denoted by au. We also write bu for as set of variables
B ⊆ U , meaning that all variables in B are assigned a value according to u. Sometimes we need to
modify an assignment v. We denote by sv for s@S the assignment obtained from v by assigning all
variables in S their value according to s. For example for s@S and t@S it holds that st = s.

Definition 2 (Probabilities and Entropy). A probability function P maps each assignment v@V to
[0, 1] such that

∑
v@V P (v) = 1 and for all U ⊂ V all u@U and all A ∈ V \ U it holds that∑

v@{A} P (uav) = P (u) ∈ [0, 1]. The entropy H(P ) of a probability function P is defined as
H(P ) := −

∑
v@V P (v) logP (v), where 0 · log 0 = 0. The base of the logarithm is strictly greater

than 1 but otherwise arbitrary; for concreteness we take the logarithm to be the natural logarithm in
this paper.

Motivation & Example. Consider datasets DS1, DS2, DS3 which measure sets of binary vari-
ables {A0, A1}, {A0, A2} and {A1, A2}. From the datasets we obtain measured frequency distribu-
tions P ∗1 , P

∗
2 , P

∗
3 , which measure respectively {A0, A1}, {A0, A2} and {A1, A2}. The consistency

condition (cf. Footnote 1 and Remark 28) ensures that P ∗1 and P ∗2 agree on {A0}, P ∗1 and P ∗3 agree
on {A1} and P ∗2 and P ∗3 agree on {A2}. Note that none of the P ∗i is defined on the set of all vari-
ables V = {A1, A2, A3} and hence the problem arises as to how to determine beliefs on the entire
domain of interest (we return to the example of Table 1 and Example 31).

In general, there are uncountably many probability functions defined on V which agree with
all P ∗i simultaneously. This paper is concerned with efficiently computing the unique probability
function P †, from all the probability functions defined on V that agree with each P ∗i , that has
maximum entropy.3 The full formal problem to determine an OBN is stated in Section 3.3.5.

The Optimisation Problem. To find the probability function P † defined on the entire domain of
interest that has maximal entropy and agrees with all measured marginal probability distributions
one needs to find the solution to the following optimisation problem:

maximise: H(P ) = −
∑
v@{V }

P (v) log(P (v))

subject to: P (v) ≥ 0 for all v@{V }∑
v@{V }

P (v) = 1

P (s) = P ∗i (s) for all 1 ≤ i ≤ h and all s@{Vi} .

The number of unknowns in the optimisation problem, i.e., the number of probabilities P (v), grows
exponentially in the number of measured variables. If all variables are binary, then the number of

3. Uniqueness follows from the entropy function being strictly concave and the feasible region being convex.
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Table 1: Example of three consistent datasets where every variable is measured by two datasets.
The black cells indicate variables not measured by the corresponding dataset.

Variables measured in Dataset 1︷ ︸︸ ︷
Variables measured in Dataset 2︷ ︸︸ ︷

Observation Sex Treatment Outcome Age
Observations
of Dataset
1

Patient 1 Male survived
Patient 2 Female died
Patient 3 Female survived

Observations
of Dataset
2

Patient 4 survived 60 + years
Patient 5 survived 60 + years
Patient 6 died 40− 59 years

Observations
of Dataset
3

Patient 7 Female 60 + years
Patient 8 Male 60 + years
Patient 9 Female 40− 59 years︸ ︷︷ ︸ ︸ ︷︷ ︸

Variable measured Variable measured
in Dataset 3 in Dataset 3

unknowns is equal to 2n − 1. Solving this optimisation problem by ‘brute force’—i.e., without
efforts to reduce its complexity—is simply not feasible for large n. Indeed, no method will be
feasible for all problems where n is large: if RP 6=NP then there is no random Turing machine that
can probably approximate the correct solution in polynomial time—see, e.g., Paris (1994, Theorem
10.7). Hence, there is a need for an approach to compute P † that does not work by brute force and
that is computationally tractable in many natural cases, if not the worst case.

3.2 Overview of OBN-cDS

The algorithm that we present relies on the ability to learn Markov network structures that represent
the conditional independencies satisfied by the marginal probability distributions measured in the
datasets.

Markov Network Structure Learning. There are numerous algorithms for learning Markov and
Bayesian networks that approximate the measured probabilities of a single dataset, P ∗i . See Neapoli-
tan (2003) for general background. Our general algorithm presupposes the ability to learn, from a
given dataset, the structure of a Markov network representation of the dataset distribution. Such a
structure consists in an undirected graph on the set Vi of vertices that represents conditional proba-
bilistic independencies satisfied by P ∗i by means of graph separation: if sets X and Y of variables
are separated by a set Z of variables in the graph (i.e., every pathway from a variable in X to a
variable in Y proceeds via a variable in Z) then P ∗i renders X and Y to be probabilistically inde-
pendent, conditional on Z. Bromberg et al. (2009), for example, provide an algorithm for efficient
Markov net structure discovery.

It is also possible to first learn a Bayesian net structure and then convert that structure to a
Markov net structure. A Bayesian net consists in a directed acyclic graph (DAG) on the set Vi of
vertices (the ‘structure’ of the net) together with the probability distribution of each variable condi-
tional on its parents in the DAG (the ‘parameters’ of the net). These are related by an assumption
known as the Markov Condition, which says that for all A ∈ Vi, A is probabilistically independent
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of its non-descendants in the DAG conditional on its parents. Tsamardinos et al. (2006) provide an
algorithm for learning a Bayesian net structure, for example. This structure can be converted to a
Markov net structure by ‘marrying’ any unmarried parents in the DAG (i.e., adding an undirected
edge between those two variables) and dropping the orientations of the remaining edges.

Pseudo Code of OBN-cDS. We now show how to turn these DAG structures into an OBN.
Steps 1–2 construct an undirected graph representing the conditional independence structure of the
maximum entropy function, P †. Steps 3–5 then translate this into a Bayesian network. The correct-
ness of the algorithm is demonstrated below.

Input: consistent datasets DS1, . . . , DSh.
1) For all i learn a Markov network structure Gi from DSi representing independences of P ∗i .
2) Set overarching undirected graph G as the union of the Gi.
3) Compute a minimal triangulation GT of G.
4) Orientate GT to give DAGH.
5) For each vertex inH, determine its probability distribution conditional on its parents:

a) For all vertices for which there exists a dataset which measures this vertex and all its parents
determine conditional probabilities as described in Section 3.3.3.

b) For all other vertices determine conditional probabilities by solving the optimisation problem
specified below.

Output: Objective Bayesian Net with DAGH and conditional probabilities as determined in Step 5.

Next we will specify the algorithm in more detail and specify regularity conditions under which
the algorithm is guaranteed to succeed. In Section 4 we will discuss how to further improve the
efficiency of the algorithm: Step 3 is addressed in Sections 4.1 and 4.2; Step 4 is considered in
Sections 4.1 and 4.4.

3.3 OBN-cDS in Detail

We now explain the general algorithm OBN-cDS in more detail.

3.3.1 DETERMINING THE STRUCTURE OF THE OBJECTIVE BAYESIAN NET

Step 1. For every dataset DSi we learn the structure Gi of a Markov network which represents
conditional probabilistic independencies in the distribution measured by the dataset, P ∗i .

Step 2. We form an undirected graph G by joining the Gi: take the variables in V =
⋃
i Vi as

vertices and connect every pair of vertices that are connected in some Gi.
Step 3. Compute a minimal triangulation GT of G. A triangulation of G is a supergraph of G in

which each simple cycle of length greater or equal than 4 possesses a chord. A triangulation of G
is minimal if none of its proper subgraphs is a triangulation of G. See Heggernes (2006) for more
background on triangulations.

Step 4. Transform GT into a DAG H that also represents the independence structure of P †.
This is a standard transformation, which can be achieved as follows; see Williamson (2005a, §5.7)
and Neapolitan (1990) for further discussion and details. (i) Order the vertices of GT with vertex
set V according to maximum cardinality search: at each step select a vertex which is adjacent to the
largest number of previously numbered vertices. (ii) Let D1, . . . , Dl be the cliques of GT , ordered
according to the highest labelled vertex. (iii) Let Ej := Dj ∩ (

⋃j−1
i=1 Di) and Fj := Dj \ Ej . (iv)
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Add an arrow from each vertex in Ej to each vertex in Fj . (v) Add further arrows to ensure there
is an arrow between each pair of vertices in Dj such that the resulting directed graph H is acyclic.
Arbitrarily break ties and arbitrarily make unconstrained choices.

We use the following procedure for inserting arrows in every connected component of GT in
(v). This procedure has the advantage that it is easily implementable. First, observe that every edge
is in some clique. Next, note that if an orientation of the unoriented edges results in a directed
cyclic graph, then there has to exist a clique which contains all vertices of a directed cycle. This
is because all arrows between cliques originate from cliques earlier in the ordering and point to the
cliques later in the ordering. So, all we need to ensure is that there is no directed cycle within any
clique. For all 1 ≤ i ≤ l and all edges in clique Di which are not orientated in (iv), these are the
edges between vertices in the Fi and the edges between vertices in Di. Now orient the edge such
that it originates from the vertex which comes prior to the vertex to which it points towards in the
maximum cardinality ordering. We use this way of breaking ties in our Matlab implementation,
which is described in §3.4. As a consequence of this procedure, every connected component of H
has a unique root, i.e., a variable which does not have a parent.

Before proceeding to Step 5, we provide a result which provides conditions under which Steps
1-4 are guaranteed to succeed. If the Markov network structure learning in Step 1 is successful then
Steps 2-4 are guaranteed to produce a Bayesian network structure that can be used to represent the
maximum entropy function P †:

Theorem 3. If each dataset distribution P ∗i satisfies the conditional probabilistic independence
relationships represented by Gi, for i = 1, . . . , h, then the maximum entropy function P †, from all
those probability functions that match the P ∗i , satisfies the conditional probabilistic independence
relationships represented byH.

Proof: The key elements of the proof are developed in Appendix A.
The main fact that underpins the algorithm is that separation in the graph G produced by Step 2

represents probabilistic independencies satisfied by P †: for arbitrary subsets X,Y, Z of variables,
if Z separates X from Y in G then X⊥⊥P †Y |Z. This is Theorem 34 of Appendix A, which appeals
to results of Williamson (2002, 2005a).

Steps 3 and 4 are a fairly standard way of transforming an undirected graph which represents in-
dependencies by means of separation, into a directed acyclic graph which represents independencies
by means of D-separation, as defined by Pearl (1988, §3.3.1). That the independencies represented
byH do indeed hold for the maximum entropy function P † is Theorem 35 of Appendix A. �

Note that P † may satisfy further probabilistic independence relationships, not captured by H.
Indeed, it may be that there is no directed acyclic graph that captures all the independencies satisfied
by P †. This does not matter for our purpose here, which is to exploit those independencies that are
represented byH to reduce the dimension of the entropy maximisation problem.

We next turn to Step 5: determining the conditional probabilities that are the parameters of the
objective Bayesian net.

3.3.2 DETERMINING THE PARAMETERS OF THE OBJECTIVE BAYESIAN NET

The conditional probabilities in the OBN can be obtained by solving an optimisation problem.
These can be found by computing the probability function, from all those that agree with the dataset
distributions P ∗i , that has maximum entropy. The objective function to be maximised is the entropy
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of a probability function, H(P ). Probability functions satisfying the probabilistic independences
specified by the structure (the DAG)H of our Bayesian network can be conveniently represented as
follows:

Definition 4 (Objective Function and y-parameters, Williamson (2005a) (p. 93)). Let Anci be the
ancestors ofAi inH; Anc′i := {Ai}∪Anci; and Pari be the set of parents ofAi inH. The entropy
of a probability function P that satisfies the probabilistic independencies represented byH is:

H(P ) :=−
∑
v@V

P (v) log(P (v))

=−
n∑
i=1

∑
v@Anc′i

( ∏
Aj∈Anc′i

P (avj |Parvj )
)

logP (avi |Parvi )

=−
n∑
i=1

∑
v@Anc′i

( ∏
Aj∈Anc′i

yvj

)
log yvi . (1)

Here each yvj is a parameter which denotes P (avj |Parvj ). These y-parameters are the unknowns to
be determined by the solution of the optimisation problem. Note that yvj only depends on values
assigned to Aj and all its parents.

3.3.3 VARIABLES OF THE OPTIMISATION PROBLEM

If a variable Ai and all its parents are measured in the same dataset, DSk say, then for all v@Pari∪
{Ai}, P ∗k (v) can be obtained from DSk. Since P † and P ∗k have to agree, such parameters can
typically be computed without solving an optimisation problem.4 The conditional probability yvj =
P (avj |Parvj ) can be determined from the datasetDSk itself, by dividing the number of observations
in DSk in which aviPar

v
i holds by the number of observations in which Parvi holds.5

If Parvi has no observed instances in any dataset which measures Ai and all its parents, then
the parameter yvi = P (avi |Parvi ) cannot be determined from the dataset, because the measured fre-
quency is 0/0. In such a case, this parameter will not contribute to any probabilities calculated from
the OBN, since all of its occurrences in (1) are in terms which are multiplied by 0. Nevertheless, it
needs to be given a value in order to fully specify the net. In such a situation, we set yvi = 1/ki,
where ki is the number of possible values of variable Ai, because these are the maximum entropy
values in the absence of any relevant evidence, and thus the natural objective Bayesian solution.

Next we turn to the situation in which there is no dataset that measures a variable and all its
parents.

Definition 5 (Under-determined Variable). We call a variable A ∈ V under-determined, if and only
if there is no dataset jointly measuring A and all its parents. A variable A ∈ V is either under-

4. If there exists a further dataset DSl which measures Ai and all its parents, then P ∗k (v) = P ∗l (v) because datasets
are assumed to be consistent. Hence, P †(v) can be uniquely determined as long as there exists at least one dataset
which measures Ai and all its parents, modulo the qualification below.

5. An alternative objective Bayesian approach to determining these conditional probabilities involves adopting an ob-
jective prior distribution over these probability parameters and then updating this prior in the light of the data. This
alternative strategy introduces further complexities but is a natural approach to pursue when the datasets are too small
to provide acceptable estimates of the underlying frequency distribution. In this paper, it is assumed that the datasets
are large enough for their distributions to be used as frequency estimates.

401



determined or we can determine the values of the yvi as described above, in which case the variable
is said to be fully determined.

In particular, every under-determined variable has at least one parent. So, the y-parameters
corresponding to variables that are roots of the OBN structureH can be determined directly.

If A has two or more parents, arrows from those parents to A are said to collide at A, and A is
called a collider variable. In the simplest such case A has precisely two parents—see Figure 1. The
variable A is under-determined, if and only if there is no dataset which jointly measures A and both
its parents, A1 and A2.

A1 A2

A

Figure 1: Collider variable A with parents A1, A2.

If it were the case that every arrow in H connects two variables which are jointly measured in
some dataset, then no variable with only one parent would be under-determined. As we shall now
see, this is not always the case.

Example 6. Consider a collection of four datasets where DS1 measures A1, A2, DS2 measures
A2, A3, DS3 measures A3, A4 and DS4 measures A4, A1. All variables are distinct. If the over-
arching undirected graph G is the cycle A1 − A2 − A3 − A4 − A1, then every triangulation of G
will either contain an edge between A1 and A3, an edge between A2 and A4 or both these edges.
In all these cases, there exists an edge between two variables which are not jointly measured in any
dataset, see Figure 2.

DS1

DS2

DS3

DS4A1

A2

A4

A3

Figure 2: Every triangulation will either introduce an edge between A1 and A3 or an edge between
A2 and A4 or both edges (dotted). No two variables connected by a dotted edge have been jointly
measured in a single dataset.

Step 3 of OBN-cDS (triangulation) is the only step at which edges are added and where there
is some free choice as to how to add these edges. Where possible, the creation of edges should be
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avoided, in order to minimise the number of under-determined variables. However, as we saw in the
example depicted in Figure 2 and Figure 3 this is not always possible. Where the creation of edges
cannot be avoided, our approach does, in general, require the solution of an optimisation problem
to compute the parameters of an OBN.

DS1

DS2

DS3

DS4A1

A2

A4

A3

Figure 3: This orientation of the graph depicted in Figure 2 has the under-determined variable A3

which only has the single parent A1. Hence, variables with a single parent (i.e., variables which are
not colliders) may be under-determined, too.

In Section 7, we delineate cases in which one cannot apply Step 5a to find all (conditional)
probabilities, but in which it is nevertheless possible to find an OBN without solving an optimisation
problem.

3.3.4 THE CONSTRAINTS FOR UNDER-DETERMINED VARIABLES

We now give pseudo code for determining the constraints relating to under-determined variables.
Explanations and examples will follow.

Input: The DAG of OBN and the allocation of variables to the datasets measuring them.
1) Determine the subset of variables U ⊂ V such that Ai ∈ U if and only if there exists no dataset

jointly measuring Ai and all its parents.
2) For all variables Ai ∈ U and all assignments s@Pari to the parents of Ai we have the following

constraints: 1 =
∑

r@{Ai} P (Ari |Parsi ) and 0 ≤ P (Ari |Parsi ) ≤ 1.
3) For all variables Ai ∈ U , all datasets DSk measuring Ai, all subsets Pari:k of parents of Ai

measured by DSk, all assignments s@Pari:k and all assignments v@{Ai} we have the
constraints: P †(Avi |Parsi:k) = P ∗k (Avi |Parsi:k), if P ∗k (Parsi:k) > 0.

Output: Constraints.

Step 1 computes the set of under-determined variables. Step 2 ensures that a probability function
is well defined. Step 3 ensures that P † agrees with all measured marginal probability distributions
P ∗k .
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Suppose that dataset DSk measures the under-determined variable Ar and a possibly empty
subset of parents Parr:k of Ar and no other dataset measures a strict superset of {Ar} ∪ Parr:k.6

Recall that all datasets are assumed to be consistent, so no conflict arises where two datasets measure
the same variables. For all v@{Ar} ∪ Parr:k the following constraint has to hold:

P †(v) = P †(avrPar
v
r:k) = P ∗k (avrPar

v
r:k) = P ∗k (v) .

Note that all constraints which arise from the requirement that P † ought to agree with measured
probabilities are of this form.

We shall now rewrite this constraint as a constraint on the y-parameters. The right hand side can
be determined from DSk as described in Section 3.3.3. Then for all v@{Ar} ∪ Parr:k, assuming
that P (Parvr:k) > 0 and hence the conditional probabilities are well-defined, it must hold that:

P †(avrPar
v
r:k) =

∑
s@Ancr\Parr:k

P †(avrPar
v
r:ks)

=
∑

s@Ancr\Parr:k

P †(avr |Parsvr )
∏

Ai∈Ancr

P †(asvi |Parsvi )

=
∑

s@Ancr\Parr:k

∏
Ai∈Anc′r

P †(asvi |Parsvi )

=
∑

s@Ancr\Parr:k

∏
Ai∈Anc′r

ysvi . (2)

We also need to ensure that we restrict the feasible region to probability functions. Hence, the
constraint that no probability is less than zero and greater than one does, of course, also apply.
Furthermore, it must also be the case that for all variables and all assignments v of their parents that
conditional probabilities add up to 1:∑

g@Ar

P †(agr |Parvr ) =
∑
g@Ar

ygvr = 1 .

There are no further constraints to satisfy. All constraints at which we arrive in this fashion are
multi-linear in the y-parameters.

Of course, not all y-parameters are unknown optimisation parameters in our approach. The
value of some subset of the y-parameters may be established by Step 5a, as explained above and as
illustrated by the following example.

Example 7. Let us consider the DAG in Figure 3 with binary variables and determine constraints
for A4. For the assignment v@{A3, A4} making A3 and A4 true, we have the following constraint

P ∗(a3a4) =P †(a3a4)

=P †(a1a3a4) + P †(a1a3a4)

=ya4a1a34 P †(a3|a1)P †(a1) + ya4a1a34 P †(a3|a1)P †(a1)
=ya4a1a34 ya3a13 ya11 + ya4a1a34 ya3a13 ya11

6. Figure 3 is an example in which no dataset measures an under-determined variable and at least one of its parents. In
such a case, constraints arise from datasets which measure this under-determined variable.
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=ya4a1a34 ya3a13 P ∗(a1) + ya4a1a34 ya3a13 (1− P ∗(a1)) .

For the assignment v′@{A3, A4} making A3 true and A4 false, we have the following constraint

P ∗(a3a4) =P †(a3a4)

=P †(a1a3a4) + P †(a1a3a4)

=ya4a1a34 P †(a3|a1)P †(a1) + ya4a1a34 P †(a3|a1)P †(a1)
=ya4a1a34 ya3a13 ya11 + ya4a1a34 ya3a13 ya11

=(1− ya4a1a34 )ya3a13 P ∗(a1) + (1− ya4a1a34 )ya3a13 (1− P ∗(a1)) .

For the assignment v′′@{A3, A4} making A3 false and A4 true, we have the following constraint

P ∗(a3a4) =P †(a3a4)

=P †(a1a3a4) + P †(a1a3a4)

=ya4a1a34 P †(a3|a1)P †(a1) + ya4a1a34 P †(a3|a1)P †(a1)
=ya4a1a34 ya3a13 ya11 + ya4a1a34 ya3a13 ya11

=ya4a1a34 (1− ya3a13 )P ∗(a1) + ya4a1a34 (1− ya3a13 )(1− P ∗(a1)) .

For the assignment v′′′@{A3, A4} making A3 and A4 false, we have the following constraint

P ∗(a3a4) =P †(a3a4)

=P †(a1a3a4) + P †(a1a3a4)

=ya4a1a34 P †(a3|a1)P †(a1) + ya4a1a34 P †(a3|a1)P †(a1)
=ya4a1a34 ya3a13 ya11 + ya4a1a34 ya3a13 ya11

=(1− ya4a1a34 )(1− ya3a13 )P ∗(a1) + (1− ya4a1a34 )(1− ya3a13 )(1− P ∗(a1)) .

Similarly, four constraints arise for the assignments s@{A1, A4}.

3.3.5 THE OPTIMISATION PROBLEM

After determining the y-parameters of fully determined variables via Step 5a and collecting the set
of under-determined variables by letting

U := {1 ≤ i ≤ n : Ai is under-determined}, (3)

we can state the optimisation problem as follows:

maximise: −
n∑
i=1

∑
v@Anc′i

( ∏
Aj∈Anc′i

yvj

)
log yvi (4)

subject to: yvi ≥ 0 for all i ∈ U (5)∑
g@{Ai}

ygvi = 1 for all i ∈ U (6)
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∑
s@Anci\Pari:k

∏
Aj∈Anc′i

ysvj = P ∗k (aviPar
v
i:k) for all i ∈ U and

all maximal jointly measured sets of the form {Ai} ∪ Pari:k . (7)

Note that the first two constraints jointly entail that all y-parameters are less or equal than 1.

Proposition 8 (Agreement with Measured Marginals). All conditional probabilities of the OBN
agree with all measured marginal probability distributions P ∗k defined on Vk.

Proof: The (conditional) probabilities according to P † of each fully determined variable in the
DAGH are equal to the measured marginals by construction (Step 5a).

Next consider the conditional probabilities according to P † of an under-determined variable Ai
in the DAG H. For all valuations v the conditional probability of P †(avi |parvi:k), where Ai is mea-
sured by DSk, is equal to the measured marginals by construction, P ∗k (avi |parvi:k), as explained in
Section 3.3.4. �

Note that this does not mean that the distribution determined by the OBN is guaranteed to
agree with the measured marginal probability distributions, since the structure learning algorithm
employed in Step 1 of the algorithm only approximates the measured marginals. If the structure
learning approximation finds too few edges, then the OBN distribution is likely to have erroneous
independencies and thus likely to fail to agree with the dataset distributions. Nevertheless we do
have the following guarantee.

Proposition 9 (Correctness of the Optimisation). The OBN represents the probability function with
maximal entropy given the evidential constraints and the independence structure determined by the
DAGH.

Proof: Optimisation is carried out with respect to the evidential constraints (Section 3.3.4) ensur-
ing that all probability functions in the feasible region agree with all evidential constraints. Since
optimisation only provides values for under-determined variables and we impose no further con-
straints, the independence structure of the DAGH is preserved. �

This leads to a guarantee of correctness of the algorithm as a whole, conditional on Step 1 being
successful.

Theorem 10 (Correctness of OBN-cDS). If each dataset distribution P ∗i satisfies the conditional
probabilistic independence relationships represented by Gi, for i = 1, . . . , h, then OBN-cDS outputs
an OBN that represents the probability function P †, from all those that agree with all measured
marginal probability distributions P ∗k , that has maximal entropy.

Proof: P † satisfies the conditional independence relationships represented by the graphical struc-
ture H of the OBN output by OBN-cDS (Theorem 3). The parameters of the OBN ensure that the
evidential constraints are satisfied and that entropy is maximised (Proposition 9). Thus, the OBN
represents P †, as required. �

In concrete applications, the condition of Theorem 10 may not hold: the learned structures Gi
will often only approximate the independence structures of the dataset distributions. In which case,
the Bayesian network output by OBN-cDS will provide an approximation of the maximal entropy
function P †.
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Example 11. Let us again consider the situation in Figure 3 and let v@{A1, A2, A3, A4}. Then the
conditional probability P †(av3|av1) is determined by the solution of the optimisation problem as is
the conditional probability P †(av4|av1av3) under the constraint that P †(av4|av3) = P ∗3 (av4|av3).

If the situation is instead as in Figure 4, we can either either use a minimal triangulation (Step
3) connecting A1 and A3 or A2 and A4. In the former case, we can enumerate the variables in the
standard way (A1, A2, A3, A4); arrows then originate from variables earlier in the enumeration and
point towards variables appearing later in the enumeration. All variables are fully determined. The
(conditional) dependencies according to P † among the A1, A2, A3 and among the A1, A3, A4 are
hence exactly as in the measured marginal frequencies. Assuming that the (conditional) indepen-
dence A1 of A3 given A2 in G1 was learned correctly, determining the conditional probability of
A3 given A1 and A2 from P ∗1 will give conditional probabilities for P † of A3 such that A3 is inde-
pendent of A1 given A2. This means that the edge connecting A1 and A3 could be dropped from
our OBN even though our general algorithm for creating the DAG H contains an arrow originating
from A1 and pointing to A3.

In the latter case either A2 or A4 is under-determined, since A2 and A4 are not jointly mea-
sured. Beginning our enumeration with A1, A2 we are then forced to complete the enumeration
with A4, A3 (Step 4), see the right-hand side of Figure 4. According to the learned structure G1, A1

andA3 are independent givenA2. According to the learned structure G2,A1 andA3 are independent
given A4. In general, neither are A1 and A3 independent given A2 nor are they independent given
A4 according to our OBN; they are only independent according to our OBN given A2, A4.

We come back to the two dataset case in Section 5.

DS1

DS2

A1

A2

A4

A3

DS1

DS2

A1

A2

A4

A3

Figure 4: Left: a minimal triangulation this structure either connects A1 to A3 or A2 to A4. Right:
this triangulation yields the under-determined variable A4.

3.4 Proof of Concept

In order to compare OBN-cDS with the brute-force approach, we implemented both approaches
in Matlab. In this section we describe this proof of concept implementation. The primary aim of
this implementation was to test the extent to which OBN-cDS reduces the size of the optimisation
problem, in comparison to the brute-force approach. Results confirm that OBN-cDS does indeed
enable OBN construction in situations in which the brute-force method is not feasible due to its
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computational complexity. While efficiency of implementation was not a primary goal, some results
relating to run times are also reported below. Further potential efficiency improvements will be
discussed in subsequent sections.

Set up. In order to test our hypothesis we require consistent datasets. We thus created 3 datasets
as follows. We first specified a Bayesian network on a set of binary variables A1, A2, . . . , An. We
used a density parameter d∗ representing the number of arrows in the DAG. For fixed d∗, we inserted
arrows uniformly at random between variables. The orientation was fixed by directing each arrow
from the variable enumerated first to that with the greater index. This ensured that the directed graph
is acyclic. Unconditional and conditional probabilities of all variables were assigned uniformly at
random in the interval [0, 1]. A single dataset was created by sampling from this Bayesian network.
This Bayesian network was hidden for the remainder of computations.

Next, we assigned every variable in V to a non-empty set of datasets in which it was measured.
To obtain computationally interesting problems we fixed A1 to be measured by DS1 and DS2; A2

to be measured by DS1 and DS3; and A3 to be measured by DS2 and DS3. The other variables
were assigned uniformly at random to the seven non-empty subsets of the 3 datasets. We then cre-
ated three clones of the sampled dataset. In all three clones we deleted the columns corresponding
to measurements of variables not measured by this dataset. In this way we arrived at our collection
of three consistent datasets. The sampled (complete) dataset was then hidden for the remainder of
computations. This procedure can be summarised as follows:

Task: Create three consistent datasets with variables A1, A2, . . . , An.
A) Create a Bayesian network representing the data-generating distribution with density parameter
d∗.

A1) Insert d∗ undirected edges between the variables uniformly at random.
A2) Orientate edges according to enumeration to obtain DAG.
A3) Set (conditional) probabilities uniformly at random.

B) Sample from this network to obtain dataset DS1
0 .

C) Create two further copies DS2
0 , DS

3
0 .

D) Assign variables to datasets
D1) A1 measured by DS1 and DS2.
D2) A2 measured by DS1 and DS3.
D3) A3 measured by DS2 and DS3.
D4) All other variables are assigned uniformly to the non-empty subsets of the power-set of
{A1, A2, A3}.

E) In DSi0 delete all measurements of variables not measured by DSi0 to give DSi.
Output: DS1, DS2, DS3.

Step 1 of OBN-cDS was carried out using the Matlab implementation of Tsamardinos et al.
(2006).7 No other source code was taken off-the-shelf. The triangulation (Step 3) was implemented

7. Implementation and testing on Matlab was chosen over R due to a number of helpful routines in Matlab’s Causal
Explorer Toolkit. The computational complexity of Step 1 has been investigated in, e.g., Ordyniak and Szeider
(2013).
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Figure 5: The number of unknowns needing to be determined by optimisation during Step 5b of
OBN-cDS. N is the total number of variables. The chance network from which we sampled three
datasets had constant d∗ ≈ 21% of the maximal number of arrows, d∗max := N ·(N−1)

2 . The maximal
number 2N of unknowns is plotted in blue. Data points for N = 10, 13, 15, 18, 20 are all based on
200 iterations each. Plots are provided for the average observed number of unknowns in red, the
maximum in purple and the minimum in yellow. The numerical values are reported in Table 2.

Table 2: The rows 2-5 report numbers of unknowns to be determined by optimisation, as depicted
in Figure 5. The bottom row reports average run times in seconds to determine the number of
unknowns for all 200 iterations in Figure 5. Where the number of unknowns is not zero, further
computations are required to compute an OBN.

N 10 13 15 18 20
Average 53 288 930 6298 27927
Variance 60 581 1555 10140 41263
Maximum 380 6140 16380 81916 393212
Minimum 0 0 0 0 192
Run times 1.105 4.270 34.290 86.980 27,927.41

by writing a code for the simple P-Time triangulation algorithm presented by Berry (1999).8 Imple-
mentation of the orientation (Step 4) was achieved by applying Williamson (2005a, Theorem 5.1)
as explained in Section 3.3.1.

Step 5a was carried out by directly computing conditional probabilities from the datasets as
explained in Section 3.3.3. Optimisation (Step 5b) was achieved by calling Matlab’s optimisation
routine ‘fmincon’.

8. While there are more refined triangulation algorithms with improved worst-case complexity (Berry et al., 2006), we
chose to implement the simpler version since in our application calculating triangulations only takes relatively little
time compared to solving numerical optimisation problems.

409



10 12 14 16 18 20

−0.2

0.2

0.4

0.6

0.8

1

N

Percentage of unknowns relative to maximum

maximal number of unknowns
average number of observed unknowns
sum of average and variance
maximum number of observed unknowns
minimum number of observed unknowns

Figure 6: Replot of Figure 5 in relative rather than absolute terms concerning the unknowns (con-
stant d∗ ≈ 21%d∗max) for varying total number of variables N . The green curve displays the sum of
the average and the variance.
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Figure 7: The number of unknowns needing to be determined by optimisation during Step 5b of
OBN-cDS. N is the total number of variables. The chance network from which we sampled three
datasets had constant d∗ ≈ 31% of the maximal number d∗ = N ·(N−1)

2 of arrows. Compare with
Figure 5, which uses d∗ ≈ 21%. The maximal number of unknowns 2N is shown in blue. Plotted in
red is the Average, in green the variance, in purple the maximum and in yellow the minimum. The
data point for N = 20 is based on 35 iterations. Data points for N = 10, 13, 15, 18 are based on
200 iterations each. The numerical values are reported in Table 3.
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Table 3: The rows 2-5 report numbers of unknowns to be determined by optimisation in Figure 7.
The bottom row reports average run times in seconds to determine the number of unknowns for all
200 iterations in Figure 5, with exception of the final column which is based on 35 iterations. Where
the number of unknowns is not zero, further computations are required to compute an OBN.

N 10 13 15 18 20
Average 141 1230 4854 26032 96641
Variance 163 1021 5115 27899 79010
Maximum 1020 4108 32764 196604 327676
Minimum 0 0 0 120 384
Run times 0.965 56.575 36.170 117.290 17,265.543

10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

1.2

N

Percentage of Unknowns relative to maximum

maximal number of unknowns
average number of observed unknowns
sum of average and variance
maximum number of observed unknowns
minimum number of observed unknowns

Figure 8: Replot of Figure 7 in relative rather than absolute terms concerning the unknowns (con-
stant d∗ ≈ 31%d∗max) for varying total number of variables N . The green curve displays the sum of
the average and the variance.

Table 4: The first four rows report percentage of variables that are unknowns and to be determined
by optimisation, as depicted in Figure 9. The bottom row reports average run times to determine the
number of unknowns for all 200 iterations in Figure 9. Where the number of unknowns is not zero,
further computations are required to compute an OBN.

d∗ 10 14 20 25 30 35 40
Average 5.2 13.8 41.5 52.4 60.6 65.0 71.7
Variance 6.5 15.9 27.0 23.3 26.9 24.9 22.8
Maximum 37.1 99.6 99.6 99.6 99.6 99.6 99.6
Minimum 0 0 0 0 5.9 10.2 24.2
Run times 1.110 0.965 1.120 1.305 1.475 1.635 1.930
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Figure 9: Here we kept N = 10 fixed and varied the density, d∗, of the chance net we used for
sampling. d∗max = 45. We recorded the percentage of unknown variables that needed to be found
by optimisation. Maximum number of unknowns of optimisation problem is 2N = 1024. We show
data for d∗ ∈ {10, 14, 20, 25, 30, 35, 40}. The graph depicts the maximal number of unknowns 2N

(in blue), the average (red), the variance (green), the maximum (purple) and the minimum (yellow).
Every data point is based on 200 iterations. The numerical values are reported in Table 4.
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Figure 10: We kept N = 15 fixed and varied the density from the chance net, d∗, we used for
sampling. Maximum number of unknowns of optimisation problem is 2N = 32768. We recorded
the percentage of unknown variables in the OBN. Maximum number of unknowns of optimisation
problem is 2N = 1024. We show data for d ∈ {20, 22, 25, 30, 33, 35, 40, 50, 55, 60}. The maximal
number of unknowns 2N is depicted in blue, the average in red, the variance in green, the maximum
in purple and the minimum in yellow. Every data point is based on 200 iterations. The numerical
values are reported in Table 5.
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Table 5: The first four rows report the percentage of variables that are unknowns and to be de-
termined by optimisation, as depicted in Figure 10. The bottom row reports average run times
to determine the number of unknowns for all 200 iterations in Figure 10. Where the number of
unknowns is not zero, further computations are required to compute an OBN.

d∗ 20 22 25 30 33 35 40 50 55 60
Average 2.5 2.8 5.5 6.4 14.8 13.0 15.4 17.7 21.0 22.1
Variance 4.1 4.7 6.7 8.5 15.6 14.9 17.8 17.8 20.6 19.5
Maximum 25.7 50.0 37.5 62.5 100.0 100.0 100.0 100.0 100.0 75.0
Minimum 0 0 0 0 0.0 0.0 0 0 0 0.0
Run times 4.345 4.275 3.515 13.380 31.065 36.170 45.225 46.705 64.045 57.385

Table 6: The time taken to compute an OBN for N = 15 in 8 instances, presented in increasing
order. Stated run times here include the time taken for solving the optimisation problem (Step 5b).

Number of Unknowns 0 18 36 36 48 192 228 408
Time taken in seconds 3 1.506E+3 8.72E+2 2.0840E+3 4.642E+3 9.896E+4 1.828E+6 2.561E+5

Table 7: Time taken to compute an OBN forN = 10 in 25 instances – put in increasing order. Rows
1 and 3 are the number of unknowns, rows 2 and 4 are the times taken in seconds. Stated run times
here include the time taken for solving the optimisation problem (Step 5b).

0 0 0 0 0 0 0 0 0 0 0 0 8
4 5 6 6 6 7 7 7 7 7 8 11 14
8 8 16 16 24 28 36 60 68 172 188 220

33 435 203 251 210 200 495 1266 9033 4.185E+4 3.312E+5 2.450E+5

Table 8: Comparison between the time taken to compute an OBN (Lines 1 and 2) and the time taken
to use the brute force approach (Line 3) for N = 12 and d∗ = 16 in 9 instances.

Number of Unknowns 2 8 32 16 48 108 72 316 252
Time taken in seconds 5 246 454 673 991 8429 8629 78889 92138
Time taken in seconds 167 558 333 693 15403 194 362 341 529
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Discussion. We used the freely available Matlab implementation of Tsamardinos et al. (2006)
to learn Bayesian networks from data representing the P ∗i . Unfortunately, the code is encrypted
as a pcode and cannot be modified without a password, which we were not able to obtain. This
creates two issues: (i) newer versions of Matlab do not support pcode and (ii) compiling the pcode
returns an error message and fails to output a Bayesian network, if there are too few probabilistic
dependencies between measured variables. We addressed issue (i) by using an older version of
Matlab. Issue (ii) is no real problem for our current application, since problem instances with
few probabilistic dependence are the easy cases for OBN-cDS and where its superiority over the
brute-force approach to entropy maximisation is apparent. We note that the issue only appeared for
instances with twelve or less variables, N ≤ 12. Furthermore, the issue became more frequent the
smaller N and the lower the density of the chance network, d∗. Even for the smallest problems we
tested, we saw the error message significantly less than one in ten instances. This means that the
bias is washed out as the size N of the problem increases.

The concern of this section is to provide a proof of concept of OBN-cDS at an abstract level.
The reliability of the employed structure learning algorithm (Step 1) is relevant but not of primary
interest here, as such structure learning algorithms are already widely studied. The performance
of MMHC is discussed by Aliferis et al. (2010); Gámez et al. (2010); Heinze-Deml et al. (2018);
Nandy et al. (2018); Raskutti and Uhler (2018); Tsamardinos et al. (2006); Xie and Geng (2008).
Unsurprisingly, the quality of the learned structure depends on the scoring function used to measure
quality (Liu et al., 2012; Scutari et al., 2019). Moreover, it has been suggested that whether data sets
used for learning were synthetic or from the real world influences the ranking of structure learning
algorithms (Malone et al., 2015).

For every problem instance we created in which the pcode executed correctly, OBN-cDS re-
turned a probability function. Matlab’s in-built optimisation routine ‘fmincon’ applied to the max-
imisation of entropy over 2N states (the brute-force approach) failed to produce an output for some
of these instance because it ran out of memory and terminated calculations prematurely. This is not
surprising, as for 13 variables the number of unknowns is equal to 8191.

In instances with few unknowns (under-determined variables), OBN-cDS, in general, outper-
formed the brute-force approach significantly in terms of computational speed (instances with few
under-determined variables in Tables 3, 4 and 5 and as well as the first rows of Table 8). Numbers
of under-determined variables are reported in Figures 5–10.

In a small number of instances, the brute-force approach found a probability function consistent
with the constraints (within the specified optimisation parameters) which also had greater entropy
than the function output by the implementation of OBN-cDS, in a shorter time. Our best explanation
is that the brute-force approach poses a convex optimisation problem (convex objective function and
linear constraints) while our method poses a potentially non-convex optimisation problem (non-
convex objective function and multi-linear constraints). There are hence, in general, multiple local
optima in our method and the optimisation algorithm outputs a local rather than a global optimum.

In sum, OBN-cDS is superior to the brute-force approach where there are few under-determined
variables or where the number of variables becomes so large that the brute-force approach is no
longer feasible. The speed-up strategies developed in the remainder of this paper are likely to lead
to further efficiency savings, although these were not tested here. Our overall recommendation is
to apply the brute-force approach where computationally feasible and switch to our algorithm once
the brute-force approach is no longer feasible.
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Our approach has the added benefit that it determines many of the parameters of the network
without needing to solve an optimisation problem. For applications which do not require specifying
a probability function over the entire domain, further efficiency savings are possible by parameter-
ising just the part of the OBN that is required in practice.

4. Computational Considerations

We now consider general computational questions concerning the general algorithm OBN-cDS. In
Sections 4.1–4.4, we discuss ways to speed up the algorithm in special cases. Worst-case complexity
is discussed in Section 4.5.

4.1 General Considerations

OBN-cDS allows a number of free choices. In order to reduce the size of the optimisation problem,
the following properties are desirable (see Figure 11 for an example):

1. As few under-determined variables as possible.

2. Under-determined variables with lower arity, if possible.

3. As few fill-in edges as possible.

4. A cut vertex9 of GT with maximal degree10 as root.

5. Under-determined variables as close as possible to the root.

6. As few as possible under-determined variables that have an under-determined variable as
ancestor/descendant.

These properties are desirable because:

1. The fewer under-determined variables there are, the fewer the number of unknowns in (1);
see Section 3.3.3 and Section 4.2.

2. The lower the arity of the under-determined variables, the fewer the number of unknowns in
(1).

3. Sparser graphs are likely to have fewer under-determined vertices, with fewer parents; see
Section 3.3.3. Also, the sparser the graph, the faster one can compute the objective function
(1).

4. A cut vertex of GT as a root vertex entails that maximising (1) can be achieved by inde-
pendently maximising entropy in the remaining connected components; see Section 4.4 and
Figure 11.

5. The closer the under-determined vertices are to the root, the fewer terms are in the constraints;
see Section 3.3.4.

9. A cut vertex is a node such that, if one removes this node and all arrows that point to or point from this node, then the
number of connected components increases. Intuitively, removing this node and severing all connections with this
node cuts the graph into more pieces.

10. The degree of a vertex is the number of edges incident on this vertex.
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6. The more separate pathways the under-determined vertices are on, the more the optimisation
problem can be split into independent optimisation problems; see Theorem 33.

Furthermore, if a y-parameter y and all its parents are fully determined, then all summands in the
objective function which contain the term log y consist only of known expressions. Hence, these
summands are fixed (irrelevant) for maximising entropy and the objective function can be pruned of
these terms.

Note that it may not be possible for these desiderata to all be attained at the same time. As a
rule of thumb, we would suggest minimising the number of under-determined variables first, as this
reduces the dimensionality of the optimisation problem.

DS1

DS2

DS3

DS4

DS5
DS6

DS7

A1

A2

A3

A4

A5

A6

A7

Figure 11: Top: Undirected graph G on 7 variables measured by seven datasets. Bottom: Clever
choices of an enumeration of variables and orientation of arrows produces the graph of an OBN
with only two under-determined variables (A4 and A6) which are both relatively close to the root.
Also note that both under-determined variables only have two parent variables. Furthermore, the
optimisation problem decomposes into two independent problems, since A1 is a cut vertex.

We should note that in order to address (3), there is one way of avoiding fill-in edges altogether:
instead of using the algorithm to determine a Bayesian net, use it to determine a Markov net, which
represents the maximum entropy function by means of an undirected graph, rather than a DAG.
This would eliminate steps (3) and (4) of OBN-cDS and would require modifying (5). We have not
taken this approach in the present paper because Bayesian nets (and triangulated Markov nets) are
generally regarded as more convenient for probabilistic inference than Markov nets, but we note
this option here as one that offers benefits in terms of the computational complexity of constructing
the net.

We next show how to jointly address Properties 1–3.
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4.2 Healthy Minimal Triangulations

Ideally, one would like to find a set of fill-in edges (Step 3 of OBN-cDS) which triangulates the
overarching Markov net structure G and which is contained in every other triangulation. Unfortu-
nately, no such canonical fill-in exists, as explained in Figure 2. The next best option would be
to compute a minimum triangulation, a triangulation with the minimum number of fill-in edges.
However, the problem of computing a minimum triangulation is NP-complete.11 While computing
minimum triangulations may be computationally infeasible, computing minimal triangulations is
not. Polynomial-time minimal triangulation algorithms are surveyed by Heggernes (2006).

Whether or not a variable is under-determined depends on the orientation of arrows which, in
turn, depends on the enumeration. A fill-in edge between variables which have not been jointly
measured is undesirable since this inevitably results in at least one under-determined vertex in the
final Bayesian net—regardless of the orientation of the edges. We now show how to avoid one type
of these troublesome fill-in edges, which we call an ‘unhealthy’ edge, by computing a particular
minimal triangulation in polynomial time.

Definition 12. The appendixAi of datasetDSi in a collection of datasets consists of those variables
measured by datasetDSi which are not measured in any other dataset. An unhealthy edge is an edge
which connects two appendices. A graph on V is called healthy, if and only if it does not contain
an unhealthy edge. Graphs containing an unhealthy edge are said to have appendicitis.

Definition 13. The neighbourhood of a set of vertices S in an undirected graph, N(S), is defined
as the set of vertices in the complement of S which are connected by an edge to S.

The neighbourhood of an appendix Ai, N(Ai), consists of those vertices connected by an edge
to a vertex in Ai. In G (Step 3), we trivially have that N(Ai) ⊆ DSi.

We now give the first part of an algorithm which, as we show below, quickly computes a mini-
mal and healthy triangulation of G:

Input: Undirected graph G computed in Step 3.
I) For all i and all A,B ∈ N(Ai): compute a fill-in edge between A and B, if and only the edge

between A and B is a chord of somesimple cycle c in G of length four or greater.
II) Add all these fill-in edges to G yielding graph G−.
III) For all i: drop all vertices not in Ai ∪N(Ai) from G− and compute a minimal triangulation.
IV) Drop all vertices contained in some appendix from G− and compute a minimal triangulation.
V) Add the fill-in edges computed in Step III and Step IV to G− yielding graph G+.
Output: Undirected graph G+.

The total number of runs of a triangulation algorithm is 2h + 1 (where h is the number of
available datasets). So, the more datasets there are, the more time the algorithm takes. In most
applications, when considering large optimisation problems it is the number of variables and/or the
number of observations which quickly grow. While the number of datasets h may also grow, we
believe that it is sensible to assume that h grows at most in a linear rate in terms of the input size

11. Computing a minimum triangulation is NP-complete in terms of the input graph. In applications with large datasets
and a moderate number of variables, it might be preferable to invest the extra time to compute a minimum triangula-
tion and subsequently obtain a sparser net with fewer under-determined variables.
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(size of datasets). Computing a minimal triangulation is achievable in polynomial time in terms of
input graphs (Heggernes, 2006).

Definition 14 (Separator). A minimal separator of G is a vertex set S ⊂ V such that V \ S has
at least two components C1, C2 such that N(C1) = N(C2) = S. A separator of G is a vertex set
which contains a minimal separator.

Note that for non-emptyAi the setsN(Ai) andN(Ai)∩N(V \(Ai∪N(Ai))) are both separators
of G—not necessarily minimal.

Intuitively, the chords computed in Step 1 cut every simple cycle which connects an appendix
with vertices which are not in the neighbourhood of this appendix. One can think of G− as the
result of creating separators in the N(Ai) which shield the appendices from vertices not in their
neighbourhood.

Proposition 15. G+ is healthy and G+ is a triangulation of G which, on input G, can be computed
in polynomial time.

See Appendix B for the proof, as well as for the proof of Proposition 16.
We now give the second part of our polynomial-time algorithm to compute a triangulation of G

which is healthy and minimal.

Input: Undirected graph G+.
VI) Drop all edges added in Step II from G+ yielding G0.
VII) Run a polynomial time minimal triangulation algorithm on G0 but only add edges which

connect two vertices in N(Ai).
Output: G++.

Proposition 16. G++ is a healthy and minimal triangulation of G which can be computed in poly-
nomial time.

4.3 Resolving Appendices

The number of under-determined variables directly influences the number of unknowns to be com-
puted by optimisation. In order to keep the number of under-determined variables low, it is prefer-
able to avoid arrows in the OBN which originate from one appendix and end in a different appendix.
For every such arrow, the variable the arrow points to is under-determined. Furthermore, arrows
pointing from a variable in appendix Ai ∈ Ai towards a variable Al measured in the same dataset
but not in the appendix, Al ∈ DSi \ Ai, potentially give rise to an under-determined variable. We
now show how to find (the DAG of) an OBN, such that all edges originating in an appendix also
point towards a variable in that same appendix.

Proposition 17 (No Appendicitis). We can find an OBN in which all arrows beginning in an ap-
pendix also end in this same appendix. Furthermore, every variable in an appendix is fully deter-
mined.

In particular, these conditional probabilities in the appendices can be found without having to
solve either an optimisation problem or an algebraic problem: they can be obtained directly from

418



OBJECTIVE BAYESIAN NETS FOR INTEGRATING CONSISTENT DATASETS

the data. Obtaining conditional probabilities in the appendices comes at the cost of adding further
edges to G.

So, under-determined variables can only be found outside of appendices. Here is the pseudo
code.

Input: consistent datasets DS1, . . . , DSh.
1) For all datasets DSi learn a Markov network structure Gi from DSi representing independences
of P ∗i .
2) Set overarching undirected graph G as the union of the Gi.
3) For all datasets DSi and all pairs of distinct variables Al, Ak measured by DSi that are not in the
appendix Ai add an undirected edge between Ai and Al.
4) Compute a minimal healthy triangulation of this graph.
5) Pick an enumeration of the variables in Step 4 of OBN-cDS such that for all datasets DSi and all
variables in its appendix Ai ∈ Ai are enumerated after all variables not in the appendix Ai.
6) Define an orientation of the edges as in OBN-cDS.
Output: DAG of an OBN that is healthy.

The idea is to enumerate variables in appendices only after all other variables in the dataset have
been enumerated.

In the worst case, there is no variable which is only measured in a single dataset. Hence, there are
no appendices and the above does, in general, not result in any computational speed up. However,
the more variables there are which are only measured in a single dataset (the larger the appendices),
the more promising the above transformation appears to be in terms of a computational speed up.

4.4 Connection Lost—Cut Vertex as Root

The computational hardness of optimisation problems generally increases super-linearly in the num-
ber of unknowns to be determined. It is hence preferable to decompose optimisation problems into
multiple independent problems. We now show that this is possible here for a class of problems.

If GT has more than one connected component consisting, respectively, of the vertices {Ai|i ∈
I1}, {Ai|i ∈ I2}, . . . , {Ai|i ∈ Ic} then the objective function of the optimisation problem can be
decomposed as follows:

−
c∑

r=1

∑
ir∈Ir

∑
vr@Anc′ir

( ∏
Aj∈Anc′ir

yvrj

)
log yvrir . (8)

The two inner sums only contain terms pertaining to one single connected component, Ir.
Furthermore, the constraints can also be decomposed. We can hence find an OBN by inde-

pendently maximising entropy on every connected component, that is we solve for non-negative
y-parameters, for all 1 ≤ r ≤ c

maximise: −
∑
ir∈Ir

∑
v@Anc′ir

( ∏
Aj∈Anc′ir

yvrj

)
log yvrir

subject to:
∑

g@{Ai}

ygvri = 1 for all i ∈ U ∩ Ir,
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∑
s@Anci\Pari:k

∏
Aj∈Anc′i

ysvrj = P ∗k (aviPar
vr
i:k) for all i ∈ U ∩ Ir and

for all maximal jointly measured sets of the form {Ai} ∪ Pari:k .

By choosing a cut vertex of GT as root of the OBN with the connected graphH we can exploit this.
Let Ao be the root and cut vertex. Let J1, . . . , Jc be the connected components which remain after
removing Ao. Then the objective function equals:

−
c∑

r=1

∑
ir∈Jr

∑
v@Anc′ir

yvo ·
( ∏
Aj∈Anc′ir

yvrj

)
log yvrir . (9)

Since the yvo can be obtained via Step 5a we have decomposed the objective function in a way
similar to that of (8). Clearly, the constraints decompose again, too. We can hence find an OBN by
independently solving for c independent optimisation problems.

Example 18. Suppose there exists a dataset DSi which only measures variables that are not mea-
sured by any other dataset DSj . This means that all variables measured by DSi are in the appendix
Ai. An OBN is then obtained by (i) determining an OBN for the variables measured by all other
datasets DSj , (ii) learning an OBN for DSi directly from the data and (iii) taking the union of these
two OBNs.

4.5 Complexity of OBN-cDS

In typical cases, GT is a sparse graph, and maximising (1) is computationally much simpler than
brute-force maximisation of entropy H(P ) = −

∑
v@V P (v) logP (v) expressed in terms of expo-

nentially many states of V (Williamson, 2005a, p. 95). Roughly speaking, the sparser the graph, the
fewer conditional dependencies there are, and the fewer the y-parameters there are in (1). This leads
to an optimisation problem with fewer unknowns. In concrete applications, further simplifications
may be achievable by following the recipe given in Section 4.1.

We shall now discuss the computational complexity of the general algorithm OBN-cDS.

4.5.1 STEPS 1–5A

Although maximum likelihood learning of Markov nets is NP-complete (Srebro, 2003), this is
largely because parameter learning is a complex task (Koller and Friedman, 2009, p.950). As
Bromberg et al. (2009) argue, structure learning can be performed relatively efficiently. This re-
mains the case if Markov net structure learning proceeds via Bayesian net structure learning, as in
our proof of concept, discussed in §3.4. The complexity of learning Bayesian networks representing
marginal frequencies in Tsamardinos et al. (2006) is polynomial, as long as the maximal degree of
a vertex is bounded by a polynomial. This algorithm has been implemented in R and is freely avail-
able (Scutari, 2010) and it has also been implemented in Matlab’s Causal Explorer Toolkit (Aliferis
et al., 2003).

One can find a minimal triangulation in polynomial time (Berry et al., 2004). Maximum cardi-
nality search can be completed in linear time (Berry et al., 2004, §3). Since GT is triangulated, it
has at most |V | cliques Fulkerson and Gross (1965) which can be found in linear time (Berry and
Pogorelcnik, 2011). Orienting all arrows is achievable in polynomial time (Dor and Tarsi, 1992).
Steps 2–5 are hence computable in polynomial time.
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Step 5a: Determining the conditional probability of a determined variable requires linear time in
the product of i) the number of observations in datasetDSi and ii) the number of variables measured
in dataset DSi: for every observation in the dataset DSi determine the value of the variable and
the values of the parents. Finally, divide the number of such observations by the total number of
observations in DSi.

4.5.2 STEP 5B

Denoting by |Ai| the number of variables in appendix Ai and by h the number of datasets, we can
give an upper bound to the number edges in G++:

Proposition 19. The number of edges in G++ is at most(
n

2

)
−
h−1∑
i=1

h∑
j=i+1

|Ai| · |Aj |.

Proof: There are n variables in V . The complete graph on n vertices has
(
n
2

)
edges. Since G++

does not have appendicitis, no edge connects different appendices. Hence, there is no edge connect-
ing any pair of variables in different appendices. For every fixed pair of different appendices Ai, Aj

there are |Ai| · |Aj | pairs of variables. �

A more natural measure of complexity than the number of edges is perhaps the number of y-
parameters, which we shall now investigate.

For a fixed OBN let Clmax be the maximal number such that there exists a dataset DSi which
measuresClmax variables which are not in the appendixAi such that there is an edge between every
two of these variables. Denote such a set byCl. So, the graph of the OBN contains a complete graph
of size Clmax as a sub-graph and all variables in this complete graph are jointly measured by DSi
and none of these variables is only measured by DSi. The smaller the number of variables that are
measured in appendices, the greater our prospects of being in a situation in which Clmax is large.

Corollary 20. If all variables are binary, then number of y-parameters which cannot be determined
by Step 5a is in the worst case

2n−
∑h

i=1 |Ai| − 2Clmax . (10)

Proof: In the worst case, all variables not in an appendix are connected to each other, which
translates into 2n−

∑h
i=1 |Ai| possible assignments of these variables.

We can start our maximum cardinality search algorithm at a variable in Cl and next visit all
the other members of Cl. This means that we can determine the conditional probabilities at the
first Clmax variables in this enumeration by Step 5a. There are 2Clmax fully determined such y-
parameters. �

The brute-force approach to maximising entropy leads to an optimisation problem with 2n − 1
unknowns. Ceteris paribus, the more appendices there are and the larger they are, the greater is the
reduction to the number of unknown parameters of OBN-cDS in the worst-case when compared
to the brute-force method. We also want to point out that for the minimal sensible h, h = 2, we
will show in Section 5 that we can compute all y-parameters via Step 5a, if both appendices are
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non-empty. If both appendices are empty (i.e., there does not exist an appendix), then both datasets
measure the exact same set of variables and determining an OBN becomes trivial. If one appendix is
empty, then the other dataset measures all variables in V and determining an OBN becomes trivial.

As soon as the number of datasets is greater or equal than 3 (h ≥ 3), Step 5a does not, in
general, suffice to completely determine an OBN; see Section 7.2. It may be the case that there are
no appendices. In such a case (

∑h
i=1 |Ai| = 0 and Clmax small), the worst-case complexity (in

terms of the number of unknowns to be determined) of our general approach is not much lower than
that of the brute-force approach.

4.5.3 SUMMARY

As long as the maximal degree of a vertex is bounded by a polynomial, the complexity of learning
the initial Markov net structures is polynomial (Step 1). Steps 2–4 can be computed in P-Time in
terms of input graphs. Every application of Step 5a runs in linear time, if arities of variables and the
number of parents is bounded by some constant. Step 5b requires the solution of an optimisation
problem, which has fewer variables than the brute-force maximum entropy optimisation problem
(Propositions 17 and 19 and Corollary 20). For these reasons, the computational complexity of
OBN-cDS compares favourably with that of the brute-force method (see Section 3.4).

In subsequent sections, we shall on occasion add auxiliary edges to G; this does not invali-
date any of the relevant formal properties. At worst, adding further edges may lead to a slightly
more complex optimisation problem. The remainder of this paper is devoted to finding classes of
cases in which—with help of variations of the general algorithm OBN-cDS—we can find an OBN
particularly quickly.

5. Two Datasets

The simplest case in which data integration becomes non-trivial is the case of two datasets. We
explore this case in detail in this section, showing that an OBN can be obtained directly from the
input datasets without needing to solve any optimisation problem.

5.1 Problem Description

If the set of variables of one dataset contains those of the other, then trivially, because the datasets are
assumed to be consistent, the maximum entropy function is fully determined by the measured fre-
quencies of the larger dataset. If the intersection of variables measured in the two datasets is empty,
then the maximum entropy function over V is simply the product of the measured frequencies (Ex-
ample 18). We thus consider two datasets where neither set of measured variables is contained in
the other set of measured variables and the intersection of measured variables is non-empty.

We consider two datasetsDS1 andDS2, whereDS1 measures variablesA1
1, . . . , A

1
l1
, C1, . . . , Ck

andDS2 measures the variablesA2
1, . . . , A

2
l2
, C1, . . . , Ck with k, l1, l2 ≥ 1 andA1 := {A1

1, . . . , A
1
l1
},

A2 := {A2
1, . . . , A

2
l1
} disjoint. We refer toC := {C1, . . . , Ck} as the centre and toA1, A2 as appen-

dices. An example can be found in Table 9, and a more abstract depiction is presented in Figure 12.

We next show how to obtain an OBN directly from the datasets, without solving any optimisa-
tion problem.
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Table 9: Example of two consistent datasets (P ∗1 (survived) = 2
3 = P ∗2 (survived)) which between

them measure set of variables V = {Sex,Treatment Outcome,Age}. The black cells indicate ob-
servations not made.

Variables measured in Dataset 1︷ ︸︸ ︷
Variables measured in Dataset 2︷ ︸︸ ︷

Observation Sex Treatment Outcome Age
Observations
of Dataset
1

Patient 1 Male survived
Patient 2 Female died
Patient 3 Female survived

Observations
of Dataset
2

Patient 4 survived 60 + years
Patient 5 survived 60 + years
Patient 6 died 40− 59 years︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Variables measured Variables measured Variables measured
in Appendix 1 in the Centre in Appendix 2

Figure 12: Schematic representation of variables for two datasets with non-trivial intersection of
measured variables. The healthy graphs are these graphs in which there is no edge connecting A1

and A2.

A1 A2C

5.2 OBN-2cDS

We find an OBN from two consistent datasets via the following algorithm, which we call OBN-
2cDS:

Input: datasets DS1, DS2.
1) Run OBN-cDS on centre C to determine OBN BC for C.
2) For i=1,2 learn a Markov network structure Fi from DSi.
3) For i=1,2 add edges to Fi to ensure that the centre nodes form a clique, yielding Gi.
4) For i=1,2 compute a minimal triangulation GTi of Gi.
5) For i=1,2 run maximum cardinality search on GTi , ensuring that the centre nodes are enumerated

before nodes in appendix Ai and have the same ordering for all i.
6) For i=1,2 orientate GTi to give DAGHi.
7) For i=1,2 determine conditional probabilities of all variables in Ai given their parents inHi

directly from DSi.
8) Obtain overarching DAGH by taking the union of theHi and then replacing the arrows on the

centre nodes by those in BC .
9) Take as parameters those in BC as well as those obtained in (7).
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Output: Objective Bayesian Net

The correctness of OBN-2cDS is proved below. By inspecting the algorithm, the OBN is ob-
tained directly from the DSi. No optimisation problem needs to be solved.

In contrast, running OBN-cDS directly on the two datasets will, in general, require the solution
of an optimisation problem. This is because OBN-cDS can place a vertex in the centre with parents
in both appendices. This variable would be under-determined and conditional probabilities would
have to be found via optimisation.

5.3 Analytic Representation of the Maximum Entropy Function

We next determine the analytic representation of the maximum entropy function, which we shall
later make use of.

First note that consistency implies that for all v0@C, P ∗1 (v0) = P ∗2 (v0). We hence drop the
index and simply write P ∗(v0).

Two non-empty disjoint sets of variables X,Y ⊂ V are conditionally independent given all
other variables, according to P †, if no variable in X occurs in a dataset which mentions a variable
in Y (see Section 3.2). To see this, first define an undirected graph with the variables in V as nodes
and an edge between each pair of variables that are jointly measured by some dataset. If a subset
of variables S ⊂ V separates X from Y in this graph, then X and Y are conditionally independent
given S, according to P †; see Williamson (2005a, Theorem 5.6).

We hence find that for all assignments v0@C, v1@A1, v2@A
2 such that P †(v0v1v2) is non-zero,

P †(v0v1v2) = P †(v1v2|v0) · P †(v0)
= P †(v1|v0) · P †(v2|v0) · P †(v0)
= P ∗1 (v1|v0) · P ∗2 (v2|v0) · P ∗(v0) . (11)

P †(v0v1v2) is zero if and only if P ∗1 (v0v1) = 0 or P ∗1 (v0v2) = 0, by the open-mindedness prop-
erty of P † (Paris, 1994, p. 95). Since (11) holds for all such assignments, these conditions fully
determine the maximum entropy function P †.

5.4 Correctness of OBN-2cDS

We note that Step 1 of OBN-2cDS determines an OBN for P †(v0) = P ∗(v0); since the output of the
algorithm agrees with Step 1 in the centre, the algorithm correctly outputs a DAG and conditional
probabilities in the centre.

To establish correctness of OBN-2cDS, we now turn to the variables in the appendices.
Note that Hi is the DAG of an OBN representing P ∗i . This follows since we constructed Hi by

the same procedure as that used by OBN-cDS.
We are interested in determining the conditional probabilities P ∗i (vi|v0) for all vi@Ai, v0@C.

These conditional probabilities have to satisfy the independence relations represented by Hi, but
they might satisfy further independence relations. The DAG H of an OBN for P † is thus obtained
by taking as vertices C ∪ A1 ∪ A2 and as arrows all the arrows of BC and those arrows in H1 and
H2 which do not connect two vertices in C.

We now show thatH is acyclic. There cannot be any cycle in the centre, since all directed edges
in the centre are those of the DAG BC . Similarly, there cannot be any cycle in an appendix, since
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all directed edges in an appendix are those of a DAG. If there were a cycle containing a variable in
the centre and a variable in an appendix, then there would have to be an arrow originating from an
appendix and pointing to the centre. By construction, there is no such arrow. Hence,H is acyclic.

All conditional probabilities in the centre can be read-off from BC . The conditional probabilities
in the two appendices are obtained as explained in Section 3.3.3. So:

Proposition 21. In the case of two consistent datasets, OBN-2cDS finds an OBN without under-
determined variables.

In sum, then, in the two-dataset case, we obtain an OBN directly from the datasets. There is no
need to maximise entropy by solving an optimisation problem (1).

6. Centred Datasets

In this section, we show how the results for two consistent datasets can be generalised to larger
collections of datasets. We show that if the datasets are centred then an OBN can be found without
needing to solve an optimisation problem.

Definition 22. A collection of h ≥ 2 datasets is centred, if and only if there exists a dataset DSm
such that every variable which is measured in more than one dataset is also measured in DSm. The
variables in DSm are Am1 , . . . , A

m
lm

and C1, . . . , Ck. The variables in dataset DSi with i 6= m
are the Ai1, . . . , A

i
li

, which are unique to DSi, together with some variables from C1, . . . , Ck. All
variables are distinct. We extend the notions of the centre C and an appendixAi in the obvious way.

In particular, every collection of two datasets is centred; the centre consists of the variables
measured by both datasets. An example of a collection of centred datasets can be found in Figure 13.

Figure 13: DS5 measures all variables in the centre; indicated by the dashed line. All other datasets
measure the variables in their respective appendix and a subset of the variables in the centre. Every
variable measured in two or more datasets is contained in the centre.

A5 C

A1

A2

A3

A4

Again, we can obtain an OBN directly from the datasets, without solving any optimisation
problem. The underlying idea is simple: repeat the argument for two datasets but replace the number
2 by the number of datasets, h.

6.1 OBN-ccDS

For consistent centred datasets, we can find an OBN via the following algorithm, which we call
OBN-ccDS:
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Input: centred datasets DS1, DS2, . . . , DSh.
1) Run OBN-cDS on centre C and determine OBN BC for C.
2) For i = 1, 2, ..., h learn a Markov net structure Fi from DSi.
3) For i = 1, 2, ..., h add edges to Fi to ensure that the centre nodes form a clique, yielding Gi.
4) For i = 1, 2, ..., h compute a minimal triangulation GTi of Gi.
5) For i = 1, 2, ..., h run maximum cardinality search on GTi , ensuring that the centre nodes are

enumerated beforenodes in appendix Ai and have the same ordering for all i.
6) For i = 1, 2, ..., h orientate GTi to give DAGHi.
7) For i = 1, 2, ..., h determine conditional probabilities of all variables in Ai given their parents in
Hi from DSi.

8) Obtain overarching DAGH by taking the union of theHi and then replacing the arrows on the
centre nodes by those in BC .

9) Take as parameters those in BC as well as those obtained in (7).
Output: Objective Bayesian Net

6.2 Analytic Representation of the Maximum Entropy Function

The analytic solution is analogous to the two dataset case. Again, the variables measured in DSi
which are in the centre C screen off appendix Ai from all other variables. This follows exactly as
above. Denote by vi0 the restriction of an assignment v0@C to the variables measured in DSi. For
assignments all v0@C, vi@Ai such that P †(v0v1 . . . vN ) is non-zero we find

P †(v0v1 . . . vN ) = P †(v1 . . . vN |v0) · P †(v0)

= P †(v0) ·
N∏
i=1

P †(vi|v0)

= P †(v0) ·
N∏
i=1

P †(vi|vi0)

= P ∗m(v0) ·
N∏
i=1

P ∗i (vi|vi0). (12)

P †(v0v1 . . . vN ) is zero if and only if there exists an 1 ≤ i ≤ N such that P ∗i (v0vi) = 0, by the
open-mindedness property of P † (Paris, 1994, p. 95). Since (12) holds for all such assignments,
these conditions fully describe the maximum entropy function P †.

6.3 Correctness of OBN-ccDS

We note that Step 1 of OBN-ccDS algorithm determines an OBN for P †(v0) = P ∗(v0); since the
output of the algorithm agrees with Step 1 in the centre, the algorithm correctly outputs a DAG and
conditional probabilities in the centre.

To establish correctness of OBN-ccDS, we have to take care of the variables in the appendices.
The arguments for the two dataset case apply here in exactly the same way. We hence obtain the
following:

Proposition 23. In the case of consistent centred datasets, OBN-ccDS finds an OBN without under-
determined variables.
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In sum, then, in the centred dataset case, an OBN can be obtained directly from the datasets.
There is no need to maximise entropy via (1).

7. Determining Conditional Probabilities Algebraically

As we demonstrated in the previous sections, there are natural classes of cases in which we can
avoid Step 5b of OBN-cDS altogether and can parameterise an OBN just by means of Step 5a.

We saw in Figure 3 that there are cases in which a variable and its parents are not jointly mea-
sured by a single dataset. Hence, Step 5a will not yield the conditional probabilities at such a vari-
able in such a case. Determining these probabilities by means of solving an optimisation problem
appears to be inevitable.

However, it turns out that in many of these cases we can determine all conditional probabilities
in an OBN without solving any optimisation problem. To compute the conditional probabilities we
instead need to find the roots of a polynomial of low degree in one variable.

First, we shall investigate relatively simple cases. In Section 8, we shall use these simple cases
as stepping stones to more complex situations. The computational speed-up obtained by solving an
algebraic problem rather than an optimisation problem compares favourably to OBN-cDS presented
in Section 3, which is already a significant improvement on the brute-force approach.

7.1 Sufficient Conditions for an Algebraic Solution

Theorem 24. If H consists of N ≥ 3 binary variables A0, A1, . . . , AN−1 such that A0 is a child
of every other Ai and such that every combination of N − 1 variables is measured in some dataset
(i.e., for all 0 ≤ j ≤ N − 1 there exists a dataset DSj which measures {A0, . . . , AN−1} \ {Aj}),
then the conditional probabilities of P † can be found by applications of Step 5a and by computing
all roots of a polynomial P(x) of degree 2N−1 − 1 which are in [0, 1]. This polynomial P(x) can
be found efficiently.

The simple case N = 3 will be discussed in more detail in Section 7.2. Note that this theorem
holds for an arbitrary DAG structureH on the variables A1, . . . , AN−1.

The proof, which is rather long, can be found in Appendix C.

Computational Complexity. Finding all real roots of polynomials with real coefficients can be
done quickly. Already in 1970, an algorithm was reported which found all roots of polynomials
ranging in degree from 20 to 50, on average in 2n2 milliseconds (Jenkins and Traub, 1970). Com-
puting the polynomial P(x) is clearly a polynomial time problem in terms of the right-hand sides
of the constraints in our optimisation problem (22).

7.2 Triangles

We shall now see that for N = 3, Theorem 24 allows us to simply read-off P †, if all variables
are binary. As we show thereafter, the assumption of binary variables in Theorem 24 cannot be
weakened.

7.2.1 BINARY VARIABLES

The simplest case in which we cannot avoid an under-determined variable arises as follows: Datasets
DS1, DS2, DS3 measure sets of binary variables {A0, A1}, {A0, A2} and {A1, A2}, respectively,
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with each Ai taking ai, āi as possible values. Furthermore, with respect to all marginal measured
frequencies all pairs of measured variables are dependent. Hence, there are edges between all
three variables in the graph G. Clearly, this collection of datasets is not centred. Every acyclic
orientation of the edges of G makes one vertex a child of the other two vertices. This variable is
under-determined. An example for three such datasets can be found in Table 1.

Proposition 25 (Landes and Williamson (2016)). Under the assumptions of Theorem 24 and the
assumption that N = 3 an OBN can be obtained by simple algebraic means without solving an
optimisation problem.

We now give pseudo code for the proof; see Appendix D for a full proof.

Input: Consistent datasets DS1, DS2, DS3 each measuring two variables, {A0, A1}, {A0, A2} and
{A1, A2}, respectively.
1) Express constraints on the unknown probabilities P (v) of the eight assignments v@{A0, A1, A2}

as a system of seven inhomogeneous linear equations.
2) Compute the entropy of a probability function H(P ) in terms of a single unknown.
3) Take the derivative of this function with respect to this unknown and equate it to zero.
4) Collect terms of derivative to obtain a polynomial of degree 3 in a single unknown.
5) Determine the possible solutions to this polynomial via basic textbook algebra.
6) Find the maximum entropy solution by testing all possible solutions.
7) Construct OBN from found maximum entropy solution.
Output: Unique OBN.

Ceteris paribus, the proof Theorem 24 has the equivalent of the first 3 steps. In Step 4, the re-
sulting polynomial is of degree 2N−1. The key idea in both proofs is to note that the constraints are
only satisfied in an affine linear space of dimension one or zero. Hence, one can express the entropy
H(P ) in terms of a single unknown probability.

Two Examples and one Remark. The question arises whether the problem structure is such that
the discriminant of the polynomial, ∆, is always strictly greater than zero (equal to zero, strictly
less than zero). If this were the case, then computing P † would be even quicker (since one would
have to check fewer possible roots of the polynomial P(x)). Furthermore, if it were the case that
∆ = 0 always holds, then there might be some way of intuitively understand the values of P † since
x∗ is then particularly simple. However, we have found cases in which ∆ < 0,∆ = 0 and ∆ > 0,
respectively, see Example 26 and Example 27 for ∆ 6= 0. For ∆ < 0 it seems particularly hard to
intuitively grasp the values x∗ can take. Cases with ∆ = 0 arise ifP ∗i (avja

v
k) = P ∗i (avk)P

∗
i (avk) holds

for all combinations of v@V, i, j, k where defined and if also one of these measured frequencies
equals zero.

Appendix E contains the source code to compute the following examples.

Example 26 (Negative Discriminant). Three datasets measured the following:

DS1 : P ∗1 (a0a1) =
55

100
P ∗1 (a0ā1) =

10

100
P ∗1 (ā0a1) =

33

100
P ∗1 (ā0ā1) =

2

100

DS2 : P ∗2 (a0a2) =
64

100
P ∗2 (a0ā2) =

1

100
P ∗2 (ā0a2) =

7

100
P ∗2 (ā0ā2) =

28

100
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DS3 : P ∗3 (a1a2) =
61

100
P ∗3 (a1ā2) =

27

100
P ∗3 (ā1a2) =

10

100
P ∗3 (ā1ā2) =

2

100

P ∗(a0) =
65

100
P ∗(a1) =

88

100
P ∗(a2) =

71

100

Matlab computed the discriminant to be equal to −1.097210366162764e − 10 and P †(ā0ā1ā2) =
x = 0.01752872708409.

Example 27 (Positive Discriminant). Three datasets measured the following:

DS1 : P ∗1 (a0a1) =
1

13
P ∗1 (a0ā1) =

3

13
P ∗1 (ā0a1) =

5

13
P ∗1 (ā0ā1) =

4

13

DS2 : P ∗2 (a0a2) =
1

13
P ∗2 (a0ā2) =

3

13
P ∗2 (ā0a2) =

2

13
P ∗2 (ā0ā2) =

7

13

DS3 : P ∗3 (a1a2) =
2

13
P ∗3 (a1ā2) =

4

13
P ∗3 (ā1a2) =

1

13
P ∗3 (ā1ā2) =

6

13

P ∗(a0) =
4

13
P ∗(a1) =

6

13
P ∗(a2) =

3

13

Matlab computed the discriminant to be equal to = 1.525101176783421e− 08 and P †(ā0ā1ā2) =
x = 0.27329803010335.

Setting out, we made the assumption that marginal frequency distributions are satisfiable by
some joint probability function defined on the set V of all the variables measured by the datasets.
This might seem like an unecessarily strong assumption. Initially, one might be tempted to only
assume that the marginal frequency distributions agree on joint domains. We now show that such a
weaker assumption does not suffice for our purposes.

Remark 28. There exist three datasets with measured frequencies which agree on common variables
which are inconsistent in the sense that there does not exist a probability function P defined on the
entire domain which agrees with all marginal frequencies.

Proof: The measured frequencies are as follows:

DS1 : P ∗1 (a0a1) =
55

100
P ∗1 (a0ā1) =

10

100
P ∗1 (ā0a1) =

33

100
P ∗1 (ā0ā1) =

2

100

DS2 : P ∗2 (a0a2) =
64

100
P ∗2 (a0ā2) =

1

100
P ∗2 (ā0a2) =

7

100
P ∗2 (ā0ā2) =

28

100

DS3 : P ∗3 (a1a2) =
70

100
P ∗3 (a1ā2) =

18

100
P ∗3 (ā1a2) =

1

100
P ∗3 (ā1ā2) =

11

100

P ∗(a0) =
65

100
P ∗(a1) =

88

100
P ∗(a2) =

71

100

From (23) we infer that x2 − x8 = f − g = −0.1 holds and since x2 ≥ 0 (we are only interested
in probabilities) we obtain x8 ≥ 0.1. Similarly, we have x7 + x8 = d = 0.02 and since x7 ≥ 0 we
obtain x8 ≤ 0.02. Contradiction.

Hence, the system of equations (23) is not solved by any probability function. This means that
there is no probability function defined on V = {A1, A2, A3} which agrees with P ∗1 , P

∗
2 and P ∗3 on

their respective domains. �
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In Section 5.3, we calculated the maximum entropy function P † for any two datasets with mea-
sured frequencies which agree on common variables, i.e., which agree on the centre. In particular,
P † agrees with P ∗1 and P ∗2 on their respective domains. Given this, and given the above remark,
we can now answer the following question: for n datasets whose measured frequency distributions
agree on common variables, does there always exist a probability function defined on the entire do-
main which agrees with all dataset distributions? If 1 ≤ n ≤ 2, then the answer is “yes”, if n ≥ 3,
the answer is “no”.

This remark also explains why we sampled from a probability distribution defined over the entire
domain in our Matlab implementation (Section 3.4). Had we instead sampled from multiple distri-
butions agreeing on joint domains, we would have had no guarantee that there exist a probability
function consistent with all (in our sense consistent) observations.

7.2.2 NON-BINARY VARIABLES

In Proposition 25, we saw that one can determine the parameters of an OBN algebraically, if all
variables are binary by inspecting the roots of a cubic polynomial. We now show that this does not
extend to the case in which at least one variable is non-binary.

Let us again consider datasets DS1, DS2, DS3 which measure sets of variables {A1, A2},
{A0, A2} and {A0, A1}. However, now one of the variables is at least ternary. Let ni denote
the arity of Ai, the number of possible values Ai can take.

For v@{A0, A1, A2} we obtain n0n1 + n0n2 + n1n2 constraints of the form

P †(av1a
v
2) = P ∗1 (av1a

v
2)

P †(av0a
v
2) = P ∗2 (av0a

v
2)

P †(av0a
v
1) = P ∗3 (av0a

v
1).

Restricting attention to constraints for DS1 of the form P †(av1a
v
2) = P ∗1 (av1a

v
2) we note that none

of these constraints is redundant.
On the other hand, for the constraints involving P ∗2 we have for all v@{A2}∑

g@{A0}

P †(ag0a
v
2) = P †(av2) = P ∗2 (av2). (13)

This constraint we have already from DS1. So, we have found that n2 constraints (arity of A2

many) in (13) are redundant.
Similarly, for the constraints involving P ∗3 we have for all v@{A0} and all v′@{A1} that∑

g@{A0}

P †(ag0a
v
1) = P †(av1) = P ∗3 (av1)

∑
g′@{A1}

P †(av
′

0 a
g
1) = P †(av

′
0 ) = P ∗3 (av

′
0 ).

From this third set of constraints we found n0+n1 constraints which each can be expressed in terms
of previously found constraints. However, not all these newly found constraints are independent.
Adding these constraints we obtain ∑

v@{A0,A1}

P †(av0a
v
1) = 1.
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So, one constraint can be expressed in terms of the other n1+n2−1 constraints. Hence, we showed
that at least n0 +n1 +n2− 1 constraints of the n0n1 +n0n2 +n1n2 constraints are redundant. So,
the number of meaningful, i.e., non-redundant, constraints is at most

n0n1 + n0n2 + n1n2 − (n0 + n1 + n2 − 1) .

We now give a simple result in elementary number theory relating this number to the number of
unknowns (n0n1n2):

Proposition 29. For natural numbers n0, n1, n2 ≥ 2 it holds that

n0n1n2 − (n0n1 + n0n2 + n1n2 − (n0 + n1 + n2 − 1)) = 1, if and only if n0 + n1 + n2 = 6

n0n1n2 − (n0n1 + n0n2 + n1n2 − (n0 + n1 + n2 − 1)) ≥ 2, if and only if n0 + n1 + n2 ≥ 7 .

Proof: It suffices to note that

n0n1n2 − (n0n1 + n0n2 + n1n2 − (n0 + n1 + n2 − 1)) = (n0 − 1)(n1n2 − n1 − n2 + 1)

is strictly increasing in n0, n1, n2 ≥ 2 and that for n0 + n1 + n2 = 6 this expression equals 1 and
for n0 + n1 + n2 = 7 this expression equals 2. �

So, if not all variables are binary (n0 + n1 + n2 ≥ 7), there are at least two more unknowns
than there are constraints. This shows that there is no hope for finding a version of Theorem 24 with
(some) non-binary variables which reduces to an algebraic problem in a single unknown.

7.3 Unmeasured Substates

Theorem 24 allows us to quickly calculate certain conditional probabilities. As we saw above, if
N = 3, then, after some linear algebra, we can determine these conditional probabilities without
needing to solve an optimisation problem. We shall now see that there is another special case of
Theorem 24 in which the conditional probabilities can be obtained even quicker for arbitraryN ≥ 3.

As we saw in the proof of Theorem 24: if P † assigns some v@V zero probability, then the set
of of possible solutions consists only of a single element, P †. Exploiting this observation we obtain

Corollary 30. Under the assumptions of Theorem 24, if one measured marginal frequency equals
0, then there exists a unique probability function P †, agreeing with all observations, which can be
read off from (20).

Proof: If one substate generated by the variables of one single dataset has not been measured,
then P † assigns this substate probability zero. But then all states which extend this substate are
also assigned probability zero by P †. But this means that at least two xj in (20) are equal to zero.
Suppose j 6= 2N . We can now compute x by xj = 0 = δjx + vj . Substituting x = −δjvj in (20)
we obtain a system of linear equations of the form xi = v′′i with v′′i ∈ [0, 1]. Having assumed that
there exists a probability function which is consistent with all measured frequencies we can now
simply read off this function.

The case j = 2N is similar. �
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Example 31 (Unmeasured Substate). Consider datasets measuring sets of variables as detailed in
Example 26 and Example 27. Also assume that one substate, a0a1 has not been measured, i.e.,
P ∗1 (a0a1) = 0. P † can be obtained by elementary logic by subsequently observing

P †(a0a1a2) = 0

P †(a0a1ā2) = 0

P †(a0ā1a2) = P †(a0ā1a2) + P †(a0a1a2) = P †(a0a2) = P ∗2 (a0a2)

P †(ā0a1a2) = P †(a0a1a2) + P †(ā0a1a2) = P †(a1a2) = P ∗3 (a1a2)

P †(a0ā1ā2) = P †(a0ā1)− P †(a0ā1a2) = P ∗1 (a0ā1)− P ∗2 (a0a2)

P †(ā0a1ā2) = P †(ā0a1)− P †(ā0a1a2) = P ∗1 (ā0a1)− P ∗3 (a1a2)

P †(ā0ā1a2) = P †(ā0a2)− P †(ā0a1a2) = P ∗2 (ā0a2)− P ∗3 (a1a2)

P †(ā0ā1ā2) = P †(ā0ā2)− P †(ā0a1ā2) = P ∗2 (ā0ā2)− P ∗1 (ā0a1) + P ∗3 (a1a2).

Applying this to the example in Table 1 we find that all young patients died and all old patients
survived. This allows us to “complete” DS1 and DS3 and finally DS2 as follows (Table 10):

Table 10: Missing values (in blue) are filled in according to the unique probability function consis-
tent with the datasets from Table 1.

Variables measured in Dataset 1︷ ︸︸ ︷
Variables measured in Dataset 2︷ ︸︸ ︷

Observation Sex Treatment Outcome Age
Observations
of Dataset
1

Patient 1 Male survived 60 + years
Patient 2 Female died 40− 59 years
Patient 3 Female survived 60 + years

Observations
of Dataset
2

Patient 4 P (Male) = P (Female) = 50% survived 60 + years
Patient 5 P (Male) = P (Female) = 50% survived 60 + years
Patient 6 Female died 40− 59 years

Observations
of Dataset
3

Patient 7 Female survived 60 + years
Patient 8 Male survived 60 + years
Patient 9 Female died 40− 59 years︸ ︷︷ ︸ ︸ ︷︷ ︸

Variable measured Variable measured
in Dataset 3 in Dataset 3

8. Optimisation Along Separate Paths

In the previous Section 7, we studied, in some detail, graphs with a single under-determined variable.
We now show how we can use the techniques developed above to determine conditional probabilities
in more complex graphs with multiple under-determined variables.

We shall now see that, if we can find a particular orientation of the arrows (this includes the
choice of a root node), then determining an OBN can be reduced to independently determining the
conditional under-determined variables.

Proposition 32. If all under-determined variables of H are leaves, then the problem of computing
an OBN can be reduced to independently computing the conditional probabilities at these leaves.
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Proof: Let Ak be an under-determined variable. Note that the only mention of conditional proba-
bilities at Ak in (1) are in the term

−
∑

v@Anc′k

P (avk|Parvk) log(P (avk|Parvk))
∏

Aj∈Anck

P (avj |Parvj )

= −
∑

v@Anc′k

yvk log(yvk)
∏

Aj∈Anck

yvj . (14)

Ignoring summands which do not contain unknown y-parameters, the objective function of the
optimisation problem can be written as

−
∑
k∈U

∑
v@Anc′k

yvk log(yvk)
∏

Aj∈Anck

yvj .

Note that all yvj have been determined via Step 5a. Furthermore, note that we can write this sum as
follows: no summand contains yk and yk′ for different k, k′ ∈ U .

The constraints also separate nicely: Note that no constraints contains yvk and ywk′ for different
k, k′ ∈ U and assignments v, w.

We can hence find an OBN by independently solving for all i ∈ U the following optimisation
problems for non-negative yv

maximise: −
∑

v@Anc′i

yvi log(yvi )
∏

Aj∈Anci

yvj

subject to:
∑

g@{Ai}

ygvi = 1 for all i ∈ U ,

∑
s@Anci\Pari:k

ysvi
∏

Aj∈Anci

ysvj = P ∗k (aviPar
v
i:k) for all i ∈ U and

for all maximal jointly measured sets of the form {Ai} ∪ Pari:k

�

If one of the under-determined leaves satisfies conditions considered in Section 7, then deter-
mining conditional probabilities simplifies even further.

Theorem 33. If the following four equivalent conditions hold:

• every directed path inH contains at most one under-determined variable,

• no under-determined variable inH has an ancestor nor a descendant which is under-determined,

• no under-determined variable inH has an ancestor which is under-determined,

• no under-determined variable inH has a descendant which is under-determined,

then the problem of computing an OBN can be reduced to independently computing the conditional
probabilities at the under-determined variables.
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As will be clear from the proof, this theorem is a simple instance of the fact that the more
separate pathways the under-determined vertices are on, the more the optimisation problem can be
split into independent optimisation problems (Section 4.1, Property 6).
Proof: It is clear that these four conditions are equivalent.

Let us note that were we to drop all descendants of under-determined variables we would obtain
a graph in which all under-determined variables are leaves. That is, we would be in the situation
investigated in Proposition 32.

Hence, the conditional probabilities at an arbitrary under-determined variable Ak appears in the
entropy equation (1) in the summands for the descendants of Ak as well as in terms of the form in
(14). Let Ag be a descendant of Ak. Then such a summand has the form

−
∑

v@Anc′g

( ∏
Aj∈Anc′g

yvj

)
log(yvg) = −

∑
v@Anc′g

(
yvk

∏
i∈{1,...,g−1}\{k}

Ai∈Ancg

yvi

)
yvg log(yvg).

Note that only the yvk are unknown parameters and each yvk appears linearly in the above term.
Adding all summands in which an yvk appears we still find that yvk appears linearly with a coefficient
that can be directly determined by Step 5a.

Hence, the problem of computing an OBN is of the same order of computational complexity as
computing the conditional probabilities at the under-determined variables independently. �

9. Concluding Remarks

We have explored the question of how to efficiently determine an OBN from consistent datasets.
We provided a general algorithm OBN-cDS which has the potential to substantially reduce the
dimension of the optimisation problem, in comparison to the brute-force approach. For centred
collections of datasets (in particular for any pair of datasets) we showed how to obtain an OBN
without needing to solve an optimisation problem. We also discovered cases in which an OBN
can be found by algebraic means and cases in which the optimisation problem can be split into
independent optimisation problems.

A number avenues for further research stand out to us: (i) to identify further efficiency savings
to OBN-cDS; (ii) to extend the methodology to include inconsistent datasets; and (iii) to apply the
Matlab implementation to real-world datasets. More specifically, further research could address the
optimisation problem we tackled from a computational point of view. For example, how could one
calculate or estimate the number of local maxima? Can (the number of) maxima be characterised
by the number of unknowns, the DAG of the OBN and/or the geometry of the feasible region?
Can we compute some of these maxima relatively quickly? And (iv) to extend the methodology
to continuous variables. Statistical matching for continuous variables is an area of active research
(Little and Rubin, 2014). Obviously, discretisation is a viable strategy, if a suitable discretisation
is available and the datasets are large and reliable to approximate the frequency distribution of the
measured variables.

Two questions in the wider research context are also of interest: (v) to trace connections be-
tween the OBN approach and the project of explainable AI (Ras et al., 2022). In particular, how
is a graphical approach employing Bayesian networks helpful for explanatory purposes and how
does the maximum entropy approach compare with statistical matching techniques with respect to
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explainability? (vi) to tackle the thorny methodological issue of integrating data obtained from
observational study designs with data obtained from intervention studies (Hauser and Bühlmann,
2014).
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Appendix A. Theoretical Background to OBN-cDS

Here we provide versions of results from Williamson (2005a, Sections 5.6 and 5.7) that can be used
to demonstrate the correctness of the algorithm OBN-cDS.

The task is to maximise entropy subject to the constraints P�Vi = P ∗i , for i = 1, . . . , h, where
Vi is the subset of variables measured by dataset DSi. Each constraint ensures that the agent’s
probability function P matches a dataset distribution P ∗i . Each such constraint can be represented
as set of equality constraints on probability function x of the form {fvii (xvi) := xvi − P ∗i (vi) =
0 : vi@Vi}, where xvi := x(vi). Let π be the set of all these equality constraints. We denote the
feasible region (i.e., the set of constrained probability functions) by,

Pπ = {x ∈ P : fvii (xvi) = 0, vi@Vi, i = 1, . . . , h}.

As usual, we assume throughout that the constraints are mutually consistent. Pπ is a closed convex
set of probability functions and the entropy function is strictly concave, so there is a unique function
P † on Pπ with maximum entropy.

Form undirected graph F by taking variables in V as nodes and joining two nodes by an edge,
if and only if they are variables measured by the same dataset.

Theorem 34. If Z separates X from Y in F , then X ⊥⊥ P †Y | Z for the function P † satisfying the
constraints which maximises entropy.

Proof: The first step is to use standard Lagrange multiplier optimisation. If x ∈ Pπ is a local
maximum of H then there are constants (‘multipliers’) µ, λvii ∈ R such that

∂H

∂xv
+ µ+

h∑
i=1

∑
vi@Vi

λvii
∂fvii
∂xv

= 0 (15)

for each assignment v@V , where µ is the multiplier corresponding to the additivity constraint∑
v@V x

v = 1.
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Now xvii =
∑

v@V,v∼vi x
v, where the sum is over all v consistent with vi, so

∂fvii
∂xv

=
∂fvii
∂xvii

∂xvii
∂xv

=
∂fvii
∂xvii

.1

where vi is the assignment to Vi that is consistent with v. Furthermore,

∂H

∂xv
= −1− log xv,

so Equation 15 can be written

log xv = −1 + µ+
h∑
i=1

λvii
∂fvii
∂xvii

where vi is the assignment to Vi that is consistent with v. Thus,

xv = eµ−1
h∏
i=1

e
λ
vi
i

∂f
vi
i

∂x
vi
i (16)

Hence the local maximum x is representable as a product of functions, each of which depends only
on variables in the Vi (the leading term is a constant). The probability function x is said to factorise
according to the sets V1, . . . Vh, and since these sets are complete subsets of F , x is said to factorise
according to F (Lauritzen, 1996, pp. 34–35). The global Markov condition says that if Z separates
X from Y in F ,then X ⊥⊥ Y | Z, and this condition is a straightforward consequence of factori-
sation according to F (Lauritzen, 1996, Proposition 3.8). Thus the theorem follows for all local
maxima, and in particular for the global maximum P †. �

Step 2 of OBN-cDS creates an undirected graph G that is a subgraph of F . This replaces each
complete graph on Vi by the Markov network structure Gi learned at Step 1. This replacement
clearly keeps the above property intact, i.e., if Z separates X from Y in G then X ⊥⊥ P †Y | Z for
any P † satisfying the constraints which maximises entropy.

Steps 3 and 4 produce a directed acyclic graphH from G. D-separation (see Pearl, 1988, §3.3.1)
allows one to read off probabilistic independencies fromH:

Theorem 35. If Z D-separates X from Y in the directed acyclic graph H then X ⊥⊥ P †Y | Z for
the function P † satisfying the constraints which maximises entropy.

Proof: Since GT is triangulated, the ordering yielded by maximum cardinality search is a perfect
ordering (for each vertex, the set of its adjacent predecessors is complete in the graph) (Neapolitan,
1990, Theorem 3.2). Because the cliques are ordered according to highest labelled vertex where
the vertices have a perfect ordering, the clique order has the running intersection property (for each
clique, its intersection with the union of its predecessors is contained in one of its predecessors)
(Neapolitan, 1990, Theorem 3.1). Now P † factorises according to the cliques of GT , since it fac-
torises according to V1, . . . , Vh and these sets are complete in GT and so are subsets of its cliques.
These three facts imply that P (v) =

∏l
i=1 P (fvi |evi ) for each v@V , where fvi , e

v
i are the assign-

ments to Fi, Ei respectively which are consistent with v (Neapolitan, 1990, Theorem 7.4).
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Take an arbitrary component P (fvi |evi ) of this factorisation. Each member of Ei is a parent (in
H) of each member of Fi and the members of Fi form a complete subgraph of H so we can write
Fi = {Ai1 , . . . , Aik} where the parents of Aij are Par ij

df
= Ei ∪ {Ai1 , . . . , Aij−1}. Hence,

P (fvi |evi ) = P (ai1 · · · aik |ei)

=
k∏
j=1

P (aij |eiai1 · · · aij−1)

=

k∏
j=1

P (aij |par ij ),

where aij and par ij are the assignments to Aij ,Par ij respectively that are consistent with v. Fur-
thermore, each variable Vi occurs in precisely one Fj , so

P (v) =

n∏
i=1

P (ai|par i) (17)

for each v@V . When (17) holds, P is said to factorise with respect to H, and H together with the
specified values of P (ai|par i) form a Bayesian network. It follows that if Z D-separates X from
Y inH, then X ⊥⊥ P †Y | Z (see Neapolitan, 1990, Theorem 6.2). �

Thus the algorithm does indeed correctly produce a graph H that can feature as the graph of a
Bayesian network representation of the maximum entropy function P †. See §3.3 for justification of
Step 5 of the algorithm, which obtains the parameters of the Bayesian network.

Appendix B. Proof of Propositions 15, 16 and 17

Proposition 15. G+ is healthy and G+ is a triangulation of G which, on input G, can be computed
in polynomial time.

Proof: In no step have we added an unhealthy edge. Hence, G+ is healthy.
First, note that all fill-in edges added to G are chords of simple cycles of G of length four or

greater.
Furthermore, note that no fill-in edge computed in Step III connects two vertices in the same set

N(Ai), since we added all these chords in Step II. Likewise, no fill-in edge computed in Step IV
connects two vertices in the same set N(Ai), since we added all these chords in Step II.

We next show that G+ is triangulated. Let c be a simple cycle in G+ which contains at least four
vertices. We need to show that it possesses a chord.

If c does not contain a vertex in an appendix, then no edge of this cycle has been computed in
Step III. So, all its edges are in G−. Hence, a chord was computed in Step IV and added in Step V.

If c lies fully within Ai ∪N(Ai) for some i, then no edge nor chord of c has been computed in
Step IV and added in Step V. So, all its edges are in G−. Hence, a chord was computed in Step I or
Step III and added in Step II or Step V.

Finally, suppose that c contains a vertex A in some appendix Ai and a vertex B not in Ai ∪
N(Ai). Recall that N(Ai) separates Ai from V \ (Ai ∪ N(Ai)). Since c is a simple cycle and
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N(Ai) is a separator, c has to contain two different vertices B1, B2 ∈ N(Ai). An edge between
B1, B2 is either in G or it has been computed in Step I and added in Step II.

To complete the proof it suffices to observe that G and G+ are undirected graphs on V and that
the latter contains every edge contained in the former. Hence, G+ is a triangulation of G.

Given G, G+ can be computed in polynomial time, since computing a minimal triangulation is
achievable in polynomial time (Heggernes, 2006). �

Proposition 16. G++ is a healthy and minimal triangulation of G which can be computed in poly-
nomial time.

Proof: G++ consists of edges contained in G+ and of edges within the N(Ai). Hence, G++ is
healthy.

From the above proposition we know that G+ is a triangulation of G. Recall that all edges added
in Step II connect two variables in N(Ai). We can hence successively add such edges to G0 until
we obtain a triangulation of G0. Hence, G++ is triangulated. Since G++ contains all the edges of G
it follows that G++ is a triangulation of G.

We now turn to the minimality claim. All edges in G+ which are not in G are chords of simple
cycles of G. In Step III and Step IV we computed further chords which were minimal in the follow-
ing sense: After adding chords to G in Step II, dropping any subset of chords computed in Step III
and Step IV would have resulted in a non-triangulated graph (recall that the triangulations in Step
III and Step IV were minimal). Hence, G0 is either a minimal triangulation of G—in which case our
algorithm terminates—, or G0 is a strict sub-graph of a minimal triangulation of G.

For the latter case recall that G+ is a healthy triangulation of G which strictly contains G0.
Furthermore, every edge in G+ which is not in G0 connects two variables in N(Ai). Hence, adding
such edges successively, we eventually reach a triangulated graph.

VII: We can run, for instance, Berry’s algorithm; see Berry (1999); but only add fill-in edges
with start and end point in someN(Ai). We then stop since we have found the minimal triangulation
G++.

Clearly, G++ can be computed in polynomial time. �

Proposition 17. We can find an OBN in which all arrows beginning in an appendix also end in this
same appendix. Furthermore, every variable in an appendix is fully determined.

Proof: We begin by executing Steps 1–3 of OBN-cDS. Next, further undirected edges to G are
added: for all datasets DSi connect all variables measured in DSi which are not in the appendix Ai

by an edge, if they not already connected by an edge. Note that the resulting undirected graph G′ is
healthy.

Next, we compute a minimal healthy triangulation GT of G′ (Step 3). The existence of such
a triangulation is shown in Proposition 16. For the remainder of this proof we shall focus on an
arbitrary connected component of GT .

In Step 5, we chose an enumeration which first enumerates all variables measured inDSi which
are not in Ai and only afterwards enumerates the variables in Ai. This is possible for the following
reasons: The variable A ∈ DSi appearing first in the enumeration is not in the appendix Ai, unless
we begin our enumeration in Ai. However, we can clearly choose to begin the enumeration else-
where in the connected component of GT . Recall that the variables measured in DSi which are not
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in Ai are all connected by edges (they form a complete sub-graph). For every fixed set S ⊂ V of
variables measured inDSi containingA such that S∩Ai = ∅ and every variableB ∈ DSi\{S,Ai}
it holds thatB is connected to all variables in S. For every variableAi ∈ Ai it holds thatB has more
or equally many neighbours in S than B. We can hence chose to execute a maximum cardinality
search which enumerates B prior to all variables in the appendix Ai.

It follows that all arrows connecting Ai with a variable outside of Ai point towards Ai. These
arrows all originate from some variable measured in DSi. We can hence determine the conditional
probabilities at the variables in appendix Ai directly from DSi as explained in Section 3.3.3.

Determine all other conditional probabilities as described in Step 5.
This procedure correctly determines an OBN: it differs from OBN-cDS by adding further edges

and the choice of a particular enumeration. Neither modification changes the fact that the output
Bayesian network is an OBN. �

Appendix C. Proof of Theorem 24

Theorem 24. If H consists of N ≥ 3 binary variables A0, A1, . . . , AN−1 such that A0 is a child
of every other Ai and such that every combination of N − 1 variables is measured in some dataset
(i.e., for all 0 ≤ j ≤ N − 1 there exists a dataset DSj which measures {A0, . . . , AN−1} \ {Aj}),
then the conditional probabilities of P † can be found by applications of Step 5a and by computing
all roots of a polynomial P(x) of degree 2N−1 − 1 which are in [0, 1]. This polynomial P(x) can
be found efficiently.

The simple case N = 3 is discussed in more detail in Section 7.2.
Note that this theorem holds for an arbitrary DAG structureH on the variables A1, . . . , AN−1.

Proof: The proof consists of two parts. In the first part, we show that the problem of computing
the conditional probabilities reduces to maximising a function of a single variable. In the second
part, we show that this function is a polynomial of degree less or equal to 2N−1 − 1.

First of all, note thatA0 is the only under-determined variable sinceDS0 measures all parents of
A0. Hence, the conditional probabilities at A1, . . . , AN−1 can directly be obtained by applications
of Step 5a since there exists a dataset which jointly measures all these variables. This leaves us with
the task of determining the conditional probabilities at the under-determined variable A0.

There are 2N states generated by the binary variables A0, . . . AN−1. So, in order to compute
the conditional probabilities at A0 we determine probabilities of 2N − 1 states. The probability of
the last remaining state follows from the fact that the sum over the probabilities of all states has to
equal one.

We denote these states as follows:

ω1 := a0 ∧
N−1∧
i=1

ai

ω2 := a0 ∧ āN−1 ∧
N−2∧
i=1

ai

ω3 := a0 ∧ āN−2 ∧ aN−1 ∧
N−3∧
i=1

ai
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ω4 := a0 ∧ āN−2 ∧ āN−1 ∧
N−3∧
i=1

ai

and so on.
To simplify notation we define the unknowns, probabilities of states, as xu := P †(ωu) for all

1 ≤ u ≤ 2N . Let a0i := āi and a1i := ai.
Furthermore, define the states generated by variables measured in DSj for all 0 ≤ j ≤ N − 1

Ψj := {aε00 ∧ a
ε1
1 ∧ . . . ∧ a

εj−1

j−1 ∧ a
εj+1

j+1 ∧ . . . ∧ a
εN−1

N−1 : εi ∈ {0, 1}, i ∈ {0, . . . , N − 1} \ {j}}.

To simplify notation we enumerate for all 1 ≤ q ≤ 2N−1 the ψj ∈ Ψj as follows: ψj1 is the ψ ∈ Ψj

for which all ε are equal to one, i.e., ψj1 does not contain a negation symbol. In ψj2 all ε but the last
equal 1, i.e., only the last variable is negated. In ψj

2N−1 all εi are equal to 0.
For all 0 ≤ j ≤ N − 1 and all ψjq ∈ Ψj (1 ≤ q ≤ 2N−1) it needs to hold that

P †(aj ∧ ψjq) + P †(āj ∧ ψjq) = P †(ψjq) = P ∗j (ψjq) (18)

since the marginal frequency of ψjq ∈ Ψj has been measured in DSj .
Observe that for all probability functions P which satisfy the constraints in (18) for all j and all

ψj ∈ Ψj are calibrated to the evidence, i.e., such a P satisfies all constraints. In other words, there
are no further constraints P † needs to satisfy.

From DSN−1 measuring {A0, . . . , AN−2} we obtain for all 0 ≤ s ≤ 2N−1 − 1 the following
constraints on P †

x2s+1 + x2s+2 =P †(ω2s+1) + P †(ω2s+2)

=P †(ψN−1s+1 ∧ aN−1) + P †(ψN−1s+1 ∧ āN−1)
=P †(ψN−1s+1 ) = P ∗N−1(ψ

N−1
s+1 ) .

From DSN−2 measuring {A0, . . . , AN−3, AN−1} we obtain for all 0 ≤ s ≤ 2N−2 − 1 the
following constraints on P †

x22s+1 + x22s+3 =P †(ω22s+1) + P †(ω22s+3)

=P †(ψN−22s+1 ∧ aN−2) + P †(ψN−22s+1 ∧ āN−2)
=P †(ψN−22s+1) = P ∗N−2(ψ

N−2
2s+1)

and

x22s+2 + x22s+4 =P †(ω22s+2) + P †(ω22s+4)

=P †(ψN−22s+2 ∧ aN−2) + P †(ψN−22s+2 ∧ āN−2)
=P †(ψN−22s+2) = P ∗N−2(ψ

N−2
2s+2) .

For the constraints arising from DS0, DS1 we can write the matrix consisting of the left hand sides
of these two sets of constraints as

M =

A O O . . . O

O A O . . . O

O O A . . . O
...

...
...

. . .
...

O O O . . . A
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where

A =

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

of which there are N
4 matrices. O is the four-dimensional zero-matrix:

O =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

.

Note that we can transform A into the equivalent A′ as follows (the last row equals the sum of the
first two rums minus the third row)

A′ =

1 0 0 −1

0 1 0 1

0 0 1 1

0 0 0 0

.

For the remainder we drop the last row which represents the vacuous constraint 0 = 0.
We hence obtain a set of left-hand sides of the constraints, which we write as a matrix M ′,

which is equivalent to M

M ′ =

A′ O O . . . O

O A′ O . . . O

O O A′ . . . O
...

...
...

. . .
...

O O O . . . A′

.

We now show by an inductive argument on the number of variables N that the constraints of
equalling measured marginal frequencies gives rise to a system of 2N − 1 linear inhomogeneous
equations. In matrix notation, the left-hand-side of these equations can be represented by

Mfinal =

1 0 0 0 . . . 0 ±1

0 1 0 0 . . . 0 ±1

0 0 1 0 . . . 0 ±1

0 0 0 1 . . . 0 ±1
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1

.

The column vector consisting of the first 2N

2 − 1 entries in the last row is the −1-multiple of the
column vector formed out of the last 2N

2 − 1 entries in the last column. The entry in between equals
+1.

441



Our argument proceeds in N − 2 further steps. At each further stage j, constraints arising from
datasets DSN−1, . . . , DSN−j−2 are taken into account. Constraints arising from DSN−j−2 are
added to the system of left-hand-sides. The equation system at stage j takes the form

Mj =

Aj O O . . . O

O Aj O . . . O

O O Aj . . . O
...

...
...

. . .
...

O O O . . . Aj

,

whereAj is a matrix with 2j+1−1 rows and 2j+1 columns. The first 2j+1−1 and 2j+1−1 columns
are the identity matrix. The condition on the last column applies to Aj with j + 1 replacing N .

First step: j = 1, DSN−2−j = DSN−3.
From DSN−3 measuring {A0, A1, . . . , AN−4, AN−2, AN−1} we obtain for all 0 ≤ s ≤ 2N−3 − 1
the following constraints on P † (there are further constraints arising which are considered separately
below)

x23s+22 + x23s+23 =P †(ω23s+22) + P †(ω23s+23)

=P †(ψN−3
22s+22

∧ aN−3) + P †(ψN−3
22s+22

∧ āN−3)

=P †(ψN−3
22s+22

) = P ∗N−3(ψ
N−3
22s+22

) .

We now group matrices of type A′ in M ′ pairs, the first pair are the two uppermost A′, the next
pair are the third and fourth uppermost A′, and so on. The constraints arising from DSN−3 can be
represented by the fourth row in the following matrix

A′1 =

1 0 0 −1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 −1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

.

After some trivial matrix algebra we find an equivalent matrix A1

A1 =

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 −1

0 0 1 0 0 0 0 −1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 −1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1
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and so

M1 =

A1 O O . . . O

O A1 O . . . O

O O A1 . . . O
...

...
...

. . .
...

O O O . . . A1

.

This concludes the proof of the first step, j = 2.

General step: j ≥ 2, DSN−2−j .
Note that for all 0 ≤ s ≤ 2N−j − 1 we obtain the following constraints from DSN−2−j measuring
{A0, A1, . . . , AN−1} \ {AN−2−j}, on P †

x2j+1s+2j + x2j+1s+2j+1 =P †(ω2j+1s+2j ) + P †(ω2j+1s+2j+1)

=P †(ψN−2−j
2js+2j

∧ aj) + P †(ψN−2−j
2js+2j

∧ āj)

=P †(ψN−2−j
2j+1s+2j

) = P ∗N−2−j(ψ
N−2−j
2j+1s+2j

) .

Adding such a constraint to the two matrices of type Aj−1 in Mj−1 which concern the unknowns
x2j+1s+1, . . . , x2j+1s+2j+1 we obtain the following left-hand sides:

1 0 0 0 . . . 0 ±1 0 0 0 0 . . . 0 0

0 1 0 0 . . . 0 ±1 0 0 0 0 . . . 0 0

0 0 1 0 . . . 0 ±1 0 0 0 0 . . . 0 0

0 0 0 1 . . . 0 ±1 0 0 0 0 . . . 0 0
...

...
...

...
. . .

...
... 0 0 0 0

. . . 0 0

0 0 0 0 . . . 1 1 0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 1 0 0 0 0 . . . 0 1

0 0 0 0 . . . 0 0 1 0 0 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 1 0 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 0 1 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 0 0 1 . . . 0 ±1
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . 1 1

.

The constraint arising from DSj is set in bold.
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Now it is straightforward to transform these left-hand sides of a system of linear inhomogeneous
equations into the desired form

1 0 0 0 . . . 0 0 0 0 0 0 . . . 0 ∓1

0 1 0 0 . . . 0 0 0 0 0 0 . . . 0 ∓1

0 0 1 0 . . . 0 0 0 0 0 0 . . . 0 ∓1

0 0 0 1 . . . 0 0 0 0 0 0 . . . 0 ∓1
...

...
...

...
. . .

...
...

...
...

...
...

. . .
... ∓1

0 0 0 0 . . . 1 0 0 0 0 0 . . . 0 −1

0 0 0 0 . . . 0 1 0 0 0 0 . . . 0 1

0 0 0 0 . . . 0 0 1 0 0 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 1 0 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 0 1 0 . . . 0 ±1

0 0 0 0 . . . 0 0 0 0 0 1 . . . 0 ±1
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
0 0 0 0 . . . 0 0 0 0 0 0 . . . 1 1

. (19)

The condition on the last column clearly holds.
We hence obtain the matrix representation Mj as required.
Continuing this process until finally j = N − 2 we obtain Mfinal.
A constraint concerning a ψN−j−2 ∈ ΨN−j−2 for N − 2 ≥ j ≥ 0, arising from calibrating

to measured frequencies measured in DSN−j−2, that we have not yet considered has a left-hand
side of the form: xr + xr+2j such that there exists some natural number m with m2l+1 + 1 ≤ r <
r + 2j ≤ (m+ 1)2j+1. Summing rows r and r + 2j of Mfinal we obtain xr + xr+2j . Note there is
no x2N -term since xr appears in the top half of some AN−j−2 and xr+2j in the bottom half of this
AN−j−2 (2j rows further down). When we add these rows, the x2N -terms have different signs and
hence cancel out. That is, the left hand side of the not yet considered constraint is present in our
system of equations represented by Mfinal.

Since all datasets are consistent, the right-hand sides of the constrained arising from ψl and the
sum of these rows have to agree. We have hence expressed all constraints as a system of linear inho-
mogeneous equations in 2N variables. This means that Mfinal represents all meaningful constraints
on P †—other than P † ∈ P.

We can hence use a single parameter, x say, to parametrise the entire solution set. This concludes
the first part of the proof.

Second Part. We now identify the set of probability functions on ω1, . . . , ω2N with the subset
of points in R2N whose components are non-negative and sum to 1, this simplex is denoted by P.
We can now infer from Mfinal that the set of points in R2N which solve all equations simultaneously
is a hyperplane of dimension one, a line, L. Since all datasets are consistent, there has to exist at
least one probability function in L. The set of probability functions consistent with the evidence is
the intersection of L and this simplex.

For convenience, we let x := x2N = P †(
∧N−1
i=0 āi). We now express all other unknowns in

terms of x by using Mfinal. Let ~v be the column vector consisting of the right-hand sides of the
system of equations with left hand side Mfinal. For all 1 ≤ j ≤ 2N−1 − 1 we obtain

xj = δjx+ vj
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xj+2N−1 = −δjx+ vj+2N−1

x2N−1 = −x+ v2N−1

x2N = x , (20)

where δj ∈ {−1,+1}. For later use we now let D ⊂ {1, . . . , 2N−1 − 1} be the index set with
δj = +1 andE ⊂ {1, . . . , 2N−1−1} be the index set with δj = −1. Note that |D∪E| = 2N−1−1.

If there exist two different points ~l,~l′ ∈ L that have the same x2N coordinate, l2N = l′
2N

, then it
has to hold for all 1 ≤ j ≤ 2N − 1 that

lj = vj ± δjl2N = vj ± δjl′2N = l′j .

And so ~l = ~l′. Contradiction.
On the other hand, suppose there exist different ~l,~l′ ∈ L which have the same xj coordinate

for some 1 ≤ j ≤ 2N−1 − 1, lj = l′j . But this means that ~l and ~l′ have the same last coordinate
l2N = l′

2N
. We already saw that this cannot be so. The case for 2N−1 ≤ j ≤ 2N − 1 is similar.

For later use we note that, this means that no coordinate is constant along the line L, if P ∩ L
contains two or more points. We can hence use any coordinate in R2N as a parameter to parametrise
L. We shall use x = x2N as our coordinate of L.

Geometry of the solution set of Mfinal: There are two cases of how P and L can be situated.

First case: P ∩ L does not contain an interior point of P. That is, P ∩ L is a subset of the boundary
of P.

If P ∩ L contained two different points ~l,~l′, then for all λ ∈ (0, 1) it has to hold that λ~l + (1−
λ)~l′ ∈ P ∩ L. All these convex combinations have to be points on the boundary of P. Since they
lie on a line segment in the boundary of P there has to exists some index 1 ≤ j ≤ 2N such that
(λ~l + (1− λ)~l′)j = 0. Hence, lj = l′j . Recall, that we showed above that two different elements of
P have to differ on all coordinates. We have hence derived a contradiction.

If P ∩ L consists of a single point, then this point is, of course, P †. Computing whether P ∩ L
consists of a single point is the case can be done very quickly. For all 1 ≤ j ≤ 2N we check whether
there exists a probability function which solves the constraints with xj = 0. This can be done by
solving (20). We hence do not have to solve an optimisation problem, all we need to do is check the
very simple system of equations (20) at most 2N times.

So, the first case only consists of one sub-case which is trivial. The second case is not so simple.
Second case: P∩L contains an interior point of P. This means that there exists some probability

function consistent with the constraints which assigns all ω1, . . . , ω2N non-zero probability. The
maximum entropy function is well-known to assign non-zero probabilities whenever possible, see
for example Paris and Vencovská (1997). Hence, the maximum entropy function of L is non-zero
everywhere on ω1, . . . , w2N .

The entropy of a probability function on the solution set ofMfinal can now be expressed in terms
of the single unknown x as

H(x) =
∑
d∈D
−(x+ vd) log(x+ vd)− (−x+ vd+2N−1) log(−x+ vd+2N−1)

+
∑
e∈E
−(−x+ ve) log(−x+ ve)− (x+ ve+2N−1) log(x+ ve+2N−1)
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− (−x+ v2N−1) log(−x+ v2N−1)− x log(x) . (21)

In the current, second, case, we know that the maximum entropy function does not assign zero
probabilities. Hence, where the entropy is maximal in P ∩ L the above terms between the above
brackets are all in the open interval (0, 1). So, all logarithms are well-defined and the first derivative
of (21) with respect to x ∈ (0, 1) exists and is continuous in a neighbourhood of the absolute
maximum.

Taking the derivative with respect to x we obtain (recall our convention of a logarithm with base
e in Definition 2 to simplify the derivative of H(x) with respect to x)

d

dx
H(x) =

∑
d∈D
−(1 + log(x+ vd)) + 1 + log(−x+ vd+2N−1)

+
∑
e∈E

1 + log(−x+ ve)− (+1 + log(x+ ve+2N−1))

+ 1 + log(−x+ v2N−1)− (1 + log(x))

=
∑
d∈D

log(−x+ vd+2N−1) +
∑
e∈E

log(−x+ ve)

+
∑
d∈D
− log(x+ vd) +

∑
e∈E
− log(x+ ve+2N−1)

+ log(−x+ v2N−1)− log(x)

= log((−x+ v2N−1) ·
∏
d∈D

(−x+ vd+2N−1) ·
∏
e∈E

(−x+ ve))

− log((x) ·
∏
d∈D

(x+ vd) ·
∏
e∈E

(x+ ve+2N−1))

= log
(−x+ v2N−1

x
·
∏
d∈D

−x+ vd+2N−1

x+ vd
·
∏
e∈E

−x+ ve
x+ ve+2N−1

)
.

This expression equals 0, if and only if the term in between the brackets equals 1. This is the case,
if and only if the nominator equals the denominator. This happens, if and only if

0 =(−x+ v2N−1) ·
∏
d∈D

(−x+ vd+2N−1) ·
∏
e∈E

(−x+ ve)

− (x) ·
∏
d∈D

(x+ vd) ·
∏
e∈E

(x+ ve+2N−1) =: P(x) . (22)

Both products comprise of 2N−1 factors (recall that |D∪E| = 2N−1−1) which is an even number.
Expressing each product as a sum we obtain two polynomials of degree 2N−1. Both polynomials
in x have a leading coefficient of +1 (1 · x2N−1

). Hence, the difference of these polynomials is a
polynomial P(x) of maximal degree 2N−1 − 1. The exact degree of the polynomial may be even
lower, if events conspire so that further terms cancel out. Whether this happens or not depends on
the numerical values of the coefficients vd, which represent the right hand side of the constraints in
(7).

To determine P † we now need to find all solutions of P(x) which are in [0, 1]. After re-
substituting for the xj = P †(ωj), exactly one of these solutions gives rise to xj which are all in the
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unit interval [0, 1] and which solve (20), because the entropy function is convex on line-segments in
P and there hence exists a unique maximum in the interior of P ∩ L. �

Appendix D. Proof of Proposition 25

Proposition 25. Under the assumptions of Theorem 24 and the assumption that N = 3 an OBN
can be obtained by simple algebraic means without solving an optimisation problem.

Proof: Enumerate the eight assignments v@{A0, A1, A2} as follows: assignment v1 is a0a1a1,
v2 is a0a1ā2, and so on. Since P † has to match the marginal the distributions P ∗i , where they are
defined, P † has to satisfy the following 12 linear constraints and no further constraints:

constraints from DS1 on P †


P †(v1) + P †(v2) = P ∗1 (a0a1) =: a

P †(v3) + P †(v4) = P ∗1 (a0ā1) =: b

P †(v5) + P †(v6) = P ∗1 (ā0a1) =: c

P †(v7) + P †(v8) = P ∗1 (ā0ā1) =: d

constraints from DS2 on P †


P †(v1) + P †(v3) = P ∗2 (a0a2) = a+ b− f
P †(v2) + P †(v4) = P ∗2 (a0ā2) =: f

P †(v5) + P †(v7) = P ∗2 (ā0a2) = c+ d− e
P †(v6) + P †(v8) = P ∗2 (ā0ā2) =: e

constraints from DS3 on P †


P †(v1) + P †(v5) = P ∗3 (a1a2) = a+ c− e− f + g

P †(v2) + P †(v6) = P ∗3 (a1ā2) = e+ f − g
P †(v3) + P †(v7) = P ∗3 (ā1a2) = b+ d− g
P †(v4) + P †(v8) = P ∗3 (ā1ā2) =: g .

The constraint that P † is a probability function,
∑8

i=1 P
†(vi) = 1, is entailed by the above con-

straints, since a+ b+ c+ d = 1.
Following the proof of Theorem 24 we first obtain the system of logically equivalent system of

seven inhomogeneous equations for eight variables

x1 − x4 =a− f x5 − x8 = c− e
x2 + x4 =f x6 + x8 = e

x3 + x4 =b x7 + x8 = d

x4 + x8 =g ,

which we transform to the following system of equations

x1 + x8 = a− f + g x4 + x8 = g

x2 − x8 = f − g x5 − x8 = c− e
x3 − x8 = b− g x6 + x8 = e

x7 + x8 = d . (23)
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Letting x := x8 we can express the entropy of a probability function P solving this system of
equations as

H(x) = −(a− f + g − x) log(a− f + g − x)− (f − g + x) log(f − g + x)

− (b− g − x) log(b− g + x)− (g − x) log(g − x)− (c− e+ x) log(c− e+ x)

− (e− x) log(e− x)− (d− x) log(d− x)− x log(x) .

Equating the derivative of H(x) with respect to x to 0 we obtain

0 = log(a− f + g − x)− log(f − g + x)− log(b− g + x) + log(g − x)

− log(c− e+ x) + log(e− x) + log(d− x)− log(x) ,

which holds, if and only if

1 =
−a+ f − g + x

f − g + x
· −g + x

b− g + x
· −e+ x

c− e+ x
· −d+ x

x
.

To ease the notation we let ϕ1 := −a+ f − g, ϕ2 := −g and ϕ3 := −e and obtain

1 =
ϕ1 + x

a+ ϕ1 + x
· ϕ2 + x

b+ ϕ2 + x
· ϕ3 + x

c+ ϕ3 + x
· −d+ x

x
.

We obtain the polynomial P(x) as

P(x) = x3 + βx2 + γx+ δ = 0 (24)

with

β :=ab+ ac+ bc+ ϕ1 + ϕ2 + ϕ3 − ϕ1a− ϕ2b− ϕ3c

γ :=abc+ ϕ1bc+ ϕ2ac+ ϕ3ab+ (1− a− b)ϕ1ϕ2 + (1− a− c)ϕ1ϕ3 + (1− b− c)ϕ2ϕ3

δ :=ϕ1ϕ2ϕ3d .

If x∗ is a double root ofP(x), thenH(x∗) is a saddle-point. We are looking for the unique maximum
of H(x) and can hence ignore double roots of P(x). The solutions of the cubic P(x) which are not
saddle-points can be found in many textbooks, for example in (Press et al., 2007, p. 228).

The discriminant ∆ of the polynomial P(x) and the auxiliary values p, q are defined as follows

∆ :=
27δ2 + 4β3δ − 18βγδ + 4γ3 − β2γ2

108

p :=
9γ − 3β2

9
=

3γ − β2

3

q :=
2β3 − 9βγ + 27δ

27
∆ =(q/2)2 + (p/3)3 .

If ∆ > 0, then

x∗ = 3

√
−q

2
+
√

∆ + 3

√
−q

2
−
√

∆− β

3
,
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where the third roots must be the real roots.
If ∆ = 0, then the roots of P(x) are

x∗ =

{
−β

3 if ∆ = p = q = 0
β3−4βγ+9δ

3γ−β2 if ∆ = 0 and p2 + q2 > 0 .

If ∆ < 0, then x∗ is one of the following three values

x∗ =


−

√
−4p

3 · cos
(
π
3 + 1

3 arccos
(
− q

2 ·
√
−27
p3

))
− β

3√
−4p

3 · cos
(
1
3 arccos

(
− q

2 ·
√
−27
p3

))
− β

3

−
√
−4p

3 · cos
(
−π

3 + 1
3 arccos

(
− q

2 ·
√
−27
p3

))
− β

3 .

P † can now quickly be computed. Simply check which of the six possible values for x∗ is a root of
P(x) and gives rise to a probability function, i.e., 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ 8. In particular, we
find P † without solving an optimisation problem. �

Appendix E. Matlab Code for the Examples

We here give the Matlab code for our examples.
First we provide the code for the m.file:

function [x,fval,exitflag,output,lambda,grad,hessian] =
maxent(N,Aineqinput,bineqinput,Aeqinput,beqinput)

% Returns [P m] where P achives maximum entropy m
% Input dimentions of the probabity function
% and optional inequality constraints (Aineq,bineq)
% and optional equality constraints (Aeq,beq)
tic
if nargin<=4

Aeqinput=[];
beqinput=[];

end
if nargin<=2

Aineqinput=[];
bineqinput=[];

end
x0 = ones(1,N)/N;
Ai = eye(N).*-1;
bi = zeros(1,N);
Aineq = [Ai; Aineqinput];
bineq = [bi bineqinput];
Ae = ones(1,N);
be = [1];
Aeq = [Ae; Aeqinput];
beq = [be beqinput];
lb = zeros(1,N);
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options = optimset;
options = optimset(options,’Display’, ’off’);
options = optimset(options,’FunValCheck’, ’on’);
options = optimset(options,’Algorithm’, ’interior-point’, ’MaxIter’, 1000);
[x,fval,exitflag,output,lambda,grad,hessian] = ...
fmincon(@NegEntropy,x0,Aineq,bineq,Aeq,beq,lb,[],[],options);
toc

Next we present the code to run Example 26.
First the brute-force computation of P †:

clear variables
format long
maxenttictoc([8],[],[],...
[...
1 1 0 0 0 0 0 0;...
0 0 1 1 0 0 0 0;...
0 0 0 0 1 1 0 0;...
0 0 0 0 0 0 1 1;...
1 0 1 0 0 0 0 0;...
0 1 0 1 0 0 0 0;...
0 0 0 0 1 0 1 0;...
0 0 0 0 0 1 0 1;...
1 0 0 0 1 0 0 0;...
0 1 0 0 0 1 0 0;...
0 0 1 0 0 0 1 0;...
0 0 0 1 0 0 0 1;...
],...
[55/100 10/100 33/100 2/100 64/100 1/100 7/100 28/100
61/100 27/100 10/100 2/100])

Pˆdagger=0.542471272915907 0.007528727084093 0.097528727084093
0.002471272915907 0.067528727084093 0.262471272915907
0.002471272915907 0.017528727084093

The polynomial P(x), the auxiliary parameters and the roots:

format long
clear variables
a=55/100; b=10/100; c=33/100; d=2/100; e=28/100; f=1/100; g=2/100;
phi_1=-a+f-g;
phi_2=-g;
phi_3=-e;
beta=a * b+a * c+b * c+phi_1+phi_2+phi_3-phi_1 * a-phi_2 * b-phi_3 * c;
gamma=a * b * c+phi_1 * b * c+phi_2 * a * c+phi_3 * a * b+(1-a-b) ...

* phi_1 * phi_2+(1-a-c) * phi_1 * phi_3...
+(1-b-c) * phi_2 * phi_3;
delta=phi_1*phi_2*phi_3 * d;
Discreminant=(27 * deltaˆ2+4 * betaˆ3 * delta-18 * beta * gamma ...

* delta+4 * gammaˆ3-betaˆ2 * gammaˆ2)/108
p=(9 * gamma-3 * betaˆ2)/9
q=(1/27) * ((2 * betaˆ3)-(9 * beta * gamma)+(27 * delta))
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-sqrt(-(4*p)/3)*cos((1/3)*acos(-(q/2)*sqrt(-27/pˆ3))+(pi/3))-beta/3
-sqrt(-(4*p)/3)*cos((1/3)*acos(-(q/2)*sqrt(-27/pˆ3))-(pi/3))-beta/3
sqrt(-(4*p)/3)*cos((1/3)*acos(-(q/2)*sqrt(-27/pˆ3)))-beta/3

Discreminant=-1.097210366162764e-10
p = -0.005225870000000
q = -1.438901660000006e-04
ans =0.024494218202939
ans =0.017529189605105
ans =0.146076592191956

Computations of the entropy are executed as follows:

0.542471272915907.*log(0.542471272915907)...
+0.007528727084093.*log(0.007528727084093)...
+0.097528727084093.*log(0.097528727084093)...
+0.002471272915907.*log(0.002471272915907)...
+0.067528727084093.*log(0.067528727084093)...
+0.262471272915907.*log(0.262471272915907)...
+0.002471272915907.*log(0.002471272915907)...
+0.017528727084093.*log(0.017528727084093)

x=0.017528727084093;
a=55/100; b=10/100; c=33/100; d=2/100; e=28/100; f=1/100; g=2/100;
(a-f+g-x).*log(a-f+g-x)+(f-g+x).*log(f-g+x)+(b-g+x).*log(b-g+x)...
+(g-x).*log(g-x)+(c-e+x).*log(c-e+x)+(e-x).*log(e-x)+(d-x)...
.*log(d-x)+x.*log(x)

Example 27.
Here is the code for the brute-force computation of P †:

clear variables
format long
maxenttictoc([8],[],[],...
[...
1 1 0 0 0 0 0 0;...
0 0 1 1 0 0 0 0;...
0 0 0 0 1 1 0 0;...
0 0 0 0 0 0 1 1;...
1 0 1 0 0 0 0 0;...
0 1 0 1 0 0 0 0;...
0 0 0 0 1 0 1 0;...
0 0 0 0 0 1 0 1;...
1 0 0 0 1 0 0 0;...
0 1 0 0 0 1 0 0;...
0 0 1 0 0 0 1 0;...
0 0 0 1 0 0 0 1;...
],...
[1/13 3/13 5/13 4/13 1/13 3/13 2/13 7/13 2/13 4/13 1/13 6/13])

Pˆdagger=0.034394277588952 0.042528799334125 0.042528799334124
0.188240431435106 0.119451876257201 0.265163508358183
0.034394277588952 0.273298030103355
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The polynomial P(x), the auxiliary parameters and the roots:

tic
format long
clear variables
a=1/13; b=3/13; c=5/13; d=4/13; e=7/13; f=3/13; g=6/13;
phi_1=-a+f-g;
phi_2=-g;
phi_3=-e;
beta=a * b+a * c+b * c+phi_1+phi_2+phi_3-phi_1 * a-phi_2 * b-phi_3 * c;
gamma=a * b * c+phi_1 * b * c+phi_2 * a * c+phi_3 * a * b+(1-a-b) ...

* phi_1 * phi_2+(1-a-c) * phi_1 * phi_3...
+(1-b-c) * phi_2 * phi_3;
delta=phi_1*phi_2*phi_3 * d;
Discreminant=(27 * deltaˆ2+4 * betaˆ3 * delta-18 * beta * gamma ...

* delta+4 * gammaˆ3-betaˆ2 * gammaˆ2)/108
p=(9 * gamma-3 * betaˆ2)/9
q=(1/27) * ((2 * betaˆ3)-(9 * beta * gamma)+(27 * delta))
root=(-q/2+(Discreminant)ˆ(1/2))ˆ(1/3)...
-(+q/2+(Discreminant)ˆ(1/2))ˆ(1/3)-(beta/3)
toc

Discreminant =1.525101176783421e-08
p = 0.007387696509226
q = 3.563430829767589e-05
root =0.273298090801853

Computations of the entropy are executed as follows:

0.034394277588952.*log(0.034394277588952)...
+0.042528799334125.*log(0.042528799334125)...
+0.042528799334124.*log(0.042528799334124)...
+0.188240431435106.*log(0.188240431435106)...
+0.119451876257201.*log(0.119451876257201)...
+0.265163508358183.*log(0.265163508358183)...
+0.034394277588952.*log(0.034394277588952)...
+0.273298030103355.*log(0.273298030103355)

x=0.273298090801853;
a=1/13; b=3/13; c=5/13; d=4/13; e=7/13; f=3/13; g=6/13;
(a-f+g-x).*log(a-f+g-x)+(f-g+x).*log(f-g+x)+(b-g+x).*log(b-g+x)...
+(g-x).*log(g-x)+(c-e+x).*log(c-e+x)+(e-x).*log(e-x)...
+(d-x).*log(d-x)+x.*log(x)

References

Abramov, R. V. (2010). The multidimensional maximum entropy moment problem: a review on
numerical methods. Communications in Mathematical Sciences, 8(2):377–392.

Adamčı́k, M. (2016). On the Applicability of the ‘Number of Possible States’ Argument in Multi-
Expert Reasoning. Journal of Applied Logic, 19, Part 1:20–49.

452



OBJECTIVE BAYESIAN NETS FOR INTEGRATING CONSISTENT DATASETS

Aliferis, C. F., Statnikov, A., Tsamardinos, I., Mani, S., and Koutsoukos, X. D. (2010). Local Causal
and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part
I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research, 11(7):171–234.

Aliferis, C. F., Tsamardinos, I., Statnikov, A., and Brown, L. E. (2003). Causal explorer: a causal
probabilistic network learning toolkit for biomedical discovery. In Valafar, F., editor, Proceedings
of the 2003 International Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences (METMBS), Athens, Georgia. CSREA Press.

Bai, J. P. and Abernethy, D. R. (2013). Systems pharmacology to predict drug toxicity: integration
across levels of biological organization. Annual review of pharmacology and toxicology, 53:451–
473.

Balasubramanian, V. (2005). MDL, Bayesian Inference, and the Geometry of the Space of Probabil-
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